
http://www.digital.com/semiconductor

Digital Equipment Corporation
Maynard, Massachusetts

DIGITAL Semiconductor
21174 Core Logic Chip

Technical Reference Manual
Order Number: EC–R12GC–TE

Revision/Update Information: This is a revised, preliminary
document. It supersedes the DIGITAL
Semiconductor 21174 Core Logic
Chip Technical Reference
Manual, EC–R12GB–TE.

Preliminary

October 1997

While DIGITAL believes the information included in this publication is correct as of the date of
publication, it is subject to change without notice.

Digital Equipment Corporation makes no representations that the use of its products in the manner
described in this publication will not infringe on existing or future patent rights, nor do the descriptions
contained in this publication imply the granting of licenses to make, use, or sell equipment or software
in accordance with the description.

©Digital Equipment Corporation 1997. All rights reserved.
Printed in U.S.A.

DIGITAL, DIGITAL Semiconductor, and the DIGITAL logo are trademarks of Digital Equipment
Corporation.

DIGITAL Semiconductor is a Digital Equipment Corporation business.

Altera is a registered trademark of Altera Corporation.
Intel is a registered trademark of Intel Corporation.
NEC is a registered trademark of NEC Corporation.
Toshiba is a registered trademark of Kabushiki Kaisha Toshiba.
Windows NT is a trademark of Microsoft Corporation.

All other trademarks and registered trademarks are the property of their respective owners.

 Contents

Preface

1 Introduction

1.1 21174 Features . 1–1
1.2 21174 System Configuration. 1–2

2 Internal Architecture

2.1 Memory Controller . 2–1
2.1.1 Memory Sequencers . 2–1
2.1.2 DMA Read Transaction . 2–3
2.1.2.1 PCI DMA Page Boundary Problem . 2–3
2.1.3 DMA Write Transaction . 2–4
2.1.4 21174 DMA Lock Problem. 2–6
2.1.5 Minimum Memory Activation Period . 2–6
2.2 Memory Banks . 2–7
2.2.1 Refresh . 2–7
2.2.2 Error Checking and Correction . 2–7
2.2.3 DRAM Initialization . 2–8
2.3 PCI Interface . 2–9
2.3.1 Scatter-Gather Map . 2–9
2.3.2 DMA Read Prefetch . 2–9
2.3.3 DMA Write Buffer. 2–9
2.3.4 DMA Write Buffer Merging . 2–10
2.3.5 I/O Write Buffer . 2–10
2.3.6 Configuration Cycles and Special Cycles . 2–10
2.4 Flash ROM Interface . 2–11
2.5 Auto DACK . 2–12
2.6 Dummy Memory . 2–12
2.7 Interrupts . 2–13
2.8 General-Purpose Inputs and Outputs . 2–14
3 October 1997 – Subject to Change iii

2.9 Programmed 21164 Reset . 2–14
2.10 Clock . 2–15
2.10.1 Clock PLL . 2–15
2.10.2 DRAM Clock Aligner . 2–15

3 Pinout

3.1 Pin List (Alphanumeric) . 3–3
3.2 Signal List (Alphanumeric) . 3–11
3.3 Signal Descriptions . 3–18

4 Register Definitions

4.1 Register Types . 4–1
4.2 Register Addresses. 4–2
4.3 General Registers . 4–2
4.4 Memory Controller Registers . 4–4
4.5 PCI Window Control Registers . 4–5
4.6 Scatter-Gather Address Translation Registers . 4–6
4.7 Miscellaneous Registers . 4–8
4.8 Interrupt Control Registers . 4–8
4.9 Flash ROM Address Space . 4–9

5 Register Descriptions

5.1 Registers – General Description . 5–1
5.1.1 Revision Control Register (PYXIS_REV). 5–1
5.1.2 PCI Latency Register (PCI_LAT) . 5–2
5.1.3 Control Register (PYXIS_CTRL) . 5–4
5.1.4 Control Register 1 (PYXIS_CTRL1). 5–7
5.1.5 Flash Control Register (FLASH_CTRL). 5–8
5.1.5.1 Calculating Flash ROM Access Time . 5–10
5.1.6 Hardware Address Extension Register (HAE_MEM). 5–11
5.1.7 Hardware Address Extension Register (HAE_IO) . 5–12
5.1.8 Configuration Type Register (CFG) . 5–13
5.2 Diagnostic Register Descriptions . 5–14
5.2.1 Diagnostic Control Register (PYXIS_DIAG) . 5–14
5.2.2 Diagnostic Check Register (DIAG_CHECK) . 5–15
5.3 Performance Monitor Register Descriptions . 5–15
5.3.1 Performance Monitor Register (PERF_MONITOR). 5–16
5.3.2 Performance Monitor Control Register (PERF_CONTROL) 5–16
5.4 Error Register Descriptions . 5–19
5.4.1 Error Register (PYXIS_ERR). 5–19
iv 3 October 1997 – Subject to Change

5.4.2 Status Register (PYXIS_STAT) . 5–22
5.4.3 Error Mask Register (ERR_MASK) . 5–23
5.4.4 Syndrome Register (PYXIS_SYN). 5–24
5.4.5 Error Data Register (PYXIS_ERR_DATA). 5–26
5.4.6 Memory Error Address Register (MEAR). 5–26
5.4.7 Memory Error Status Register (MESR) . 5–27
5.4.8 PCI Error Register 0 (PCI_ERR0) . 5–33
5.4.9 PCI Error Register 1 (PCI_ERR1) . 5–35
5.4.10 PCI Error Register 2 (PCI_ERR2) . 5–36
5.5 Memory Controller Register Descriptions . 5–37
5.5.1 Memory Control Register (MCR) . 5–38
5.5.2 Memory Clock Mask Register (MCMR) . 5–41
5.5.3 Global Timing Register (GTR) . 5–42
5.5.4 Refresh Timing Register (RTR) . 5–44
5.5.5 Row History Policy Mask Register (RHPR) . 5–45
5.5.6 Memory Control Debug Register 1 (MDR1). 5–46
5.5.7 Memory Control Debug Register 2 (MDR2). 5–47
5.5.8 Base Address Registers (BBAR0–BBAR7) . 5–48
5.5.9 Bank Configuration Registers (BCR0–BCR7) . 5–49
5.5.10 Bank Timing Registers (BTR0–BTR7). 5–51
5.5.11 Cache Valid Map Register (CVM) . 5–52
5.6 PCI Window Control Register Descriptions. 5–53
5.6.1 Scatter-Gather Translation Buffer Invalidate Register (TBIA) 5–53
5.6.1.1 Preventing 21174 Hang when TBIA=3 . 5–54
5.6.2 Window Base Registers (Wn_BASE, n=0–3) . 5–55
5.6.2.1 Determining a Hit in the Target Window. 5–56
5.6.3 Window Mask Registers (Wn_MASK, n=0–3) . 5–57
5.6.3.1 Determining a Hit in the Target Window. 5–57
5.6.4 Translated Base Registers (Tn_BASE, n=0–3) . 5–60
5.6.5 Window DAC Base Register (W_DAC) . 5–61
5.7 Scatter-Gather Address Translation Register Descriptions 5–62
5.7.1 Lockable Translation Buffer Tag Registers (LTB_TAGn, n=0–3) 5–62
5.7.1.1 Determining a Hit in the Translation Buffer. 5–63
5.7.1.2 Operation on a SG_TLB Miss. 5–63
5.7.2 Translation Buffer Tag Registers (TB_TAGn, n=4–7) 5–64
5.7.2.1 Determining a Hit in the Translation Buffer. 5–65
5.7.2.2 Operation on a SG_TLB Miss. 5–65
5.7.3 Translation Buffer Page Registers (TBm_PAGEn, m=0–7, n=0–3). 5–65
5.7.3.1 Determining a Hit in the Translation Buffer. 5–66
5.8 Miscellaneous Register Descriptions . 5–66
5.8.1 Clock Control Register (CCR) . 5–67
5.8.2 Clock Status Register (CLK_STAT). 5–69
5.8.3 Reset Register (RESET) . 5–71
5.9 Interrupt Control Registers Descriptions . 5–72
5.9.1 Interrupt Request Register (INT_REQ) . 5–72
5.9.2 Interrupt Mask Register (INT_MASK) . 5–73
5.9.3 Interrupt High/Low Select Register (INT_HILO). 5–74
3 October 1997 – Subject to Change v

5.9.4 Interrupt Routine Select Register (INT_ROUTE) . 5–75
5.9.5 General-Purpose Output Register (GPO) . 5–76
5.9.6 Interrupt Configuration Register (INT_CNFG) . 5–77
5.9.7 Real-Time Counter Register (RT_COUNT) . 5–80
5.9.8 Interrupt Time Register (INT_TIME) . 5–81
5.9.9 I2C Control Register (IIC_CTRL) . 5–83

6 System Address Space

6.1 Address Map. 6–1
6.2 PCI Address Space. 6–6
6.3 21164 Address Space. 6–7
6.3.1 System Address Map. 6–10
6.4 21164 Byte/Word PCI Space . 6–12
6.4.1 21164 Size Field . 6–14
6.5 Cacheable Memory Space . 6–15
6.6 PCI Dense Memory Space . 6–15
6.7 PCI Sparse Memory Space . 6–17
6.7.1 Hardware Extension Register (HAE_MEM) . 6–18
6.7.2 Memory Access Rules and Operation . 6–18
6.8 PCI Sparse I/O Space. 6–23
6.8.1 Hardware Extension Register (HAE_IO) . 6–23
6.8.2 PCI Sparse I/O Space Access Operation . 6–23
6.9 PCI Configuration Space . 6–26
6.10 PCI Special/Interrupt Cycles . 6–31
6.11 Hardware-Specific and Miscellaneous Register Space . 6–31
6.12 PCI to Physical Memory Address . 6–32
6.13 Direct-Mapped Addressing . 6–37
6.14 Scatter-Gather Addressing . 6–38
6.15 Scatter-Gather TLB. 6–40
6.15.1 Scatter-Gather TLB Hit Process . 6–42
6.15.2 Scatter-Gather TLB Miss Process . 6–42
6.16 Suggested Use of a PCI Window . 6–44
6.16.1 Peripheral Component Architecture Compatibility Addressing and Holes . . . 6–45
6.16.2 Memory Chip Select Signal mem_cs_l . 6–45

7 Electrical Specifications

7.1 PCI Electrical Specification Conformance. 7–1
7.2 Absolute Maximum Ratings . 7–1
7.3 DC Specifications . 7–2
vi 3 October 1997 – Subject to Change

8 Mechanical and Thermal Specifications

8.1 Mechanical Specifications. 8–1
8.2 Thermal Specifications . 8–4
8.2.1 Operating Temperature . 8–4
8.2.2 Thermal Design Recommendations. 8–4
8.2.3 Heat Sinks . 8–4
8.2.3.1 Clip-on Heat Sink Assembly . 8–5
8.2.3.2 Tape Heat Sink Assembly . 8–6

A 21174 DMA Page Boundary Solution

A.1 Read Page Problem . A–1
A.2 Recommended Solution . A–1
A.2.1 DMA Access Verilog Equations . A–1

B 21174 DMA Lock Solution

B.1 DMA Lock Problem . B–1
B.2 Recommended Solutions . B–1

C AlphaPC 164LX Layout Design Rules

C.1 Application Note . C–1
C.2 AlphaPC 164LX Layer Construction . C–3
C.3 Bcache Signal Layout Lengths . C–5
C.4 21174 Clock Layout . C–6
C.4.1 DRAM Clock Signal Layout Rules . C–6
C.4.2 PCI Clock Signal Layout Rules . C–6
C.5 Bcache Signal Layout Rules . C–7
C.6 PCI General Layout . C–8

D Support, Products, and Documentation
3 October 1997 – Subject to Change vii

Figures

1–1 System Configuration . 1–2
2–1 21174 Block Diagram. 2–2
2–2 DMA Read Transaction Flow Diagram . 2–4
2–3 DMA Write Transaction Flow Diagram. 2–5
3–1 21174 BGA Pin Assignment (Pads Down). 3–2
5–1 Revision Control Register. 5–1
5–2 PCI Latency Register . 5–2
5–3 Control Register . 5–4
5–4 Control Register 1 . 5–7
5–5 Flash Control Register . 5–9
5–6 Hardware Address Extension Register (HAE_MEM) . 5–11
5–7 Hardware Address Extension Register (HAE_IO) . 5–12
5–8 Configuration Type Register . 5–13
5–9 Diagnostic Control Register . 5–14
5–10 Diagnostic Check Register . 5–15
5–11 Performance Monitor Register . 5–16
5–12 Performance Monitor Control Register . 5–17
5–13 Error Register . 5–19
5–14 Status Register . 5–22
5–15 Error Mask Register . 5–23
5–16 Syndrome Register . 5–25
5–17 Error Data Register . 5–26
5–18 Memory Error Address Register. 5–27
5–19 Memory Error Status Register . 5–28
5–20 PCI Error Register 0 . 5–33
5–21 PCI Error Register 1 . 5–36
5–22 PCI Error Register 2 . 5–37
5–23 Memory Control Register . 5–38
5–24 Memory Clock Mask Register . 5–41
5–25 Global Timing Register . 5–43
5–26 Refresh Timing Register . 5–44
5–27 Row History Policy Mask Register . 5–45
5–28 Memory Control Debug Register 1 . 5–46
5–29 Memory Control Debug Register 2 . 5–47
5–30 Base Address Register . 5–48
5–31 Bank Configuration Register . 5–49
5–32 Bank Timing Register . 5–51
5–33 Cache Valid Map Register . 5–52
5–34 Scatter-Gather Translation Buffer Invalidate Register . 5–54
5–35 Window Base Register . 5–55
5–36 Window Mask Register . 5–57
viii Subject to Change – October 3, 1997

5–37 Translated Base Register . 5–60
5–38 Window DAC Base Register . 5–61
5–39 Lockable Translation Buffer Tag Register . 5–62
5–40 Translation Buffer Tag Register . 5–64
5–41 Translation Buffer Page Register . 5–66
5–42 Clock Control Register . 5–67
5–43 Clock Status Register . 5–69
5–44 Reset Register . 5–71
5–45 Interrupt Request Register . 5–72
5–46 Interrupt Mask Register . 5–73
5–47 Interrupt High/Low Select Register . 5–74
5–48 Interrupt Routine Select Register . 5–75
5–49 General-Purpose Output Register . 5–77
5–50 Interrupt Configuration Register. 5–78
5–51 Real-Time Counter Register . 5–81
5–52 Interrupt Time Register. 5–82
5–53 I2C Control Register . 5–83
6–1 Address Space Overview . 6–5
6–2 Memory Remapping . 6–6
6–3 21164 Address Space Configuration . 6–8
6–4 21164 and DMA Read and Write Transactions . 6–9
6–5 System Address Map . 6–11
6–6 21174 CSR Space . 6–12
6–7 Byte/Word PCI Space . 6–13
6–8 Dense-Space Address Generation. 6–17
6–9 PCI Memory Sparse-Space Address Generation – Region 16–21
6–10 PCI Memory Sparse-Space Address Generation – Region 26–22
6–11 PCI Memory Sparse-Space Address Generation – Region 36–22
6–12 PCI Sparse I/O Space Address Translation (Region A, Lower 32MB) 6–25
6–13 PCI Sparse I/O Space Address Translation (Region B, Higher Area) 6–25
6–14 PCI Configuration Space Definition (Sparse) . 6–27
6–15 PCI Configuration Space Definition (Dense) . 6–27
6–16 PCI Bus Hierarchy . 6–30
6–17 PCI DMA Addressing Example . 6–35
6–18 PCI Target Window Compare . 6–36
6–19 Scatter-Gather PTE Format . 6–39
6–20 Scatter-Gather Associative TLB. 6–41
6–21 Scatter-Gather Map Translation . 6–43
6–22 Default PCI Window Allocation. 6–44
6–23 mem_cs_l Decode Area . 6–46
6–24 mem_cs_l Logic . 6–47
8–1 474-Pin BGA Package . 8–2
8–2 21174 Physical Specification . 8–3
October 3, 1997 – Subject to Change ix

8–3 Clip-on Heat Sink Assembly . 8–5
8–4 Tape Heat Sink Assembly. 8–6
C–1 sys_cout1_h Layout . C–4
C–2 st_clk1_h Layout. C–5
C–3 Bcache Signal Layout . C–7
C–4 Bcache Signal Layout . C–8
x Subject to Change – October 3, 1997

Tables

1 Data Units . xvi
2 Register Field Notation . xviii
3 Unnamed Register Field Notation . xix
2–1 PCI Operating Frequencies . 2–9
2–2 Flash ROM Pin Assignment . 2–11
2–3 Shift Register Rates and WC Latency Times . 2–13
3–1 Pin List (Alphanumeric) . 3–3
3–2 Power and Ground Pin List. 3–10
3–3 Signal List (Alphanumeric) . 3–11
3–4 Signal Descriptions (Alphanumeric) . 3–18
4–1 21174 Register Categories . 4–1
4–2 Hardware-Specific Register Address Map . 4–2
4–3 General 21174 CSRs (Base = 87.4000.0000) . 4–2
4–4 Diagnostic Registers (Base = 87.4000.0000) . 4–3
4–5 Performance Monitor Registers (Base = 87.4000.0000) 4–3
4–6 Error Registers (Base = 87.4000.0000) . 4–3
4–7 Memory Controller Registers . 4–4
4–8 PCI Window Control Registers . 4–5
4–9 Address Translation Registers . 4–6
4–10 Miscellaneous Registers (Base Address = 87.8000.0000) 4–8
4–11 Interrupt Control Registers (Base Address = 87.A000.0000). 4–8
5–1 Revision Control Register Fields . 5–2
5–2 PCI Latency Register Fields . 5–3
5–3 Control Register Fields . 5–4
5–4 Default PCI READ Prefetch Algorithm . 5–7
5–5 Control Register 1 Fields . 5–8
5–6 Flash Control Register Fields . 5–9
5–7 Hardware Address Extension Register (HAE_MEM) Fields 5–11
5–8 PCI Address Mapping. 5–12
5–9 Hardware Address Extension Register (HAE_IO) Fields 5–13
5–10 Configuration Type Register Fields . 5–13
5–11 Diagnostic Control Register Fields. 5–14
5–12 Diagnostic Check Register Fields. 5–15
5–13 Performance Monitor Register Fields . 5–16
5–14 Performance Monitor Control Register Fields . 5–17
5–15 PERF_MONITOR Register Low/High Select Field Codes 5–18
5–16 Error Register Fields . 5–20
5–17 Status Register Fields . 5–22
5–18 Error Mask Register Fields . 5–23
5–19 Syndrome Register Fields . 5–25
5–20 Memory Error Address Register Fields . 5–27
October 3, 1997 – Subject to Change xi

5–21 Memory Error Status Register Fields . 5–28
5–22 DATA_CYCLE_TYPE Codes . 5–29
5–23 SEQ_STATE Codes . 5–30
5–24 PCI Error Register 0 Fields. 5–34
5–25 PCI Error Register 1 Fields. 5–36
5–26 PCI Error Register 2 Fields. 5–37
5–27 Memory Control Register Fields . 5–38
5–28 DRAM_MODE Fields . 5–40
5–29 Memory Clock Mask Register Fields . 5–41
5–30 MCMR Bit Definitions . 5–42
5–31 Global Timing Register Fields . 5–43
5–32 Refresh Timing Register Fields . 5–44
5–33 Row History Policy Mask Register Fields . 5–46
5–34 Memory Control Debug Register 1 Fields . 5–46
5–35 Memory Control Debug Register 2 Fields . 5–48
5–36 Base Address Register Fields . 5–49
5–37 Bank Configuration Register Fields . 5–50
5–38 Bank Timing Register Fields . 5–51
5–39 Cache Valid Map Register Fields . 5–53
5–40 Scatter-Gather Translation Buffer Invalidate Register Fields 5–54
5–41 Window Base Register Fields . 5–56
5–42 Window Mask Register Fields . 5–58
5–43 W_MASK<31:20> Field . 5–58
5–44 PCI Address Translation — Scatter-Gather Mapping Disabled.5–58
5–45 PCI Address Translation — Scatter-Gather Mapping Enabled 5–59
5–46 Translated Base Registers Fields . 5–60
5–47 Window DAC Base Register Fields . 5–62
5–48 Lockable Translation Buffer Tag Register Fields. 5–63
5–49 Translation Buffer Tag Register Fields . 5–64
5–50 Translation Buffer Page Register (TBm_PAGEn) Fields. 5–66
5–51 Clock Control Register Fields. 5–67
5–52 Clock Status Register Fields . 5–70
5–53 Reset Register Fields . 5–71
5–54 Interrupt Request Register Fields . 5–73
5–55 Interrupt Mask Register Fields . 5–74
5–56 Interrupt High/Low Select Register Fields . 5–75
5–57 Interrupt Routine Select Register Fields . 5–76
5–58 General-Purpose Output Register Fields . 5–77
5–59 Interrupt Configuration Register Fields . 5–78
5–60 Clock Delay Values . 5–79
5–61 Clock Divisor Values . 5–80
5–62 Real-Time Counter Register Fields . 5–81
5–63 Interrupt Time Register Fields . 5–82
xii Subject to Change – October 3, 1997

5–64 I2C Control Register Fields . 5–83
6–1 Physical Address Map (Byte/Word Mode Disabled) . 6–1
6–2 Physical Address Map (Byte/Word Mode Enabled). 6–2
6–3 21164 Byte/Word Addressing . 6–14
6–4 21164 Byte/Word Translation Values . 6–14
6–5 Int4_valid and 21164 Address Relationship . 6–19
6–6 PCI Memory Sparse-Space Read/Write Encodings . 6–20
6–7 PCI Address Mapping. 6–21
6–8 PCI Sparse I/O Space Read/Write Encodings . 6–24
6–9 CPU Address to IDSEL Conversion. 6–28
6–10 PCI Configuration Space Read/Write Encodings . 6–29
6–11 Hardware and Miscellaneous Address Map . 6–31
6–12 PCI Target Window Mask Register Fields . 6–33
6–13 Direct-Mapped PCI Target Address Translation . 6–37
6–14 Scatter-Gather Mapped PCI Target Address Translation 6–39
6–15 PCI Window Power-Up Configuration. 6–45
7–1 Absolute Maximum Electrical Ratings. 7–1
7–2 DC Specifications . 7–2
8–1 Thermal Management Configurations for the 21174 . 8–4
C–1 Layer Construction . C–3
C–2 System Clock Signals Layout Rules . C–4
C–3 Bcache Signal Layout Lengths . C–5
C–4 DRAM Clock Signal Layout Rules . C–6
C–5 PCI Clock Signal Layout Rules . C–6
C–6 Bcache Signal Layout Rules . C–7
October 3, 1997 – Subject to Change xiii

 Preface

Purpose and Audience
The DIGITAL Semiconductor 21174 Core Logic Chip Technical Reference Manual
describes the operation of the DIGITAL Semiconductor 21174 core logic chip (also
referred to as the 21174). This manual is for designers who use the 21174.

Manual Organization

This manual contains the following chapters, appendixes, and an index.

• Chapter 1, Introduction, includes a general description of the 21174. It also
provides an overview of the workstation configuration.

• Chapter 2, Internal Architecture, provides the physical layout of the 21174 and
describes each of the input and output signals.

• Chapter 3, Pinout, provides the pin layout of the 21174 and describes each of the
input and output signals.

• Chapter 4, Register Definitions, provides a complete list of the 21174 registers.

• Chapter 5, Register Descriptions, provides a complete bit description of the
21174 registers.

• Chapter 6, System Address Space, describes the organization of the system
address space and shows the methods used to translate 21164 and PCI addresses.

• Chapter 7, Electrical Specifications, lists the dc electrical specifications for the
21174.

• Chapter 8, Mechanical and Thermal Specifications, lists and illustrates the
mechanical and thermal specifications of the 21174.

• Appendix A, 21174 DMA Page Boundary Solution, provides the files and the
code necessary to manage PCI DMA reads that cross 8K page boundaries.
October 3, 1997 — Subject to Change xv

d
• Appendix B, 21174 DMA Lock Solution, explains how to manage inappropriate
LOCK commands issued by the 21164 to the CMD bus.

• Appendix C, AlphaPC 164LX Layout Design Rules, contains the module design
layout rules.

• Appendix D, Support, Products, and Documentation, contains information
about technical support and ordering information.

Conventions

This section describes the abbreviation and notation conventions used throughout
this manual.

Bit Notation

Multiple bit fields are shown as extents (see Extents).

Caution

Cautions indicate potential damage to equipment or loss of data.

Data Units

Table 1 defines the data unit terminology used throughout this manual.

Table 1 Data Units

Term Words Bytes Bits Other

Byte 1 — 8 —

Word 1 2 16 —

Tribyte — 3 24 —

Longword 2 4 32 —

Quadword 4 8 64 —

Octaword 8 16 128 Single read fill; that is, the cache space that
can be filled in a single read access. It takes
two read accesses to fill one Bcache line
(see Hexword).

Hexword 16 32 256 Cache block, cache line. The space allocate
to a single cache block.
xvi October 3, 1997 – Subject to Change

as

f

e
d 4.
Extents

Extents are specified by a pair of numbers in angle brackets (<>) separated by a
colon (:) and are inclusive. For example, bits <7:3> specifies an extent including bits
7, 6, 5, 4, and 3.

Logic Levels

The values 1, 0, and X are used throughout the manual. A 1 signifies a logic high,
a 0 signifies a logic low, and an X signifies a don’t care (1 or 0) which can be
determined by the system designer.

Must Be Zero

Fields specified as must be zero (MBZ) must never be filled by software with a
nonzero value. If the processor encounters a nonzero value in a field specified
MBZ, a reserved operand exception occurs.

Note

Notes emphasize particular information.

Numbering

All numbers are decimal or hexadecimal unless otherwise specified. In cases o
ambiguity, a subscript indicates the radix of nondecimal numbers. For example,
19 is decimal, but 1916 and 19A are hexadecimal.

Processor Chip Type

All references to the 21164 microprocessor specifically refer to the version of the
DIGITAL Semiconductor 21164 in 0.35-µm CMOS and to the
DIGITAL Semiconductor 21164PC in 0.35-µm CMOS.

Ranges

Ranges are specified by a pair of numbers separated by two periods (..) and ar
inclusive. For example, a range of integers 1..4 includes the integers 1, 2, 3, an
October 3, 1997 – Subject to Change xvii

Register and Memory Figures

Register figures have bit and field position numbering starting at the right (low-
order) and increasing to the left (high-order). Memory figures have addresses
starting at the top and increasing toward the bottom.

All shaded bits and bit fields in the figures are reserved, and software drivers should
write only 0 to these bits and bit fields.

Register figures and tabulated descriptions have a mnemonic that indicates the bit or
field characteristic as described in Table 2.

Table 2 Register Field Notation

Notation Description

RW A read-write bit or field. The value can be read and written by software,
microcode, or hardware.

RO A read-only bit or field. The value can be read by software, microcode, or
hardware. The bit is written by hardware. Software or microcode write
operations to this bit are ignored.

WO A write-only bit. The value can be written by software and microcode. The
bit is read by hardware. Read operations to this bit by software or
microcode return an UNPREDICTABLE result.

WZ A write-only bit or field. The value can be written by software or
microcode. The bit is read by hardware. Read operations to this bit by
software or microcode return a zero.

WC A write-to-clear bit. The value can be read by software or microcode. Soft-
ware or microcode write operations with a 1 to this bit cause the bit to be
cleared by hardware. Software or microcode write operations with a 0 to
this bit do not modify the state of the bit.

RC A read-to-clear field. The bit is written by hardware and remains unchanged
until the bit is read. The bit can be read by software or microcode, at which
point hardware can write a new value into the field.
xviii October 3, 1997 – Subject to Change

Other register fields that are unnamed may be labeled as specified in Table 3.

Should Be Zero

Fields specified as should be zero (SBZ) should be filled by software with a zero
value. These fields may be used at some future time. Nonzero values in SBZ fields
produce UNPREDICTABLE results.

Signal Name References

Signal names are printed in boldface, lowercase type. Mixed-case and uppercase
signal naming conventions are ignored. These two examples illustrate the
conventions used in this document:

• MEM_WE_L[1] is shown as mem_we_l<1>

• TEST_MODE[1] is shown as test_mode<1>

UNPREDICTABLE and UNDEFINED Definitions

Results specified as UNPREDICTABLE may vary from moment to moment,
implementation to implementation, and instruction to instruction within
implementations. Software can never depend on results specified as
UNPREDICTABLE.

Operations specified as UNDEFINED may vary from moment to moment,
implementation to implementation, and instruction to instruction within
implementations. The operation may vary from nothing to stopping system
operation. UNDEFINED operations must not cause the processor to hang, that is,
reach a state from which there is no transition to a normal state where the machine
can execute instructions.

Table 3 Unnamed Register Field Notation

Notation Description

0 A 0 in a bit position indicates a register bit that is read as a 0 and is ignored
on a write operation.

1 A 1 in a bit position indicates a register bit that is read as a 1 and is ignored
on a write operation.

x An x in a bit position indicates a register bit that does not exist in hardware.
The value is UNPREDICTABLE when read and is ignored on a write opera-
tion.
October 3, 1997 – Subject to Change xix

Note the distinction between results and operations. Nonprivileged software cannot
invoke UNDEFINED operations.

Warning

Warnings provide information to prevent personal injury.
xx October 3, 1997 – Subject to Change

 1
Introduction

The DIGITAL Semiconductor 21174 core logic chip (also referred to as the 21174) is
a single-chip core logic PCI-to-21164 interface for low-cost workstations. It provides
an inexpensive memory, cache, and PCI controller for uniprocessor workstations.
The 21174 may be used with 21164PC devices and with 21164 devices that support
a clock frequency equal to or greater than 400 MHz. These types of devices are
referred to as 21164 in this manual.

1.1 21174 Features

The 21174 has the following features:

• Synchronous dynamic RAM (DRAM) memory controller

• Supports optional Bcache (level 3 cache)

• Supports 64-bit PCI at 33 MHz

• 64 interrupts through external shift register

• 32 general-purpose inputs through external shift register

• 32 general-purpose outputs through external shift register

• 3.3–V design

• Quadword ECC support, longword parity, or no parity on system and memory
data buses

• Onchip phase-locked loop (PLL)

• Direct attachment of flash ROM

• Startup from flash ROM

• Compact design, complete interface in single 474-pin ball grid array (BGA)
3 October 1997 – Subject to Change Introduction 1–1

21174 System Configuration
• 1000 MB/s peak memory bandwidth

• Glueless workstation memory controller

1.2 21174 System Configuration

Figure 1–1 shows the 21174 used in a system configuration.

Figure 1–1 System Configuration

See Appendix C for additional details on designing a system using two DIMM pairs.
Appendix C also contains key module layout design rules. It is crucial that these
rules are followed when designing a system.

Level 3

Bcache

Address

Data
21164

21174

128

36

flash_ce_l

10
Control

Flash

 ROM

D
IM

M
 P

ai
r

Address

D
IM

M
 P

ai
r

64

PCI
LJ-05348.AI4

Bus

Switch
1–2 Introduction 3 October 1997 – Subject to Change

f the

ion
re

tions
arts;
itiates
 for

a

 a new
sfer
 2
Internal Architecture

The 21174 provides an interface between three units — memory, the PCI bus, and
the 21164 (along with flash ROM). Figure 2–1 shows the internal components o
21174 and the three internal units: memory controller, PCI interface, and the
interface to the 21164 flash ROM.

2.1 Memory Controller

The 21174 memory controller provides clocks, data, address, and control to the
memory unit. When power is turned on, the memory controller gathers informat
from the memory banks, and then uses that information to initialize and configu
the memory unit.

2.1.1 Memory Sequencers

The memory sequencer permits up to two partially overlapping memory transac
to be active at any given time. The sequencer is internally implemented in two p
the master sequencer and the data transfer machine. The master sequencer in
all memory operations and I/O operations. It generates all control signal timings
the SDRAMs. When a memory operation has progressed to the point where a
column access has started, the master sequencer hands off the transaction to the dat
transfer machine. The data transfer machine controls the four data cycles that
complete the transaction. In most cases, the master sequencer is ready to start
transaction as soon as the old transaction has been handed off to the data tran
machine.
3 October 1997 – Subject to Change Internal Architecture 2–1

Memory Controller
Figure 2–1 21174 Block Diagram

Control

Registers

Victim Buffer

Generate ECC Correct ECC

DMA Write

Buffer 1

DMA Write

Buffer 0

I/O Read

Buffer

PCI

Controller

Memory

Controller

Flash ROM

Address Data

PCI Control Signals PCI Address

dram_addr

<13:00>

ras_l

cas_l

Scatter-Gather

TLB

DMA Read

Address

DMA Write

Address 1

DMA Write

Address 0

I/O Write

Buffer 0

DMA Read

Buffer

I/O Write

Buffer 1

I/O Read

Address
2–2 Internal Architecture 3 October 1997 – Subject to Change

Memory Controller

atter-

also
 the

n
2.1.2 DMA Read Transaction

A DMA read transaction consists of an optional scatter-gather translation lookaside
buffer (TLB) lookup (and TLB refill, if needed), followed by a probe transaction to
the 21164, followed by either a cache read from 21164 or a read from the memory.
Figure 2–2 shows a flow diagram of a DMA read transaction. The length of the
DMA read transaction is determined by the prefetch logic associated with the sc
gather TLB.

If the scatter-gather lookup misses in the TLB, an additional cache probe, and
possibly a memory read transaction, must be performed to fill the TLB before
completing the main probe and memory transaction. The DMA read address is
compared to the victim buffer addresses. If there is a victim buffer hit, data from
victim buffer is substituted for the memory read transaction data.

2.1.2.1 PCI DMA Page Boundary Problem

PCI DMA reads that attempt to cross 8K page boundaries cause data corruptio
problems.

See Appendix A for the DMA page boundary solution.
3 October 1997 – Subject to Change Internal Architecture 2–3

Memory Controller

on.

Figure 2–2 DMA Read Transaction Flow Diagram

2.1.3 DMA Write Transaction

A DMA write transaction consists of an optional scatter-gather TLB lookup (and
TLB refill, if needed), followed by a flush transaction to the 21164, followed by a
write to the memory. Figure 2–3 shows a flow diagram of a DMA write transacti

If the scatter-gather lookup misses in the TLB, an additional cache probe, and
possibly a memory read, must be performed to fill the TLB before completing the
main probe and memory transaction.

Read from 21164

Ack NoAck

TLB Lookup

Copy 21174 Buffer

to PCI

Done
LJ-05391.AI4

Read from Memory

to 21174 Read Buffer

Copy Cache Data

to 21174 Read Buffer

These

operations

overlap

Start
2–4 Internal Architecture 3 October 1997 – Subject to Change

Memory Controller
The physical DMA address is also compared to the victim buffer addresses. If there
is a victim buffer hit, the victim buffer data is merged with the write buffer before the
write is performed, and the victim buffer is invalidated.

Figure 2–3 DMA Write Transaction Flow Diagram

Merge Cache Data

into 21174 write buffer

Send Flush to 21164

Ack NoAck

Merge from Memory

into 21174 Write Buffer

Send Invalidate to 21164

Ack NoAck

Copy PCI to

21174 Buffer

TLB Lookup

Copy 21174 Buffer

to Memory

Done

Partial Cache Line Full Cache Line

Partial Octawords

No Partials

LJ-05392.AI4

Start
3 October 1997 – Subject to Change Internal Architecture 2–5

Memory Controller
2.1.4 21174 DMA Lock Problem

The 21164 sometimes issues LOCK commands on the CMD bus. The 21174 treats
the LOCK command as a no-op command and goes back to idle. This does not
actually clear the LOCK command. Thus, the process repeats indefinitely, blocking
DMA requests that may be waiting for service.

See Appendix B for the solution to this problem.

2.1.5 Minimum Memory Activation Period

Several cases where the memory controller activates the memory arrays but does not
perform a read or write operation are described here:

• If the victim buffer is hit during a 21164 read transaction, the memory controller
performs a complete memory read operation and then discards the data before
taking the data from the victim buffer.

• If the cache is hit during a DMA read transaction, the memory controller may
have activated the memory arrays but does not perform a read operation. The
21164 takes the data from the cache while the memory controller completes the
cache read cycles before returning to the idle state. In the worst case, the
following state sequence occurs.

This state sequence implies that the memory arrays will be activated for a
minimum of 6 (5) cycles, because the soonest that a new SELECT can occur is
during the IDLE cycle.

• The DMA_RD_PROBE state deasserts SELECT when the next state is
DMA_RD_SCACHE_DATA or DMA_RD_CACHE_DATA. This adds one
state, which provides an additional margin, extending the minimum guarantee
for the activated memory arrays to 7 (6) cycles. This is enough time for all
currently available or proposed SDRAMs.

State SELECT State Number of Cycles

DMA_RD_PROBE SELECT is asserted. n cycles

DMA_RD_SCACHE_DATA SELECT is deasserted. 2 cycles

DMA_RD_CACHE_DATA SELECT is deasserted. 4 cycles

IDLE — —
2–6 Internal Architecture 3 October 1997 – Subject to Change

Memory Banks

 the

e

 error
rity

• During a DMA write transaction, even if there is a cache hit or victim buffer hit,
there is a write-back to the selected memory location, so the memory arrays
cannot become stranded in the activated state.

2.2 Memory Banks

The 21174 memory controller supports up to two banks, i.e. four DIMM slots, of
synchronous DRAM memory. Each bank can have two sub-banks. The memory
banks may be of different sizes and speeds, but the two sub-banks within a bank
must be identical.

See Figure 1–1 for a typical system configuration.

The 21174 reads the I2C control register (see Section 5.9.9), by way of the I2C bus,
to check for the absence or presence of memory DIMMs. Startup code will read
information from each DIMM. Each DIMM must contain the proper I2C ROM.

2.2.1 Refresh

The operation of memory refresh is controlled by using the refresh timing register.
All banks of memory are refreshed simultaneously.

2.2.2 Error Checking and Correction

The 21174 operates in one of two software selectable modes — ECC or PCA56
longword parity. Use PYXIS_CTRL[ECC_CHK_EN] to enable ECC checking or
use PYXIS_CTRL1[LW_PAR_MODE] to enable PCA56 longword parity mode.

Initialization firmware must check the memory banks and the 21164 to determin
whether parity or ECC bits are present in the memory and whether the 21164 will
support ECC. The firmware then establishes the state of the error checking and
code generation based on this criteria. If the memory does not provide ECC/pa
bits, then all memory error checking should be turned off.

If the 21174 is operated with error checking enabled, the memory should be
initialized by firmware to contain good ECC or parity in all locations.

If the 21174 is operating in ECC mode and an ECC error occurs on a DMA read
transaction or I/O write transaction, the ECC error is corrected. If the ECC error is
not correctable, the DMA read or I/O write transaction will not complete. In either
case, appropriate error status bits are set and the 21174 error interrupt is asserted if
error reporting is enabled. The interrupt service routine must clear the error status
bits to deassert the error interrupt.
3 October 1997 – Subject to Change Internal Architecture 2–7

Memory Banks
If a parity error is detected on I/O read transaction data or DMA write transaction
data, the operation will complete. The appropriate error bits are set and the error
interrupt is asserted if error reporting is enabled.

2.2.3 DRAM Initialization

After power-up, the memory must be activated. The activation requires at least two
refresh cycles before and after writing data (in hexadecimal) from the memory con-
trol register to the DIMMs. The algorithm is:

1. Write 63416 to the global timing register.

2. Write 80E0 to the refresh timing register (refresh width = 6, refresh interval = 5, and
force refresh asserted).

3. Wait approximately 300 ns.

4. Write 80E0 to the refresh timing register (refresh width = 6, refresh interval = 5, and
force refresh asserted).

5. Wait approximately 300 ns.

6. Write 3A0001 to the memory control register (3A is memory specific and the 1 is
mode register set).

7. Write 80E0 to the refresh timing register (refresh width = 6, refresh interval = 5, and
force refresh asserted).

8. Wait approximately 300 ns.

9. Write 80E0 to the refresh timing register (refresh width = 6, refresh interval = 5, and
force refresh asserted).

10. Wait approximately 300 ns.

Executing this algorithm wakes up memory and sets the DRAM mode registers. This
sequence configures the memory SDRAMs to the burst length, wrap type, and
latency mode. This sequence is required by the SDRAMs and is not part of the
system memory configuration sequence. Prior to accessing the memory, ensure that
the memory is configured correctly, that PCA56 longword parity mode or ECC mode
is set up properly, and that all of memory is written to initialize the memory error
detection fields prior to enabling error checking. Write to memory only if error
checking is to be performed.

Note: The SROM code is responsible for setting up the memory system. In
most cases the memory system will be initialized prior to transferring
control out of the initialization code.
2–8 Internal Architecture 3 October 1997 – Subject to Change

PCI Interface

 field.
 be
r of
4

 the
ate

s
e
 the
2.3 PCI Interface

The PCI interface is 64 bits wide and supports operation at up to 33 MHz. Operation
of the PCI is always synchronous to sys_clk. The PCI interface can be operated at a
clock frequency ratio of 2:1 relative to the 21164 sys_clk frequency. The operating
frequencies are listed in Table 2–1.

2.3.1 Scatter-Gather Map

The TLB provides eight scatter-gather map entries. Scatter-gather operation is
enabled by setting the appropriate enable bit in the window base registers.

2.3.2 DMA Read Prefetch

The scatter-gather map TLB entries in the 21174 each contain a prefetch length
The prefetch length field indicates the total number of 128-bit memory cycles to
fetched to satisfy the request. The prefetcher always fetches exactly the numbe
cycles specified in the prefetch length field. When the data is exhausted, the 2117
disconnects.

When a TLB entry is first loaded, the prefetch length is set to the value given in
appropriate read type field in the control register (PYXIS_CTRL). If the appropri
USE_HISTORY bit is set and the initiator disconnects without accepting all
available prefetched data, the prefetch length is set to the number of memory cycle
needed to supply the data transferred. During subsequent write transactions, th
previous length is used to determine the prefetch length. See the description of
control register (PYXIS_CTRL) in Section 5.1.3.

2.3.3 DMA Write Buffer

A 2-entry write buffer is provided for DMA write data. Each entry is 64 bytes in
length. When both buffers are in use, 21174 issues a retry response to DMA write
transactions.

Table 2–1 PCI Operating Frequencies

CPU
Frequency

sys_clk
Ratio

sys_clk
Frequency

sys_clk Cycle
Time

PCI
Frequency

PCI/sys_clk
Ratio

466 MHz 7 66.0 MHz 15.00 ns 33.0 MHz 2:1

533 MHz 8 66.0 MHz 15.00 ns 33.0 MHz 2:1

600 MHz 9 66.0 MHz 15.00 ns 33.0 MHz 2:1
3 October 1997 – Subject to Change Internal Architecture 2–9

PCI Interface
At the beginning of a PCI DMA write transaction, an unused write buffer is allocated
for the transaction. The write data is aligned within the write buffer based on the
low-order bits of the address. Address mask information is updated during the
transaction. If the transaction reaches the end of the cache line, the 21174
disconnects. After a write buffer entry has been written, the 21174 schedules a
memory write transaction or a memory read-modify-write transaction, depending on
the state of the mask bits in the write buffer, to copy the data to memory.

When a PCI read transaction is initiated from the 21164, the 21174 ensures that the
DMA write buffers are flushed to memory before returning the read data to the
21164.

2.3.4 DMA Write Buffer Merging

During DMA write transactions, byte mask information is received from the PCI
bus. Depending on the alignment of the starting address and the state of the byte
masks, it may be necessary to read quadwords from memory and merge bytes into
the DMA quadwords before writing the DMA data to memory.

