SUBROUTINE SSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
$ ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL,
$ INFO )
*
* -- LAPACK driver routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER JOBZ, RANGE, UPLO
INTEGER IL, INFO, IU, LDZ, M, N
REAL ABSTOL, VL, VU
* ..
* .. Array Arguments ..
INTEGER IFAIL( * ), IWORK( * )
REAL AP( * ), W( * ), WORK( * ), Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* SSPEVX computes selected eigenvalues and, optionally, eigenvectors
* of a real symmetric matrix A in packed storage. Eigenvalues/vectors
* can be selected by specifying either a range of values or a range of
* indices for the desired eigenvalues.
*
* Arguments
* =========
*
* JOBZ (input) CHARACTER*1
* = 'N': Compute eigenvalues only;
* = 'V': Compute eigenvalues and eigenvectors.
*
* RANGE (input) CHARACTER*1
* = 'A': all eigenvalues will be found;
* = 'V': all eigenvalues in the half-open interval (VL,VU]
* will be found;
* = 'I': the IL-th through IU-th eigenvalues will be found.
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangle of A is stored;
* = 'L': Lower triangle of A is stored.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* AP (input/output) REAL array, dimension (N*(N+1)/2)
* On entry, the upper or lower triangle of the symmetric matrix
* A, packed columnwise in a linear array. The j-th column of A
* is stored in the array AP as follows:
* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
*
* On exit, AP is overwritten by values generated during the
* reduction to tridiagonal form. If UPLO = 'U', the diagonal
* and first superdiagonal of the tridiagonal matrix T overwrite
* the corresponding elements of A, and if UPLO = 'L', the
* diagonal and first subdiagonal of T overwrite the
* corresponding elements of A.
*
* VL (input) REAL
* VU (input) REAL
* If RANGE='V', the lower and upper bounds of the interval to
* be searched for eigenvalues. VL < VU.
* Not referenced if RANGE = 'A' or 'I'.
*
* IL (input) INTEGER
* IU (input) INTEGER
* If RANGE='I', the indices (in ascending order) of the
* smallest and largest eigenvalues to be returned.
* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
* Not referenced if RANGE = 'A' or 'V'.
*
* ABSTOL (input) REAL
* The absolute error tolerance for the eigenvalues.
* An approximate eigenvalue is accepted as converged
* when it is determined to lie in an interval [a,b]
* of width less than or equal to
*
* ABSTOL + EPS * max( |a|,|b| ) ,
*
* where EPS is the machine precision. If ABSTOL is less than
* or equal to zero, then EPS*|T| will be used in its place,
* where |T| is the 1-norm of the tridiagonal matrix obtained
* by reducing AP to tridiagonal form.
*
* Eigenvalues will be computed most accurately when ABSTOL is
* set to twice the underflow threshold 2*SLAMCH('S'), not zero.
* If this routine returns with INFO>0, indicating that some
* eigenvectors did not converge, try setting ABSTOL to
* 2*SLAMCH('S').
*
* See "Computing Small Singular Values of Bidiagonal Matrices
* with Guaranteed High Relative Accuracy," by Demmel and
* Kahan, LAPACK Working Note #3.
*
* M (output) INTEGER
* The total number of eigenvalues found. 0 <= M <= N.
* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
*
* W (output) REAL array, dimension (N)
* If INFO = 0, the selected eigenvalues in ascending order.
*
* Z (output) REAL array, dimension (LDZ, max(1,M))
* If JOBZ = 'V', then if INFO = 0, the first M columns of Z
* contain the orthonormal eigenvectors of the matrix A
* corresponding to the selected eigenvalues, with the i-th
* column of Z holding the eigenvector associated with W(i).
* If an eigenvector fails to converge, then that column of Z
* contains the latest approximation to the eigenvector, and the
* index of the eigenvector is returned in IFAIL.
* If JOBZ = 'N', then Z is not referenced.
* Note: the user must ensure that at least max(1,M) columns are
* supplied in the array Z; if RANGE = 'V', the exact value of M
* is not known in advance and an upper bound must be used.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= 1, and if
* JOBZ = 'V', LDZ >= max(1,N).
*
* WORK (workspace) REAL array, dimension (8*N)
*
* IWORK (workspace) INTEGER array, dimension (5*N)
*
* IFAIL (output) INTEGER array, dimension (N)
* If JOBZ = 'V', then if INFO = 0, the first M elements of
* IFAIL are zero. If INFO > 0, then IFAIL contains the
* indices of the eigenvectors that failed to converge.
* If JOBZ = 'N', then IFAIL is not referenced.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, then i eigenvectors failed to converge.
* Their indices are stored in array IFAIL.
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
* ..
* .. Local Scalars ..
LOGICAL ALLEIG, INDEIG, TEST, VALEIG, WANTZ
CHARACTER ORDER
INTEGER I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
$ INDISP, INDIWO, INDTAU, INDWRK, ISCALE, ITMP1,
$ J, JJ, NSPLIT
REAL ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
$ SIGMA, SMLNUM, TMP1, VLL, VUU
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH, SLANSP
EXTERNAL LSAME, SLAMCH, SLANSP
* ..
* .. External Subroutines ..
