SUBROUTINE DGTTRS( TRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB,
$ INFO )
*
* -- LAPACK routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER INFO, LDB, N, NRHS
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
DOUBLE PRECISION B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
* ..
*
* Purpose
* =======
*
* DGTTRS solves one of the systems of equations
* A*X = B or A'*X = B,
* with a tridiagonal matrix A using the LU factorization computed
* by DGTTRF.
*
* Arguments
* =========
*
* TRANS (input) CHARACTER*1
* Specifies the form of the system of equations.
* = 'N': A * X = B (No transpose)
* = 'T': A'* X = B (Transpose)
* = 'C': A'* X = B (Conjugate transpose = Transpose)
*
* N (input) INTEGER
* The order of the matrix A.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrix B. NRHS >= 0.
*
* DL (input) DOUBLE PRECISION array, dimension (N-1)
* The (n-1) multipliers that define the matrix L from the
* LU factorization of A.
*
* D (input) DOUBLE PRECISION array, dimension (N)
* The n diagonal elements of the upper triangular matrix U from
* the LU factorization of A.
*
* DU (input) DOUBLE PRECISION array, dimension (N-1)
* The (n-1) elements of the first super-diagonal of U.
*
* DU2 (input) DOUBLE PRECISION array, dimension (N-2)
* The (n-2) elements of the second super-diagonal of U.
*
* IPIV (input) INTEGER array, dimension (N)
* The pivot indices; for 1 <= i <= n, row i of the matrix was
* interchanged with row IPIV(i). IPIV(i) will always be either
* i or i+1; IPIV(i) = i indicates a row interchange was not
* required.
*
* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
* On entry, the matrix of right hand side vectors B.
* On exit, B is overwritten by the solution vectors X.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL NOTRAN
INTEGER ITRANS, J, JB, NB
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. External Subroutines ..
EXTERNAL DGTTS2, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
INFO = 0
NOTRAN = ( TRANS.EQ.'N' .OR. TRANS.EQ.'n' )
IF( .NOT.NOTRAN .AND. .NOT.( TRANS.EQ.'T' .OR. TRANS.EQ.
$ 't' ) .AND. .NOT.( TRANS.EQ.'C' .OR. TRANS.EQ.'c' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDB.LT.MAX( N, 1 ) ) THEN
INFO = -10
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGTTRS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. NRHS.EQ.0 )
$ RETURN
*
* Decode TRANS
*
IF( NOTRAN ) THEN
ITRANS = 0
ELSE
ITRANS = 1
END IF
*
* Determine the number of right-hand sides to solve at a time.
*
IF( NRHS.EQ.1 ) THEN
NB = 1
ELSE
NB = MAX( 1, ILAENV( 1, 'DGTTRS', TRANS, N, NRHS, -1, -1 ) )
END IF
*
IF( NB.GE.NRHS ) THEN
CALL DGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
ELSE
DO 10 J = 1, NRHS, NB
JB = MIN( NRHS-J+1, NB )
CALL DGTTS2( ITRANS, N, JB, DL, D, DU, DU2, IPIV, B( 1, J ),
$ LDB )
10 CONTINUE
END IF
*
* End of DGTTRS
*
END