After a DMA write buffer in the 21164 is filled, the 21174 determines how many
memory cycles are needed to complete the write transaction. The 21174 also deter-
mines if it is necessary to merge data within any quadword or if an empty quadword
exists between quadwords that contain data. If either condition exists, a read-modify-
write transaction sequence is scheduled instead of the simple DMA write transaction
sequence performed for a normal aligned DMA. The read-modify-write transaction
sequence is performed in the following order:

1. All quadwords of the DMA transaction are read from memory across d<127:0>
into the 21174 chip. The bytes not selected by the DMA transaction are merged
into the DMA write buffers.

2. All quadwords of the DMA transaction are written back to memory.

2.3.5 I/O Write Buffer

A 2-entry write buffer is provided for PCI write transactions originated from the
21164. Consecutive entries may be merged under optimal circumstances.

2.3.6 Configuration Cycles and Special Cycles

Configuration cycles and special cycles are generated in compliance with the PCI
Local Bus Specification, Version 2.1. See Sections 6.9 and 6.10 for more informa-
tion.
2–10 Internal Architecture 3 October 1997 – Subject to Change

Flash ROM Interface

the
4

, the
2.4 Flash ROM Interface

A flash ROM can be directly attached to the addr<39:4> signal lines. The address
and data bits of the flash ROM are connected to the addr<39:4> pins as shown in
Table 2–2.

The flash ROM can be read and written through the address range selected in
flash ROM control register. After reset, the flash ROM is at location 0. The 2117
supports cache fills and noncacheable reads from the flash ROM. For example
21174 will perform multiple read transactions to the flash ROM to assemble full
octawords. The processor can start executing directly from the flash ROM if the
21164 is configured to start from cache misses rather than from SROM.

Table 2–2 Flash ROM Pin Assignment

21174 Pin Flash ROM Pin 21174 Pin Flash ROM Pin

addr<39> OE addr<16> A<3>

addr<31> A<18> addr<15> A<2>

addr<30> A<17> addr<14> A<1>

addr<29> A<16> addr<13> A<0>

addr<28> A<15> addr<12> A

addr<27> A<14> addr<11> D<7>

addr<26> A<13> addr<10> D<6>

addr<25> A<12> addr<9> D<5>

addr<24> A<11> addr<8> D<4>

addr<23> A<10> addr<7> D<3>

addr<22> A<9> addr<6> D<2>

addr<21> A<8> addr<5> D<1>

addr<20> A<7> addr<4> D<0>

addr<19> A<6> flash_ce_l ce_l

addr<18> A<5> flash_we_l we_l

addr<17> A<4> — —
3 October 1997 – Subject to Change Internal Architecture 2–11

Auto DACK

OL

 a

d
For flash ROMs smaller than 64MB, the high-order address bits can be left uncon-
nected. This results in aliasing of the flash ROM throughout the flash ROM address
space. It is also possible to attach multiple flash ROMs, or other devices, using the
control bits and high-order address bits to drive a decoder. In this case, buffers may
be needed to limit the loading for each signal within addr<39:4>.

If the flash ROM is accessed through cache fills (for example, through one of the
windows in cacheable space), an unwanted parity error on the address bus
(addr<39:4> and cmd<2:0>) may be generated unless the 21164 Bcache control
register bit, BC_CONTROL[DIS_SYS_PAR], is set. Setting the DIS_SYS_PAR
bit will disable parity errors during any type of flash ROM transactions. Unwanted
parity errors may also be inhibited by setting BC_CONTROL[EI_DIS_ERR]. The
EI_DIS_ERR bit is initialized to 1 during 21164 reset, so in the 21164 initial state, no
unwanted parity errors will be generated.

On a system with a Bchache, if a private cache write is overlapped with the
beginning of a fill from the flash ROM, with the fill approximately asserted on the
second cycle of the private write, the system will appear to hang. This probably
affects cacheable flash ROM fills and has only been seen on an I-stream miss at the
end of a flash-to-memory copy. A workaround has been incorporated into the
SROM code to add additional timing that prevents the system from hanging.
I-stream and D-stream fills from cache should be limited to SROM operation. All
other accesses to the flash ROM should be done using the I/O space assigned to flash
memory space.

2.5 Auto DACK

The 21164 supports an “Auto DACK” feature to accelerate data bus transfers. When
this feature is enabled by setting the AUTO_DACK bit in the 21164 BC_CONTR
register, the 21164 assumes that the final two DACKs of a data transfer are
contiguous. The 21174 supports this mode of operation.

2.6 Dummy Memory

A dummy memory block is provided to facilitate flushing of 21164 Scache and
Bcache. Read transactions to this 4-GB block of dummy memory region causes
value of 0 to be returned. Write transactions to this memory region result in
nonexistent memory traps. The dummy memory region is the last 4GB of cache
memory address space starting at E.0000.0000.
2–12 Internal Architecture 3 October 1997 – Subject to Change

Interrupts

If the
 the

 be
 also
from
tions.

it
re
r

e the
rupt
 the

. The
 this

The dummy memory region can be effectively used to implement a small memory
area at power-up, using the processor’s Dcache (level 1) and Scache (level 2).
21164 is set up to access memory within the dummy area, fills will be served by
dummy area, but after the fill, the cache will work properly to serve those memory
addresses. Use only a memory area that will fit within the Dcache and Scache,
because a victim ejection will cause a machine check. This same technique can
used to emulate a much larger memory using the optional Bcache (level 3). It is
possible to use the flash ROM address spaces to emulate memory, but the fills
this space are much slower because they require sequential flash ROM transac
In either case, avoid sharing cache address space with the instruction stream to
prevent inadvertent victim ejections.

2.7 Interrupts

Interrupts and general-purpose inputs are acquired through a free-running 64-b
external shift register. Typically, the shift register is implemented with one or mo
74HC165 chips. The shift register does not need to be fully implemented if fewe
than 64 bits of interrupts and general-purpose inputs are needed. The int_sr_load_l
signal is asserted low to load the interrupts into the shift register. The int_sr_clk sig-
nal clocks the shift register contents into the 21174 through the int_sr_in pin. The
shift register clock rate depends on the CPU speed. See Table 2–3 to determin
shift register rate and latency time. If fewer than 64 inputs are needed, the inter
latency can be reduced by writing a smaller value into the IRQ_COUNT field of
INT_CNFG register.

The normal active state of interrupts is active low. The INT_HILO register is
provided to allow for devices that are active high, such as the 82378 ISA bridge
register provides for eight devices that can be made active high. Setting a bit in
register causes the active state of the interrupt to be changed from active low to
active high.

Table 2–3 Shift Register Rates and WC Latency Time s

CPU Speed System Clock Rate Shift Register Rate WC Latency

466 MHz 66.67 MHz 16.67 MHz 3.84 usec (approx.)

533 MHz 66.67 MHz 16.67 MHz 3.84 usec (approx.)

600 MHz 66.67 MHz 16.67 MHz 3.84 usec (approx.)
3 October 1997 – Subject to Change Internal Architecture 2–13

General-Purpose Inputs and Outputs

ister.
e

. The

ontrol

ed
s
The state of each interrupt or input can be read through the interrupt request register.
The state of the interrupts will persist in the interrupt register for up to 3 µsec after
the interrupt has been deasserted at the shift register input. If the interrupt bit in the
interrupt request register is not promptly cleared, a second interrupt might be taken
before the shift register scans the deasserted value into the interrupt request register.
For this reason, interrupts latched in the interrupt request register can be reset indi-
vidually by writing a 1 to the bit to be cleared. This immediately clears the bit to
avoid taking a second interrupt. It is also acceptable to write 1 to all interrupt bits
within the interrupt request register.

The interrupt mask register provides individual mask bits for each interrupt. The bits
used for general-purpose inputs should be masked using this register.

In normal operation, all external interrupt sources are routed to irq<1>_h on the
21164. In some instances, it may be necessary to route the sources to irq<0>_h or
irq<3:2>_h. The 21174 provides for eight external interrupt sources that can be
routed to different 21164 interrupt request lines. See the description of the interrupt
routine select register (INT_ROUTE) in Section 5.9.4 for a description of this
function.

2.8 General-Purpose Inputs and Outputs

General-purpose inputs can be configured using the interrupt’s external shift reg
When the interrupt’s external shift register is used for general-purpose inputs, th
interrupt enable bits should be deasserted.

General-purpose outputs can be implemented with one or more 74HC595 chips
contents of the general-purpose output register are continuously transferred to the
shift register. The worst case delay for output posting is approximately 3 µsec, or less
if the IRQ_COUNT field of the INT_CNFG register is programmed to reduce the
length of the shift register cycle time.

2.9 Programmed 21164 Reset

The 21164 processor can be restarted by setting the DO_RESET in the power c
register. This is usually done to change the 21164 frequency or the sys_clk divider
ratio. The sys_clk divider ratio can be set in the CSR_CLOCK_DIVIDE and
CSR_PCLK_DIVIDE fields of the clock control register. While dc_ok is asserted,
the initial value for this field is loaded from pull-up and pull-down resistors attach
to the pins. This field can be written under program control, and the new value i
used during any subsequent 21164 reset.
2–14 Internal Architecture 3 October 1997 – Subject to Change

Clock
The duration of a programmed 21164 reset can be controlled by writing to the
RESET_PULSE_WIDTH field in the power-down timing register.

2.10 Clock

This section explains the internal clock PLL and the DRAM clock aligner.

2.10.1 Clock PLL

An onchip PLL generates an internal clock at two times the sys_clk rate. This clock
is used to derive all other clocks. The fast clock is divided again by two or three to
make a sys_clk replica clock that is used to clock the internal 21174 logic. The fast
clock is divided by 4 to generate the PCI clocks.

2.10.2 DRAM Clock Aligner

A precision clock aligner generates clocks for the SDRAMs. The clock aligner
allows the module designer to position the external clocks accurately within the
overall clock cycle to maximize the margins for setup and hold times for the various
system components.

The clock aligner consists of a group of 128 delay elements. Some portion of the 128
delay elements can be bypassed by way of the clock control register (CCR) bits
<31:24>. The delay of each element is nominally 150 ps, but the delay can vary with
process, supply voltage, and operating temperature.

To calibrate the delay for any given operating point, a phase comparator is provided
to compare a dummy copy of the DRAM clock to the input sys_clk. The dummy
copy can be externally delayed through module etch to create additional lead time
between the DRAM clocks and the sys_clk. For example, if the DRAM clocks are to
lead sys_clk by 3 ns, the dummy feedback clock etch should be laid out with 3 ns of
additional module etch beyond the etch length needed to match the DRAM clock
distribution etch.
3 October 1997 – Subject to Change Internal Architecture 2–15

 3
Pinout

This chapter describes the 21174 signals and pinouts in the following tables:

• Table 3–1 lists the 21174 pins in alphanumeric order.

• Table 3–2 lists the power and ground pins.

• Table 3–3 lists the 21174 signals in alphanumeric order.

• Table 3–4 describes the signals.
3 October 1997 – Subject to Change Pinout 3–1

Figure 3–1 shows the physical pin layout of the 474-pin 21174 BGA.

Figure 3–1 21174 BGA Pin Assignment (Pads Down)

AE

AC
AB

AA

Y

W

V

U

T

R

P

N

M

L

K

J
H

G

F

E

D

C

B

A

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

AD

Note: Pin layout shown with pads down.
LJ-05442.AI4
3–2 Pinout 3 October 1997 – Subject to Change

Pin List (Alphanumeric)

.

3.1 Pin List (Alphanumeric)

Table 3–1 lists the 21174 pins in alphanumeric order (I/O pins are bidirectional)

Table 3–1 Pin List (Alphanumeric) (Sheet 1 of 8)

Pin Signal Name Type Pin Signal Name Type

A02 cmd<1> I/O A03 cache_isolate<1> Output

A04 mem_cs_l Input A05 int4_valid<2> Input

A06 sram_clk_en<0> Output A07 int4_valid<0> Input

A08 we_l Output A09 fill_id Output

A10 cs1a_l Output A11 dack Output

A12 cs1b_l Output A13 addr_res<1> Input

A14 data<127> I/O A15 flash_ce_l Output

A16 data<95> I/O A17 data<63> I/O

A18 data<31> I/O AA01 ad<47> I/O

AA03 ad<46> I/O AA04 ad<58> I/O

AA05 ad<35> I/O AA07 ad<17> I/O

AA09 ad<10> I/O AA11 par64 I/O

AA13 serr_l Input AA15 data<103> I/O

AA16 data<69> I/O AA17 data<37> I/O

AA19 data<4> I/O AB01 ad<43> I/O

AB02 ad<44> I/O AB03 ad<38> I/O

AB04 ad<30> I/O AB05 ad<34> I/O

AB06 ad<22> I/O AB07 ad<18> I/O

AB08 ad<14> I/O AB09 ad<11> I/O

AB10 devsel_l I/O AB11 perr_l I/O

AB12 spare1 N AB13 data<99> I/O

AB14 data<100> I/O AB15 data<101> I/O

AB16 data<102> I/O AB17 data<68> I/O

AB18 data<36> I/O AB19 data<3> I/O
3 October 1997 – Subject to Change Pinout 3–3

Pin List (Alphanumeric)
AC01 ad<42> I/O AC02 ad<39> I/O

AC03 ad<37> I/O AC05 ad<25> I/O

AC06 ad<23> I/O AC06 ad<23> I/O

AC07 ad<19> I/O AC09 pci_cbe_l<3> I/O

AC10 irdy_l I/O AC11 pci_cbe_l<0> I/O

AC13 req_l Output AC14 data<98> I/O

AC15 test_out Output AC17 data<67> I/O

AC18 data<35> I/O AC19 data<2> I/O

AD01 ad<41> I/O AD02 ad<40> I/O

AD03 ad<33> I/O AD04 ad<28> I/O

AD05 ad<26> I/O AD07 ad<20> I/O

AD08 ad<15> I/O AD09 ad<12> I/O

AD11 par I/O AD12 data<97> I/O

AD13 gnt_l Input AD15 data<65> I/O

AD16 data<66> I/O AD17 data<33> I/O

AD18 data<34> I/O AD19 data<1> I/O

AE02 ad<36> I/O AE03 ad<31> I/O

AE04 ad<29> I/O AE05 ad<27> I/O

AE06 ad<24> I/O AE07 ad<21> I/O

AE08 pci_cbe_l<5> I/O AE09 pci_cbe_l<4> I/O

AE10 pci_cbe_l<6> I/O AE11 frame_l I/O

AE12 trdy_l I/O AE13 sram_clk_in Input

AE14 data<96> I/O AE15 rst_l Output

AE16 data<64> I/O AE17 data<32> I/O

AE18 data<0> I/O B01 addr_h<21> I/O

B02 addr_h<20> I/O B03 data_bus_req Output

Table 3–1 Pin List (Alphanumeric) (Sheet 2 of 8)

Pin Signal Name Type Pin Signal Name Type
3–4 Pinout 3 October 1997 – Subject to Change

Pin List (Alphanumeric)
B04 sram_addr<5> Output B05 dram_addr<12> Output

B07 dram_addr<5> Output B08 dram_addr<8> Output

B09 drive_tag_ctl_l I/O B11 cas_l Output

B12 dram_clk<8> Output B13 dram_clk<11> Output

B15 dram_clk<4> Output B16 data<126> I/O

B17 data<94> I/O B18 data<62> I/O

B19 data<30> I/O C01 addr_h<19> I/O

C02 addr_h<18> I/O C03 cmd<2> I/O

C05 victim_pending Input C06 sram_addr<4> Output

C07 int4_valid<1> Input C09 fill_error Output

C10 dram_cke Output C11 fill Output

C13 addr_res<0> Input C14 data<125> I/O

C15 pll_lock Output C17 data<93> I/O

C18 data<61> I/O C19 data<29> I/O

D01 addr_h<17> I/O D02 addr_h<16> I/O

D03 cmd<3> I/O D04 cache_isolate<2> Output

D05 idle_bc Output D06 dram_addr<9> Output

D07 bank01_l Output D08 dram_addr<6> Output

D09 dram_addr<2> Output D10 dram_addr<0> Output

D11 ras_l Output D12 dram_clk<10> Output

D13 dram_clk<2> Output D14 dram_clk<7> Output

D15 data<124> I/O D16 data<92> I/O

D17 data<91> I/O D18 data<60> I/O

D19 data<28> I/O E01 addr_h<15> I/O

E03 addr_h<14> I/O E04 addr_h<13> I/O

E05 cmd<0> I/O E07 int4_valid<3> Input

Table 3–1 Pin List (Alphanumeric) (Sheet 3 of 8)

Pin Signal Name Type Pin Signal Name Type
3 October 1997 – Subject to Change Pinout 3–5

Pin List (Alphanumeric)
E09 tag_dirty Output E11 cack Output

E13 flash_we_l Output E15 data<123> I/O

E16 data<90> I/O E17 data<59> I/O

E19 data<27> I/O F01 addr_h<12> I/O

F02 addr_h<11> I/O F03 cpu_reset_l Output

F04 addr_h<37> I/O F05 addr_h<9> I/O

F06 addr_bus_req Output F07 bank23_l Output

F08 dram_addr<11> Output F09 dram_addr<1> Output

F10 cs2a_l Output F11 dram_clk<12> Output

F12 dram_clk<0> Output F13 dram_clk<1> Output

F14 data<122> I/O F15 data<121> I/O

F16 data<88> I/O F17 data<89> I/O

F18 data<58> I/O F19 data<26> I/O

G01 addr_h<8> I/O G02 addr_h<7> I/O

G03 addr_h<6> I/O G05 addr_h<30> I/O

G07 sram_clk_en<1> Output G09 dram_addr<3> Output

G11 dqm Output G13 data<120> I/O

G15 data<119> I/O G17 data<57> I/O

G18 data<25> I/O G19 data<24> I/O

H01 sram_fill_clk<2> Output H02 addr_h<4> I/O

H03 sram_fill_clk<1> Output H04 addr_h<39> I/O

H05 addr_h<38> I/O H06 addr_h<10> I/O

H07 addr_h<36> I/O H08 cache_isolate<0> Output

H09 dram_addr<13> Output H10 cs2b_l Output

H11 dram_clk<3> Output H12 data<118> I/O

H13 data<117> I/O H14 data<116> I/O

Table 3–1 Pin List (Alphanumeric) (Sheet 4 of 8)

Pin Signal Name Type Pin Signal Name Type
3–6 Pinout 3 October 1997 – Subject to Change

Pin List (Alphanumeric)
H15 data<86> I/O H16 data<87> I/O

H17 data<56> I/O H18 data<23> I/O

H19 data<22> I/O J01 addr_h<35> I/O

J03 addr_h<34> I/O J05 addr_h<33> I/O

J07 addr_h<32> I/O J09 dram_addr<7> Output

J11 dram_clk<9> Output J13 data<115> I/O

J15 data<85> I/O J17 data<55> I/O

J19 data<21> I/O K01 sys_reset_l Output

K02 addr_cmd_par I/O K03 dram_clk_in Input

K04 addr_h<31> I/O K05 sys_clk Input

K06 addr_h<5> I/O K07 addr_h<29> I/O

K08 bank45_l Output K09 dram_addr<10> Output

K10 cs0a_l Output K11 dram_clk<5> Output

K12 data<114> I/O K13 data<82> I/O

K14 data<83> I/O K15 data<84> I/O

K16 data<54> I/O K17 data<53> I/O

K18 data<52> I/O K19 ecchi<7> I/O

L01 cpu_pwr_en Output L02 addr_h<28> I/O

L03 addr_h<27> I/O L05 addr_h<26> I/O

L07 bank67_l Output L09 dram_addr<4> Output

L11 dram_clk<6> Output L13 data<113> I/O

L15 data<81> I/O L17 data<51> I/O

L18 data<20> I/O L19 data<19> I/O

M01 test_mode<0> Input M02 alt_clk Input

M03 test_ri Input M04 addr_h<25> I/O

M05 sram_fill_clk<0> Output M06 addr_h<24> I/O

Table 3–1 Pin List (Alphanumeric) (Sheet 5 of 8)

Pin Signal Name Type Pin Signal Name Type
3 October 1997 – Subject to Change Pinout 3–7

Pin List (Alphanumeric)
M07 addr_h<23> I/O M08 fan_on Output

M10 cs0b_l Output M12 data<112> I/O

M13 data<80> I/O M14 data<50> I/O

M15 data<49> I/O M16 data<48> I/O

M17 data<18> I/O M18 data<17> I/O

M19 ecchi<6> I/O N01 pll_fixed_vdd Input

N03 bypassn Input N05 irq<3> I/O

N07 addr_h<22> I/O N09 fan_high Output

N11 ecchi<5> I/O N13 ecchi<4> I/O

N15 data<16> I/O N17 ecchi<3> I/O

N19 ecchi<2> I/O P01 dc_ok Input

P02 halt_irq I/O P03 int_sr_in Input

P04 dimm_sda I/O P05 clk_in Input

P06 dimm_scl I/O P07 ad<63> I/O

P08 irq<2> I/O P10 pci_cbe_l<7> I/O

P12 ecchi<1> I/O P13 data<47> I/O

P14 data<15> I/O P15 data<14> I/O

P16 ecchi<0> I/O P17 ecclo<5> I/O

P18 ecclo<6> I/O P19 ecclo<7> I/O

R01 irq<1> I/O R02 clk<6> Output

R03 ad<59> I/O R05 clk<3> Output

R07 clk<1> Output R09 ad<1> I/O

R11 req64_l I/O R13 data<46> I/O

R15 data<45> I/O R17 data<44> I/O

R18 data<13> I/O R19 ecclo<4> I/O

T01 pll_avdd Input T02 pwr_fail_irq I/O

Table 3–1 Pin List (Alphanumeric) (Sheet 6 of 8)

Pin Signal Name Type Pin Signal Name Type
3–8 Pinout 3 October 1997 – Subject to Change

Pin List (Alphanumeric)
T03 int_sr_load_l Output T04 clk<5> Output

T05 irq<0> I/O T06 ad<54> I/O

T07 clk<0> Output T08 ad<3> I/O

T09 ad<2> I/O T10 ad<0> I/O

T11 data<43> I/O T12 data<42> I/O

T13 data<79> I/O T14 data<78> I/O

T15 ecclo<3> I/O T16 data<12> I/O

T17 data<11> I/O T18 ecclo<2> I/O

T19 ecclo<1> I/O U01 ad<60> I/O

U03 clk<2> Output U05 clk<4> Output

U07 ad<45> I/O U09 ad<4> I/O

U11 data<111> I/O U13 data<41> I/O

U15 data<77> I/O U17 data<9> I/O

U19 data<10> I/O V01 test_di1 Input

V02 ad<56> I/O V03 test_di2 Input

V04 int_clk Output V05 ad<62> I/O

V06 ad<51> I/O V07 ad<48> I/O

V08 ad<7> I/O V09 ad<5> I/O

V10 pci_cbe_l<1> I/O V11 data<109> I/O

V12 data<110> I/O V13 data<73> I/O

V14 data<74> I/O V15 data<75> I/O

V16 data<76> I/O V17 data<40> I/O

V18 data<8> I/O V19 data<7> I/O

W01 ad<52> I/O W02 ad<55> I/O

W03 ad<57> I/O W05 gp_sr_out Output

W07 ad<8> I/O W09 ad<6> I/O

Table 3–1 Pin List (Alphanumeric) (Sheet 7 of 8)

Pin Signal Name Type Pin Signal Name Type
3 October 1997 – Subject to Change Pinout 3–9

Pin List (Alphanumeric)
Table 3–2 lists the 21174 power and ground pins.

W11 ack64_l I/O W13 data<108> I/O

W15 data<71> I/O W17 data<72> I/O

W18 data<39> I/O W19 data<6> I/O

Y01 ad<50> I/O Y02 ad<49> I/O

Y03 mchk_irq I/O Y04 ad<61> I/O

Y05 ad<53> I/O Y06 ad<32> I/O

Y07 ad<16> I/O Y08 ad<13> I/O

Y09 ad<9> I/O Y10 pci_cbe_l<2> I/O

Y11 stop_l I/O Y12 data<104> I/O

Y13 data<105> I/O Y14 data<106> I/O

Y15 data<107> I/O Y16 data<70> I/O

Y17 ecclo<0> I/O Y18 data<38> I/O

Y19 data<5> I/O

Table 3–2 Power and Ground Pin List (Sheet 1 of 2)

Signal PGA Location

+3V W16 AA6 AA10 AA14 AC4 AC8 AC12 AC16

R12 R16 U2 U6 U10 U14 U18 W4

W8 W12 M9 M11 N2 N6 N14 N18

P9 P11 R4 R8 G16 J2 J6 J10

J14 J18 L4 L8 L12 L16 C4 C8

C12 C16 E6 E10 E14 G4 G8 G12

GND AE1 AE19 W6 W10 W14 AA2 AA8 AA12

AA18 AD6 AD10 AD14 N10 N12 N16 R6

R10 R14 U4 U8 U12 U16 G14 J4

Table 3–1 Pin List (Alphanumeric) (Sheet 8 of 8)

Pin Signal Name Type Pin Signal Name Type
3–10 Pinout 3 October 1997 – Subject to Change

Signal List (Alphanumeric)
3.2 Signal List (Alphanumeric)

Table 3–3 lists the 21174 signals in alphanumeric order.

J8 J12 J16 L6 L10 L14 N4 N8

A19 B6 B10 B14 E2 E8 E12 E18

G6 G10 — — — — — —

Table 3–3 Signal List (Alphanumeric) (Sheet 1 of 8)

Name Pin Type Name Pin Type

ack64_l W11 I/O ad<0> T10 I/O

ad<1> R09 I/O ad<2> T09 I/O

ad<3> T08 I/O ad<4> U09 I/O

ad<5> V09 I/O ad<6> W09 I/O

ad<7> V08 I/O ad<8> W07 I/O

ad<9> Y09 I/O ad<10> AA09 I/O

ad<11> AB09 I/O ad<12> AD09 I/O

ad<13> Y08 I/O ad<14> AB08 I/O

ad<15> AD08 I/O ad<16> Y07 I/O

ad<17> AA07 I/O ad<18> AB07 I/O

ad<19> AC07 I/O ad<20> AD07 I/O

ad<21> AE07 I/O ad<22> AB06 I/O

ad<23> AC06 I/O ad<24> AE06 I/O

ad<25> AC05 I/O ad<26> AD05 I/O

ad<27> AE05 I/O ad<28> AD04 I/O

ad<29> AE04 I/O ad<30> AB04 I/O

ad<31> AE03 I/O ad<32> Y06 I/O

ad<33> AD03 I/O ad<34> AB05 I/O

Table 3–2 Power and Ground Pin List (Sheet 2 of 2)

Signal PGA Location
3 October 1997 – Subject to Change Pinout 3–11

Signal List (Alphanumeric)
ad<35> AA05 I/O ad<36> AE02 I/O

ad<37> AC03 I/O ad<38> AB03 I/O

ad<39> AC02 I/O ad<40> AD02 I/O

ad<41> AD01 I/O ad<42> AC01 I/O

ad<43> AB01 I/O ad<44> AB02 I/O

ad<45> U07 I/O ad<46> AA03 I/O

ad<47> AA01 I/O ad<48> V07 I/O

ad<49> Y02 I/O ad<50> Y01 I/O

ad<51> V06 I/O ad<52> W01 I/O

ad<53> Y05 I/O ad<54> T06 I/O

ad<55> W02 I/O ad<56> V02 I/O

ad<57> W03 I/O ad<58> AA04 I/O

ad<59> R03 I/O ad<60> U01 I/O

ad<61> Y04 I/O ad<62> V05 I/O

ad<63> P07 I/O addr_h<4> H02 I/O

addr_h<5> K06 I/O addr_h<6> G03 I/O

addr_h<7> G02 I/O addr_h<8> G01 I/O

addr_h<9> F05 I/O addr_h<10> H06 I/O

addr_h<11> F02 I/O addr_h<12> F01 I/O

addr_h<13> E04 I/O addr_h<14> E03 I/O

addr_h<15> E01 I/O addr_h<16> D02 I/O

addr_h<17> D01 I/O addr_h<18> C02 I/O

addr_h<19> C01 I/O addr_h<20> B02 I/O

addr_h<21> B01 I/O addr_h<22> N07 I/O

addr_h<23> M07 I/O addr_h<24> M06 I/O

addr_h<25> M04 I/O addr_h<26> L05 I/O

Table 3–3 Signal List (Alphanumeric) (Sheet 2 of 8)

Name Pin Type Name Pin Type
3–12 Pinout 3 October 1997 – Subject to Change

Signal List (Alphanumeric)
addr_h<27> L03 I/O addr_h<28> L02 I/O

addr_h<29> K07 I/O addr_h<30> G05 I/O

addr_h<31> K04 I/O addr_h<32> J07 I/O

addr_h<33> J05 I/O addr_h<34> J03 I/O

addr_h<35> J01 I/O addr_h<36> H07 I/O

addr_h<37> F04 I/O addr_h<38> H05 I/O

addr_h<39> H04 I/O addr_bus_req F06 Output

addr_cmd_par K02 I/O addr_res<0> C13 Input

addr_res<1> A13 Input alt_clk M02 Input

bank01_l D07 Output bank23_l F07 Output

bank45_l K08 Output bank67_l L07 Output

bypassn N03 Input cache_isolate<0> H08 Output

cache_isolate<1> A03 Output cache_isolate<2> D04 Output

cack E11 Output cas_l B11 Output

clk<0> T07 Output clk<1> R07 Output

clk<2> U03 Output clk<3> R05 Output

clk<4> U05 Output clk<5> T04 Output

clk<6> R02 Output clk_in P05 Input

cmd<0> E05 I/O cmd<1> A02 I/O

cmd<2> C03 I/O cmd<3> D03 I/O

cpu_pwr_en L01 Output cpu_reset_l F03 Output

cs0a_l K10 Output cs0b_l M10 Output

cs1a_l A10 Output cs1b_l A12 Output

cs2a_l F10 Output cs2b_l H10 Output

dack A11 Output data<0> AE18 I/O

data<1> AD19 I/O data<2> AC19 I/O

Table 3–3 Signal List (Alphanumeric) (Sheet 3 of 8)

Name Pin Type Name Pin Type
3 October 1997 – Subject to Change Pinout 3–13

Signal List (Alphanumeric)
data<3> AB19 I/O data<4> AA19 I/O

data<5> Y19 I/O data<6> W19 I/O

data<7> V19 I/O data<8> V18 I/O

data<9> U17 I/O data<10> U19 I/O

data<11> T17 I/O data<12> T16 I/O

data<13> R18 I/O data<14> P15 I/O

data<15> P14 I/O data<16> N15 I/O

data<17> M18 I/O data<18> M17 I/O

data<19> L19 I/O data<20> L18 I/O

data<21> J19 I/O data<22> H19 I/O

data<23> H18 I/O data<24> G19 I/O

data<25> G18 I/O data<26> F19 I/O

data<27> E19 I/O data<28> D19 I/O

data<29> C19 I/O data<30> B19 I/O

data<31> A18 I/O data<32> AE17 I/O

data<33> AD17 I/O data<34> AD18 I/O

data<35> AC18 I/O data<36> AB18 I/O

data<37> AA17 I/O data<38> Y18 I/O

data<39> W18 I/O data<40> V17 I/O

data<41> U13 I/O data<42> T12 I/O

data<43> T11 I/O data<44> R17 I/O

data<45> R15 I/O data<46> R13 I/O

data<47> P13 I/O data<48> M16 I/O

data<49> M15 I/O data<50> M14 I/O

data<51> L17 I/O data<52> K18 I/O

data<53> K17 I/O data<54> K16 I/O

Table 3–3 Signal List (Alphanumeric) (Sheet 4 of 8)

Name Pin Type Name Pin Type
3–14 Pinout 3 October 1997 – Subject to Change

Signal List (Alphanumeric)
data<55> J17 I/O data<56> H17 I/O

data<57> G17 I/O data<58> F18 I/O

data<59> E17 I/O data<60> D18 I/O

data<61> C18 I/O data<62> B18 I/O

data<63> A17 I/O data<64> AE16 I/O

data<65> AD15 I/O data<66> AD16 I/O

data<67> AC17 I/O data<68> AB17 I/O

data<69> AA16 I/O data<70> Y16 I/O

data<71> W15 I/O data<72> W17 I/O

data<73> V13 I/O data<74> V14 I/O

data<75> V15 I/O data<76> V16 I/O

data<77> U15 I/O data<78> T14 I/O

data<79> T13 I/O data<80> M13 I/O

data<81> L15 I/O data<82> K13 I/O

data<83> K14 I/O data<84> K15 I/O

data<85> J15 I/O data<86> H15 I/O

data<87> H16 I/O data<88> F16 I/O

data<89> F17 I/O data<90> E16 I/O

data<91> D17 I/O data<92> D16 I/O

data<93> C17 I/O data<94> B17 I/O

data<95> A16 I/O data<96> AE14 I/O

data<97> AD12 I/O data<98> AC14 I/O

data<99> AB13 I/O data<100> AB14 I/O

data<101> AB15 I/O data<102> AB16 I/O

data<103> AA15 I/O data<104> Y12 I/O

data<105> Y13 I/O data<106> Y14 I/O

Table 3–3 Signal List (Alphanumeric) (Sheet 5 of 8)

Name Pin Type Name Pin Type
3 October 1997 – Subject to Change Pinout 3–15

Signal List (Alphanumeric)
data<107> Y15 I/O data<108> W13 I/O

data<109> V11 I/O data<110> V12 I/O

data<111> U11 I/O data<112> M12 I/O

data<113> L13 I/O data<114> K12 I/O

data<115> J13 I/O data<116> H14 I/O

data<117> H13 I/O data<118> H12 I/O

data<119> G15 I/O data<120> G13 I/O

data<121> F15 I/O data<122> F14 I/O

data<123> E15 I/O data<124> D15 I/O

data<125> C14 I/O data<126> B16 I/O

data<127> A14 I/O data_bus_req B03 Output

dc_ok P01 Input devsel_l AB10 I/O

dimm_scl P06 I/O dimm_sda P04 I/O

dqm G11 Output dram_addr<0> D10 Output

dram_addr<1> F09 Output dram_addr<2> D09 Output

dram_addr<3> G09 Output dram_addr<4> L09 Output

dram_addr<5> B07 Output dram_addr<6> D08 Output

dram_addr<7> J09 Output dram_addr<8> B08 Output

dram_addr<9> D06 Output dram_addr<10> K09 Output

dram_addr<11> F08 Output dram_addr<12> B05 Output

dram_addr<13> H09 Output dram_cke C10 Output

dram_clk<0> F12 Output dram_clk<1> F13 Output

dram_clk<2> D13 Output dram_clk<3> H11 Output

dram_clk<4> B15 Output dram_clk<5> K11 Output

dram_clk<6> L11 Output dram_clk<7> D14 Output

dram_clk<8> B12 Output dram_clk<9> J11 Output

Table 3–3 Signal List (Alphanumeric) (Sheet 6 of 8)

Name Pin Type Name Pin Type
3–16 Pinout 3 October 1997 – Subject to Change

Signal List (Alphanumeric)
dram_clk<10> D12 Output dram_clk<11> B13 Output

dram_clk<12> F11 Output dram_clk_in K03 Input

drive_tag_ctl_l B09 I/O ecchi<0> P16 I/O

ecchi<1> P12 I/O ecchi<2> N19 I/O

ecchi<3> N17 I/O ecchi<4> N13 I/O

ecchi<5> N11 I/O ecchi<6> M19 I/O

ecchi<7> K19 I/O ecclo<0> Y17 I/O

ecclo<1> T19 I/O ecclo<2> T18 I/O

ecclo<3> T15 I/O ecclo<4> R19 I/O

ecclo<5> P17 I/O ecclo<6> P18 I/O

ecclo<7> P19 I/O fan_high N09 Output

fan_on M08 Output fill C11 Output

fill_error C09 Output fill_id A09 Output

flash_ce_l A15 Output flash_we_l E13 Output

frame_l AE11 I/O gnt_l AD13 Input

gp_sr_out W05 Output halt_irq P02 I/O

idle_bc D05 Output int_clk V04 Output

int_sr_in P03 Input int_sr_load_l T03 Output

int4_valid<0> A07 Input int4_valid<1> C07 Input

int4_valid<2> A05 Input int4_valid<3> E07 Input

irdy_l AC10 I/O irq<0> T05 I/O

irq<1> R01 I/O irq<2> P08 I/O

irq<3> N05 I/O mchk_irq Y03 I/O

mem_cs_l A04 Input par AD11 I/O

par64 AA11 I/O pci_cbe_l<0> AC11 I/O

pci_cbe_l<1> V10 I/O pci_cbe_l<2> Y10 I/O

Table 3–3 Signal List (Alphanumeric) (Sheet 7 of 8)

Name Pin Type Name Pin Type
3 October 1997 – Subject to Change Pinout 3–17

Signal Descriptions
3.3 Signal Descriptions

Table 3–4 describes the 21174 signals in alphanumeric order.

pci_cbe_l<3> AC09 I/O pci_cbe_l<4> AE09 I/O

pci_cbe_l<5> AE08 I/O pci_cbe_l<6> AE10 I/O

pci_cbe_l<7> P10 I/O perr_l AB11 I/O

pll_avdd T01 Input pll_fixed_vdd N01 Input

pll_lock C15 Output pwr_fail_irq T02 I/O

ras_l D11 Output req_l AC13 Output

req64_l R11 I/O rst_l AE15 Output

serr_l AA13 Input spare1 AB12 N

sram_addr<4> C06 Output sram_addr<5> B04 Output

sram_clk_en<0> A06 Output sram_clk_en<1> G07 Output

sram_clk_in AE13 Input sram_fill_clk<0> M05 Output

sram_fill_clk<1> H03 Output sram_fill_clk<2> H01 Output

stop_l Y11 I/O sys_clk K05 Input

sys_reset_l K01 Output tag_dirty E09 Output

test_di1 V01 Input test_di2 V03 Input

test_mode<0> M01 Input test_out AC15 Output

test_ri M03 Input trdy_l AE12 I/O

victim_pending C05 Input we_l A08 Output

Table 3–4 Signal Descriptions (Alphanumeric) (Sheet 1 of 7)

Pin Type Description

ack64_l I/O When this pin is low, it indicates that the target that has responded can
transfer data using 64 bits. This pin has a weak pull-up.

ad<31:0> I/O PCI bus address, lower 32 bits.

ad<63:32> I/O PCI bus address, upper 32 bits, used only in 64-bit configuration.

Table 3–3 Signal List (Alphanumeric) (Sheet 8 of 8)

Name Pin Type Name Pin Type
3–18 Pinout 3 October 1997 – Subject to Change

Signal Descriptions

dur-

w-

stem

he
addr_bus_req Output The 21174 chip asserts this signal line to request use of the address/
command bus (addr_h<39:4> and cmd<3:0>). It is asserted one cycle
before the 21174 transmits on the bus.

addr_cmd_par I/O This signal is used to send and receive odd parity for the address/com-
mand bus (addr_h<39:4> and cmd<3:0>). When communicating with
21164, the 21174 sends and receives odd parity. When communicating
with flash ROM, this signal is driven by the 21174 chip to avoid a float-
ing state.

addr_h<39:4> I/O These signal lines transfer addresses between the 21174 and the 21164.
In addition, the 21174 uses some of these signal lines to communicate
with the flash ROM (see Table 2–2).

addr_res<1:0> Input The 21164 provides cache status information on these signal lines
ing cache probes. The encoded information is described here:

addr_res<1:0> Description
00 NOP
01 NOACK — data not found or clean
10 ACK/Scache — data from Scache
11 ACK/Bcache — data from L3 cache

alt_clk Input Clock reference is provided on this signal line when the 21164 is po
ered down.

bank01_l Output Reserved.

bank23_l Output Reserved.

bank45_l Output Reserved.

bank67_l Output Reserved.

bypassn Input Used for PLL manufacturing test.

cache_isolate<2:0> Output These pins are asserted to isolate the cache from the rest of the sy
bus.

cack Output This signal is driven by the 21174 chip to acknowledge receipt of a
command from the 21164. If the 21174 chip is not ready to accept t
command, it will not assert cack.

cas_l Output This signal is column address select to the DRAM banks.

clk<6:0> Output PCI clocks out. These clock signals are driven by the 21174 chip.

clk_in Input PCI clock in. One of the clk signals is fed back to this pin.

Table 3–4 Signal Descriptions (Alphanumeric) (Sheet 2 of 7)

Pin Type Description
3 October 1997 – Subject to Change Pinout 3–19

Signal Descriptions
cmd<3:0> I/O The 21174 sends and receives commands to/from the 21164 on these
signal lines.
The 21164 commands to the 21174 follow:

cmd<3:0> Command
0000 Idle
0001 Lock
0010 Fetch (acknowledged but ignored)
0011 Fetch_m (acknowledged but ignored)
0100 Memory barrier
0101 Set dirty (acknowledged but ignored)
0110 Write block
0111 Write block lock
1000 Read miss 0
1001 Read miss 1
1010 Read miss mod 0
1011 Read miss mod 1
1100 L3 cache victim
1101 Unused (treated as idle)
1110 Read miss mod, STC 0
1111 Read miss mod, STC 1

The 21174 sends the following four commands to the 21164. The
remaining command codes are unused.

cmd<3:0> Command
0000 Idle
0001 Flush
0010 Inval
0100 Read

cpu_pwr_en Output When this signal is deasserted, the 21164 should be powered down.
This signal is not used on systems that do not support independent
power-down of the 21164.

cpu_reset_l Output The 21174 can demand a 21164 reset on this signal line.

cs0a_l Output Selects DIMM pair 0 bank A.

cs0b_l Output Selects DIMM pair 0 bank B.

cs1a_l Output Selects DIMM pair 1 bank A.

cs1b_l Output Selects DIMM pair 1 bank B.

cs2a_l Output Selects DIMM pair 2 bank A.

cs2b_l Output Selects DIMM pair 2 bank B.

Table 3–4 Signal Descriptions (Alphanumeric) (Sheet 3 of 7)

Pin Type Description
3–20 Pinout 3 October 1997 – Subject to Change

Signal Descriptions
dack Output The 21174 uses this signal to indicate that data will be driven to the
21164 or accepted from the 21164 during the next cycle.

data<127:0> I/O These signals carry data between the 21174, 21164, and DRAMs.

data_bus_req Output The 21174 chip asserts this signal to request use of the data bus. The
signal is asserted one cycle before the 21174 chip drives the bus.

dc_ok Input When dc_ok is asserted, the 21174 will reset itself and assert rst_l. The
21174 will reset various register bits and reset all sequencers to their
idle states.

devsel_l I/O This pin has a weak pull-up.

dimm_scl I/O Clock to serial presence detect on DIMMs.

dimm_sda I/O Serial presence detect data pin from DIMMs.

dqm Output This signal is asserted high to DRAM banks during reset as some
DRAMs require dqm to be high during initialization.

dram_addr<13:0> Output Address to DRAMs.

dram_cke Output Enables the clock to the DRAMs.

dram_clk<12:0> Output Direct drive clocks to the DRAMs.

dram_clk_in Input This signal is the feedback used to calibrate the dram_clock<12:0>
clock signals. It is driven from dram_clock<12> through an appropri-
ate length of etch and possibly a dummy load.

drive_tag_ctl_l Output This signal enables tag control drivers during fill.

ecchi<7:0> I/O High quadword ECC to 21164 and DRAMs.

ecclo<7:0> I/O Low quadword ECC to 21164 and DRAMs.

fan_high Output When high, selects maximum speed for the 21164 fan.

fan_on Output When high, this signal enables power to the 21164 fan.

fill Output This signal is asserted by the 21174 to the 21164 to indicate that fill
data is to be written into the cache.

fill_error Output This signal is asserted by the 21174 chip when a bad address is pre-
sented by the 21164 or when other errors occur.

fill_id Output The 21174 drives this signal when returning data to the 21164.
1 – Data is associated with fill buffer 1.
0 – Data is associated with fill buffer 0.

