SUBROUTINE ZGGBAK( JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V,
$ LDV, INFO )
*
* -- LAPACK routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER JOB, SIDE
INTEGER IHI, ILO, INFO, LDV, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION LSCALE( * ), RSCALE( * )
COMPLEX*16 V( LDV, * )
* ..
*
* Purpose
* =======
*
* ZGGBAK forms the right or left eigenvectors of a complex generalized
* eigenvalue problem A*x = lambda*B*x, by backward transformation on
* the computed eigenvectors of the balanced pair of matrices output by
* ZGGBAL.
*
* Arguments
* =========
*
* JOB (input) CHARACTER*1
* Specifies the type of backward transformation required:
* = 'N': do nothing, return immediately;
* = 'P': do backward transformation for permutation only;
* = 'S': do backward transformation for scaling only;
* = 'B': do backward transformations for both permutation and
* scaling.
* JOB must be the same as the argument JOB supplied to ZGGBAL.
*
* SIDE (input) CHARACTER*1
* = 'R': V contains right eigenvectors;
* = 'L': V contains left eigenvectors.
*
* N (input) INTEGER
* The number of rows of the matrix V. N >= 0.
*
* ILO (input) INTEGER
* IHI (input) INTEGER
* The integers ILO and IHI determined by ZGGBAL.
* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
*
* LSCALE (input) DOUBLE PRECISION array, dimension (N)
* Details of the permutations and/or scaling factors applied
* to the left side of A and B, as returned by ZGGBAL.
*
* RSCALE (input) DOUBLE PRECISION array, dimension (N)
* Details of the permutations and/or scaling factors applied
* to the right side of A and B, as returned by ZGGBAL.
*
* M (input) INTEGER
* The number of columns of the matrix V. M >= 0.
*
* V (input/output) COMPLEX*16 array, dimension (LDV,M)
* On entry, the matrix of right or left eigenvectors to be
* transformed, as returned by ZTGEVC.
* On exit, V is overwritten by the transformed eigenvectors.
*
* LDV (input) INTEGER
* The leading dimension of the matrix V. LDV >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value.
*
* Further Details
* ===============
*
* See R.C. Ward, Balancing the generalized eigenvalue problem,
* SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL LEFTV, RIGHTV
INTEGER I, K
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZDSCAL, ZSWAP
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
RIGHTV = LSAME( SIDE, 'R' )
LEFTV = LSAME( SIDE, 'L' )
*
INFO = 0
IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
$ .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
INFO = -1
ELSE IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( ILO.LT.1 ) THEN
INFO = -4
ELSE IF( N.EQ.0 .AND. IHI.EQ.0 .AND. ILO.NE.1 ) THEN
INFO = -4
ELSE IF( N.GT.0 .AND. ( IHI.LT.ILO .OR. IHI.GT.MAX( 1, N ) ) )
$ THEN
INFO = -5
ELSE IF( N.EQ.0 .AND. ILO.EQ.1 .AND. IHI.NE.0 ) THEN
INFO = -5
ELSE IF( M.LT.0 ) THEN
INFO = -8
ELSE IF( LDV.LT.MAX( 1, N ) ) THEN
INFO = -10
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGGBAK', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
IF( M.EQ.0 )
$ RETURN
IF( LSAME( JOB, 'N' ) )
$ RETURN
*
IF( ILO.EQ.IHI )
$ GO TO 30
*
* Backward balance
*
IF( LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'B' ) ) THEN
*
* Backward transformation on right eigenvectors
*
IF( RIGHTV ) THEN
DO 10 I = ILO, IHI
CALL ZDSCAL( M, RSCALE( I ), V( I, 1 ), LDV )
10 CONTINUE
END IF
*
* Backward transformation on left eigenvectors
*
IF( LEFTV ) THEN
DO 20 I = ILO, IHI
CALL ZDSCAL( M, LSCALE( I ), V( I, 1 ), LDV )
20 CONTINUE
END IF
END IF
*
* Backward permutation
*
30 CONTINUE
IF( LSAME( JOB, 'P' ) .OR. LSAME( JOB, 'B' ) ) THEN
*
* Backward permutation on right eigenvectors
*
IF( RIGHTV ) THEN
IF( ILO.EQ.1 )
$ GO TO 50
DO 40 I = ILO - 1, 1, -1
K = RSCALE( I )
IF( K.EQ.I )
$ GO TO 40
CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
40 CONTINUE
*
50 CONTINUE
IF( IHI.EQ.N )
$ GO TO 70
DO 60 I = IHI + 1, N
K = RSCALE( I )
IF( K.EQ.I )
$ GO TO 60
CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
60 CONTINUE
END IF
*
* Backward permutation on left eigenvectors
*
70 CONTINUE
IF( LEFTV ) THEN
IF( ILO.EQ.1 )
$ GO TO 90
DO 80 I = ILO - 1, 1, -1
K = LSCALE( I )
IF( K.EQ.I )
$ GO TO 80
CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
80 CONTINUE
*
90 CONTINUE
IF( IHI.EQ.N )
$ GO TO 110
DO 100 I = IHI + 1, N
K = LSCALE( I )
IF( K.EQ.I )
$ GO TO 100
CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
100 CONTINUE
END IF
END IF
*
110 CONTINUE
*
RETURN
*
* End of ZGGBAK
*
END