
Red Hat Linux 7.3

The Official Red Hat Linux
Reference Guide

Red Hat Linux 7.3: The Official Red Hat Linux Reference Guide
Copyright © 2002 by Red Hat, Inc.

Red Hat, Inc.

1801 Varsity Drive
Raleigh NC 27606-2072 USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park NC 27709 USA

rhl-rg(EN)-7.3-HTML-RHI (2002-04-05T17:09-0400)
Copyright © 2002 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set
forth in the Open Publication License, V1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).
Distribution of substantively modified versions of this document is prohibited without the explicit permission of
the copyright holder.
Distribution of the work or derivative of the work in any standard (paper) book form for commercial purposes is
prohibited unless prior permission is obtained from the copyright holder.
The admonition graphics (note, tip, and so on) were created by Marianne Pecci <goddess@ipass.net>. They may
be redistributed with written permission from Marianne Pecci and Red Hat, Inc..
Red Hat, Red Hat Network, the Red Hat "Shadow Man" logo, RPM, Maximum RPM, the RPM logo, Linux Library,
PowerTools, Linux Undercover, RHmember, RHmember More, Rough Cuts, Rawhide and all Red Hat-based
trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the United States and other
countries.
Linux is a registered trademark of Linus Torvalds.
Motif and UNIX are registered trademarks of The Open Group.
Intel and Pentium are a registered trademarks of Intel Corporation. Itanium and Celeron are trademarks of Intel
Corporation.
AMD, AMD Athlon, AMD Duron, and AMD K6 are trademarks of Advanced Micro Devices, Inc.
Netscape is a registered trademark of Netscape Communications Corporation in the United States and other
countries.
Windows is a registered trademark of Microsoft Corporation.
SSH and Secure Shell are trademarks of SSH Communications Security, Inc.
FireWire is a trademark of Apple Computer Corporation.
All other trademarks and copyrights referred to are the property of their respective owners.
The Red Hat Linux Product Documentation Team consists of the following people:
Sandra A. Moore, Product Documentation Manager — Primary Writer/Maintainer of the Official Red Hat Linux
x86 Installation Guide; Contributing Writer to the Official Red Hat Linux Getting Started Guide
Tammy Fox, Product Documentation Technical Lead — Primary Writer/Maintainer of the Official Red Hat Linux
Customization Guide; Contributing Writer to the Official Red Hat Linux Getting Started Guide; Writer/Maintainer of
custom DocBook stylesheets and scripts
Edward C. Bailey, Technical Writer — Contributing Writer to the Official Red Hat Linux x86 Installation Guide
Johnray Fuller, Technical Writer — Primary Writer/Maintainer of the Official Red Hat Linux Reference Guide
John Ha, Technical Writer — Contributing Writer to the Official Red Hat Linux Getting Started Guide

Table of Contents
Introduction ..ix

1. Finding Appropriate Documentation .. ix
1.1. Documentation For First-Time Linux Users ... x
1.2. For the More Experienced...xi
1.3. Documentation for Linux Gurus ..xii

2. Document Conventions ..xii
3. Using the Mouse ..xv
4. Copying and Pasting Text With X..xv
5. More to Come ...xv

5.1. We Need Feedback!..xvi
6. Sign Up for Support..xvi

I. System Reference ... xvii
1. File System Structure ... 19

1.1. Why Share a Common Structure? .. 19
1.2. Overview of File System Hierarchy Standard (FHS)................................... 19
1.3. Special File Locations ... 23

2. The /proc File System... 25
2.1. A Virtual File System.. 25
2.2. Top-Level Files in /proc .. 26
2.3. Directories in /proc .. 39
2.4. Using sysctl ... 55
2.5. Additional Resources ... 55

3. Boot Process, Init, and Shutdown.. 57
3.1. Introduction ... 57
3.2. Behind the Scenes of the Boot Process ... 57
3.3. Sysconfig Information .. 63
3.4. Init Runlevels... 75
3.5. Running Programs at Boot Time... 77
3.6. Shutting Down .. 77
3.7. Differences in the Boot Process of Other Architectures............................... 77

4. GRUB ... 79
4.1. Defining GRUB.. 79
4.2. Terminology... 81
4.3. Interfaces .. 83
4.4. Commands... 84
4.5. The Menu Configuration File .. 85
4.6. Additional Resources ... 87

5. The ext3 File System .. 89
5.1. Features of ext3.. 89
5.2. Creating an ext3 File System ... 90
5.3. Converting to an ext3 File System .. 92
5.4. Reverting to an ext2 File System... 93

6. Users and Groups .. 95
6.1. Tools for User and Group Administration .. 95
6.2. Standard Users .. 95
6.3. Standard Groups ... 96
6.4. User Private Groups ... 98
6.5. Shadow Utilities .. 100

7. X Servers and Clients... 101
7.1. The Power of X .. 101
7.2. The XFree86 Server ... 102
7.3. Desktop Environments and Window Managers .. 106
7.4. Runlevels .. 108
7.5. Fonts.. 109

7.6. Additional Resources ... 111
II. Security Reference ... 115

8. Pluggable Authentication Modules (PAM).. 117
8.1. Advantages of PAM.. 117
8.2. PAM Configuration Files ... 117
8.3. PAM Modules .. 118
8.4. PAM Module Control Flags... 119
8.5. PAM Module Paths... 120
8.6. PAM Module Arguments... 120
8.7. Sample PAM Configuration Files ... 120
8.8. PAM and Device Ownership... 122
8.9. Additional Resources ... 123

9. TCP Wrappers and xinetd... 125
9.1. Purpose of TCP Wrappers ... 125
9.2. Host-Based Access Control Lists .. 125
9.3. Access Control Using xinetd.. 128
9.4. Additional Resources ... 133

10. SSH Protocol ... 135
10.1. Introduction ... 135
10.2. Event Sequence of an SSH Connection.. 136
10.3. Layers of SSH Security ... 136
10.4. OpenSSH Configuration Files ... 138
10.5. More Than a Secure Shell... 139
10.6. Requiring SSH for Remote Connections.. 140

11. Kerberos... 143
11.1. Advantages of Kerberos... 143
11.2. Kerberos Disadvantages .. 143
11.3. Kerberos Terminology .. 144
11.4. How Kerberos Works ... 145
11.5. Kerberos and PAM.. 146
11.6. Configuring a Kerberos 5 Server... 146
11.7. Configuring a Kerberos 5 Client ... 148
11.8. Additional Resources ... 149

12. Installing and Configuring Tripwire ... 151
12.1. How to Use Tripwire .. 151
12.2. Installation Instructions ... 153
12.3. File Locations ... 154
12.4. Tripwire Components... 155
12.5. Modifying the Policy File... 155
12.6. Selecting Passphrases ... 156
12.7. Initializing the Database .. 156
12.8. Running an Integrity Check .. 156
12.9. Printing Reports .. 157
12.10. Updating the Database after an Integrity Check.................................... 159
12.11. Updating the Policy File... 160
12.12. Tripwire and Email ... 161
12.13. Additional Resources ... 161

III. Network Services Reference .. 163
13. Network Scripts.. 165

13.1. Interface Configuration Files... 165
13.2. Interface Control Scripts .. 168
13.3. Network Functions ... 169

14. Firewalling with iptables ... 171
14.1. Packet Filtering.. 171
14.2. Differences between iptables and ipchains ... 172
14.3. Options Used in iptables Commands... 173
14.4. Storing iptables Information .. 179
14.5. Additional Resources ... 180

15. Apache ... 181
15.1. Default Modules.. 181
15.2. Starting and Stopping httpd... 182
15.3. Configuration Directives in httpd.conf... 183
15.4. Adding Modules to Your Server... 201
15.5. Using Virtual Hosts .. 203
15.6. Additional Resources ... 205

16. Email .. 207
16.1. Protocols ... 207
16.2. Email Program Classifications .. 209
16.3. Sendmail... 210
16.4. Fetchmail .. 215
16.5. Procmail.. 218
16.6. Security ... 225
16.7. Additional Resources ... 226

17. Berkeley Internet Name Domain (BIND) ... 229
17.1. Introduction to DNS and BIND .. 229
17.2. BIND Configuration Files .. 230
17.3. Using rndc ... 242
17.4. BIND Advanced Features .. 244
17.5. Common Mistakes to Avoid.. 246
17.6. Additional Resources ... 246

18. Network File System (NFS) .. 249
18.1. Methodology.. 249
18.2. NFS Server Configuration Files .. 251
18.3. NFS Client Configuration Files ... 253
18.4. Securing NFS ... 256
18.5. Additional Resources ... 257

19. Lightweight Directory Access Protocol (LDAP).. 259
19.1. What is LDAP? .. 259
19.2. Pros and Cons of LDAP ... 259
19.3. Uses for LDAP... 259
19.4. LDAP Terminology... 260
19.5. OpenLDAP 2.0 Enhancements.. 261
19.6. OpenLDAP Files ... 261
19.7. OpenLDAP Daemons and Utilities .. 263
19.8. Modules for Adding Extra Functionality to LDAP.................................. 264
19.9. OpenLDAP Setup Overview... 264
19.10. Configuring Your System to Authenticate Using OpenLDAP............. 265
19.11. Additional Resources ... 267

IV. Appendixes.. 269
A. General Parameters and Modules .. 271

A.1. Specifying Module Parameters .. 271
A.2. CD-ROM Module Parameters.. 272
A.3. SCSI parameters ... 274
A.4. Ethernet Parameters .. 277

Index .. 283

Introduction

Welcome to the Official Red Hat Linux Reference Guide.

The Official Red Hat Linux Reference Guide contains useful information about your Red Hat
Linux system. From fundamental concepts, such as the structure of the Red Hat Linux
filesystem, to the finer points of system security and authentication control, we hope you
will find this book to be a valuable resource.

This guide is for you if you want to learn a bit more about how your Red Hat Linux system
works. Topics that you will explore include the following:

• Booting Red Hat Linux — Information about runlevels, rc.d directories, and how to start
your favorite applications at boot time.

• The /proc file system — Provides you with the kernel’s view of the system.

• The GRUB boot loader — A behind the scenes look at GRUB and how it boots your system.

• The ext3 File System — Learn how to add or remove the ext3 file system from storage
devices.

• System and network security guides — Find out the most common methods used by attack-
ers to compromise your system and how to prevent security problems.

• Apache directives — A look at the default Apache configuration and the options available.

Before reading this guide, you should be familiar with the contents of the Official Red Hat
Linux Installation Guide concerning installation issues, the Official Red Hat Linux Getting
Started Guide for basic Linux concepts and the Official Red Hat Linux Customization Guide for
general customization instructions. The Official Red Hat Linux Reference Guide contains
information about advanced topics that may not affect every user, depending upon how
they use their Red Hat Linux system.

HTML and PDF versions of all Official Red Hat Linux manuals are available online at
http://www.redhat.com/docs.

Note

Although this manual reflects the most current information possible, you should read the Red Hat
Linux Release Notes for information that may not have been available prior to our documentation
being finalized. The Release Notes can be found on the Red Hat Linux CD #1 and online at:

http://www.redhat.com/docs/manuals/linux

1. Finding Appropriate Documentation
You need documentation that is appropriate to your level of Linux expertise. Otherwise, you
might feel overwhelmed or not find the necessary information to answer your questions.
The Official Red Hat Linux Reference Guide deals with the more technical aspects and options
of your Red Hat Linux system. This section will help you decide whether to look in this
manual for the information you need or consider other Red Hat Linux manuals, including
online sources, in your search.

Three different categories of people use Red Hat Linux, and each of these categories require
different sets of documentation and informative sources. To help you figure out where you
should start, determine your own experience level:

x Introduction

New to Linux

This type of user has never used any Linux (or Linux-like) operating system before or
has had only limited exposure to Linux. They may or may not have experience using
other operating systems (such as Windows). Is this you? If so, skip ahead to Section 1.1.

Some Linux Experience

This type of user has installed and successfully used Linux (but not Red Hat Linux) be-
fore or may have equivalent experience with other Linux-like operating systems. Does
this describe you? If so, turn to Section 1.2.

Experienced User

This type of user has installed and successfully used Red Hat Linux before. If this
describes you, turn to Section 1.3.

1.1. Documentation For First-Time Linux Users
For someone new to Linux, the amount of information available on any particular subject,
such as printing, starting up the system or partitioning your hard drive, can be overwhelm-
ing. It helps to initially step back and gain a decent base of information centered around how
Linux works before tackling these kinds of advanced issues.

Your first goal should be to obtain some useful documentation. This cannot be stressed
enough. Without documentation, you will only become frustrated at your inability to get
your Red Hat Linux system working the way you want.

You should acquire the following types of Linux documentation:

• A brief history of Linux — Many aspects of Linux are the way they are because of historical
precedent. The Linux culture is also based on past events, needs or requirements. A basic
understanding of the history of Linux will help you figure out how to solve many potential
problems before you actually see them.

• An explanation of how Linux works — While delving into the most arcane aspects of the
Linux kernel is not necessary, it is a good idea to know something about how Linux is put
together. This is particularly important if you have been working with other operating
systems, as some of the assumptions you currently hold about how computers work may
not transfer from that operating system to Linux.

• An introductory command overview (with examples) — This is probably the most important
thing to look for in Linux documentation. The underlying design philosophy for Linux is
that it’s better to use many small commands connected together in different ways than it
is to have a few large (and complex) commands that do the whole job themselves. Without
examples that illustrate this approach to doing things, you may find yourself intimidated
by the sheer number of commands available on your Red Hat Linux system.

Keep in mind that you do not have to memorize all of the available Linux commands.
Different techniques exist to help you find the specific command you need to accomplish
a task. You need only know the general way in which Linux functions, what you need to
accomplish, and how to access the tool that will give you the exact instructions you need
to execute the command.

The Official Red Hat Linux Installation Guide is a excellent reference for helping you get your
Red Hat Linux system successfully installed and initially configured. The Official Red Hat
Linux Getting Started Guide covers the history of Linux, basic system commands, GNOME,

Introduction xi

KDE, RPM, and many other fundamental concepts. You should start with these two books
and use them to build the base of your Red Hat Linux knowledge. Before long, more com-
plicated concepts will begin to make sense because you already grasp the general ideas.

Beyond reading Red Hat Linux manuals, several other excellent documentation resources
are available for little or no cost:

1.1.1. Introduction to Linux Websites

• http://www.redhat.com — On the Red Hat website, you will find links to the Linux
Documentation Project (LDP), online versions of the Red Hat Linux manuals, FAQs (Fre-
quently Asked Questions), a database which can help you find a Linux Users Group near
you, technical information in the Red Hat Support Knowledge Base, and more.

• http://www.linuxheadquarters.com — The Linux Headquarters website features easy to
follow, step-by-step guides for a variety of Linux tasks.

1.1.2. Introduction to Linux Newsgroups

You can participate in newsgroups by watching the discussions of others attempting to solve
problems, or by actively asking or answering questions. Experienced Linux users are known
to be extremely helpful when trying to assist new users with various Linux issues — espe-
cially if you are posing your questions in the right venue. If you do not have access to a news
reader application, you can access this information via the web at http://www.deja.com.
Dozens of Linux-related newsgroups exist, including the following:

• linux.help — A great place to get help from fellow Linux users.

• linux.redhat — This newsgroup primarily covers Red Hat Linux-specific issues.

• linux.redhat.install — Pose installation questions to this newsgroup or search it to see
how others solved similar problems.

• linux.redhat.misc — Questions or requests for help that do not really fit into traditional
categories go here.

• linux.redhat.rpm — A good place to go if you are having trouble using RPM to accom-
plish particular objectives.

1.1.3. Beginning Linux Books

• Red Hat Linux for Dummies, 2nd Edition by Jon "maddog" Hall; IDG

• Special Edition Using Red Hat Linux by Alan Simpson, John Ray and Neal Jamison; Que

• Running Linux by Matt Welsh and Lar Kaufman; O’Reilly & Associates

• Red Hat Linux 7 Unleashed by William Ball and David Pitts; Sams

The books suggested here are excellent primary sources of information for basic knowledge
about a Red Hat Linux system. For more in-depth information concerning the various topics
discussed throughout this book, many of the chapters list specific book titles, usually in an
Additional Resources area.

xii Introduction

1.2. For the More Experienced
If you have used other Linux distributions, you probably already have a basic grasp of
the most frequently used commands. You may have installed your own Linux system, and
maybe you have even downloaded and built software you found on the Internet. After in-
stalling Linux, however, configuration issues can be very confusing.

The Official Red Hat Linux Customization Guide is designed to help explain the various ways
your Red Hat Linux system can be configured to meet specific objectives. Use this manual
to learn about specific configuration options and how to put them into effect.

When you are installing software that is not covered in the Official Red Hat Linux
Customization Guide, it is often helpful to see what other people in similar circumstances
have done. HOWTO documents from the Linux Documentation Project, available at
http://www.redhat.com/mirrors/LDP/HOWTO/HOWTO-INDEX/howtos.html,
document particular aspects of Linux, from low-level kernel esoteric changes to using
Linux for amateur radio station work.

1.3. Documentation for Linux Gurus
If you are a long-time Red Hat Linux user, you probably already know that one of the best
ways to understand a particular program is to read its source code and/or configuration
files. A major advantage of Red Hat Linux is the availability of the source code for anyone
to read.

Obviously, not everyone is a C programmer, so the source code may not be helpful for you.
However, if you have the knowledge and skills necessary to read it, the source code holds
all of the answers.

2. Document Conventions
When you read this manual, you will see that certain words are represented in different
fonts, typefaces, sizes, and weights. This highlighting is systematic; different words are rep-
resented in the same style to indicate their inclusion in a specific category. The types of words
that are represented this way include the following:

command

Linux commands (and other operating system commands, when used) are represented
this way. This style should indicate to you that you can type the word or phrase on the
command line and press [Enter] to invoke a command. Sometimes a command contains
words that would be displayed in a different style on their own (such as filenames). In
these cases, they are considered to be part of the command, so the entire phrase will be
displayed as a command. For example:

Use the cat testfile command to view the contents of a file, named testfile, in the
current working directory.

filename

Filenames, directory names, paths, and RPM package names are represented this way.
This style should indicate that a particular file or directory exists by that name on your
Red Hat Linux system. Examples:

Introduction xiii

The .bashrc file in your home directory contains bash shell definitions and aliases for
your own use.

The /etc/fstab file contains information about different system devices and filesys-
tems.

Install the webalizer RPM if you want to use a Web server log file analysis program.

application

This style should indicate to you that the program named is an end-user application (as
opposed to system software). For example:

Use Netscape Navigator to browse the Web.

[key]

A key on the keyboard is shown in this style. For example:

To use [Tab] completion, type in a character and then press the [Tab] key. Your terminal
will display the list of files in the directory that start with that letter.

[key]-[combination]

A combination of keystrokes is represented in this way. For example:

The [Ctrl]-[Alt]-[Backspace] key combination will exit your graphical session and return
you to the graphical login screen or the console.

text found on a GUI interface

A title, word, or phrase found on a GUI interface screen or window will be shown in
this style. When you see text shown in this style, it is being used to identify a particular
GUI screen or an element on a GUI screen (such as text associated with a checkbox or
field). Example:

Select the Require Password checkbox if you would like your screensaver to require a
password before stopping.

top level of a menu on a GUI screen or window

When you see a word in this style, it indicates that the word is the top level of a pull-
down menu. If you click on the word on the GUI screen, the rest of the menu should
appear. For example:

Under Settings on a GNOME terminal, you will see the following menu items: Prefer-
ences, Reset Terminal, Reset and Clear, and Color selector.

If you need to type in a sequence of commands from a GUI menu, they will be shown
like the following example:

Click on Programs=>Applications=>Emacs to start the Emacs text editor.

xiv Introduction

button on a GUI screen or window

This style indicates that the text will be found on a clickable button on a GUI screen.
For example:

Click on the Back button to return to the webpage you last viewed.

computer output

When you see text in this style, it indicates text displayed by the computer on the
command line. You will see responses to commands you typed in, error messages, and
interactive prompts for your input during scripts or programs shown this way. For ex-
ample:

Use the ls command to display the contents of a directory:
$ ls
Desktop axhome logs paulwesterberg.gif
Mail backupfiles mail reports

The output returned in response to the command (in this case, the contents of the direc-
tory) is shown in this style.

prompt

A prompt, which is a computer’s way of signifying that it is ready for you to input
something, will be shown in this style. Examples:

$

#

[stephen@maturin stephen]$

leopard login:

user input

Text that the user has to type, either on the command line, or into a text box on a GUI
screen, is displayed in this style. In the following example, text is displayed in this
style:

To boot your system into the text based installation program, you will need to type in
the text command at the boot: prompt.

Additionally, we use several different strategies to draw your attention to certain pieces of
information. In order of how critical the information is to your system, these items will be
marked as note, tip, important, caution, or a warning. For example:

Note

Remember that Linux is case sensitive. In other words, a rose is not a ROSE is not a rOsE.

Tip

Introduction xv

The directory /usr/share/doc contains additional documentation for packages installed on your
system.

Important

If you modify the DHCP configuration file, the changes will not take effect until you restart the DHCP
daemon.

Caution

Do not perform routine tasks as root — use a regular user account unless you need to use the root
account for system administration tasks.

Warning

If you choose not to partition manually, a server installation will remove all existing partitions on all
installed hard drives. Do not choose this installation class unless you are sure you have no data you
need to save.

3. Using the Mouse
Red Hat Linux is designed to use a three-button mouse. If you have a two-button mouse, you
should have selected three-button emulation during the installation process. If you’re using
three-button emulation, pressing both mouse buttons at the same time equates to pressing
the missing third (middle) button.

In this document, if you are instructed to click with the mouse on something, that means
click the left mouse button. If you need to use the middle or right mouse button, that will be
explicitly stated. (This will be reversed if you’ve configured your mouse to be used by a left
handed person.)

The phrase "drag and drop" may be familiar to you. If you’re instructed to drag and drop
an item on your GUI desktop, click on something and hold the mouse button down. While
continuing to hold down the mouse button, drag the item by moving the mouse to a new
location. When you’ve reached the desired location, release the mouse button to drop the
item.

4. Copying and Pasting Text With X
Copying and pasting text is easy using your mouse and the X Window System. To copy text,
simply click and drag your mouse over the text to highlight it. To paste the text somewhere,
click the middle mouse button in the spot where the text should be placed.

xvi Introduction

5. More to Come
The Official Red Hat Linux Reference Guide is part of Red Hat’s commitment to provide useful
and timely support to Red Hat Linux users. Future editions will feature expanded informa-
tion on changes to system structure and organization, new and powerful security tools, and
other resources to help you extend the power of your Red Hat Linux system — and your
ability to use it.

That’s where you can help.

5.1. We Need Feedback!
If you find an error in the Official Red Hat Linux Reference Guide, or if you have thought of
a way to make this manual better, we’d love to hear from you! Please submit a report in
Bugzilla (http://bugzilla.redhat.com/bugzilla) against the component rhl-rg.

Be sure to mention the manual’s identifier:

rhl-rg(EN)-7.3-HTML-RHI (2002-04-05T17:09-0400)

If you mention the manual’s identifier, we will know exactly which version of the guide you
have.

If you have a suggestion for improving the documentation, try to be as specific as possible
when describing it. If you have found an error, please include the section number and some
of the surrounding text so we can find it easily.

6. Sign Up for Support
If you have an official edition of Red Hat Linux 7.3, please remember to sign up for the
benefits you are entitled to as a Red Hat customer.

You will be entitled to any or all of the following benefits, depending upon the Official Red
Hat Linux product you purchased:

• Official Red Hat support — Get help with your installation questions from Red Hat, Inc.’s
support team.

• Red Hat Network — Easily update your packages and receive security notices that are
customized for your system. Go to http://rhn.redhat.com for more details.

• Under the Brim: The Official Red Hat E-Newsletter — Every month, get the latest news and
product information directly from Red Hat.

To sign up, go to http://www.redhat.com/apps/activate/. You will find your Product ID
on a black, red, and white card in your Official Red Hat Linux box.

To read more about technical support for Official Red Hat Linux, refer to the Getting Technical
Support Appendix in the Official Red Hat Linux Installation Guide.

Good luck, and thank you for choosing Red Hat Linux!

The Red Hat Documentation Team

System Reference

Chapter 1.