Table 3–4 Signal Descriptions (Alphanumeric) (Sheet 4 of 7)

Pin Type Description
3 October 1997 – Subject to Change Pinout 3–21

Signal Descriptions
flash_ce_l Output Chip enable to flash ROM.

flash_we_l Output Write enable to flash ROM.

frame_l I/O This pin has a weak pull-up.

gnt_l Input Indicates that the arbiter has granted the bus to a master.

gp_sr_out Output This signal carries the serial data to drive the general-purpose outputs.
It is typically connected to the D input of the first 74HC595. If no
general-purpose outputs are needed, this signal may be left
unconnected.

halt_irq I/O Halt interrupt. Operation is similar to irq<3:0>.

idle_bc Output The 21174 asserts this signal before a fill. The 21164 will respond by
releasing the L3 cache for the fill.

int_clk Output This signal is the shift clock for the external interrupt shift register and
general-purpose output shift register. This signal can be connected
directly to the clock pins of the 74HC165 and 74HC595 shift registers.

int_sr_in Input This signal carries the serial input data from the external interrupt shift
register. It is typically connected to the Q7 output from the last
74HC165 in the chain. This signal is also used as the testclk when
using the manufacturing test features.

int_sr_load_l Output When this signal is asserted low, the external interrupt shift register
should be parallel loaded with interrupt data and general-purpose input
data, and the general-purpose output data should be copied from the
external output shift register into the external holding register. This
signal is typically connected to the LD input of 74HC165 input shift
registers and to the LCLK input of the 74HC595 output shift registers.

int4_valid<3:0> Input These signals are driven by the 21164 to indicate which longwords con-
tain valid data within a given read command or write data cycle. The
21174 chip uses this information to determine which portion of the data
is to be read or written to or from the PCI. These signals are also used
as the plltest<3:0> pins for manufacturing test of the onchip PLL.

irdy_l I/O This pin has a weak pull-up.

Table 3–4 Signal Descriptions (Alphanumeric) (Sheet 5 of 7)

Pin Type Description
3–22 Pinout 3 October 1997 – Subject to Change

Signal Descriptions
irq<3:0> I/O These pins are driven by the 21174 chip to send interrupts to the 21164.
These pins are also driven during 21164 reset to provide sys_clk
divider information to the 21164.
The state of these pins is sensed when dc_ok is asserted and
sys_reset_l is deasserted and this information is loaded into the
interrupt configuration register. The register contents provide the
default values to be driven during 21164 reset. See Section 5.9.6.

mchk_irq I/O Machine check interrupt. Operation is similar to irq<3:0>.

mem_cs_l Input This pin carries a programmable address decode signal to a host CPU
bridge. The CPU bridge can use this signal to forward a PCI cycle to
main memory behind the bridge.

par I/O Even parity across ad<31:0> and pci_cbe_l<3:0>.

par64 I/O Even parity across ad<63:32> and pci_cbe_l<7:4>. This pin has a
weak pull-up.

pci_cbe_l<3:0> I/O PCI command and byte enable.

pci_cbe_l<7:4> I/O PCI command and byte enable used only in 64-bit configuration.

perr_l I/O This pin has a weak pull-up.

pll_avdd Input PLL analog ground.

pll_fixed_vdd Input PLL reference ground.

pll_lock Output Indicates that the internal PLL has acquired lock. Used during debug and
test.

pwr_fail_irq I/O Power fail interrupt. Operation is similar to irq<3:0>.

ras_l Output Row address select to DRAM banks.

req_l Output Indicates that a bus master is requesting the bus.

req64_l I/O Indicates that a bus master is requesting the bus and can transfer data
using 64 bits. This pin has a weak pull-up.

rst_l Output PCI bus reset. This signal is used to bring controllers on the PCI bus
into a known state. This does not imply that devices attached to a
controller have been initialized.

serr_l Input This pin has a weak pull-up.

Table 3–4 Signal Descriptions (Alphanumeric) (Sheet 6 of 7)

Pin Type Description
3 October 1997 – Subject to Change Pinout 3–23

Signal Descriptions
sram_addr<5:4> Output L3 cache DRAM address bits for use during fills. These outputs are
switched on dram_clk, and provide additional timing margin for the
low address bits during cache fills. A pass-transistor multiplexer is used
on the cache module to select these address bits during fills.

sram_clk_en<1:0> Output This signal controls an external multiplexer (typically QS3257) that
selects either the sram_clk<2:0> signals, or the st_clk signal from the
21164 to drive the L3 Bcache SRAM clock inputs. This signal is asserted
when the SRAMs are to be used for non-21164 cycles, that is cycles
under control of the 21174 chip. Two copies of this signal are provided.

sram_clk_in Input Copy of DRAM clock.

sram_fill_clk<2:0> Output This signal clocks the cache SRAMs during L3 Bcache fill and write-
back transactions. Three copies of this signal are provided so that it can
be fanned out to all cache SRAMs without buffering.

stop_l I/O This pin has a weak pull-up.

sys_clk Input System clock from 21164. This clock is typically driven from
sys_clk_out2 from 21164 and delayed through module etch to arrive at
21174 at the same time as sys_clk_out1 is asserted at the 21164.

sys_reset_l Output System reset.

tag_dirty Output Tag dirty condition bit.

test_di1 Input Manufacturing test signal.

test_di2 Input Manufacturing test signal.

test_mode<0> Input These bits control the manufacturing test features.

test_out Output Manufacturing test output signal.

test_ri Input Manufacturing test input signal.

trdy_l I/O This pin has a weak pull-up.

victim_pending Input Victim available for write.

we_l Output Write-enable to DRAMs.

Table 3–4 Signal Descriptions (Alphanumeric) (Sheet 7 of 7)

Pin Type Description
3–24 Pinout 3 October 1997 – Subject to Change

ed by
 4
Register Definitions

This chapter defines the 21174 registers.

Note: All addresses in this chapter are hexadecimal values unless otherwise
noted.

4.1 Register Types

All register addresses are on naturally aligned 64-byte address space boundaries.
Table 4–1 lists the categories of 21174 registers.

Software can read most of the control and status registers (CSRs). Some of the
diagnostic registers are reserved for hardware debug and should not be access
software. These registers should only be manipulated in a well-controlled
environment (such as during the power-up sequence of operations).

Table 4–1 21174 Register Categories

Category Primary User

PCI control registers Software

Scatter-gather address translation registers Hardware and software

Error reporting registers Software and firmware diagnostics

Hardware configuration registers Firmware and diagnostic

Diagnostic registers —
3 October 1997 – Subject to Change Register Definitions 4–1

Register Addresses
4.2 Register Addresses

The CSRs and flash ROM address range is 87.4000.0000 to 87.FFFF.FFFF.

Table 4–2 lists the beginning address of the hardware-specific register groups and the
address region for flash ROM.

4.3 General Registers

Table 4–3 lists the 21174 general CSRs.

Table 4–2 Hardware-Specific Register Address Map

Start Address Selected Region

87.4000.0000 21174 general control, diagnostic, performance monitor, and error
log registers

87.5000.0000 21174 memory controller registers

87.6000.0000 21174 PCI window control registers and scatter-gather translation
registers

87.7000.0000 Reserved

87.8000.0000 Miscellaneous registers

87.A000.0000 Interrupt control registers

87.C000.0000 to
87.FFFF.FFFF

Flash ROM read and write space — for programming

Table 4–3 General 21174 CSRs (Base = 87.4000.0000)

Name Mnemonic Offset Block

Revision control register PYXIS_REV 0080 CSR

PCI latency register PCI_LAT 00C0 CSR

Control register PYXIS_CTRL 0100 CSR

Control register 1 PYXIS_CTRL1 0140 CSR

Flash control register FLASH_CTRL 0200 CSR

Hardware address extension register (memory) HAE_MEM 0400 CSR

Hardware address extension register (I/O) HAE_IO 0440 CSR

Configuration type register CFG 0480 CSR
4–2 Register Definitions 3 October 1997 – Subject to Change

General Registers
Table 4–4 lists the diagnostic registers.

Table 4–5 lists the performance monitor registers.

Table 4–6 lists the error registers.

Table 4–4 Diagnostic Registers (Base = 87.4000.0000)

Name Mnemonic Offset Block

Diagnostic control register PYXIS_DIAG 2000 CSR

Diagnostic check register DIAG_CHECK 3000 CSR

Table 4–5 Performance Monitor Registers (Base = 87.4000.0000)

Name Mnemonic Offset Block

Performance monitor register PERF_MONITOR 4000 CSR

Performance monitor control register PERF_CONTROL 4040 CSR

Table 4–6 Error Registers (Base = 87.4000.0000)

Name Mnemonic Offset Block

Error register PYXIS_ERR 8200 CSR

Status register PYXIS_STAT 8240 CSR

Error mask register ERR_MASK 8280 CSR

Syndrome register PYXIS_SYN 8300 CSR

Error data register PYXIS_ERR_DATA 8308 CSR

Memory error address register MEAR 8400 MCTL

Memory error status register MESR 8440 MCTL

PCI error register 0 PCI_ERR0 8800 PCI

PCI error register 1 PCI_ERR1 8840 PCI

PCI error register 2 PCI_ERR2 8880 PCI
3 October 1997 – Subject to Change Register Definitions 4–3

Memory Controller Registers
4.4 Memory Controller Registers

Table 4–7 lists the memory controller registers.

Table 4–7 Memory Controller Registers (Sheet 1 of 2)

(Base Address = 87.5000.0000)

Name Mnemonic Offset Block

Memory control register MCR 0000 MCTL

Memory clock mask register MCMR 0040 MCTL

Global timing register GTR 0200 MCTL

Refresh timing register RTR 0300 MCTL

Row history policy mask register RHPR 0400 MCTL

Memory control debug register 1 MDR1 0500 MCTL

Memory control debug register 2 MDR2 0540 MCTL

Bank base address register 0 BBAR0 0600 MCTL

Bank base address register 1 BBAR1 0640 MCTL

Bank base address register 2 BBAR2 0680 MCTL

Bank base address register 3 BBAR3 06C0 MCTL

Bank base address register 4 BBAR4 0700 MCTL

Bank base address register 5 BBAR5 0740 MCTL

Bank base address register 6 BBAR6 0780 MCTL

Bank base address register 7 BBAR7 07C0 MCTL

Bank configuration register 0 BCR0 0800 MCTL

Bank configuration register 1 BCR1 0840 MCTL

Bank configuration register 2 BCR2 0880 MCTL

Bank configuration register 3 BCR3 08C0 MCTL

Bank configuration register 4 BCR4 0900 MCTL

Bank configuration register 5 BCR5 0940 MCTL

Bank configuration register 6 BCR6 0980 MCTL

Bank configuration register 7 BCR7 09C0 MCTL
4–4 Register Definitions 3 October 1997 – Subject to Change

PCI Window Control Registers
4.5 PCI Window Control Registers

Table 4–8 lists the PCI window control registers.

Bank timing register 0 BTR0 0A00 MCTL

Bank timing register 1 BTR1 0A40 MCTL

Bank timing register 2 BTR2 0A80 MCTL

Bank timing register 3 BTR3 0AC0 MCTL

Bank timing register 4 BTR4 0B00 MCTL

Bank timing register 5 BTR5 0B40 MCTL

Bank timing register 6 BTR6 0B80 MCTL

Bank timing register 7 BTR7 0BC0 MCTL

Cache valid map register CVM 0C00 MCTL

Table 4–8 PCI Window Control Registers (Sheet 1 of 2)

(Base Address = 87.6000.0000)

Name Mnemonic Offset Block

Scatter-gather translation buffer invalidate register TBIA 0100 PA

Window base 0 register W0_BASE 0400 PA

Window mask 0 register W0_MASK 0440 PA

Translated base 0 register T0_BASE 0480 PA

Window base 1 register W1_BASE 0500 PA

Window mask l register W1_MASK 0540 PA

Translated base l register Tl_BASE 0580 PA

Window base 2 register W2_BASE 0600 PA

Window mask 2 register W2_MASK 0640 PA

Translated base 2 register T2_BASE 0680 PA

Window base 3 register W3_BASE 0700 PA

Table 4–7 Memory Controller Registers (Sheet 2 of 2)

(Base Address = 87.5000.0000)

Name Mnemonic Offset Block
3 October 1997 – Subject to Change Register Definitions 4–5

Scatter-Gather Address Translation Registers

ffer
4.6 Scatter-Gather Address Translation Registers

Table 4–9 lists the address translation registers.

Note: See Table 4–8 for information about the scatter-gather translation bu
invalidate register.

Window mask 3 register W3_MASK 0740 PA

Translated base 3 register T3_BASE 0780 PA

Window DAC base register W_DAC 07C0 PA

Table 4–9 Address Translation Registers (Sheet 1 of 2)

(Base Address = 87.6000.0000)

Name Mnemonic Offset Block

Lockable translation buffer tag0 register LTB_TAG0 0800 PA

Lockable translation buffer tagl register LTB_TAG1 0840 PA

Lockable translation buffer tag2 register LTB_TAG2 0880 PA

Lockable translation buffer tag3 register LTB_TAG3 08C0 PA

Translation buffer tag4 register TB_TAG4 0900 PA

Translation buffer tag5 register TB_TAG5 0940 PA

Translation buffer tag6 register TB_TAG6 0980 PA

Translation buffer tag7 register TB_TAG7 09C0 PA

Translation buffer 0 page0 register TB0_PAGE0 1000 PA

Translation buffer 0 pagel register TB0_PAGE1 1040 PA

Translation buffer 0 page2 register TB0_PAGE2 1080 PA

Translation buffer 0 page3 register TB0_PAGE3 10C0 PA

Translation buffer 1 page0 register TB1_PAGE0 1100 PA

Translation buffer 1 pagel register TB1_PAGEl 1140 PA

Table 4–8 PCI Window Control Registers (Sheet 2 of 2)

(Base Address = 87.6000.0000)

Name Mnemonic Offset Block
4–6 Register Definitions 3 October 1997 – Subject to Change

Scatter-Gather Address Translation Registers
Translation buffer 1 page2 register TB1_PAGE2 1180 PA

Translation buffer 1 page3 register TB1_PAGE3 11C0 PA

Translation buffer 2 page0 register TB2_PAGE0 1200 PA

Translation buffer 2 pagel register TB2_PAGE1 1240 PA

Translation buffer 2 page2 register TB2_PAGE2 1280 PA

Translation buffer 2 page3 register TB2_PAGE3 12C0 PA

Translation buffer 3 page0 register TB3_PAGE0 1300 PA

Translation buffer 3 page1 register TB3_PAGE1 1340 PA

Translation buffer 3 page2 register TB3_PAGE2 1380 PA

Translation buffer 3 page3 register TB3_PAGE3 13C0 PA

Translation buffer 4 page0 register TB4_PAGE0 1400 PA

Translation buffer 4 pagel register TB4_PAGE1 1440 PA

Translation buffer 4 page2 register TB4_PAGE2 1480 PA

Translation buffer 4 page3 register TB4_PAGE3 14C0 PA

Translation buffer 5 page0 register TB5_PAGE0 1500 PA

Translation buffer 5 pagel register TB5_PAGE1 1540 PA

Translation buffer 5 page2 register TB5_PAGE2 1580 PA

Translation buffer 5 page3 register TB5_PAGE3 15C0 PA

Translation buffer 6 page0 register TB6_PAGE0 1600 PA

Translation buffer 6 pagel register TB6_PAGE1 1640 PA

Translation buffer 6 page2 register TB6_PAGE2 1680 PA

Translation buffer 6 page3 register TB6_PAGE3 16C0 PA

Translation buffer 7 page0 register TB7_PAGE0 1700 PA

Translation buffer 7 pagel register TB7_PAGE1 1740 PA

Translation buffer 7 page2 register TB7_PAGE2 1780 PA

Translation buffer 7 page3 register TB7_PAGE3 17C0 PA

Table 4–9 Address Translation Registers (Sheet 2 of 2)

(Base Address = 87.6000.0000)

Name Mnemonic Offset Block
3 October 1997 – Subject to Change Register Definitions 4–7

Miscellaneous Registers
4.7 Miscellaneous Registers

Table 4–10 lists the 21174 miscellaneous registers.

4.8 Interrupt Control Registers

The interrupt control registers control the external hardware interrupts to the 21174.
Table 4–11 defines the registers and the addresses associated with them.

Table 4–10 Miscellaneous Registers (Base Address = 87.8000.0000)

Name Mnemonic Offset Block

Clock control register CCR 0000 CSR or CLK

Reserved — 0040 to 01C0 —

Clock status register CLK_STAT 0100 CLK

Reserved — 0240 to 08C0 —

Reset register RESET 0900 CSR

Reserved — 0940 to FFFF —

Table 4–11 Interrupt Control Registers (Base Address = 87.A000.0000)

Name Mnemonic Offset Block

Interrupt request register INT_REQ 0000 IRQ

Interrupt mask register INT_MASK 0040 IRQ

Interrupt high/low select register INT_HILO 00C0 IRQ

Interrupt routine select register INT_ROUTE 0140 IRQ

General-purpose output register GPO 0180 IRQ

Interrupt configuration register INT_CNFG 01C0 IRQ

Real-time counter register RT_COUNT 0200 IRQ

Interrupt time register INT_TIME 0240 IRQ

Reserved — 0280 —

I2C control register IIC_CTRL 02C0 IRQ
4–8 Register Definitions 3 October 1997 – Subject to Change

Flash ROM Address Space
4.9 Flash ROM Address Space

The flash ROM is mapped to three regions of memory. Access to the first two
regions is RO. The first two regions provide the software necessary to initialize the
system and transfer execution to the next level of software. When power is turned
on, address ranges 0 to 00.00FF.FFFF and 0F.FC00.0000 to 0F.FFFF.FFFF are
enabled.

After the system has been initialized, these two address ranges are disabled. Byte
mode is then enabled in the 21164 and 21174. Byte mode is the only way to access
the flash ROM in address range 87.C000.0000 to 87.FFFF.FFFF. 21164 byte
instructions LDBU and STB must be used to access this region. Any other
instruction will produce UNDEFINED results with the possibility of damaging the
flash ROM.
3 October 1997 – Subject to Change Register Definitions 4–9

 5–1.
 5
Register Descriptions

This chapter describes the 21174 registers in detail. It defines the fields, the access
type, and the default register condition. The figures in this chapter show reserved
register bit fields in gray.

5.1 Registers – General Description

This section describes the functionality of the revision control register, the PCI
latency register, the control register, the control register 1, the flash control register,
the hardware address extension registers (HAE_MEM and HAE_IO), and the
configuration type register.

5.1.1 Revision Control Register (PYXIS_REV)

The revision control register specifies the revision of the 21174. The revision control
register access is RO to address 87.4000.0080. The register is shown in Figure

Figure 5–1 Revision Control Register

The PYXIS_ID field can be used by software to dynamically determine if the device
is a 21174 or other type of device that has similar functionality. Software can then
change the behavior of the system based on this information.

31 15 8 0

LJ-05251.AI4

PYXIS_REV

PYXIS_ID

716
3 October 1997 – Subject To Change Register Descriptions 5–1

Registers – General Description

ows
The PYXIS_REV field can be used to determine the level of functionality within the
device. Later revisions of the device are guaranteed to be backward compatible.
When determining compatibility, software should always do unsigned comparisons
and always compare for a value greater than or equal to a specific revision.

Table 5–1 describes the 21174 revision control register fields.

5.1.2 PCI Latency Register (PCI_LAT)

The PCI latency register access is RW to address 87.4000.00C0. Figure 5–2 sh
the PCI latency register.

Figure 5–2 PCI Latency Register

Table 5–1 Revision Control Register Fields

Name Extent Access Init Description

PYXIS_REV <7:0> RO Device
revision

This field specifies the revision
of the 21174.

PYXIS_ID <15:8> RO 1 Identifies the device as 21174.

Reserved <31:16> RO 0 —

31 16 15 8 7 34 0

LJ-05252.AI4

TRGT_RET

MSTR_RET

MSTR_LAT
5–2 Register Descriptions 3 October 1997 – Subject To Change

Registers – General Description

CI
Table 5–2 describes the PCI latency register fields.

Table 5–2 PCI Latency Register Fields

Name Extent Access Init Description

TRGT_RET <3:0> RW 0 PCI target retry.
This field specifies the number of cycles that the
21174 will wait after it has found a resource busy
until it stops. Tune this value for best performance.

Value Cycles
 0000 0
0001 1
....... —
1110 14
1111 Indefinite

MSTR_RET <7:4> RW 0 PCI master retry count.
This field specifies the PCI master retry count in
multiples of four PCI clock cycles. This is the
number of cycles that the 21174 will wait after it
has stopped until it retries the operation. The rec-
ommended value is 0.

Value Cycles
 0000 2
0001 6
....... —
1110 58
1111 2-66 (random)

MSTR_LAT <15:8> RW 0 PCI master latency timeout value expressed in P
clock cycles.

Reserved <31:16> RO 0 —
3 October 1997 – Subject To Change Register Descriptions 5–3

Registers – General Description

the

I.
5.1.3 Control Register (PYXIS_CTRL)

The control register access is RW to address 87.4000.0100. Figure 5–3 shows
control register.

Figure 5–3 Control Register

Table 5–3 describes the control register fields.

Table 5–3 Control Register Fields (Sheet 1 of 3)

Name Extent Access Init Description

PCI_EN <0> RW 0 0 – The 21174 asserts reset to the PCI.
1 – The 21174 does not assert reset to the PC

Reserved <1> RO 0 —

31 2627 25 24 23 22 21 20 19 1314 1112 10 9 8 7 6 5 34 2 1 0

LJ-05253.AI4

RL_USE_HISTORY

RM_TYPE

RL_TYPE

RD_USE_HISTORY

RD_TYPE

ASSERT_IDLE_BC

FILL_ERR_EN

MCHK_ERR_EN

PERR_EN

ADDR_PE_EN

PCI_ACK64_EN

PCI_REQ64_EN

PCI_MEM_EN

FST_BB_EN

ECC_CHK_EN

PCI_MST_EN

PCI_LOOP_EN

 PCI_EN

RM_USE_HISTORY

282930
5–4 Register Descriptions 3 October 1997 – Subject To Change

Registers – General Description

.

.

PCI_LOOP_EN <2> RW 0 0 – 21174 will not respond as a target when it is
the master.
1 – 21174 will respond as a target when it is the
master.

FST_BB_EN <3> RW 0 0 – 21174 will not initiate fast back-to-back PCI
transactions.
1– 21174 will initiate fast back-to-back PCI
transactions.

PCI_MST_EN <4> RW 0 0 – 21174 will not initiate PCI transactions.
1 – 21174 will initiate PCI transactions.

PCI_MEM_EN <5> RW 0 0 – 21174 will not respond to PCI transactions
1 – 21174 will respond to PCI transactions.

PCI_REQ64_EN <6> RW 0 0 – 21174 will not request 64-bit PCI data
transactions.
1 – 21174 will request 64-bit PCI data
transactions.

PCI_ACK64_EN <7> RW 0 0 – 21174 will not accept 64-bit PCI data
transactions.
1 – 21174 will accept 64-bit PCI data
transactions.

ADDR_PE_EN <8> RW 0 0 – 21174 will not check PCI address parity
errors.
1 – 21174 will check PCI address parity errors.

PERR_EN <9> RW 0 0 – 21174 will not check PCI data parity errors
1 – 21174 will check PCI data parity errors.

FILL_ERR_EN <10> RW 0 0 – 21174 will not assert fill_error.
l – 21174 will assert fill_error, if an error
occurs during a 21164 read miss.

MCHK_ERR_EN <11> RW 0 0 – 21174 will not assert the mchk_irq pin.
1 – 21174 will assert the mchk_irq pin to report
system machine check conditions.

ECC_CHK_EN <12> RW 0 0 – 21174 will not check the IOD bus data.
1 – 21174 will check the IOD bus data.

ASSERT_IDLE_BC <13> RW 0 0 – 21174 will not assert the idle_bc pin while
waiting for PCI read data.
1 – Not allowed.

Table 5–3 Control Register Fields (Sheet 2 of 3)

Name Extent Access Init Description
3 October 1997 – Subject To Change Register Descriptions 5–5

Registers – General Description

.

o

o

o
1 This bit should be set to 0 for 21174 pass 1 devices.

Reserved <19:14> RO — —

RD_TYPE1 <21:20> RW 0 This field controls the prefetch algorithm used
for PCI memory read command. See Table 5–4

RD_USE_HISTORY <22> RW 0 When set, causes any translation buffer miss t
use the prefetch algorithm selected by the
RD_TYPE field of this register. A translation
buffer hit uses the length of the preceding DMA
as the prefetch length.

Reserved <23> RO 0 —

RL_TYPE1 <25:24> RW 0 This field controls the prefetch algorithm used
for PCI memory read line command.
See Table 5–4.

RL_USE_HISTORY <26> RW 0 When set, causes any translation buffer miss t
use the prefetch algorithm in RL_TYPE.
A translation buffer hit uses the length of the
preceding DMA as the prefetch length.

Reserved <27> RO 0 —

RM_TYPE1 <29:28> RW 0 This field controls the prefetch algorithm used
for PCI memory read multiple command. See
Table 5-4.

RM_USE_HISTORY <30> RW 0 When set, causes any translation buffer miss t
use the prefetch algorithm in RM_TYPE.
A translation buffer hit uses the length of the
preceding DMA as the prefetch length.

Reserved <31> RO 0 —

Table 5–3 Control Register Fields (Sheet 3 of 3)

Name Extent Access Init Description
5–6 Register Descriptions 3 October 1997 – Subject To Change

Registers – General Description

s the
Table 5–4 defines the default PCI READ prefetch algorithm.1

5.1.4 Control Register 1 (PYXIS_CTRL1)

Control register 1 contains miscellaneous bits.

The control register 1 access is RW to address 87.4000.0140. Figure 5–4 show
control register 1 format.

Figure 5–4 Control Register 1

1 This algorithm is used when the Rx_USE_HISTORY bit is not set or when the access
misses in the transaction buffer.

Table 5–4 Default PCI READ Prefetch Algorithm

Rx_TYPE Description

00 No prefetch.

01 Fetch 2 cache lines. The operation will not cross an 8-KB boundary.

10 Fetch 4 cache lines. The operation will not cross an 8-KB boundary.

11 Fetch 8 cache lines. The operation will not cross an 8-KB boundary.

31 13 1112 9 8 7 5 34 1 0

LJ-05254.AI4

PCI_LINK_EN

LW_PAR_MODE

PCI_MWIN_EN

IOA_BEN
3 October 1997 – Subject To Change Register Descriptions 5–7

Registers – General Description

ows

e
y of

,

d
Table 5–5 describes the control register 1 fields.

5.1.5 Flash Control Register (FLASH_CTRL)

The flash control register access is RW to address 87.4000.0200. Figure 5–5 sh
the register.

The flash control register controls access and basic timing of the flash ROM. Th
register controls the write pulse width, the read/write access time, and the abilit
the flash ROM to map at address 0 for startup conditions.

Table 5–5 Control Register 1 Fields

Name Extent Access Init Description

IOA_BEN <0> RW 0 Byte support enable.
1 – The address range 88.0000.0000
through EB.FFFF.FFFF is enabled for
byte, word, longword, and quadword PCI
addressing.
0 – Byte and word operations are disabled
and accessing the above mentioned
addresses results in an error or undefined
results.
This is a new architecture feature.

Reserved <3:1> RO 0 —

PCI_MWIN_EN <4> RW 0 Monster window enable.
1 – Gives full access to main memory.
The monster window can only be accesse
in DAC mode when ad<40> equals 1.
addr_h<33:0> equals ad<33:0>.

Reserved <7:5> RO 0 —

PCI_LINK_EN <8> RW 0 I/O write chaining enable.

Reserved <11:9> RW 0 —

LW_PAR_MODE <12> RW 0 1 – 21164 longword parity mode is
selected.

Reserved <31:13> RW 0 —
5–8 Register Descriptions 3 October 1997 – Subject To Change

Registers – General Description

.

Figure 5–5 Flash Control Register

Table 5–6 describes the flash control register fields.

Table 5–6 Flash Control Register Fields (Sheet 1 of 2)

Name Extent Access Init Description

FLASH_WP_WIDTH <3:0> RW 0F Flash ROM write pulse width is defined
(see Section 5.1.5.1).

FLASH_DISABLE_TIME <7:4> RW 07 Controls the number of cycles after
flash_ce_l is deasserted before the
21174 deasserts addr_bus_req allow-
ing the processor to use the bus.

FLASH_ACCESS_TIME <11:8> RW 0F Flash access time as defined by the for-
mula in Section 5.1.5.1.

FLASH_LOW_ENABLE <12> RW 1 1 – The flash ROM is mapped at address 0
This enables the device to be used in
place of a serial ROM which would nor-
mally contain the system initialization
and startup code.
Initialize this bit to 1 on power-up so
that code can be executed from the flash
ROM. This bit should be disabled as
soon after power-up as possible.

31 1314 1112 8 7 34 0

LJ-05255.AI4

FLASH_HIGH_ENABLE

FLASH_ACCESS_TIME

FLASH_LOW_ENABLE

FLASH_DISABLE_TIME

FLASH_WP_WIDTH
3 October 1997 – Subject To Change Register Descriptions 5–9

Registers – General Description

 is

d

5.1.5.1 Calculating Flash ROM Access Time

Flash ROM write pulse width is determined in part by the system cycle time. The
default value for FLASH_WP_WIDTH is 0F16 with write transactions enabled. The
calculation of flash ROM write pulse width is performed as follows:

• Flash write pulse width (nominal) = (1 + FLASH_WP_WIDTH) × cycle time.
For example, if cycle time is 15 ns and the value in FLASH_WP_WIDTH is
0C16, then the flash write pulse width would be (1+12) × 15 ns = 195 ns.

Flash ROM disable time is also determined in part by using the system cycle time.
The default FLASH_DISABLE_TIME value is 0716 with write transactions enabled.

• Flash disable time = (1 + FLASH_DISABLE_TIME) × cycle time.
For example, if cycle time is 15 ns and the value in FLASH_DISABLE is 0C16,
then the flash disable time would be (1+12) × 15 ns = 195 ns.

The flash access time is also determined in part by the system cycle time. The default
value is 0F16.

• Flash access time = (1 + FLASH_ACCESS_TIME) × cycle time – (Tpd+Tsetup).
For example, if cycle time is 15 ns and the value in FLASH_ACCESS_TIME
0E16, then the flash access time would be (1+14) × 15 ns – 5 ns = 255 ns.

Note: Tpd is the 21174 address bus clock-to-out delay and Tsetup is the 21174
address bus setup time.

FLASH_HIGH_ENABLE <13> RW 1 1 – The address range is F.FC00.0000
through F.FFFF.FFFF. This address
range is in cacheable memory space an
may contain program code. If all of the
address bits are not connected, then the
flash ROM may be shadowed at each
flash ROM increment.
This is not the address space for pro-
gramming the device.

Reserved <31:14> RO 0 —

Table 5–6 Flash Control Register Fields (Sheet 2 of 2)

Name Extent Access Init Description
5–10 Register Descriptions 3 October 1997 – Subject To Change

Registers – General Description

 more
5.1.6 Hardware Address Extension Register (HAE_MEM)

The hardware address extension register access is RW to address 87.4000.0400.
Figure 5–6 shows the register.

Figure 5–6 Hardware Address Extension Register (HAE_MEM)

The hardware address extension register (HAE_MEM) is used to extend a PCI
sparse-space memory address up to the full 32-bit PCI address. In sparse address
mode, the 21164 address provides the low-order PCI address bits, while the
HAE_MEM provides the high-order bits. The high-order PCI address bits <31:26>
are obtained from either the hardware extension register or the 21164 address
depending on sparse-space regions, as shown in Table 5–8. See Chapter 6 for
details. Initializing HAE_MEM to 0000.202816 will make all 3 regions contiguous
starting at PCI address 0.

Table 5–7 shows the hardware address extension register fields.

Table 5–7 Hardware Address Extension Register (HAE_MEM) Fields

Name Extent Access Init

Region 1 <31:29> RW 0

Reserved <28:16> RO 0

Region 2 <15:11> RW 0

Reserved <10:8> RO 0

Region 3 <7:2> RW 0

Reserved <1:0> RO 0

31 16 15 11 10 8 7 2 1 0

LJ-05256.AI4

Region 2

Region 3

Region 1

2829
3 October 1997 – Subject To Change Register Descriptions 5–11

Registers – General Description

 exten-
Table 5–8 shows the PCI address mapping controlled by the hardware address
sion register.

5.1.7 Hardware Address Extension Register (HAE_IO)

The hardware address extension register (HAE_IO) access is RW to address
87.4000.0440. Figure 5–7 shows the register.

Figure 5–7 Hardware Address Extension Register (HAE_IO)

The hardware address extension register (HAE_IO) is used to extend a PCI sparse-
space I/O address up to the full 32-bit PCI address. In sparse address mode, the
21164 address provides the PCI addresses up to ad<24> and HAE_IO provides
ad<31:25>.

When power is turned on, this register is set to zero. In this case, sparse I/O region A
and region B both map to the lower 32MB of sparse I/O space. Setting HAE_IO to
200.000016 will make region A and region B consecutive in the lower 64MB of PCI
I/O space.

Table 5–8 PCI Address Mapping

 21164
Address Region PCI Address

 31 30 29 28 27 26

80.0000.0000
to
83.FFFF.FFFF

1 HAE_MEM
 <31>

HAE_MEM
 <30>

HAE_MEM
 <29>

CPU<33> CPU<32> CPU<31>

84.0000.0000
to
84.FFFF.FFFF

2 HAE_MEM
 <15>

HAE_MEM
 <14>

HAE_MEM
 <13>

HAE_MEM
 <12>

HAE_MEM
 <11>

CPU<31>

85.0000.0000
to
85.FFFF.FFFF

3 HAE_MEM
 <7>

HAE_MEM
 <6>

HAE_MEM
 <5>

HAE_MEM
 <4>

HAE_MEM
 <3>

HAE_MEM
 <2>

31 25 24 0

LJ-05257.AI4

HAE_IO
5–12 Register Descriptions 3 October 1997 – Subject To Change

Registers – General Description

5–8
Table 5–9 describes the hardware address extension register fields.

5.1.8 Configuration Type Register (CFG)

The configuration type register access is RW to address 87.4000.0480. Figure
shows the register.

Figure 5–8 Configuration Type Register

Table 5–10 describes the configuration type register fields.

Table 5–9 Hardware Address Extension Register (HAE_IO) Fields

Name Extent Access Init Description

Reserved <24:0> RO 0 —

HAE_IO <31:25> RW 0 —

Table 5–10 Configuration Type Register Fields

Name Extent Access Init Description

CFG <1:0> RW 0 The CFG field is used as the low two address bits
during an access to PCI configuration space.

 <1:0> Meaning
00 Type 0 configuration cycle
01 Type 1 configuration cycle
10 Reserved
11 Reserved

Reserved <31:2> RO 0 —

31 0

LJ-05258 .AI4

CFG

12
3 October 1997 – Subject To Change Register Descriptions 5–13

Diagnostic Register Descriptions

e

s.
5.2 Diagnostic Register Descriptions

This section describes the functionality of the diagnostic control register and the
diagnostic check register.

5.2.1 Diagnostic Control Register (PYXIS_DIAG)

The diagnostic control register allows errors to be forced and tested. The register
access is RW to address 87.4000.2000. Figure 5–9 shows the register.

Figure 5–9 Diagnostic Control Register

Table 5–11 describes the diagnostic control register fields.

Table 5–11 Diagnostic Control Register Fields (Sheet 1 of 2)

Name Extent Access Init Description

Reserved <0> RW 0 —

USE_CHECK <1> RW 0 When set, DMA write cycles and PCI I/O read
cycles use the value in the DIAG_CHECK register
for ECC sent on the IOD bus.

Reserved <27:2> RO 0 00 – Normal parity is output to the PCI.
01 – Bad parity is forced onto the low 32 bits of th
 PCI during data cycles.
10 – Bad parity is forced onto the high 32 bits of
 the PCI during data cycles.
11 – Bad parity is forced onto the high and low 32
 bits to the PCI during address and data cycle

FPE_PCI <29:28> RW 0 00 – Normal parity is output to the PCI.

Reserved <30> RO 0 —

31 27 2 1 0

LJ-05259.AI4

FPE_PCI

USE_CHECK

FPE_TO_EV56

282930
5–14 Register Descriptions 3 October 1997 – Subject To Change

Performance Monitor Register Descriptions

gister.

 the
5.2.2 Diagnostic Check Register (DIAG_CHECK)

The diagnostic check register is used to verify the 21174 error paths. This register is
used for diagnostic DMA transactions that write a known ECC pattern into memory.
It also provides the ECC pattern on any PCI I/O read operation. This register pro-
vides the ECC that gets written to memory or appended to the I/O read operation if
the USE_CHECK bit is set in the PYXIS_DIAG register.

The register access is RW to address 87.4000.3000. Figure 5–10 shows the re

Figure 5–10 Diagnostic Check Register

Table 5–12 describes the diagnostic check register fields.

5.3 Performance Monitor Register Descriptions

This section describes the functionality of the performance monitor register and
performance monitor control register.

FPE_TO_EV56 <31> RW 0 When FPE_CPU_EV56 is set, a parity error is
forced on the 21164 address/cmd bus when the
21174 is the bus master.

Table 5–12 Diagnostic Check Register Fields

Name Extent Access Init Description

DIAG_CHECK <7:0> RW X For diagnostic DMA write transactions
and PCI I/O read transactions, the
DIAG_CHECK register provides the
quadword ECC.

Reserved <31:8> RO 0 —

Table 5–11 Diagnostic Control Register Fields (Sheet 2 of 2)

Name Extent Access Init Description

31 8 7 0

LJ-05260.AI4

DIAG_CHECK
3 October 1997 – Subject To Change Register Descriptions 5–15

Performance Monitor Register Descriptions

0.
5.3.1 Performance Monitor Register (PERF_MONITOR)

The 21174 performance monitor register contains two 16-bit counters that can be
programmed to count a variety of events. The counters are set up using the
PERF_CONTROL register. Each counter can be programmed to count events such
as 21164 read transaction misses received by the 21174 or DMA write transactions.
The PERF_MONITOR register can also be configured as a single 32-bit counter
(by telling the high_count field to count the low_count field overflow).

The performance monitor register access is RO to address 87.4000.4000.
Figure 5–11 shows the performance monitor register.

Figure 5–11 Performance Monitor Register

Table 5–13 describes the performance monitor register fields.

5.3.2 Performance Monitor Control Register (PERF_CONTROL)

The performance monitor control register access is RW to address 87.4000.404
Figure 5–12 shows the register.

Table 5–13 Performance Monitor Register Fields

Name Extent Access Init Description

LOW_COUNT <15:0> RO 0 This is the value of the low counter.

HIGH_COUNT <31:16> RO 0 This is the value of the high counter.

31 16 15 0

LJ-05261.AI4

HIGH_COUNT

LOW_COUNT
5–16 Register Descriptions 3 October 1997 – Subject To Change

Performance Monitor Register Descriptions

s

le
Figure 5–12 Performance Monitor Control Register

Table 5–14 describes the performance monitor control register fields.

Table 5–14 Performance Monitor Control Register Fields (Sheet 1 of 2)

Name Extent Access Init Description

LOW_SELECT <2:0> RW 0 Enables certain debug features
(see Table 5–15).

Reserved <11:3> RO 0 —

LOW_COUNT_CYCLES <12> RW 0 0 – The number of low to high transitions
are counted.
1 – The number of cycles that the
low_select event is asserted is counted.

LOW_COUNT_CLR <13> WO 0 Write a 1 to clear the low counter.

LOW_ERR_STOP <14> RW 0 If the 21174 detects an error and this bit i
set, then stop counting.

LOW_COUNT_START <15> RW 0 0 – Don’t count; keep current values.
1 – Start counting.

HIGH_SELECT <18:16> RW 0 Enables certain debug features. See Tab
5–15.

Reserved <27:19> RO 0 —

31 27 19 18 16 15 1314 1112 3 2 0

LJ-05262.AI4

HIGH_COUNT_CLR

HIGH_ERR_STOP

HIGH_COUNT_CYCLES

HIGH_SELECT

LOW_COUNT_START

LOW_COUNT_CLR

LOW_ERR_STOP

LOW_COUNT_CYCLES

LOW_SELECT

HIGH_COUNT_START

282930
3 October 1997 – Subject To Change Register Descriptions 5–17

Performance Monitor Register Descriptions
Table 5–15 shows the performance monitor register low/high select field codes.

HIGH_COUNT_CYCLES <28> RW 0 0 – The number of low to high transitions
are counted.
1 – The number of cycles that the
high_select event is asserted is counted.

HIGH_COUNT_CLR <29> WO 0 Write a 1 to clear the high counter.

HIGH_ERR_STOP <30> RW 0 Stop counting if the 21174 detects an
error and this bit is set.

HIGH_COUNT_START <31> RW 0 0 – Don’t count; keep current values.
1 – Start counting.

Table 5–15 PERF_MONITOR Register Low/High Select Field Codes

LOW_SELECT <2:0>
 and
HIGH_SELECT <18:16>

Description

000 MCTL_DEBUG_OUT[0]

001 MCTL_DEBUG_OUT[1]

010 MCTL_DEBUG_OUT[2]

011 MCTL_DEBUG_OUT[3]

100 PA/PCI_DEBUG_OUT[0]

101 PA/PCI_DEBUG_OUT[1]

110 PA/PCI_DEBUG_OUT[2]

111 PA/PCI_DEBUG_OUT[3] for LOW_SELECT and
make the counter a 32-bit counter on HIGH_SELECT.

Table 5–14 Performance Monitor Control Register Fields (Sheet 2 of 2)

Name Extent Access Init Description
5–18 Register Descriptions 3 October 1997 – Subject To Change

Error Register Descriptions

s the
5.4 Error Register Descriptions

This section details the functionality of the error register, status register, error mask
register, syndrome register, error data register, memory error address register,
memory error status register, PCI error register 0, PCI error register 1, and the PCI
error register 2.

5.4.1 Error Register (PYXIS_ERR)

The error register access is RW1C to address 87.4000.8200. Figure 5–13 show
register.

Figure 5–13 Error Register

31 2627 25 24 23 22 21 20 19 18 17 16 15 1112 10 9 8 7 6 5 34 2 1 0

LJ-05263.AI4

LOST_PA_PTE_INV

LOST_IOA_TIMEOUT

LOST_RCVD_TAR_ABT

LOST_RCVD_MAS_ABT

LOST_PCI_ADDR_PE

LOST_PERR

LOST_CPU_PE

LOST_MEM_NEM

IOA_TIMEOUT

LOST_COR_ERR

PA_PTE_INV

RCVD_TAR_ABT

RCVD_MAS_ABT

PCI_ADDR_PE

PCI_PERR

MEM_NEM

LOST_UN_COR_ERR

PCI_SERR

CPU_PE

UN_COR_ERR

COR_ERR

ERR_VALID

2830
3 October 1997 – Subject To Change Register Descriptions 5–19

Error Register Descriptions
Table 5–16 describes the 21174 error register fields.

Table 5–16 Error Register Fields (Sheet 1 of 2)

Name Extent Access Init Description

COR_ERR <0> RW1C 0 Correctable (single bit) ECC error detected.
This error cannot occur for a 21164-to-
memory read/write transaction. (21164-to-
memory read transaction ECC errors are
detected by the 21164. 21164-to-memory
write transactions are not checked.)
This error is applicable to a DMA, scatter-
gather TLB miss, or an I/O write transaction
from the 21164.

UN_COR_ERR <l> RW1C 0 Uncorrectable ECC error detected. This
error cannot occur for a 21164-to-memory
read/write transaction. (21164-to-memory
read ECC errors are detected by the 21164.
21164-to-memory write transactions are
not checked.)
This error is applicable to a DMA, a scatter-
gather TLB miss, or an I/O write from the
21164.

CPU_PE <2> RW1C 0 21164 bus parity error detected.

MEM_NEM <3> RW1C 0 Access to nonexistent memory detected.

