{I:Openwall Yandex

yandex.com

Password hashing at scale
(for Internet companies with millions of users)

Solar Designher <solar@openwall.com>
@solardiz @Openwall
http://www.openwall.com
Yet another Conference

October 1, 2012
Moscow 1

Historical background

HTTP:/OPENWALL.COM/PASS

Concepts to be familiar with:

® Password hashing
® Key derivation function
® Salting

® Password stretching
> berypt, PBKDF2

® Memory-hard functions
> scrypt

Threat models

® Offline attacks ® Online attacks
» Protected local parameter » Password policy
> Decent hash type > Per-source rate limiting
» Password stretching » Multi-factor authentication
» Random per-account salts » Behavior analysis
With targeted attacks, salts are Akin to a spam filter

of less help, yet they should be - User—targeted attacks

used in those cases as well o , ,
Phishing, trojans, client

> Strict password policy vulnerability exploits

» Network-based attacks

® Password reuse DNS, routing, MITM, sniffing
(across multiple sites) » Server vulnerability exploits

Local parameter

® Must contain sufficient entropy

> way beyond a typical password or even passphrase

® Hashes are not crackable offline without knowledge of

the local parameter

® However, if the local parameter is stored right on the

authentication server or in the password database,

then it is likely to be stolen/leaked along with hashes

Problem: migration of hashes between systems

» Solution: embed a "local parameter ID" in the hash encodings,

support multiple local parameters at once

Unreadable local parameter

® When password hashing is at least partially
implemented in a dedicated device (e.g., In a hardware
security module or a dedicated server), it becomes
possible to embed a local parameter in the device

® |[f the local parameter is unreadable by the host system
(e.g., by a server doing password authentication), this

buys us an extra layer of security

» Need to have a backup copy - e.g., a cluster of multiple HSMs

or/and a piece of paper in CEO's safe

Network structure (logical)

® Authentication servers

> Receive usernames and passwords, reply with yes/no or a token

» Optionally perform the costly portion of password hashing

> Access the database, talk to password hashing HSMs or servers

for the portion involving the local parameter

® Password hashing

|ISMs or servers

» Are accessible from the authentication servers only

> Recelive partially computed hashes or passwords to hash, return

computed hashes

® Other servers needing user authentication

» Talk to authentication servers or/and accept tokens

YubiHSM - a USB dongle for servers

YubiHSM in a server's internal USB port. Photo (c) Yubico, reproduced under the fair use doctrine.

Local parameter in YubiHSM

YubiHSM provides several

suitable functions.

If we use HMAC-SHA-1:
® Key Is the local parameter

® "Key handle" is its ID
® "Data" is output of a KDF
® HMAC is password hash

Key handle

Data

Reset/Final

YubiHSM

HMAC-SHAT

HMAC @ Final

Diagram (c) Yubico, reproduced

under the fair use doctrine

YubiHSM pros

® Similar purpose, thus the right threat model

® Per key permission flags
® No custom OS kernel level driver required (USB C

® Well-documented APls, sample code

® | ow cost ($500; other HSMs may be $10k to 20k EUR)

» You need at least two for redundancy

DC)

® Independent formal analysis of the Yubikey protocol

* "YubiSecure? Formal Security Analysis Results for the Yubikey
and YubiHSM" by Robert Kinnemann and Graham Steel, INRIA

Assumes "that the implementation is correct with respect to the documentation”

Found an oversight, which Yubico has since released a security advisory on

YubiHSM cons

® No independent whitebox audits m Matthew Green

® No independent blackbox audits

.@agl (@1oerror HSMs can and should be

= probing for implementation isgyes Aaudited. Obviously thisisn't trivial, but it's

®USBC

critical if you're going to use one.

DC Is slow, up to ~500 requests per second

sustained throughput

® Serial interface for block-oriented data is risky

> "careful design is required not to lose synchronization in a serial

byte stream" (Yubico)

® Not tamper-resistant (physical attacks are outside of
the threat model)

10

Issues with HSMs Iin general

® Purpose and threat model are not always suitable

» Crypto acceleration or/and security

At least symmetric crypto is often not faster than optimized code on CPU anyway

> Attacks from compromised host or/and physical

® Potential vulnerabilities

» Firmware bugs, design errors, side-channels

Attack surface (too many features, each being a risk - can disable or not?)