File System Structure

1.1. Why Share a Common Structure?
An operating system’s file system structure is its most basic level of organization. Almost all
of the ways an operating system interacts with its users, applications, and security model
are dependent upon the way it stores its files on a primary storage device (normally a hard
disk drive). It is crucial for a variety of reasons that users, as well as programs at the time of
installation and beyond, be able to refer to a common guideline to know where to read and
write their binary, configuration, log, and other necessary files.

A file system can be seen in terms of two different logical categories of files:

• Shareable vs. unshareable files

• Variable vs. static files

Shareable files are those that can be accessed by various hosts; unshareable files are not avail-
able to any other hosts. Variable files can change at any time without system administrator
intervention (whether active or passive); static files, such as documentation and binaries, do
not change without an action from the system administrator or an agent that the system
administrator has placed in motion to accomplish that task.

The reason for looking at files in this way has to do with the type of permissions given to
the directory that holds them. The way in which the operating system and its users need
to utilize the files determines the directory where those files should be placed, whether the
directory is mounted read-only or read-write, and the level of access allowed on each file.
The top level of this organization is crucial, as the access to the underlying directories can be
restricted or security problems may manifest themselves if the top level is left disorganized
or without a widely-utilized structure.

However, simply having a structure does not mean very much unless it is a standard. Com-
peting structures can actually cause more problems than they fix. Because of this, Red Hat
has chosen the the most widely-used file system structure and extended it only slightly to
accommodate special files used within Red Hat Linux.

1.2. Overview of File System Hierarchy Standard (FHS)
Red Hat is committed to the Filesystem Hierarchy Standard (FHS), a collaborative document
that defines the names and locations of many files and directories. We will continue to track
and follow the standard to keep Red Hat Linux FHS-compliant.

The current FHS document is the authoritative reference to any FHS-compliant file system,
but the standard leaves many areas undefined or extensible. In this section, we provide an
overview of the standard and a description of the parts of the file system not covered by the
standard.

The complete standard is available at:

http://www.pathname.com/fhs

Compliance with the standard means many things, but the two most important are compat-
ibility with other compliant systems and the ability to mount the /usr partition as read-only
(because it contains common executables and is not meant to be changed by users). Since

20 Chapter 1. File System Structure

/usr can be mounted read-only, /usr can be mounted from the CD-ROM or from another
machine via read-only NFS.

1.2.1. FHS Organization
The directories and files noted here are a small subset of those specified by the FHS docu-
ment. Check the latest FHS document for the most complete information.

1.2.1.1. The /dev Directory

The /dev directory contains file system entries which represent devices that are attached to
the system. These files are essential for the system to function properly.

1.2.1.2. The /etc Directory

The /etc directory is reserved for configuration files that are local to your machine. No
binaries are to be put in /etc. Any binaries that were formerly put in /etc should now go
into /sbin or possibly /bin.

The X11 and skel directories should be subdirectories of /etc:

/etc
|- X11
|- skel

The X11 directory is for X11 configuration files such as XF86Config. The skel directory is
for "skeleton" user files, which are used to populate a home directory when a user is first
created.

1.2.1.3. The /lib Directory

The /libdirectory should contain only those libraries that are needed to execute the binaries
in /bin and /sbin. These shared library images are particularly important for booting the
system and executing commands within the root file system.

1.2.1.4. The /mnt Directory

The /mntdirectory refers to temporarily mounted file systems, such as CD-ROMs and floppy
disks.

1.2.1.5. The /opt Directory

The /opt directory provides an area for usually large, static application software packages
to be stored.

For packages that wish to avoid putting their files throughout the file system, /opt provides
a logical and predictable organizational system under that package’s directory. This gives
the system administrator an easy way to determine the role of each file within a particular
package.

For example, if sample is the name of a particular software package located within /opt,
then all of its files could be placed within directories inside /opt/sample, such as
/opt/sample/bin for binaries and /opt/sample/man for manual pages.

Chapter 1. File System Structure 21

Large packages that encompass many different sub-packages, each of which accomplish a
particular task, also go within /opt, giving that large package a standardized way to orga-
nize itself. In this way, our sample package may have different tools that each go in their
own sub-directories, such as /opt/sample/tool1 and /opt/sample/tool2, each of which
can have their own bin, man, and other similar directories.

1.2.1.6. The /proc Directory

The /proc directory contains special "files" that either extract information from or send in-
formation to the kernel.

Due to the great variety of data available within /proc and the many ways this directory can
be used to communicate with the kernel, an entire chapter has been devoted to the subject.
For more information, please see Chapter 2.

1.2.1.7. The /sbin Directory

The /sbin directory is for executables used only by the root user. The executables in /sbin
are only used to boot and mount /usr and perform system recovery operations. The FHS
says:

"/sbin typically contains files essential for booting the system in addition to the binaries in
/bin. Anything executed after /usr is known to be mounted (when there are no problems)
should be placed in /usr/sbin. Local-only system administration binaries should be placed into
/usr/local/sbin."

At a minimum, the following programs should be in /sbin:

arp, clock,
getty, halt,
init, fdisk,
fsck.*, grub,
ifconfig, lilo,
mkfs.*, mkswap,
reboot, route,
shutdown, swapoff,
swapon, update

1.2.1.8. The /usr Directory

The /usr directory is for files that can be shared across a whole site. The /usr directory usu-
ally has its own partition, and it should be mountable read-only. At minimum, the following
directories should be subdirectories of /usr:

/usr
|- bin
|- dict
|- etc
|- games
|- include
|- kerberos
|- lib
|- libexec
|- local

22 Chapter 1. File System Structure

|- sbin
|- share
|- src
|- X11R6

The bin directory contains executables, dict contains non-FHS compliant documentation
pages, etc contains system-wide configuration files, games is for games, include contains
C header files, kerberos contains binaries and much more for Kerberos, and lib contains
object files and libraries that are not designed to be directly utilized by users or shell scripts.
The libexec directory contains small helper programs called by other programs, sbin is for
system administration binaries (those that do not belong in /sbin), share contains files that
are not architecture-specific, src is for source code, and X11R6 is for the X Window System
(XFree86 on Red Hat Linux).

1.2.1.9. The /usr/local Directory

The FHS says:

"The /usr/local hierarchy is for use by the system administrator when installing software lo-
cally. It needs to be safe from being overwritten when the system software is updated. It may be
used for programs and data that are shareable among a group of hosts, but not found in /usr."

The /usr/local directory is similar in structure to the /usr directory. It has the following
subdirectories, which are similar in purpose to those in the /usr directory:

/usr/local
|- bin
|- doc
|- etc
|- games
|- include
|- lib
|- libexec
|- sbin
|- share
|- src

1.2.1.10. The /var Directory

Since the FHS requires that you be able to mount /usr read-only, any programs that write
log files or need spool or lock directories should write them to the /var directory. The FHS
states /var is for:

"...variable data files. This includes spool directories and files, administrative and logging data,
and transient and temporary files."

Below are some of the directories which should be subdirectories of /var:

/var
|- arpwatch
|- cache
|- db
|- ftp
|- gdm

Chapter 1. File System Structure 23

|- kerberos
|- lib
|- local
|- lock
|- log
|- named
|- mail -> spool/mail
|- named
|- nis
|- opt
|- preserve
|- run
+- spool

|- anacron
|- at
|- cron
|- fax
|- lpd
|- mail
|- mqueue
|- news
|- rwho
|- samba
|- slrnpull
|- squid
|- up2date
|- uucp
|- uucppublic
|- vbox
|- voice

|- tmp
|- tux
|- www
|- yp

System log files such as messages and lastlog go in /var/log. The /var/lib/rpmdirectory
also contains the RPM system databases. Lock files go in /var/lock, usually in directories
particular for the program using the file. The /var/spool directory has subdirectories for
various systems that need to store data files.

1.2.2. /usr/local in Red Hat Linux
In Red Hat Linux, the intended use for /usr/local is slightly different from that specified
by the FHS. The FHS says that /usr/local should be where you store software that is to
remain safe from system software upgrades. Since system upgrades from Red Hat are done
safely with the rpm command and graphical Gnome-RPM application, you do not need to
protect files by putting them in /usr/local. Instead, we recommend you use /usr/local
for software that is local to your machine.

For instance, say you have mounted /usr via read-only NFS from a host named jake. If
there is a package or program you would like to install, but you are not allowed to write
to jake, you should install it under /usr/local. Later perhaps, if you have managed to
convince the system administrator of jake to install the program on /usr, you can uninstall
it from /usr/local.

24 Chapter 1. File System Structure

1.3. Special File Locations
In addition to the files pertaining to RPM that reside in /var/lib/rpm (see the RPM chapter
in the Official Red Hat Linux Customization Guide for more information on RPM), there are
two other special locations reserved for Red Hat Linux configuration and operation.

The /var/spool/up2date/ directory contains files used by the Red Hat Update Agent in-
cluding header RPM information. This location may also be used to temporarily store RPMs
downloaded while updating your system. For more information on the Red Hat Network,
see the Red Hat Network website at the following URL: https://rhn.redhat.com/.

The configuration tools provided with Red Hat Linux install many scripts, bitmap, and text
files in /usr/lib/rhs. Since these files are generated by software on your system, you prob-
ably will not want to edit any of them by hand.

Another special location is the /etc/sysconfig/ directory. This directory stores a variety of
configuration information. Many scripts that run at boot time use the files in this directory.
See Section 3.3.

Finally, one more directory worth noting is the /initrd/ directory. It is empty, but is used
as a critical mount point during the boot process.

Warning

Do not remove the /initrd/ directory for any reason. Removing this directory will cause your system
to fail to boot with a kernel panic error message.

Chapter 2.

The /proc File System

The Linux kernel’s primary functions are to control access to physical devices on the com-
puter and to schedule when and how processes interact with these devices. The /proc di-
rectory contains hierarchy of virtual folders and files which represent the current state of the
kernel. Viewing files within /proc allows the user to peer into the kernel’s view of the sys-
tem. In addition, the user can use these virtual files to communicate configuration changes
to the kernel.

2.1. A Virtual File System
In Linux, everything is stored as a file. Most users are familiar with the two primary types
of files, text and binary. However, the /proc directory contains files that are not part of any
file system associated with any physical storage device connected to your system. Instead,
the virtual files in /proc are part of a virtual file system.

The virtual files in /proc have unique qualities. Most of them are 0 bytes in size. Yet when
the file is viewed, it can contain quite a bit of information. In addition, most of their time and
date settings reflect the current time and date, meaning that they are constantly changing.

Both applications and system administrators can use /proc as a method of accessing in-
formation about the state of the kernel, the attributes of the machine, the state of individual
processes, and so on. Most of the files in the directory, such as interrupts, meminfo, mounts,
and partitions, provide an up-to-the-moment glimpse of a system’s physical environment.
Others, like file systems and the /proc/sys/ directory provide software configuration in-
formation.

To make things easier, files that contain information covering a similar topic are grouped
into virtual directories and sub-directories, such as /proc/ide/ for all physical IDE devices.

2.1.1. Viewing Virtual Files
By using cat, more, or less commands on the files within /proc, you can immediately
access an enormous amount of information about the system. For example, if you want to
see what sort of CPU your computer has, type cat cpuinfo and you will see something
similar to the following:

processor : 0
vendor_id : AuthenticAMD
cpu family : 5
model : 9
model name : AMD-K6(tm) 3D+ Processor
stepping : 1
cpu MHz : 400.919
cache size : 256 KB
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 1
wp : yes

26 Chapter 2. The /proc File System

flags : fpu vme de pse tsc msr mce cx8 pge mmx syscall 3dnow k6_mtrr
bogomips : 799.53

As you view different virtual files in /proc, you will notice that some of the information
makes sense. Others are not human readable. This is why utilities exist pull data from virtual
files in /proc and display it in a useful way. Some examples of such applications are apm,
free, and top.

Note

Some of the virtual files in /proc are only readable by the root user.

2.1.2. Changing Virtual Files
As a general rule, most virtual files within the /proc directory are read only. However, some
can be used to adjust settings in the kernel. This is especially true for files in the /proc/sys/
subdirectory.

To change the value of a virtual file, use the echo command and a � symbol to redirect the
new value to the file. For instance, to change your hostname on the fly, you can type:

echo bob.subgenious.com > /proc/sys/kernel/hostname

Other files act as binary switches. For instance, if you type cat
/proc/sys/net/ipv4/ip_forward, you will get either a 0 or a 1. A 0 indicates the kernel is
not forwarding network packets. By using the echo command to change the value of the
ip_forward file to 1, you can immediately turn packet forwarding on.

For a listing of some of the kernel configuration files available in the /proc/sys/, see Section
2.3.8.

2.2. Top-Level Files in /proc

Below is a list of some of the more useful virtual files in the top-level of the /proc directory.

2.2.1. /proc/apm
This file provides information about the state of the Advanced Power Management (APM) sys-
tem. This information is used by the apm command.

The output of this file on a system without a battery and constantly connected to an AC
power source looks similar to this:

1.16 1.2 0x03 0x01 0xff 0x80 -1% -1 ?

Executing apm -v command on these systems results in something similar to this:

APM BIOS 1.2 (kernel driver 1.16)
AC on-line, no system battery

For these systems, apm may be able to do little more than put the machine in standby mode.
The apm command is much more useful on laptops. This is also reflected in their /proc/apm

Chapter 2. The /proc File System 27

files. This is the output from a sample file on a laptop running Linux while plugged into a
power outlet:

1.16 1.2 0x03 0x01 0x03 0x09 100% -1 ?

When the same machine is unplugged from its power source and running on its own batter-
ies for a few minutes, you will see the contents of the apm file change:

1.16 1.2 0x03 0x00 0x00 0x01 99% 1792 min

In this state, the apm command yields readable information from this data:

APM BIOS 1.2 (kernel driver 1.16)
AC off-line, battery status high: 99% (1 day, 5:52)

This demonstrates the connection between data located in raw /proc files and the utilities
designed to use that information for specific purposes.

2.2.2. /proc/cmdline
This file essentially shows the parameters passed to the kernel at the time it is started. A
sample /proc/cmdline file looks similar to this:

ro root=/dev/hda2

The important data contained in the file breaks down in the following way:

• ro — signifies the kernel is loaded read-only.

• root=/dev/hda2 — this is the partition on which the root file system resides.

2.2.3. /proc/cpuinfo
This file changes based on the type of processor in your system. The output is fairly easy to
understand. A sample file looks like this:

processor : 0
vendor_id : AuthenticAMD
cpu family : 5
model : 9
model name : AMD-K6(tm) 3D+ Processor
stepping : 1
cpu MHz : 400.919
cache size : 256 KB
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 1
wp : yes
flags : fpu vme de pse tsc msr mce cx8 pge mmx syscall 3dnow k6_mtrr
bogomips : 799.53

28 Chapter 2. The /proc File System

• processor — Provides each processor with an identifying number. If you only have one
processor, you will only see a 0.

• cpu family — Authoritatively tells you the type of processor you have in the system.
Simply place the number in front of "86" to calculate the value. This is particularly helpful
if you are wondering about the architecture of an older system (686, 586, 486, or 386). As
RPM packages are occasionally compiled for particular architectures, this value tells you
which package to install on the system.

• model name — Gives you the popular name of the processor, including its project name.

• cpu MHz — Shows the precise speed in megahertz of that particular processor (in thou-
sandths).

• cache size — Tells you the amount of level 2 memory cache available to the processor.

• flags — Defines a number of different qualities about the processor, such as the presence
of a floating point unit (FPU) and the ability to process MMX instructions.

2.2.4. /proc/devices
This file displays the various character and block devices currently configured for use with
the kernel. It does not include modules that are available but not loaded into the kernel.
Below is a sample output from this virtual file:

Character devices:
1 mem
2 pty
3 ttyp
4 ttyS
5 cua
7 vcs

10 misc
14 sound
29 fb
36 netlink
128 ptm
129 ptm
136 pts
137 pts
162 raw
254 iscsictl

Block devices:
1 ramdisk
2 fd
3 ide0
9 md

22 ide1

The output from /proc/devices includes the major number and name of the device.

Character devices are similar to block devices, except for two basic differences.

Block devices have a buffer available, allowing them to order requests before dealing with
them. This is important for devices designed to store information — such as hard drives —
because the ability to order the information before writing it to the device allows it to be
placed in more efficient order. Character devices do not require buffering.

Chapter 2. The /proc File System 29

The other difference is that block devices can send and receive information in blocks of a size
configured per device. Character devices send data with no preconfigured size.

For more information about devices see /usr/src/linux-
2.4/Documentation/devices.txt.

2.2.5. /proc/dma
This file contains a list of the registered ISA direct memory access (DMA) channels in use. A
sample /proc/dma files looks like this:

4: cascade

2.2.6. /proc/execdomains
This file lists the execution domains currently supported by the Linux kernel, along with the
range of personalities they support.

0-0 Linux [kernel]

Think of execution domains as a kind of "personality" of a particular operating system. Other
binary formats, such as Solaris, UnixWare, and FreeBSD, can be used with Linux. By chang-
ing the personality of a task running in Linux, a programmer can change the way the oper-
ating system treats particular system calls from a certain binary. Except for the PER_LINUX
execution domain, they can be implemented as dynamically loadable modules.

2.2.7. /proc/fb
This file contains a list of frame buffer devices, with the frame buffer device number and
the driver that controls it. Typical output of /proc/fb for systems that contain frame buffer
devices looks similar to this:

0 VESA VGA

2.2.8. /proc/filesystems
This file displays a list of the file system types currently supported by the kernel. Sample
output from a generic kernel’s /proc/filesystems file looks similar to this:

nodev rootfs
nodev bdev
nodev proc
nodev sockfs
nodev tmpfs
nodev shm
nodev pipefs
ext2
nodev ramfs
iso9660
nodev devpts
ext3
nodev autofs
nodev binfmt_misc

30 Chapter 2. The /proc File System

The first column signifies whether the file system is mounted on a block device. Those be-
ginning with nodev are not mounted on a device. The second column lists the name of the
file systems supported.

The mount command cycles through these file systems when one is not specified as an argu-
ment.

2.2.9. /proc/interrupts
This file records the number of interrupts per IRQ on the x86 architecture. A standard
/proc/interrupts looks similar to this:

CPU0
0: 80448940 XT-PIC timer
1: 174412 XT-PIC keyboard
2: 0 XT-PIC cascade
8: 1 XT-PIC rtc

10: 410964 XT-PIC eth0
12: 60330 XT-PIC PS/2 Mouse
14: 1314121 XT-PIC ide0
15: 5195422 XT-PIC ide1
NMI: 0
ERR: 0

For a multi-processor machine, this file may look slightly different:

CPU0 CPU1
0: 1366814704 0 XT-PIC timer
1: 128 340 IO-APIC-edge keyboard
2: 0 0 XT-PIC cascade
8: 0 1 IO-APIC-edge rtc

12: 5323 5793 IO-APIC-edge PS/2 Mouse
13: 1 0 XT-PIC fpu
16: 11184294 15940594 IO-APIC-level Intel EtherExpress Pro 10/100 Ethernet
20: 8450043 11120093 IO-APIC-level megaraid
30: 10432 10722 IO-APIC-level aic7xxx
31: 23 22 IO-APIC-level aic7xxx
NMI: 0
ERR: 0

The first column refers to the IRQ number. Each CPU in the system has its own column and
its own number of interrupts per IRQ. The next column tells you the type of interrupt, and
the last column contains the name of the device that is located at that IRQ.

Each of the types of interrupts seen in this file, which are architecture-specific, mean some-
thing a little different. For x86 machines, the following values are common:

• XT-PIC — The old AT computer interrupts.

• IO-APIC-edge — The voltage signal on this interrupt transitions from low to high, creat-
ing an edge, where the interrupt occurs and is only signaled once. This kind of interrupt,
as well as the IO-APIC-level interrupt, are only seen on systems with processors from
the 586 family and higher.

• IO-APIC-level — Generates interrupts when its voltage signal goes high until the signal
goes low again.

Chapter 2. The /proc File System 31

2.2.10. /proc/iomem
This file shows you the current map of the system’s memory for its various devices:

00000000-0009fbff : System RAM
0009fc00-0009ffff : reserved
000a0000-000bffff : Video RAM area
000c0000-000c7fff : Video ROM
000f0000-000fffff : System ROM
00100000-07ffffff : System RAM
00100000-00291ba8 : Kernel code
00291ba9-002e09cb : Kernel data

e0000000-e3ffffff : VIA Technologies, Inc. VT82C597 [Apollo VP3]
e4000000-e7ffffff : PCI Bus #01
e4000000-e4003fff : Matrox Graphics, Inc. MGA G200 AGP
e5000000-e57fffff : Matrox Graphics, Inc. MGA G200 AGP

e8000000-e8ffffff : PCI Bus #01
e8000000-e8ffffff : Matrox Graphics, Inc. MGA G200 AGP

ea000000-ea00007f : Digital Equipment Corporation DECchip 21140 [FasterNet]
ea000000-ea00007f : tulip

ffff0000-ffffffff : reserved

The first column displays the memory registers used by each of the different types of mem-
ory. The second column tells the kind of memory located within those registers. In partic-
ular, this column will even tell you which memory registers are used by the kernel within
the system RAM or, if you have multiple Ethernet ports on your NIC, the memory registers
assigned for each port.

2.2.11. /proc/ioports
In a way similar to /proc/iomem, /proc/ioports provides a list of currently registered port
regions used for input or output communication with a device. This file can be quite long,
with a beginning similar to this:

0000-001f : dma1
0020-003f : pic1
0040-005f : timer
0060-006f : keyboard
0070-007f : rtc
0080-008f : dma page reg
00a0-00bf : pic2
00c0-00df : dma2
00f0-00ff : fpu
0170-0177 : ide1
01f0-01f7 : ide0
02f8-02ff : serial(auto)
0376-0376 : ide1
03c0-03df : vga+
03f6-03f6 : ide0
03f8-03ff : serial(auto)
0cf8-0cff : PCI conf1
d000-dfff : PCI Bus #01
e000-e00f : VIA Technologies, Inc. Bus Master IDE
e000-e007 : ide0
e008-e00f : ide1

e800-e87f : Digital Equipment Corporation DECchip 21140 [FasterNet]
e800-e87f : tulip

32 Chapter 2. The /proc File System

The first column gives the actual IO port address range reserved for the device listed in the
second column.

2.2.12. /proc/isapnp
This file lists Plug and Play (PnP) cards in ISA slots on the system. This is most often seen with
sound cards but may include any number of devices. A /proc/isapnpfile with Soundblaster
entry in it looks similar to this:

Card 1 ’CTL0070:Creative ViBRA16C PnP’ PnP version 1.0 Product version 1.0
Logical device 0 ’CTL0001:Audio’
Device is not active
Active port 0x220,0x330,0x388
Active IRQ 5 [0x2]
Active DMA 1,5
Resources 0
Priority preferred
Port 0x220-0x220, align 0x0, size 0x10, 16-bit address decoding
Port 0x330-0x330, align 0x0, size 0x2, 16-bit address decoding
Port 0x388-0x3f8, align 0x0, size 0x4, 16-bit address decoding
IRQ 5 High-Edge
DMA 1 8-bit byte-count compatible
DMA 5 16-bit word-count compatible
Alternate resources 0:1
Priority acceptable
Port 0x220-0x280, align 0x1f, size 0x10, 16-bit address decoding
Port 0x300-0x330, align 0x2f, size 0x2, 16-bit address decoding
Port 0x388-0x3f8, align 0x0, size 0x4, 16-bit address decoding
IRQ 5,7,2/9,10 High-Edge
DMA 1,3 8-bit byte-count compatible
DMA 5,7 16-bit word-count compatible

This file can be quite long, depending on the number of devices displayed here and their
requirements or requests for resources.

Each card lists its name, PnP version number, and product version number. If the device is
active and configured, this file will also reveal the port and IRQ numbers for the device. In
addition, to ensure better compatibility, the card will specify preferred and acceptable
values for a number of different parameters. The goal here is to allow the PnP cards to work
around one another and avoid IRQ and port conflicts.

2.2.13. /proc/kcore
This file represents the physical memory of the system and is stored in the core file format.
Unlike most /proc files, kcore does display a size. This value is given in bytes and is equal
to the size of physical memory (RAM) used plus 4KB.

Warning

Be sure to avoid viewing the kcore file in /proc. The contents of the file will scramble text output on
the terminal. If you accidentally view this file, press [Ctrl]-[C] to stop the process then type reset to
bring back the command line prompt.

Chapter 2. The /proc File System 33

The contents of this file are designed to be examined by a debugger, such as gdb and is not
human readable.