PCI_SERR <4> RW1C 0 PCI bus SERR detected.

PCI_PERR <5> RW1C 0 PCI bus data parity error detected.

PCI_ADDR_PE <6> RW1C 0 PCI bus address parity error detected.

RCVD_MAS_ABT <7> RW1C 0 PCI master state machine generated master
abort.

RCVD_TAR_ABT <8> RW1C 0 PCI master state machine received target
abort.

PA_PTE_INV <9> RW1C 0 Invalid page table entry on scatter-gather
transaction.

Reserved <10> RO 0 —

IOA_TIMEOUT <11> RW1C 0 I/O timeout occurred. I/O read/write trans-
action failed to get executed in 1 second.

Reserved <15:12> RO 0 —
5–20 Register Descriptions 3 October 1997 – Subject To Change

Error Register Descriptions

,

,

,
r-

,
r

,

LOST_COR_ERR <16> RO 0 A correctable ECC error was detected. The
PYXIS_ERR register was locked.

LOST_UN_COR_ERR <17> RO 0 While PYXIS_ERR register was locked, an
uncorrectable ECC error was detected.

LOST_CPU_PE <18> RO 0 While PYXIS_ERR register was locked, a
21164 parity error was detected.

LOST_MEM_NEM <19> RO 0 While PYXIS_ERR register was locked, an
access to nonexistent memory was detected.

Reserved <20> RO 0 —

LOST_PERR <21> RO 0 While locked, a PCI data parity error was
detected.

LOST_PC1_ADDR_PE <22> RO 0 While the PYXIS_ERR register was locked
a PCI address parity error was detected.

LOST_RCVD_MAS_ABT <23> RO 0 While the PYXIS_ERR register was locked
the PCI master state machine generated a
master abort.

LOST_RCVD_TAR_ABT <24> RO 0 While the PYXIS_ERR register was locked
the PCI master state machine received a ta
get abort.

LOST_PA_PTE_INV <25> RO 0 While the PYXIS_ERR register was locked
an invalid page table entry on scatter-gathe
access occurred.

Reserved <26> RO 0 —

LOST_IOA_TIMEOUT <27> RO 0 While the PYXIS_ERR register was locked
an I/O timeout occurred. An I/O read/write
failed to get executed in 1 second.

Reserved <30:28> RO 0 —

ERR_VALID <31> RO 0 An error has been detected and the 21174
error registers are all locked.

Table 5–16 Error Register Fields (Sheet 2 of 2)

Name Extent Access Init Description
3 October 1997 – Subject To Change Register Descriptions 5–21

Error Register Descriptions

 the
5.4.2 Status Register (PYXIS_STAT)

The PYXIS_STAT register contains information about the state of the 21174 at the
time an error occurred. This register, along with the error registers, can be used in
isolating the error condition and determining a proper recovery action.

The status register access is RO to address 87.4000.8240. Figure 5–14 shows
register.

Figure 5–14 Status Register

Table 5–17 describes the status register fields.

Table 5–17 Status Register Fields

Name Extent Access Init Description

PCI_STATUS<0> <0> RO 0 1 — The PCI target state machine is
active.

PCI_STATUS<1> <1> RO 0 1 — The PCI master state machine is
active.

Reserved <3:2> RO 0 —

IOA_VALID<3:0> <7:4> RO 0 Valid bits for the I/O command/address
queue.

Reserved <10:8> RO 0 —

TLB_MISS <11> RO 0 1 — A TLB refill was in progress when
this miss error occurred.

Reserved <31:12> RO 0 —

31 1112 10 8 7 34 2 1 0

LJ-05264.AI4

TLB_MISS

IOA_VALID<3:0>

PCI_STATUS<1>

PCI_STATUS<0>
5–22 Register Descriptions 3 October 1997 – Subject To Change

Error Register Descriptions

ows
5.4.3 Error Mask Register (ERR_MASK)

Use the error mask register to disable the logging and reporting of errors. When
power is turned on, error logging is in the default state — disabled with
ERR_MASK = 0.

• 0 disables the logging/reporting of an error.

• 1 enables logging/reporting of an error.

The error mask register access is RW to address 87.4000.8280. Figure 5–15 sh
the register.

Figure 5–15 Error Mask Register

Table 5–18 describes the error mask register fields.

Table 5–18 Error Mask Register Fields (Sheet 1 of 2)

Name Extent Access Init Description

COR_ERR <0> RW 0 Disable/enable error logging/reporting for
correctable ECC errors.

UN_COR_ERR <1> RW 0 Disable/enable error logging/reporting for
uncorrectable ECC errors.

CPU_PE <2> RW 0 Disable/enable error logging/reporting for
21164 parity errors.

31 1112 10 9 8 7 6 5 34 2 1 0

LJ-05265 .AI4

IOA_TIMEOUT

PA_PTE_INV

RCVD_TAR_ABT

RCVD_MAS_ABT

PCI_ADDR_PE

PCI_PERR

MEM_NEM

PCI_SERR

CPU_PE

UN_COR_ERR

COR_ERR
3 October 1997 – Subject To Change Register Descriptions 5–23

Error Register Descriptions

ws the
5.4.4 Syndrome Register (PYXIS_SYN)

The syndrome register has two 8-bit fields that contain the error syndrome bits. The
error syndrome data is captured after an error condition has occurred and is held until
a 0 is written to COR_ERR and UN_COR_ERR in the 21174 error register. The
PALcode must save the contents of this register prior to clearing the error conditions.
The state of this register is UNDEFINED except when an error has been detected.

The syndrome register access is RO to address 87.4000.8300. Figure 5–16 sho
register.

MEM_NEM <3> RW 0 Disable/enable error logging/reporting for
nonexistent memory access errors.

PCI_SERR <4> RW 0 Disable/enable error logging/reporting for
PCI SERR errors.

PCI_PERR <5> RW 0 Disable/enable error logging/reporting for
PCI data parity errors.

PCI_ADDR_PE <6> RW 0 Disable/enable error logging/reporting for
PCI address parity errors.

RCVD_MAS_ABT <7> RW 0 Disable/enable error logging/reporting for
PCI master abort errors.

RCVD_TAR_ABT <8> RW 0 Disable/enable error logging/reporting for
PCI target abort errors.

PA_PTE_INV <9> RW 0 Disable/enable error logging/reporting for
invalid PTE errors.

Reserved <10> RO 0 —

IOA_TIMEOUT <11> RW 0 Disable/enable error timeout errors.

Reserved <31:12> RO 0 —

Table 5–18 Error Mask Register Fields (Sheet 2 of 2)

Name Extent Access Init Description
5–24 Register Descriptions 3 October 1997 – Subject To Change

Error Register Descriptions
Figure 5–16 Syndrome Register

Table 5–19 describes the syndrome register fields.

Table 5–19 Syndrome Register Fields

Name Extent Access Init Description

ERROR_SYNDROME0 <7:0> RO X ECC syndrome bits for data bits
<63:0>.

ERROR_SYNDROME1 <15:8> RO X ECC syndrome bits for data bits
<127:64>.

RAW_CHECK_BITS <23:16> RO X Raw check bits from ECC error. The
actual ECC bits stored in the ECC
field of the memory.

CORRECTABLE_
ERROR0

<24> RO X A correctable error was detected in
quadword 0.

CORRECTABLE_
ERROR1

<25> RO X A correctable error was detected in
quadword 1.

UNCORRECTABLE_
ERROR0

<26> RO X An uncorrectable error was detected
in quadword 0.

UNCORRECTABLE_
ERROR1

<27> RO X An uncorrectable error was detected
in quadword 1.

Reserved <31:28> RO 0 —

31 2627 25 24 23 16 15 8 7 0

LJ-05266 .AI4

CORRECTABLE_ERROR1

UNCORRECTABLE_ERROR0

CORRECTABLE_ERROR0

RAW_CHECK_BITS

ERROR_SYNDROME1

ERROR_SYNDROME0

UNCORRECTABLE_ERROR1

28
3 October 1997 – Subject To Change Register Descriptions 5–25

Error Register Descriptions

ws the
5.4.5 Error Data Register (PYXIS_ERR_DATA)

The error data register access is RO to address 87.4000.8308. Figure 5–17 sho
register.

Figure 5–17 Error Data Register

The error data register contains the data present when the ECC error was detected.

Note: The error data register is implemented to shadow at all internal CSR
locations, by always driving the high 64 bits of the data path when CSR
are selected. If the 21164 reads a CSR-region quadword with odd offset,
it will always get the 21174 error data register.

5.4.6 Memory Error Address Register (MEAR)

The low-order address bits of the memory port address bus are locked into this
register upon a 21174 detected error. Clearing all the error bits in the PYXIS_ERR
register unlocks this register. When the register is not locked, the contents of this
register are not defined.

The memory error address register access is RO to address 87.4000.8400.
Figure 5–18 shows the register.

31 0

LJ-05267.AI4

Error Data Quadword

63 32

Error Data Quadword
5–26 Register Descriptions 3 October 1997 – Subject To Change

Error Register Descriptions

or, and
ror.
RR
is

Figure 5–18 Memory Error Address Register

Table 5–20 describes the memory error address register fields.

5.4.7 Memory Error Status Register (MESR)

The command, the memory sequencer state, the data cycle at the time of an err
the remaining address field are locked into the MESR register upon a 21174 er
The error bits access is write one to clear. Clearing all error bits in the PYXIS_E
register unlocks this register. When the register is not locked, the contents of th
register are UNDEFINED.

The contents of the MESR bits 2 through 7 are UNPREDICTABLE on the
nonexistent memory trap if the nonexistent memory is cacheable memory space. The
contents of bits 2 through 7 are valid only if the address is to a noncacheable address.
Ignore bits 2 through 7 if bit 12 or 13 in the MESR is not set.

The 21174 memory error status register access is RW to address 87.4000.8440.
Figure 5–19 shows the register.

Table 5–20 Memory Error Address Register Fields

Name Extent Access Init Description

Reserved <3:0> RO 0 —

ERROR_ADDR<31:4> <31:4> RO X Contains the current address in
the memory port when the 21174
detects an error.

31 34 0

LJ-05268.AI4

ERROR_ADDR<31:4>
3 October 1997 – Subject To Change Register Descriptions 5–27

Error Register Descriptions
Figure 5–19 Memory Error Status Register

Table 5–21 describes the memory error status register fields.

Table 5–21 Memory Error Status Register Fields (Sheet 1 of 2)

Name Extent Access Init Description

ERROR_ADDR
<39:32>

<7:0> RO X Contains address bits <39:32> of the address in
the memory port when the 21174 detects an
error. Bits <39:34> are UNPREDICTABLE on
memory errors –— only bits <33:32> are valid
for memory errors.

DMA_RD_NXM <8> RO X Nonexistent memory trap during a DMA read
transaction.

DMA_WR_NXM <9> RO X Nonexistent memory trap during a DMA write
transaction.

CPU_RD_NXM <10> RO X Nonexistent memory trap during a 21164 read
transaction.

CPU_WR_NXM <11> RO X Nonexistent memory trap during a 21164 write
transaction.

31 25 24 20 19 18 17 16 15 1314 1112 10 9 8 7 0

LJ-05269.AI4

DATA_CYCLE_TYPE

OWORD_INDEX

TLBFILL_NXM

IO_WR_NXM

VICTIM_NXM

CPU_RD_NXM

CPU_WR_NXM

DMA_WR_NXM

DMA_RD_NXM

ERROR_ADDR<39:32>

IO_RD_NXM

SEQ_STATE
5–28 Register Descriptions 3 October 1997 – Subject To Change

Error Register Descriptions

n

st-

Table 5–22 contains the DATA_CYCLE_TYPE codes.

IO_RD_NXM <12> RO X Nonexistent memory trap during an I/O read
transaction.

IO_WR_NXM <13> RO X Nonexistent memory trap during an I/O write
transaction.

VICTIM_NXM <14> RO X Nonexistent memory trap during a Bcache
victim operation.

TLBFILL_NXM <15> RO X Nonexistent memory trap during a scatter-gather
translation buffer fill transaction.

OWORD_INDEX <17:16> RO X This field indicates the error data cycle within a
memory access in which the data error was dis-
covered. There are normally four data cycles.
OWORD_INDEX = 0 is the first data cycle cor-
responding to the error address captured in the
ERROR_ADDR register. The actual low-order
bits of the error location are
(ERROR_ADDR<5:4> + OWORD_INDEX)
MOD 4.

Reserved <19:18> RO 0 —

DATA_CYCLE_
TYPE

<24:20> RO X Contains the type of data cycle in progress whe
an ECC error occurred. See Table 5–22 for the
definitions of the values in this field.

SEQ_STATE <31:25> RW X The memory sequencer-state when the nonexi
ent memory error occurred. Table 5–23 has the
definitions for this field.

Table 5–22 DATA_CYCLE_TYPE Codes (Sheet 1 of 2)

DATA_CYCLE_TYPE Description

00 IDLE

01 CPU_READ

02 CPU_READ_VICTIM

03 CPU_WRITE

04 IO_READ

Table 5–21 Memory Error Status Register Fields (Sheet 2 of 2)

Name Extent Access Init Description
3 October 1997 – Subject To Change Register Descriptions 5–29

Error Register Descriptions
Table 5–23 contains the SEQ_STATE field codes.

05 FLASH_BYTE_READ

06 PCI_READ

07 IO_WRITE

08 FLASH_BYTE_WRITE

09 DMA_READ

0A DMA_READ_SCACHE

0B DMA_READ_BCACHE

0C DMA_READ_VICTIM

0D DMA_WRITE

0E DMA_MEM_MERGE

0F DMA_SCACHE_MERGE

10 DMA_BCACHE_MERG

11 DMA_VICTIM_MERGE

12 FLASH_READ

13 VICTIM_WRITE

14 DUMMY_READ

15 VICTIM_EJECT

Table 5–23 SEQ_STATE Codes (Sheet 1 of 3)

SEQ_STATE Value Description

IDLE 00 Command dispatch

WAIT 01 Wait until data transfer is idle

WAIT1 02 Wait one cycle

DMA_RD_START 03 Select DMA read address

DMA_RD_PROBE 04 Assert ras_l

DMA_RD_SCACHE_DATA 05 Read dirty data from Scache

Table 5–22 DATA_CYCLE_TYPE Codes (Sheet 2 of 2)

DATA_CYCLE_TYPE Description
5–30 Register Descriptions 3 October 1997 – Subject To Change

Error Register Descriptions
DMA_RD_BCACHE_DATA 06 Read dirty data from Bcache

DMA_RD_CACHE_DATA 07 Read dirty data from Bcache or Scache

DMA_RD_RAS 08 Continue to assert ras_l after cache miss

DMA_RD_COL 09 Wait for column access

DMA_RD_VICTIM 0A Wait for memory data to pass by

DMA_RD_NXM 0B Assert error state for nonexistent memory

DMA_WR_START 0C Select DMA write address

DMA_WR_WHOLE_RAS 0D Assert ras_l for whole cache line write transaction

DMA_WR_WHOLE_DATA 0E Watch data pass by

DMA_WR_PROBE 0F Wait for probe result

DMA_WR_SCACHE_COPY 10 Read dirty data from Scache

DMA_WR_BCACHE_COPY 11 Read dirty data from Bcache or Scache

DMA_WR_CACHE_COPY 12 Read dirty data from Bcache or Scache

DMA_WR_RAS 13 Continue to assert ras_l after miss

DMA_WR_PQ_RD_RAS 14 Assert ras_l for partial octawords read

DMA_WR_PQ_RD_COL 15 Wait for column access

DMA_WR_PQ_RD_VICTIM 16 Wait for memory data to pass by

DMA_WR_NXM 17 Assert error state for nonexistent memory

DMA_WR_WHOLE_RASF 36 Assert ras_l for whole cache line write transac-
tion. A Bcache flush is pending.

DMA_WR_WHOLE_FLUSH 37 Watch the data pass by

CPU_EJECT 18 Eject victim and assert ras_l for fill

CPU_RD_START 19 Assert ras_l for fill

CPU_RD_COL 1A Wait for column access

CPU_RD_VICTIM 1B Let DRAM data pass by, then read victim

CPU_RD_NXM 1C Assert error state for nonexistent memory

CPU_WR_START 1D Assert ras_l for Scache victim (no Bcache)

Table 5–23 SEQ_STATE Codes (Sheet 2 of 3)

SEQ_STATE Value Description
3 October 1997 – Subject To Change Register Descriptions 5–31

Error Register Descriptions
CPU_WR_NXM 1E Assert error state for nonexistent memory

VICTIM_START 1F Assert ras_l signal for Bcache victim in victim
buffer

VICTIM_NXM 20 Assert error state for nonexistent memory

REFRESH_PRECHARGE 21 Deactivate all rows for refresh

REFRESH_COMMAND 22 Assert refresh for all banks

MODE_PRECHARGE 23 Deactivate all rows for mode cycle

MODE_COMMAND 24 Assert mode cycle for all banks and join refresh
flow

CPU_IO_RD_ADDR 25 Send I/O read address to select a target

CPU_IO_RD_WAIT 26 Wait for return of read data (64-bit maximum)

CPU_IO_RD_START 27 Start read data transfer

CPU_FLASH_RD_WAIT 28 Wait for flash ROM byte-read transaction to
complete

UNREACHABLE_STATE 29 State not reachable

CPU_PCI_RD_WAIT 2A Wait for idle_bc signal

CPU_PCI_RD_START 2B Delay for data cycle

CPU_IO_WR_ADDR 2C Send I/O write address to select a target

CPU_IO_WR_NXM 2D Error state for nonexistent I/O address

CPU_FLASH_WR_WAIT 2E Wait for flash ROM byte-write transaction to
complete

CPU_FLASH_START 2F Start a fill from flash ROM

CPU_FLASH_COL 30 Start a fill from flash ROM

CPU_FLASH_DATA 31 Wait for flash ROM control to deliver all data

CPU_DUMMY_START 32 Start a fill from the dummy region

CPU_DUMMY_COL 33 Start the dummy data transfer

NO_BRAINER 34 Issue CACK and ignore

BAD_CPU_CMD 35 Assert machine check

Table 5–23 SEQ_STATE Codes (Sheet 3 of 3)

SEQ_STATE Value Description
5–32 Register Descriptions 3 October 1997 – Subject To Change

Error Register Descriptions

ows
5.4.8 PCI Error Register 0 (PCI_ERR0)

The PCI error register 0 access is RO to address 87.4000.8800. Figure 5–20 sh
the register.

Figure 5–20 PCI Error Register 0

The PCI error register 0 is used by the 21174 to log information pertaining to the
state of the PCI interface when an error condition is detected by 21174. The register
is locked, as are all 21174 error registers, when the 21174 detects an error. The
register is unlocked when the PYXIS_ERR register is cleared. When the register is
not locked, the contents are UNPREDICTABLE.

The data in the WINDOW, DMA_DAC, and DMA_CMD fields is associated with
the address stored in the PCI_ERR1 register. This group and PCI_ERR1 hold infor-
mation related to the following errors that are associated with the memory while the
21174 is handling a DMA:

• Correctable ECC error (PYXIS_ERR<0>)

• Uncorrectable ECC error (PYXIS_ERR<l>)

• Access to nonexistent memory (PYXIS_ERR<3>)

• Invalid page table entry (PYXIS_ERR<9>)

31 27 23 20 19 16 15 1112 8 7 6 5 34 0

LJ-05270.AI4

PCI_CMD

TARGET_STATE

MASTER_STATE

WINDOW

DMA_DAC

DMA_CMD

PCI_DAC

2829 24
3 October 1997 – Subject To Change Register Descriptions 5–33

Error Register Descriptions
The data in the PCI_DAC, PCI_CMD, TARGET_STATE, and MASTER_STATE
fields is associated with the address stored in the PCI_ERR2 register. This group and
the PCI_ERR2 register hold information related to the following error conditions
that are associated with the PCI bus:

• PCI data parity error (PYXIS_ERR<5>)

• PCI address parity error (PYXIS_ERR<6>)

• PCI master abort (PYXIS_ERR<7>)

• PCI target abort (PYXIS_ERR<8>)

• IOA timeout (PYXIS_ERR<ll>)

The LOCK_STATE field is general information about the current state of 21174. It
is not specifically associated with either the PCI_ERR1 or PCI_ERR2 fields.

Table 5–24 describes the PCI error register 0 fields.

Table 5–24 PCI Error Register 0 Fields (Sheet 1 of 2)

Name Extent Access Init Description

DMA_CMD <3:0> RO X The PCI command of the current DMA.

Reserved <4> RO 0 —

DMA_DAC <5> RO X If set, then the current DMA is a
dual-address cycle (DAC) command.

Reserved <7:6> RO X —

WINDOW <11:8> RO X Indicates which window (if any) was
selected by the PCI address.

0000 No window active
0001 Window 0 hit
0010 Window 1 hit
0100 Window 2 hit
1000 Window 3 hit

Reserved <15:12> RO X —
5–34 Register Descriptions 3 October 1997 – Subject To Change

Error Register Descriptions

ows
5.4.9 PCI Error Register 1 (PCI_ERR1)

The PCI error register 1 access is RO to address 87.4000.8840. Figure 5–21 sh
the register.

MASTER_STATE <19:16> RO 0 0 — Idle 1: Drive Bus
2 — Address Step Cycle
3 — Address Cycle
4 — Data Cycle
5 — Last Read Data Cycle
6 — Last Write Data Cycle
7 — Read Stop Cycle
8 — Write Stop Cycle
9 — Read Turnaround Cycle
A — Write Turnaround Cycle
B — Reserved
C — Reserved
D — Reserved
E — Reserved
F — Unknown State

TARGET_STATE <23:20> RO 0 0 — Idle
1 — Busy
2 — Read Data Cycle
3 — Write Data Cycle
4 — Read Stop Cycle
5 — Write Stop Cycle
6 — Read Turnaround Cycle
7 — Write Turnaround Cycle
8 — Read Delay Cycle
9 — Write Delay Cycle

PCI_CMD <27:24> RO X The current PCI command.

PCI_DAC <28> RO X If set, then the current PCI command is a
dual-address cycle (DAC) command.

Reserved <31:29> RO 0 —

Table 5–24 PCI Error Register 0 Fields (Sheet 2 of 2)

Name Extent Access Init Description
3 October 1997 – Subject To Change Register Descriptions 5–35

Error Register Descriptions

ows
Figure 5–21 PCI Error Register 1

The PCI error register 1 is used by the 21174 to log ad<31:0> for the current DMA
associated with an error condition logged in the PCI_ERR0 register. This register is
locked whenever the 21174 detects an error. This register always captures ad<31:0>,
even for a DMA DAC cycle. DMA address ad<39:32> can be obtained from the
W_DAC register. DMA address ad<63:40> had to be zero for the 21174 to hit on
the DAC cycle. This register is unlocked when the error bits in the PYXIS_ERR reg-
ister are all cleared. The contents of this register are UNPREDICTABLE when not
locked.

The PCI_ERR1 register and some fields in PCI_ERR0 (WINDOW, DMA_DAC,
and DMA_CMD) hold information related to the following errors (associated with
the memory) that occurred while the 21174 is handling a DMA:

• Correctable ECC error (PYXIS_ERR<0>)

• Uncorrectable ECC error (PYXIS_ERR<1>)

• Access to nonexistent memory (PYXIS_ERR<3>)

• Invalid page table entry (PYXIS_ERR<5>)

Table 5–25 describes the PCI error register 1 fields.

5.4.10 PCI Error Register 2 (PCI_ERR2)

The PCI error register 2 access is RO to address 87.4000.8880. Figure 5–22 sh
the register.

Table 5–25 PCI Error Register 1 Fields

Name Extent Access Init Description

DMA_ADDRESS<31:0> <31:0> RO X Contains the DMA address
<31:0>

31 0

LJ-05271.AI4
DMA_ADDRESS<31:0>
5–36 Register Descriptions 3 October 1997 – Subject To Change

Memory Controller Register Descriptions

ory
w

isters,
Figure 5–22 PCI Error Register 2

The PCI_ERR2 register is used by the 21174 to log the ad<31:0> associated with an
error condition logged in the PCI_ERR0 register. This register is locked whenever
the 21174 detects an error. This register always captures ad<31:0>, even for a DMA
DAC cycle. DMA PCI address ad<31:0> can be obtained from the W_DAC register.
PCI address ad<63:40> had to be read for the 21174 to hit on the DAC cycle. The
register is unlocked when the error bits in the PYXIS_ERR register have all been
cleared. Contents of this register are UNPREDICTABLE when not locked.

The PCI_ERR2 register and some fields in PCI_ERR0 (PCI_DAC, PCI_CMD,
TARGET_STATE, and MASTER STATE) hold information related to the follow-
ing error conditions associated with the PCI bus:

• PCI data parity error (PYXIS_ERR<5>)

• PCI address parity error (PYXIS_ERR<6>)

• Master abort (PYXIS_ERR<7>)

• PCI target abort (PYXIS_ERR<8>)

• IOA timeout (PYXIS_ERR<11>)

Table 5–26 describes the PCI error register 2 fields.

5.5 Memory Controller Register Descriptions

This section describes the functionality of the memory control register, the mem
clock mask register, the global timing register, the refresh timing register, the ro
history policy mask register, the memory control debug register 1, the memory
control debug register 2, the base address registers, the bank configuration reg
the bank timing registers, and the cache valid map register.

Table 5–26 PCI Error Register 2 Fields

Name Extent Access Init Description

PCI_ADDRESS<31:0> <31:0> RO X Contains the PCI address

31 0

LJ-05272.AI4
PCI_ADDRESS<31:0>
3 October 1997 – Subject To Change Register Descriptions 5–37

Memory Controller Register Descriptions

23
5.5.1 Memory Control Register (MCR)

The memory control register contains all of the functions needed to set up and con-
figure the base control functions of the memory subsystem.

The memory control register access is RW to address 87.5000.0000. Figure 5–
shows the register.

Figure 5–23 Memory Control Register

Table 5–27 describes the memory control register fields.

Table 5–27 Memory Control Register Fields (Sheet 1 of 3)

Name Extent Access Init Description

MODE_REQ <0> RW 0 Causes the 21174 to send the mode regis-
ter set command to the memory DIMMs.

Reserved <7:1> RO 0 —

SERVER_MODE <8> RO X Shows the configuration of the system.
0 – workstation

BCACHE_TYPE <9> RO X Indicates the type of a Bcache.
0 – Nonpipelined Bcache
1 – Pipelined Bcache

31 16 15 1314 1112 10 9 8 7 0

LJ-05273.AI4

DRAM_CLK_AUTO

SEQ_TRACE

CKE_AUTO

BCACHE_ENABLE

PIPELINED_BCACHE

BCACHE_TYPE

SERVER_MODE

OVERLAP_DISABLE

MODE_REQ

DRAM_MODE

2930 1
5–38 Register Descriptions 3 October 1997 – Subject To Change

Memory Controller Register Descriptions

r

r

.

BCACHE_ENABLE <10> RW 0 1 – Bcache-related functions in the
memory controller, such as asserting
idle_bc, probe type for certain DMA
functions, and asserting dbus_req to
acquire control of the data bus are
enabled.
0 – It is necessary to operate
BCACHE_ENABLE off when the
Bcache is not installed or not enabled on
the 21164.

PIPELINED_BCACHE <11> RW 0 1 – This causes the 21174 to use the
sys_clk edge one cycle after DACK to
capture read data rather than using
sram_clk_in.

OVERLAP_DISABLE <12> RW 0 1 – This bit causes the memory controlle
to operate in a very conservative mode.
New memory transactions will not be
started until the data cycles of the
previous transactions have completed.
This feature provides a potential
workaround for a large class of potential
problems that might evade discovery in
simulation, such as problems that might
occur because of obscure interactions
between transactions that overlap or occu
in close proximity.
Enabling this feature may reduce the
maximum attainable memory bandwidth
by as much as 30%, and that will result in
about 3% to 5% performance loss on
typical benchmarks such as Spec95 or
SysmarkNT.

SEQ_TRACE <13> RW 0 This bit enables the output of the memory
sequencer out to the DRAM address lines
Intended for debug.

CKE_AUTO1 <14> RW 0 1 – Causes the automatic deassertion of
dram_cke when there is no memory con-
troller activity for 8 cycles.

Table 5–27 Memory Control Register Fields (Sheet 2 of 3)

Name Extent Access Init Description
3 October 1997 – Subject To Change Register Descriptions 5–39

Memory Controller Register Descriptions

Table 5–28 contains the DRAM_MODE fields.

1 CKE_AUTO and DRAM_CLK_AUTO are used by power management routines to reduce
operating power. There is no performance penalty associated with the use of these features.

DRAM_CLK_AUTO2 <15> RW 0 1 – Causes automatic suppression of
dram_clk_in when there is no memory
controller activity for 8 cycles.

DRAM_MODE <29:16> RW 0 This field is subdivided into three fields
that are forwarded directly to the memory
DIMMs. Refer to the individual DIMM
specification for details. Table 5–28
defines the fields associated with typical
DIMMs. When the memory is not in use,
this field drives the address lines. To con-
serve power, set this field to all 1s after
initial setup.

Reserved <31:30> RO 0 —

Table 5–28 DRAM_MODE Fields (Sheet 1 of 2)

Name Extent Access Init Description

BURST_LENGTH <18:16> WO X This value is dependent on the
WRAP_TYPE field. The valid values
are:
Value WT=0 WT=1
 000 1 1
 001 2 2
 010 4 4
 011 8 8
 100 Reserved Reserved
 101 Reserved Reserved
 110 Reserved Reserved
 111 Full Page Reserved

WRAP_TYPE <19> WO X Tune this value for best performance.
Value Description

 0 Sequential
 1 Interleave

Table 5–27 Memory Control Register Fields (Sheet 3 of 3)

Name Extent Access Init Description
5–40 Register Descriptions 3 October 1997 – Subject To Change

Memory Controller Register Descriptions
5.5.2 Memory Clock Mask Register (MCMR)

The memory clock mask register access is RW to address 87.5000.0040.
Figure 5–24 shows the register.

Figure 5–24 Memory Clock Mask Register

This register controls the dram_clk<12:0> and sram_fill_clk<2:0> pins. The
dram_clk<12> pin should not be turned off because this signal line is connected to
dram_clk_in and controls the operation of the clock delay circuit. When a register
bit is set to a 0, the corresponding output pin is driven low. Any clock signal line that
is not used should be turned off by setting the corresponding register bit to 0, limiting
power dissipation and lowering the EMI.

Table 5–29 describes the memory clock mask register fields.

LATENCY_MODE <22:20> WO X This field controls memory latency
mode.

Value Latency
 000 Reserved
001 1
010 2
011 3

100 – 111 Reserved

Table 5–29 Memory Clock Mask Register Fields

Name Extent Access Init Description

MCMR<15:0> <15:0> RW FFFF This field enables/disables the
dram_clk<12:0> and
sram_fill_clk<2:0> signal pins.
See Table 5–30.

Reserved <31:16> RO 0 —

Table 5–28 DRAM_MODE Fields (Sheet 2 of 2)

Name Extent Access Init Description

31 15 0

LJ-05274.AI4

MCMR<15:0>

16
3 October 1997 – Subject To Change Register Descriptions 5–41

Memory Controller Register Descriptions

hows
Table 5–30 describes the memory clock mask register fields.

5.5.3 Global Timing Register (GTR)

The global timing register contains parameters that are common to all memory
transactions, including those to and from Bcache. Each parameter counts
dram_clk<12:0> cycles. All pins on the memory interface are referenced to
dram_clk<12:0> rising.

The global timing register access is RW to address 87.5000.0200. Figure 5–25 s
the register.

Table 5–30 MCMR Bit Definitions

Name Extent Access Init Clock Pin

MCMR<0> 0 RW 1 dram_clk<0>

MCMR<1> 1 RW 1 dram_clk<1>

MCMR<2> 2 RW 1 dram_clk<2>

MCMR<3> 3 RW 1 dram_clk<3>

MCMR<4> 4 RW 1 dram_clk<4>

MCMR<5> 5 RW 1 dram_clk<5>

MCMR<6> 6 RW 1 dram_clk<6>

MCMR<7> 7 RW 1 dram_clk<7>

MCMR<8> 8 RW 1 dram_clk<8>

MCMR<9> 9 RW 1 dram_clk<9>

MCMR<10> 10 RW 1 dram_clk<10>

MCMR<11> 11 RW 1 dram_clk<11>

MCMR<12> 12 RW 1 dram_clk<12>

MCMR<13> 13 RW 1 sram_fill_clk<0>

MCMR<14> 14 RW 1 sram_fill_clk<1>

MCMR<15> 15 RW 1 sram_fill_clk<2>
5–42 Register Descriptions 3 October 1997 – Subject To Change

Memory Controller Register Descriptions
Figure 5–25 Global Timing Register

Table 5–31 describes the global timing register fields.

Table 5–31 Global Timing Register Fields

Name Extent Access Init Description

MIN_RAS_
PRECHARGE

<2:0> RW 4 The minimum precharge width for the
DRAMs when switch from one row to
another.

Reserved <3> RO 0 —

CAS_LATENCY <5:4> RW 3 This field defines the cas_l latency of the
SDRAMs used in the system. This field
must be programmed to 3.

Reserved <7:6> RO 0 —

IDLE_BC_WIDTH <10:8> RW 0 The number of sys_clk cycles that the
21174 will wait before performing any
Bcache transactions.

Reserved <31:11> RO 0 —

31 11 10 8 7 6 5 34 2 0

LJ-05275.AI4

MIN_RAS_PRECHARGE

CAS_LATENCY

IDLE_BC_WIDTH
3 October 1997 – Subject To Change Register Descriptions 5–43

Memory Controller Register Descriptions
5.5.4 Refresh Timing Register (RTR)

The refresh timing register access is RW to address 87.5000.0300. Figure 5–26
shows the register.

Figure 5–26 Refresh Timing Register

The refresh timing register contains refresh timing information used to
simultaneously refresh all banks using the cas-before-ras refresh method. These
parameters should be programmed to the most conservative value across all banks.

The observed refresh interval may be greater than the value programmed in the
REF_INTERVAL field by the number of dram_clk<12:0> cycles required to per-
form a read or write transaction, plus a ras_l precharge interval. The programmer
must account for this behavior when writing to RTR[REF_INTERVAL].

All the timing parameters are in multiples of dram_clk<12:0> cycles. The parame-
ters have a minimum value that is added to the programmed value. The programmer
must subtract this value from the desired value before writing it to the register.

Table 5–32 describes the refresh timing register fields.

Table 5–32 Refresh Timing Register Fields (Sheet 1 of 2)

Name Extent Access Init Description

Reserved <3:0> RO 0 —

REFRESH_
WIDTH

<6:4> RW 6 The number of cycles after the refresh
command is issued before any other com-
mand is attempted.
This value corresponds to the ras_l active
time (minimum) parameter in the vendor
SDRAM specification.

31 15 1314 12 7 6 34 0

LJ-05276.AI4

RTR_FORCE_REF

REF_INTERVAL

REFRESH_WIDTH

16
5–44 Register Descriptions 3 October 1997 – Subject To Change

Memory Controller Register Descriptions
5.5.5 Row History Policy Mask Register (RHPR)

The row history policy mask register access is RW to address 87.5000.0400.
Figure 5–27 shows the register.

Figure 5–27 Row History Policy Mask Register

The state of the history buffer determines whether a row is deactivated. The history
buffer remembers (for each of the last four requests to a subbank) whether the new
row was the same as the old row. The 4-bit history is used as an index into the row
history policy mask register (RHPR) to determine whether to deactivate the row at
the end of the transaction. If the RHPR is set to all 1s, then the row is always left
active. If the RHPR is set to all 0s, then the row is always deactivated at the end of
the transaction.

To activate a row for an individual bank, the ras_l signal is asserted, along with the
chip select pin to one memory bank. For refresh, the chip select signals are asserted
to all memory banks simultaneously.

REF_INTERVAL <12:7> RW 5 Refresh interval. The value of this field is
multiplied by 64 to generate the number of
dram_clk<12:0> cycles between refresh
requests. A programmed value of zero is
illegal.

Reserved <14:13> RO 0 Always zero fill.

RTR_FORCE_
REF

<15> RW 0 Force refresh. Writing a 1 to this bit causes
a single memory refresh and resets the
internal refresh interval counter. The other
timings in this register should not be
changed while setting this bit.

Reserved <31:16> RO 0 —

Table 5–32 Refresh Timing Register Fields (Sheet 2 of 2)

Name Extent Access Init Description

31 16 15 0

LJ-05277.AI4

POLICY_MASK
3 October 1997 – Subject To Change Register Descriptions 5–45

Memory Controller Register Descriptions

nals
d.
Table 5–33 describes the row history policy mask register fields.

5.5.6 Memory Control Debug Register 1 (MDR1)

The memory control debug register 1 controls a debug multiplexer that drives sig
on BANK01, BANK23, BANK45, and BANK67 pins when MDR1_EN is asserte
The debug signals also go to the performance monitor logic where they can be
selected as inputs to the two event counters in the PERF_MON register.

The memory control debug register 1 access is RW to address 87.5000.0500.
Figure 5–28 shows the register.

Figure 5–28 Memory Control Debug Register 1

Table 5–34 describes the memory control debug register 1 fields.

Table 5–33 Row History Policy Mask Register Fields

Name Extent Access Init Description

POLICY_MASK <15:0> RW E8809 Policy mask value

Reserved <31:16> RO 0 —

Table 5–34 Memory Control Debug Register 1 Fields (Sheet 1 of 2)

Name Extent Access Init Description

SEL0 <5:0> RW 0 Select signals for output to BANK01
and MCTL_DEBUG_OUT[0]

Reserved <7:6> RO 0 --

SEL1 <13:8> RW 0 Select signals for output to BANK23
and MCTL_DEBUG_OUT[1]

Reserved <15:14> RO 0 --

31 24 23 22 21 16 1314 8 7 6 5 0

 LJ-05278 .AI4

SEL2

SEL3

SEL1

SEL0

ENABLE

152930
5–46 Register Descriptions 3 October 1997 – Subject To Change

Memory Controller Register Descriptions
5.5.7 Memory Control Debug Register 2 (MDR2)

The memory control debug register 2 controls a debug multiplexer that drives signals
on CBE[4], CBE[5], CBE[6], and CBE[7] pins when MDR2_EN is asserted. The
debug signals also go to the PERF_MON register logic where they can be selected as
inputs to the two event counters.

The memory control debug register 2 access is RW to address 87.5000.0540.
Figure 5–29 shows the register.

Figure 5–29 Memory Control Debug Register 2

SEL2 <21:16> RW 0 Select signals for output to BANK45
and MCTL_DEBUG_OUT[2]

Reserved <23:22> RO 0 --

SEL3 <29:24> RW 0 Select signals for output to BANK67
and MCTL_DEBUG_OUT[3]

Reserved <30> RO 0 --

ENABLE <31> RW 0 Enable the debug information onto
BANK01, BANK34, BANK45, and
BANK67

Table 5–34 Memory Control Debug Register 1 Fields (Sheet 2 of 2)

Name Extent Access Init Description

31 24 23 22 21 16 1314 8 7 6 5 0

 LJ-05279 .AI4

SEL2

SEL3

SEL1

SEL0

ENABLE

152930
3 October 1997 – Subject To Change Register Descriptions 5–47

Memory Controller Register Descriptions

Table 5–35 describes the memory control debug register 2 fields.

5.5.8 Base Address Registers (BBAR0–BBAR7)

The base address registers access is RW to addresses in the range 87.5000.0600 to
87.5000.07C0. Figure 5–30 shows the register.

Figure 5–30 Base Address Register

Each memory bank has a corresponding base address register. The bits in this
register are compared with the incoming system address to determine the bank being
addressed. The contents of this register are validated by setting the valid bit in the
configuration register of that bank.

The base address of each bank must begin on a naturally aligned boundary. (For a
bank with 2n addresses, the n least significant bits must be zero.)

Table 5–35 Memory Control Debug Register 2 Fields

Name Extent Access Init Description

SEL0 <5:0> RW 0 Select signals for output to CBE[4] and
DEBUG_OUT[0]

Reserved <7:6> RO 0 —

SEL1 <13:8> RW 0 Select signals for output to CBE[5] and
DEBUG_OUT[1]

Reserved <15:14> RO 0 —

SEL2 <21:16> RW 0 Select signals for output to CBE[6] and
DEBUG_OUT[2]

Reserved <23:22> RO 0 —

SEL3 <29:24> RW 0 Select signals for output to CBE[7] and
DEBUG_OUT[3]

Reserved <30> RO 0 —

ENABLE <31> RW 0 Enable the debug information onto
CBE[4], CBE[5], CBE[6], and CBE[7]

31 16 15 6 5 0

LJ-05280.AI4

BASEADDR<33:24>
5–48 Register Descriptions 3 October 1997 – Subject To Change

Memory Controller Register Descriptions
Note: Software could require contiguous memory. Because banks must be nat-
urally aligned, the programmer should ensure that the largest bank is
placed at the lowest base address, the next largest bank is placed at a
base address following the end of the largest bank, and so on, to create
contiguous memory.

Table 5–36 describes the base address register fields.

5.5.9 Bank Configuration Registers (BCR0–BCR7)

The bank configuration registers access is RW to addresses in the range
87.5000.0800 to 87.5000.09C0. Figure 5–31 shows the register.

Figure 5–31 Bank Configuration Register

Each memory bank has a corresponding configuration register. This register contains
mode bits and memory address generation bits, as well as bank decoding. Banks 0
through 7 have the same limits on bank size and type of DRAMs used. The format of
the configuration register is the same for banks 0 through 7. Bank 8 is the VRAM
bank. It supports different minimum DRAM sizes and configurations: therefore, its
configuration register is different.

With the exception of the valid bit, this register is not initialized.

Table 5–36 Base Address Register Fields

Name Extent Access Init Description

Reserved <5:0> RO 0 —

BASEADDR<33:24> <15:6> RW 0 Starting memory address for
the bank

Reserved <31:16> RO 0 —

31 8 7 6 5 4 0

LJ-05281.AI4

4BANK

ROWSEL

SUBBANK_ENABLE

BANK_SIZE

BANK_ENABLE

1

3 October 1997 – Subject To Change Register Descriptions 5–49

Memory Controller Register Descriptions

s

-

d

.

-

Table 5–37 describes the bank configuration register fields.

Table 5–37 Bank Configuration Register Fields (Sheet 1 of 2)

Name Extent Access Init Description

BANK_ENABLE <0> RW 0 Bank enabled.
1 – All timing and configuration parame-
ters for bank are valid, and access to bank
allowed. If cleared, access to bank is not
allowed.

BANK_SIZE<3:0> <4:1> RW X Bank size in MB. Indicates the size of the
bank in order to determine which bits are
used to compare the bank base address
with the physical address (PA) and to gen
erate the subset. Corresponds to the total
size of the bank, including subbanks, if
present.

Size<3:0> Compared Subset Set Size
 0000 — — Reserve
 0001 PA<33:29> PA<28> 512MB
 0010 PA<33:28> PA<27 256MB
 0011 PA<33:27> PA<26> 128MB
 0100 PA<33:26> PA<25> 64MB
 0101 PA<33:25> PA<24> 32MB
 0110 PA<33:24> PA<23> 16MB
 0111 PA<33:23> PA<22> 8MB
 1xxx — — Reserved

SUBBANK_
ENABLE

<5> RW 0 Enable subbanks.
1 – Subbanks are enabled and determined
according to the BANK_SIZE<3:0> field.
0 – Subbanks are disabled, and the ras_l
pins will be asserted only during refreshes

ROWSEL <6> RW X Row address selection. Indicates the num
ber of valid row bits expected at the
DRAMs. Used along with memory width
information to generate row or column
addresses.
0 – Indicates 12 bits of row address
(16Mb DRAM)
1 – Indicates 14 bits of row address
(64Mb DRAMs)
5–50 Register Descriptions 3 October 1997 – Subject To Change

Memory Controller Register Descriptions

r

5.5.10 Bank Timing Registers (BTR0–BTR7)

The bank timing registers access is RW to addresses in the range 87.5000.0A00 to
87.5000.0BC0. Figure 5–32 shows the register.

