SUBROUTINE SLAED7( ICOMPQ, N, QSIZ, TLVLS, CURLVL, CURPBM, D, Q,
$ LDQ, INDXQ, RHO, CUTPNT, QSTORE, QPTR, PRMPTR,
$ PERM, GIVPTR, GIVCOL, GIVNUM, WORK, IWORK,
$ INFO )
*
* -- LAPACK routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER CURLVL, CURPBM, CUTPNT, ICOMPQ, INFO, LDQ, N,
$ QSIZ, TLVLS
REAL RHO
* ..
* .. Array Arguments ..
INTEGER GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ),
$ IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * )
REAL D( * ), GIVNUM( 2, * ), Q( LDQ, * ),
$ QSTORE( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* SLAED7 computes the updated eigensystem of a diagonal
* matrix after modification by a rank-one symmetric matrix. This
* routine is used only for the eigenproblem which requires all
* eigenvalues and optionally eigenvectors of a dense symmetric matrix
* that has been reduced to tridiagonal form. SLAED1 handles
* the case in which all eigenvalues and eigenvectors of a symmetric
* tridiagonal matrix are desired.
*
* T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
*
* where Z = Q'u, u is a vector of length N with ones in the
* CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
*
* The eigenvectors of the original matrix are stored in Q, and the
* eigenvalues are in D. The algorithm consists of three stages:
*
* The first stage consists of deflating the size of the problem
* when there are multiple eigenvalues or if there is a zero in
* the Z vector. For each such occurence the dimension of the
* secular equation problem is reduced by one. This stage is
* performed by the routine SLAED8.
*
* The second stage consists of calculating the updated
* eigenvalues. This is done by finding the roots of the secular
* equation via the routine SLAED4 (as called by SLAED9).
* This routine also calculates the eigenvectors of the current
* problem.
*
* The final stage consists of computing the updated eigenvectors
* directly using the updated eigenvalues. The eigenvectors for
* the current problem are multiplied with the eigenvectors from
* the overall problem.
*
* Arguments
* =========
*
* ICOMPQ (input) INTEGER
* = 0: Compute eigenvalues only.
* = 1: Compute eigenvectors of original dense symmetric matrix
* also. On entry, Q contains the orthogonal matrix used
* to reduce the original matrix to tridiagonal form.
*
* N (input) INTEGER
* The dimension of the symmetric tridiagonal matrix. N >= 0.
*
* QSIZ (input) INTEGER
* The dimension of the orthogonal matrix used to reduce
* the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
*
* TLVLS (input) INTEGER
* The total number of merging levels in the overall divide and
* conquer tree.
*
* CURLVL (input) INTEGER
* The current level in the overall merge routine,
* 0 <= CURLVL <= TLVLS.
*
* CURPBM (input) INTEGER
* The current problem in the current level in the overall
* merge routine (counting from upper left to lower right).
*
* D (input/output) REAL array, dimension (N)
* On entry, the eigenvalues of the rank-1-perturbed matrix.
* On exit, the eigenvalues of the repaired matrix.
*
* Q (input/output) REAL array, dimension (LDQ, N)
* On entry, the eigenvectors of the rank-1-perturbed matrix.
* On exit, the eigenvectors of the repaired tridiagonal matrix.
*
* LDQ (input) INTEGER
* The leading dimension of the array Q. LDQ >= max(1,N).
*
* INDXQ (output) INTEGER array, dimension (N)
* The permutation which will reintegrate the subproblem just
* solved back into sorted order, i.e., D( INDXQ( I = 1, N ) )
* will be in ascending order.
*
* RHO (input) REAL
* The subdiagonal element used to create the rank-1
* modification.
*
* CUTPNT (input) INTEGER
* Contains the location of the last eigenvalue in the leading
* sub-matrix. min(1,N) <= CUTPNT <= N.
*
* QSTORE (input/output) REAL array, dimension (N**2+1)
* Stores eigenvectors of submatrices encountered during
* divide and conquer, packed together. QPTR points to
* beginning of the submatrices.
*
* QPTR (input/output) INTEGER array, dimension (N+2)
* List of indices pointing to beginning of submatrices stored
* in QSTORE. The submatrices are numbered starting at the
* bottom left of the divide and conquer tree, from left to
* right and bottom to top.
*
* PRMPTR (input) INTEGER array, dimension (N lg N)
* Contains a list of pointers which indicate where in PERM a
* level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)
* indicates the size of the permutation and also the size of
* the full, non-deflated problem.
*
* PERM (input) INTEGER array, dimension (N lg N)
* Contains the permutations (from deflation and sorting) to be
* applied to each eigenblock.