2.2.14. /proc/kmsg
This file is used to hold messages generated by the kernel. These messages are then picked
up by other programs, such as klogd.

2.2.15. /proc/ksyms
This file holds the kernel exported symbol definitions used by the modules tools to dynam-
ically link and bind loadable modules.

e003def4 speedo_debug [eepro100]
e003b04c eepro100_init [eepro100]
e00390c0 st_template [st]
e002104c RDINDOOR [megaraid]
e00210a4 callDone [megaraid]
e00226cc megaraid_detect [megaraid]

The second column refers to the name of a kernel function, and the first column lists the
memory address of that function in the kernel. The last column reveals the name of the
module loaded to provide that function.

2.2.16. /proc/loadavg
This file provides a look at load average on the processor over time and additional data used
by uptime and other commands. A sample loadavg file looks similar to this:

0.20 0.18 0.12 1/80 11206

The first three columns measure CPU utilization of the last 1, 5, and 10 minute periods. The
fourth column shows the number of currently running processes and the total number of
processes. The last column displays the last process ID used.

2.2.17. /proc/locks
This files displays the files currently locked by the kernel. The content of this file contains
kernel internal debugging data and can vary greatly, depending on the use of the system. A
sample locks file of a very lightly loaded system looks similar to this:

1: FLOCK ADVISORY WRITE 807 03:05:308731 0 EOF c2a260c0 c025aa48 c2a26120
2: POSIX ADVISORY WRITE 708 03:05:308720 0 EOF c2a2611c c2a260c4 c025aa48

Each lock is assigned a unique number at the beginning of each line. The second column
refers to the class of lock used, with FLOCK signifying the older-style UNIX file locks from
a flock system call and POSIX representing the newer POSIX locks from the lockf system
call.

The third column can have two values. ADVISORYmeans that the lock does not prevent other
people from accessing the data; it only prevents other attempts to lock it. MANDATORY means
that no other access to the data is permitted while the lock is held. The fourth column reveals

34 Chapter 2. The /proc File System

whether the lock is allowing the holder READ or WRITE access to the file, and the fifth column
shows the ID of the process holding the lock.

The sixth column shows the ID of the file being locked, in the format of
MAJOR-DEVICE:MINOR-DEVICE:INODE-NUMBER. The seventh column shows the start and
end of the file’s locked region. The remaining columns point to internal kernel data
structures used for specialized debugging and can be ignored.

2.2.18. /proc/mdstat
This file contains the current information for multiple-disk, RAID configurations. If your
system does not contain such a configuration, then your mdstat file will look similar to this:

Personalities :
read_ahead not set
unused devices: � none �

This file remains in the state above unless you create a software RAID or md device. In that
case, you can use mdstat to give you a picture of what is currently happening with your mdX
RAID devices.

The /proc/mdstat file below shows a system with its md0 configured as a RAID 1 device. It
is currently re-syncing the disks:

Personalities : [linear] [raid1]
read_ahead 1024 sectors
md0: active raid1 sda2[1] sdb2[0] 9940 blocks [2/2] [UU] resync=1% finish=12.3min
algorithm 2 [3/3] [UUU]
unused devices: � none �

2.2.19. /proc/meminfo
This is one of the more commonly used /proc files, as it reports back plenty of valuable
information about the current utilization of RAM on the system. A system with 256MB of
RAM and 384MB of swap space might have a /proc/meminfo file similar to this one:

total: used: free: shared: buffers: cached:
Mem: 261709824 253407232 8302592 0 120745984 48689152
Swap: 402997248 8192 402989056
MemTotal: 255576 kB
MemFree: 8108 kB
MemShared: 0 kB
Buffers: 117916 kB
Cached: 47548 kB
Active: 135300 kB
Inact_dirty: 29276 kB
Inact_clean: 888 kB
Inact_target: 0 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 255576 kB
LowFree: 8108 kB
SwapTotal: 393552 kB
SwapFree: 393544 kB

Chapter 2. The /proc File System 35

Much of the information here is used by the free, top, and ps commands. In fact, the output
of the free command is even similar in appearance to the contents and structure of meminfo.
By looking directly at meminfo, more memory details are revealed:

• Mem — Displays the current state of physical RAM in the system, including a full break-
down of total, used, free, shared, buffered, and cached memory utilization in bytes.

• Swap — Displays the total, used, and free amounts of swap space, in bytes.

• MemTotal — Total amount of physical RAM, in kilobytes.

• MemFree — The amount of physical RAM, in kilobytes, left unused by the system.

• MemShared — Unused with 2.4 and higher kernels but left in for compatibility with earlier
kernel versions.

• Buffers — The amount of physical RAM, in kilobytes, used for file buffers.

• Cached — The amount of physical RAM, in kilobytes, used as cache memory.

• Active — The total amount of buffer or page cache memory, in kilobytes, that is in active
use.

• Inact_dirty — The total amount of buffer or cache pages, in kilobytes, that might be free
and available.

• Inact_clean — The total amount of buffer or cache pages in kilobytes that are definitely
free and available.

• Inact_target — The net amount of allocations per second, in kilobytes, averaged over
one minute.

• HighTotal and HighFree — The total and free amount of memory, respectively, that is
not directly mapped into kernel space. The HighTotal value can vary based on the type
of kernel used.

• LowTotal and LowFree — The total and free amount of memory, respectively, that is di-
rectly mapped into kernel space. The LowTotal value can vary based on the type of kernel
used.

• SwapTotal — The total amount of swap available, in kilobytes.

• SwapFree — The total amount of swap free, in kilobytes.

2.2.20. /proc/misc
This file lists miscellaneous drivers registered on the miscellaneous major device, which is
number 10:

135 rtc
1 psaux

134 apm_bios

The first column is the minor number of each device, and the second column shows the
driver in use.

2.2.21. /proc/modules
This file displays a list of all modules that have been loaded by the system. Its contents will
vary based on the configuration and use of your system, but it should be organized in a
similar manner to this sample /proc/modules file output:

36 Chapter 2. The /proc File System

ide-cd 27008 0 (autoclean)
cdrom 28960 0 (autoclean) [ide-cd]
soundcore 4100 0 (autoclean)
agpgart 31072 0 (unused)
binfmt_misc 5956 1
iscsi 32672 0 (unused)
scsi_mod 94424 1 [iscsi]
autofs 10628 0 (autoclean) (unused)
tulip 48608 1
ext3 60352 2
jbd 39192 2 [ext3]

The first column contains the name of the module. The second column refers to the memory
size of the module, in bytes. The third column tells you whether the module is currently
loaded (1) or unloaded (0). The final column states if the module can unload itself auto-
matically after a period without use (autoclean) or if it is not being utilized (unused). Any
module with a line containing a name listed in brackets ([or]) tells you that this module
depends upon another module to be present in order to function.

2.2.22. /proc/mounts
This file provides a quick list of all mounts in use by the system:

rootfs / rootfs rw 0 0
/dev/hda2 / ext3 rw 0 0
/proc /proc proc rw 0 0
/dev/hda1 /boot ext3 rw 0 0
none /dev/pts devpts rw 0 0
none /dev/shm tmpfs rw 0 0
none /proc/sys/fs/binfmt_misc binfmt_misc rw 0 0

The output found here is similar to contents of /etc/mtab, except that /proc/mount can be
more current.

The first column specifies the device that is mounted, with the second column revealing the
mountpoint. The third column tells the file system type, and the fourth column tells you if it
is mounted read-only (ro) or read-write (rw). The fifth and sixth columns are dummy values
designed to match the format used in /etc/mtab.

2.2.23. /proc/mtrr
This file refers to the current Memory Type Range Registers (MTRRs) in use with the system.
If your system’s architecture supports MTRRs, your mtrr might look something like this:

reg00: base=0x00000000 (0MB), size= 64MB: write-back, count=1

MTRRs are used with Intel P6 family of processors (Pentium Pro and higher), and they are
used to control processor access to memory ranges. When using a video card on a PCI or
AGP bus, a properly configured mtrr file can increase performance over 150%.

Most of the time, this value is properly configured for you. For more
information on MTRRs and manually configuring this file, please see
http://web1.linuxhq.com/kernel/v2.3/doc/mtrr.txt.html.

Chapter 2. The /proc File System 37

2.2.24. /proc/partitions
Most of the information here is of little importance to most users, except for the following
columns:

• major — The major number of the device with this partition. The major number in our
example (3) corresponds with the block device ide0 in /proc/devices.

• minor — The minor number of the device with this partition. This serves to separate the
partitions into different physical devices and relates to the number at the end of the name
of the partition.

• #blocks — Lists the number of physical disk blocks contained in a particular partition.

• name — The name of the partition.

2.2.25. /proc/pci
This file contains a full listing of every PCI device on your system. Depending on the number
of PCI devices you have, /proc/pci can get rather long. An example from this file on a basic
system looks similar to this:

Bus 0, device 0, function 0:
Host bridge: Intel Corporation 440BX/ZX - 82443BX/ZX Host bridge (rev 3).
Master Capable. Latency=64.
Prefetchable 32 bit memory at 0xe4000000 [0xe7ffffff].

Bus 0, device 1, function 0:
PCI bridge: Intel Corporation 440BX/ZX - 82443BX/ZX AGP bridge (rev 3).
Master Capable. Latency=64. Min Gnt=128.

Bus 0, device 4, function 0:
ISA bridge: Intel Corporation 82371AB PIIX4 ISA (rev 2).

Bus 0, device 4, function 1:
IDE interface: Intel Corporation 82371AB PIIX4 IDE (rev 1).
Master Capable. Latency=32.
I/O at 0xd800 [0xd80f].

Bus 0, device 4, function 2:
USB Controller: Intel Corporation 82371AB PIIX4 USB (rev 1).
IRQ 5.
Master Capable. Latency=32.
I/O at 0xd400 [0xd41f].

Bus 0, device 4, function 3:
Bridge: Intel Corporation 82371AB PIIX4 ACPI (rev 2).
IRQ 9.

Bus 0, device 9, function 0:
Ethernet controller: Lite-On Communications Inc LNE100TX (rev 33).
IRQ 5.
Master Capable. Latency=32.
I/O at 0xd000 [0xd0ff].
Non-prefetchable 32 bit memory at 0xe3000000 [0xe30000ff].

Bus 0, device 12, function 0:
VGA compatible controller: S3 Inc. ViRGE/DX or /GX (rev 1).
IRQ 11.
Master Capable. Latency=32. Min Gnt=4.Max Lat=255.
Non-prefetchable 32 bit memory at 0xdc000000 [0xdfffffff].

This output shows a list of all PCI devices, sorted in the order of bus, device, and function.
Beyond providing the name and version of the device, this list also gives you detailed IRQ
information so you can quickly look for conflicts.

38 Chapter 2. The /proc File System

Tip

To get a more readable version of this informations, type:

lspci -vb

2.2.26. /proc/slabinfo
This file gives information about memory usage on the slab level. Linux kernels greater than
2.2 use slab pools to manage memory above the page level. Commonly used objects have their
own slab pools.

The values in this file occur in the following order: cache name, number of active objects,
number of total objects, size of the object, number of active slabs (blocks) of the objects, total
number of slabs of the objects, and the number of pages per slab.

It should be noted that active in this case means in use. An active object is one that is in use,
and an active slab is one that contains any used objects.

2.2.27. /proc/stat
This file keeps track of a variety of different statistics about the system since it was last
restarted. The contents of /proc/stat, which can be quite long, begins something like this:

cpu 1139111 3689 234449 84378914
cpu0 1139111 3689 234449 84378914
page 2675248 8567956
swap 10022 19226
intr 93326523 85756163 174412 0 3 3 0 6 0 1 0 428620 0 60330 0 1368304 5538681
disk_io: (3,0):(1408049,445601,5349480,962448,17135856)
ctxt 27269477
btime 886490134
processes 206458

Some of the more popular statistics include:

• cpu — Measures the number of jiffies (1/100 of a second) that the system has been in user
mode, user mode with low priority (nice), system mode, and the idle task, respectively.
The total for all CPUs is given at the top, and each individual CPU is listed below with its
own statistics.

• page — The number of memory pages the system has written in and out from the disk.

• swap — The number of swap pages the system has brought in and out.

• intr — The number of interrupts the system has experienced.

• btime — The boot time, measured in the number of seconds since January 1, 1970, other-
wise known as the epoch.

Chapter 2. The /proc File System 39

2.2.28. /proc/swaps
This file measures swap space and its utilization. For a system with only one swap partition,
the output of /proc/swap may look similar to this:

Filename Type Size Used Priority
/dev/hda6 partition 136512 20024 -1

While some of this information can be found in other /proc files, swap provides for a very
quick snapshot of every swap filename, type of swap space, and total and used sizes (in
kilobytes). The priority column is useful when multiple swap files are in use, and some of
them are preferred over others, such as if they are on faster hard disks. The lower the priority,
the more likely the swap file will be used.

2.2.29. /proc/uptime
This file contains information about how long the system has on since its last restart. The
output of /proc/uptime is quite minimal:

350735.47 234388.90

The first number tells you the total number of seconds the system has been up. The second
number tells you how much of that time, also in seconds, the machine has spent idle.

2.2.30. /proc/version
This files tells you the versions of the Linux kernel and gcc, as well as the version of Red
Hat Linux installed on the system:

Linux version 2.4.18-0.4 (user@foo.redhat.com) (gcc version 2.96 20000731
(Red Hat Linux 7.2 2.96-106)) #1 Wed Mar 13 10:47:08 EST 2002

This information is used for a variety of purposes, including the version data presented
when a user logs in.

2.3. Directories in /proc

Common groups of information concerning the kernel are grouped into directories and sub-
directories within the /proc directory.

2.3.1. Process Directories
Every /proc directory contains a number of directories numerical names. A listing of them
starts off like this:

dr-xr-xr-x 3 root root 0 Feb 13 01:28 1
dr-xr-xr-x 3 root root 0 Feb 13 01:28 1010
dr-xr-xr-x 3 xfs xfs 0 Feb 13 01:28 1087
dr-xr-xr-x 3 daemon daemon 0 Feb 13 01:28 1123
dr-xr-xr-x 3 root root 0 Feb 13 01:28 11307
dr-xr-xr-x 3 apache apache 0 Feb 13 01:28 13660
dr-xr-xr-x 3 rpc rpc 0 Feb 13 01:28 637
dr-xr-xr-x 3 rpcuser rpcuser 0 Feb 13 01:28 666

40 Chapter 2. The /proc File System

These directories are called process directories, as they are named after a program’s process
ID and contain information specific to that process. The owner and group of each process
directory is set to the user running the process. When the process is terminated, its /proc
process directory vanishes. However, while the process is running, a great deal of informa-
tion specific to that process is held within its directory.

Each of the process directories contains the following files:

• cmdline — Contains the command line arguments that started the process. The output of
cmdline file for the sshd process looks like this:

/usr/sbin/sshd

• cpu — Provides specific information about the utilization of each of the system’s CPUs. A
process running on a dual CPU system produces output similar to this:

cpu 11 3
cpu0 0 0
cpu1 11 3

• cwd — A symlink to the current working directory for the process.

• environ — Gives a list of the environment variables for the process. The environment
variable is given in all upper-case characters, and the value is in lower-case characters.

• exe — A symlink to the executable of this process.

• fd — A directory containing all of the file descriptors for a particular process. These are
given in numbered links:

total 0
lrwx------ 1 root root 64 May 8 11:31 0 -> /dev/null
lrwx------ 1 root root 64 May 8 11:31 1 -> /dev/null
lrwx------ 1 root root 64 May 8 11:31 2 -> /dev/null
lrwx------ 1 root root 64 May 8 11:31 3 -> /dev/ptmx
lrwx------ 1 root root 64 May 8 11:31 4 -> socket:[7774817]
lrwx------ 1 root root 64 May 8 11:31 5 -> /dev/ptmx
lrwx------ 1 root root 64 May 8 11:31 6 -> socket:[7774829]
lrwx------ 1 root root 64 May 8 11:31 7 -> /dev/ptmx

• maps — Contains memory maps to the various executables and library files associated
with this process. This file can be rather long, depending upon the complexity of the pro-
cess, but sample output from the sshd process begins like this:

08048000-08080000 r-xp 00000000 03:05 226209 /usr/sbin/sshd
08080000-08082000 rw-p 00037000 03:05 226209 /usr/sbin/sshd
08082000-080c3000 rwxp 00000000 00:00 0
40000000-40016000 r-xp 00000000 03:05 304721 /lib/ld-2.2.2.so
40016000-40017000 rw-p 00015000 03:05 304721 /lib/ld-2.2.2.so
40017000-40018000 rw-p 00000000 00:00 0
40019000-4001b000 r-xp 00000000 03:05 144433 /lib/security/pam_stack.so
4001b000-4001c000 rw-p 00001000 03:05 144433 /lib/security/pam_stack.so

• mem — The memory held by the process.

• root — A link to the root directory of the process.

• stat — A status of the process.

Chapter 2. The /proc File System 41

• statm — A status of the memory in use by the process. Sample statm files look like this:

140 72 63 22 0 50 22

The seven columns relate to different memory statistics for the process. In order of how
they are displayed, from right to left, they report different aspects of the memory used:

1. Total program size, in kilobytes

2. Size of memory portions, in kilobytes

3. Number of pages that are shared

4. Number of pages are code

5. Number of pages of data/stack

6. Number of pages of library

7. Number of dirty pages

• status — Provides the status of the process in a form that is much more readable than
stat or statm. Sample output for sshd looks similar to this:

Name: sshd
State: S (sleeping)
Pid: 14466
PPid: 723
TracerPid: 0
Uid: 0 0 0 0
Gid: 0 0 0 0
FDSize: 32
Groups:
VmSize: 3596 kB
VmLck: 0 kB
VmRSS: 288 kB
VmData: 552 kB
VmStk: 28 kB
VmExe: 224 kB
VmLib: 2596 kB
SigPnd: 0000000000000000
SigBlk: 0000000000000000
SigIgn: 8000000000001000
SigCgt: 0000000000012000
CapInh: 0000000000000000
CapPrm: 00000000fffffeff
CapEff: 00000000fffffeff

Other than the process’s name and ID, the state (such as S (sleeping) or R (running)
and user/group ID running the process is available, as well as much more detailed data
regarding memory usage.

2.3.1.1. /proc/self/

The /proc/self/ directory is a link to the currently running process. This allows a process
to look at itself without having to know its process ID.

Within a shell environment, a listing of the /proc/self/ directory produces the same con-
tents as listing the process directory for that process.

42 Chapter 2. The /proc File System

2.3.2. /proc/bus/
This directory contains information specific to the various buses available on the system. So,
for example, on a standard system containing ISA, PCI, and USB busses, current data on
each of these buses is available in its directory under /proc/bus/.

The contents of the subdirectories and files available varies greatly on the precise configura-
tion of your system. However, each of the directories for each of the bus types has at least
one directory for each bus of that type. These individual bus directories, usually signified
with numbers, such as 00, contains binary files that refer to the various devices available on
that bus.

So, for example, a system with a USB bus but no USB devices connected to it has a
/proc/bus/usb directory containing several files:

total 0
dr-xr-xr-x 1 root root 0 May 3 16:25 001
-r--r--r-- 1 root root 0 May 3 16:25 devices
-r--r--r-- 1 root root 0 May 3 16:25 drivers
[root@thoth /]# ls -l /proc/bus/usb/001
total 1
-rw-r--r-- 1 root root 18 May 3 16:25 001

The /proc/bus/usb directory contains files that track the various devices on any USB buses,
as well as the drivers required to utilize them. The 001 directory contains all devices on the
first USB bus. By looking at the contents of the devices file, we can see that it is the USB root
hub on the motherboard:

T: Bus=01 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2
B: Alloc= 0/900 us (0%), #Int= 0, #Iso= 0
D: Ver= 1.00 Cls=09(hub) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0000 ProdID=0000 Rev= 0.00
S: Product=USB UHCI Root Hub
S: SerialNumber=d400
C:* #Ifs= 1 Cfg#= 1 Atr=40 MxPwr= 0mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub) Sub=00 Prot=00 Driver=hub
E: Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl=255ms

2.3.3. /proc/driver/
This directory contains information for specific drivers in use by the kernel.

A common file found here is rtc, which provides output from the driver for the system’s
Real Time Clock (RTC), the device that keeps the time while the system is switched off. Sample
output from /proc/driver/rtc looks like this:

rtc_time : 01:38:43
rtc_date : 1998-02-13
rtc_epoch : 1900
alarm : 00:00:00
DST_enable : no
BCD : yes
24hr : yes
square_wave : no
alarm_IRQ : no
update_IRQ : no
periodic_IRQ : no
periodic_freq : 1024

Chapter 2. The /proc File System 43

batt_status : okay

For more information about the RTC, review /usr/src/linux-
2.4/Documentation/rtc.txt.

2.3.4. /proc/ide/
This directory holds information about IDE devices on the system. Each IDE channel is rep-
resented as a separate directory, such as /proc/ide/ide0 and /proc/ide/ide1. In addition,
a drivers file is also available, providing the version number of the various drivers used on
the IDE channels:

ide-cdrom version 4.59
ide-floppy version 0.97
ide-disk version 1.10

Many chipsets also provide an informational file in this directory that gives additional data
concerning the drives connected through the various channels. For example, a generic In-
tel PIIX4 Ultra 33 chipset produces a /proc/ide/piix that will tell you whether DMA or
UDMA is enabled for the devices on the IDE channels:

Intel PIIX4 Ultra 33 Chipset.
------------- Primary Channel ---------------- Secondary Channel -------------

enabled enabled
------------- drive0 --------- drive1 -------- drive0 ---------- drive1 ------

DMA enabled: yes no yes no
UDMA enabled: yes no no no
UDMA enabled: 2 X X X
UDMA
DMA
PIO

Navigating into the directory for an IDE channel, such as ide0, provides additional informa-
tion. The channel file provides the channel number, while the model tells you the bus type
for the channel (such as pci).

2.3.4.1. The Device Directory

Within each IDE channel directory is a device directory. The name of the device directory
corresponds to the drive letter in the /dev directory. For instance the first IDE drive on ide0
would be hda.

Note

There is a symlink to each of these device directories in the /proc/ide/ directory.

Each device directory contains a collection of information and statistics. The contents of these
directories vary according to the type of device connected. Some of the more useful files
common to many devices include:

44 Chapter 2. The /proc File System

• cache — The device’s cache.

• capacity — The capacity of the device, in 512 byte blocks.

• driver — The driver and version used to control the device.

• geometry — The physical and logical geometry of the device.

• media — The type of device, such as a disk.

• model — The model name or number of the device.

• settings — A collection of current parameters of the device. This file usually contains
quite a bit of useful, technical information. A sample settings file for a standard IDE
hard disk looks similar to this:

name value min max mode
---- ----- --- --- ----
bios_cyl 784 0 65535 rw
bios_head 255 0 255 rw
bios_sect 63 0 63 rw
breada_readahead 4 0 127 rw
bswap 0 0 1 r
current_speed 66 0 69 rw
file_readahead 0 0 2097151 rw
ide_scsi 0 0 1 rw
init_speed 66 0 69 rw
io_32bit 0 0 3 rw
keepsettings 0 0 1 rw
lun 0 0 7 rw
max_kb_per_request 64 1 127 rw
multcount 8 0 8 rw
nice1 1 0 1 rw
nowerr 0 0 1 rw
number 0 0 3 rw
pio_mode write-only 0 255 w
slow 0 0 1 rw
unmaskirq 0 0 1 rw
using_dma 1 0 1 rw

2.3.5. /proc/irq/
This directory is used to set IRQ to CPU affinity, which allows you to connect a particular
IRQ to only one CPU. Alternatively, you can exclude a CPU from handling any IRQs.

Each IRQ has its own directory, allowing for individual configuration of each IRQ. The
/proc/irq/prof_cpu_mask file is a bitmask that contains the default values for the
smp_affinity file in the IRQ directory. The values in smp_affinity specify which CPUs
handle that particular IRQ.

More information is available in the /usr/src/linux-
2.4/Documentation/filesystems/proc.txtfile.

Chapter 2. The /proc File System 45

2.3.6. /proc/net/
This directory provides a comprehensive look at various networking parameters and statis-
tics. Each of the files covers a specific range of information related to networking on the
system:

• arp — Contains the kernel’s ARP table. This file is particularly useful for connecting hard-
ware address to an IP address on a system.

• atm— A directory containing files with various Asynchronous Transfer Mode (ATM) settings
and statistics. This directory is primarily used with ATM networking and ADSL cards.