» No known whitebox audits, source

® Interfaces (physical, driver, A

® Cost is often significant

code not available for review

Pl) and their reliability

» Especially given that multiple HSMs need to be installed

11

Speed of offline attacks (with salts)

Assumpt|0n3: Guesses / second| Users Daily guesses / user
® Unique per-user salts 1.000 1 26.400.000
® Non-targeted attack 1.000 1.000 86.400
* Accounts are of equal value 1.000 1.000.000 86
* No password strength hint 1.000 100.000.0001
| o . 1,000,000,000 |1 86.400,000,000,000
It is tough to limit offline attack speed to
1,000,000,000 1,000 86.400,000,000

1000/s (by password stretching).
1,000,000,000 1,000,000 86.400,000

1,000,000,000 100,000,000|864,000

Obviously, if we need to handle more

than 1000 requests/s ourselves, an

attacker with the same resources will 1 billion/s is a conservative GPU attack speed
also be able to try at least as many. estimate for hashes without password stretching.

In practice, multi-billion speeds are often achieved.

12

Password stretching

® 100 ms is commonly suggested, but is it affordable?

® Maybe not for every use case, but even if so stretching

must be used anyway - just at a lower setting

» Even if we merely slow down an offline attacker from billions/s to

millions/s, this iIs worthwhile - and we'll do more than that

® 1 ms ought to be affordable for anybody?

> Allows for up to 1000 requests/s/core, theoretically up to 86 million
requests/day/core - but need to leave room for spikes

> |f average is 10x lower than the worst spike we need to support, a
12-core server will handle up to ~100 million requests/day

» Need more? You surely can afford more servers (at least N+1) .
1

Hash type matters

® Attackers might not use the same kind of hardware and

software as ours

» They might use a more suitable, attack-optimized setup

» They might have a preference to use whatever they readily have

(e.g., existing GPU rigs, botnets)

® A good hash type to use is:

> friendly to our hardware
» unfriendly to hardware that we do not anticipate to use
> efficiently implemented for defense

» does not allow for much additional optimization for attack
14

What's wrong with PBKDF2

As commonly used with HMAC-SHA-*

® No parallelism - slows down defender, but not attacker

» When implemented on modern CPUs for defensive use, only a

relatively small portion of resources available in one CPU core is

used (can't use SIMD, low instructions per cycle)

® Almost no memory needs - defender's RAM is not put

to use, attacker does not need to provide RAM

*G

PU friendly

» More so with SHA-1 than with SHA-512, though

SHA-512 uses 64-bit words, which helps CPUs and hurts current GPUs

15

What's wrong with bcrypt

® No parallelism, 32-bit word size - slows down defender

> Low instructions per cycle (attack is ~2x faster), can't use SIMD

> Attacker's use of SIMD is also impacted, though - except on

devices with scatter/gather addressing (or at least gather)
Intel MIC (2012, limited availability), AVX2 (2013, will be widespread?)

® | ow memory needs (only 4 KB) - defender's off-chip

not need to provide

RAM is not put to use (only L1 cache is), attacker does

DRAM

> Yet due to becrypt's memory access pattern this turns out to be
(barely) enough to defeat GPUs so far (AMD Radeon HD 7970 is

only about as fast as a CPU)

16

ASIC/FPGA attacks on modern hashes

® PBKDF2-HMAC-SHA-1
® PBKDF2-HMAC-SHA-256

® sha256c¢rypt A
Weaker
® PBKDF2-HMAC-SHA-512
® sha512crypt
® berypt
® scrypt Stronger
It is a sound approach to consider attacks with v

ASICs, but in practice attacks with less flexible

devices are also relevant

17

GPU attacks on modern hashes

® PBKDF2-HMAC-SHA-1
® PBKDF2-HMAC-SHA-256

® sha256 t A
>11aeoPElyP Weaker
® PBKDF2-HMAC-SHA-512
® sha512crypt
® scrypt at up to ~1 MB (misuse)
Litecoin at 128 KB is ~10x faster on GPU vs. CPU Stronger
® berypt (uses 4 KB) \ 4

® scrypt at multi-megabyte memory
® Revised scrypt with TMTO defeater

18

scrypt at low memory

® scrypt accesses memory in cache line sized chunks,

which lets it use the memory bus

» The attacker's cost is meant to be RAM

efficiently
itself, not bandwidth

® When scrypt is set to use only a small amount of

memory (~1 MB or less), it is weaker than bcrypt at

least as it relates to attacks on G
® At 128 KB, as demonstrated by s

PU

crypt's use Iin Litecoin,

scrypt is ~10x faster on GPU than on CPU (whereas

bcrypt is currently not faster on G
» GPU cards' RAM bandwidth exceeds C

PU than on CPU)

