REAL FUNCTION CLANHS( NORM, N, A, LDA, WORK )
*
* -- LAPACK auxiliary routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER NORM
INTEGER LDA, N
* ..
* .. Array Arguments ..
REAL WORK( * )
COMPLEX A( LDA, * )
* ..
*
* Purpose
* =======
*
* CLANHS returns the value of the one norm, or the Frobenius norm, or
* the infinity norm, or the element of largest absolute value of a
* Hessenberg matrix A.
*
* Description
* ===========
*
* CLANHS returns the value
*
* CLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
* (
* ( norm1(A), NORM = '1', 'O' or 'o'
* (
* ( normI(A), NORM = 'I' or 'i'
* (
* ( normF(A), NORM = 'F', 'f', 'E' or 'e'
*
* where norm1 denotes the one norm of a matrix (maximum column sum),
* normI denotes the infinity norm of a matrix (maximum row sum) and
* normF denotes the Frobenius norm of a matrix (square root of sum of
* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
*
* Arguments
* =========
*
* NORM (input) CHARACTER*1
* Specifies the value to be returned in CLANHS as described
* above.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0. When N = 0, CLANHS is
* set to zero.
*
* A (input) COMPLEX array, dimension (LDA,N)
* The n by n upper Hessenberg matrix A; the part of A below the
* first sub-diagonal is not referenced.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(N,1).
*
* WORK (workspace) REAL array, dimension (MAX(1,LWORK)),
* where LWORK >= N when NORM = 'I'; otherwise, WORK is not
* referenced.
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, J
REAL SCALE, SUM, VALUE
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CLASSQ
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
IF( N.EQ.0 ) THEN
VALUE = ZERO
ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
* Find max(abs(A(i,j))).
*
VALUE = ZERO
DO 20 J = 1, N
DO 10 I = 1, MIN( N, J+1 )
VALUE = MAX( VALUE, ABS( A( I, J ) ) )
10 CONTINUE
20 CONTINUE
ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
*
* Find norm1(A).
*
VALUE = ZERO
DO 40 J = 1, N
SUM = ZERO
DO 30 I = 1, MIN( N, J+1 )
SUM = SUM + ABS( A( I, J ) )
30 CONTINUE
VALUE = MAX( VALUE, SUM )
40 CONTINUE
ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
* Find normI(A).
*
DO 50 I = 1, N
WORK( I ) = ZERO
50 CONTINUE
DO 70 J = 1, N
DO 60 I = 1, MIN( N, J+1 )
WORK( I ) = WORK( I ) + ABS( A( I, J ) )
60 CONTINUE
70 CONTINUE
VALUE = ZERO
DO 80 I = 1, N
VALUE = MAX( VALUE, WORK( I ) )
80 CONTINUE
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
*
SCALE = ZERO
SUM = ONE
DO 90 J = 1, N
CALL CLASSQ( MIN( N, J+1 ), A( 1, J ), 1, SCALE, SUM )
90 CONTINUE
VALUE = SCALE*SQRT( SUM )
END IF
*
CLANHS = VALUE
RETURN
*
* End of CLANHS
*
END