EXTERNAL SCOPY, SOPGTR, SOPMTR, SSCAL, SSPTRD, SSTEBZ,
$ SSTEIN, SSTEQR, SSTERF, SSWAP, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
WANTZ = LSAME( JOBZ, 'V' )
ALLEIG = LSAME( RANGE, 'A' )
VALEIG = LSAME( RANGE, 'V' )
INDEIG = LSAME( RANGE, 'I' )
*
INFO = 0
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -1
ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
INFO = -2
ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
$ THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE
IF( VALEIG ) THEN
IF( N.GT.0 .AND. VU.LE.VL )
$ INFO = -7
ELSE IF( INDEIG ) THEN
IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
INFO = -9
END IF
END IF
END IF
IF( INFO.EQ.0 ) THEN
IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
$ INFO = -14
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SSPEVX', -INFO )
RETURN
END IF
*
* Quick return if possible
*
M = 0
IF( N.EQ.0 )
$ RETURN
*
IF( N.EQ.1 ) THEN
IF( ALLEIG .OR. INDEIG ) THEN
M = 1
W( 1 ) = AP( 1 )
ELSE
IF( VL.LT.AP( 1 ) .AND. VU.GE.AP( 1 ) ) THEN
M = 1
W( 1 ) = AP( 1 )
END IF
END IF
IF( WANTZ )
$ Z( 1, 1 ) = ONE
RETURN
END IF
*
* Get machine constants.
*
SAFMIN = SLAMCH( 'Safe minimum' )
EPS = SLAMCH( 'Precision' )
SMLNUM = SAFMIN / EPS
BIGNUM = ONE / SMLNUM
RMIN = SQRT( SMLNUM )
RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
*
* Scale matrix to allowable range, if necessary.
*
ISCALE = 0
ABSTLL = ABSTOL
IF ( VALEIG ) THEN
VLL = VL
VUU = VU
ELSE
VLL = ZERO
VUU = ZERO
ENDIF
ANRM = SLANSP( 'M', UPLO, N, AP, WORK )
IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
ISCALE = 1
SIGMA = RMIN / ANRM
ELSE IF( ANRM.GT.RMAX ) THEN
ISCALE = 1
SIGMA = RMAX / ANRM
END IF
IF( ISCALE.EQ.1 ) THEN
CALL SSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
IF( ABSTOL.GT.0 )
$ ABSTLL = ABSTOL*SIGMA
IF( VALEIG ) THEN
VLL = VL*SIGMA
VUU = VU*SIGMA
END IF
END IF
*
* Call SSPTRD to reduce symmetric packed matrix to tridiagonal form.
*
INDTAU = 1
INDE = INDTAU + N
INDD = INDE + N
INDWRK = INDD + N
CALL SSPTRD( UPLO, N, AP, WORK( INDD ), WORK( INDE ),
$ WORK( INDTAU ), IINFO )
*
* If all eigenvalues are desired and ABSTOL is less than or equal
* to zero, then call SSTERF or SOPGTR and SSTEQR. If this fails
* for some eigenvalue, then try SSTEBZ.
*
TEST = .FALSE.
IF (INDEIG) THEN
IF (IL.EQ.1 .AND. IU.EQ.N) THEN
TEST = .TRUE.
END IF
END IF
IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
CALL SCOPY( N, WORK( INDD ), 1, W, 1 )
INDEE = INDWRK + 2*N
IF( .NOT.WANTZ ) THEN
CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
CALL SSTERF( N, W, WORK( INDEE ), INFO )
ELSE
CALL SOPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
$ WORK( INDWRK ), IINFO )
CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
CALL SSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
$ WORK( INDWRK ), INFO )
IF( INFO.EQ.0 ) THEN
DO 10 I = 1, N
IFAIL( I ) = 0
10 CONTINUE
END IF
END IF
IF( INFO.EQ.0 ) THEN
M = N
GO TO 20
END IF
INFO = 0
END IF
*
* Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN.
*
IF( WANTZ ) THEN
ORDER = 'B'
ELSE
ORDER = 'E'
END IF
INDIBL = 1
INDISP = INDIBL + N
INDIWO = INDISP + N
CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
$ WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
$ IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
$ IWORK( INDIWO ), INFO )
*
IF( WANTZ ) THEN
CALL SSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
$ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
$ WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
*
* Apply orthogonal matrix used in reduction to tridiagonal
* form to eigenvectors returned by SSTEIN.
*
CALL SOPMTR( 'L', UPLO, 'N', N, M, AP, WORK( INDTAU ), Z, LDZ,
$ WORK( INDWRK ), INFO )
END IF
*
* If matrix was scaled, then rescale eigenvalues appropriately.
*
20 CONTINUE
IF( ISCALE.EQ.1 ) THEN
IF( INFO.EQ.0 ) THEN
IMAX = M
ELSE
IMAX = INFO - 1
END IF
CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
END IF
*
* If eigenvalues are not in order, then sort them, along with
* eigenvectors.
*
IF( WANTZ ) THEN
DO 40 J = 1, M - 1
I = 0
TMP1 = W( J )
DO 30 JJ = J + 1, M
IF( W( JJ ).LT.TMP1 ) THEN
I = JJ
TMP1 = W( JJ )
END IF
30 CONTINUE
*
IF( I.NE.0 ) THEN
ITMP1 = IWORK( INDIBL+I-1 )
W( I ) = W( J )
IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
W( J ) = TMP1
IWORK( INDIBL+J-1 ) = ITMP1
CALL SSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
IF( INFO.NE.0 ) THEN
ITMP1 = IFAIL( I )
IFAIL( I ) = IFAIL( J )
IFAIL( J ) = ITMP1
END IF
END IF
40 CONTINUE
END IF
*
RETURN
*
* End of SSPEVX
*
END