PUs' L2 cache bandwidth
19

scrypt time-memory trade-off

® scrypt deliberately allows for a time-memory trade-off
* "The design of scrypt puts a lower bound on the area-time product
- you can use less memory and more CPU time, but the ratios stay
within a constant factor of each other, so for the worst-case

attacker (ASICs) the cost per password attempted stays the same”
Colin Percival, crypt-dev mailing list posting, 2011

® | itecoin miners on GPU use this

® scrypt may be revised to defeat the trade-off
> Pros: fewer pre-existing hardware devices (GPUs, etc.) are
efficient in an attack
» Cons: not official scrypt anymore, some defensive uses may be

impacted as well (e.g., client-side hashing on mobile devices) 20

What's wrong with scrypt

® ~100 ms corresponds to 32 MB memory usage on
current server hardware - we could afford more RAM

® At 1 ms, memory usage is so low that bcrypt is stronger

» Experiment: in the reference implementation (the one with SSE2
intrinsics, running on x86-64), reduce the number of Salsa20
rounds from 8 to 2

> Result: only ~2x increase in memory usage at the same duration

® Time-memory trade-off benefits attackers with GPUs

» Can be fairly easily defeated, but then it's not official scrypt

21

A drawback of memory-hard KDFs

This applies to use of memory-hard KDFs for authentication

iINn general, it Is not specific to scrypt

® To use a lot of RAM fast, we need to get close to the

full memory bandwidth, but this means poor

when many concurrent instances are run

scalability

® Thus, we have to choose between using more RAM

per instance (and using CPUs' resources poorly when

there are concurrent instances) and using C

PU cores

more fully (but at a lower RAM setting per instance)

22

Other memory-hard KDFs

Aside from some historical ones and bcrypt (which did not

use more than a few KB), there appears to be only slothKdf

(and its zen32 component) by

~llas Yarrkov

® Only released as part of dhbitty program, may change

® Not peer-reviewed

® Uses the memory bus poorly (32-bit random accesses)

» Provides advantage to attackers with custom hardware

® Bumps into the memory bandwidth

® A revision of zen32 with cache line sized accesses

may use more RAM than scrypt (same duration)

23

GPUs for defense - tricky

® Need a lot of parallelism (thousands of work-items)

» More than nearly-concurrent authentication attempts provide

® PBKDF2 and bcrypt lack parallelism
» Yet PBKDF2-HMAC-SHA-1 Is an excellent choice for GPU

Implementation if parallelism is added on top of it

® scrypt might be reasonable (large p, low memory)

® Involves many other trade-offs, challenges, risks

» NVIDIA Tesla cards are suitable for servers, but slower for crypto
than AMD's (so implement DJB's hash127 with floating-point?)
» Lower reliability (than other components), driver bugs

» Heat dissipation (use lower clock rate, duty cycle) o

GPUs for defense - questionable

® What we gain by using a GPU (wisely)
> A lot of computing logic is put to use (beyond a CPU's)

» Can install up to 8 GPUs per machine easier/cheaper

Many attackers also have GPUs and benefit from these same things, although most

nodes in a botnet may be unsuitable

® What we lose by using only a G

P U

» Potential for unfriendliness to attackers with primarily GPUs

» Memory requirements for attack, unless we manage to use each

GPU card's global memory almost fully

® May combine use of GPUs with

use of the host's RAM

by two distinct components of the hashing method

» This addresses the drawbacks above,

but adds complexity .

Intel Xeon Phi (Knights Corner)

UL "n‘-."-."'-!ﬂt%\\\H‘m\\%‘ﬂ&h‘hﬂ%‘&%ﬁi A

Xeon Phi is a dual-slot PCle card. Photo (c) Intel, released as part of press materials.

20

Xeon Phi in a nutshell

® Many Integrated Core (MIC) architecture

® Over 1 TFLOPS performance

® Already in use In

» Based on the never-released Larrabee

150 on June 2012 TOP500 list

» Soon also in a would-be-#3, but not generally available yet

® 50 to 647 x86 cores based on the original Pentium
Per core: 512-bit SIMD unit, 32 KB L1 data cache, ...

®8GB GD

DR5 RAM on a 512-bit bus?