*
* GIVPTR (input) INTEGER array, dimension (N lg N)
* Contains a list of pointers which indicate where in GIVCOL a
* level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)
* indicates the number of Givens rotations.
*
* GIVCOL (input) INTEGER array, dimension (2, N lg N)
* Each pair of numbers indicates a pair of columns to take place
* in a Givens rotation.
*
* GIVNUM (input) REAL array, dimension (2, N lg N)
* Each number indicates the S value to be used in the
* corresponding Givens rotation.
*
* WORK (workspace) REAL array, dimension (3*N+QSIZ*N)
*
* IWORK (workspace) INTEGER array, dimension (4*N)
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value.
* > 0: if INFO = 1, an eigenvalue did not converge
*
* Further Details
* ===============
*
* Based on contributions by
* Jeff Rutter, Computer Science Division, University of California
* at Berkeley, USA
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E0, ZERO = 0.0E0 )
* ..
* .. Local Scalars ..
INTEGER COLTYP, CURR, I, IDLMDA, INDX, INDXC, INDXP,
$ IQ2, IS, IW, IZ, K, LDQ2, N1, N2, PTR
* ..
* .. External Subroutines ..
EXTERNAL SGEMM, SLAED8, SLAED9, SLAEDA, SLAMRG, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
*
IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( ICOMPQ.EQ.1 .AND. QSIZ.LT.N ) THEN
INFO = -4
ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( MIN( 1, N ).GT.CUTPNT .OR. N.LT.CUTPNT ) THEN
INFO = -12
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SLAED7', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* The following values are for bookkeeping purposes only. They are
* integer pointers which indicate the portion of the workspace
* used by a particular array in SLAED8 and SLAED9.
*
IF( ICOMPQ.EQ.1 ) THEN
LDQ2 = QSIZ
ELSE
LDQ2 = N
END IF
*
IZ = 1
IDLMDA = IZ + N
IW = IDLMDA + N
IQ2 = IW + N
IS = IQ2 + N*LDQ2
*
INDX = 1
INDXC = INDX + N
COLTYP = INDXC + N
INDXP = COLTYP + N
*
* Form the z-vector which consists of the last row of Q_1 and the
* first row of Q_2.
*
PTR = 1 + 2**TLVLS
DO 10 I = 1, CURLVL - 1
PTR = PTR + 2**( TLVLS-I )
10 CONTINUE
CURR = PTR + CURPBM
CALL SLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
$ GIVCOL, GIVNUM, QSTORE, QPTR, WORK( IZ ),
$ WORK( IZ+N ), INFO )
*
* When solving the final problem, we no longer need the stored data,
* so we will overwrite the data from this level onto the previously
* used storage space.
*
IF( CURLVL.EQ.TLVLS ) THEN
QPTR( CURR ) = 1
PRMPTR( CURR ) = 1
GIVPTR( CURR ) = 1
END IF
*
* Sort and Deflate eigenvalues.
*
CALL SLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO, CUTPNT,
$ WORK( IZ ), WORK( IDLMDA ), WORK( IQ2 ), LDQ2,
$ WORK( IW ), PERM( PRMPTR( CURR ) ), GIVPTR( CURR+1 ),
$ GIVCOL( 1, GIVPTR( CURR ) ),
$ GIVNUM( 1, GIVPTR( CURR ) ), IWORK( INDXP ),
$ IWORK( INDX ), INFO )
PRMPTR( CURR+1 ) = PRMPTR( CURR ) + N
GIVPTR( CURR+1 ) = GIVPTR( CURR+1 ) + GIVPTR( CURR )
*
* Solve Secular Equation.
*
IF( K.NE.0 ) THEN
CALL SLAED9( K, 1, K, N, D, WORK( IS ), K, RHO, WORK( IDLMDA ),
$ WORK( IW ), QSTORE( QPTR( CURR ) ), K, INFO )
IF( INFO.NE.0 )
$ GO TO 30
IF( ICOMPQ.EQ.1 ) THEN
CALL SGEMM( 'N', 'N', QSIZ, K, K, ONE, WORK( IQ2 ), LDQ2,
$ QSTORE( QPTR( CURR ) ), K, ZERO, Q, LDQ )
END IF
QPTR( CURR+1 ) = QPTR( CURR ) + K**2
*
* Prepare the INDXQ sorting permutation.
*
N1 = K
N2 = N - K
CALL SLAMRG( N1, N2, D, 1, -1, INDXQ )
ELSE
QPTR( CURR+1 ) = QPTR( CURR )
DO 20 I = 1, N
INDXQ( I ) = I
20 CONTINUE
END IF
*
30 CONTINUE
RETURN
*
* End of SLAED7
*
END