DOUBLE PRECISION FUNCTION DLANGB( NORM, N, KL, KU, AB, LDAB,
$ WORK )
*
* -- LAPACK auxiliary routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER NORM
INTEGER KL, KU, LDAB, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION AB( LDAB, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DLANGB returns the value of the one norm, or the Frobenius norm, or
* the infinity norm, or the element of largest absolute value of an
* n by n band matrix A, with kl sub-diagonals and ku super-diagonals.
*
* Description
* ===========
*
* DLANGB returns the value
*
* DLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
* (
* ( norm1(A), NORM = '1', 'O' or 'o'
* (
* ( normI(A), NORM = 'I' or 'i'
* (
* ( normF(A), NORM = 'F', 'f', 'E' or 'e'
*
* where norm1 denotes the one norm of a matrix (maximum column sum),
* normI denotes the infinity norm of a matrix (maximum row sum) and
* normF denotes the Frobenius norm of a matrix (square root of sum of
* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
*
* Arguments
* =========
*
* NORM (input) CHARACTER*1
* Specifies the value to be returned in DLANGB as described
* above.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0. When N = 0, DLANGB is
* set to zero.
*
* KL (input) INTEGER
* The number of sub-diagonals of the matrix A. KL >= 0.
*
* KU (input) INTEGER
* The number of super-diagonals of the matrix A. KU >= 0.
*
* AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
* The band matrix A, stored in rows 1 to KL+KU+1. The j-th
* column of A is stored in the j-th column of the array AB as
* follows:
* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
*
* LDAB (input) INTEGER
* The leading dimension of the array AB. LDAB >= KL+KU+1.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
* where LWORK >= N when NORM = 'I'; otherwise, WORK is not
* referenced.
*
* =====================================================================
*
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, J, K, L
DOUBLE PRECISION SCALE, SUM, VALUE
* ..
* .. External Subroutines ..
EXTERNAL DLASSQ
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
IF( N.EQ.0 ) THEN
VALUE = ZERO
ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
* Find max(abs(A(i,j))).
*
VALUE = ZERO
DO 20 J = 1, N
DO 10 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
VALUE = MAX( VALUE, ABS( AB( I, J ) ) )
10 CONTINUE
20 CONTINUE
ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
*
* Find norm1(A).
*
VALUE = ZERO
DO 40 J = 1, N
SUM = ZERO
DO 30 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
SUM = SUM + ABS( AB( I, J ) )
30 CONTINUE
VALUE = MAX( VALUE, SUM )
40 CONTINUE
ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
* Find normI(A).
*
DO 50 I = 1, N
WORK( I ) = ZERO
50 CONTINUE
DO 70 J = 1, N
K = KU + 1 - J
DO 60 I = MAX( 1, J-KU ), MIN( N, J+KL )
WORK( I ) = WORK( I ) + ABS( AB( K+I, J ) )
60 CONTINUE
70 CONTINUE
VALUE = ZERO
DO 80 I = 1, N
VALUE = MAX( VALUE, WORK( I ) )
80 CONTINUE
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
*
SCALE = ZERO
SUM = ONE
DO 90 J = 1, N
L = MAX( 1, J-KU )
K = KU + 1 - J + L
CALL DLASSQ( MIN( N, J+KL )-L+1, AB( K, J ), 1, SCALE, SUM )
90 CONTINUE
VALUE = SCALE*SQRT( SUM )
END IF
*
DLANGB = VALUE
RETURN
*
* End of DLANGB
*
END