® Can run an almost standard OS, yet is a coprocessor

Programmed like a multi-core C

PU rather than a G

P U

27

Xeon Phi for password hashing

® | ikely more straightforward than defensive use of G

PU

® Should be able to efficiently run 8 bcrypt instances in

SIMD vector elements per core (as limited by 32 KB L1

cache, leaving half the SIMD vector width unused),

thus 400+ concurrent instances per chip at ~2.0 GHz

» May be the bcrypt Killer, especially if it is affordable

® For defensive use, should run a hash function with

sufficient parallelism at least to use a 512-bit vector

® Probably can't hold a host-unreadable local parameter

» Not intended as a security device, almost certainly allows DMA

28

Pico Computing's FPGA cluster

® 6 Virtex-6 or Kintex-7
FPGAs per board
® 8 PCle boards per 4U

chassis (48 FPGAs)
® Up to 192 GB DDR3
RAM on FPGA boards

® 3x1200W PSUs (N+1)
® Dual quad-core Xeon

() Up tO 144 GB RAM SC5 SuperCluster with 48 M-501 modules

Image (c) Pico Computing, reproduced under the fair use doctrine

29

Password hashing on FPGAs

* Including by Pico Computing
® We explored possible defensive use of F

as bcrypt cracking on FPGA

® Password cracking on FPGAs had been done before

PGASs, as well

» Yuri Gonzaga's Google Summer of Code 2011 project

Co-mentors: Solar Designer (Openwall), David Hulton (Pico Computing)

> Yuri wrote and debugged Verilog code implementing bcrypt

(including with Block RAMSs), multiple bcrypt cores per chip, a tiny

berypt-like construct (with intent to explore the possibility of fitting

hundreds or thousands of these per chip)

» We also considered reuse of Pico's fully-pipelined DES cores

30

bcrypt on FPGA

® Blowfish S-boxes fit Xilinx Block RAMs perfectly

» Can't reasonably use pipelining, but can improve resource usage

by implementing multiple instances of bcrypt per core

(not completed in the GSoC project)

® | ow clock rate, thus high latency (compared to CPU)

® Reasonable throughput may be achieved due to large

number of cores

® Estimate: optimal implementation on Pico's M-501 (one

Virtex-6 LX240T) could be ~5x faster than optimal code

on quad-core C

DU (without AVX2)

31

FPGASs for defense

® To have maximum advantage over CPU and GPU,
number of cores times number of pipeline stages (if

applicable) should be maximized
» Thus, each core should be as small as possible

Rationale: CPU has a limited number of relatively feature-rich execution units.

By having very simple cores, we leave more logic in the execution units unused.
Difficulty: SIMD instructions may operate on many narrow bit width values in parallel.
A way to defeat implementation of small S-boxes with SIMD byte permute instructions
(in Cell, SSSE3, XOP) or with bitslicing is through making the S-boxes variable, but
parallel S-box lookups may nevertheless be performed with gather loads (in AVX2
VSIB, to be available in 2013+).

® Alternatively, focus on making optimal use of resources

without trying to slow down CPU/GPU implementations .,

Local parameter in FPGA

® To avoid specifying it at synthesis, may be patched into
a Block RAM's initial state in bitstream

® Bitstream may be stored in a flash memory chip

» |oaded into FPGA from flash on power-on

» Only a subset of Pico's boards have flash

Others have to be configured from host before use

® Not host-unreadable in existing boards as-is

» May be retrievable via partial reconfiguration

® A hardware revision may be made

> e.g., a jumper to enable configuration mode

» Pico would do it If there's demand

33

Takeaways

® Salting and stretching are a must, but you knew that

® Unreadable local parameter is also a must for large

user/password databases -

need two extra devices

® HSMs might (not) be safer than regular machines

® Use of hardware beyond C

® PBKDF2 is not good enough unless we're on GPU

PU + RAM for password

stretching is tricky and currently not obviously

beneficial overall (considering extra R&D, risks, cost) -

further research and experiments are needed

34

Consult a doctor

Design and implementation of a password hashing setup is
serious business

® | arger organizations (with millions of users or with
particularly high-value accounts - e.g., online banking)
may benefit from custom setups, but independent
review by a qualified consultant is a must

® Smaller organizations are better off using pre-existing

solutions

» Currently this means straightforward use of bcrypt

A short-term recommendation only, unfortunately

> Independent review is highly desirable, but is not crucial 3>

‘.
~
*\\‘,\

/i N\
{l\.,OpenwaII

Questions?

Solar Designher <solar@openwall.com>
@solardiz @Openwall
http://www.openwall.com

30