Figure 5–32 Bank Timing Register

The bank timing registers enable specific setup of memory modules. The register
allows mixing of memory DIMMs. Table 5–38 describes the bank timing registe
fields.

4BANK <7> RW 0 1 – Four bank operation is enabled for this
bank. It typically has 64MB DIMMs.

Reserved <31:8> RO X This field should always be written to
zero.

Table 5–38 Bank Timing Register Fields (Sheet 1 of 2)

Name Extent Access Init Description

ROW_ADDR_HOLD <2:0> RW 0 Contains the minimum number of
sys_clk cycles that ras_l will be
asserted before cas_l is asserted.

Reserved <3> RO 0 —

TOSHIBA <4> RW 0 Toshiba SDRAMs do not permit cas_l
to be reasserted for several odd cycles
after cas_l has been deasserted. This bit
is provided for those devices. Operation
of this function is implemented by forc-
ing autoprecharge.

Table 5–37 Bank Configuration Register Fields (Sheet 2 of 2)

Name Extent Access Init Description

31 6 5 34 2 0

LJ-05282.AI4

SLOW_PRECHARGE

TOSHIBA

ROW_ADDR_HOLD
3 October 1997 – Subject To Change Register Descriptions 5–51

Memory Controller Register Descriptions

 5–33

ddress
rt

 bit

5.5.11 Cache Valid Map Register (CVM)

The cache valid map register access is RW1C to address 87.5000.0C00. Figure
shows the register.

Figure 5–33 Cache Valid Map Register

The cache valid map register can be used by a flusher to divide the cache flush
operation into smaller parts and continue the flush after clock and other short
interruptions. The flusher flushes a section, and clears the CVM bits corresponding
to the sections flushed. Later, the flusher can check the CVM register to find any
areas of cache that have been reloaded since the flush and flush them again.

The primary use of this register is during power management. There is the possibility
that cache may be large enough that it would make flushing the entire cache take
longer than a single interval timer cycle. This register provides the power-
management code the means to break the cache flushing sequence into parts.

Table 5–39 describes the mapping of the register. The table contains the base a
for the particular bit position and is 32KB in length. The CVM register will suppo
cache sizes from 0MB to 1MB.

The register can be used for caches larger than 1MB as each bit is aliased. The
field then represents the offset within each 1MB bank.

SLOW_PRECHARGE <5> RW 0 1 – Precharge operations are delayed
for one cycle more than needed for the
next cas_l cycle. Some vendor
SDRAMs (such as NEC) require this
when operating with a cas_l latency
of 3.

Reserved <31:6> RO 0 —

Table 5–38 Bank Timing Register Fields (Sheet 2 of 2)

Name Extent Access Init Description

31 0

LJ-05283.AI4

CACHE VALID MAP <31:0>
5–52 Register Descriptions 3 October 1997 – Subject To Change

PCI Window Control Register Descriptions

s,
Table 5–39 shows the cache valid map register fields.

5.6 PCI Window Control Register Descriptions

This section describes the functionality of the scatter-gather translation buffer
invalidate register (TBIA), the window base registers, the window mask register
the translated base registers, and the window DAC base register.

5.6.1 Scatter-Gather Translation Buffer Invalidate Register (TBIA)

The scatter-gather translation buffer invalidate register access is WO to address
87.6000.0100. Figure 5–34 shows the register.

Table 5–39 Cache Valid Map Register Fields

Bit Position CVM Bit Position CVM

0 00000000 16 00080000

1 00008000 17 00088000

2 00010000 18 00090000

3 00018000 19 00098000

4 00020000 20 000A0000

5 00028000 21 000A8000

6 00030000 22 000B0000

7 00038000 23 000B8000

8 00040000 24 000C0000

9 00048000 25 000C8000

10 00050000 26 000D0000

11 00058000 27 000D8000

12 00060000 28 000E0000

13 00068000 29 000E8000

14 00070000 30 000F0000

15 00078000 31 000F8000
3 October 1997 – Subject To Change Register Descriptions 5–53

PCI Window Control Register Descriptions

ds.

3.

to

Figure 5–34 Scatter-Gather Translation Buffer Invalidate Register

A write to the TBIA register will result in the specified group of scatter-gather TLB
tags to be marked invalid and unlocked.

Table 5–40 describes the scatter-gather translation buffer invalidate register fiel

5.6.1.1 Preventing 21174 Hang when TBIA=3

The following four techniques will prevent the 21174 from hanging when TBIA=

1. Allocate a dedicated PCI window and do four or eight PCI writes (or reads)
this window to four or eight separate PCI pages. This method will use up all
available TLB entries and flush out any state translations.

2. Use direct mapped DMA.

3. Use a fixed table that statistically maps all of physical memory.

4. Allocate the TLB entries yourself using the lock bit.

The advantages and disadvantages of these solutions are discussed below.

1 The 21174 may hang with TBIA=3. Consult Section 5.6.1.1 for the solutions to this problem.

Table 5–40 Scatter-Gather Translation Buffer Invalidate Register Fields

Name Extent Access Init Description

TBIA <1:0> WO 0 A write to this register invalidates the
scatter-gather translation buffers.
TBIA<1:0> Meaning
 00 No operation.
 01 Invalidate and unlock the TLB

tags that are currently locked.
 10 Invalidate the TLB tag that is

currently unlocked.
 11 Invalidate and unlock all of

the TLB tag entries.1

Reserved <31:2> RO 0 —

31 12 0

LJ-05284.AI4

TBIA
5–54 Register Descriptions 3 October 1997 – Subject To Change

PCI Window Control Register Descriptions

r

ory
red
set

it
Solution #1 has a performance impact. This impact can be limited by performing the
invalidation sequence only when the scatter-gather table “wraps.” The scatter-gathe
table “wraps” when entries that might cause a hit on a stale TLB begin to be re-used.

Solution #3 is easy and general. However, it requires 0.1% of the physical mem
dedicated to the map. On a 128-MB system, 128 Kb of memory would be requi
for mapping. Unlike solution #2, this method allows the PCI addresses to be off
from the memory addresses.

Solution #4 is too restrictive and difficult to implement because of its implied lim
of eight active DMA pages.

5.6.2 Window Base Registers (Wn_BASE, n=0–3)

The window base register access is RW to addresses 87.6000.0400, 87.6000.0500,
87.6000.0600, and 87.6000.0700. Figure 5–35 shows the register.

Figure 5–35 Window Base Register

The window base register provides the base address for a particular target window.
There are four window base registers: W0_BASE, W1_BASE, W2_BASE, and
W3_BASE. The Wn_BASE registers should not be modified unless software
ensures that the no PCI traffic is targeted for the window being modified.

31 20 19 34 2 1 0

LJ-05285.AI4

DAC_ENABLE (only in W3_BASE)

MEMCS_EN (only in W0_BASE)

Wn_BASE_SG

W_EN

W_BASE
3 October 1997 – Subject To Change Register Descriptions 5–55

PCI Window Control Register Descriptions

ers
d

e

Table 5–41 describes the window base register fields.

5.6.2.1 Determining a Hit in the Target Window

The incoming ad<31:20> is compared with each of the four translated base regist
(Tn_BASE). The associated Wn_MASK register determines which bits are involve
in the comparison.

Table 5–41 Window Base Register Fields

Name Extent Access Init Description

W_EN <0> RW X 0 – The PCI target window is disabled and
will not be used to respond to PCI initiated
transfers.
1 – The PCI target window is enabled and
will be used to respond to PCI initiated
transfers that hit in the address range of th
target window.

Wn_BASE_SG <1> RW X 0 – The PCI target window uses direct
mapping to translate a PCI address to a
21164 address (see Table 5–42).
1 – The PCI target window uses scatter-
gather mapping to translate a PCI address
to a physical memory address (see Table
5–43).

MEMCS_EN (only
in W0_BASE)

<2> RW X When the MEMCS_EN bit is set, then the
MEMCS signal from the PCI ISA or PCI
EISA bridge is ANDed with the normal
window hit.

DAC_ENABLE
(only in W3_BASE)

<3> RW X 1 – The W_DAC register is compared
against PCI address<39:32> for a PCI
DAC cycle. If this compare hits, and the
32-bit portion of the PCI address hits, then
a DAC cycle hit occurs.

Reserved <19:4> RO 0 —

W_BASE <31:20> RW X W_BASE specifies the PCI base address
of the PCI target window and is used to
determine a hit in the window. See
MEMCS_EN and DAC_ENABLE also.
5–56 Register Descriptions 3 October 1997 – Subject To Change

PCI Window Control Register Descriptions

n
lid
The target window is hit when a masked address matches a valid translated base reg-
ister (Tn_BASE). If the W0_BASE[MEMCS_EN] is set, then the hit is further qual-
ified by the state of the mem_cs_l input signal — this is used if peripheral
component compatibility holes are required in the 21174 (see Section 6.16.1).

When the DAC_ENABLE bit is set in the W3_BASE register, the W_DAC base
register is used to compare ad<39:32> of a DAC cycle.

5.6.3 Window Mask Registers (Wn_MASK, n=0–3)

The window mask register access is RW to addresses 87.6000.0440, 87.6000.0540,
87.6000.0640, and 87.6000.0740. Figure 5–36 shows the register.

Figure 5–36 Window Mask Register

The window mask register provides a mask corresponding to ad<31:20>. The size of
each window can be programmed to be from 1MB to 4GB in powers of two by
masking bits of the incoming PCI address via the window mask register as shown in
Table 5–42.

There are four window mask registers: W0_MASK, W1_MASK, W2_MASK, and
W3_MASK. The Wn_MASK registers should not be modified unless software
ensures that no PCI traffic is targeted for the window being modified.

5.6.3.1 Determining a Hit in the Target Window

The incoming PCI address ad<31:20> is compared with each of the four Wn_BASE
registers — the associated Wn_MASK register determines which bits are involved i
the comparison. The target window is hit when a masked address matches a va
Wn_BASE register.

31 20 19 0

LJ-05286.AI4

W_MASK<31:20>
3 October 1997 – Subject To Change Register Descriptions 5–57

PCI Window Control Register Descriptions
Table 5–42 describes the window mask register fields.

Table 5–43 shows the W_MASK<31:20> field.

Table 5–44 shows PCI address translation with scatter-gather mapping disabled.

Table 5–42 Window Mask Register Fields

Name Extent Access Init Description

Reserved <19:0> RO 0 —

W_MASK<31:20> <31:20> RW X This field specifies the size of
the PCI target window (see
Table 5–44) and it is also used
to mask out address bits not
used when determining a PCI
target window hit.

Table 5–43 W_MASK<31:20> Field

W_MASK<31:20> Size of Window W_MASK<31:20> Size of Window

0000 0000 0000 1MB 0000 0111 1111 128MB

0000 0000 0001 2MB 0000 1111 1111 256MB

0000 0000 0011 4MB 0001 1111 1111 512MB

0000 0000 0111 8MB 0011 1111 1111 1GB

0000 0000 1111 16MB 0111 1111 1111 2GB

0000 0001 1111 32MB 1111 1111 1111 4GB

0000 0011 1111 64MB Otherwise Not supported

Table 5–44 PCI Address Translation — Scatter-Gather Mapping Disabled (Sheet 1 of 2)

W_MASK<31:20> Translated Address <33:0>
Unused Translated Base
Register Bits1

0000 0000 0000 Tn_BASE<33:20> : ad<19:0> Tn_BASE<19:10>

0000 0000 0001 Tn_BASE<33:21> : ad<20:0> Tn_BASE<20:10>

0000 0000 0011 Tn_BASE<33:22> : ad<21:0> Tn_BASE<21:10>

0000 0000 0111 Tn_BASE<33:23> : ad<22:0> Tn_BASE<22:10>

0000 0000 1111 Tn_BASE<33:24> : ad<23:0> Tn_BASE<23:10>

0000 0001 1111 Tn_BASE<33:25> : ad<24:0> Tn_BASE<24:10>
5–58 Register Descriptions 3 October 1997 – Subject To Change

PCI Window Control Register Descriptions
Table 5–45 shows PCI address translation with scatter-gather mapping enabled.

1 Unused translation base register bits must be zero for correct operation.

0000 0011 1111 Tn_BASE<33:26> : ad<25:0> Tn_BASE<25:10>

0000 0111 1111 Tn_BASE<33:27> : ad<26:0> Tn_BASE<26:10>

0000 1111 1111 Tn_BASE<33:28> : ad<27:0> Tn_BASE<27:10>

0001 1111 1111 Tn_BASE<33:29> : ad<28:0> Tn_BASE<28:10>

0011 1111 1111 Tn_BASE<33:30> : ad<29:0> Tn_BASE<29:10>

0111 1111 1111 Tn_BASE<33:31> : ad<30:0> Tn_BASE<30:10>

1111 1111 1111 Tn_BASE<33:32> : ad<31:0> Tn_BASE<31:10>

Table 5–45 PCI Address Translation — Scatter-Gather Mapping Enabled

W_MASK<31:20> SG Map Table Size
Scatter-Gather Map Address<33:0>
 (Used to Index SG Table in Memory)

0000 0000 0000 1KB Tn_BASE<33:10> : ad<19:13>:000

0000 0000 0001 2KB Tn_BASE<33:11> : ad<20:13>:000

0000 0000 0011 4KB Tn_BASE<33:12> : ad<21:13>:000

0000 0000 0111 8KB Tn_BASE<33:13> : ad<22:13>:000

0000 0000 1111 16KB Tn_BASE<33:14> : ad<23:13>:000

0000 0001 1111 32KB Tn_BASE<33:15> : ad<24:13>:000

0000 0011 1111 64KB Tn_BASE<33:16> : ad<25:13>:000

0000 0111 1111 128KB Tn_BASE<33:17> : ad<26:13>:000

0000 1111 1111 256KB Tn_BASE<33:18> : ad<27:13>:000

0001 1111 1111 512KB Tn_BASE<33:19> : ad<28:13>:000

0011 1111 1111 1MB Tn_BASE<33:20> : ad<29:13>:000

0111 1111 1111 2MB Tn_BASE<33:21> : ad<30:13>:000

1111 1111 1111 4MB Tn_BASE<33:22> : ad<31:13>:000

Table 5–44 PCI Address Translation — Scatter-Gather Mapping Disabled (Sheet 2 of 2)

W_MASK<31:20> Translated Address <33:0>
Unused Translated Base
Register Bits1
3 October 1997 – Subject To Change Register Descriptions 5–59

PCI Window Control Register Descriptions

ber
cat-

5.6.4 Translated Base Registers (Tn_BASE, n=0–3)

The translated base register access is RW to addresses 87.6000.0480, 87.6000.0580,
87.6000.0680, and 87.6000.0780. Figure 5–37 shows the register.

Figure 5–37 Translated Base Register

The translated base register is used to map PCI addresses into memory. There are
four translated base registers: T0_BASE, T1_BASE, T2_BASE, and T3_BASE, one
for each window. If Wn_BASE[Wn_BASE_SG] is clear, the translated base register
provides the base physical address of this window. If Wn_BASE[Wn_BASE_SG]
is set, then the translated base register provides the base address of the scatter-gather
map for this window. The Tn_BASE registers should not be modified unless
software ensures that the no PCI traffic is targeted for the window being modified.

Table 5–46 describes the translated base register fields.

The field Wn_MASK<31:20> sets the size of the PCI target window and the num
of 8-KB pages that fall into the window. Every 8-KB page requires one 8-byte s
ter-gather map entry.

Table 5–46 Translated Base Registers Fields

Name Extent Access Init Description

Reserved <7:0> RO 0 —

T_BASE<33:10> <31:8> RW X If scatter-gather mapping is
disabled, Tn_BASE<33:10>
specifies the base 21164 address
of the translated PCI address for
the PCI target window (see
Table 5–43). If scatter-gather
mapping is enabled,
Tn_BASE<33:10> specifies
the base 21164 address for the
scatter-gather map table for the
PCI target window (see Table
5–44).

31 8 7 0

LJ-05287.AI4

T_BASE<33:10>
5–60 Register Descriptions 3 October 1997 – Subject To Change

PCI Window Control Register Descriptions

f

r-
e bits
se of

Table 5–43 shows the relationship of Wn_MASK to the size of the scatter-gather
map in memory. The number of entries required can be calculated as follows:

The size of the scatter-gather table can be calculated as follows:

Concatenate the appropriate Tn_ BASE and PCI address bits (based on the size o
the scatter-gather map) to generate a quadword address to index into the table. The
PCI address forms the index into the table while the Tn_BASE forms the naturally
aligned base of the table.

For example, for a mask of 0000 0000 0000, there are 128 entries in the scatte
gather table and the table size is 1KB. Entries are quadwords, so the lower thre
of the address (<2:0>) are always zero. Now, mask off PCI bits <31:20> (becau
the Wn_MASK). Then use ad<19:13> (7 bits, 2 to the power 7 = 128 entries in the
table) as the table index. Use the Tn_BASE<33:10> to get the other bits of the
34-bit address.

5.6.5 Window DAC Base Register (W_DAC)

The window DAC base register access is RW to address 87.6000.07C0. Figure 5–38
shows the register.

Figure 5–38 Window DAC Base Register

The window DAC base register provides the <7:0> address bits for comparison
against ad<39:32> during a DAC cycle. The ad<63:40> has to be zero for a PCI
window hit. The window DAC base register is used in conjunction with the
Wn_BASE register. For more details, see Chapter 6.

The window DAC base register is only applicable to window 3 and only if enabled
by W3_BASE[DAC_ENABLE].

Size of window (in bytes)
8KB

-- Number of entries required=

Number of entries 8KB× Size of the scatter-gather table=

31 8 7 0

LJ-05288.AI4

DAC_BASE<7:0>
3 October 1997 – Subject To Change Register Descriptions 5–61

Scatter-Gather Address Translation Register Descriptions

er.
The target window is hit when the following is satisfied:

• The incoming ad<31:20> matches one of the four window base registers; the
Wn_MASK register determines which bits are involved in the comparison.

• ad<63:40> is zero.

• ad<39:32> match W_DAC[DAC_BASE].

Table 5–47 describes the window DAC base register fields.

5.7 Scatter-Gather Address Translation Register Descriptions

This section describes the functionality of the lockable translation buffer tag
registers, the translation buffer tag registers, and the translation buffer page registers.

5.7.1 Lockable Translation Buffer Tag Registers (LTB_TAGn, n=0–3)

The lockable translation buffer tag register access is RW to addresses 87.6000.0800,
87.6000.0840, 87.6000.0880, and 87.6000.08C0. Figure 5–39 shows the regist

Figure 5–39 Lockable Translation Buffer Tag Register

Table 5–47 Window DAC Base Register Fields

Name Extent Access Init Description

DAC_BASE<7:0> <7:0> RW X DAC_BASE specifies bits
<39:32> of the PCI base
address used to determine a hit
in the target window for the
DAC cycle.

Reserved <31:8> RO 0 —

31 15 14 3 2 1 0

LJ-05289.AI4

DAC

LOCKED

VALID

TB_TAG
5–62 Register Descriptions 3 October 1997 – Subject To Change

Scatter-Gather Address Translation Register Descriptions

on

a-

 a
There are four lockable translation buffer tag registers. Software can write to these
LTB_TAGn entries. Furthermore, they can be locked such that the hardware will not
evict the entry on a scatter-gather table miss.

Note: Be careful when writing to this register. Writing to this register while a
DMA operation is in progress will cause UNPREDICTABLE results.
Write to this register only when certain that a DMA operation is not in
progress, or always assert the LOCKED bit in the register.

Table 5–48 describes the lockable translation buffer tag register fields.

5.7.1.1 Determining a Hit in the Translation Buffer

After a PCI address hits one of the window registers with scatter-gather operati
enabled, the incoming ad<31:15> is compared with each of the eight translation
buffer tag registers. If there is a match, the corresponding translation buffer page reg-
ister group is indexed by ad<14:13>, and if the page entry is valid there is a transl
tion buffer hit.

5.7.1.2 Operation on a SG_TLB Miss

A scatter-gather TLB miss is handled by hardware using a round-robin algorithm.
An entry is overwritten if it is not locked. The hardware will write all four PTEs on
miss.

Table 5–48 Lockable Translation Buffer Tag Register Fields

Name Extent Access Init Description

VALID <0> RW 0 If VALID and PYXIS_CTRL[SG TLB_EN] are
set, then this entry will be used for a translation.

LOCKED <1> RW 0 If LOCKED is set, the hardware will never
evict this entry.

DAC <2> RW 0 If set, then this TAG entry corresponds to a 64-
bit PCI address (DAC cycle); otherwise, it
belongs to a 32-bit PCI address (SAC cycle).

Reserved <14:3> RO 0 —

TB_TAG <31:15> RW X TB_TAG<31:15> is the TAG for each transla-
tion buffer entry.
3 October 1997 – Subject To Change Register Descriptions 5–63

Scatter-Gather Address Translation Register Descriptions

er.
Note: Be careful when writing to this register. Writing to this register while a
DMA is in progress causes UNPREDICTABLE results. Write to this
register only when certain that a DMA operation is not in progress, or
always assert the LOCKED bit in the register.

5.7.2 Translation Buffer Tag Registers (TB_TAGn, n=4–7)

There are four translation buffer tag registers that cannot be locked by software.
Software can write to the TB_TAG entries, but they cannot be locked (and so, may
be evicted by the hardware on a scatter-gather table miss).

The translation buffer tag registers access is RW to addresses 87.6000.0900,
87.6000.0940, 87.6000.0980, and 87.6000.09C0. Figure 5–40 shows the regist

Figure 5–40 Translation Buffer Tag Register

Note: Be careful when writing to this register. Writing to this register while a
DMA operation is in progress will cause UNPREDICTABLE results.
Write to this register only when certain that a DMA operation is not in
progress.

Table 5–49 describes the translation buffer tag register fields.

Table 5–49 Translation Buffer Tag Register Fields (Sheet 1 of 2)

Name Extent Access Init Description

VALID <0> RW 0 If PYXIS_CTRL[SG_TLB_EN] and VALID
are set, this entry will be used for address
translation.

Reserved <1> RO 0 —

31 15 14 3 2 1 0

LJ-05290.AI4

DAC

VALID

TB_TAG
5–64 Register Descriptions 3 October 1997 – Subject To Change

Scatter-Gather Address Translation Register Descriptions

5.7.2.1 Determining a Hit in the Translation Buffer

The incoming ad<31:15> is compared with each of the eight translation buffer tag
registers. If there is a match, the corresponding translation buffer page register group
is indexed by ad<14:13>, and if it is valid then there is a translation buffer hit.

5.7.2.2 Operation on a SG_TLB Miss

A scatter-gather TLB miss is handled by hardware using a round-robin algorithm.
An entry is overwritten if it is not locked. The hardware will write all four PTEs on a
miss.

Note: Writing to this register while a DMA transaction is in progress will
cause UNPREDICTABLE results.

5.7.3 Translation Buffer Page Registers (TBm_PAGEn, m=0–7, n=0–3)

There are 32 translation buffer page registers, a group of four for each of the eight
translation buffer entries. The TBm_PAGEn registers are automatically updated on a
TLB miss (a group of four at a time) by the 21174 hardware.

The translation buffer page registers access is RW to addresses 87.6000.1000
through 87.6000.17C0. Figure 5–41 shows the register.

DAC <2> RW 0 1 – This tag entry corresponds to a 64-bit PCI
address (DAC cycle); otherwise, it belongs to a
32-bit PCI address (SAC cycle).

Reserved <14:3> RO 0 —

TB_TAG <31:15> RW X TB_TAG<31:15> is the TAG for each transla-
tion buffer entry.

Table 5–49 Translation Buffer Tag Register Fields (Sheet 2 of 2)

Name Extent Access Init Description
3 October 1997 – Subject To Change Register Descriptions 5–65

Miscellaneous Register Descriptions

roup

 miss
n a
rted.

atus
Figure 5–41 Translation Buffer Page Register

Table 5–50 describes the translation buffer page register fields.

5.7.3.1 Determining a Hit in the Translation Buffer

The incoming ad<31:15> are compared with each of the eight translation buffer tag
registers. If there is a match, the corresponding translation buffer page register g
is indexed by ad<14:13>, and if it is valid, then there is a translation buffer hit.

If the address bits do not match the tag, or the page entry is invalid, then a TLB
occurs. If the PTE fetched by the hardware TLB-miss handler is still invalid, the
DMA write transaction error bit is set in MESR1, causing an interrupt to be asse

5.8 Miscellaneous Register Descriptions

This section describes the functionality of the clock control register, the clock st
register, and the reset register.

Table 5–50 Translation Buffer Page Register (TBm_PAGEn) Fields

Name Extent Access Init Description

VALID <0> RW X The entry is valid when this bit is set to a
one.

PAGE_ADDRESS <21:1> RW X The PAGE_ADDRESS<21:1> forms
physical address<33:13>. ad_H<12:0>
forms physical address<12:0>.

Reserved <31:22> RO 0 —

31 22 21 0

LJ-05291.AI4

VALID

PAGE_ADDRESS

1

5–66 Register Descriptions 3 October 1997 – Subject To Change

Miscellaneous Register Descriptions

hows
5.8.1 Clock Control Register (CCR)

The clock control register determines how the 21174 clock and the DRAM clock
will be presented to the system on the next warm reset. A warm reset is executed
when the RESET register is written appropriately. The values are maintained across
a warm reset.

The clock control register access is RW to address 87.8000.0000. Figure 5–42 s
the register.

Figure 5–42 Clock Control Register

Table 5–51 describes the clock control register fields.

Table 5–51 Clock Control Register Fields (Sheet 1 of 3)

Name Extent Access Init Description

CSR_CLOCK_DIVIDE <1:0> RW 1 This value will be used for CLK_DIVIDE
on the next warm reset if
CCR[SEL_CONFIG_SRC] = 1.

Reserved <3:2> RO 0 —

CSR_PCLK_DIVIDE <6:4> RW 3 This value will be used for
PCLK_DIVIDE on the next warm reset if
CCR[SEL_CONFIG_SRC] = 1.

Reserved <7> RO 0 —

31 24 23 18 17 16 15 13 1112 10 9 8 7 6 34 2 1 0

LJ-05292.AI4

DCLK_DELAY

DCLK_PCSEL

DCLK_FORCE

SEL_CONFIG_SRC

CSR_LONG_RESET

CSR_PLL_RANGE

CSR_PCLK_DIVIDE

DCLK_INV

CSR_CLOCK_DIVIDE

19
3 October 1997 – Subject To Change Register Descriptions 5–67

Miscellaneous Register Descriptions

r
CSR_PLL_RANGE <9:8> RW 2 This value will be used for PLL_RANGE
on the next warm reset if
CCR[SEL_CONFIG_SRC] = 1.

CSR_LONG_RESET <10> RW 1 This value will be used for
LONG_RESET on the next warm reset if
CCR[SEL_CONFIG_SRC] = 1.

Reserved <11> RO 0 —

SEL_CONFIG_SRC <12> RW 0 This bit selects the clock configuration
source at the next warm reset (driven by
software through the RESET register).
0 – The clock power-up configuration is
taken from the CLK_STAT register
(default).
1 – The clock configuration is taken from
this register.

Reserved <15:13> RO 0 —

DCLK_INV <16> RW 0 1 – Inverts the internal DRAM _CLK. It
does not invert the external DRAM clock
driven to the DIMMs. This effectively
changes the range of the programmable
delay elements.
This bit is established by the power-up
software and should be clear for normal
sys_clk divide ratios.

DCLK_FORCE <17> RW 1 1 – Forces the internal DRAM_CLK to be
DCLK_DELAY.
This bit should be cleared by the power-
up software at least 2,048 sys_clk cycles
before accessing DRAM. It should be left
cleared.

DCLK_PCSEL <18> RW 0 Selects the best (TBD) phase comparato
for the DRAM clock feedback and the
auto aligning delay circuitry.

Reserved <23:19> RO 0 —

Table 5–51 Clock Control Register Fields (Sheet 2 of 3)

Name Extent Access Init Description
5–68 Register Descriptions 3 October 1997 – Subject To Change

Miscellaneous Register Descriptions

hows
5.8.2 Clock Status Register (CLK_STAT)

The clock status register shows the current state of the clock generator.

The clock status register access is RO to address 87.8000.0100. Figure 5–43 s
the register.

Figure 5–43 Clock Status Register

DCLK_DELAY <31:24> RW 18 Represents the delay value added to the
internal DRAM_CLK if DRAM_FORCE
is asserted. This value drives the delay
count chain.

Table 5–51 Clock Control Register Fields (Sheet 3 of 3)

Name Extent Access Init Description

31 24 23 22 21 20 19 18 16 15 1314 1112 10 9 8 7 6 34 2 1 0

LJ-05293.AI4

PU_LONG_RESET

PU_PLL_RANGE

PU_PCLK_DIVIDE

PU_CLK_DIVIDE

LONG_RESET

PLL_RANGE

PCLK_DIVIDE

CLK_DIVIDE

DELAY_ELEMENTS
3 October 1997 – Subject To Change Register Descriptions 5–69

Miscellaneous Register Descriptions

Table 5–52 describes the clock status register fields.

Table 5–52 Clock Status Register Fields (Sheet 1 of 2)

Name Extent Access Init Description

CLK_DIVIDE <1:0> RO X The current running value of the program-
mable divisor in the PLL feedback path
(the internal chip PLL multiplication fac-
tor) +1. For example, a value of 01 indi-
cates a divide by two. The 21174 CLK
always runs at the sys_clk ratio deter-
mined by the 21164.

Reserved <3:2> RO 0 —

PCLK_DIVIDE <6:4> RO X The CURRENT running value of the pro-
grammable PCLK divisor from the PLL,
+1. Thus, the PCI interface is running at:

Reserved <7> RO 0 —

PLL_RANGE <9:8> RO X The current range bits to the PLL for the
appropriate CLK divide ratio and sys_clk
frequency.

LONG_RESET <10> RO X Controls the current reset assertion length
after dc_ok is asserted.
0 – Selects a short reset (about 15 ms).
1 – Selects a long reset (about 240 ms).

Reserved <11> RO 0 —

PU_CLK_DIVIDE <13:12> RO X The value of PU_CLK_DIVIDE is read
off the addr_h<31:30> pins — with
pull-up/pull-down resistors at cold power-
up.

Reserved <15:14> RO 0 —

PU_PCLK_DIVIDE <18:16> RO X The value of PU_PCLK_DIVIDE is read
off the addr_h<34:32> pins — with
pull-up/pull-down resistors at cold power-
up.

Reserved <19> RO 0 —

sys_clk CLK_DIVIDE 1+()×
PCLK_DIVIDE 1+()MHz

--
5–70 Register Descriptions 3 October 1997 – Subject To Change

Miscellaneous Register Descriptions

the
5.8.3 Reset Register (RESET)

This 21174 register is used by software to reset the system. Writing the value
0000DEAD16 will cause a complete system reset.

The reset register access is WO to address 87.8000.0900. Figure 5–44 shows
reset register.

Figure 5–44 Reset Register

Table 5–53 describes the reset register fields.

PU_PLL_RANGE <21:20> RO X The value of PU_PLL_RANGE is read off
the addr_h<38:37> pins — with pull-up/
pull-down resistors at cold power-up.

PU_LONG_RESET <22> RO X The value of PU_LONG_RESET is read
off the addr_h<35> pin — with pull-up/
pull-down resistors at cold power-up.
1 (pull-up) – Indicates long reset.
0 (pull-down) – Indicates a short reset.

Reserved <23> RO 0 —

DELAY_ELEMENTS <31:24> RO X The number of delay elements currently
used in the DRAM clock generation, pos-
sible range is 0016 – 7F16.

Table 5–53 Reset Register Fields

Name Extent Access Init Description

RESET <31:0> WO X Writing 0000DEAD16 to this register
will force a system reset.

Table 5–52 Clock Status Register Fields (Sheet 2 of 2)

Name Extent Access Init Description

31 0

LJ-05294.AI4

RESET
3 October 1997 – Subject To Change Register Descriptions 5–71

Interrupt Control Registers Descriptions

 5–45
5.9 Interrupt Control Registers Descriptions

This section describes the functionality of the interrupt request register, the interrupt
mask register, the interrupt high/low select register, the interrupt routine select
register, the general-purpose output register, the interrupt configuration register, the
real-time counter register, the interrupt time register, and the I2C control register.

5.9.1 Interrupt Request Register (INT_REQ)

This register is used to read the interrupt request lines from the main interrupt logic.
If a bit is set, then it signifies that an interrupt is active.

The interrupt request register access is RW1C to address 87.A000.0000. Figure
shows the register.

Figure 5–45 Interrupt Request Register

31 0

LJ-05301.AI4

INT_REQ

63 32

INT_REQ

CLK_INT_PEND

ERROR_INT

6162
5–72 Register Descriptions 3 October 1997 – Subject To Change

Interrupt Control Registers Descriptions

 is
uts

6
Table 5–54 describes the interrupt request register fields.

5.9.2 Interrupt Mask Register (INT_MASK)

The interrupt mask register is used to access the interrupt mask register, which
physically located in the main interrupt logic. The main interrupt logic has 64 inp
that can all be individually masked.

The interrupt mask register access is RW to address 87.A000.0040. Figure 5–4
shows the register.

Figure 5–46 Interrupt Mask Register

Table 5–54 Interrupt Request Register Fields

Name Extent Access Init Description

INT_REQ <61:0> RW1C X An interrupt is asserted when a
bit is set to one. Each bit
indicates a single interrupt
request line.

CLK_INT_PEND <62> RW1C 0 Real-time count interrupt
pending.

ERROR_INT <63> RO X Machine check error detected.
This is the logical OR of all of
the sources of the machine
check error interrupts.

31 0

LJ-05302.AI4

INT_MASK

63 32

INT_MASK

CLK_INT_EN

6162
3 October 1997 – Subject To Change Register Descriptions 5–73

Interrupt Control Registers Descriptions
Table 5–55 describes the interrupt mask register fields.

5.9.3 Interrupt High/Low Select Register (INT_HILO)

The interrupt high/low select register access is RW to address 87.A000.00C0.
Figure 5–47 shows the register.

Figure 5–47 Interrupt High/Low Select Register

This register is used to control the main interrupt logic. A set bit signifies that the
associated irq signal line is active high. Otherwise, it is active low.

Table 5–55 Interrupt Mask Register Fields

Name Extent Access Init Description

INT_MASK <61:0> RW 0 1 – Interrupt IRQ is enabled for
this bit.
0 – Interrupts are disabled for
this bit.

CLK_INT_EN <62> RW 0 Enable the real-time counter
interrupt.

Reserved <63> RO 0 —

31 8 7 0

LJ-05303.AI4

INT_HILO

63 32
5–74 Register Descriptions 3 October 1997 – Subject To Change

Interrupt Control Registers Descriptions
Table 5–56 describes the interrupt high/low select register fields.

5.9.4 Interrupt Routine Select Register (INT_ROUTE)

The interrupt routine select register access is RW to address 87.A000.0140.
Figure 5–48 shows the register.

Figure 5–48 Interrupt Routine Select Register

This register is used to control the main interrupt logic. A set bit signifies that the irq
line is routed to the specified source. Otherwise, the interrupt is routed to irq<1>.

Table 5–56 Interrupt High/Low Select Register Fields

Name Extent Access Init Description

INT_HILO <7:0> RW 0 0 – Active low interrupt (PCI type)
1 – Active high interrupt (such as
PCI-EISA bridge interrupt)

Reserved <63:8> RO 0 —

31 8 7 6 5 34 2 1 0

LJ-05304.AI4

BIT7

63 32

BIT5

BIT6

BIT3

BIT4

BIT2

BIT0

BIT1
3 October 1997 – Subject To Change Register Descriptions 5–75

Interrupt Control Registers Descriptions

s the
Table 5–57 describes the interrupt routine select register fields. The table define
actual source and the interrupt to which it is routed.

5.9.5 General-Purpose Output Register (GPO)

The general-purpose output register access is WO to address 87.A000.0180.
Figure 5–49 shows the register.

Table 5–57 Interrupt Routine Select Register Fields

Name Extent Access Init Description

BIT0 <0> RW 0 1 – The request is routed to mchk_irq.
0 – The request is routed to irq<1>.

BIT1 <1> RW 0 1 – The request is routed to mchk_irq.
0 – The request is routed to irq<1>.

BIT2 <2> RW 0 1 – The request is routed to hlt_irq.
0 – The request is routed to irq<1>.

BIT3 <3> RW 0 1 – The request is routed to hlt_irq.
0 – The request is routed to irq<1>.

BIT4 <4> RW 0 1 – The request is routed to irq<0>.
0 – The request is routed to irq<1>.

BIT5 <5> RW 0 1 – The request is routed to irq<0>.
0 – The request is routed to irq<1>.

BIT6 <6> RW 0 1 – The request is routed to irq<2>.
0 – The request is routed to irq<1>.

BIT7 <7> RW 0 1 – The request is routed to irq<3>.
0 – The request is routed to irq<1>.

Reserved <63:8> RO 0 —
5–76 Register Descriptions 3 October 1997 – Subject To Change

Interrupt Control Registers Descriptions
Figure 5–49 General-Purpose Output Register

This register is a general-purpose output register. The values in this register can be
used for a special purpose. The data is converted to a bit stream and shifted out of the
21174. It is up to the hardware designer to provide the proper external hardware to
support this register.

Table 5–58 describes the general-purpose output register fields.

5.9.6 Interrupt Configuration Register (INT_CNFG)

The interrupt configuration register access is RW to address 87.A000.01C0.
Figure 5–50 shows the register.

Table 5–58 General-Purpose Output Register Fields

Name Extent Access Init Description

GPO <63:0> WO X General-purpose output

31 0

LJ-05305.AI4

GPO

63 32

GPO
3 October 1997 – Subject To Change Register Descriptions 5–77

Interrupt Control Registers Descriptions

Figure 5–50 Interrupt Configuration Register

This register is used to determine the behavior of the interrupt request register. The
three fields determine the state of the IRQ lines, the number of IRQ, and the clock
divisor value.

Table 5–59 describes the interrupt configuration register fields.

Table 5–59 Interrupt Configuration Register Fields (Sheet 1 of 2)

Name Extent Access Init Description

CLOCK_DIVISOR <3:0> RW 0 This value + 1 represents the clock divisor
value for the external shift register. The
clock presented to the external logic is the
21174 clock divided by this value.
A value of zero disables this operation.

IRQ_COUNT <6:4> RW 3 This value + 1 is the size of the external
shift register in multiples of 8.

Reserved <7> RO 0 —

IRQ_CFG_DELAY <10:8> RW X This field shows the state of the IRQ pins
(going to the 21164). The initial value is
present when dc_ok is asserted and
sys_reset_l is deasserted. The initial value
controls the delay between
sys_clk_out1_h and sys_clk_out2_h, as
shown in Table 5–60.
After the delay value has been obtained
from this field, the field can be changed to
alter the speed of the 21164. This field
should only be changed by the startup
code as the system reset cycle must be
initiated in order for the change to take
effect.

31 17 16 15 14 8 7 6 34 0

LJ-05306.AI4

IRQ_CFG_DIVISOR

IRQ_COUNT

CLOCK_DIVISOR

DRIVE_IRQ

1011

IRQ_CFG_DELAY
5–78 Register Descriptions 3 October 1997 – Subject To Change

Interrupt Control Registers Descriptions

.

st

Table 5–60 lists the contents of the IRQ_CFG_DELAY field of the interrupt
configuration register.

IRQ_CFG_DIVISOR <14:11> RW X This field shows the state of the IRQ pins
(going to the 21164). The initial value is
present when dc_ok is asserted and
sys_reset_l is deasserted. The initial value
controls the system clock divider ratio as
shown in Table 5–61.
After the system clock divider ratio has
been obtained from this field, the field can
be changed to alter the speed of the 21164
This field should only be changed by the
startup code as the system reset cycle mu
be initiated in order for the change to take
effect.

Reserved <15> RO 0 —

DRIVE_IRQ <16> RW 0 Forces the 21174 to drive the IRQ lines to
the 21164, so that the next time reset is
asserted the value on the IRQ lines will be
taken from the value written to IRQ_CFG
bits located in this register.

Reserved <31:17> RO 0 —

Table 5–60 Clock Delay Values

Bit 10 (HALT_IRQ) Bit 9 (MCHK_IRQ) Bit 8 (PWR_FAIL_IRQ) Delay Cycles

0 0 0 0

0 0 1 2

0 1 0 4

0 1 1 6

1 0 0 1

1 0 1 3

1 1 0 5

1 1 1 7

Table 5–59 Interrupt Configuration Register Fields (Sheet 2 of 2)

Name Extent Access Init Description
3 October 1997 – Subject To Change Register Descriptions 5–79

Interrupt Control Registers Descriptions
Table 5–61 lists the contents of the IRQ_CFG_DIVISOR field of the interrupt
configuration register.

5.9.7 Real-Time Counter Register (RT_COUNT)

The real-time counter register access is RW to address 87.A000.0200. Figure 5–51
shows the register.

Table 5–61 Clock Divisor Values

Bit 14 (IRQ[3]) Bit 13 (IRQ[2]) Bit 12 (IRQ[1]) Bit 11 (IRQ[0]) System Clock Divisor

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1 0 0 1 9

1 0 1 0 10

1 0 1 1 11

1 1 0 0 12

1 1 0 1 13

1 1 1 0 14

1 1 1 1 15
5–80 Register Descriptions 3 October 1997 – Subject To Change

Interrupt Control Registers Descriptions

Figure 5–51 Real-Time Counter Register

This register contains a free-running clock that is incremented once for every sys_clk
cycle. This register is initialized when power is turned on to 0 and can be written
with any value.

Table 5–62 describes the real-time counter register fields.

5.9.8 Interrupt Time Register (INT_TIME)

The interrupt time register access is RW to address 87.A000.0240. Figure 5–52
shows the register.

Table 5–62 Real-Time Counter Register Fields

Name Extent Access Init Description

RT_COUNT <63:0> RW 0 Current clock value

31 0

LJ-05307.AI4

RT_COUNT

63 32

RT_COUNT
3 October 1997 – Subject To Change Register Descriptions 5–81

Interrupt Control Registers Descriptions
Figure 5–52 Interrupt Time Register

The interrupt time register determines the cycle count at which an interrupt to the
21164 will be generated. When the real-time counter register matches this value, a
clock interrupt to the 21164 will be generated if the interrupt is enabled by the timer
control register.

Table 5–63 describes the interrupt time register fields.

Table 5–63 Interrupt Time Register Fields

Name Extent Access Init Description

INTERRUPT_TIME <63:0> RW 0 Value at which a clock
interrupt will be generated

31 0

LJ-05308.AI4

INTERRUPT_TIME

63 32

INTERRUPT_TIME
5–82 Register Descriptions 3 October 1997 – Subject To Change

Interrupt Control Registers Descriptions

ows
5.9.9 I2C Control Register (IIC_CTRL)

The I2C control register access is RW to address 87.A000.02C0. Figure 5–53 sh
the register.

Figure 5–53 I 2C Control Register

The I2C control register is used to access the I2C interface on the memory modules.
With careful programming, the data can be obtained from the DIMMs to configure
the memory system.

Table 5–64 describes the I2C control register fields.

Table 5–64 I2C Control Register Fields

Name Extent Access Init Description

READ_DATA <0> RO 0 Current state of the read data pin.

READ_CLK <1> RO 0 Current state of clock pin.

DATA_EN <2> WO 0 1 – Enable the data out to the pins. This
causes the value in this register’s DATA
field to be driven onto the dimm_sda
signal line.

DATA <3> WO 0 Data to be driven on the dimm_sda signal
line.

CLK_EN <4> WO 0 1 – Enable the clock out to the pins. This
causes the value in this register’s CLK
field to be driven onto the dimm_scl
signal line.

CLK <5> WO 0 Clock data.