• dev— Lists the various network devices configured on the system, complete with transmit
and receive statistics. This file will quickly tell you the number of bytes each interface has
sent and received, the number of packets inbound and outbound, the number of errors
seen, the number of packets dropped, and more.

• dev_mcast — Displays the various Layer2 multicast groups each device is listening to.

• igmp — Lists the IP multicast addresses which this system joined.

• ip_fwchains — If ipchains are in use, this virtual file reveals any current rule.

• ip_fwnames — If ipchains are in use, this virtual file lists all firewall chain names.

• ip_masquerade — Provides a table of masquerading information.

• ip_mr_cache — List of the multicast routing cache.

• ip_mr_vif — List of multicast virtual interfaces.

• netstat — Contains a broad yet detailed collection of networking statistics, including
TCP timeouts, SYN cookies sent and received, and much more.

• psched — List of global packet scheduler parameters.

• raw — List of raw device statistics.

• route — Displays the kernel’s routing table.

• rt_cache — Contains the current routing cache.

• snmp — List of Simple Network Management Protocol (SNMP) data for various network-
ing protocols in use.

• sockstat — Provides socket statistics.

• tcp — Contains detailed TCP socket information.

• tr_rif — The token ring RIF routing table.

• udp — Contains detailed UDP socket information.

• unix — Lists UNIX domain sockets currently in use.

• wireless — Lists wireless interface data.

2.3.7. /proc/scsi/
This directory is analogous to the /proc/ide/directory only it is for connected SCSI devices.

The primary file in this directory is /proc/scsi/scsi, which contains a list of every rec-
ognized SCSI device. For example, if a system contains a SCSI CD-ROM, tape drive, hard
drives, and RAID controller, this file will look similar to this:

Attached devices:
Host: scsi1 Channel: 00 Id: 05 Lun: 00

46 Chapter 2. The /proc File System

Vendor: NEC Model: CD-ROM DRIVE:466 Rev: 1.06
Type: CD-ROM ANSI SCSI revision: 02

Host: scsi1 Channel: 00 Id: 06 Lun: 00
Vendor: ARCHIVE Model: Python 04106-XXX Rev: 7350
Type: Sequential-Access ANSI SCSI revision: 02

Host: scsi2 Channel: 00 Id: 06 Lun: 00
Vendor: DELL Model: 1x6 U2W SCSI BP Rev: 5.35
Type: Processor ANSI SCSI revision: 02

Host: scsi2 Channel: 02 Id: 00 Lun: 00
Vendor: MegaRAID Model: LD0 RAID5 34556R Rev: 1.01
Type: Direct-Access ANSI SCSI revision: 02

From this listing, the type of devices, as well as the model name, vendor, and SCSI chan-
nel/ID data is available.

In addition, each SCSI driver used by the system has its own directory in /proc/scsi/,
which contains files specific to each SCSI controller that uses that driver. So, for the example
system above, aic7xxx and megaraid directories are present, as those two drivers are being
utilized. The files in each of the directories typically contain IO address range, IRQ, and
statistics for the particular SCSI controller that utilizes that driver. Each controller can report
a different type and amount of information. The Adaptec AIC-7880 Ultra SCSI host adapter’s
file in this example system produces the following output:

Adaptec AIC7xxx driver version: 5.1.20/3.2.4
Compile Options:
TCQ Enabled By Default : Disabled
AIC7XXX_PROC_STATS : Enabled
AIC7XXX_RESET_DELAY : 5

Adapter Configuration:
SCSI Adapter: Adaptec AIC-7880 Ultra SCSI host adapter

Ultra Narrow Controller
PCI MMAPed I/O Base: 0xfcffe000

Adapter SEEPROM Config: SEEPROM found and used.
Adaptec SCSI BIOS: Enabled

IRQ: 30
SCBs: Active 0, Max Active 1,

Allocated 15, HW 16, Page 255
Interrupts: 33726

BIOS Control Word: 0x18a6
Adapter Control Word: 0x1c5f
Extended Translation: Enabled

Disconnect Enable Flags: 0x00ff
Ultra Enable Flags: 0x0020

Tag Queue Enable Flags: 0x0000
Ordered Queue Tag Flags: 0x0000
Default Tag Queue Depth: 8

Tagged Queue By Device array for aic7xxx host instance 1:
{255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255}

Actual queue depth per device for aic7xxx host instance 1:
{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}

Statistics:

(scsi1:0:5:0)
Device using Narrow/Sync transfers at 20.0 MByte/sec, offset 15
Transinfo settings: current(12/15/0/0), goal(12/15/0/0), user(12/15/0/0)
Total transfers 0 (0 reads and 0 writes)

Chapter 2. The /proc File System 47

< 2K 2K+ 4K+ 8K+ 16K+ 32K+ 64K+ 128K+
Reads: 0 0 0 0 0 0 0 0
Writes: 0 0 0 0 0 0 0 0

(scsi1:0:6:0)
Device using Narrow/Sync transfers at 10.0 MByte/sec, offset 15
Transinfo settings: current(25/15/0/0), goal(12/15/0/0), user(12/15/0/0)
Total transfers 132 (0 reads and 132 writes)

< 2K 2K+ 4K+ 8K+ 16K+ 32K+ 64K+ 128K+
Reads: 0 0 0 0 0 0 0 0
Writes: 0 0 0 1 131 0 0 0

From this screen, you can see the transfer speed to the various SCSI devices connected to
the controller based on channel ID, as well as detailed statistics concerning the amount and
sizes of files read or written by that device. By referring to the /proc/scsi/scsi file, we can
see that this controller is communicating with the CD-ROM at 20 megabits per second, while
the tape drive is only connected at 10 megabits per second.

2.3.8. /proc/sys/
The /proc/sys/ directory is different from others in /proc because it not only provides
information about the system but also allows you to make configuration changes to the ker-
nel. This allows the administrator of the machine to immediatley enable and disable kernel
features.

Warning

Use caution when changing settings on a production system using the various files in the /proc/sys/
directory. Changing the wrong setting may render the kernel unstable, requiring a reboot of the sys-
tem.

For this reason, be sure you know the valid options for that file and the expected outcome before
attempting to change a value in /proc/sys/.

A good way to determine if a particular file can configured or is only designed to provide
information is to list it. If the file is writable, you may use it to configure the kernel in a
certain way. For example, a partial listing of /proc/sys/fs looks like this:

-r--r--r-- 1 root root 0 May 10 16:14 dentry-state
-rw-r--r-- 1 root root 0 May 10 16:14 dir-notify-enable
-r--r--r-- 1 root root 0 May 10 16:14 dquot-nr
-rw-r--r-- 1 root root 0 May 10 16:14 file-max
-r--r--r-- 1 root root 0 May 10 16:14 file-nr

In this listing, the files dir-notify-enable and file-max can be written to and, therefore,
can be used to configure the kernel. The other files only provide feedback on current settings.

Changing a value within a /proc/sys/ file is done by echoing the new value into the file.
For example, to enable the System Request Key on a running kernel, type the command:

echo 1 > /proc/sys/kernel/sysrq

This will change the sysrq file’s value from 0 (off) to 1 (on).

48 Chapter 2. The /proc File System

The purpose of the System Request Key is to allow you to immediately instruct the kernel
to do a number of important activities by using a simple key combination, such as immedi-
ately shutting down or restarting a system, syncing all mounted file systems, or dumping
important information to your console. This feature is most useful when using a develop-
ment kernel or if you are experiencing system freezes. For more information on the System
Request Key, refer to /usr/src/linux-2.4/Documentation/sysrq.txt.

A few /proc/sys/ configuration files contain more than one value. In order to correctly
send new values to them, place a space character between each value passed with the echo
command, such as is done in this example:

echo 4 2 45 > /proc/sys/kernel/acct

Note

Any configuration changes you make using the echo command will disappear when the system is
restarted. To make your configuration changes take effect at the time the system is booted, see
Section 2.4.

The /proc/sys/ directory contains several subdirectories controlling different aspects of a
running kernel.

2.3.8.1. /proc/sys/dev/

This directory provides parameters for particular devices on the system. Most systems have
at least two directories, cdrom and raid, but customized kernels can have others, such as
parport, which provides the ability to share one parallel port between multiple device
drivers.

The cdrom directory contains a file called info, which reveals a number of important CD-
ROM parameters:

CD-ROM information, Id: cdrom.c 3.12 2000/10/18

drive name: hdc
drive speed: 32
drive # of slots: 1
Can close tray: 1
Can open tray: 1
Can lock tray: 1
Can change speed: 1
Can select disk: 0
Can read multisession: 1
Can read MCN: 1
Reports media changed: 1
Can play audio: 1
Can write CD-R: 0
Can write CD-RW: 0
Can read DVD: 0
Can write DVD-R: 0
Can write DVD-RAM: 0

This file can be quickly scanned to discover the qualities of an unknown CD-ROM, at least in
the eyes of the kernel. If multiple CD-ROMs are available on a system, each device is given
its own column of information.

Chapter 2. The /proc File System 49

Various files in /proc/sys/dev/cdrom, such as autoclose and checkmedia, can be used to
control the system’s CD-ROM. Use the echo command to enable or disable to disable these
features.

If RAID support is compiled into the kernel, a /proc/sys/dev/raid/directory will be avail-
able with at least two files in it: speed_limit_min and speed_limit_max. These settings de-
termine how much to accelerate the RAID device for particularly I/O intensive tasks, such
as resyncing the disks.

2.3.8.2. /proc/sys/fs/

This directory contains an array of options and information concerning various aspects of
the file system, including quota, file handle, inode, and dentry information.

The binfmt_misc directory is used to provide kernel support for miscellaneous binary for-
mats.

The important files in /proc/sys/fs include:

• dentry-state — Provides the status of the directory cache. The file looks similar to this:

57411 52939 45 0 0 0

The first number reveals the total number of directory cache entries, while the second
number displays the number of unused entries. The third number tells the number of
seconds between when a directory has been freed and when it can be reclaimed, and the
fourth measures the pages currently requested by the system. The last two numbers are
not used and currently display only zeros.

• dquot-nr — Shows the maximum number of cached disk quota entries.

• file-max — Allows you to change the maximum number of file handles that the kernel
will allocate. Raising the value in this file can resolve errors caused by a lack of available
file handles.

• file-nr — Displays the number of allocated file handles, used file handles, and the max-
imum number of file handles.

• overflowgid and overflowuid — Defines the fixed group ID and user ID, respectively,
for use with file systems that only support 16-bit group and user IDs.

• super-max — Controls the maximum number of superblocks available.

• super-nr — Displays the current number of superblocks in use.

2.3.8.3. /proc/sys/kernel/

This directory contains a variety of different configuration files that directly affect the oper-
ation of the kernel. Some of the most important files include:

• acct — Controls the suspension of process accounting based on the percentage of free
space available on the file system containing the log. By default, the file looks like this:

4 2 30

The second value sets the threshold percentage of free space when logging will be sus-
pended, while the first value dictates the percentage of free space required for logging to
resume. The third value sets the interval in seconds that the kernel polls the file system to
see if logging should be suspended or resumed.

50 Chapter 2. The /proc File System

• cap-bound — Controls the capability bounding settings, which provide a list of capabilities
for any process on the system. If a capability is not listed here, then no process, no matter
how privileged, can do it. The idea is to make the system more secure by ensuring that
certain things cannot happen, at least beyond a certain point in the boot process.

The various values that are possible here are beyond the scope of this manual, so consult
the kernel documentation for more information.

• ctrl-alt-del — Controls whether [Ctrl]-[Alt]-[Delete] will gracefully restart the com-
puter using init (value 0) or force an immediate reboot without syncing the dirty buffers
to disk (value 1).

• domainname — Allows you to configure the system’s domain name, such as
subgenious.com.

• hostname — Allows you to configure the system’s host name, such as
bob.subgenious.com.

• hotplug — Configures the utility to be used when a configuration change is detected
by the system. This is primarily used with USB and Cardbus PCI. The default value of
/sbin/hotplug should not be changed unless you are testing a new program to fulfill this
role.

• modprobe — Sets the location of the program to be used to load kernel modules when
necessary. The default value of /sbin/modprobe signifies that kmod will call it to actually
load the module when a kernel thread calls kmod.

• msgmax— Sets the maximum size of any message sent from one process to another is set to
8192 bytes by default. You should be careful about raising this value, as queued messages
between processes are stored in non-swappable kernel memory. Any increase in msgmax
would increase RAM requirements for the system.

• msgmnb — Sets the maximum number of bytes in a single message queue. By default,
16384.

• msgmni — Sets the maximum number of message queue identifiers. By default, 16.

• osrelease— Lists the Linux kernel release number. This file can only be altered by chang-
ing the kernel source and recompiling.

• ostype — Displays the type of operating system. By default, this file is set to Linux, and
this value can only be changed by changing the kernel source and recompiling.

• overflowgid and overflowuid — Defines the fixed group ID and user ID, respectively,
for use with system calls on architectures that only support 16-bit group and user IDs.

• panic — Defines the number of seconds the kernel will postpone rebooting the system
when a kernel panic is experienced. By default, the value is set to 0, which disables auto-
matic rebooting after a panic.

• printk — This file control a variety of settings related to printing or logging error mes-
sages. Each error message reported by the kernel has a loglevel associated with it that de-
fines the importance of the message. The loglevel values break down in this order:

• 0 — Kernel emergency. The system is unusable.

• 1 — Kernel alert. Action must be taken immediately.

• 2 — Condition of the kernel is considered critical.

• 3 — General kernel error condition.

• 4 — General kernel warning condition.

Chapter 2. The /proc File System 51

• 5 — Kernel notice of a normal but significant condition.

• 6 — Kernel informational message.

• 7 — Kernel debug-level messages.

Four values are found in the printk file:

6 4 1 7

Each of these values defines a different rule for dealing with error messages. The first
value, called the console loglevel, defines the lowest priority of messages that will be printed
to the console. (Note that, the lower the priority, the higher the loglevel number.) The
second value sets the default loglevel for messages without an explicit loglevel attached
to them. The third value sets the lowest possible loglevel configuration for the console
loglevel. The last value sets the default value for the console loglevel.

• rtsig-max— Configures the maximum number of POSIX realtime signals that the system
may have queued at any one time. The default value is 1024.

• rtsig-nr — The current number of POSIX realtime signals queued by the kernel.

• sem — This file configures semaphore settings within the kernel. A semaphore is a System
V IPC object that is used to control utilization of a particular process.

• shmall — Sets the total amount of shared memory that can be used at one time on the
system, in bytes. By default, this value is 2097152.

• shmmax — Sets the largest shared memory segment size allowed by the kernel, in bytes.
By default, this value is 33554432. However, the kernel supports much larger values than
this.

• shmmni — Sets the maximum number of shared memory segments for the whole system.
By default, this value is 4096

• sysrq — Activates the System Request Key, if this value is set to anything other than the
default of 0.

• threads-max — Sets the maximum number of threads to be used by the kernel, with a
default value of 2048.

• version — Displays the date and time the kernel was last compiled. The first field in this
file, such as #3, relates to the number of times a kernel was built from the source base.

The random directory stores a number of values related to generating random numbers for
the kernel.

2.3.8.4. /proc/sys/net/

This directory contains assorted directories concerning various networking topics. Various
configurations at the time of kernel compilation make available different directories here,
such as appletalk, ethernet, ipv4, ipx, and ipv6. Within these directories, you can adjust
the assorted networking values for that configuration on a running system.

Given the wide variety of possible networking options available with Linux and the great
amount of space required to discuss them, only the most common /proc/sys/net/ directo-
ries will be discussed.

The core directory contains a variety of settings that control the interaction between the
kernel and networking layers. The most important files there are:

• message_burst — Tenths of seconds required to write a new warning message. This is
used to prevent Denial of Service (DoS) attacks. The default setting is 50.

52 Chapter 2. The /proc File System

• message_cost — Also used to prevent DoS attacks by placing a cost on every warning
message. The higher the value of this file (default of 5), the more likely the warning mes-
sage will be ignored.

The idea is that an attacker could bombard your system with requests that generate errors
and fill up your logs or require all of your system’s resources to handle error logging. The
settings in message_burst and message_cost are designed to be modified based on your
system’s acceptable risk versus the need for comprehensive logging.

• netdev_max_backlog — Sets the maximum number of packets allowed to queue when a
particular interface receives packets faster than the kernel can process them. The default
value for this file is 300.

• optmem_max — Configures the maximum ancillary buffer size allowed per socket.

• rmem_default — Sets the receive socket buffer’s default size in bytes.

• rmem_max — Sets the receive socket buffer’s maximum size in bytes.

• wmem_default — Sets the send socket buffer’s default size in bytes.

• wmem_max — Sets the send socket buffer’s maximum size in bytes.

The /ipv4 directory contains additional networking settings. Many of these settings, used
in conjunction with one another, are very useful in preventing attacks on the system or using
the system to act as a router.

Caution

An erroneous change to these files may affect your remote connectivity to the system.

Here are some of the most important files in the /proc/net/ipv4/ directory:

• icmp_destunreach_rate, icmp_echoreply_rate, icmp_paramprob_rate and
icmp_timeexeed_rate — Set the maximum ICMP send packet rate, in hundredths of a
second, to hosts under certain conditions. A setting of 0 removes any delay and is not a
good idea.

• icmp_echo_ignore_all and icmp_echo_ignore_broadcasts— Allows the kernel to ig-
nore ICMP ECHO packets from every host or only those originating from broadcast and
multicast addresses, respectively. A value of 0 allows the kernel to respond, while a value
of 1 ignores the packets.

• ip_default_ttl — Sets the default Time To Live (TTL), which limits the number of hops
a packet may make before reaching its destination. Increasing this value can diminish
system performance.

• ip_forward — Permits interfaces on the system to forward packets to one other. By de-
fault, this file is set to 0. Setting this file to 1 will enable network packet forwarding.

• ip_local_port_range — Specifies the range of ports to be used by TCP or UDP when a
local port is needed. The first number is the lowest port to be used, and the second number
specifies the highest port. Any systems that expect to require more ports than the default
1024 to 4999 should use the 32768 to 61000 range in this file.

• tcp_syn_retries— Provides a limit on the number of times your system will re-transmit
a SYN packet when attempting to make a connection.

• tcp_retries1 — Sets the number of permitted re-transmissions attempting to answer an
incoming connection. Default of 3.

Chapter 2. The /proc File System 53

• tcp_retries2 — Sets the number of permitted re-transmissions of TCP packets. Default
of 15.

For a complete list of files and options available, see
/usr/src/linux-2.4/Documentation/networking/ip-sysctl.txt.

A number of other directories exist within the /proc/sys/net/ipv4/ directory cover spe-
cific topics. The conf directory allows each of the systems interfaces to be configured in dif-
ferent ways, including the use of a default settings for unconfigured devices (in the default
subdirectory) and settings that override all special configurations (in the all subdirectory).

In order to control connections between direct neighbors, meaning any other system di-
rectly connected to your system, the neigh directory allows special configurations for each
interface. This would allow you to treat systems differently that you trust more due to their
relatively proximity to your system. At the same time, it also makes it easy to put strict rules
in place for systems several hops away.

Routing over IPV4 also has its own directory, route. Unlike conf and neigh, the route
directory contains specifications that apply to routing with any interfaces on the system.
Many of these settings, such as max_size, max_delay, and min_delay, relate to controlling
the size of the routing cache. To clear the routing cache, simply write any value to the flush
file.

Additional information about these directories and the possible values for their configura-
tion files can be found in /usr/src/linux-2.4/Documentation/filesystems/proc.txt.

2.3.8.5. /proc/sys/vm/

This directory facilitates the configuration of the Linux kernel’s virtual memory (VM) sub-
system. The kernel makes extensive and intelligent use of virtual memory, which is com-
monly called swap space.

The following files are commonly found in the /proc/sys/vm/ directory:

• bdflush — Sets various values related to the bdflush kernel daemon.

• buffermem — Allows you to control the percentage amount of total system memory to be
used for buffer memory. Typical output for this file looks like this:
2 10 60

The first and last values set the minimum and maximum percentage of memory to be used
as buffer memory, respectively. The middle value sets the percentage of system memory
dedicated to buffer memory where the memory management subsystem will begin to clear
buffer cache more than other kinds of memory to compensate for a general lack of free
memory.

• freepages — Displays various values related to free pages of system memory. This file
looks similar to this:
512 768 1024

The first value shows the minimum number of free pages permitted before the kernel
takes over control of allocating additional memory. The second value gives the number of
free pages before the kernel begins swapping aggressively to preserve performance. The
third value is the number of free pages that the system attempts to keep available at all
times.

54 Chapter 2. The /proc File System

• kswapd — Sets various values concerned with the kernel swap-out daemon, kswapd. This
file has three values:

512 32 8

The first value sets the maximum number of pages that kswapd will attempt to free in
a single attempt. The larger this number, the more aggressively the kernel can move to
free pages. The second value sets the minimum number of times that kswapd attempts to
free a page. The third value sets the number of pages kswapd attempts to write in a single
attempt. Proper tuning of this final value can improve performance on a system using a lot
of swap space by telling the kernel to write pages in large chunks, minimizing the number
of disk seeks.

• max_map_count— Configures the maximum number of memory map areas a process may
have. In most cases, the default value of 65536 is appropriate.

• overcommit_memory — Contains a value that, when set to something other than the de-
fault of 0, allows the kernel to skip a standard check to see if there is enough memory
before allocating it.

• pagecache — Controls the amount of memory used by the page cache. The values in
pagecache are percentages, and they work in a similar way as buffermem to enforce min-
imums and maximums of available page cache memory.

• page-cluster — Sets the number of pages read in a single attempt. The default value of
4, which actually relates to 16 pages, is appropriate for most systems.

• pagetable_cache — Controls the number of page tables that are cached on a
per-processor basis. The first and second values relate to the minimum and maximum
number of page tables to set aside, respectively.

Additional information on these various files can be found in
/usr/src/linux-2.4/Documentation/sysctl/vm.txt.

2.3.9. /proc/sysvipc/
This directory contain information about System V IPC resources. The files in this directory
relate to System V IPC calls for messages (msg), semaphores (sem), and shared memory (shm).

2.3.10. /proc/tty/
This directory contains information about the available and currently used tty devices on
the system. Originally called a teletype device, any character-based data terminals are called
tty devices.

In Linux, there are three different kinds of tty devices. Serial devices are used with serial con-
nections, such as over a modem or using a serial cable. Virtual terminals create the common
console connection, such as the virtual consoles available when pressing [Alt]-[� F-key �] at
the system console. Pseudo terminals create a two-way communication that is used by some
higher level applications, such as X11.

The drivers file is a list of the current tty devices in use:

serial /dev/cua 5 64-127 serial:callout
serial /dev/ttyS 4 64-127 serial
pty_slave /dev/pts 136 0-255 pty:slave
pty_master /dev/ptm 128 0-255 pty:master

Chapter 2. The /proc File System 55

pty_slave /dev/ttyp 3 0-255 pty:slave
pty_master /dev/pty 2 0-255 pty:master
/dev/vc/0 /dev/vc/0 4 0 system:vtmaster
/dev/ptmx /dev/ptmx 5 2 system
/dev/console /dev/console 5 1 system:console
/dev/tty /dev/tty 5 0 system:/dev/tty
unknown /dev/vc/%d 4 1-63 console

The /proc/tty/driver/serial file lists the usage statistics and status of each of the serial
tty lines.

In order that tty devices can be used in a similar way as network devices, the Linux kernel
will enforce line discipline on the device. This allows the driver to place a specific type of
header with every block of data transmitted over the device, making it possible for the re-
mote end of the connection to be able to see that block of data as just one in a stream of data
blocks. SLIP and PPP are common line disciplines, and each are commonly used to connect
systems to one other over a serial link.

Registered line disciplines are stored in the ldiscs file, with detailed information available
in the ldisc directory.

2.4. Using sysctl

The sysctl command is used to view, set, and automated kernel settings in the /proc/sys/
directory.

To get a quick overview of all settings configurable in the /proc/sys/ directory, type the
sysctl -a command as root. This will create a large, comprehensive list, a small portion of
which looks something like this:

net.ipv4.route.min_delay = 2
kernel.sysrq = 0
kernel.sem = 250 32000 32 128

This is the same basic information you would see if you viewed each of the files individually.
The only difference is the file location. The /proc/sys/net/ipv4/route/min_delay file is
signified by net.ipv4.route.min_delay, with the directory slashes replaced by dots and
the proc.sys portion assumed.

