SUBROUTINE SLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA,
$ B, LDB )
*
* -- LAPACK auxiliary routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER LDB, LDX, N, NRHS
REAL ALPHA, BETA
* ..
* .. Array Arguments ..
REAL B( LDB, * ), D( * ), DL( * ), DU( * ),
$ X( LDX, * )
* ..
*
* Purpose
* =======
*
* SLAGTM performs a matrix-vector product of the form
*
* B := alpha * A * X + beta * B
*
* where A is a tridiagonal matrix of order N, B and X are N by NRHS
* matrices, and alpha and beta are real scalars, each of which may be
* 0., 1., or -1.
*
* Arguments
* =========
*
* TRANS (input) CHARACTER*1
* Specifies the operation applied to A.
* = 'N': No transpose, B := alpha * A * X + beta * B
* = 'T': Transpose, B := alpha * A'* X + beta * B
* = 'C': Conjugate transpose = Transpose
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrices X and B.
*
* ALPHA (input) REAL
* The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise,
* it is assumed to be 0.
*
* DL (input) REAL array, dimension (N-1)
* The (n-1) sub-diagonal elements of T.
*
* D (input) REAL array, dimension (N)
* The diagonal elements of T.
*
* DU (input) REAL array, dimension (N-1)
* The (n-1) super-diagonal elements of T.
*
* X (input) REAL array, dimension (LDX,NRHS)
* The N by NRHS matrix X.
* LDX (input) INTEGER
* The leading dimension of the array X. LDX >= max(N,1).
*
* BETA (input) REAL
* The scalar beta. BETA must be 0., 1., or -1.; otherwise,
* it is assumed to be 1.
*
* B (input/output) REAL array, dimension (LDB,NRHS)
* On entry, the N by NRHS matrix B.
* On exit, B is overwritten by the matrix expression
* B := alpha * A * X + beta * B.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(N,1).
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, J
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Executable Statements ..
*
IF( N.EQ.0 )
$ RETURN
*
* Multiply B by BETA if BETA.NE.1.
*
IF( BETA.EQ.ZERO ) THEN
DO 20 J = 1, NRHS
DO 10 I = 1, N
B( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
ELSE IF( BETA.EQ.-ONE ) THEN
DO 40 J = 1, NRHS
DO 30 I = 1, N
B( I, J ) = -B( I, J )
30 CONTINUE
40 CONTINUE
END IF
*
IF( ALPHA.EQ.ONE ) THEN
IF( LSAME( TRANS, 'N' ) ) THEN
*
* Compute B := B + A*X
*
DO 60 J = 1, NRHS
IF( N.EQ.1 ) THEN
B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
ELSE
B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
$ DU( 1 )*X( 2, J )
B( N, J ) = B( N, J ) + DL( N-1 )*X( N-1, J ) +
$ D( N )*X( N, J )
DO 50 I = 2, N - 1
B( I, J ) = B( I, J ) + DL( I-1 )*X( I-1, J ) +
$ D( I )*X( I, J ) + DU( I )*X( I+1, J )
50 CONTINUE
END IF
60 CONTINUE
ELSE
*
* Compute B := B + A'*X
*
DO 80 J = 1, NRHS
IF( N.EQ.1 ) THEN
B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
ELSE
B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
$ DL( 1 )*X( 2, J )
B( N, J ) = B( N, J ) + DU( N-1 )*X( N-1, J ) +
$ D( N )*X( N, J )
DO 70 I = 2, N - 1
B( I, J ) = B( I, J ) + DU( I-1 )*X( I-1, J ) +
$ D( I )*X( I, J ) + DL( I )*X( I+1, J )
70 CONTINUE
END IF
80 CONTINUE
END IF
ELSE IF( ALPHA.EQ.-ONE ) THEN
IF( LSAME( TRANS, 'N' ) ) THEN
*
* Compute B := B - A*X
*
DO 100 J = 1, NRHS
IF( N.EQ.1 ) THEN
B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
ELSE
B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
$ DU( 1 )*X( 2, J )
B( N, J ) = B( N, J ) - DL( N-1 )*X( N-1, J ) -
$ D( N )*X( N, J )
DO 90 I = 2, N - 1
B( I, J ) = B( I, J ) - DL( I-1 )*X( I-1, J ) -
$ D( I )*X( I, J ) - DU( I )*X( I+1, J )
90 CONTINUE
END IF
100 CONTINUE
ELSE
*
* Compute B := B - A'*X
*
DO 120 J = 1, NRHS
IF( N.EQ.1 ) THEN
B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
ELSE
B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
$ DL( 1 )*X( 2, J )
B( N, J ) = B( N, J ) - DU( N-1 )*X( N-1, J ) -
$ D( N )*X( N, J )
DO 110 I = 2, N - 1
B( I, J ) = B( I, J ) - DU( I-1 )*X( I-1, J ) -
$ D( I )*X( I, J ) - DL( I )*X( I+1, J )
110 CONTINUE
END IF
120 CONTINUE
END IF
END IF
RETURN
*
* End of SLAGTM
*
END