Reserved <31:6> — — —

31 6 5 34 2 1 0

LJ-05309.AI4

DATA

CLK_EN

DATA_EN

READ_CLK

READ_DATA

CLK
3 October 1997 – Subject To Change Register Descriptions 5–83

 6
System Address Space

This chapter describes the mapping of 21164 40-bit physical addresses to memory
and I/O space addresses. It also describes the translation of a 21164-initiated address
(addr_h<39:4>) into a PCI address (ad<63:0>) and the translation of a PCI-initiated
address into a physical memory address.

PCI addressing topics include dense and sparse address space and scatter-gather
address translation for DMA operations.

6.1 Address Map

The system address mapping operates with byte/word transactions enabled or
disabled. Byte/word operation is controlled by PYXIS_CTRL1<0> (IOA_BEN).
Table 6–1 shows system address mapping operations when IOA_BEN equals 0
(byte/word operation disabled).

Table 6–1 Physical Address Map (Byte/Word Mode Disabled) (Sheet 1 of 2)

21164 Address1 Size (GB) Selection

00.000.0000 – 01.FFFF.FFFF 8.00 Main memory

E.0000.0000 – E.FFFF.FFFF 4.00 Dummy memory region

80.0000.0000 – 83.FFFF.FFFF 16.00 PCI sparse memory region 0, 512MB

84.0000.0000 – 84.FFFF.FFFF 4.00 PCI sparse memory region 1, 128MB

85.0000.0000 – 85.7FFF.FFFF 2.00 PCI sparse memory region 2, 64MB

85.8000.0000 – 85.BFFF.FFFF 1.00 PCI sparse I/O space region A, 32MB

85.C000.0000 – 85.FFFF.FFFF 1.00 PCI sparse I/O space region B, 32MB

86.0000.0000 – 86.FFFF.FFFF 4.00 PCI dense memory

87.0000.0000 – 87.1FFF.FFFF 0.50 PCI sparse configuration space
3 October 1997 – Subject To Change System Address Space 6–1

Address Map

Table 6–2 shows system address mapping operations when IOA_BEN equals 1
(byte/word operation enabled).

1 All addresses in the range of 80.0000.0000 and 8F.FFFF.FFFF are aliased. Address bits 36 through
38 are ignored in the address.

87.2000.0000 – 87.3FFF.FFFF 0.50 PCI special/interrupt acknowledge

87.4000.0000 – 87.4FFF.FFFF 0.25 21174 main CSRs

87.5000.0000 – 87.5FFF.FFFF 0.25 21174 memory control CSRs

87.6000.0000 – 87.6FFF.FFFF 0.25 21174 PCI address translation

87.7000.0000 – 87.7FFF.FFFF 0.25 Reserved

87.8000.0000 – 87.8FFF.FFFF 0.25 21174 miscellaneous CSRs

87.9000.0000 – 87.9FFF.FFFF 0.25 21174 power management CSRs

87.A000.0000 – 87.AFFF.FFFF 0.25 21174 interrupt control CSRs

87.B000.0000 – 87.FFFF.FFFF 1.25 Reserved

Table 6–2 Physical Address Map (Byte/Word Mode Enabled) (Sheet 1 of 2)

21164 Address Size (GB) Selection

00.000.0000 – 01.FFFF.FFFF 8.00 Main memory

E.0000.0000 – E.FFFF.FFFF 4.00 Dummy memory region

80.0000.0000 – 83.FFFF.FFFF 16.00 PCI sparse memory region 0, 512MB

84.0000.0000 – 84.FFFF.FFFF 4.00 PCI sparse memory region 1, 128MB

85.0000.0000 – 85.7FFF.FFFF 2.00 PCI sparse memory region 2, 64MB

85.8000.0000 – 85.BFFF.FFFF 1.00 PCI sparse I/O space region A, 32MB

85.C000.0000 – 85.FFFF.FFFF 1.00 PCI sparse I/O space region B, 32MB

86.0000.0000 – 86.FFFF.FFFF 4.00 PCI dense memory

87.0000.0000 – 87.1FFF.FFFF 0.50 PCI sparse configuration space

87.2000.0000 – 87.3FFF.FFFF 0.50 PCI special/interrupt acknowledge

87.4000.0000 – 87.4FFF.FFFF 0.25 21174 main CSRs

87.5000.0000 – 87.5FFF.FFFF 0.25 21174 memory control CSRs

Table 6–1 Physical Address Map (Byte/Word Mode Disabled) (Sheet 2 of 2)

21164 Address1 Size (GB) Selection
6–2 System Address Space 3 October 1997 – Subject To Change

Address Map
1 Address bits 37 and 38 are generated by the 21164 and not by software. These address bits are
used by the 21164 to indicate to external hardware that this transaction is a byte, word, longword,
or quadword operation.

2 Read/write transactions to flash ROM must be done with byte transactions to address range
87.C000.0000 through 87.FFFF.FFFF. All other transaction types will produce UNDEFINED
results.

87.6000.0000 – 87.6FFF.FFFF 0.25 21174 PCI address translation

87.7000.0000 – 87.7FFF.FFFF 0.25 Reserved

87.8000.0000 – 87.8FFF.FFFF 0.25 21174 miscellaneous CSRs

87.9000.0000 – 87.9FFF.FFFF 0.25 21174 power management CSRs

87.A000.0000 – 87.AFFF.FFFF 0.25 21174 interrupt control CSRs

87.B000.0000 – 87.BFFF.FFFF 0.25 Reserved

88.0000.0000 – 88.FFFF.FFFF 4.00 PCI memory space INT8

98.0000.0000 – 98.FFFF.FFFF1 4.00 PCI memory space INT4

A8.0000.0000 – A8.FFFF.FFFF1 4.00 PCI memory space INT2

B8.0000.0000 – B8.FFFF.FFFF1 4.00 PCI memory space INT1

89.0000.0000 – 89.FFFF.FFFF 4.00 PCI I/O space INT8

99.0000.0000 – 99.FFFF.FFFF1 4.00 PCI I/O space INT4

A9.0000.0000 – A9.FFFF.FFFF1 4.00 PCI I/O space INT2

B9.0000.0000 – B9.FFFF.FFFF1 4.00 PCI I/O space INT1

8A.0000.0000 – 8A.FFFF.FFFF 4.00 PCI configuration space, type 0, INT8

9A.0000.0000 – 9A.FFFF.FFFF1 4.00 PCI configuration space, type 0, INT4

AA.0000.0000 – AA.FFFF.FFFF1 4.00 PCI configuration space, type 0, INT2

BA.0000.0000 – BA.FFFF.FFFF1 4.00 PCI configuration space, type 0, INT1

8B.0000.0000 – 8B.FFFF.FFFF 4.00 PCI configuration space, type 1, INT8

9B.0000.0000 – 9B.FFFF.FFFF1 4.00 PCI configuration space, type 1, INT4

AB.0000.0000 – AB.FFFF.FFFF1 4.00 PCI configuration space, type 1, INT2

BB.0000.0000 – BB.FFFF.FFFF1 4.00 PCI configuration space, type 1, INT1

C7.C000.0000 – C7.FFFF.FFFF2 1.00 Flash ROM read/write space

Table 6–2 Physical Address Map (Byte/Word Mode Enabled) (Sheet 2 of 2)

21164 Address Size (GB) Selection
3 October 1997 – Subject To Change System Address Space 6–3

Address Map

 access

ostics),
64-bit
gura-
on-
ycles.

d
d the

 any
 no
m
CI
The 21164 address space is divided into two regions using physical address <39>:

• 0 – 21164 access is to the cached memory space.

• 1 – 21164 access is to noncached space. This noncached space is used to
memory-mapped I/O devices. Mailboxes are not supported.

The noncached space contains the CSRs, noncached memory space (for diagn
and the PCI address space. The PCI defines three physical address spaces: a
PCI memory space, a 4GB PCI I/O space, and a 256 byte-per-device PCI confi
tion space. In addition to these three address spaces on the PCI, the 21164’s n
cached space is also used to generate PCI interrupt acknowledge and special c

The 21164 has visibility to the complete address space. It can access the cache
memory region, the CSR region, the PCI memory region, the PCI I/O region, an
configuration regions (see Figure 6–1).

The PCI devices have a restricted view of the address space. They can access
PCI device through the PCI memory space or the PCI I/O space; but they have
access to the PCI configuration space. The system restricts access to the syste
memory (for DMA operations) to the use of five programmable windows in the P
memory space (see Figure 6–1).
6–4 System Address Space 3 October 1997 – Subject To Change

Address Map

e
Figure 6–1 Address Space Overview

DMA access to the system memory is achieved using windows in one of the follow-
ing three ways:

• Directly, using the “Monster Window” with dual-address cycles (DAC), wher
ad<33:0> equals addr_h<33:0>.

• Directly-mapped, by concatenating an offset to a portion of the PCI address.

• Virtually, through a scatter-gather translation map. The scatter-gather map
allows any 8KB page of PCI memory address region to be redirected to any
8KB cached memory page, as shown in Figure 6–2.

21164
Environment

Main System
Memory

PCI
Memory Space

PCI Window

PCI I/O Space

PCI
Device

PCI
Configuration

Space
CSRs

PCI
Device

21164

LJ-05395.AI4
3 October 1997 – Subject To Change System Address Space 6–5

PCI Address Space

Figure 6–2 Memory Remapping

6.2 PCI Address Space

The system generates 32-bit PCI addresses but accepts both 64-bit address (DAC1)
cycles and 32-bit PCI address (SAC2) cycles. Accessing main memory is as follows:

• Window 4, the “Monster Window,” provides full access to main memory. It is
accessed by DAC only with ad<40> equal to 1. Memory address addr_h<33:0>
equals PCI address ad<33:0>.

• Window 3 can be either DAC or SAC, but not both. If DAC, ad<63:40> must be
zero, ad<39:32> must match the DAC register, and ad<31:0> must hit in win-
dow 3.

• Windows 0, 1, and 2 are SAC-only.

1 Dual-address cycle (PCI 64-bit address transfer) requires that address bits <63:32> con-
tain a nonzero value.

2 Single-address cycle (PCI 32-bit address transfer) requires that address bits <63:32> con-
tain a value of zero.

LJ-05396.AI4

21164 CPU�
Cached Memory Space (8GB) PCI Memory�

Space

Scatter-Gather�
Map

Direct Map

PCI Window

PCI Window

8KB�
Page
6–6 System Address Space 3 October 1997 – Subject To Change

21164 Address Space

how
es

ace is

g-
gion

eg-

-

t-
6.3 21164 Address Space

Figure 6–3 shows an overview of the 21164 address space. Figure 6–4 shows
the 21164 address map translates to the PCI address space and how PCI devic
access the 21164 memory space using DMA transactions. The PCI memory sp
double mapped via dense and sparse space.

The 21164 I/O address map has the following characteristics:

• Provides 4GB of dense3 address space to completely map the 32-bit PCI mem-
ory space.

• Provides abundant PCI sparse3 memory address space because sparse-space
regions have byte granularity and is the safest memory space to use (that is, no
prefetching). Furthermore, the larger the space the less likely software will need
to dynamically relocate the sparse-space segments. The main problem with
sparse space is that it wastes 21164 address space (for example, 16GB of 21164
address space maps to 512MB of PCI sparse space).

The system provides three PCI sparse-space memory regions, allowing 704MB
of total sparse-space memory. The three regions are relocatable using the
HAE_MEM CSR. The simplest configuration allows for 704MB of contiguous
memory space.

– 512MB region, which may be located in any naturally aligned 512MB se
ment of the PCI memory space. Software programmers may find this re
sufficient for their needs and can ignore the remaining two regions.

– 128MB regions, which may be located on any naturally aligned 128MB s
ment of the PCI memory space.

– 64MB region, which may be located on any naturally aligned 64MB seg
ment of the PCI memory space.

• Limits the PCI I/O space to sparse space. Although the PCI I/O space can handle
4GB, most PCI devices will not exceed 64KB for the foreseeable future. The
system provides 64MB of sparse I/O space because address decoding is faster.

• Provides two PCI I/O sparse-space regions: region A, which is 32MB and is
fixed in PCI segment 0–32MB; and region B, which is also 32MB, but is reloca
able using the HAE_IO register.

3 Dense and sparse space address space are described later in this chapter.
3 October 1997 – Subject To Change System Address Space 6–7

21164 Address Space
Figure 6–3 21164 Address Space Configuration

LJ-05397.AI4

21164�
Memory Space

Reserved

PCI Memory�
Dense Space

PCI Memory�
Sparse Space

PCI Windows

PCI I/O�
Space

Scatter-Gather�
or�

Direct�
Translation

Cached�
Memory

PCI Memory�
Space

PCI I/O�
Space

21164 Programmed I/O

DMA Read/Write
6–8 System Address Space 3 October 1997 – Subject To Change

21164 Address Space
Figure 6–4 21164 and DMA Read and Write Transactions

LJ-04868.AI4

000XX

0Size

313233343536373839 30

Physical�
Address

00

0=Cached�
Memory�
Space

1=Noncached�
I/O�

Space

00.0000.0000

01.FFFF.FFFF
02.0000.0000

7F.FFFF.FFFF
00XXX 80.0000.0000

PCI Memory�
Sparse Space�
704MB Maximum

Reserved

8GB Cached�
Memory

PCI I/O Sparse�
Space — 64MB

Byte/Word PCI�
Space — 16GB

PCI Memory Dense�
Space — 4GB

PCI Configuration,�
CIA CSRs, Flash ROM

83.FFFF.FFFF
0100X 84.0000.0000

86.FFFF.FFFF
0111X 87.0000.0000

87.FFFF.FFFF

8B.FFFF.FFFF

1000X 88.0000.0000

84.FFFF.FFFF
01010 85.0000.0000

01011 85.8000.0000

0110X 86.0000.0000
3 October 1997 – Subject To Change System Address Space 6–9

21164 Address Space

174
.
6.3.1 System Address Map

Figure 6–5 shows the following system address regions:

• Main memory address space contains 8GB. All transactions contain 64 bytes, are
cache-block aligned, and are placed in cache by the 21164. Both Istream and
Dstream transactions access this address space.

• PCI sparse-space memory region 1 contains 512MB. Noncached 21164 read/write
transactions are allowed, including byte, word, tribyte, longword (LW), and quad-
word (QW) types. There is no read prefetching.

• PCI sparse-space memory region 2 contains 128MB.

• PCI sparse-space memory region 3 contains 64MB.

• PCI I/O sparse-space memory region A contains 32MB and is not relocatable.

• PCI I/O sparse-space memory region B contains 32MB and is relocatable by
way of the HAE_IO register.

• PCI dense memory space contains 4GB for 21164 noncached 21164 transac-
tions. It is used for devices with access granularity greater or equal to a LW.
Read prefetching is allowed, and thus read transactions can have no side effects.

• The PCI configuration space is used for noncached 21164 access. Sparse-space
read/write transactions are allowed, including byte, word, tribyte, LW, and QW
types. Prefetching of read data is not allowed.

Figure 6–6 shows a detailed view of PCI configuration space that includes 21
CSRs. The 21174 CSR address space is chosen for hardware convenience
6–10 System Address Space 3 October 1997 – Subject To Change

21164 Address Space
Figure 6–5 System Address Map

0

LJ-05398.AI4

34 333839 3435

Memory Address 0

Main Memory — 8GB

034 333839

PCI Memory Address <28:2>X 01

PCI Sparse Memory Space — 512MB Region 1

31 2 1 034 33 323839

PCI Memory Address <26:2>0X01

Size

0 0

PCI Sparse Memory Space — 128MB Region 2

31 2 1 034 33 323839

PCI Memory Address <25:2>11 0

PCI Sparse Memory Space — 64MB Region 3

00000

0 00 0 00

2367

10 0 0 Size 0

367

Size

367

0 00X0

35

35

35

00

30

1 0

31 2 1 034 33 323839

PCI I/O Address <24:2>11 0

PCI I/O Sparse Space — 32MB Region A

Size

367

0 00X0

35

00

30

1 0

29

1

31 2 1 034 33 323839

PCI I/O Address <24:2>11 0

PCI I/O Sparse Space — 32MB Region B

Size

367

0 00X0

35

00

30

1

29

1 1

31 2 1 034 33 323839

PCI Memory Address <31:2>11 0

PCI Memory Dense Space — 4GB

01X0

35

00

30

0

29

31 2 1 034 33 323839

Address1 0

PCI Configuration Space

Size

367

0 0X0

35

00

28 27

CSR

Space1 1 1
3 October 1997 – Subject To Change System Address Space 6–11

21164 Byte/Word PCI Space

figu-
Figure 6–6 21174 CSR Space

6.4 21164 Byte/Word PCI Space

The 21164 supports byte/word instructions that allow software to perform byte gran-
ularity transactions to and from I/O space without using sparse address space. This
space is divided into four regions: memory, I/O, configuration – type 0, and con
ration – type 1, as shown in Figure 6–7.

31 2 1 034 33 323839

Address1 0

PCI Configuration Space

Size

367

0 0X0

35

00

28 27

CSR

Space1 1 1

CPU Address
31 30 29 28

0 0 0

0 0 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1

Size (GB)

0.5

0.5

0.25

0.25

0.25

0.25

2.00

PCI Configuration Space

PCI IACK/Special Cycle

21174 Main CSRs

Main Memory Control CSRs

21174 Address Translation

Reserved

Miscellaneous

Contents

 FM-06062.AI4
6–12 System Address Space 3 October 1997 – Subject To Change

21164 Byte/Word PCI Space
Figure 6–7 Byte/Word PCI Space

Operations are the same for the four regions. The 21164 will issue a single byte/word
read or write transaction for PCI byte and word instructions. The 21164 will not pack
longword load instructions. The 21164 can pack up to eight longword store instruc-
tions for a single 32-byte block into one transaction. Up to four quadword instruc-
tions can also be packed to the same 32-byte block. Byte/word support is enabled
when 21164 IPR register ICSR<17> equals 1 and when 21174 CSR register
PYXIS_CTRL1<0> also equals 1.

31 2 1 0

LJ-05399.AI4

3637 35 34 33 323839

PCI Memory Address <31:2>01X 001 Size 0 0

PCI Memory Space — 4GB

31 03637 35 34 33 323839

PCI I/O Address11X 001 Size

PCI I/O Space — 4GB

31 2 1 03637 35 34 33 323839

PCI Configuration Address <31:2>01X 101 Size 0 0

PCI Type 0 Configuration Space — 4GB

31 2 1 03637 35 34 33 323839

PCI Configuration Address <31:2>11X 101 Size 0 1

PCI Type 1 Configuration Space — 4GB
3 October 1997 – Subject To Change System Address Space 6–13

21164 Byte/Word PCI Space

led.
Table 6–3 shows noncached 21164 addresses when byte/word support is enab

6.4.1 21164 Size Field

Table 6–4 shows the calculation of the 21164 size field.

The following transactions use single data transfers on the PCI:

• INT1 and INT2 read and write transactions

• INT4 read transactions

 The following transactions have multiple data transfers on the PCI:

• INT4 write transactions

• INT8 read and write transactions

Table 6–3 21164 Byte/Word Addressing

Instruction
addr_h
<38:37>

int4_valid

<3> <2> <1> <0>

LDQ 00 INT8 — — —

LDL 01 addr_h<3:2> — Undefined —

LDWU 10 addr_h<3:1> — — Undefined

LDBU 11 addr_h<3:0> — — —

STQ 00 INT4 Mask — — —

STL 01 INT4 Mask — — —

STW 10 addr_h<3:1> — — Undefined

STB 11 addr_h<3:0> — — —

Table 6–4 21164 Byte/Word Translation Values

Size<38:37> Data Size

00 INT8 (Quadword — 8 bytes, 64 bits)

01 INT4 (Longword — 4 bytes, 32 bits)

10 INT2 (Word — 2 bytes, 16 bits)

11 INT1 (Byte — 1 byte, 8 bits)
6–14 System Address Space 3 October 1997 – Subject To Change

Cacheable Memory Space

 of
e

tions on
arated

ce
 is

epa-
to be

a-

ess to
6.5 Cacheable Memory Space

Cacheable memory space is located in the range 00.0000.0000 to 01.FFFF.FFFF.
The 21174 recognizes the first 8GB to be in cacheable memory space. The block size
is fixed at 64 bytes. Read and flush commands to the 21164 caches occur for DMA
traffic.

6.6 PCI Dense Memory Space

PCI dense memory address space is located in the range 86.0000.0000 to
86.FFFF.FFFF. This address space is typically used for memory-like data buffers
such as a video frame buffer or a nonvolatile RAM (NVRAM). Dense space does not
allow byte or word access, but has the following advantages over sparse space:

• Contiguous locations — Some software, such as the default graphics routines
the Windows NT operating system, requires memory-like transactions. Thes
routines cannot use sparse-space addresses, because they require transac
the PCI bus to be at adjacent 21164 addresses, instead of being widely sep
as in sparse space. As a result, if the user-mode driver manipulates its frame
buffer in sparse space, it cannot hand over the buffer to the common
Windows NT operating system graphics code.

• Higher bus bandwidth — PCI bus burst transfers are not usable in sparse spa
except for a 2-longword burst for quadword write transactions. Dense space
defined to allow both burst read and write transactions.

• Efficient read/write buffering — In sparse space, separate transactions use s
rate read or write buffer entries. Dense space allows separate transactions
collapsed in read and write buffers (as the 21164 does).

• Few memory barriers (MBs) — In general, sparse-space transactions are sep
rated by MB instructions to avoid read/write buffer collapsing. Dense-space
transactions only require barriers when explicit ordering is required by the soft-
ware.

Dense space is provided for the 21164 to access PCI memory space, not for acc
PCI I/O space. Dense space has the following characteristics:

• It holds a one-to-one mapping between 21164 addresses and PCI addresses.
A longword address from the 21164 will map to a longword on the PCI with no
shifting of the address field. Hence, the term dense space. Sparse space, on the
other hand, maps a large piece of 21164 memory space (32 bytes) to a small
piece (such as a byte) on the PCI.
3 October 1997 – Subject To Change System Address Space 6–15

PCI Dense Memory Space
• The concept of dense space (and sparse space) is applicable only to a 21164-gen-
erated address. There is no such thing as dense space (or sparse space) for a PCI
generated address.

• Byte or word transactions are not possible in dense space. The minimum access
granularity is a longword on write transactions and a quadword on read transac-
tions. The maximum transfer length is 32 bytes (performed as a burst of eight
longwords on the PCI). Any combination of longwords may be valid on write
transactions. Valid longwords surrounding an invalid longword(s) (called a hole)
are required to be handled correctly by all PCI devices. The 21174 will allow
such holes to be issued.

• Read transactions will always be performed as a burst of two or more longwords
on the PCI because the minimum granularity is a quadword. The 21164 can
request a longword but the 21174 will always fetch a quadword, thus prefetching
a second longword. Therefore, this space cannot be used for devices that have
read side effects. Although a longword may be prefetched, the prefetch buffer is
not treated as a cache and so coherency is not an issue. A quadword read transac-
tion is not atomic on the PCI; that is, the target device is at liberty to force a retry
after the first longword of data is sent, and then to allow another PCI device to
take control of the PCI bus4.

• The 21164 merges noncached reads of up to 32 bytes maximum. The largest
dense-space read transaction is 32 bytes from the PCI bus.

• Write transactions to dense space are buffered in the 21164 chip. The 21174 sup-
ports a burst length of 8 on the PCI, corresponding to 32 bytes of data. Also, the
21174 provides four 32-byte write buffers to maximize I/O write transaction per-
formance. These four buffers are strictly ordered. Write transactions are sent out
on the bus in the order that they were received from the 21164. Avoid write
buffer merging and use memory barrier (MB) and write memory barrier (WMB)
instructions carefully.

4 The 21174 does not drive the PCI lock signal and this cannot ensure atomicity. This is true
of all current Alpha microprocessors.
6–16 System Address Space 3 October 1997 – Subject To Change

PCI Sparse Memory Space

n

ps
Figure 6–8 shows dense-space address generation.

Figure 6–8 Dense-Space Address Generation

The following list describes address generation in dense space:

• addr_h<31:5> value is sent directly out on ad<31:5>.

• addr_h<4:2> is not sent out by the 21164 and instead is inferred from the
int4_valid<3:0>.

• ad<4:3> is a copy of addr_h<4:3>.

• ad<2> differs for read and write transactions as follows:

– For a read transaction, ad<2> is zero (that is, the minimum read transactio
resolution in noncached space is a quadword).

– For a write transaction, ad<2> equals addr_h<2>.

6.7 PCI Sparse Memory Space

The system provides three regions of contiguous 21164 address space that ma
to PCI sparse memory space. The total 21164 range is from 80.0000.0000 to
85.7FFF.FFFF.

LJ04264A.AI4

1 1

21164 Address

<31:5>

PCI Dense�
Memory�
Address

0 0

21164

int4_valid

0 0

31 05 04 02 01 00

34 33 32 31 05 04 02 01 0039 38 35

1 0
3 October 1997 – Subject To Change System Address Space 6–17

PCI Sparse Memory Space

6

l
6.7.1 Hardware Extension Register (HAE_MEM)

In sparse space, addr_h<7:3> are used to encode byte enable bits, size bits and the
low-order PCI address, ad<2:0>. This means that there are now five fewer address
bits available to generate the PCI physical address.

The system provides three sparse-space PCI memory regions and allows all three
sparse-space regions to be relocated by way of bits in the HAE_MEM register. This
provides software with great flexibility.

6.7.2 Memory Access Rules and Operation

The Alpha instruction set can express only aligned longword and quadword data ref-
erences. The PCI bus requires the ability to express byte, word, tribyte, longword
(double word), and quadword references. Intel processors are capable of generating
unaligned references, so the 21174 should be able to emulate the resulting PCI trans-
actions to ensure compatibility with PCI devices designed for Intel systems.

The size of the data transfer (byte, word, tribyte, longword, or quadword) and the
byte enables are encoded in the 21164 address. The 21164 signals addr_h<6:3> are
used for this purpose, leaving the remaining addr_h<31:7> signals to generate a PCI
longword address <26:3>5. This loss of address bits has resulted in a 21164 22GB
sparse 32-bit address space that maps to only 704MB of address space on the PCI.

The rules for accessing sparse space are as follows:

• Sparse space supports all the byte encodings that may be generated in an Intel
system to ensure compatibility with PCI devices/drivers. The results of some
references are not explicitly defined. These are the missing entries in Table 6–
(that is, word size with address<6:5> = 11). The hardware will complete theref-
erence, but the reference is not required to produce any particular result, nor wil
the system report an error.

• Software must use longword load or store instructions (LDVSTL) to perform a
reference of longword length or less on the PCI bus. The bytes to be transferred
must be positioned within the longword in the correct byte lanes as indicated by
the PCI byte enable bits. The hardware does not shift bytes within the longword.
Quadword load and store instructions must be used only to perform quadword
transfers. Use of STQ/LDQ instructions for any other references will produce
UNPREDICTABLE results.

5 Quadword encoding is provided by way of 21164 address bits <6:3>. In this case, 21164
address bit <7> is treated as zero by the hardware.
6–18 System Address Space 3 October 1997 – Subject To Change

PCI Sparse Memory Space

s out

te
• Hardware does not perform read-ahead (prefetch) transactions in sparse space
because read-ahead transactions may have detrimental side effects.

• Programmers are required to insert memory barrier (MB) instructions between
sparse-space transactions to prevent collapsing in the 21164 write buffer. How-
ever, this is not always necessary. For example, consecutive sparse-space
addresses will be separated by 32 bytes (and will not be collapsed by the 21164).

• Programmers are required to insert MB instructions if the sparse-space address
ordering/coherency to a dense-space address is to be maintained.

• Table 6–6 shows encoding of the 21164 address for sparse-space read transac-
tions to PCI space. An important point to note is that signals addr_h<33:5> are
directly available from the 21164 pins. On read transactions, the 21164 send
addr_h<2:0> indirectly on the int4_valid pins. Signals addr_h<2:0> are
required to be zero. Transactions with addr_h<2:0> not equal to zero will pro-
duce UNPREDICTABLE results.

• Table 6–5 shows the relation between int4_valid<3:0> and addr_h<4:3> for a
sparse-space write transaction. Unlisted int4_valid patterns will produce
UNPREDICTABLE results (that is, as a result of collapsing in the 21164 wri
buffer; or by issuing a STQ instruction when a STL instruction is required).

1 All other int4_valid patterns result in UNPREDICTABLE results.
2 Only one valid STQ case is allowed.

Table 6–5 Int4_valid and 21164 Address Relationship

EV5 Data Cycle Int4_valid<3:0>1 Address<4:3>

First 00 01 0 0

00 10 0 0

01 00 0 1

10 00 0 1

Second 00 01 1 0

00 10 1 0

01 00 1 1

10 00 1 1

11 00 (STQ)2 1 1
3 October 1997 – Subject To Change System Address Space 6–19

PCI Sparse Memory Space

 byte
-

Table 6–6 defines the low-order PCI sparse memory address bits. Signals
addr_h<7:3> are used to generate the length of the PCI transaction in bytes, the
enable bits, and ad<2:0>. The 21164 signals addr_h<30:8> correspond to the quad
word PCI address and are sent out on ad<25:3>.

1 Byte enable set to 0 indicates that byte lane carries meaningful data.
2 A<7> = addr_h<7>.
3 In PCI sparse memory space, ad<1:0> is always zero.
4 Missing entries (for example, word size with 21164 address = 11) enjoy UNPREDICTABLE results.

Table 6–6 PCI Memory Sparse-Space Read/Write Encodings

Size Byte Offset
addr_h
<6:5>

21164
Instruction
Allowed ad<2:0>

PCI Byte
Enable1

Data-In Register
Byte Lanes
63.....32 31.......0addr_h<4:3>

 00 A<7>2,003 1110 OOOX

 01 A<7>,00 1101 OOXO

Byte 00 10 LDL,STL A<7>,00 1011 OXOO

 11 A<7>,00 0111 XOOO

 00 A<7>,00 1100 OOXX

Word4 01 01 LDL,STL A<7>,00 1001 OXXO

 10 A<7>,00 0011 XXOO

 00 A<7>,00 1000 OXXX

Tribyte 10 01 LDL,STL A<7>,00 0001 XXXO

Longword 11 00 LDL,STL A<7>,00 0000 XXXX

Quadword 11 11 LDQ,STQ 000 0000 XXXX XXXX
6–20 System Address Space 3 October 1997 – Subject To Change

PCI Sparse Memory Space

n
The high-order ad<31:26> are obtained from either the hardware extension register
(HAE_MEM) or the 21164 address depending on sparse-space regions, as shown in
Table 6–7. For more information about the 21174 HAE_MEM CSR, see Sectio
5.1.6.

Figure 6–9 shows the mapping for region 1.

Figure 6–9 PCI Memory Sparse-Space Address Generation – Region 1

Table 6–7 PCI Address Mapping

21164
Address Region ad

 <31> <30> <29> <28> <27> <26>

80.0000.0000
to
83.FFFF.FFFF

1 HAE_MEM
 <31>

HAE_MEM
 <30>

HAE_MEM
 <29>

CPU<33> CPU<32> CPU<31>

84.0000.0000
to
84.FFFF.FFFF

2 HAE_MEM
 <15>

HAE_MEM
 <14>

HAE_MEM
 <13>

HAE_MEM
 <12>

HAE_MEM
 <11>

CPU<31>

85.0000.0000
to
85.FFFF.FFFF

3 HAE_MEM
 <7>

HAE_MEM
 <6>

HAE_MEM
 <5>

HAE_MEM
 <4>

HAE_MEM
 <3>

HAE_MEM
 <2>

SBZ

PCI Address

4 3

Length in Bytes
Byte Offset

HAE_MEM CSR

PCI QW Address

LJ04265A.AI4

1 0

21164 Address

0 0

21164
int4_valid

31 02 01 00

34 33 05 04 03 02 0039 38 35 060708

31 29 28 00

0329 28
3 October 1997 – Subject To Change System Address Space 6–21

PCI Sparse Memory Space
Figure 6–10 shows the mapping for region 2.

Figure 6–10 PCI Memory Sparse-Space Address Generation – Region 2

Figure 6–11 shows the mapping for region 3.

Figure 6–11 PCI Memory Sparse-Space Address Generation – Region 3

SBZ

PCI Address

4 3

Length in Bytes
Byte Offset

HAE_MEM CSR

PCI QW Address

LJ-04266.AI4

1 1

21164 Address

0 0

21164
int4_valid

31 02 01 00

34 33 05 04 03 02 0039 38 35 060708

31 15

03

32 31

27 26

16 10 0011

0 0

SBZ

PCI Address

4 3

Length in Bytes
Byte Offset

HAE_MEM CSR

PCI QW Address

LJ-04267.AI4

1 1

21164 Address

0 0

21164
int4_valid

31 02 01 00

34 33 05 04 03 02 0039 38 35 060708

31 07

03

32 31

26 25

08 01 0002

30

0 1 0
6–22 System Address Space 3 October 1997 – Subject To Change

PCI Sparse I/O Space

his
 a fur-

 bits,

o be

F.
B

 read
high-

ce
rse

e

ns:
6.8 PCI Sparse I/O Space

The PCI sparse I/O space is divided into two regions — region A and region B.
Region A addresses the lower 32MB of PCI I/O space and is never relocated. T
region will be used to address the (E)ISA devices. Region B is used to address
ther 32MB of PCI I/O space and is relocatable using the HAE_IO register.

6.8.1 Hardware Extension Register (HAE_IO)

In sparse space, the 21164 address bits <7:3> are used to encode byte enable
size bits, and the low-order ad<2:0>. This means that there are now five fewer
address bits available to generate the PCI physical address.

The system provides two PCI sparse I/O space regions and allows one region t
relocated by way of bits in the HAE_IO register.

6.8.2 PCI Sparse I/O Space Access Operation

The PCI sparse I/O space is located in the range 85.8000.0000 to 85.FFFF.FFF
This space has characteristics similar to the PCI sparse memory space. This 2G
21164 address segment maps to two 32MB regions of PCI I/O address space. A
or write transaction to this space causes a PCI I/O read or write command. The
order PCI address bits are handled as follows:

• Region A: This region has addr_h<34:30> = 10110 and addresses the lower
32MB of PCI sparse I/O space. Signals ad<31:25> are asserted at zero by the
hardware (see Figure 6–12). Region A is used to address (E)ISA address spa
(the EISA 64KB I/O space cannot be relocated). Figure 6–12 shows PCI spa
I/O space address translation in Region A.

• Region B: This region has addr_h<34:30> = 10111 and addresses a relocatable
32MB of PCI sparse I/O space. This 32MB segment is relocated by assigning
ad<31:25> to equal HAE_IO<31:25>. Figure 6–13 shows PCI sparse I/O spac
address translation in Region B.

 The remainder of the PCI I/O address is formed in the same way for both regio

• ad<24:3> are derived from addr_h<29:8>.

• ad<2:0> are defined in Table 6–8.
3 October 1997 – Subject To Change System Address Space 6–23

PCI Sparse I/O Space
Table 6–8 contains the PCI sparse I/O space read/write encodings.

1 Byte enable set to 0 indicates that byte lane carries meaningful data.
2 A<7> = addr_h<7>.
3 Missing entries (for example, word size with 21164 address = 11) enjoy UNPREDICTABLE results.

Table 6–8 PCI Sparse I/O Space Read/Write Encodings

Size Byte Offset
addr_h
<6:5>

21164
Instruction
Allowed ad<2:0>

PCI Byte
Enable1

Data-In Register
Byte Lanes
63.....32 31.......0addr_h<4:3>

00 A<7>2,00 1110 OOOX

01 A<7>,00 1101 OOXO

Byte 00 10 LDL,STL A<7>,00 1011 OXOO

11 A<7>,00 0111 XOOO

00 A<7>,00 1100 OOXX

Word3 01 01 LDL,STL A<7>,00 1001 OXXO

10 A<7>,00 0011 XXOO

00 A<7>,00 1000 OXXX

Tribyte 10 01 LDL,STL A<7>,00 0001 XXXO

Longword 11 00 LDL,STL A<7>,00 0000 XXXX

Quadword 11 11 LDQ,STQ 000 0000 XXXX XXXX
6–24 System Address Space 3 October 1997 – Subject To Change

PCI Sparse I/O Space
Figure 6–12 PCI Sparse I/O Space Address Translation (Region A, Lower 32MB)

Figure 6–13 PCI Sparse I/O Space Address Translation (Region B, Higher Area)

SBZ

PCI Address

4 3

Length in Bytes
Byte Offset

LJ-04268.AI4

1 1

21164 Address

0 0

21164
int4_valid

31 02 01 00

34 33 05 04 03 02 0039 38 35 060708

03

32 31

25 24

30 29

0 1 1 0

0 0 0 0 0 0 0

<29:8>

PCI Address

4 3

Length in Bytes
Byte Offset

HAE_IO CSR

LJ04269A.AI4

21164 Address

21164
int4_valid

31 02 01 00

34 33 05 04 03 02 0039 38 35 060708

31 24

03

32 31

25 24

25

30 29

SBZ1 1

0 0

0 1 1 1
3 October 1997 – Subject To Change System Address Space 6–25

PCI Configuration Space

e

 a

e

).

con-
6.9 PCI Configuration Space

The PCI configuration space is located in the range 87.0000.0000 to 87.1FFF.FFFF.
Software is advised to clear PYXIS_CTRL<FILL_ERR_EN> when probing for PCI
devices by way of configuration space read transactions. This will prevent the 21174
from generating an ECC error if no device responds to the configuration cycle (and
random data is picked up on the PCI bus).

A read or write transaction to this space causes a configuration read or write cycle on
the PCI. There are two classes of targets that are selected, based on the value of the
CFG register.

• Type 0 — These are targets on the primary 64-bit PCI bus. These targets ar
selected by making CFG<1:0> = 0.

• Type 1 — These are targets on the secondary 32-bit PCI bus (that is, behind
PCI-to-PCI bridge). These targets are selected by making CFG<1:0> = 1.

Note: CFG<1:0> = 10 or 11 are reserved (by the PCI specification).

Software must program the CFG register before running a configuration cycle.
Sparse address decoding is used. Signals addr_h<6:3> are used to generate both th
length of the PCI transaction in bytes and the byte enable bits. Signals ad<1:0> are
obtained from CFG<1:0>. Signals addr_h<28:7> correspond to ad<23:2> and
provide the configuration command information (such as which device to select
The high-order ad<31:24> are always zero.

Figure 6–14 depicts PCI configuration space (sparse). Figure 6–15 shows PCI
figuration space (dense).
6–26 System Address Space 3 October 1997 – Subject To Change

PCI Configuration Space
Figure 6–14 PCI Configuration Space Definition (Sparse)

Figure 6–15 PCI Configuration Space Definition (Dense)

000111MBZ1

313234353839 29 28 21 20 16 15 13 12 07 06 05 04 03 02

Length

CFG<1:0>

Type 0 PCI�
Configuration�

Address

CPU Address

Type 1 PCI�
Configuration�

Address

00

LJ04270A.AI4

0 0 0 0 0 0 Bus Device Function Register 0 100

31 27 26 24 23 16 15 11 10 0708 02 01 00

Byte Offset

31 11 10 0708 02 01 00

IDSEL Function Register 0 0

31 24 16 15 07 02

CFG<1:0>

00

LJ-05400.AI4

Byte Offset

0108101123

31 07 02 0001081011

31 24 16 15 07 02 00010810112327 26

IDSEL Function Register

0 0 0 0 0 0 Bus Device Function Register 0 100
3 October 1997 – Subject To Change System Address Space 6–27

PCI Configuration Space

e

net)

type
 bit
Peripherals are selected during a PCI configuration cycle if the following three con-
ditions are met:

1. Their IDSEL pin is asserted.

2. The PCI bus command indicates a configuration read or write.

3. Address bits <1:0> are 00.

Address bits <7:2> select a Dword (longword) register in the peripheral’s 256-byt
configuration address space. Transactions can use byte masks.

Peripherals that integrate multiple functional units (for example, SCSI and Ether
can provide configuration space for each function. Address bits <10:8> can be
decoded by the peripheral to select one of eight functional units.

Signals ad<31:11> are available to generate the IDSEL bits (note that IDSEL bits
behind a PCI-to-PCI bridge are determined from the device field encoding of a
1 access). The IDSEL pin of each device is connected to a unique PCI address
from ad<31:11>. The binary value of addr_h<20:16> is used to select which
ad<31:11> is asserted, as shown in Table 6–9.

Table 6–9 CPU Address to IDSEL Conversion

CPU Address <20:16> ad<31:11> – IDSEL

00000 0000 0000 0000 0000 0000 1

00001 0000 0000 0000 0000 0001 0

00010 0000 0000 0000 0000 0010 0

00011 0000 0000 0000 0000 0100 0

.....

.....

10011 0100 0000 0000 0000 0000 0

10100 1000 0000 0000 0000 0000 0

10101 0000 0000 0000 0000 0000 0

..... ...(No device selected)

..... —

11111 0000 0000 0000 0000 0000 0
6–28 System Address Space 3 October 1997 – Subject To Change

PCI Configuration Space

ary
bus
t hier-
Note: If a quadword access is specified for the configuration cycle, then the
least significant bit of the register number field (such as ad<2>) must be
zero. Quadword transactions must access quadword aligned registers.

If the PCI cycle is a configuration read or write cycle but the ad<1:0> are 01 (that is,
a type 1 transfer), then a device on a hierarchical bus is being selected via a PCI-to-
PCI bridge. This cycle is accepted by the PCI-to-PCI bridge for propagation to its
secondary PCI bus. During this cycle, <23:16> selects a unique bus number, and
address <15:8> selects a device on that bus (typically decoded by the PCI-to-PCI
bridge to generate the secondary PCI address pattern for IDSEL). In addition,
address <7:2> selects a Dword (longword) in the device’s configuration space.

Table 6–10 contains the PCI configuration space read/write encodings.

Each PCI-to-PCI bridge can be configured via PCI configuration cycles on its prim
PCI interface. Configuration parameters in the PCI-to-PCI bridge will identify the
number for its secondary PCI interface and a range of bus numbers that may exis

1 Byte enable set to 0 indicates that byte lane carries meaningful data.
2 A<7> = addr_h<7>.
3 Missing entries (for example, word size with addr_h<6:5> = 11) generate UNPREDICTABLE results.

Table 6–10 PCI Configuration Space Read/Write Encodings

Size Byte Offset
addr_h
<6:5>

21164
Instruction
Allowed ad<2:0>

PCI Byte
Enable1

Data-In Register
Byte Lanes
63.....32 31.......0addr_h<4:3>

00 A<7>2,00 1110 OOOX

01 A<7>,00 1101 OOXO

Byte 00 10 LDL,STL A<7>,00 1011 OXOO

11 A<7>,00 0111 XOOO

00 A<7>,00 1100 OOXX

Word3 01 01 LDL,STL A<7>,00 1001 OXXO

10 A<7>,00 0011 XXOO

00 A<7>,00 1000 OXXX

Tribyte 10 01 LDL,STL A<7>,00 0001 XXXO

Longword 11 00 LDL,STL A<7>,00 0000 XXXX

Quadword 11 11 LDQ,STQ 000 0000 XXXX XXXX
3 October 1997 – Subject To Change System Address Space 6–29

PCI Configuration Space

cle,

t
 con-
r
le of
archically behind it. If the bus number of the configuration cycle matches the bus num-
ber of the bridge chip’s secondary PCI interface, it will accept the configuration cy
decode it, and generate a PCI configuration cycle with ad<1:0> = 00 on its secondary
PCI interface. If the bus number is within the range of bus numbers that may exis
hierarchically behind its secondary PCI interface, the bridge chip passes the PCI
figuration cycle on unmodified (ad<1:0> = 01). It will be accepted by a bridge furthe
downstream. Figure 6–16 shows a typical PCI hierarchy. This is only one examp
how the 21174 can be used in a system design.

Figure 6–16 PCI Bus Hierarchy

LJ-05401.AI4

SCSI SCSI SCSI Ethernet

PCI-to-PCI
Bridge

MemoryBcache

PCI
Graphics

32-Bit
 Slots

Slot

Slot

Slot

Audio

PCI-to-(E)ISA
Bridge

(E)ISA
Bus

64-Bit Slots

Internal PCI

64-Bit PCI Bus

21164

21174

ASIC
6–30 System Address Space 3 October 1997 – Subject To Change

PCI Special/Interrupt Cycles

ust
6.10 PCI Special/Interrupt Cycles

PCI special/interrupt cycles are located in the range 87.2000.0000 to 87.3FFF.FFFF.

The Special cycle command provides a simple message broadcasting mechanism on
the PCI. The Intel processor uses this cycle to broadcast processor status; but in
general it may be used for logical sideband signaling between PCI agents. The
special cycle contains no explicit destination address, but is broadcast to all agents.
Each receiving agent must determine if the message contained in the data field is
applicable to it.

A write access in the range 87.2000.0000 to 87.3FFF.FFFF causes a special cycle on
the PCI. The 21164’s write data will be passed unmodified to the PCI. Software m
write the data in longword 0 of the hexword with the following fields:

• Bytes 0 and 1 contain the encoded message.

• Bytes 2 and 3 are message dependent (optional) data fields.

A read of the same address range will result in an Interrupt Acknowledge cycle on
the PCI and return the vector data provided by the PCI-EISA bridge to the 21164.

6.11 Hardware-Specific and Miscellaneous Register Space

These registers are located in the range 87.4000.0000 to 87.FFFF.FFFF.

Table 6–11 lists the address map for the hardware-specific registers.

Table 6–11 Hardware and Miscellaneous Address Map

CPU Address <39:28> Selected Region

1000 0111 0100 General control, diagnostic, performance monitoring, and
error logging registers

1000 0111 0101 Memory controller registers

1000 0111 0110 PCI window control registers and scatter-gather
translation registers

1000 0111 0111 Reserved

1000 0111 1000 Miscellaneous registers

1000 0111 1010 Interrupt control registers

1000 0111 11xx Flash ROM read/write space – for programming
3 October 1997 – Subject To Change System Address Space 6–31

PCI to Physical Memory Address

rn
The address space here is a hardware-specific variant of sparse-space encoding. For
the CSRs, addr_h<27:6> specifies a longword address where addr_h<5:0> must be
zero. All the 21174 registers are accessed with a LW granularity. For the flash ROM,
addr_h<30:6> defines a byte address. The fetched byte is always returned in the
first byte lane (bits <7:0>).

6.12 PCI to Physical Memory Address

Incoming PCI addresses (32-bit or 64-bit) have to be mapped to the 21164 cached
memory space (8GB). The 21174 provides five programmable address windows that
control access of PCI peripherals to system memory.

The mapping from the PCI address to the physical address can be direct, direct
mapped (physical mapping with an address offset), or scatter-gather mapped
(virtual mapping). These five address windows are referred to as the PCI target
windows.

Window 4 maps directly, using the “Monster Window” with dual-address cycles
(DAC), where ad<33:0> equals addr_h<33:0>.

The following three registers are associated with windows <3:0>:

• Window base (W_BASE) register

• Window mask (W_MASK) register

• Translated base (T_BASE) register

In addition, there is an extra register associated with window 3 only. This is the win-
dow DAC register and is used for PCI 64-bit addressing (that is, the DAC mode).
The following text applies only to windows <3:0>.

The window mask register provides a mask corresponding to ad<31:20> of an
incoming PCI address. The size of each window can be programmed to be from
1MB to 4GB in powers of two, by masking bits of the incoming PCI address using
the window mask register, as shown in Table 6–12. (Note that the mask field patte
was chosen to speed up timing-critical logic circuits.)
6–32 System Address Space 3 October 1997 – Subject To Change

PCI to Physical Memory Address

ming
w
s

ch

e
Table 6–12 shows the PCI target window mask fields.

Based on the value of the window mask register, the unmasked bits of the inco
PCI address are compared with the corresponding bits of each window’s windo
base register. If one of the window base registers and the incoming PCI addres
match, then the PCI address has hit the PCI target window. Otherwise, the PCI
address has missed the window. A window enable bit, W_EN, is provided in ea
window’s window base register to allow windows to be independently enabled
(W_EN = 1) or disabled (W_EN = 0).

If a hit occurs in any of the four windows that are enabled, then the 21174 will
respond to the PCI cycle by asserting the signal devsel. The PCI target windows
must be programmed so that their address ranges do not overlap; otherwise, th
results are UNDEFINED.

1 Only the incoming ad<31:n> are compared with <31:n> of the window base register, as shown in
Figure 6–18. If n=32, no comparison is performed.

Table 6–12 PCI Target Window Mask Register Fields 1

PCI_MASK<31:20> Size of Window Value of n

0000 0000 0000 1MB 20

0000 0000 0001 2MB 21

0000 0000 0011 4MB 22

0000 0000 0111 8MB 23

0000 0000 1111 16MB 24

0000 0001 1111 32MB 25

0000 0011 1111 64MB 26

0000 0111 1111 128MB 27

0000 1111 1111 256MB 28

0001 1111 1111 512MB 29

0011 1111 1111 1GB 30

0111 1111 1111 2GB 31

1111 1111 1111 4GB 32

Otherwise UNPREDICTABLE —
3 October 1997 – Subject To Change System Address Space 6–33

PCI to Physical Memory Address

 reg-
d so

nd is

f the
ond to
 that

egis-

ost-

in-

re
MA
w can
vice

o
The window base address must be on a naturally aligned boundary address depend-
ing on the size of the window6. This rule is not particularly difficult to obey, because
the address space of any PCI device can be located anywhere in the PCI’s 4GB
memory space, and this scheme is compatible with the PCI specification:

A PCI device specifies the amount of memory space it requires via the Base
isters in its configuration space. The Base Address registers are implemente
that the address space consumed by the device is a power of two in size, a
naturally aligned on the size of the space consumed.

A PCI device need not use all the address range it consumes (that is, the size o
PCI address window defined by the base address) and it does not need to resp
unused portions of the address space. The one exception to this is a PCI bridge
requires two additional registers (the base and limit address registers). These r
ters accurately specify the address space that the bridge device will respond to7 and
are programmed by the power-on self-test (POST) code. The 21174, as a PCI h
bridge device, does not have base and limit registers8, but does respond to all the
addresses defined by the window base register (that is, all addresses within a w
dow).

Figure 6–17 shows how the DMA address ranges of a number of PCI devices a
accepted by the PCI-window ranges. PCI devices are allowed to have multiple D
address ranges, as shown for device 2. The example also shows that the windo
be larger than the corresponding device’s DMA address range, as shown for de
0. Device 1 and device 2 have address ranges that are accepted by one window. Each
window determines whether direct mapping or scatter-gather mapping is used t
access physical memory.

6 For example, a 4MB window cannot begin at address 1MB. It must start at addresses
4MB, 8MB, 12MB,

7 A PCI bridge device responds to all addresses in the range: base ≤ address < limit.
8 Host-bridge devices, because they are under system control, are free to violate the rules.
6–34 System Address Space 3 October 1997 – Subject To Change

PCI to Physical Memory Address

e

.
y-
ith a
Figure 6–17 PCI DMA Addressing Example

Figure 6–18 shows the PCI window logic. The comparison logic associated with
ad<63:32> is only used for DAC9 mode; and only if enabled by a bit in the
window base register for window 3. This logic is only applicable to window 3. Th
remaining windows only recognize 32-bit PCI addresses (that is, SAC10 cycles).

For a hit to occur in a DAC address, ad<63:40> must be zero, ad<39:32> must
match the window DAC base register, and ad<31:20> must also have a compare hit
This scheme allows a naturally aligned, 1MB–4GB PCI window to be placed an
where in the first 1TB of a 64-bit PCI address. When an address match occurs w
PCI target window, the 21174 translates the 32-bit PCI address to addr_h<33:0>.

9 Dual-address cycle (DAC) — only issued if <63:32> are nonzero for a 64-bit address.
10 Single-address cycle (SAC) — all 32-bit addresses. A PCI device must use SAC if

<63:32> equals 0.

LJ-05402.AI4

21164 Memory�
Space (8GB)

Scatter-Gather�
Map

PCI Device's DMA�
 Memory Space

PCI Memory�
Space (4GB)

8KB�
Page

PCI�
Device 0

PCI�
Device 1

PCI�
Device 2

21164 System
3 October 1997 – Subject To Change System Address Space 6–35

PCI to Physical Memory Address
Figure 6–18 PCI Target Window Compare

Zero�
Detect

Hit (Window 3 Only)

W_DAC

63 40 39 32 31 02n n-1 20 19

PCI Address

Target�
Window�
Hit Logic

Wn_MASK

Wn_BASE

Compare &�
Hit Logic

LJ04273A.AI4

31 n n-1 20

00000000 11111

DAC XXXXX

31 n n-1 20

Hit Window 3
Hit Window 2
Hit Window 1
Hit Window 0

Window 3 SG Bit

Window Enable (WENB)

Window 2 SG Bit
Window 1 SG Bit
Window 0 SG Bit
6–36 System Address Space 3 October 1997 – Subject To Change

Direct-Mapped Addressing

ter.
ns-
ans-

 must

ress
.

e direct

B
ory
6.13 Direct-Mapped Addressing

The target address is translated by direct mapping or scatter-gather mapping as deter-
mined by the Wx_BASE_SG (scatter-gather) bit of the window’s PCI base regis
If the Wx_BASE_SG bit is clear, the DMA address is direct mapped, and the tra
lated address is generated by concatenating bits from the matching window’s tr
lated base register (T_BASE) with bits from the incoming PCI address. The bits
involved in the concatenation are defined by the window mask register as shown in
Table 6–13. The unused bits of the translated base register (also in Table 6–13)
be cleared (that is, the hardware performs an AND-OR operation to accomplish the
concatenation). Because memory is located in the lower 8GB of the 21164 add
space, the 21174 ensures (implicitly) that address bits <39:33> are always zero

Because the translated base is simply concatenated to the PCI address, then th
mapping is to a naturally aligned memory region. For example, a 4MB direct-
mapped window will map to any 4MB region in main memory that falls on a 4M
boundary (for instance, it is not possible to map a 4MB region to the main mem
region 1MB–5MB).

Table 6–13 lists direct-mapped PCI target address translations.

Table 6–13 Direct-Mapped PCI Target Address Translation (Sheet 1 of 2)

W_MASK<31:20> Size of Window Translated Address <32:2>

0000 0000 0000 1MB Translated Base<33:20> : ad<19:2>

0000 0000 0001 2MB Translated Base<33:21> : ad<20:2>

0000 0000 0011 4MB Translated Base<33:22> : ad<21:2>

0000 0000 0111 8MB Translated Base<33:23> : ad<22:2>

0000 0000 1111 16MB Translated Base<33:24> : ad<23:2>

0000 0001 1111 32MB Translated Base<33:25> : ad<24:2>

0000 0011 1111 64MB Translated Base<33:26> : ad<25:2>

0000 0111 1111 128MB Translated Base<33:27> : ad<26:2>

0000 1111 1111 256MB Translated Base<33:28> : ad<27:2>

0001 1111 1111 512MB Translated Base<33:29> : ad<28:2>

0011 1111 1111 1GB Translated Base<33:30> : ad<29:2>
3 October 1997 – Subject To Change System Address Space 6–37

Scatter-Gather Addressing

m-
e
ecify
ing

tter-

n 8KB
6.14 Scatter-Gather Addressing

If the Wx_BASE_SG bit of the PCI base register is set, then the translated address is
generated by a lookup table. This table is called a scatter-gather map. Figure 6–20
shows the scatter-gather addressing scheme — full details of this scheme are pro-
vided later in Section 6.15, but for now a quick description is provided. The inco
ing PCI address is compared to the PCI window addresses looking for a hit. Th
translated base register, associated with the PCI window that is hit, is used to sp
the starting address of the scatter-gather map table in memory. Bits of the incom
PCI address are used as an offset from this starting address, to access the sca
gather PTE. This PTE, in conjunction with the remaining, least-significant PCI
address bits, forms the required memory address.

Each scatter-gather map entry maps an 8KB page of PCI address space into a
page of the 21164 address space. This offers a number of advantages to software:

• Performance: ISA devices map to the lower 16MB of memory. The Windows NT
operating system currently copies data from here to user space. The scatter-gather
map eliminates the need for this copy operation.

• User I/O buffers might not be physically contiguous or contained within a page.
With scatter-gather mapping, software does not have to manage the scattered
nature of the user buffer by copying data.

In the personal computer (PC) world, scatter-gather mapping is not an address trans-
lation scheme but is used to signify a DMA transfer list. An element in this transfer
list contains the DMA address and the number of data items to transfer. The DMA
device fetches each item of the list until the list is empty. Many of the PCI devices
(such as an EISA bridge) support this form of scatter-gather mapping.

0111 1111 1111 2GB Translated Base<33:31> : ad<30:2>

1111 1111 1111 4GB Translated Base<33:32> : ad<31:2>

Otherwise Not supported —

Table 6–13 Direct-Mapped PCI Target Address Translation (Sheet 2 of 2)

W_MASK<31:20> Size of Window Translated Address <32:2>
6–38 System Address Space 3 October 1997 – Subject To Change

Scatter-Gather Addressing

p
n bits

-

ow-
be

ber
he

ter and
Each scatter-gather map page table entry (PTE) is a quadword and has a valid bit in
bit position 0, as shown in Figure 6–19. Address bit 13 is at bit position 1 of the ma
entry. Because the 21174 implements valid memory addresses up to 16GB, the
<63:22> of the scatter-gather map entry must be programmed to 0. Bits <21:1> of
the scatter-gather map entry are used to generate the physical page address. The
physical page address is appended to ad<12:5> of the incoming PCI address to gen
erate the memory address.

System implementations may support less than 16GB of physical addressing; h
ever, any unused address bits must be forced to zero. Otherwise, behavior will
UNPREDICTABLE.

Figure 6–19 Scatter-Gather PTE Format

The size of the scatter-gather map table is determined by the size of the PCI target
window as defined by the window mask register shown in Table 6–14. The num
of entries in the table equals the window size divided by the page size (8KB). T
size of the table is simply the number of entries multiplied by 8 bytes.

The scatter-gather map table address is obtained from the translated base regis
the PCI address as shown in Table 6–14.

Table 6–14 Scatter-Gather Mapped PCI Target Address Translation (Sheet 1 of 2)

W_MASK<31:20>
Size of SG
Map Table Translated Address <32:2>

0000 0000 0000 1KB Translated Base<33:10>1 : ad<19:13>

0000 0000 0001 2KB Translated Base<33:11> : ad<20:13>

0000 0000 0011 4KB Translated Base<33:12> : ad<21:13>

0000 0000 0111 8KB Translated Base<33:13> : ad<22:13>

0000 0000 1111 16KB Translated Base<33:14> : ad<23:13>

63 012021 00

LJ-04275.AI4

PAGE_ADDRESS<32:13>

VALID

MBZ
3 October 1997 – Subject To Change System Address Space 6–39

Scatter-Gather TLB
6.15 Scatter-Gather TLB

An eight-entry translation lookaside buffer (TLB) is provided in the 21174 for scat-
ter-gather map entries. The TLB is a fully associative cache and holds the eight
most-recent scatter-gather map lookup PTEs. Four of these entries can be locked to
prevent their being displaced by the hardware TLB-miss handler. Each of the eight
TLB entries holds a PCI address for the tag and four consecutive 8KB 21164 page
addresses as the TLB data, as shown in Figure 6–20.

1 Unused bits of the Translated Base Register must be zero for correct operation.

0000 0001 1111 32KB Translated Base<33:15> : ad<24:13>

0000 0011 1111 64KB Translated Base<33:16> : ad<25:13>

0000 0111 1111 128KB Translated Base<33:17> : ad<26:13>

0000 1111 1111 256KB Translated Base<33:18> : ad<27:13>

0001 1111 1111 512KB Translated Base<33:19> : ad<28:13>

0011 1111 1111 1MB Translated Base<33:20> : ad<29:13>

0111 1111 1111 2MB Translated Base<33:21> : ad<30:13>

1111 1111 1111 4MB Translated Base<33:22> : ad<31:13>

Table 6–14 Scatter-Gather Mapped PCI Target Address Translation (Sheet 2 of 2)

W_MASK<31:20>
Size of SG
Map Table Translated Address <32:2>
6–40 System Address Space 3 October 1997 – Subject To Change

Scatter-Gather TLB

her
Figure 6–20 Scatter-Gather Associative TLB

Each time an incoming PCI address hits in a PCI target window that has scatter-
gather translation enabled, ad<31:15> are compared with the 32KB PCI page
address in the TLB tag. If a match is found, the required 21164 page address is one
of the four items provided by the data of the matching TLB entry. PCI address
ad<14:13> selects the correct 8KB 21164 page from the four pages fetched.

A TLB hit avoids having to look up the scatter-gather map PTEs in memory, result-
ing in improved system performance. If no match is found in the TLB, the scatter-
gather map lookup is performed and four PTE entries are fetched and written over an
existing entry in the TLB.

The TLB entry to be replaced is determined by a round-robin algorithm on the
unlocked entries. Coherency of the TLB is maintained by software write transactions
to the SG_TBIA (scatter-gather translation buffer invalidate all) register.

The tag portion contains a DAC flag to indicate that the PCI tag address <31:15>
corresponds to a 64-bit DAC address. Only one bit is required instead of the high-
order PCI address bits <39:32> because only one window is assigned to a DAC
cycle, and the window-hit logic has already performed a comparison of the high-
order bits with the PCI DAC base register. Figure 6–21 shows the entire translation
from PCI address to physical address on a window that implements scatter-gat

DAC�
Cycle

PCI�
Address�
<31:15> 8KB CPU Page Address

Hit

Physical Memory�
Dword Address

Memory Page�
Address<32:13>

PCI�
Address<12:2>

PCI Address<14:13>

Index

D A T ATAG

LJ04276A.AI4

V
V
V
V
V
V
V
V

V
V
V
V
V
V
V
V

V
V
V
V
V
V
V
V

V
V
V
V
V
V
V
V

3 October 1997 – Subject To Change System Address Space 6–41

Scatter-Gather TLB

wn

he

a
bits

ntry
d

gis-
the
ted in

hys-
sical

this

try
mapping. Both paths are indicated — the right side shows the path for a TLB hit,
while the left side shows the path for a TLB miss. The scatter-gather TLB is sho
in a slightly simplified, but functionally equivalent form.

6.15.1 Scatter-Gather TLB Hit Process

The process for a scatter-gather TLB hit is as follows:

1. The window compare logic determines if the PCI address has hit in one of t
four windows, and the PCI_BASE<SG> bit determines if the scatter-gather path
should be taken. If window 3 has DAC-mode enabled, and the PCI cycle is
DAC cycle, then a further comparison is made between the high-order PCI
and the PCI DAC BASE register.

2. PCI address ad<31:13> is sent to the TLB associative tag together with the
DAC hit indication. If ad<31:13> and the DAC bits match in the TLB, then
the corresponding 8KB 21164 page address is read out of the TLB. If this e
is valid, then a TLB hit has occurred and this page address is concatenate
with ad<12:2> to form the physical memory address. If the data entry is
invalid, or if the TAG compare failed, then a TLB miss occurs.

6.15.2 Scatter-Gather TLB Miss Process

The process for a scatter-gather TLB miss is as follows:

1. The relevant bits of the PCI address (as determined by the window mask re
ter) are concatenated with the relevant translated base register bits to form
address used to access the scatter-gather map entry (PTE) from a table loca
main memory.

2. Bits <20:1> of the map entry (PTE from memory) are used to generate the p
ical page address, which is appended to the page offset to generate the phy
memory address. The TLB is also updated at this point, using a round-robin
algorithm, with the four PTE entries that correspond to the 32KB PCI page
address that first missed the TLB. The tag portion of the TLB is loaded with
PCI page address, and the DAC bit is set if this PCI cycle is a DAC cycle.

3. If the requested PTE is marked invalid (bit 0 is clear), then a TLB invalid en
exception is taken.
6–42 System Address Space 3 October 1997 – Subject To Change

Scatter-Gather TLB
Figure 6–21 Scatter-Gather Map Translation

33 n-11

Offset

Offset

03

000

00

Scatter-Gather�
Table Address

0001202163

000000000000000000 V

000120

V

Physical�
Memory�
 Address

DAC Tag Addr<31:13>

32 13 12 02

Base

Offset

TAG Data

Scatter-Gather TLBScatter-Gather Map in Memory

ad_h<31:13>�
sent to TLB�
for PCI window�
"hit."�

DAC indicator�
also sent.

LJ-04277.AI4

63 40 39 32 31 02

0000000000000000000

n-1 20 19

31 n-1 20

00000000

Compare�
Logic

W_DAC Wn_BASE

Wn_MASK

0

33 n-11 10

Tn_BASE 000000000

XXXXX

Window�
Hit

Tn_BASE Select

n-10

11111

n

n 1213

n-10
3 October 1997 – Subject To Change System Address Space 6–43

Suggested Use of a PCI Window

ured

 1
not
6.16 Suggested Use of a PCI Window

Figure 6–22 shows the PCI window assignment after power is turned on (config
by firmware), and Table 6–15 lists the details. PCI window 0 was chosen for the
8MB to 16MB EISA region because this window incorporates the mem_cs_l logic.
PCI window 3 was not used as it incorporates the DAC cycle logic. PCI window
was chosen arbitrarily for the 1GB, direct-mapped region, and PCI window 2 is
assigned.

Figure 6–22 Default PCI Window Allocation

21164
Memory Space

PCI
Memory Space

4GB4GB

2GB

1GB

1GB

Scatter-Gather
Window 0

Direct-Mapped
Window 1

16MB

8MB

0MB0

1GB

1GB

8MB

LJ-04278.AI4
6–44 System Address Space 3 October 1997 – Subject To Change

Suggested Use of a PCI Window

d to
ts

-

Table 6–15 lists the PCI window power-up configuration characteristics.

6.16.1 Peripheral Component Architecture Compatibility Addressing and Holes

The peripheral component architecture allows certain (E)ISA devices to respon
hardwired memory addresses. An example is a VGA graphics device that has i
frame buffer located in memory address region A0000–BFFFF. Such devices
“pepper” memory space with holes, which are collectively known as peripheral com
ponent compatibility holes.

The PCI-EISA bridge decodes PCI addresses and generates a signal, mem_cs_l,
which takes into account the various PC compatibility holes.

6.16.2 Memory Chip Select Signal mem_cs_l

The PCI-EISA bridge can be made using the following two chips:

• Intel 82374EB EISA System Component (ESC)

• Intel 82375EB PCI-EISA Bridge (PCEB)

The PCI-EISA bridge provides address decode logic with considerable attributes
(such as read only, write only, VGA frame buffer, memory holes, and BIOS shadow-
ing) to help manage the EISA memory map and peripheral component compatibility
holes.

This is known as main memory decoding in the PCI-EISA chip, and results in the
generation of the memory chip select (mem_cs_l) signal. One exception is the VGA
memory hole region that never asserts mem_cs_l. If enabled, the 21174 uses this sig-
nal with the W0_BASE register.

In Figure 6–23, the two main holes are shown lightly shaded, while the mem_cs_l
range is darkly shaded.

Table 6–15 PCI Window Power-Up Configuration

PCI Window Assignment Size Comments

0 Scatter-gather 8MB Not used by firmware; mem_cs_l disabled

1 Direct-mapped 1GB Mapped to 0GB to 1GB of main memory

2 Disabled — —

3 Disabled — —
3 October 1997 – Subject To Change System Address Space 6–45

Suggested Use of a PCI Window

the
This mem_cs_l range in Figure 6–23 is subdivided into several portions (such as
BIOS areas) that are individually enabled/disabled using CSRs as listed here:

• The MCSTOM (top of memory) register has a 2MB granularity and can be pro-
grammed to select the regions from lMB up to 512MB.

• The MCSTOH (top of hole) and MCSBOH (bottom of hole) registers define a mem-
ory hole region where mem_cs_l is not selected. The granularity of the hole is 64KB.

• The MARl,2,3 registers enable various BIOS regions.

• The MCSCON (control) register enables the mem_cs_l decode logic, and in
addition selects a number of regions (0KB to 512KB).

• The VGA memory hole region never asserts mem_cs_l.

Figure 6–23 mem_cs_l Decode Area

Note: For more detail, please refer to the Intel 82378 System I/O Manual.

4GB

512MB Max

16MB

Main Memory Hole

1MB
1MB-64KB

VGA Memory�
(A0000-BFFF)

512KB

MCSTOM

MCSTOH

MCSBOH

MCSCON

MAR1,2,3

MCSCON

MCSCON

LJ-04279.AI4

BIOS Area

Hole

Hole
6–46 System Address Space 3 October 1997 – Subject To Change

Suggested Use of a PCI Window

he
 PCI

I.
As shown in Figure 6–24, PCI window 0 in the 21174 can be enabled to accept t
mem_cs_l signal as the PCI memory decode signal. With this path enabled, the
window hit logic simply uses the mem_cs_l signal. For example, if mem_cs_l is
asserted, then a PCI window 0 hit occurs and the devsel signal is asserted on the PC

Figure 6–24 mem_cs_l Logic

Consequently, the window address area must be large enough to encompass the
mem_cs_l region programmed into the PCI-EISA bridge. The remaining window
attributes are still applicable and/or required:

• The Wx_BASE_SG bit in the W0_BASE register determines if scatter-gather or
direct-mapping is applicable.

• The W0_ MASK register size information must match the mem_cs_l size for the
scatter-gather and direct-mapping algorithms to correctly use the translated base
register.

• The mem_cs_l enable bit, W0_BASE<MEMCS_EN>, takes precedence over
W0_BASE<W_EN>.

mem_cs_l

devsel

1

0
Window 0
Hit Detect

Logic

PCI Address

Wn_BASE

Wn_MASK

W0_BASE<MEMCS_EN>

LJ-04280.AI4
3 October 1997 – Subject To Change System Address Space 6–47

e
 7
Electrical Specifications

This chapter specifies the 21174 dc specifications.

7.1 PCI Electrical Specification Conformance

The 21174 PCI pins conform to the basic set of PCI electrical specifications in the
PCI Local Bus Specification, Revision 2.1. See that specification for a complete
description of the PCI I/O protocol.

7.2 Absolute Maximum Ratings

Table 7–1 lists the absolute maximum electrical ratings for the 21174. These ar
stress ratings only; extended exposure to the maximum ratings may affect the
reliability of the device.

Table 7–1 Absolute Maximum Electrical Ratings

Parameter Minimum Maximum

Supply voltage Vcc 3.15 V 3.45 V

Power dissipation — 3.00 W
3 October 1997 – Subject To Change Electrical Specifications 7–1

DC Specifications
7.3 DC Specifications

The 21174 dc specifications with Vcc=3.3 V ± 5% are listed in Table 7–2.

Table 7–2 DC Specifications

Parameter Description Minimum Maximum

Vil Input level low – 0.5 V 0.8 V

Vih Input level high 2.0 V Vcc+0.5 V

Vol Output level low (at Iol) — 0.5 V

Voh Output level high (at Ioh) 2.4 V —

Iol Output low current — 8 ma

Ioh Output high current — 8 ma

Iin Input leakage current — 10 µa

Icc Supply current — 900 ma
7–2 Electrical Specifications 3 October 1997 – Subject To Change

 8–2
1
 8
Mechanical and Thermal Specifications

This chapter includes drawings that detail the mechanical specifications of the
21174. This chapter also provides operating temperature recommendations and
thermal design considerations. Drawings of the recommended heat sinks are
included in this chapter.

8.1 Mechanical Specifications

The 21174 is contained in a 474-pin ball grid array (BGA). Figure 8–1 and Figure
show the physical dimensions of the 21174. All dimensions shown in Figure 8–
and Figure 8–2 are in millimeters.
3 October 1997 – Subject To Change Mechanical and Thermal Specifications 8–1

Mechanical Specifications
Figure 8–1 474-Pin BGA Package

Cap

Capacitor

Chip

Capacitor

2B

1

A01 Corner

(Cap)

2

1A

(23)

(25)

(3
2.

5)

(3
0.

5)

(1.15 Max)

(0.95 Min)

(2.15 Max)

(1.75 Min)

(3.1 Max)

(2.9 Min)

(4.25 Max)

(3.85 Min)

(5.25 Max)

(4.65 Min)

0.9 0.1 +-

FM-06036.AI4

Datum A is the center plane of

feature labeled datum A.

Datum B is the center plane of

feature labeled datum B.

Unless otherwise specified part is

symmetrical about centerlines defined

by datums A & B.

1

2

Notes

View A-A

Detail B

A

A

8–2 Mechanical and Thermal Specifications 3 October 1997 – Subject To Change

Mechanical Specifications

)

)

)

)

4

Figure 8–2 21174 Physical Specification

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19

AE
AD
AC
AB
AA

Y
W

V
U
T
R
P
N
M
L

K
J
H
G
F
E
D
C
B
A

1

(1.06 Max)

(0.62 Min)

(1.06 Max)

(0.62 Min)

(3
2.

5
 0

.2
)

+ -

30
.4

8

A

1

2(18X) 1.27

2 B

22.86

(25 0.2) +-

A01 Corner

Cap

Capacitor

Chip

0.9 ± 0.1

(1.15 Max
(0.95 Min)

(2.15 Max
(1.75 Min)

(3.1 Max)

(2.9 Min)

(4.25 Max
(3.85 Min)

(5.25 Max
(4.65 Min)

Datum A is the center plane of

feature labeled datum A.

Datum B is the center plane of

feature labeled datum B.

Unless otherwise specified part is

symmetrical about centerlines defined

by datums A & B.

1

2

FM-06037.AI

Notes
View A-A

Detail B
3 October 1997 – Subject To Change Mechanical and Thermal Specifications 8–3

Thermal Specifications

he

nt

1 are
8.2 Thermal Specifications

This section describes 21174 thermal management and thermal design
recommendations.

8.2.1 Operating Temperature

For reliable operation, the 21174 is recommended to operate at a maximum device
case temperature (Tc), measured at the center of the package, of 80oC.

The following section offers specific thermal design recommendations.

8.2.2 Thermal Design Recommendations

Depending on the system environment, a heat sink may be required for adequate
cooling. In the case of low air flow (less than 200 lfpm), a heat sink is required.
Table 8–1 shows three recommended thermal management configurations for t
21174.

8.2.3 Heat Sinks

DIGITAL recommends that you qualify the heat sink and the heat sink attachme
process to ensure that the configuration meets your requirements.

Heat sink vendors and physical specifications for the heat sinks used in Table 8–
detailed in Sections 8.2.3.1 and 8.2.3.2.

Table 8–1 Thermal Management Configurations for the 21174

Cooling
Options

Airflow
Requirement

Maximum
Ambient
Temperature

Estimated Case
Temperatures (Tc)

Maximum
Allowed
Tc

Air flow
(No heat sink)

Minimum 200 lfpm 40oC 67oC 80oC

Clip-on heat sink Natural convection 40oC 73oC 80oC

Heat sink with
adhesive tape

Natural convection 40oC 70oC 80oC
8–4 Mechanical and Thermal Specifications 3 October 1997 – Subject To Change

Thermal Specifications
8.2.3.1 Clip-on Heat Sink Assembly

Figure 8–3 shows the clip-on heat sink assembly. All dimensions are in inches.

Figure 8–3 Clip-on Heat Sink Assembly

Clip-on heat sinks can be purchased from the following vendor:

Chip Cooler (Part Number: HTS149-1)
333 Strawberry Field Rd.
Warwick, RI 02886
1-800-227-0254

Note

0.726 is the distance from the bottom of 21174 BGA

to the top of the heatsink.

(1.395)

(1.395)

(1.315)

.726

See Note

.992

.070 .569

(1.132)

FM-06034.AI4
3 October 1997 – Subject To Change Mechanical and Thermal Specifications 8–5

Thermal Specifications
8.2.3.2 Tape Heat Sink Assembly

Figure 8–4 shows the tape heat sink assembly. All dimensions are in inches.

Figure 8–4 Tape Heat Sink Assembly

Heat sinks with adhesive tape can be purchased from the following vendor:

Wakefield Engineering (Part Number: 919452)
60 Audubon Rd.
Wakefield, MA 01880
617-245-5900

.0500 ± .0500

4X

1.0000

± 0.030

[25.40 ± 0.76]

1.0000

± 0.030

[25.40 ± 0.76]

(0.094 + .015/ -.007 7 Places)

(0.065/0.085)

(0.055 ± .010 First Fin Only)

(1.100)

(1.100)

(.080)

(1.100 ± .015)

.600
+ .009
- .018

FM-06035.AI4

Notes

1. Material: Aluminum Alloy.

2. Finish: Clear Anodize.

3. Slot Spacing non-cumulative.
8–6 Mechanical and Thermal Specifications 3 October 1997 – Subject To Change

 A
21174 DMA Page Boundary Solution

A.1 Read Page Problem

PCI DMA reads that attempt to cross 8K page boundaries cause data corruption
problems. A fix has been implemented with an Altera 7032 and two Pericom
PI5C3400 bus switches and a diode.

A.2 Recommended Solution

To solve this data corruption problem, use a 7 nsec 44-pin PLCC EPLD supplied by
Altera (part number EPM7032LC44-7) and a Pericom PI5C3400 bus switch.

Contact DIGITAL Semiconductor’s Customer Technology Center, (978) 568-7474,
for the required programming files.

A.2.1 DMA Access Verilog Equations

This section describes the verilog model of the bug patch for the 21174 8K page
crossing problem.

The code for the verilog file, patch13k.v, follows:

subdesign patch13k (

FRAME_GRANT_CONNECT_L: output;
STOP_CONNECT_L: output;
DEVSEL_CONNECT_L: output;
DEASSERT_STOP: output;
DEASSERT_DEVSEL: output;
DEASSERT_DEVSEL_OE_L: output;

TRDY_CONNECT_L: output;
DEVSEL_L: input; % not used %
PYX_DEVSEL_L: input;
PYX_TRDY_L: input;
3 October 1997 – Subject To Change 21174 DMA Page Boundary Solution A–1

Recommended Solution
SYS_FRAME_L: input;
SYS_GRANT_L: input;

DDOL_IN: input; % connect externally to
 DEASSERT_DEVSEL_OE_L %
PCI_ADDR[9..2]: input; % [9] not used %
PCI_IRDY_L: input;
PCI_CBE2_L: input;
PCI_CBE0_L: input;
PCI_ACK64_L: input;
PCI_RESET_L: input;
PCI_CLK: input;
BANK01: input;
BANK23: input; % not used %
BANK45: input;
BANK67: input;
)

variable

STATE: machine of bits (
FRAME_GRANT_CONNECT_L,
DEVSEL_CONNECT_L,
STOP_CONNECT_L,
TRDY_CONNECT_L,
DEASSERT_DEVSEL_XL,
DEASSERT_DEVSEL_OE,
DEASSERT_STOP_XL

)
with states (
IDLE = B”0000000” , %wait for a transaction %
WTFORRTRY = B”0001000” , % right type of transaction, wait for mem
 request %
WTFORMREQ = B”0000000” , % right type of transaction, wait for mem
 request %
TARGET = B”0000000” , % pyxis is target,process the transaction %
EOPAGE = B”1000010” , % last cycle of page, do this, and then
 stop %
RETRY = B”1101110” , % retry after prefetch, wait here until no
 DMA_RD %
STOP = B”1111111” , % asserting stop %
STOP2 = B”1110010” % deasserting stop %
);
ADDR[8..2]: dff;
ACK64: dff;
VBUFF_HIT: dff;
PREFETCH: dff;
CMD_CYCLE_POSSIBLE: dff;
A–2 21174 DMA Page Boundary Solution 3 October 1997 – Subject To Change

Recommended Solution
OLD_DMA_RD_REQ: dff;
OLD2_DMA_RD_REQ: dff;
OLD3_DMA_RD_REQ: dff;
OLD4_DMA_RD_REQ: dff;
ANY_DMA_RD_REQ: dff;
DEASSERT_DEVSEL_TRI: tri;
READ_CMD: node;
LAST_ADDR: node;
LAST_ADDR64: node;
PA_DMA_RD_REQ: node;
MCTL_DMA_RD_STROBE: node;
MCTL_SEL_VBUFF_DATA: node;

begin

ADDR[8..2].clk = PCI_CLK;
ADDR[8..2].CLRN = PCI_RESET_L;
STATE.clk = PCI_CLK;
STATE.reset = ! PCI_RESET_L;
ACK64.clk = PCI_CLK;
ACK64.d = ! PCI_ACK64_L;
OLD_DMA_RD_REQ.clk = PCI_CLK;
OLD_DMA_RD_REQ.d = PA_DMA_RD_REQ;
OLD2_DMA_RD_REQ.clk = PCI_CLK;
OLD2_DMA_RD_REQ.d = OLD_DMA_RD_REQ;
OLD3_DMA_RD_REQ.clk = PCI_CLK;
OLD3_DMA_RD_REQ.d = OLD2_DMA_RD_REQ;
OLD4_DMA_RD_REQ.clk = PCI_CLK;
OLD4_DMA_RD_REQ.d = OLD3_DMA_RD_REQ;
ANY_DMA_RD_REQ.clk = PCI_CLK;
ANY_DMA_RD_REQ = (PA_DMA_RD_REQ #
OLD_DMA_RD_REQ #
OLD2_DMA_RD_REQ #
OLD3_DMA_RD_REQ #
OLD4_DMA_RD_REQ);
VBUFF_HIT.clk = PCI_CLK;
VBUFF_HIT = MCTL_DMA_RD_STROBE & MCTL_SEL_VBUFF_DATA; % victim
 buffer hit %
PREFETCH.clk = PCI_CLK;
PREFETCH = (PYX_DEVSEL_L &
!TRDY_CONNECT_L &
ANY_DMA_RD_REQ) % set when not DEVSEL & prefetch %
#
(PREFETCH & PYX_DEVSEL_L); % reset when DEVSEL happens %
CMD_CYCLE_POSSIBLE.clk = PCI_CLK;
CMD_CYCLE_POSSIBLE = SYS_FRAME_L & (SYS_GRANT_L #

FRAME_GRANT_CONNECT_L);
 % disallow pyxis commands! %
3 October 1997 – Subject To Change 21174 DMA Page Boundary Solution A–3

Recommended Solution
PA_DMA_RD_REQ = BANK45; % program MDR1 to 80170000 %
MCTL_DMA_RD_STROBE = BANK01; % program MDR1 to 80000027 %
MCTL_SEL_VBUFF_DATA = BANK67; % program MDR1 to AE000000 %
% overall: MDR1 = AE170027 %
DEASSERT_STOP = !DEASSERT_STOP_XL;
DEASSERT_DEVSEL_OE_L = !DEASSERT_DEVSEL_OE;
DEASSERT_DEVSEL = DEASSERT_DEVSEL_TRI.out;
DEASSERT_DEVSEL_TRI.oe = !DDOL_IN;
DEASSERT_DEVSEL_TRI.in = !DEASSERT_DEVSEL_XL;
if ((STATE == IDLE) & !SYS_FRAME_L) then
 ADDR[8..2] = PCI_ADDR[8..2];
end if;
if (!PYX_TRDY_L & !PCI_IRDY_L & ACK64) then
 ADDR[8..2] = ADDR[8..2] + B”0000010”;
end if;
if (!PYX_TRDY_L & !PCI_IRDY_L & !ACK64) then
 ADDR[8..2] = ADDR[8..2] + B”0000001”;
end if;
if (!(STATE == IDLE) & PCI_IRDY_L) then
 ADDR[8..2] = ADDR[8..2];
end if;
if (!(STATE == IDLE) & PYX_TRDY_L) then
 ADDR[8..2] = ADDR[8..2];
end if;
READ_CMD = !SYS_FRAME_L & CMD_CYCLE_POSSIBLE &
 (PCI_CBE2_L == B”1”) & (PCI_CBE0_L == B”0”); % RD, RL, or RM command %
LAST_ADDR = (ADDR[8..3] == B”111111”) &
 (ADDR2 # (STATE == TARGET));
LAST_ADDR64 = (ADDR[8..4] == B”11111”) &
 (ADDR3 # (STATE == TARGET));
table
STATE,
READ_CMD,
SYS_FRAME_L,
PCI_IRDY_L,
PYX_TRDY_L,
LAST_ADDR,
LAST_ADDR64,
PCI_ACK64_L,
PREFETCH,
ANY_DMA_RD_REQ,
VBUFF_HIT

=>
A–4 21174 DMA Page Boundary Solution 3 October 1997 – Subject To Change

Recommended Solution
STATE;

%---%

IDLE, 0, x, x, x, x, x, x, x, x, x => IDLE;

IDLE, 1, x, x, x, x, x, x, 0, x, x => WTFORMREQ; % DMA read

 command %

IDLE, 1, x, x, x, x, x, x, 1, x, x => WTFORRTRY; % do a retry %

WTFORRTRY, x, 0, x, x, x, x, x, x, 1, x => RETRY; % terminate this %

WTFORRTRY, x, 1, 0, x, x, x, x, x, 1, x => RETRY; % terminate this %

WTFORRTRY, x, 0, x, x, x, x, x, x, 0, x => WTFORRTRY; % wait here for

 PA_DMA_RD_REQ %

WTFORRTRY, x, 1, 0, x, x, x, x, x, 0, x => WTFORRTRY; % wait here for

 PA_DMA_RD_REQ %

WTFORRTRY, x, 1, 1, x, x, x, x, x, x, x => IDLE; % happens for

 stop or peer-to-peer!%

WTFORMREQ, x, 0, x, x, 1, x, 1, x, 1, x => EOPAGE; % wait for

 finaldata, then stop %

WTFORMREQ, x, 0, x, x, x, 1, 0, x, 1, x => EOPAGE; % wait for final

 data, then stop %

WTFORMREQ, x, 0, x, x, 0, x, 1, x, 1, x => TARGET; % wait for data %

WTFORMREQ, x, 0, x, x, x, 0, 0, x, 1, x => TARGET; % wait for data

 (or victim) %

WTFORMREQ, x, 0, x, x, x, x, x, x, 0, x => WTFORMREQ; % wait here for

 PA_DMA_RD_REQ %

WTFORMREQ, x, 1, 0, x, x, x, x, x, 1, x => TARGET; % wait for data

 or victim %

WTFORMREQ, x, 1, 0, x, x, x, x, x, 0, x => WTFORMREQ; % wait here for

 PA_DMA_RD_REQ %

WTFORMREQ, x, 1, 1, x, x, x, x, x, x, x => IDLE; % stop

 (or peer-to-peer!) %

TARGET, x, 0, x, x, x, x, x, x, x, 1 => RETRY; % vbuff hit %

TARGET, x, 1, 0, 1, x, x, x, x, x, 1 => RETRY; % vbuff hit %

TARGET, x, 1, 0, 0, x, x, x, x, x, 1 => IDLE; % vbuff hit, but

 doesn’t matter %

TARGET, x, 1, 1, x, x, x, x, x, x, x => IDLE; % end of

 transaction %

TARGET, x, 1, 0, 0, x, x, x, x, x, 0 => IDLE; % end of

 transaction %

TARGET, x, 1, 0, 1, x, x, x, x, x, 0 => TARGET; % wait for last

 data %
3 October 1997 – Subject To Change 21174 DMA Page Boundary Solution A–5

Recommended Solution
TARGET, x, 0, 1, x, x, x, x, x, x, 0 => TARGET; % wait for irdy %

TARGET, x, 0, 0, 0, 1, x, 1, x, x, 0 => EOPAGE; % suppress

 frame, wait for last data %

TARGET, x, 0, 0, 0, x, 1, 0, x, x, 0 => EOPAGE; % suppress

 frame, wait for last data %

TARGET, x, 0, 0, 1, x, x, x, x, x, 0 => TARGET; % wait for trdy %

TARGET, x, 0, 0, 0, 0, x, 1, x, x, 0 => TARGET; % data cycle,

 wait for page crossing %

TARGET, x, 0, 0, 0, x, 0, 0, x, x, 0 => TARGET; % data cycle,

 wait for page crossing %

EOPAGE, x, 0, x, x, x, x, x, x, x, 1 => RETRY; % vbuff hit %

EOPAGE, x, 1, 0, 1, x, x, x, x, x, 1 => RETRY; % vbuff hit %

EOPAGE, x, 1, 0, 0, x, x, x, x, x, 1 => IDLE; % vbuff hit, but

 doesn’t matter %

EOPAGE, x, 1, 1, x, x, x, x, x, x, x => IDLE; % end of

 transaction %

EOPAGE, x, 1, 0, 0, x, x, x, x, x, 0 => IDLE; % end of

 transaction %

EOPAGE, x, 1, 0, 1, x, x, x, x, x, 0 => EOPAGE; % watch for

 victim %

EOPAGE, x, 0, 1, x, x, x, x, x, x, 0 => RETRY; % note 1 %

EOPAGE, x, 0, 0, 1, x, x, x, x, x, 0 => EOPAGE; % note 2 %

EOPAGE, x, 0, 0, 0, x, x, x, x, x, 0 => STOP; % issue stop %

RETRY, x, 1, 1, x, x, x, x, x, x, x => IDLE; % end of

 transaction %

RETRY, x, 0, 1, x, x, x, x, x, x, x => RETRY; % wait here for

 IRDY %

RETRY, x, x, 0, x, x, x, x, x, 1, x => RETRY; % wait for fetch

 to stop %

RETRY, x, x, 0, x, x, x, x, x, 0, x => STOP; % do stop %

STOP, x, 1, x, x, x, x, x, x, x, x => STOP2;

STOP, x, 0, x, x, x, x, x, x, x, x => STOP;

STOP2, x, x, x, x, x, x, x, x, x, x => IDLE;

end table;

% note 1: IRDY was high, so 21174 will quit transaction with no frame or
irdy, goto RETRY to clean up %

% note 2: only happens if transaction started at last location in page %

end;
A–6 21174 DMA Page Boundary Solution 3 October 1997 – Subject To Change

3 October 1997 – Subject To Change 21174 DMA Lock Solution B–1

 B
21174 DMA Lock Solution

B.1 DMA Lock Problem

The 21164 sometimes issues LOCK commands on the CMD bus. The 21174 treats
the LOCK command as a no-op command and goes back to idle. This does not
actually clear the LOCK command. Thus, the process repeats indefinitely, blocking
DMA requests that may be waiting for service.

B.2 Recommended Solutions

The DMA lock issue is resolved by adding a quick switch, QS3253, between the
21164 and the 21174. Whenever CMD<3> is asserted low by the 21164, CMD<0> to
21174 is forced low by the quick switch. In all other instances, CMD<0> is
connected normally.

 CMD<3:0> (Before QS3253) CMD<3:0> (After QS3253)

 0001 (LOCK) 0000 (NOP)

This solution has been implemented and verified on the AlphaPC 164LX
motherboard.

 C
AlphaPC 164LX Layout Design Rules

C.1 Application Note

Currently DIGITAL Semiconductor has designed two Alpha motherboards based on
the 21174 chipset. These boards both have four 168-pin unbuffered DIMM slots.

Based on design experience and results from our OEMs, DIGITAL Semiconductor is
only in a position to support designs with a maximum of four DIMM slots. The
following issues prevent DIGITAL Semiconductor from being able to support
designs with more than four DIMM slots:

• Data bus loading.

• Transfers need to be completed in a 15-ns cycle (66 MHz).

Example C–1 and Example C–2 denote a four DIMM application and a greater than
four DIMM application, respectively.

Example C–1 Four DIMM Slots (Two Banks of 128 bits) – Data Bus Loading

• CPU data bus:

– 21164 or 21164PC

– SRAM

– Quickswitch

– PCB trace loading

• Memory data bus:

– Quickswitch

– 21174

– Two DIMM banks (up to four SDRAM loads)

– PCB trace loading
3 October 1997 – Subject To Change AlphaPC 164LX Layout Design Rules C–1

Application Note

174

les.
Example C–2 Greater than Four DIMM Slots – Data Bus Loading

• CPU data bus:

– 21164 or 21164PC

– SRAM

– Quickswitch

– PCB trace loading

• Memory data bus:

– Quickswitch

– 21174

– Greater than two DIMM banks (greater than four SDRAM loads)

– PCB trace loading

Example C–1 is a configuration that we have demonstrated in our designs operates at
66 MHz.

Example C–2 is a case that we, DIGITAL Semiconductor, have not built or verified.
However, working with our OEMs, we have seen loading problems using greater
than four DIMMs.

The main issue is the data bus loading when the SRAM needs to drive data back to
the SDRAM. In this case, the Quickswitch is closed and the CPU data bus and the
memory data bus become one. The additional trace loading and SDRAM loading in
Example C–2 is enough to cause the transfers not to meet the timing requirements at
66 MHz (see Figure C–4).

Solution

It is critically important that you carefully lay out your 21164, 21174, Bcache, and
DIMM components.

Based on the experience that we have gained designing and debugging our 21
based systems, we have outlined some critical layout design rules to help you
minimize potential debug problems. These layout design rules are described in
Section C.2 through Section C.6. It is imperative that you closely follow these ru
C–2 AlphaPC 164LX Layout Design Rules 3 October 1997 – Subject To Change

AlphaPC 164LX Layer Construction

outer

hen

ngth

lues
C.2 AlphaPC 164LX Layer Construction

The AlphaPC 164LX is an 8-layer board. The layer characteristics are listed in
Table C–1.

The board is made using FR4 material. The target impedance for the board is
65 ohms +/- 10%. Propagation delay for the inner layers is 180 ps +/- 10% and
layers is 150 ps +/- 10%.

Varying from this layer construction or board material may change some values
given in this document. The designer should take this factor into consideration w
laying out the board.

The numbers in parentheses, for example (15.1 inches), in this document are le
measurements taken from DIGITAL’s AlphaPC 164LX board design. DIGITAL
Semiconductor strongly recommends that the designer follow these example va
as closely as possible.

Table C–1 Layer Construction

Layer Dielectric Spacing Layer Type Routing

L1 = = = = = = = = = = = = =
0.0045 +/- 0.001

Logic Horizontal

L2 - - - - - - - - - - - - - - - - - - -
0.01 +/- 0.002

Ground

L3 - - - - - - - - - - - - - - - - - - -
0.00 +/- 0.002

Logic Vertical

L4 - - - - - - - - - - - - - - - - - - -
0.004 Minimum Reference

+2.5 V

L5 - - - - - - - - - - - - - - - - - - -
0.00 +/- 0.002

+3.3 V

L6 - - - - - - - - - - - - - - - - - - -
0.01 +/- 0.002

Logic Horizontal

L7 - - - - - - - - - - - - - - - - - - -
0.0045 +/- 0.001

+5.0 V

L8 = = = = = = = = = = = = = Logic Vertical
3 October 1997 – Subject To Change AlphaPC 164LX Layout Design Rules C–3

AlphaPC 164LX Layer Construction
If you need exact length or routing information on a particular signal within the
AlphaPC 164LX board, refer to the latest AlphaPC 164LX Topography report and/or
view the latest AlphaPC 164LX .WDS layout database using SALT.

Note: SALT is our layout database tool. It runs on an Alpha system running
Windows NT with Exceed Xserver software installed. This is not a Digital
Equipment Corporation supported product. This tool is to be used to assist in
gaining a more graphical understanding of our layout.

Table C–2 lists the system clock signals layout rules.

Figure C–1 shows the layout for signal sys_cout1_h.

Figure C–1 sys_cout1_h Layout

Table C–2 System Clock Signals Layout Rules

Pins Rules

CLK_IN_H,
CLK_IN_L

Must be routed on inner layers with 12 mil etch and 40 mil spacing.
Do not route any signals on adjacent layers, within the clearance area
outlined above. Must be balanced (0.354 inch).

OSC_H, OSC_L Must be routed on inner layers with 12 mil etch and 40 mil spacing.
Do not route any signals on adjacent layers, within the clearance area
outlined above. Must be balanced (0.395 inch).

SYS_FB_H Must be equal to length of sys_cout1_h plus the length of
term_cout1_h.

CY 2308

sys_cout1_h

33 ohms21164 21174

SYS_FB_H = x + y

x

term_cout1_h

39 ohms

y

FM-06190.AI4
C–4 AlphaPC 164LX Layout Design Rules 3 October 1997 – Subject To Change

Bcache Signal Layout Lengths
C.3 Bcache Signal Layout Lengths

Table C–3 lists the Bcache signal layout lengths.

Figure C–2 shows the st_clk1_h signal layout.

Figure C–2 st_clk 1_h Layout

1 The asterisk is a wildcard indicating all signal names beginning with the preced-
ing letters or symbols.

2 DIGITAL uses FR4 material to build boards. The value 21.0 inches may have to
be changed if you use a different board material.

Table C–3 Bcache Signal Layout Lengths

Pin Length

Bcache st_clk*1 10 mil spacing from itself and 15 mil from other signals.
This signal must be routed on inner layers.

st_clk1_h This signal must be delayed using 21.02 inches of etch.

st_clk1_<9:1>_h These signals must be balanced (4.000 inches).

st_clk1_<10>_h This signal etch must be 7.162 inches.

39 ohms
21164 CDC2351

FM-06191.AI4

st_clk1_<10>_h

st_clk1_<9:1>_h

0.56 inches 21.0 inches
3 October 1997 – Subject To Change AlphaPC 164LX Layout Design Rules C–5

21174 Clock Layout
C.4 21174 Clock Layout

The phase-locked loop (PLL) filter must be as thick as possible on outer layers. The
designer should copy the AlphaPC 164LX board layout exactly. This data can be
viewed on our layout database, PC164LX_xxx.WDS, using SALT (where xxx
indicates the latest file version).

C.4.1 DRAM Clock Signal Layout Rules

Table C–4 lists the DRAM clock signal layout rules.

C.4.2 PCI Clock Signal Layout Rules

Table C–5 lists the PCI clock signal layout rules.

Table C–4 DRAM Clock Signal Layout Rules

Signal Pins Rule

DRAM clocks 10 mil spacing.

dram_clk_<7:0> Should be less than 1.0 inch.

dram_clk_<7:0>a Must be balanced. Match the longest run (5.20 inches).

dram_clk_<7:0>b Must be balanced and matched with dram_clk_<7:0>a.

dram_clk_fb Must be matched with dram_clk_<7:0>a and
dram_clk_<7:0>b.

Table C–5 PCI Clock Signal Layout Rules

Signal Pins Rule

PCI clocks 10 mil spacing.

pci_clk_<6:0> Should be less than 1.0 inch.

pciclk_slot<3:0> The etch must be balanced (5.657 inches).

pciclk_ide, pciclk_usb,
pciclk_sio, pciclk_arb,
pci_fb

The etch must be 2.5 inches longer than Pciclk_slot<3:0>
etch (8.157 inches).
C–6 AlphaPC 164LX Layout Design Rules 3 October 1997 – Subject To Change

Bcache Signal Layout Rules
C.5 Bcache Signal Layout Rules

Table C–6 lists the Bcache signal layout rules.

Figure C–3 Bcache Signal Layout

1 The asterisk is a wildcard indicating all signal names beginning with the preced-
ing letters or symbols.

Table C–6 Bcache Signal Layout Rules

Signal Pins Rule

un_index_h*1 Should be less than 1.0 inch.

index_h* The signals must be routed as shown in Figure C–3.
Lengths a, b, and c should be equal. Length a should not be
longer than 1.2 inches.

data_ram_oe_h Must be tree’ed similar to index_h* (10.612 inches, total
length).

data_ram_we_h Must be tree’ed similar to index_h* (10.091 inches, total
length).

data_ram_we_h,
data_ram_oe_h

These signals should be matched.

tag_data_h* The longest length on the AlphaPC 164LX is 4.549 inches.

data_h* Tree with CPU on one end, SRAMs in the middle, and quick
switch on the other end (maximum length = 9.53 inches and
minimum length = 4.495 inches). See Figure C–4.

mem_data_h* Maximum length = 7.99 inches and minimum length = 4.23
inches.

22

ohms

21164

FM-06192.AI4

un_index_h*

index_h*

a

b

SRAM

a
a SRAM

SRAM

b

b

c

SRAM

SRAM

SRAM

c

c

SRAM

SRAM

SRAM
3 October 1997 – Subject To Change AlphaPC 164LX Layout Design Rules C–7

PCI General Layout
Figure C–4 Bcache Signal Layout

C.6 PCI General Layout

The following signal runs should not be longer than 15 inches.

PCI_* CBE* PRSNT* *RDY_L DEVSEL_L

LOCK_L PERR_L SERR_L FRAME_L STOP_L

SDONE SBO PAR PAR64 ACK64*

REQ64_*

21164

FM-06193.AI4

data_h<127:0>

mem_data_h<63:0>

Quick

Switches

21174Bcache

DIMM

0

DIMM

1

DIMM

2

DIMM

3

mem_data_h<127:64>

mem_data_h<127:0>
C–8 AlphaPC 164LX Layout Design Rules 3 October 1997 – Subject To Change

 D
Support, Products, and Documentation

If you need technical support, a DIGITAL Semiconductor Product Catalog, or
help deciding which documentation best meets your needs, visit the
DIGITAL Semiconductor World Wide Web Internet site:

http://www.digital.com/semiconductor

You can also call the DIGITAL Semiconductor Information Line or the
DIGITAL Semiconductor Customer Technology Center. Please use the following
information lines for support.

For documentation and general information:

DIGITAL Semiconductor Information Line

United States and Canada: 1–800–332–2717

Outside North America: 1–510–490–4753

Electronic mail address: semiconductor@digital.com

For technical support:

DIGITAL Semiconductor Customer Technology Center

Phone (U.S. and international): 1–978–568–7474

Fax: 1–978–568–6698

Electronic mail address: ctc@hlo.mts.dec.com
3 October 1997 – Subject To Change Support, Products, and Documentation D–1

ted
DIGITAL Semiconductor Products

Note: The following products and order numbers might have been revised. For
the latest versions, contact your local distributor.

To order the AlphaPC 164LX motherboard, contact your local distributor. The
following tables list some of the semiconductor products available from
DIGITAL Semiconductor.

Motherboard kits include the motherboard and motherboard user’s manual.

Design kits include full documentation and schematics. They do not include rela
hardware.

Chips Order Number

DIGITAL Semiconductor 21174 Core Logic Chip 21174–AA

DIGITAL Semiconductor 21164 Alpha microprocessor (466 MHz) 21164–IB

DIGITAL Semiconductor 21164 Alpha microprocessor (533 MHz) 21164–P8

DIGITAL Semiconductor 21164 Alpha microprocessor (600 MHz) 21164–MB

Motherboard Kits Order Number

DIGITAL Semiconductor AlphaPC 164LX Motherboard Kit for Windows NT 21A04–C0

DIGITAL Semiconductor AlphaPC 164LX Motherboard Kit for DIGITAL
UNIX

21A04–C1

Design Kits Order Number

AlphaPC 164LX Motherboard Software Developer’s Kit
(SDK) and Firmware Update

QR–21A04–12
(Available Fall, 1997)
D–2 Support, Products, and Documentation 3 October 1997 – Subject To Change

DIGITAL Semiconductor Documentation

The following table lists some of the available DIGITAL Semiconductor
documentation.

Third–Party Documentation

You can order the following third-party documentation directly from the vendor.

1 To purchase the Alpha AXP Architecture Reference Manual, contact your local distributor or call
Butterworth-Heinemann (Digital Press) at 1-800-366-2665.

2 This handbook provides information subsequent to the Alpha AXP Architecture Reference Manual.

Title Order Number

Alpha AXP Architecture Reference Manual1 EY–T132E–DP

Alpha Architecture Handbook2 EC–QD2KB–TE

DIGITAL Semiconductor 21164 Alpha Microprocessor
Hardware Reference Manual

EC–QP99B–TE

DIGITAL Semiconductor 21164 Alpha Microprocessor
Data Sheet

EC–QP98B–TE

Title Vendor

PCI Local Bus Specification, Revision 2.1
PCI Multimedia Design Guide, Revision 1.0
PCI System Design Guide
PCI-to-PCI Bridge Architecture Specification,
Revision 1.0
PCI BIOS Specification, Revision 2.1

PCI Special Interest Group
U.S. 1–800–433–5177
International 1–503–797–4207
Fax 1–503–234–6762
3 October 1997 – Subject To Change Support, Products, and Documentation D–3

Index

Numerics Bcache signal layout lengths, C–5
21164
address map, 6–1
programmed reset, 2–14

21174
CSR space, 6–12
features, 1–1
in workstation configuration, 1–2

74HC165, 3–22

74HC595, 2–14, 3–22

82378 ISA bridge, 2–13

A
Abbreviations, register field notation, xviii

Absolute maximum ratings, 7–1

Address space
memory remapping, 6–6
PCI, 6–6
system, 6–1, 6–7

Auto DACK, 2–12

B
Bank configuration registers (BCR0–BCR7),

5–49

Bank timing registers (BTR0–BTR7), 5–51

Base address registers (BBAR0–BBAR7), 5–48

Bcache signal, C–7

Byte mode, 4–9

C
Cache valid map register (CVM), 5–52

Cacheable memory space, 6–15

Clock
clock PLL, 2–15
DRAM clock aligner, 2–15

Clock control register (CCR), 2–14, 5–67

Clock signals, C–4

Clock status register (CLK_STAT), 5–69

Configuration cycles, 2–10

Configuration type register (CFG), 5–13

Control and status registers (CSRs), 4–1

Control register (PYXIS_CTRL), 2–9, 5–4

Control register 1 (PYXIS_CTRL1), 5–7
3 October 1997 – Subject to Change Index–1

)

Conventions, xvi
bit notation, xvi
caution, xvi
data units, xvi
extents, xvii
logic levels, xvii
must be zero, xvii
note, xvii
numbering, xvii
processor chip type, xvii
ranges, xvii
register and memory figures, xviii
should be zero, xix
signal name references, xix
UNPREDICTABLE and UNDEFINED,

xix
warning, xx

CSRs
see Control and status registers (CSRs)

D
Data bus loading, C–1

DATA_CYCLE_TYPE codes, 5–29

DC specifications, 7–2

Dense memory space, 6–15

Diagnostic check register (DIAG_CHECK),
5–15

Diagnostic control register (PYXIS_DIAG),
5–14

DIMM , 2–7

DIMM slots, C–1

DMA
DMA lock problem, 2–6
DMA page boundary problem, 2–3, A–1
DMA read prefetch, 2–9
DMA read transaction, 2–3
DMA write buffer, 2–9
DMA write transaction, 2–4

DMA write buffer merging, 2–10
quadwords, 2–10

DMA Lock Problem, B–1

DRAM clock signal, C–6

DRAM initialization, 2–8

Dummy memory block, 2–12

E
ECC mode, 2–7

Electrical specifications, 7–1

Error checking and correction, 2–7
ECC mode, 2–7
parity error, 2–8
PCA56 longword parity mode, 2–7

Error data register (PYXIS_ERR_DATA),
5–26

Error mask register (ERR_MASK), 5–23

Error register (PYXIS_ERR), 5–19

F
Flash control register (FLASH_CTRL), 5–8

Flash ROM
address space, 4–9
calculating flash ROM access time, 5–10
interface, 2–11

FR4 material, C–3, C–5

G
General-purpose inputs, 2–14

General-purpose output register (GPO), 2–14,
5–76

Global timing register (GTR), 2–8, 5–42

H
Hardware address extension register (HAE_IO,

5–12

Hardware address extension register
(HAE_MEM), 5–11

Heat sinks, 8–4
Index–2 3 October 1997 – Subject to Change

I
I2C control register (IIC_CTRL), 2–7, 5–83

Interrupt configuration register (INT_CNFG),
5–77

Interrupt high/low select register (INT_HILO),
5–74

Interrupt mask register (INT_MASK), 5–73

Interrupt request register (INT_REQ), 5–72

Interrupt routine select register (INT_ROUTE),
2–14, 5–75

Interrupt time register (INT_TIME), 5–81

Interrupts, 2–13

L
Layer characteristics, C–3

Layer Construction, C–3

Layout database, C–6

Layout database tool, C–4

Lockable translation buffer tag registers
(LTB_TAGn, n=0–3), 5–62

M
Master sequencer, 2–1

Mechanical specifications, 8–1

Memory
access rules and operation, 6–18
activation, 2–6
dummy memory block, 2–12
memory refresh, 2–7
minimum memory activation period, 2–6
PCI dense space, 6–15
PCI sparse space, 6–17
remapping, 6–6

Memory banks, 2–1, 2–7

Memory clock mask register (MCMR), 5–41

Memory control debug register 1 (MDR1), 5–46

Memory control debug register 2 (MDR2), 5–47

Memory control register (MCR), 2–8, 5–38

Memory controller, 2–1, 2–7

Memory error address register (MEAR), 5–26

Memory error status register (MESR), 5–27

Memory refresh, 2–7

Memory sequencer, 2–1

Memory space
cacheable, 6–15
PCI dense, 6–15
PCI sparse, 6–17

O
Operating frequencies, 2–9

Ordering products and documentation, D–1

P
Page boundary, 2–3

PCA56 longword parity mode, 2–7

PCI
bus hierarchy, 6–30
configuration space, 6–26
dense memory space, 6–15
memory remapping, 6–6
operating frequencies, 2–9
sparse I/O space, 6–23
sparse memory space, 6–17

PCI clock signal, C–6

PCI error register 0 (PCI_ERR0), 5–33

PCI error register 1 (PCI_ERR1), 5–35

PCI error register 2 (PCI_ERR2), 5–36

PCI interface, 2–9

PCI latency register (PCI_LAT), 5–2

PCI write transactions
I/O write buffer, 2–10

Performance monitor control register
(PERF_CONTROL), 5–16

Performance monitor register
(PERF_MONITOR), 5–16
3 October 1997 – Subject to Change Index–3

,
Phase-locked loop filter, C–6

Pin descriptions
physical pin layout, 3–2
pin list (alphanumeric), 3–3
power and ground pin list, 3–10

Propagation delay, C–3

Purpose and audience, xv

R
Real-time counter register (RT_COUNT), 5–80

Refresh timing register (RTR), 2–7, 2–8, 5–44

Register access abbreviations, xviii

Register addresses
hardware-specific register address map,

4–2
Register descriptions, 5–1

Register groups
diagnostic registers, 4–3
error registers, 4–3
general 21174 CSRs, 4–2
interrupt control registers, 4–8
memory controller registers, 4–4
miscellaneous registers, 4–8
PCI window control registers, 4–5
performance monitor registers, 4–3
scatter-gather address translation registers,

4–6
Registers, 4–1, 5–1

Reset register (RESET), 5–71

Revision control register (PYXIS_REV), 5–1

Routing information, C–4

Row history policy mask register (RHPR), 5–45

S
SALT, C–4

Scatter-gather, 2–3
addressing, 6–38
map, 2–9
TLB hit, 6–42
TLB miss, 2–3, 2–4, 5–65

Scatter-gather translation buffer invalidate
register (TBIA), 5–53

SDRAM, 2–1

SEQ_STATE field codes, 5–30

Shift register
latency time, 2–13
shift register rate, 2–13

Signals
alphanumeric list, 3–11
signal descriptions (alphanumeric), 3–18

Sparce memory space, 6–17

Sparse I/O space, 6–23

Specifications
dc, 7–2
electrical, 7–1
mechanical, 8–1

Status register (PYXIS_STAT), 5–22

Support, technical, D–1

Syndrome register (PYXIS_SYN), 5–24

T
Target impedance, C–3

Thermal specifications
heat sinks, 8–4
operating temperature, 8–4
thermal design recommendations, 8–4

TLB lookup, 2–3, 2–4

Topography report, C–4

Translated base registers (Tn_BASE, n=0–3),
5–60

Translation buffer, 5–63, 5–65

Translation buffer page registers (TBm_PAGEn
m=0–7, n=0–3), 5–65

Translation buffer tag registers (TB_TAGn,
n=4–7), 5–64

V
Victim buffer, 2–3, 2–5, 2–6
Index–4 3 October 1997 – Subject to Change

W
Window base registers (Wn_BASE, n=0–3),

5–55

Window DAC base register (W_DAC), 5–61

Window mask registers (Wn_MASK, n=0–3),
5–57
3 October 1997 – Subject to Change Index–5

	Contents
	1
	2
	3
	4
	5
	6
	7
	8
	A
	B
	C
	D

	Figures
	Tables
	Preface
	Table 1� Data Units �
	Table 2� Register Field Notation �
	Table 3� Unnamed Register Field Notation �

	Introduction
	1.1� 21174 Features
	1.2� 21174 System Configuration
	Figure 1–1� System Configuration

	Internal Architecture
	2.1� Memory Controller
	2.1.1� Memory Sequencers
	Figure 2–1� 21174 Block Diagram

	2.1.2� DMA Read Transaction
	2.1.2.1� PCI DMA Page Boundary Problem
	Figure 2–2� DMA Read Transaction Flow Diagram

	2.1.3� DMA Write Transaction
	Figure 2–3� DMA Write Transaction Flow Diagram

	2.1.4� 21174 DMA Lock Problem
	2.1.5� Minimum Memory Activation Period

	2.2� Memory Banks
	2.2.1� Refresh
	2.2.2� Error Checking and Correction
	2.2.3� DRAM Initialization

	2.3� PCI Interface
	Table 2–1� PCI Operating Frequencies �
	2.3.1� Scatter-Gather Map
	2.3.2� DMA Read Prefetch
	2.3.3� DMA Write Buffer
	2.3.4� DMA Write Buffer Merging
	2.3.5� I/O Write Buffer
	2.3.6� Configuration Cycles and Special Cycles

	2.4� Flash ROM Interface
	Table 2–2� Flash ROM Pin Assignment �

	2.5� Auto DACK
	2.6� Dummy Memory
	2.7� Interrupts
	Table 2–3� Shift Register Rates and WC Latency Tim...

	2.8� General-Purpose Inputs and Outputs
	2.9� Programmed 21164 Reset
	2.10� Clock
	2.10.1� Clock PLL
	2.10.2� DRAM Clock Aligner

	Pinout
	Figure 3–1� 21174 BGA Pin Assignment (Pads Down)
	3.1� Pin List (Alphanumeric)
	Table 3–1� Pin List (Alphanumeric) (Sheet 8 of 8)
	Table 3–2� Power and Ground Pin List (Sheet 2 of 2...

	3.2� Signal List (Alphanumeric)
	Table 3–3� Signal List (Alphanumeric) (Sheet 8 of ...

	3.3� Signal Descriptions
	Table 3–4� Signal Descriptions (Alphanumeric) (She...

	Register Definitions
	4.1� Register Types
	Table 4–1� 21174 Register Categories

	4.2� Register Addresses
	Table 4–2� Hardware-Specific Register Address Map

	4.3� General Registers
	Table 4–3� General 21174 CSRs (Base = 87.4000.0000...
	Table 4–4� Diagnostic Registers (Base = 87.4000.00...
	Table 4–5� Performance Monitor Registers (Base = 8...
	Table 4–6� Error Registers (Base = 87.4000.0000)

	4.4� Memory Controller Registers
	Table 4–7� Memory Controller Registers (Sheet 2 of...

	4.5� PCI Window Control Registers
	Table 4–8� PCI Window Control Registers (Sheet 2 o...

	4.6� Scatter-Gather Address Translation Registers
	Table 4–9� Address Translation Registers (Sheet 2 ...

	4.7� Miscellaneous Registers
	Table 4–10� Miscellaneous Registers (Base Address ...

	4.8� Interrupt Control Registers
	Table 4–11� Interrupt Control Registers (Base Addr...

	4.9� Flash ROM Address Space

	Register Descriptions
	5.1� Registers – General Description
	5.1.1� Revision Control Register (PYXIS_REV)
	Figure 5–1� Revision Control Register
	Table 5–1� Revision Control Register Fields

	5.1.2� PCI Latency Register (PCI_LAT)
	Figure 5–2� PCI Latency Register
	Table 5–2� PCI Latency Register Fields �

	5.1.3� Control Register (PYXIS_CTRL)
	Figure 5–3� Control Register
	Table 5–3� Control Register Fields (Sheet 3 of 3)
	Table 5–4� Default PCI READ Prefetch Algorithm �

	5.1.4� Control Register 1 (PYXIS_CTRL1)
	Figure 5–4� Control Register 1
	Table 5–5� Control Register 1 Fields �

	5.1.5� Flash Control Register (FLASH_CTRL)
	Figure 5–5� Flash Control Register
	Table 5–6� Flash Control Register Fields (Sheet 2 ...
	5.1.5.1� Calculating Flash ROM Access Time

	5.1.6� Hardware Address Extension Register (HAE_ME...
	Figure 5–6� Hardware Address Extension Register (H...
	Table 5–7� Hardware Address Extension Register (HA...
	Table 5–8� PCI Address Mapping

	5.1.7� Hardware Address Extension Register (HAE_IO...
	Figure 5–7� Hardware Address Extension Register (H...
	Table 5–9� Hardware Address Extension Register (HA...

	5.1.8� Configuration Type Register (CFG)
	Figure 5–8� Configuration Type Register
	Table 5–10� Configuration Type Register Fields

	5.2� Diagnostic Register Descriptions
	5.2.1� Diagnostic Control Register (PYXIS_DIAG)
	Figure 5–9� Diagnostic Control Register
	Table 5–11� Diagnostic Control Register Fields (Sh...

	5.2.2� Diagnostic Check Register (DIAG_CHECK)
	Figure 5–10� Diagnostic Check Register
	Table 5–12� Diagnostic Check Register Fields

	5.3� Performance Monitor Register Descriptions
	5.3.1� Performance Monitor Register (PERF_MONITOR)...
	Figure 5–11� Performance Monitor Register
	Table 5–13� Performance Monitor Register Fields

	5.3.2� Performance Monitor Control Register (PERF_...
	Figure 5–12� Performance Monitor Control Register
	Table 5–14� Performance Monitor Control Register F...
	Table 5–15� PERF_MONITOR Register Low/High Select ...

	5.4� Error Register Descriptions
	5.4.1� Error Register (PYXIS_ERR)
	Figure 5–13� Error Register
	Table 5–16� Error Register Fields (Sheet 2 of 2)

	5.4.2� Status Register (PYXIS_STAT)
	Figure 5–14� Status Register
	Table 5–17� Status Register Fields �

	5.4.3� Error Mask Register (ERR_MASK)
	Figure 5–15� Error Mask Register
	Table 5–18� Error Mask Register Fields (Sheet 2 of...

	5.4.4� Syndrome Register (PYXIS_SYN)
	Figure 5–16� Syndrome Register
	Table 5–19� Syndrome Register Fields �

	5.4.5� Error Data Register (PYXIS_ERR_DATA)
	Figure 5–17� Error Data Register

	5.4.6� Memory Error Address Register (MEAR)
	Figure 5–18� Memory Error Address Register
	Table 5–20� Memory Error Address Register Fields

	5.4.7� Memory Error Status Register (MESR)
	Figure 5–19� Memory Error Status Register
	Table 5–21� Memory Error Status Register Fields (S...
	Table 5–22� DATA_CYCLE_TYPE Codes (Sheet 2 of 2)
	Table 5–23� SEQ_STATE Codes (Sheet 3 of 3)

	5.4.8� PCI Error Register 0 (PCI_ERR0)
	Figure 5–20� PCI Error Register 0
	Table 5–24� PCI Error Register 0 Fields (Sheet 2 o...

	5.4.9� PCI Error Register 1 (PCI_ERR1)
	Figure 5–21� PCI Error Register 1
	Table 5–25� PCI Error Register 1 Fields

	5.4.10� PCI Error Register 2 (PCI_ERR2)
	Figure 5–22� PCI Error Register 2
	Table 5–26� PCI Error Register 2 Fields

	5.5� Memory Controller Register Descriptions
	5.5.1� Memory Control Register (MCR)
	Figure 5–23� Memory Control Register
	Table 5–27� Memory Control Register Fields (Sheet ...
	Table 5–28� DRAM_MODE Fields (Sheet 2 of 2)

	5.5.2� Memory Clock Mask Register (MCMR)
	Figure 5–24� Memory Clock Mask Register
	Table 5–29� Memory Clock Mask Register Fields
	Table 5–30� MCMR Bit Definitions �

	5.5.3� Global Timing Register (GTR)
	Figure 5–25� Global Timing Register
	Table 5–31� Global Timing Register Fields

	5.5.4� Refresh Timing Register (RTR)
	Figure 5–26� Refresh Timing Register
	Table 5–32� Refresh Timing Register Fields (Sheet ...

	5.5.5� Row History Policy Mask Register (RHPR)
	Figure 5–27� Row History Policy Mask Register
	Table 5–33� Row History Policy Mask Register Field...

	5.5.6� Memory Control Debug Register 1 (MDR1)
	Figure 5–28� Memory Control Debug Register 1
	Table 5–34� Memory Control Debug Register 1 Fields...

	5.5.7� Memory Control Debug Register 2 (MDR2)
	Figure 5–29� Memory Control Debug Register 2
	Table 5–35� Memory Control Debug Register 2 Fields...

	5.5.8� Base Address Registers (BBAR0–BBAR7)
	Figure 5–30� Base Address Register
	Table 5–36� Base Address Register Fields

	5.5.9� Bank Configuration Registers (BCR0–BCR7)
	Figure 5–31� Bank Configuration Register
	Table 5–37� Bank Configuration Register Fields (Sh...

	5.5.10� Bank Timing Registers (BTR0–BTR7)
	Figure 5–32� Bank Timing Register
	Table 5–38� Bank Timing Register Fields (Sheet 2 o...

	5.5.11� Cache Valid Map Register (CVM)
	Figure 5–33� Cache Valid Map Register
	Table 5–39� Cache Valid Map Register Fields �

	5.6� PCI Window Control Register Descriptions
	5.6.1� Scatter-Gather Translation Buffer Invalidat...
	Figure 5–34� Scatter-Gather Translation Buffer Inv...
	Table 5–40� Scatter-Gather Translation Buffer Inva...
	5.6.1.1� Preventing 21174 Hang when TBIA=3

	5.6.2� Window Base Registers (Wn_BASE, n=0–3)
	Figure 5–35� Window Base Register
	Table 5–41� Window Base Register Fields �
	5.6.2.1� Determining a Hit in the Target Window

	5.6.3� Window Mask Registers (Wn_MASK, n=0–3)
	Figure 5–36� Window Mask Register
	5.6.3.1� Determining a Hit in the Target Window
	Table 5–42� Window Mask Register Fields
	Table 5–43� W_MASK<31:20> Field
	Table 5–44� PCI Address Translation — Scatter-Gath...
	Table 5–45� PCI Address Translation — Scatter-Gath...

	5.6.4� Translated Base Registers (Tn_BASE, n=0–3)
	Figure 5–37� Translated Base Register
	Table 5–46� Translated Base Registers Fields

	5.6.5� Window DAC Base Register (W_DAC)
	Figure 5–38� Window DAC Base Register
	Table 5–47� Window DAC Base Register Fields

	5.7� Scatter-Gather Address Translation Register D...
	5.7.1� Lockable Translation Buffer Tag Registers (...
	Figure 5–39� Lockable Translation Buffer Tag Regis...
	Table 5–48� Lockable Translation Buffer Tag Regist...
	5.7.1.1� Determining a Hit in the Translation Buff...
	5.7.1.2� Operation on a SG_TLB Miss

	5.7.2� Translation Buffer Tag Registers (TB_TAGn, ...
	Figure 5–40� Translation Buffer Tag Register
	Table 5–49� Translation Buffer Tag Register Fields...
	5.7.2.1� Determining a Hit in the Translation Buff...
	5.7.2.2� Operation on a SG_TLB Miss

	5.7.3� Translation Buffer Page Registers (TBm_PAGE...
	Figure 5–41� Translation Buffer Page Register
	Table 5–50� Translation Buffer Page Register (TBm_...
	5.7.3.1� Determining a Hit in the Translation Buff...

	5.8� Miscellaneous Register Descriptions
	5.8.1� Clock Control Register (CCR)
	Figure 5–42� Clock Control Register
	Table 5–51� Clock Control Register Fields (Sheet 3...

	5.8.2� Clock Status Register (CLK_STAT)
	Figure 5–43� Clock Status Register
	Table 5–52� Clock Status Register Fields (Sheet 2 ...

	5.8.3� Reset Register (RESET)
	Figure 5–44� Reset Register
	Table 5–53� Reset Register Fields

	5.9� Interrupt Control Registers Descriptions
	5.9.1� Interrupt Request Register (INT_REQ)
	Figure 5–45� Interrupt Request Register
	Table 5–54� Interrupt Request Register Fields

	5.9.2� Interrupt Mask Register (INT_MASK)
	Figure 5–46� Interrupt Mask Register
	Table 5–55� Interrupt Mask Register Fields

	5.9.3� Interrupt High/Low Select Register (INT_HIL...
	Figure 5–47� Interrupt High/Low Select Register
	Table 5–56� Interrupt High/Low Select Register Fie...

	5.9.4� Interrupt Routine Select Register (INT_ROUT...
	Figure 5–48� Interrupt Routine Select Register
	Table 5–57� Interrupt Routine Select Register Fiel...

	5.9.5� General-Purpose Output Register (GPO)
	Figure 5–49� General-Purpose Output Register
	Table 5–58� General-Purpose Output Register Fields...

	5.9.6� Interrupt Configuration Register (INT_CNFG)...
	Figure 5–50� Interrupt Configuration Register
	Table 5–59� Interrupt Configuration Register Field...
	Table 5–60� Clock Delay Values
	Table 5–61� Clock Divisor Values �

	5.9.7� Real-Time Counter Register (RT_COUNT)
	Figure 5–51� Real-Time Counter Register
	Table 5–62� Real-Time Counter Register Fields

	5.9.8� Interrupt Time Register (INT_TIME)
	Figure 5–52� Interrupt Time Register
	Table 5–63� Interrupt Time Register Fields

	5.9.9� I2C Control Register (IIC_CTRL)
	Figure 5–53� I2C Control Register
	Table 5–64� I2C Control Register Fields

	System Address Space
	6.1� Address Map
	Table 6–1� Physical Address Map (Byte/Word Mode Di...
	Table 6–2� Physical Address Map (Byte/Word Mode En...
	Figure 6–1� Address Space Overview
	Figure 6–2� Memory Remapping

	6.2� PCI Address Space
	6.3� 21164 Address Space
	Figure 6–3� 21164 Address Space Configuration
	Figure 6–4� 21164 and DMA Read and Write Transacti...
	6.3.1� System Address Map
	Figure 6–5� System Address Map
	Figure 6–6� 21174 CSR Space

	6.4� 21164 Byte/Word PCI Space
	Figure 6–7� Byte/Word PCI Space
	Table 6–3� 21164 Byte/Word Addressing
	6.4.1� 21164 Size Field
	Table 6–4� 21164 Byte/Word Translation Values

	6.5� Cacheable Memory Space
	6.6� PCI Dense Memory Space
	Figure 6–8� Dense-Space Address Generation

	6.7� PCI Sparse Memory Space
	6.7.1� Hardware Extension Register (HAE_MEM)
	6.7.2� Memory Access Rules and Operation
	Table 6–5� Int4_valid and 21164 Address Relationsh...
	Table 6–6� PCI Memory Sparse-Space Read/Write Enco...
	Table 6–7� PCI Address Mapping
	Figure 6–9� PCI Memory Sparse-Space Address Genera...
	Figure 6–10� PCI Memory Sparse-Space Address Gener...
	Figure 6–11� PCI Memory Sparse-Space Address Gener...

	6.8� PCI Sparse I/O Space
	6.8.1� Hardware Extension Register (HAE_IO)
	6.8.2� PCI Sparse I/O Space Access Operation
	Table 6–8� PCI Sparse I/O Space Read/Write Encodin...
	Figure 6–12� PCI Sparse I/O Space Address Translat...
	Figure 6–13� PCI Sparse I/O Space Address Translat...

	6.9� PCI Configuration Space
	Figure 6–14� PCI Configuration Space Definition (S...
	Figure 6–15� PCI Configuration Space Definition (D...
	Table 6–9� CPU Address to IDSEL Conversion
	Table 6–10� PCI Configuration Space Read/Write Enc...
	Figure 6–16� PCI Bus Hierarchy

	6.10� PCI Special/Interrupt Cycles
	6.11� Hardware-Specific and Miscellaneous Register...
	Table 6–11� Hardware and Miscellaneous Address Map...

	6.12� PCI to Physical Memory Address
	Table 6–12� PCI Target Window Mask Register Fields...
	Figure 6–17� PCI DMA Addressing Example
	Figure 6–18� PCI Target Window Compare

	6.13� Direct-Mapped Addressing
	Table 6–13� Direct-Mapped PCI Target Address Trans...

	6.14� Scatter-Gather Addressing
	Figure 6–19� Scatter-Gather PTE Format
	Table 6–14� Scatter-Gather Mapped PCI Target Addre...

	6.15� Scatter-Gather TLB
	Figure 6–20� Scatter-Gather Associative TLB
	6.15.1� Scatter-Gather TLB Hit Process
	6.15.2� Scatter-Gather TLB Miss Process
	Figure 6–21� Scatter-Gather Map Translation

	6.16� Suggested Use of a PCI Window
	Figure 6–22� Default PCI Window Allocation
	Table 6–15� PCI Window Power-Up Configuration
	6.16.1� Peripheral Component Architecture Compatib...
	6.16.2� Memory Chip Select Signal mem_cs_l
	Figure 6–23� mem_cs_l Decode Area
	Figure 6–24� mem_cs_l Logic

	Electrical Specifications
	7.1� PCI Electrical Specification Conformance
	7.2� Absolute Maximum Ratings
	Table 7–1� Absolute Maximum Electrical Ratings

	7.3� DC Specifications
	Table 7–2� DC Specifications

	Mechanical and Thermal Specifications
	8.1� Mechanical Specifications
	Figure 8–1� 474-Pin BGA Package
	Figure 8–2� 21174 Physical Specification

	8.2� Thermal Specifications
	8.2.1� Operating Temperature
	8.2.2� Thermal Design Recommendations
	Table 8–1� Thermal Management Configurations for t...

	8.2.3� Heat Sinks
	8.2.3.1� Clip-on Heat Sink Assembly
	Figure 8–3� Clip-on Heat Sink Assembly
	8.2.3.2� Tape Heat Sink Assembly
	Figure 8–4� Tape Heat Sink Assembly

	21174 DMA Page Boundary Solution
	A.1� Read Page Problem
	A.2� Recommended Solution
	A.2.1� DMA Access Verilog Equations

	21174 DMA Lock Solution
	B.1� DMA Lock Problem
	B.2� Recommended Solutions

	AlphaPC 164LX Layout Design Rules
	C.1� Application Note
	C.2� AlphaPC 164LX Layer Construction
	Table C–1� Layer Construction
	Table C–2� System Clock Signals Layout Rules
	Figure C–1� sys_cout1_h Layout

	C.3� Bcache Signal Layout Lengths
	Table C–3� Bcache Signal Layout Lengths
	Figure C–2� st_clk1_h Layout

	C.4� 21174 Clock Layout
	C.4.1� DRAM Clock Signal Layout Rules
	Table C–4� DRAM Clock Signal Layout Rules

	C.4.2� PCI Clock Signal Layout Rules
	Table C–5� PCI Clock Signal Layout Rules

	C.5� Bcache Signal Layout Rules
	Table C–6� Bcache Signal Layout Rules
	Figure C–3� Bcache Signal Layout
	Figure C–4� Bcache Signal Layout

	C.6� PCI General Layout

	Support, Products, and Documentation
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	R
	S
	T
	V
	W