The sysctl command can be use in place of echo to assign values to writable files in the
/proc/sys/ directory. For instance instead of using this command:

echo 1 > /proc/sys/kernel/sysrq

You can use this sysctl command:

sysctl -w kernel.sysrq="1"
kernel.sysrq = 1

While quickly setting single values like this in /proc/sys/ is helpful during testing, it does
not work as well on a production system, as all /proc/sys/ special settings are lost when
the machine is rebooted. To preserve the settings that you like to make permanently to your
kernel, add them to the /etc/sysctl.conf file.

Every time the system boots, the /etc/rc.d/rc.sysinit script is executed by init. This
script contains a command to execute sysctl using /etc/sysctl.conf as the values to set.
Therefore, any values added to /etc/sysctl.conf will take effect after the system boots.

56 Chapter 2. The /proc File System

2.5. Additional Resources
Below are additional sources of information about /proc.

2.5.1. Installed Documentation
Most of the best /proc documentation is available on your system.

• /usr/src/linux-2.4/Documentation/filesystems/proc.txt — Contains assorted,
but limited, information about all aspects of the /proc directory.

• /usr/src/linux-2.4/Documentation/sysrq.txt — An overview of System Request
Key options.

• /usr/src/linux-2.4/Documentation/sysctl — A directory containing a variety of
sysctl tips, including modifying values that concern the kernel (kernel.txt), accessing
file systems (fs.txt), and virtual memory use (vm.txt).

• /usr/src/linux-2.4/Documentation/networking/ip-sysctl.txt — A look at vari-
ous IP networking options.

• /usr/src/linux-2.4 — Some of the most authoritative information on /proc can be
found by reading the kernel source code. Make sure the kernel-source RPM is installed
on your system and look in the /usr/src/linux-2.4 directory for the source code.

2.5.2. Useful Websites

• http://www.linuxhq.com — This site maintain a complete database of source, patches,
and documentation for various versions of the Linux kernel.

Chapter 3.

Boot Process, Init, and Shutdown

This chapter contains information on what happens when you boot or shut down your Red
Hat Linux system.

Note

This chapter focuses on LILO, the default boot loader for Red Hat Linux 7.1 and earlier versions.
However, Red Hat Linux 7.3 contains an additional boot loader, GRUB, which is discussed thoroughly
in Chapter 4. For more information concerning GRUB, see Chapter 4.

3.1. Introduction
One of the most powerful aspects of Red Hat Linux concerns its open method of starting
and stopping the operating system, where it loads specified programs using their particular
configurations, permits you to change those configurations to control the boot process, and
shuts down in a graceful and organized way.

Beyond the question of controlling of the boot or shutdown process, the open nature of Red
Hat Linux makes it much easier to determine the exact source of most problems associated
with starting up or shutting down your system. An understanding of this process is quite
beneficial for basic troubleshooting.

3.2. Behind the Scenes of the Boot Process

Note

This section looks at the x86 boot process, in particular. Depending on your system’s architecture,
your boot process may be slightly different. However, once the kernel is found and loaded by the
system, the default Red Hat Linux boot process is identical across all architectures. Please see
Section 3.7 for more information on a non-x86 boot process.

When a computer is booted, the processor looks at the end of the system memory for the
Basic Input/Output System (BIOS) and runs it. The BIOS program is written into read-only
permanent memory and is always available for use. The BIOS provides the lowest level
interface to peripheral devices and controls the first step of the boot process.

The BIOS tests the system, looks for and checks peripherals, and then looks for a drive to use
to boot the system. Usually, it checks the floppy drive (or CD-ROM drive on many newer
systems) for bootable media, if present, and then it looks to the hard drive. The order of the
drives used for booting is usually controlled by a BIOS setting on the system. Once Red Hat
Linux is installed on a hard drive of a system, the BIOS looks for a Master Boot Record (MBR)
starting at the first sector on the first hard drive, loads its contents into memory, and passes
control to it.

This MBR contains instructions on how to load the boot loader, GRUB or LILO (LInux
LOader) depending on the boot loader you installed. The MBR then loads the boot loader,
which takes over the process (if the boot loader is installed in the MBR). In the default Red

58 Chapter 3. Boot Process, Init, and Shutdown

Hat Linux configuration, GRUB or LILO uses the settings in the MBR to display boot
options and allow for user input on which operating system to actually start up.

But this begs the question: How does the boot loader in the MBR know what to do when
the MBR is read? LILO actually has already written the instructions there through use of the
lilo program with in turn reads the /etc/lilo.conf configuration file. The boot instruc-
tions for GRUB written in the /boot/grub/grub.conf configuration file. For more informa-
tion about GRUB, see Chapter 4.

3.2.1. Options in /etc/lilo.conf

Most of the time, you will have no need to change the Master Boot Record on your hard drive
unless you need to boot a newly installed operating system or want to use a new kernel. If
you do need to create a new MBR using LILO but using a different configuration, you will
need to log in as root, edit /etc/lilo.conf, and run the lilo command again.

Warning

If you are planning to edit /etc/lilo.conf, be sure to make a backup copy of the file before making
any changes. Also, be sure that you have a working boot floppy available so that you will be able
to boot the system and make changes to the MBR if there is a problem. See the man pages for
mkbootdisk for more information on creating a boot disk.

The file /etc/lilo.conf is used by lilo to determine which operating system to utilize or
which kernel to start, as well as to know where to install itself (for example, /dev/hda for
the first MBR of the first IDE hard drive). A sample /etc/lilo.conf file looks like this:

boot=/dev/hda
map=/boot/map
install=/boot/boot.b
prompt
timeout=50
message=/boot/message
lba32
default=linux

image=/boot/vmlinuz-2.4.0-0.43.6
label=linux
initrd=/boot/initrd-2.4.0-0.43.6.img
read-only
root=/dev/hda5

other=/dev/hda1
label=dos

This example shows a system configured to boot two operating systems: Red Hat Linux and
DOS. Here is a deeper look at a few of the lines of this file (your /etc/lilo.conf may look
a little different):

• boot=/dev/hda tells LILO to install itself on the first hard disk on the first IDE controller.

• map=/boot/map locates the map file. In normal use, this should not be modified.

• install=/boot/boot.b tells LILO to install the specified file as the new boot sector. In
normal use, this should not be altered. If the install line is missing, LILO will assume a
default of /boot/boot.b as the file to be used.

Chapter 3. Boot Process, Init, and Shutdown 59

• The existence of prompt tells LILO to show you whatever is referenced in the message
line. While it is not recommended that you remove the prompt line, if you do remove it,
you can still get a prompt by holding down the [Shift] key while your machine starts to
boot.

• timeout=50 sets the amount of time that LILO will wait for user input before proceeding
with booting the default line entry. This is measured in tenths of a second, with 50 as the
default.

• message=/boot/message refers to the screen that LILO displays to let you select the op-
erating system or kernel to boot.

• lba32 describes the hard disk geometry to LILO. Another common entry here is linear.
You should not change this line unless you are very aware of what you are doing. Other-
wise, you could put your system in an unbootable state.

• default=linux refers to the default operating system for LILO to boot from the options
listed below this line. The name linux refers to the label line below in each of the boot
options.

• image=/boot/vmlinuz-2.4.0-0.43.6 specifies the linux kernel to boot with this partic-
ular boot option.

• label=linux names the operating system option in the LILO screen. In this case, it is also
the name referred to by the default line.

• initrd=/boot/initrd-2.4.0-0.43.6.img refers to the initial ram disk image that is used
at boot time to actually initialize and start the devices that makes booting the kernel pos-
sible. The initial ram disk is a collection of machine-specific drivers necessary to operate
a SCSI card, hard drive, or any other device needed to load the kernel. You should never
try to share initial ram disks between machines.

• read-only specifies that the root partition (see the root line below) is read-only and
cannot be altered during the boot process.

• root=/dev/hda5 tells LILO what disk partition to use as the root partition.

LILO then shows the Red Hat Linux initial screen with the different operating systems or
kernels it has been configured to boot. If you only have Red Hat Linux installed and have
not changed anything in /etc/lilo.conf, you will only see linux as an option. If you install
SMP kernel support, you will see linux-up as an option. If you have set up LILO to boot
other operating systems as well, this screen is your chance to select what operating system
will boot. Use your arrow keys to highlight the operating system and press [Enter]

If you would like to have a command prompt to enter commands to LILO, press [Ctrl]-
[X]. LILO displays a LILO: prompt on the screen and waits for input from the user. (The
amount of time LILO waits is set by the timeout line in the /etc/lilo.conf file.) If your
/etc/lilo.conf is set to give LILO a choice of operating systems, at this time you could
type in the label for whichever operating system you want to boot.

If LILO is booting Linux, it first loads the kernel into memory, which is a vmlinuz file (for
example, vmlinuz-2.4.0-xx) located in the /boot/directory. Then the kernel passes control
to init.

Warning

Do not remove the /initrd/ directory for any reason. Removing this directory will cause your system
to fail to boot with a kernel panic error message.

At this point, with the kernel loaded into memory and operational, Linux is already started,
although at a very basic level. However, with no applications utilizing the kernel and with

60 Chapter 3. Boot Process, Init, and Shutdown

no ability for the user to provide meaningful input to the system, not much can be done with
it. The init program solves this problem by bringing up the various services that allow the
system to perform its particular role.

3.2.2. Init
The kernel finds /sbin/init and executes it. It is the init command which coordinates the
rest of the boot process.

When init starts, it becomes the parent or grandparent of all of the processes that start up
automatically on a Red Hat Linux system. First, it runs the /etc/rc.d/rc.sysinit script,
which sets your environment path, starts swap, checks the filesystems, and so on. Basically,
rc.sysinit takes care of everything that your system needs to have done at system initial-
ization. Most systems use a clock, so on them rc.sysinit uses the /etc/sysconfig/clock
file to initialize the clock. If you have special serial port processes that need to be initialized,
rc.sysinit may also run rc.serial.

Then, init runs the /etc/inittab script, which describes how the system should be set up
in each runlevel and sets the default runlevel. (See Section 3.4 for more information on init
runlevels.) This file states, among other things, that /sbin/update should be run whenever
a runlevel starts. The update program is used to flush dirty buffers back to disk.

Whenever the runlevel changes, init uses the scripts in the /etc/rc.d/init.d/ directory
to start and stop various services, such as a Web server, DNS server, and so on. First, init
sets the source function library for the system (commonly /etc/rc.d/init.d/functions),
which spells out how to start or kill a program and how to find out the PID of a program.
Then, init determines the current and the previous runlevel.

Next, init starts all of the background processes necessary for the system to run by looking
in the appropriate rc directory for that runlevel (/etc/rc.d/rc � X � .d/, where the � X � is a
numerical value between 0 and 6). The init command then runs each of the kill scripts
(their file name starts with a K) with a stop parameter. Then, init runs all of the start
scripts (their file names start with an S) in the appropriate runlevel directory with a start
so that all services and applications are started correctly. In fact, after the system is finished
booting you can log in as root and execute these same scripts manually with the command
/etc/rc.d/init.d/httpd stop or /sbin/service httpd stop. This will stop the httpd
server.

None of the scripts that actually start and stop the services are located in the
/etc/rc.d/rc � X � .d/ directory. Rather, all of the files in /etc/rc.d/rc � X � .d/ are
symbolic links that point to actual scripts located in the /etc/rc.d/init.d/ directory. A
symbolic link is nothing more than a file that points to another file, and they are used in this
case because they can be created and deleted without affecting the actual script that kills or
starts the service. The symbolic links to the various scripts are numbered in a particular
order so that they start in that order. You can change the order in which the services start up
or are killed by changing the name of the symbolic link that refers to the script that actually
starts or kills the service. You can give symbolic links the same number as other symbolic
links if you want that service start or stop right before or after another service.

For example, for runlevel 5, init looks into the /etc/rc.d/rc5.d/ directory and might
finds the following (your system and configuration may vary):

K01pppoe -> ../init.d/pppoe
K05innd -> ../init.d/innd
K10ntpd -> ../init.d/ntpd
K15httpd -> ../init.d/httpd
K15mysqld -> ../init.d/mysqld
K15pvmd -> ../init.d/pvmd
K16rarpd -> ../init.d/rarpd

Chapter 3. Boot Process, Init, and Shutdown 61

K20bootparamd -> ../init.d/bootparamd
K20nfs -> ../init.d/nfs
K20rstatd -> ../init.d/rstatd
K20rusersd -> ../init.d/rusersd
K20rwalld -> ../init.d/rwalld
K20rwhod -> ../init.d/rwhod
K25squid -> ../init.d/squid
K28amd -> ../init.d/amd
K30mcserv -> ../init.d/mcserv
K34yppasswdd -> ../init.d/yppasswdd
K35dhcpd -> ../init.d/dhcpd
K35smb -> ../init.d/smb
K35vncserver -> ../init.d/vncserver
K45arpwatch -> ../init.d/arpwatch
K45named -> ../init.d/named
K50snmpd -> ../init.d/snmpd
K54pxe -> ../init.d/pxe
K55routed -> ../init.d/routed
K60mars-nwe -> ../init.d/mars-nwe
K61ldap -> ../init.d/ldap
K65kadmin -> ../init.d/kadmin
K65kprop -> ../init.d/kprop
K65krb524 -> ../init.d/krb524
K65krb5kdc -> ../init.d/krb5kdc
K75gated -> ../init.d/gated
K80nscd -> ../init.d/nscd
K84ypserv -> ../init.d/ypserv
K90ups -> ../init.d/ups
K96irda -> ../init.d/irda
S05kudzu -> ../init.d/kudzu
S06reconfig -> ../init.d/reconfig
S08ipchains -> ../init.d/ipchains
S10network -> ../init.d/network
S12syslog -> ../init.d/syslog
S13portmap -> ../init.d/portmap
S14nfslock -> ../init.d/nfslock
S18autofs -> ../init.d/autofs
S20random -> ../init.d/random
S25netfs -> ../init.d/netfs
S26apmd -> ../init.d/apmd
S35identd -> ../init.d/identd
S40atd -> ../init.d/atd
S45pcmcia -> ../init.d/pcmcia
S55sshd -> ../init.d/sshd
S56rawdevices -> ../init.d/rawdevices
S56xinetd -> ../init.d/xinetd
S60lpd -> ../init.d/lpd
S75keytable -> ../init.d/keytable
S80isdn -> ../init.d/isdn
S80sendmail -> ../init.d/sendmail
S85gpm -> ../init.d/gpm
S90canna -> ../init.d/canna
S90crond -> ../init.d/crond
S90FreeWnn -> ../init.d/FreeWnn
S90xfs -> ../init.d/xfs
S95anacron -> ../init.d/anacron
S97rhnsd -> ../init.d/rhnsd
S99local -> ../rc.local

62 Chapter 3. Boot Process, Init, and Shutdown

These symbolic links tell init that it needs to kill pppoe, innd, ntpd, httpd, mysqld, pvmd,
rarpd, bootparamd, nfs, rstatd, rusersd, rwalld, rwhod, squid, amd, mcserv, yppass-
wdd, dhcpd, smb, vncserver, arpwatch, named, snmpd, pxe, routed, mars-nwe, ldap, kadmin,
kprop, krb524, krb5kdc, gated, nscd, ypserv, ups, and irda. After all processes are killed,
init looks into the same directory and finds start scripts for kudzu, reconfig, ipchains,
portmap, nfslock, autofs, random, netfs, apmd, identd, atd, pcmcia, sshd, rawdevices,
xinetd, lpd, keytable, isdn, sendmail, gpm, canna, crond, FreeWnn, xfs, anacron, and
rhnsd. The last thing init does is run /etc/rc.d/rc.local to run any special scripts con-
figured for that host. At this point, the system is considered to be operating at runlevel 5.

After init has progressed through all of the runlevels, the /etc/inittab script forks a
getty process for each virtual console (login prompts) for each runlevel (runlevels 2 through
5 get all six; runlevel 1, which is single user mode, only gets one console; runlevels 0 and 6
get no virtual consoles). Basically, getty opens lines to tty devices 1, sets their modes, prints
the login prompt, gets the user’s name, and then initiates a login process for that user. This
allows users to authenticate themselves to the system and begin to use it.

Also, /etc/inittab tells init how it should handle a user hitting [Ctrl]-[Alt]-[Delete] at the
console. As Red Hat Linux should be properly shut down and restarted rather immediately
power-cycled, init is told to execute the command /sbin/shutdown -t3 -r now when a
user hits those keys. In addition, /etc/inittab states what init should do in case of power
failures, if your system has a UPS unit attached to it.

In runlevel 5, /etc/inittab runs a script called /etc/X11/prefdm. The prefdm script runs
the preferred X display manager (gdm if you are running GNOME or kdm if you are running
KDE based on the contents of the /etc/sysconfig/desktop directory.

At this point, you should be looking at a login prompt. All that, and it only took a few
seconds.

3.2.3. SysV Init
The SysV init is the standard init process used under Red Hat Linux to control the startup
of software at boot time, because it is easier to use and more powerful and flexible than the
traditional BSD init.

SysV init also differs from BSD init in that the configuration files are in the /etc/rc.d/
directory instead of residing directly in /etc/. In the /etc/rc.d/ directory, you will find
rc, rc.local, rc.sysinit, and the following directories:

init.d
rc0.d
rc1.d
rc2.d
rc3.d
rc4.d
rc5.d
rc6.d

SysV init represents each of the init runlevels with a separate directory, using init and
symbolic links in each of the directories to actually stop and start the services as the system
moves from runlevel to runlevel.

In summary, the chain of events for a SysV init boot is as follows:

1. The kernel looks in the /sbin/ directory for the init command.

1. See Section 2.3.10 for more information on tty devices.

Chapter 3. Boot Process, Init, and Shutdown 63

2. init runs the /etc/rc.d/rc.sysinit script.

3. rc.sysinit handles most of the boot loader’s processes and then runs rc.serial (if
it exists).

4. init runs all the scripts for the default runlevel.

5. init runs the /etc/rc.d/rc.local script.

The default runlevel is decided in /etc/inittab. You should have a line close to the top
like:

id:3:initdefault:

The default runlevel is 3 in this example, the number after the first colon. If you want to
change it, you can edit /etc/inittab by hand. Be very careful when you are editing the
inittab file as typos can cause your system to become unbootable without a using a boot
diskette or going into rescue mode.

If you use LILO as your boot loader, you can fix the inittab file by rebooting, accessing the
boot: prompt with [Ctrl]-[X], and typing:

boot: linux single

If you are using GRUB as your boot loader, you can fix the inittab file with the following
steps.

• In the graphical GRUB boot loader screen, select the Red Hat Linux boot label and press
[e] to edit it.

• Arrow down to the kernel line and press [e] to edit it.

• At the prompt, type single and press [Enter].

• You will be returned to the GRUB screen with the kernel information. Press the [b] key to
boot the system into single user mode.

Tip

It is also possible to change runlevels at boot-time with GRUB using the same method as above
except replacing single with, for example, 3 or 5. The rest of the steps are exactly as they are shown
above.

This should allow you to boot into single-user mode so you can re-edit inittab to its previ-
ous value.

Next, we will discuss information in the files within the /etc/sysconfig/ directory which
define the parameters used by different system services when they start up.

3.3. Sysconfig Information
The following information outlines some of the various files in the /etc/sysconfig/ di-
rectory, their function, and their contents. This information is not intended to be complete,
as many of these files have a variety of options that are only used in very specific or rare
circumstances.

64 Chapter 3. Boot Process, Init, and Shutdown

3.3.1. Files in the /etc/sysconfig/ Directory
The following files are normally found in /etc/sysconfig/:

• amd

• apmd

• arpwatch

• authconfig

• cipe

• clock

• desktop

• dhcpd

• firewall

• gpm

• harddisks

• hwconf

• i18n

• identd

• init

• ipchains

• iptables

• irda

• keyboard

• kudzu

• mouse

• named

• netdump

• network

• ntpd

• pcmcia

• radvd

• rawdevices

• redhat-config-users

• samba

• sendmail

• soundcard

• squid

• tux

• ups

• vncservers

Chapter 3. Boot Process, Init, and Shutdown 65

• xinetd

It is possible that your system may be missing a few of them if the corresponding program
that would need that file is not installed.

Next, we will take a look at each one.

3.3.1.1. /etc/sysconfig/amd

The /etc/sysconfig/amd file contains various parameters used by amd allowing for the
automounting and automatic unmounting of filesystems.

3.3.1.2. /etc/sysconfig/apmd

The /etc/sysconfig/apmd file is used by apmd as a configuration for what things to
start/stop/change on suspend or resume. It is set up to turn on or off apmd during startup,
depending on whether your hardware supports Advanced Power Management (APM) or if
you choose not to use it. apm is a monitoring daemon that works with power management
code within the Linux kernel. It can alert you to a low battery if you are using Red Hat
Linux on a laptop, among other things.

3.3.1.3. /etc/sysconfig/arpwatch

The /etc/sysconfig/arpwatch file is used to pass arguments to the arpwatch daemon at
boot time. The arpwatch daemon maintains a table of Ethernet MAC addresses and their IP
address pairings. For more information about what parameters you can use in this file, type
man arpwatch. By default, this file sets the owner of the arpwatch process to the user pcap.

3.3.1.4. /etc/sysconfig/authconfig

The /etc/sysconfig/authconfig file sets the kind of authorization to be used on the host.
It contains one or more of the following lines:

• USEMD5= � value � , where � value � is one of the following:

• yes — MD5 is used for authentication.

• no — MD5 is not used for authentication.

• USEKERBEROS= � value � , where � value � is one of the following:

• yes — Kerberos is used for authentication.

• no — Kerberos is not used for authentication.

• USELDAPAUTH= � value � , where � value � is one of the following:

• yes — LDAP is used for authentication.

• no — LDAP is not used for authentication.

66 Chapter 3. Boot Process, Init, and Shutdown

3.3.1.5. /etc/sysconfig/clock

The /etc/sysconfig/clock file controls the interpretation of values read from the system
clock. Earlier releases of Red Hat Linux used the following values (which are deprecated):

• CLOCKMODE= 	 value
 , where 	 value
 is one of the following:

• GMT — Indicates that the clock is set to Universal Time (Greenwich Mean Time).

• ARC — Indicates the ARC console’s 42-year time offset is in effect (for Alpha-based sys-
tems only).

Currently, the correct values are:

• UTC= 	 value
 , where 	 value
 is one of the following boolean values:

• true — Indicates that the clock is set to Universal Time. Any other value indicates that
it is set to local time.

• ARC= 	 value
 , where 	 value
 is the following:

• true — Indicates the ARC console’s 42-year time offset is in effect. Any other value
indicates that the normal UNIX epoch is assumed (for Alpha-based systems only).

• ZONE= � filename � — Indicates the timezone file under /usr/share/zoneinfo that
/etc/localtime is a copy of, such as:

ZONE="America/New York"

3.3.1.6. /etc/sysconfig/desktop

The /etc/sysconfig/desktop file specifies the desktop manager to be run, such as:

DESKTOP="GNOME"

3.3.1.7. /etc/sysconfig/dhcpd

The /etc/sysconfig/dhcpd file is used to pass arguments to the dhcpd daemon at boot
time. The dhcpd daemon implements the Dynamic Host Configuration Protocol (DHCP) and
the Internet Bootstrap Protocol (BOOTP). DHCP and BOOTP assign hostnames to machines
on the network. For more information about what parameters you can use in this file, type
man dhcpd.

3.3.1.8. /etc/sysconfig/firewall

The /etc/sysconfig/firewall file contains various firewall settings. By default, this file is
empty.

Chapter 3. Boot Process, Init, and Shutdown 67

3.3.1.9. /etc/sysconfig/gpm

The /etc/sysconfig/gpm file is used to pass arguments to the gpm daemon at boot time.
The gpm daemon is the mouse server which allows mouse acceleration and middle-click
pasting. For more information about what parameters you can use in this file, type man gpm.
By default, it sets the mouse device to /dev/mouse.

3.3.1.10. /etc/sysconfig/harddisks

The /etc/sysconfig/harddisks file allows you to tune your hard drive(s). You can also
use /etc/sysconfig/hardiskhd[a-h], to configure parameters for specific drives.

Warning

Do not make changes to this file lightly. If you change the default values stored here, you could corrupt
all of the data on your hard drive(s).

The /etc/sysconfig/harddisks file may contain the following:

• USE_DMA=1, where setting this to 1 enables DMA. However, with some chipsets and hard
drive combinations, DMA can cause data corruption. Check with your hard drive documen-
tation or manufacturer before enabling this.

• Multiple_IO=16, where a setting of 16 allows for multiple sectors per I/O interrupt.
When enabled, this feature reduces operating system overhead by 30-50%. Use with cau-
tion.

• EIDE_32BIT=3 enables (E)IDE 32-bit I/O support to an interface card.

• LOOKAHEAD=1 enables drive read-lookahead.

• EXTRA_PARAMS= specifies where extra parameters can be added.

3.3.1.11. /etc/sysconfig/hwconf

The /etc/sysconfig/hwconf file lists all the hardware that kudzu detected on your system,
as well as the drivers used, vendor ID and device ID information. The kudzu program detects
and configures new and/or changed hardware on a system. The /etc/sysconfig/hwconf
file is not meant to be manually edited. If you do edit it, devices could suddenly show up as
being added or removed.

3.3.1.12. /etc/sysconfig/i18n

The /etc/sysconfig/i18n file sets the default language, such as:

LANG="en_US"

3.3.1.13. /etc/sysconfig/identd

The /etc/sysconfig/identd file is used to pass arguments to the identd daemon at boot
time. The identd daemon returns the username of processes with open TCP/IP connections.
Some services on the network, such as FTP and IRC servers, will complain and cause slow
responses if identd is not running. But in general, identd is not a required service, so if

68 Chapter 3. Boot Process, Init, and Shutdown

security is a concern, you should not run it. For more information about what parameters
you can use in this file, type man identd. By default, the file contains no parameters.

3.3.1.14. /etc/sysconfig/init

The /etc/sysconfig/init file controls how the system will appear and function during
bootup.

The following values may be used:

• BOOTUP=
 value � , where
 value � is one of the following:

• BOOTUP=color means the standard color boot display, where the success or failure of
devices and services starting up is shown in different colors.

• BOOTUP=verbose means an old style display, which provides more information than
purely a message of success or failure.

• Anything else means a new display, but without ANSI-formatting.

• RES_COL=
 value � , where
 value � is the number of the column of the screen to start
status labels. Defaults to 60.

• MOVE_TO_COL=
 value � , where
 value � moves the cursor to the value in the RES_COL
line. Defaults to ANSI sequences output by echo -e.

• SETCOLOR_SUCCESS=
 value � , where
 value � sets the color to a color indicating suc-
cess. Defaults to ANSI sequences output by echo -e, setting the color to green.

• SETCOLOR_FAILURE=
 value � , where
 value � sets the color to a color indicating failure.
Defaults to ANSI sequences output by echo -e, setting the color to red.

• SETCOLOR_WARNING=
 value � , where
 value � sets the color to a color indicating warn-
ing. Defaults to ANSI sequences output by echo -e, setting the color to yellow.

• SETCOLOR_NORMAL=
 value � , where
 value � sets the color to ’normal’. Defaults to ANSI
sequences output by echo -e.

• LOGLEVEL=
 value � , where
 value � sets the initial console logging level for the kernel.
The default is 7; 8 means everything (including debugging); 1 means nothing except kernel
panics. syslogd will override this once it starts.

• PROMPT=
 value � , where
 value � is one of the following boolean values:

• yes — Enables the key check for interactive mode.

• no — Disables the key check for interactive mode.

3.3.1.15. /etc/sysconfig/ipchains

The /etc/sysconfig/ipchains file contains information used by the kernel to set up
ipchains rules regarding packet filtering.

This file is modified by running the service ipchains save command when valid
ipchains rules are in place. You should not manually edit this file. Instead, use the
ipchains command to configure the necessary packet filtering rules and then save the
rules to this file.

Chapter 3. Boot Process, Init, and Shutdown 69

3.3.1.16. /etc/sysconfig/iptables

Like /etc/sysconfig/ipchains, the /etc/sysconfig/iptables file stores information
used by the kernel to provide specialized packet filtering services. However, this file is used
by iptables rather than ipchains.

You should not modify this file by hand unless you are familiar with methods used to con-
struct iptables rules. These rules are written to /etc/sysconfig/iptables by the ser-
vice iptables save command, which stores the current iptables rules by running the
/sbin/iptables-saveprogram. Then, when iptables is restarted, such as is the case when
the system is booted, the /sbin/iptables-restore program reads the file and reinstitutes
the packet filtering rules.

3.3.1.17. /etc/sysconfig/irda

The /etc/sysconfig/irdafile controls how infrared devices on your system are configured
at startup.

The following values may be used:

• IRDA= � value � , where � value � is one of the following boolean values:

• yes — irattach will be run, which periodically checks to see if anything is trying to
connect to the infrared port, such as another notebook computer trying to make a net-
work connection. For infrared devices to work on your system, this line must be set to
yes.

• no — irattach will not be run, preventing infrared device communication.

• DEVICE= � value � , where � value � is the device (usually a serial port) that handles in-
frared connections.

• DONGLE= � value � , where � value � specifies the type of dongle being used for infrared
communication. This setting exists for people who use serial dongles rather than real in-
frared ports. A dongle is a device that is attached to a traditional serial port to commu-
nicate via infrared. This line is commented out by default because notebooks with real
infrared ports are far more common than computers with add-on dongles.

• DISCOVERY= � value � , where � value � is one of the following boolean values:d

• yes — Starts irattach in discovery mode, meaning it actively checks for other infrared
devices. This needs to be turned on for the machine to be actively looking for an infrared
connection (meaning the peer that does not initiate the connection).

• no — Does not start irattach in discovery mode.

3.3.1.18. /etc/sysconfig/keyboard

The /etc/sysconfig/keyboard file controls the behavior of the keyboard. The following
values may be used:

• KEYBOARDTYPE=sun|pc, which is used on SPARCs only. sun means a Sun keyboard is at-
tached on /dev/kbd, and pc means a PS/2 keyboard connected to a PS/2 port.

• KEYTABLE= � file � , where � file � is the name of a keytable file.

70 Chapter 3. Boot Process, Init, and Shutdown

For example: KEYTABLE="us". The files that can be used as keytables start in
/usr/lib/kbd/keymaps/i386 and branch into different keyboard layouts from there, all
labeled � file � .kmap.gz. The first file found beneath /usr/lib/kbd/keymaps/i386that
matches the KEYTABLE setting is used.

3.3.1.19. /etc/sysconfig/kudzu

The /etc/sysconfig/kuzdu allows you to specify a safe probe of your system’s hardware
by kudzu at boot time. A safe probe is one that disables serial port probing.

• SAFE= � value � , where � value � is one of the following:

• yes — kuzdu does a safe probe.

• no — kuzdu does a normal probe.

3.3.1.20. /etc/sysconfig/mouse

The /etc/sysconfig/mouse file is used to specify information about the available mouse.
The following values may be used:

• FULLNAME= � value � , where � value � refers to the full name of the kind of mouse being
used.

• MOUSETYPE= � value � , where � value � is one of the following:

• microsoft — A Microsoft™ mouse.

• mouseman — A MouseMan™ mouse.

• mousesystems — A Mouse Systems™ mouse.

• ps/2 — A PS/2 mouse.

• msbm — A Microsoft™ bus mouse.

• logibm — A Logitech™ bus mouse.

• atibm — An ATI™ bus mouse.

• logitech — A Logitech™ mouse.

• mmseries — An older MouseMan™ mouse.

• mmhittab — An mmhittab mouse.

• XEMU3= � value � , where � value � is one of the following boolean values:

• yes — The mouse only has two buttons, but three mouse buttons should be emulated.

• no — The mouse already has three buttons.

• XMOUSETYPE= � value � , where � value � refers to the kind of mouse used when X is run-
ning. The options here are the same as the MOUSETYPE setting in this same file.

• DEVICE= � value � , where � value � is the mouse device.

In addition, /dev/mouse is a symbolic link that points to the actual mouse device.

Chapter 3. Boot Process, Init, and Shutdown 71

3.3.1.21. /etc/sysconfig/named

The /etc/sysconfig/named file is used to pass arguments to the named daemon at boot
time. The named daemon is a Domain Name System (DNS) server which implements the
Berkeley Internet Name Domain (BIND) version 9 distribution. This server maintains a table
of which hostnames are associated with IP addresses on the network.

Currently, only the following values may be used:

• ROOTDIR=" � /some/where � ", where � /some/where � refers to the full directory path of
a configured chroot environment under which named will run. This chroot environment
must first be configured. Type info chroot for more information on how to do this.

• OPTIONS=" � value � ", where � value � any option listed in the man page for named except
-t. In place of -t, use the ROOTDIR line above instead.

For more information about what parameters you can use in this file, type man named. For
detailed information on how to configure a BIND DNS server, see Chapter 17. By default,
the file contains no parameters.

3.3.1.22. /etc/sysconfig/netdump

The /etc/sysconfig/netdump is the configuration file for the /etc/init.d/netdump ser-
vice. The netdump service sends both oops data and memory dumps over the network. In
general, netdump is not a required service, so you should only run it if you absolutely need
to. For more information about what parameters you can use in this file, type man netdump.

3.3.1.23. /etc/sysconfig/network

The /etc/sysconfig/network file is used to specify information about the desired network
configuration. The following values may be used:

• NETWORKING= � value � , where � value � is one of the following boolean values:

• yes — Networking should be configured.

• no — Networking should not be configured.

• HOSTNAME= � value � , where � value � should be the Fully Qualified Domain Name (FQDN),
such as hostname.domain.com, but can be whatever hostname you want.

Note

For compatibility with older software that people might install (such as trn), the /etc/HOSTNAME
file should contain the same value as here.

• GATEWAY= � value � , where � value � is the IP address of the network’s gateway.

• GATEWAYDEV= � value � , where � value � is the gateway device, such as eth0.

• NISDOMAIN= � value � , where � value � is the NIS domain name.

72 Chapter 3. Boot Process, Init, and Shutdown

3.3.1.24. /etc/sysconfig/ntpd

The /etc/sysconfig/ntpd file is used to pass arguments to the ntpd daemon at boot time.
The ntpd daemon sets and maintains the system clock to synchronize with an Internet stan-
dard time server. It implements version 4 of the Network Time Protocol (NTP). For more
information about what parameters you can use in this file, point a browser at the following
file: /usr/share/doc/ntp- � version � /ntpd.htm (where � version � is the version number
of ntpd). By default, this file sets the owner of the ntpd process to the user ntp.

3.3.1.25. /etc/sysconfig/pcmcia

The /etc/sysconfig/pcmciafile is used to specify PCMCIA configuration information. The
following values may be used:

• PCMCIA= � value � , where � value � is one of the following:

• yes — PCMCIA support should be enabled.

• no — PCMCIA support should not be enabled.

• PCIC= � value � , where � value � is one of the following:

• i82365 — The computer has an i82365-style PCMCIA socket chipset.

• tcic — The computer has a tcic-style PCMCIA socket chipset.

• PCIC_OPTS= � value � , where � value � is the socket driver (i82365 or tcic) timing param-
eters.

• CORE_OPTS= � value � , where � value � is the list of pcmcia_core options.

• CARDMGR_OPTS= � value � , where � value � is the list of options for the PCMCIA card-
mgr (such as -q for quiet mode; -m to look for loadable kernel modules in the specified
directory, and so on). Read the cardmgr man page for more information.

3.3.1.26. /etc/sysconfig/radvd

The /etc/sysconfig/radvd file is used to pass arguments to the radvd daemon at boot
time. The radvd daemon listens to for router requests and sends router advertisements for
the IP version 6 protocol. This service allows hosts on a network to dynamically change
their default routers based on these router advertisements. For more information about what
parameters you can use in this file, type man radvd. By default, this file sets the owner of the
radvd process to the user radvd.

3.3.1.27. /etc/sysconfig/rawdevices

The /etc/sysconfig/rawdevices file is used to configure raw device bindings, such as:

/dev/raw/raw1 /dev/sda1
/dev/raw/raw2 8 5

Chapter 3. Boot Process, Init, and Shutdown 73

3.3.1.28. /etc/sysconfig/redhat-config-users

The /etc/sysconfig/redhat-config-users is the configuration file for the graphical ap-
plication, redhat-config-users. Under Red Hat Linux 7.3 this file is used to only to filter out
system users. For more information on using this application, see the chapter called User and
Group Configuration in the Official Red Hat Linux Customization Guide.

3.3.1.29. /etc/sysconfig/samba

The /etc/sysconfig/samba file is used to pass arguments to the smbd and the nmbd dae-
mons at boot time. The smbd daemon offers file sharing connectivity for Windows clients on
the network. The nmbd daemon offers NetBIOS over IP naming services. For more informa-
tion about what parameters you can use in this file, type man smbd. By default, this file sets
smbd and nmbd to run in daemon mode.

3.3.1.30. /etc/sysconfig/sendmail

The /etc/sysconfig/sendmail file allows messages to be sent to one or more recipients,
routing the message over whatever networks are necessary. The file sets the default values
for the Sendmail application to run. Its default values are to run as a background daemon,
and to check its queue once an hour in case something has backed up.

The following values may be used:

• DAEMON= � value � , where � value � is one of the following boolean values:

• yes— Sendmail should be configured to listen to port 25 for incoming mail. yes implies
the use of Sendmail’s -bd options.

• no — Sendmail should not be configured to listen to port 25 for incoming mail.

• QUEUE=1h which is given to Sendmail as -q$QUEUE. The -q option is not given to Send-
mail if /etc/sysconfig/sendmail exists and QUEUE is empty or undefined.

3.3.1.31. /etc/sysconfig/soundcard

The /etc/sysconfig/soundcard file is generated by sndconfig and should not be mod-
ified. The sole use of this file is to determine what card entry in the menu to pop up by
default the next time sndconfig is run. Soundcard configuration information is located in
the /etc/modules.conf file.

It may contain the following:

• CARDTYPE= � value � , where � value � is set to, for example, SB16 for a Soundblaster 16
sound card.

3.3.1.32. /etc/sysconfig/squid

The /etc/sysconfig/squid file is used to pass arguments to the squid daemon at boot
time. The squid daemon is a proxy caching server for Web client applications. For more
information on configuring a squid proxy server, use a Web browser to open the
/usr/share/doc/squid- � version � / directory (replace � version � with the squid
version number installed on your system). By default, this file sets squid top start in
daemon mode and sets the amount of time before it shuts itself down.

74 Chapter 3. Boot Process, Init, and Shutdown

3.3.1.33. /etc/sysconfig/tux

The /etc/sysconfig/tux is the configuration file for the TUX, the kernel-based web
server. For more information on configuring the TUX server, use a Web browser to open the
/usr/share/doc/tux- � version /tux/index.html (replace ! version " with the
version number of TUX installed on your system). The parameters available for this file are
listed in /usr/share/doc/tux- � version /tux/parameters.html.

3.3.1.34. /etc/sysconfig/ups

The /etc/sysconfig/ups file is used to specify information about any Uninterruptible Power
Supplies (UPS) connected to your system. A UPS can be very valuable for a Red Hat Linux
system because it gives you time to correctly shut down the system in the case of power
interruption. The following values may be used:

• SERVER= � value , where � value is one of the following:

• yes — A UPS device is connected to your system.

• no — A UPS device is not connected to your system.

• MODEL= � value , where � value must be one of the following or set to NONE if no UPS
is connected to the system:

• apcsmart — For a APC SmartUPS™ or similar device.

• fentonups — For a Fenton UPS™.

• optiups — For an OPTI-UPS™ device.

• bestups — For a Best Power™ UPS.

• genericups — For a generic brand UPS.

• ups-trust425+625 — For a Trust™ UPS.

• DEVICE= � value , where � value specifies where the UPS is connected, such as
/dev/ttyS0.

• OPTIONS= � value , where � value is a special command that needs to be passed to the
UPS.

3.3.1.35. /etc/sysconfig/vncservers

The /etc/sysconfig/vncservers file configures how the Virtual Network Computing (VNC)
server starts up. VNC is a remote display system which allows you to view a desktop envi-
ronment not only on the machine where it is running but across different networks (from a
LAN to the Internet) and using a wide variety of machine architectures.

It may contain the following:

• VNCSERVERS= � value , where � value is set to something like "1:fred", to indicate
that a VNC server should be started for user fred on display :1. User fred must have set a
VNC password using vncpasswd before attempting to connect to the remote VNC server.

Note that when you use a VNC server, your communication with it is unencrypted, and
so it should not be used on an untrusted network. For specific instructions concerning
the use of SSH to secure the VNC communication, please read the information found at

Chapter 3. Boot Process, Init, and Shutdown 75

http://www.uk.research.att.com/vnc/sshvnc.html. To find out more about SSH, see
Chapter 10 or Official Red Hat Linux Customization Guide.

3.3.1.36. /etc/sysconfig/xinetd

The /etc/sysconfig/xinetd file is used to pass arguments to the xinetd daemon at boot
time. The xinetd daemon starts programs that provide Internet services when a request to
the port for that service is received. For more information about what parameters you can
use in this file, type man xinetd. For more information on the xinetd service, see Section
9.3.

3.3.2. Directories in the /etc/sysconfig/ Directory
The following directories are normally found in /etc/sysconfig/ and a basic description
of what they contain:

• apm-scripts — This contains the Red Hat APM suspend/resume script. You should
not edit this file directly. If you need customization, simple create a file called
/etc/sysconfig/apm-scripts/apmcontinue and it will be called at the end of the
script. Also, you can control the script by editing /etc/sysconfig/apmd.

• cbq — This directory contains the configuration files needed to do Class Based Queuing
for bandwidth management on network interfaces.

• networking — This directory is used by Red Hat Network Administration Tool and
should not be edited manually. For more information about configuring interfaces using
the Red Hat Network Administration Tool, see the chapter called Network Configuration
in the Official Red Hat Linux Customization Guide.

• network-scripts — This directory contains the following network-related configuration
files:

• Network configuration files for each configured network interface, such as ifcfg-eth0
for the eth0 Ethernet interface.

• Scripts used to bring up and down network interfaces, such as ifup and ifdown.

• Scripts used to bring up and down ISDN interfaces, such as ifup-isdn and ifdown-
isdn

• Various shared network function scripts which should not be edited directly.

For more information on the network-scripts directory, see Chapter 13

• rhn — This directory contains the configuration files for the Red Hat Network Registra-
tion Client, the Red Hat Update Agent Configuration Tool, the Red Hat Update Agent,
and the Red Hat Update Agent panel applet as well as the systemid and GPG keys. No
files in this directory should be edited by hand. For more information on the Red Hat Net-
work, see the Red Hat Network website at the following URL: https://rhn.redhat.com/.

3.4. Init Runlevels
The idea behind operating different services at different runlevels revolves around the fact
that different systems can be used in a different ways. Some services cannot be used until

76 Chapter 3. Boot Process, Init, and Shutdown

the system is in a particular state, or mode, such as ready for more than one user or has
networking available.

There are times in which you may want to operate the system at a lower mode, such as
fixing disk corruption problems in runlevel 1, when no other users can possibly be on the
system or leaving a server in runlevel 3 without an X session running. In these cases, running
services that depend upon a higher system mode to function does not make sense because
they will not work correctly anyway. By already having each service assigned to start when
its particular runlevel is reached, you ensure an orderly start up process and can quickly
change the mode of the machine without worrying about which services to manually start
or stop.

Generally, Red Hat Linux operates in runlevel 3 or runlevel 5 — both full multi-user modes.
The following runlevels are defined in Red Hat Linux:

• 0 — Halt

• 1 — Single-user mode

• 2 — Not used (user-definable)

• 3 — Full multi-user mode

• 4 — Not used (user-definable)

• 5 — Full multi-user mode (with an X-based login screen)

• 6 — Reboot

The default runlevel for a system to boot into and stop is configured in /etc/inittab. For
more information on /etc/inittab, see Section 3.2.3.

Feel free to configure runlevels 2 and 4 as you see fit. Many users configure those runlevels
in a way that makes the most sense for them while leaving the standard runlevels 3 and 5
alone. This allows them to quickly move in and out of their custom configuration without
disturbing the normal set of features at the standard runlevels.

If your machine gets into a state where it will not boot due to a bad /etc/inittab or will not
let you log in because you have a corrupted /etc/passwd (or if you have simply forgotten
your password), boot into single-user mode.

If you are using LILO, you can enter single-user mode by typing linux single at the LILO
boot: prompt.

If you are using GRUB as your boot loader, you can enter single-user mode using the follow-
ing steps.

• In the graphical GRUB boot loader screen, select the Red Hat Linux boot label and press
[e] to edit it.

• Arrow down to the kernel line and press [e] to edit it.

• At the prompt, type single and press [Enter].

• You will be returned to the GRUB screen with the kernel information. Press the [b] key to
boot the system into single user mode.

A very bare system will boot, and you will have a command shell from which you can fix
things.

If this does not work, you will need to boot by typing linux init=/bin/bash at the LILO
boot: prompt. This places you at a shell prompt; note that no filesystems other than the root
filesystem are mounted, and the root filesystem is mounted in read-only mode. To mount it
in read-write mode (to allow editing of a broken /etc/inittab, for example) do:

Chapter 3. Boot Process, Init, and Shutdown 77

mount -n /proc
mount -o rw,remount /

3.4.1. Initscript Utilities
The chkconfig utility in /sbin provides a simple command-line tool for maintaining the
/etc/rc.d/init.d directory hierarchy. It relieves system administrators from having to di-
rectly manipulate the numerous symbolic links in the directories under /etc/rc.d.

In addition, there is ntsysv that provides a text-based interface, which you may find easier
to use than chkconfig’s command-line interface.

If you prefer a graphical interface, use the serviceconf program.

All of these utilities must be run as root.

Please refer to the chapter titled Controlling Access to Services in Official Red Hat Linux Cus-
tomization Guide for more information regarding these tools.

3.5. Running Programs at Boot Time
The file /etc/rc.d/rc.local script is run by init at boot time, after all other initializa-
tion is complete, and whenever you change runlevels. You can add additional initialization
commands here. For instance, you may want to start up additional daemons or initialize a
printer.

In addition, if you require serial port setup, you can create and edit /etc/rc.serial, and
it will be executed automatically at boot time. This script can run a number of setserial
commands to specially configure the system’s serial ports. See the setserial man page for
more information.

3.6. Shutting Down
To shut down Red Hat Linux, issue the shutdown command. You can read the shutdown
man page for complete details, but the two most common uses are:

/sbin/shutdown -h now
/sbin/shutdown -r now

You must run shutdown as root. After shutting everything down, the -h option will halt the
machine, and the -r option will reboot.

Although the reboot and halt commands are now able to invoke shutdown if run while the
system is in runlevels 1-5, it is a bad habit to get into, as not all Linux-like operating systems
have this feature.

Warning

If your computer does not power itself down, be careful not turn off the computer until you see a
message indicating that the system is halted or finished shutting down.

Failure to wait for this message will mean that you may be turning off the machine before your hard
drive partitions are unmounted. This can cause filesystem corruption, even to the point where your
system may not boot the next time it attempts to start up. Be patient when halting your system.

78 Chapter 3. Boot Process, Init, and Shutdown

3.7. Differences in the Boot Process of Other Architectures
Each computer architecture supported by Red Hat Linux boots the operating system in a
different way. However, once the Red Hat Linux kernel begins booting and hands off the
boot process to init, the same events happen on each architecture in exactly the same way.
The only difference is in the way Red Hat Linux finds the kernel to load it in order to start
init.

For example, the Alpha architecture uses the aboot boot loader, while the Itanium architec-
ture uses the ELILO boot loader.

Consult the installation information for each of the architectures for detailed information
about the different boot methods.

Chapter 4.

GRUB

Before Red Hat Linux can load on a system, it must be told to boot by special instructions
placed on a boot loader, a program that exists on the system’s primary hard drive or other
media device that knows how to start the Linux kernel.

If using an x86 system that only boots Red Hat Linux and only one version of the Linux
kernel, then the exact process used by the boot loader to start Red Hat Linux is not very im-
portant. The Red Hat Linux installation program allows users to quickly and easily configure
the boot loader in the primary hard drive’s Master Boot Record (MBR) to load the operating
system.

However, in order to have the choice to boot from multiple Linux kernels or other operating
systems, it is essential to have the knowledge of the method used by Red Hat Linux to
provide the necessary boot options, as well as an understanding of the boot process and
what to change.

This chapter discusses GRUB, the default method Red Hat Linux uses to launch operating
systems on x86 systems. The chapter will also detail various commands and configuration
options that enable control over the boot process.

4.1. Defining GRUB
GNU GRUB (GRand Unified Bootloader) is a program that installs a boot loader to the MBR,
which exists at the beginning sectors of a disk. It allows the placement of specific instructions
in the MBR that loads a GRUB menu or command environment, which enables users to
start the operating system of choice, pass special instructions to kernels when they boot, or
discover system parameters (such as available RAM) before booting.

4.1.1. x86 Boot Process
When an x86 machine first starts up, the BIOS of the system checks for particular system
parameters, such as the amount of RAM in the machine, the date and time, disk devices
present, and the order in which those disk devices should be checked for bootable media.
Usually, the BIOS is configured to check the machine’s floppy disk drive or CD-ROM drive
(or both) before attempting to boot from the hard drive. If no bootable media can be found
in those removable devices, the BIOS usually turns to the first few sectors of the first hard
drive for instructions on where to find and load an operating system. These first few sectors
— the MBR — start the process of loading a pre-selected operating system, a GRUB menu of
operating system options, or a GRUB command line interface to execute special options.

The process of loading GRUB, and then the operating system, involves several stages of
operation:

1. Load the primary boot loader, commonly called Stage 1. The primary boot loader must exist
in the very small space allocated for the MBR, which is less than 512 bytes. Therefore,
the only thing the primary boot loader accomplishes is loading the secondary boot
loader, due to the fact that there is not enough space in the MBR for anything else.

2. Load the secondary boot loader, commonly called Stage 2. The secondary boot loader actu-
ally brings up the advanced functionality that allows you to load a specific operating
system. With GRUB, this is the code that allows you to display a menu or type com-
mands.

80 Chapter 4. GRUB

3. Load the operating system, such as the Linux kernel, on a specified partition. Once GRUB
has received the correct instructions for the operating system to start, either from its
command line or configuration file, it finds the necessary boot file and hands off control
of the machine to that operating system.

Note

Some filesystems, as well as filesystem configurations, may require a Stage 1.5 file that essentially
bridges the gap between the primary and secondary boot loaders.

For example, if the Stage 2 boot loader file is on a partition using a filesystem that the Stage 1 boot
loader cannot access, it is possible to direct the Stage 1 boot loader to load additional instructions
from the Stage 1.5 file that allows it to read the Stage 2 boot loader file. For more information, refer
to the GRUB info page.

The aforementioned boot method is called direct loading, because instructions to directly load
the operating system are used, with no intermediary code between the boot loaders and
the operating system’s main files (such as the kernel). The boot process used by different
operating systems may differ slightly from the above, however. For example, Microsoft’s
DOS and Windows operating systems tend to completely overwrite anything on the MBR
when they are installed without incorporating any of the current MBR’s configuration. This
destroys any other information stored in the MBR by other operating systems, such as Red
Hat Linux. The Microsoft operating systems, as well as various other proprietary operating
systems, are loaded using a chain loading boot method. With this method, the MBR simply
points to the first sector of the partition holding the operating system, where it finds the
special files necessary to actually boot that operating system.

GRUB supports both direct and chain-loading boot methods. It is possible to use it with
almost any operating system, most popular filesystems, and almost any hard disk the system
BIOS can recognize.

4.1.2. GRUB Features
GRUB contains a number of features that make it preferable to other available boot loaders.
These are some of the most important:

• GRUB provides a true command-based, pre-OS environment on x86 machines to allow maximum
flexibility in loading operating systems with certain options or gathering information about the
system. Many non-x86 architectures have employed pre-OS environments for years that
allows control over how the system boots from a command line. While some command
features are available with LILO and other x86 boot loaders, GRUB contains a greater
number of features.

• GRUB supports Logical Block Addressing (LBA) mode. LBA places the addressing conversion
used to find files on the drive in the drive’s firmware, and it is used on many IDE and
all SCSI hard disks. Before LBA, hard drives could encounter a 1024-cylinder limit, where
the BIOS could not find a file after that point, such as a boot loader or kernel files. LBA
support allows GRUB to boot operating systems from partitions beyond the 1024-cylinder
limit, so long as the system BIOS supports LBA mode (most do).

• GRUB’s configuration file is read from the disk every time the system boots, preventing the user
from having to write over the MBR every time a change the boot options is made. Most boot
loaders are not sophisticated enough to read configuration files and use them to set up
boot options. For example, to change a LILO boot configuration, such as changing the
default operating system to boot, users must change a LILO configuration file and run

Chapter 4. GRUB 81

a command that overwrites the system’s MBR with the new configuration data. This is
more risky than GRUB’s method, because a misconfigured MBR would leave the system
unbootable. With GRUB, if the configuration file is erroneously configured and rebooted,
it will simply default to a command line and allow the user to manually type commands
that will launch the operating system. The MBR is not touched except to update the Stage
1, Stage 2, or menu configuration file locations, and this is rarely necessary.

Note

When changes are made to the GRUB configuration file, it is not necessary to restart GRUB. Any
changes made are automatically detected. If GRUB is restarted, the user will be dropped to the
command line GRUB shell.

4.1.3. Installing GRUB
If GRUB was not installed during the Red Hat Linux installation process, the following ex-
plains how to install it and make it the default boot loader.

Note

If LILO has been installed and is currently the system boot loader, it is not necessary to remove it in
order to use GRUB. Once installed, GRUB will be the default boot loader for the system.

First, make sure to have the latest GRUB package available. The GRUB package from the
Red Hat Linux installation CD-ROMs can also be used.

From a shell prompt, run the command /sbin/grub-install # location $, where%
location & is the location where GRUB should be installed. For example:

/sbin/grub-install /dev/hda

Finally, reboot the system. The GRUB graphical boot loader menu should appear.

4.2. Terminology
One of the most important things to understand before using GRUB is how the program
refers to devices, such as system hard drives, and partitions. This information is very impor-
tant to know in order to configure GRUB to boot multiple operating systems.

4.2.1. Device Names
The first hard drive of a system will be called (hd0) by GRUB. The first partition on that
drive is called (hd0,0), and the fifth partition on the second hard drive is called (hd1,4). In
general, the naming convention for filesystems when using GRUB breaks down in this way:

(# type-of-device $'# bios-device-number $, # partition-number $)

82 Chapter 4. GRUB

The parentheses and comma are very important to the device naming conventions. The(
type-of-device) refers to whether a hard disk (hd) or floppy disk (fd) is being speci-

fied.

The (bios-device-number) is the number of the device according to the system’s BIOS,
starting with 0. The primary IDE hard drive is numbered 0, while the secondary IDE hard
drive is numbered 1. The ordering is roughly equivalent to the way the Linux kernel ar-
ranges the devices by letters, where the a in hda relates to 0, the b in hdb relates to 1, and so
on.

Note

Remember that GRUB’s numbering system for devices starts at 0, and not 1. This is one of the most
common mistakes made by new GRUB users.

The (partition-number) relates to the number of a specific partition on a disk device. Like
the (bios-device-number) , the partition numbering starts at 0. While most partitions are
specified by numbers, if a system uses BSD partitions, they are signified by letters, such as a
or c.

GRUB uses the following rules when naming devices and partitions:

• It does not matter if system hard drives are IDE or SCSI. All hard drives start with hd.
Floppy disks start with fd.

• To specify an entire device without respect to its partitions, simply leave off the comma
and the partition number. This is important when telling GRUB to configure the MBR for a
particular disk. For example, (hd0) specifies the first device and (hd3) specifies the fourth
device.

• If a system has multiple drive devices, it is very important to know the drive order accord-
ing to the BIOS. This is rather simple to do if a system has only IDE or SCSI drives, but if
there is a mix of devices, it can become confusing.

4.2.2. File Names
When typing commands to GRUB involving a file, such as a menu list to use when allowing
the booting of multiple operating systems, it is necessary to include the file immediately
after specifying the device and partition. A sample file specification to an absolute filename
is organized as follows:

(
(
type-of-device) (bios-device-number) , (partition-number))/path/to/file

Most of the time, a user will specify files by the directory path on that partition plus the
filename. This method is straightforward.

It is also possible to specify files to GRUB that do not actually appear in the filesystem, such
as a chain loader that appears in the first few blocks of a partition. To specify these files, it is
required to provide a blocklist, which tells GRUB, block by block, where the file is located in
the partition. As a file can be comprised of several different sets of blocks, there is a specific
way to write blocklists. Each file’s section location is described by an offset number of blocks
and then a number of blocks from that offset point, and the sections are put together in a
comma-delimited order.

Consider the following blocklist:

Chapter 4. GRUB 83

0+50,100+25,200+1

This blocklist tells GRUB to use a file that starts at the first block on the partition and uses
blocks 0 through 49, 99 through 124, and 199.

Knowing how to write blocklists is useful when using GRUB to load operating systems that
use chain loading, such as Microsoft Windows. It is possible to leave off the offset number
of blocks if starting at block 0. As an example, the chain loading file in the first partition of
the first hard drive would have the following name:

(hd0,0)+1

The following shows the chainloader command with a similar blocklist designation at the
GRUB command line after setting the correct device and partition as root:

chainloader +1

4.2.3. GRUB’s Root Filesystem
Some users are confused by the use of the term "root filesystem" with GRUB. It is important
to remember that GRUB’s root filesystem has nothing to do with the Linux root filesystem.

The GRUB root filesystem is the root partition for a particular device. GRUB uses this infor-
mation to mount the device and load files from it, among other things.

With Red Hat Linux, once GRUB has loaded its root partition that contains the Linux kernel,
the kernel command can be executed with the location of the kernel file as an option. Once
the Linux kernel boots, it sets its own root filesystem, and that is the one most people asso-
ciate with Linux. The original GRUB root filesystem and its mounts are forgotten. They only
existed to boot the kernel file.

Refer to the root and kernel commands in Section 4.4 for more information.

4.3. Interfaces
GRUB features three powerful interfaces that provide different levels of functionality. Each
of these interfaces allows users to boot operating systems, and even move between interfaces
within the GRUB environment.

4.3.1. Menu Interface
If GRUB was automatically configured by the Red Hat Linux installation program, this is
the interface shown by default. A menu of operating systems or kernels preconfigured with
their own boot commands exists in this interface as a list, by name, after the system first
starts. Use the arrow keys to select an option other than the default selection and press the
[Enter] key to boot it. Alternatively, a timeout period may have been set, so that GRUB will
start loading the default option.

From the menu interface, press the [e] key to edit the commands in the highlighted menu
entry or the [c] key to load a command line interface.

84 Chapter 4. GRUB

4.3.2. Menu Entry Editor Interface
To access the menu entry editor, press the [e] key from the boot loader menu. The GRUB
commands for that entry are displayed here, and users may alter these command lines before
booting the operating system by adding ([o] after the current line; [O] before it), editing ([e]),
or deleting ([d]) them.

After all changes are made, hit the [b] key to execute the commands and boot the operating
system. The [Esc] key discards any changes and reloads the standard menu interface. The [c]
key will load the command line interface.

Tip

For information about changing runlevels with GRUB using the menu entry editor, refer to Section
3.2.3.

4.3.3. Command Line Interface
The command line is the most basic GRUB interface, but it is also the one that grants the
most control. The command line makes it possible to type any relevant GRUB commands
followed by the [Enter] key to execute them. This interface features some advanced shell-
like features, including [Tab] key completion, based on context, and [Ctrl] key combinations
when typing commands, such as [Ctrl]-[a] to move to the beginning of a line, and [Ctrl]-[e]
to move to the end of a line. In addition, the arrow, [Home], [End], and [Delete] keys work
as they do in the bash shell.

4.3.4. Order of Interface Use
When the GRUB environment starts loading the second stage boot loader, it looks for its con-
figuration file. When found, it uses the configuration file to build the menu list of operating
systems to load and then displays the boot menu interface.

If the configuration file cannot be found, or if the configuration file is unreadable, GRUB will
load the command line interface to allow users to manually type the commands necessary
to boot an operating system.

If the configuration file is not valid, GRUB will print out the error and ask for input. This can
be very helpful, because users will then be able to see precisely where the problem occurred
and fix it in the file. Pressing any key will reload the menu interface, where it is then possible
to edit the menu option and correct the problem based on the error reported by GRUB. If the
correction fails, the error is reported and GRUB will begin again.

4.4. Commands
GRUB contains a number of different commands that may be executed interactively in the
command line interface. Some of the commands accept options after their name, and these
options should be separated from the command and other options on that line by space
characters.

The following list gives the most useful commands:

Chapter 4. GRUB 85

• boot — Boots the operating system or chain loader that has been previously specified and
loaded.

• chainloader * file-name + — Loads the specified file as a chain loader. To grab the file
at the first sector of the specified partition, use +1 as the file’s name.

• displaymem — Displays the current use of memory, based on information from the BIOS.
This is useful to determine how much RAM a system has prior to booting it.

• initrd * file-name + — Enables users to specify an initial RAM disk to use when boot-
ing, necessary when the kernel needs certain modules in order to boot properly.

• install , stage-1 -., install-disk -/, stage-2 - p , config-file - — Installs
GRUB to the system MBR. This allows the GRUB interfaces to come up when the system
is rebooted.

Warning

The install command will overwrite any other information in the MBR. If executed, any informa-
tion (other than GRUB information) that is used to boot other operating systems, will be lost.

Make sure to have the proper knowledge before executing this command.

This command can be configured in several different ways. However, it is required to
specify a * stage-1 + , which signifies a device, partition, and file where the first boot
loader image can be found, such as (hd0,0)/grub/stage1. In addition, specify the disk
where the stage 1 boot loader should be installed, such as (hd0).

The * stage-2 + section tells the stage 1 boot loader where the stage 2 boot loader is
located, such as (hd0,0)/grub/stage2. The p option tells the install command that
a menu configuration file is being specified in the * config-file + section, such as
(hd0,0)/grub/grub.conf.

• kernel * kernel-file-name +0* option-1 +0* option-N + — Specifies the kernel file to
load from GRUB’s root filesystem when using direct loading to boot the operating sys-
tem. Options can follow the kernel command and will be passed to the kernel when it is
loaded.

For Red Hat Linux, an example kernel command looks like the following:

kernel /vmlinuz root=/dev/hda5

This line specifies that the vmlinuz file is loaded from GRUB’s root filesystem, such as
(hd0,0). An option is also passed to the kernel specifying that the root filesystem for the
Linux kernel when it loads should be on hda5, the fifth partition on the first IDE hard
drive. Multiple options may be placed after this option, if needed.

• root * device-and-partition + — Configures GRUB’s root partition to be the particu-
lar device and partition, such as (hd0,0), and mounts the partition so that files can be
read.

• rootnoverify * device-and-partition + — Does the same thing as the root command
but does not mount the partition.

Commands other than these are available. Type info grub for a full list of all commands.

86 Chapter 4. GRUB

4.5. The Menu Configuration File
The configuration file, which is used to create the list in GRUB’s menu interface of operating
systems to boot, essentially allows the user to select a pre-set group of commands to execute.
The commands given in Section 4.4 can used, as well as some special commands that may
only be used in the configuration file.

4.5.1. Special Configuration File Commands
The following commands can only be used in the GRUB menu configuration file:

• color 1 normal-color 231 selected-color 2 — Allows for the set up specific colors to
be used in the menu, where two colors are configured as the foreground and background.
Use simple color names, such as red/black. For example:
color red/black green/blue

• default 1 title-name 2 — The default entry title name that will be loaded if the menu
interface times out.

• fallback 1 title-name 2 — If used, the entry title name to try if first attempt fails.

• hiddenmenu — If used, prevents the GRUB menu interface from being displayed, loading
the default entry when the timeout period expires. The user can see the standard GRUB
menu by pressing the [Esc] key.

• password 1 password 2 — If used, prevents the user who does not know the password
from editing the entries for this menu option.

Optionally, it is possible to specify an alternate menu configuration file after the
1 password 2 , so that, if the password is known, GRUB will restart the second stage of
the boot loader and use this alternate configuration file to build the menu. If this alternate
file is left out of the command, then a user who knows the password would be able to
edit the current configuration file.

• timeout — If used, sets the interval, in seconds, before GRUB loads the entry designated
by the default command.

• splashimage — Specifies the location of the splash screen image to be used when GRUB
boots.

• title — Sets a title to be used with a particular group of commands used to load an
operating system.

The # character can be used to place comments in the menu configuration file.

4.5.2. Configuration File Structure
The commands to set the global preferences for the GRUB menu interface are placed at the
top of the file, followed by the different entries for each of the operating systems to boot.

A very basic GRUB menu configuration file designed to boot either Red Hat Linux or Mi-
crosoft Windows 2000 might look as follows:

default=linux
timeout=10
color=green/black light-gray/blue

Chapter 4. GRUB 87

section to load linux
title linux
root (hd0,1)
kernel /vmlinuz root=/dev/hda5
boot

section to load Windows 2000
title windows
rootnoverify (hd0,0)
chainloader +1

This file would tell GRUB to build a menu with Red Hat Linux as the default operating
system, set to autoboot it after 10 seconds. Two sections are given, one for each operating
system entry, with commands specific to this system’s disk partition table.

Actually configuring a GRUB menu configuration file to boot multiple operating systems is
beyond the scope of this chapter. Please consult Section 4.6 for detailed information about
booting various operating systems with GRUB.

4.6. Additional Resources
This chapter is only intended as an introduction to GRUB and its many options. Consult the
following resources to discover more about how GRUB works and how to configure it to
boot non-Linux operating systems, among other tasks.

4.6.1. Installed Documentation

• /usr/share/doc/grub-0.90 — /usr/share/doc/grub-0.90 is the directory where the
GRUB docs are placed on the filesystem.

• At a shell prompt, type the man grub command to view the GRUB man page, which con-
tains a list of options to use when loading the GRUB shell.

• The GRUB info page, accessible by typing the info grub command at a shell prompt,
contains a tutorial, a user reference manual, a programmer reference manual, and an FAQ
document about GRUB and its usage.

4.6.2. Useful Websites

• http://www.gnu.org/software/grub — The home page of the GNU GRUB project. This
site contains information concerning the state of GRUB development and an FAQ.

• http://www.uruk.org/orig-grub — The original GRUB documentation before the project
was handed off to the Free Software Foundation for further development.

• http://www.redhat.com/mirrors/LDP/HOWTO/mini/Multiboot-with-GRUB.html —
Investigates various uses for GRUB, including booting operating systems other than
Linux.

• http://www.linuxgazette.com/issue64/kohli.html — An introductory article discussing
the configuration of GRUB on a system from scratch, including an overview of GRUB
command line options.

88 Chapter 4. GRUB

Chapter 5.

The ext3 File System

With the release of Red Hat Linux 7.2, Red Hat changed the default file system from the
venerable ext2 format to the journaling ext3 file system.

5.1. Features of ext3
The ext3 file system is essentially an enhanced version of ext2 file system. These improve-
ments provide the following advantages:

Availability

After an unexpected power failure or system crash (also called an unclean system shut-
down), each mounted ext2 file system on the machine must be checked for consistency
by the e2fsck program. This is a time-consuming process that can delay system boot
time by a significantly, especially with large volumes containing a large number of files.
During this time any data on the volumes is unreachable.

The journaling provided by the ext3 file system means this sort of file system check is
no longer necessary after an unclean system shutdown. The only time a consistency
check occurs using ext3 is in certain rare hardware failure cases, such as hard drive
failures. The time to recover an ext3 file system after an unclean system shutdown does
not depend on the size of the file system or the number of files; rather, it depends on the
size of the "journal" used to maintain consistency. The default journal size takes about a
second to recover, depending on the speed of the hardware.

Data Integrity

The ext3 file system provides stronger data integrity in the event that an unclean system
shutdown occurs. The ext3 file system allows you to choose the type and level of pro-
tection that your data receives. By default, Red Hat Linux 7.3 configures ext3 volumes
to keep a high level of data consistency with regard to the state of the file system.

Speed

Despite writing some data more than once, ext3 has a higher throughput in most cases
than ext2 because ext3’s journaling optimizes hard drive head motion. You can choose
from three journaling modes to optimize speed, but doing so means trade offs in regards
to data integrity.

Easy Transition

It is easy to change from ext2 to ext3 and gain the benefits of a robust journaling file
system without reformatting. See Section 5.3 for more on how to perform this task.

If you perform a fresh installation of Red Hat Linux 7.3, the default file system assigned to
the system’s Linux partitions is ext3. If you upgrade from a version of Red Hat Linux that
uses ext2 partitions, the installation program allows you to convert these partitions to ext3
partitions without losing data. See the appendix titled Upgrading Your Current System in the
Official Red Hat Linux Installation Guide for details.

The following sections will walk you through the steps for creating and tuning ext3 par-
titions. If you have ext2 partitions and are running Red Hat Linux 7.3, you can skip the
partitioning and formating sections below and go directly to Section 5.3.

90 Chapter 5. The ext3 File System

5.2. Creating an ext3 File System
If you are adding a new disk drive to a Red Hat Linux system and want to utilize the ext3
file system, you must first partition the hard disk with a program such as fdisk and then
format the file system.

5.2.1. Partitioning with fdisk

To use fdisk, open a shell prompt and log in as the root user. The fdisk command requires
you to specify the device you are partitioning as an argument to the command. In the fol-
lowing examples, the device will be /dev/hdb, which corresponds to the second device on
the primary IDE channel. To begin, type:

/sbin/fdisk /dev/hdb

The following table provides the most common fdisk commands.

Table 5-1. fdisk commands

Command What it Does

m displays help

p displays the current partition table

d deletes a partition

n creates a new partition

w writes the partition table to disk

t sets the anticipated file system type for the partition

l displays the list of file system types for partitions

q quits fdisk without altering the disk

Tip

If you need to exit the program at any time without altering your disk, type q.

Now that you are in the fdisk program, type n to create a new partition. The program will
ask you to choose a partition type, choose e for an extended and p for a primary partition.

Before choosing the partition type, be aware that Red Hat Linux only allows up to four
primary partitions per disk. If you wish to create more than that, one (and only one) of the
four primary poartitions may be an extended partition, which acts as a container for one or
more logical partitions. Since it acts as a container, the extended partition must be at least
as large as the total size of all the logical partitions it is to contain. For more information on
disk partitions, see the Appendix called An Introduction to Disk Partitions in the Official Red
Hat Linux Installation Guide.

After choosing the partition type and the number for that partition, choose which cylinder
head you would like the partition to start on. You can type [Enter] to except the default
value.

Chapter 5. The ext3 File System 91

Next, specify the size. The easiest way to do this is to type +sizeM, where size is the size
of the partition in megabytes. If you press [Enter] without entering a value, fdisk will use
the remainder of the disk.

Repeat this process until you have created your desired partitioning scheme.

Tip

It is a good idea to write down which partitions (for example, /dev/hdb2) are meant for which file
systems (for example, /home/username) as you create each partition.

Next, you will need to specify what type of file system you intend to put on the disk because
fdisk creates partitions of type unknown by default.

To do this, type t followed by a partition number. Next enter the hex value for the file system
type you intend to install on the partition. For Linux swap partitions. the hex value is 82.
For Linux ext2 or ext3 partitions, the hex value is 83. For other partition types, use the l
command to see a list of file system types and their hex values. Repeat this for each partition
you created.

When you are finished making partitions, type w to save your changes and quit.

Warning

By typing w, you are permanently destroying any data that currently exists on the device. If you need
wish to preserve any data, type q to exit the program without altering the disk and back up your data.

5.2.2. Formating ext3 File Systems with mkfs

Once you have created partitions on the disk drive using a partitioning program such as
fdisk, you should use mkfs to create an ext3 file system on each partition.

To do this, log in as root and type:

/sbin/mkfs -t ext3 /dev/hdbX

In the above command, replace hdb with the drive letter and X with the partition number.

Warning

Using mkfs to format a disk partition will permanently destroy any data that currently exists on the
partition.

5.2.3. Assigning a Label with e2label

Once you have created and formated a partition, you should assign it a label using the
e2label command. This allows you to add the partition to /etc/fstab using a label in-

92 Chapter 5. The ext3 File System

stead of using a device path, thereby making the system more robust. 1 To add a label to a
partition, type the following command as root:

/sbin/e2label /dev/hdbX /mount/point

Where hdb is the drive letter, X is the partition number, and /mount/point is the mount
point you intend to use for the partition.

Once you have assigned each partition a label, add the partitions to /etc/fstab. To do this,
log in as root and type:

pico -w /etc/fstab

Then add a line to /etc/fstab for each labeled partition similar to this:

LABEL=/mount/point /mount/point ext3 defaults 1 2

In the above entry in /etc/fstab, replace each occurrence of /mount/point with the
mount point you intend to use for the partition.

If you need more information on the various options available to you in /etc/fstab, type
man fstab.

If there are partitions whose label you are unsure of, type the following command:

/sbin/tune2fs -l /dev/hdbX |grep volume

In the above command, replace hdb with the drive letter and X with the partition number.

This will return something similar to the output below:

Filesystem volume name: /mount/point

In this output, /mount/point is the volume label.

After completing the above steps, you will have successfully added a new ext3 disk to the
system. The next section demonstrates how to convert an ext2 disk partition to an ext3 par-
tition.

5.3. Converting to an ext3 File System
The tune2fs program can add a journal to an existing ext2 file system without altering
the data already on the partition. If the file system is already mounted while it is being
transitioned, the journal will be visible as the file .journal in the root directory of the file
system. If the file system is not mounted, the journal will be hidden and will not appear in
the file system at all.

To convert an ext2 file system to ext3, log in as root and type:

/sbin/tune2fs -j /dev/hdbX

In the above command, replace hdb with the drive letter and X with the partition number.

After doing this, be certain to change the partition type from ext2 to ext3 in /etc/fstab.

If you are transitioning your root file system, you will have to use an initrd image (or
RAM disk) to boot. To create this, run the mkinitrd program. For information on using the

1. Adding a partition to /etc/fstab allows the partition to be mounted at boot time and simplifies

use of the mount command.

Chapter 5. The ext3 File System 93

mkinitrd command, type man mkinitrd. Also make sure your LILO or GRUB configuration
loads the initrd.

If you fail to make this change, the system will still boot, but the root file system will be
mounted as ext2 instead of ext3.

5.4. Reverting to an ext2 File System
Because ext3 is relatively new, some disk utilities do not yet support it. For example, you
may need to shrink a partition with resize2fs, which does not yet support ext3. In this
situation, it may be necessary to temporarily revert a file system to ext2.

To revert a partition, you must first unmount the partition by logging in as root and typing:

umount /dev/hdbX

In the above command, replace hdb with the drive letter and X with the partition number.
For the remainder of this section, the sample commands will use hdb1 for these values.

Next, change the file system type to ext2 by typing:

/sbin/tune2fs -O ^has_journal /dev/hdb1

Check the partition for errors by typing:

/sbin/e2fsck -y /dev/hdb1

Then mount the partition again as ext2 file system by typing:

mount -t ext2 /dev/hdb1 /mount/point

In the above command replace /mount/point with the mount point of the partition.

Next, remove the .journal file at the root level of the partition by changing to the directory
where it is mounted and typing:

rm -f .journal

You now have an ext2 partition.

94 Chapter 5. The ext3 File System

Chapter 6.

Users and Groups

The control of users and groups exists at the core of Red Hat Linux system administration.

Users can be either people (accounts tied to a physical user) or logical users (accounts that
exist for applications so that they can perform specific tasks) . Both types of users have a
User ID (which is usually unique) and Group ID.

Groups are logical expressions of organization. Groups form the foundation of tying users
together and giving them permissions to read, write, or execute a given file.

Any file created is assigned a user and group when it is made. It is also assigned separate
read, write, and execute permissions for the file’s owner, the group assigned to the file, and
any other users on that host. The user and group of a particular file, as well as the permis-
sions on that file, can be changed by root or, to a lesser extent, by the creator of the file.

Proper management of users and groups, as well as assigning and revoking permissions, is
one of the most important tasks of any system administrator.

6.1. Tools for User and Group Administration
Managing users and groups has traditionally been tedious, but Red Hat Linux provides a
few tools and conventions to make users and groups easier to manage.

While you can use useradd to create a new user from the shell prompt, a popular way to
manage users and groups is through redhat-config-users (refer to the Official Red Hat Linux
Customization Guide for more information).

6.2. Standard Users
In Table 6-1, you will find the standard users set up by the installation process (as seen in
the /etc/passwd file). The Group ID (GID) in this table is the primary group for the user. See
Section 6.4 for details on how groups are used.

Table 6-1. Standard Users

User UID GID Home Directory Shell

root 0 0 /root /bin/bash

bin 1 1 /bin

daemon 2 2 /sbin

adm 3 4 /var/adm

lp 4 7 /var/spool/lpd

sync 5 0 /sbin /bin/sync

shutdown 6 0 /sbin /sbin/shutdown

halt 7 0 /sbin /sbin/halt

mail 8 12 /var/spool/mail

96 Chapter 6. Users and Groups

User UID GID Home Directory Shell

news 9 13 /var/spool/news

uucp 10 14 /var/spool/uucp

operator 11 0 /root

games 12 100 /usr/games

gopher 13 30 /usr/lib/gopher-data

ftp 14 50 /var/ftp

nobody 99 99 /

apache 48 48 /var/www

named 25 25 /var/named

piranha 60 60 /etc/sysconfig/ha

amanda 33 6 var/lib/amanda/

ident 98 98 / /sbin/nologin

rpc 32 32 /

wnn 49 49 /var/lib/wnn

xfs 43 43 /etc/X11/fs

mailnull 47 47 /var/spool/mqueue

pvm 24 24 /usr/share/pvm3 /bin/bash

ldap 55 55 /var/lib/ldap

mysql 27 27 /var/lib/mysql

rpcuser 29 29 /var/lib/nfs /sbin/nologin

nsfnobody 65534 65534 /var/lib/nfs /sbin/nologin

junkbust 73 73 /etc/junkbuster

gdm 42 42 /var/gdm

squid 23 23 /var/spool/squid /dev/null

nscd 28 28 /

rpm 37 37 /var/lib/rpm

mailman 41 41 /var/mailman

radvd 75 75 /

postgres 26 26 /var/lib/pgsql

6.3. Standard Groups
In Table 6-2, you will find the standard groups as set up by the installation process (as seen
in the /etc/group file).

Chapter 6. Users and Groups 97

Table 6-2. Standard Groups

Group GID Members

root 0 root

bin 1 root, bin, daemon

daemon 2 root, bin, daemon

sys 3 root, bin, adm

adm 4 root, adm, daemon

tty 5

disk 6 root

lp 7 daemon, lp

mem 8

kmem 9

wheel 10 root

mail 12 mail

news 13 news

uucp 14 uucp

man 15

games 20

gopher 30

dip 40

ftp 50

nobody 99

users 100

piranha 60 piranha

ident 98 ident

rpc 32 rpc

pvm 24 pvm

floppy 19

utmp 22

slocate 21

pppusers 44

popusers 45

slipusers 46

rpm 37 rpm

postgres 26 postgres

98 Chapter 6. Users and Groups

Group GID Members

nscd 28 nscd

wnn 49 wnn

mailnull 47 mailnull

rpcusers 29

nfsnobody 65534

xfs 43 xfs

gdm 42 gdm

apache 48 apache

squid 23 squid

named 25 named

junkbust 73 junkbust

mysql 27 mysql

mailman 41 mailman

ldap 55 ldap

6.4. User Private Groups
Red Hat Linux uses a user private group (UPG) scheme, which makes UNIX groups easier
to use. The UPG scheme does not add or change anything in the standard UNIX way of
handling groups; it simply offers a new convention. Whenever you create a new user, by
default, they have a unique group. The scheme works as follows:

User Private Group

Every user has a primary group; the user is the only member of that group.

umask = 002

Traditionally, on UNIX systems the umask is 022, which prevents other users and other
members of a user’s primary group from modifying a user’s files. Since every user has their
own private group in the UPG scheme, this "group protection" is not needed. A umask
of 002 will prevent users from modifying other users’ private files. The umask is set in
/etc/profile.

setgid bit on Directories

If you set the setgid bit on a directory (with chmod g+s directory), files created in that
directory will have their group set to the directory’s group.

Many IT organizations like to create a group for each major project and then assign people to
the group if they need to access that group’s files. Using this traditional scheme, managing
files has been difficult because when someone creates a file, it is associated with the primary
group to which they belong. When a single person works on multiple projects, it is difficult
to associate the right files with the right group. Using the UPG scheme, however, groups
are automatically assigned to files created within a directory with the setgid bit set, which
makes managing group projects that share a common directory very simple.

Chapter 6. Users and Groups 99

For example, say you have a big project called devel, with many people editing the devel files
in a devel directory. Make a group called devel, chgrp the devel directory to devel, and
add all of the devel users to the devel group.

You can add a user to a group using redhat-config-users (see the Official Red Hat Linux Cus-
tomization Guide), or if you prefer to use the command line, use the /usr/sbin/groupadd
groupname command to create a group. The /usr/bin/gpasswd -a loginname groupname
command will add a user loginname to a group. (See the groupadd and gpasswdman pages
if you need more information on their options.) The /etc/group file contains the group in-
formation for your system.

If you created the devel group, added users to the devel group, changed the group for
devel directory to the devel group, and set the setgid bit for the devel directory, all devel
users will be able to edit the devel files and create new files in the devel directory. The files
they create will always retain their devel group status, so other devel users will always be
able to edit them.

If you have multiple projects like devel and users who are working on multiple projects,
these users will never have to change their umask or group when they move from project
to project. If set correctly, the setgid bit on each project’s main directory "selects" the proper
group for all files created in that directory.

Since each user’s home directory is owned by the user and their private group, it is safe to set
the setgid bit on the home directory. However, by default, files are created with the primary
group of the user, so the setgid bit would be redundant.

6.4.1. User Private Group Rationale
Although the User Private Group (UPG) has existed in Red Hat Linux for quite some time,
many people still have questions about it, such as why UPG is necessary. Consider the fol-
lowing scenario.

You would like to have a group of people work on a set of files in the
/usr/lib/emacs/site-lisp directory. You trust a few people to modify the directory but
certainly not everyone.

First, create an emacs group:

/usr/sbin/groupadd emacs

In order to associate the contents of the directory with the emacs group, perform the follow-
ing command:

chown -R root.emacs /usr/lib/emacs/site-lisp

Now, it is possible to add the proper users to the group with gpasswd:

/usr/bin/gpasswd -a 4 username 5 emacs

Allow the users to actually create files in the directory with the following command:

chmod 775 /usr/lib/emacs/site-lisp

When a user creates a new file, it is assigned the group of the user’s default private group.
To prevent this, perform the following command, which causes everything in the directory
to be created with the emacs group:

chmod 2775 /usr/lib/emacs/site-lisp

100 Chapter 6. Users and Groups

If the new file needs to be mode 664 for another user in the emacs group to be able to edit it,
make the default umask 002.

At this point, by making the default umask 002, you can easily set up groups that users
can take advantage of without any extra work every time users write files to the group’s
common directory. Just create the group, add the users, and do the above chown and chmod
on the group’s directories.

6.5. Shadow Utilities
If you are in a multiuser environment and not using a networked authentication scheme
such as Kerberos, you should consider using Shadow Utilities (also known as shadow pass-
words) for the enhanced protection offered for your system’s authentication files. During the
installation of Red Hat Linux, shadow password protection for your system is enabled by
default, as are MD5 passwords (an alternative and arguably more secure method of encrypt-
ing passwords for storage on your system).

Shadow passwords offer a few distinct advantages over the previous standard of storing
passwords on UNIX and Linux systems, including:

• Improved system security by moving the encrypted passwords (normally found in
/etc/passwd) to /etc/shadow which is readable only by root

• Information concerning password aging (how long it has been since a password was last
changed)

• Control over how long a password can remain unchanged before the user is required to
change it

• The ability to use the /etc/login.defs file to enforce a security policy, especially con-
cerning password aging

The shadow-utils package contains a number of utilities that support:

• Conversion from normal to shadow passwords and back (pwconv, pwunconv)

• Verification of the password, group, and associated shadow files (pwck, grpck)

• Industry-standard methods of adding, deleting and modifying user accounts (useradd,
usermod, and userdel)

• Industry-standard methods of adding, deleting, and modifying user groups (groupadd,
groupmod, and groupdel)

• Industry-standard method of administering the /etc/group file using gpasswd

There are some additional points of interest concerning these utilities:

• The utilities will work properly whether shadowing is enabled or not.

• The utilities have been slightly modified to support Red Hat’s user private group scheme.
For a description of the modifications, see the useradd man page. For more information
on user private groups, turn to Section 6.4.

• The adduser script has been replaced with a symbolic link to /usr/sbin/useradd.

• The tools in the shadow-utils package are not Kerberos, NIS, hesiod, or LDAP enabled.
New users will be local only. For more information on Kerberos and LDAP, see Chapter
11 and Chapter 19.

Chapter 7.

X Servers and Clients

While the heart of Red Hat Linux is the kernel, for workstation users, the X environment is
the face of the operating system. The kernel provides the engine for everything that happens,
managing processes and resources virtually unseen. However, the day-to-day Linux users
spend the majority of their time in a graphical desktop environment, opening applications,
resizing windows, and scrolling through text.

This chapter is designed to serve as an introduction to the behind-the-scenes world of
XFree86 and how the X Window System — also called X — operates on your machine to
provide advanced desktop functionality.

7.1. The Power of X
Linux began as a powerful, server-based operating system, excelling at efficiently processing
complicated programs requiring high CPU utilization and handling requests from hundreds
or thousands of clients through network connections. However, because of its open nature
and stability, Linux has quickly developed into a popular GUI-based operating system for
workstations, both in the home or in the workplace.

In the UNIX world, windowing environments have existed for decades, predating many of
the current mainstream operating systems. UNIX machines utilize the X Window System,
which uses a client-server relationship for creating a graphical user interface (GUI) for the
user. An X server process is started that X client processes can connect to via a network or
local connection. The server process handles the communication with the hardware, such as
the video card, monitor, keyboard, and mouse. The X client exists in the userspace, issuing
requests to the X server for tasks to be performed using the hardware it controls.

On Red Hat Linux systems, the XFree86 server fills the role of the X server. As an open source
software project operating on a grand scope with hundreds of developers around the world,
XFree86 features rapid development, a wide degree of support for various hardware devices
and architectures, and the ability to run on different operating systems and platforms.

Most Red Hat Linux desktop users are unaware of the XFree86 server running on their sys-
tem. They are much more concerned with the particular desktop environment in which they
spend most of their time. The Red Hat Linux installation program does an excellent job of
configuring your XFree86 server during the installation process, ensuring that X performs
optimally when first started.

The X server performs many difficult tasks using a wide array of hardware, requiring a
very detailed configuration of certain files. If some aspect of your system changes, such
as the monitor or video card, XFree86 will need to be reconfigured. In addition, if you are
troubleshooting a problem with XFree86 that cannot be solved using a configuration utility,
such as Xconfigurator, you may need to access these configuration files.

Caution

Xconfigurator should not be used to configure XFree86 while the X server is active. If your system
defaults to starting up directly into X or runlevel 5, you should switch to runlevel 3 prior to running
Xconfigurator. If your system defaults to starting up in text mode, or runlevels 1 through 4, you
should make sure that the X server is not running while configuring X via Xconfigurator. Failure
to stop the X server before running Xconfigurator can cause hardware lockups and possibly data
corruption.

102 Chapter 7. X Servers and Clients

7.2. The XFree86 Server
Red Hat Linux uses XFree86 4 as the base X Window System, which includes the various nec-
essary X libraries, fonts, utilities, documentation, and development tools. To provide max-
imum compatibility with older hardware, as well as hardware that is not currently well
supported by XFree86 4, Red Hat Linux also provides the older XFree86 3 Server packages.
Both XFree86 server versions differ in design methodologies and, as such, vary in features
as well as configuration details.

The primary X server (XFree86 4) includes many cutting edge XFree86 technology enhance-
ments such as hardware 3D acceleration support, the XRender extension for anti-aliased
fonts, a modular driver based design, support for modern video hardware and input de-
vices, and many other features.

In contrast, the XFree86 3 server packages are standalone non-modular X servers, each of
which act as a display driver for specific video hardware. If you are using an XFree86 3
server, you must have the specific X server for your particular video card installed. These
older servers do not support many features found only in the newer XFree86 4 servers and
are only included for compatibility. The XFree86 3 backward compatibility servers are now
deprecated and will eventually be removed from future releases of Red Hat Linux.

The Red Hat Linux installation program installs the base components of XFree86, any op-
tional XFree86 packages you may choose to install, the XFree86 4 X server, and any XFree86
3 X server packages that may be needed for your hardware.

The X Window System resides primarily in two locations in the file system.

/usr/X11R6

A directory containing X client binaries (the bin directory), assorted header files (the
include directory), libraries (the lib directory), and manual pages (the man directory),
and various other X documentation (the /usr/X11R6/lib/X11/doc/ directory).

/etc/X11

The /etc/X11 directory hierarchy contains all of the configuration files for the various
components that make up the X Window System. This includes configuration files for
the X server itself, the font server (xfs), the X Display Manager (xdm), and many other
base components. Display managers such as gdm and kdm, as well as various window
managers, and other X tools also store their configuration in this hierarchy.

XFree86 version 4 server is a single binary executable — /usr/X11R6/bin/XFree86.
This server dynamically loads various X server modules at runtime from the
/usr/X11R6/lib/modules/ directory including video drivers, font engine drivers, and
other modules as needed. Some of these modules are automatically loaded by the server,
whereas some are optional features that you must specify in the XFree86 4 server’s
configuration file /etc/X11/XF86Config-4 before they can be used. The video drivers for
XFree86 4 are located in the /usr/X11R6/lib/modules/drivers/ directory. The DRI
hardware accelerated 3D drivers are located in the /usr/X11R6/lib/modules/dri/
directory.

XFree86 version 3 servers are individual X server binaries, each of which drive a certain
range of video hardware. The installed XFree86 server binaries can be found in the
/usr/X11R6/bin/ directory with names in the format of XF86_server-type, where
server-type is the name of the server used. There are many different XFree86 3 servers
including the basic XF86_VGA16 and XF86_SVGA servers, as well as more specialized
accelerated servers such as XF86_Mach64, XF86_S3, XF86_AGX.

Chapter 7. X Servers and Clients 103

7.2.1. XFree86 Server Configuration Files
The XFree86 server configuration files are stored in the /etc/X11/ directory. Since the
XFree86 4 and XFree86 3 servers use a different configuration file syntax which are
incompatible with each other, each has its own separate configuration file. The XFree86 4
server uses /etc/X11/XF86Config-4, while XFree86 3 uses /etc/X11/XF86Config for X
server configuration. When Red Hat Linux is installed, configuration files for both XFree86
versions are created using information gathered during the installation process. If you use
Xconfigurator to reconfigure a new video card, both configuration files are regenerated.

The configuration files are made up by a collection of sections, each of which defines a partic-
ular aspect of the XFree86 server’s operation. Many of the configuration sections are similar
in both files, however there are many differences also. One notable difference is that the
XF86Config-4 configuration file used by the XFree86 4 server contains new sections such
as ServerLayout and Module, that are not found in the version 3 configuration file. The
XFree86 4 server allows the usage of multiple input devices, such as mice, keyboards, and
drawing tablets. Each input device is presented in its own InputDevice section, where it is
assigned an identifying name that tells you about the device. The XFree86 3 server configures
the mouse and keyboard via the directives Keyboard and Pointer.

While there is rarely a need to manually edit these files, it is useful to know about the various
sections and optional parameters found in them.

Each section begins with a Section " 6 section-name 7 " line and ends with an EndSection
line. Within each of the sections, you will find several lines containing an option name and
at least one option value, occasionally seen in quotes. Given the similarities between the two
types of configuration files, the following list explores the most useful sections of an XFree86
version 4 file and the roles of various popular settings.

Device

Specifies information about the video card used by the system. You must have at least
one Device section in your configuration file. You may have multiple Device sections
in the case of multiple video cards or multiple settings that can run a single card. The
following options are required or widely used:

• BusID — Specifies the bus location of the video card. This option is only necessary for
systems with multiple cards and must be set so that the Device section will use the
proper settings for the correct card.

• Driver — Tells XFree86 which driver to load in order to use the video card.

• Identifier — Provides a unique name for this video card. Usually, this name is set
to the exact name of the video card used in the Device section.

• Screen — An optional setting used when a video card has more than one head, or
connector, to go out to a separate monitor. If you have multiple monitors connected to
one video card, separate Device sections must exist for each of them with a different
Screen value for each Device section. The value accepted by this option is a number
starting at 0 and increasing by one for each head on the video card.

• VideoRam— The amount of RAM available on the video card in kilobytes. This setting
is not normally necessary since the XFree86 server can usually probe the video card to
autodetect the amount of video RAM. But since there are some video cards XFree86
cannot correctly autodetect, this option allows you to specify the amount of video
RAM.

104 Chapter 7. X Servers and Clients

DRI

Direct Rendering Infrastructure (DRI) is an interface which primarily allows 3D software
applications to take advantage of the 3D hardware acceleration capabilities on modern
supported video hardware. In addition, DRI can improve 2D hardware acceleration per-
formance when using drivers that have been enhanced to use the DRI for 2D operations.
This section is ignored unless DRI is enabled in the Module section.

Since different video cards use DRI in different ways. Before changing any DRI val-
ues, read the /usr/X11R6/lib/X11/doc/README.DRIfile for specific information about
your particular video card.

Files

This section sets paths for services vital to the XFree86 server, such as the font path.
Common options include:

• FontPath— Sets the locations where the XFree86 server can find fonts. Different fixed
paths to directories holding font files can be placed here, separated by commas. By de-
fault, Red Hat Linux uses xfs as the font server and points FontPath to unix/:7100.
This tells the XFree86 server to obtain font information by using UNIX-domain sock-
ets for inter process communication.

See Section 7.5 for more information concerning XFree86 and fonts.

• ModulePath — Allows you to set up multiple directories to use for storing modules
loaded by the XFree86 server.

• RgbPath — Tells the XFree86 server where the RGB color database is located on the
system. This database file defines all valid color names in XFree86 and ties them to
specific RGB values.

InputDevice

Configures an input device such as a mouse or keyboard used to submit information
into the system using the XFree86 server. Most systems have at least two InputDevice
sections, keyboard and mouse. Each section includes these two lines:

• Driver — Tells XFree86 the name of the driver to load to use the device.

• Identifier — Sets the name of the device, usually the name of the device followed
by a number, starting with 0 for the first device. For example, the first keyboard In-
putDevice would have an Identifier of Keyboard0.

Most InputDevice sections contain lines that assign specific options to that particular
device. Each of these lines start with Option and contain the name of the option in
quotes, followed by the value to assign to that option. Mice usually receive options
such as Protocol, such as PS/2, and Device, which designates the mouse to use for
this section. The InputDevice section is well commented, allowing you to configure
additional options for your particular devices by uncommenting certain lines.

Module

Tells the XFree86 server which modules from the /usr/X11R6/lib/modules/ directory
to load. Modules provide the XFree86 server with additional functionality. You should
not edit these values.

Chapter 7. X Servers and Clients 105

Monitor

Refers to the type of monitor used by the system. While one Monitor section is the
minimum, there may be several Monitor sections, one for each monitor in use with the
machine.

Warning

Be careful when manually editing values in the options of the Monitor section. Inappropriate
values in this section could damage or destroy your monitor. Consult the documentation that
came with your monitor for the safe operating parameters available.

The following options are usually configured:

• HorizSync — Tells XFree86 the range of horizontal sync frequencies compatible with
the monitor in kHz. These values are used as a guide by the XFree86 server so that it
will know whether to use a particular Modeline entry’s values with this monitor.

• Identifier — Provides a unique name for this monitor, usually numbering each
monitor starting at 0. The first monitor would be named Monitor0, the second Moni-
tor1, and so on.

• Modeline — Used to specify the video modes used by the monitor at particular reso-
lutions, with certain horizontal sync and vertical refresh resolutions. Modeline entries
are usually preceded by a comment that explains what the mode line specifies.

If your configuration file does not include comments for the various mode lines, you
can scan over the values (or mode descriptions) to uncover what the mode line is at-
tempting to do. See the XF86Configman page for detailed explanations of each mode
description section.

• ModelName — An optional parameter that displays the model name of the monitor.

• VendorName — An optional parameter that displays the vendor that manufactured
the monitor.

• VertRefresh— Lists the vertical refresh range frequencies supported by the monitor,
in kHz. These values are used as a guide by the XFree86 server so that it will know
whether to use a particular Modeline entry’s values with this monitor.

Screen

Binds together a particular Device and Monitor that can be utilized as a pair and con-
tain certain settings. You must have at least one Screen section in your configuration
file. The following options are common:

• DefaultDepth — Tells the Screen section the default color depth to try in bits. 8 is
the default, 16 provides thousands of colors, and 32 displays millions of colors.

• Device — