SUBROUTINE DTBTRS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B,
$ LDB, INFO )
*
* -- LAPACK routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER DIAG, TRANS, UPLO
INTEGER INFO, KD, LDAB, LDB, N, NRHS
* ..
* .. Array Arguments ..
DOUBLE PRECISION AB( LDAB, * ), B( LDB, * )
* ..
*
* Purpose
* =======
*
* DTBTRS solves a triangular system of the form
*
* A * X = B or A**T * X = B,
*
* where A is a triangular band matrix of order N, and B is an
* N-by NRHS matrix. A check is made to verify that A is nonsingular.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* = 'U': A is upper triangular;
* = 'L': A is lower triangular.
*
* TRANS (input) CHARACTER*1
* Specifies the form the system of equations:
* = 'N': A * X = B (No transpose)
* = 'T': A**T * X = B (Transpose)
* = 'C': A**H * X = B (Conjugate transpose = Transpose)
*
* DIAG (input) CHARACTER*1
* = 'N': A is non-unit triangular;
* = 'U': A is unit triangular.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* KD (input) INTEGER
* The number of superdiagonals or subdiagonals of the
* triangular band matrix A. KD >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrix B. NRHS >= 0.
*
* AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
* The upper or lower triangular band matrix A, stored in the
* first kd+1 rows of AB. The j-th column of A is stored
* in the j-th column of the array AB as follows:
* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
* If DIAG = 'U', the diagonal elements of A are not referenced
* and are assumed to be 1.
*
* LDAB (input) INTEGER
* The leading dimension of the array AB. LDAB >= KD+1.
*
* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
* On entry, the right hand side matrix B.
* On exit, if INFO = 0, the solution matrix X.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, the i-th diagonal element of A is zero,
* indicating that the matrix is singular and the
* solutions X have not been computed.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL NOUNIT, UPPER
INTEGER J
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL DTBSV, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
NOUNIT = LSAME( DIAG, 'N' )
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.
$ LSAME( TRANS, 'T' ) .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
INFO = -2
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( KD.LT.0 ) THEN
INFO = -5
ELSE IF( NRHS.LT.0 ) THEN
INFO = -6
ELSE IF( LDAB.LT.KD+1 ) THEN
INFO = -8
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -10
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DTBTRS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Check for singularity.
*
IF( NOUNIT ) THEN
IF( UPPER ) THEN
DO 10 INFO = 1, N
IF( AB( KD+1, INFO ).EQ.ZERO )
$ RETURN
10 CONTINUE
ELSE
DO 20 INFO = 1, N
IF( AB( 1, INFO ).EQ.ZERO )
$ RETURN
20 CONTINUE
END IF
END IF
INFO = 0
*
* Solve A * X = B or A' * X = B.
*
DO 30 J = 1, NRHS
CALL DTBSV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, B( 1, J ), 1 )
30 CONTINUE
*
RETURN
*
* End of DTBTRS
*
END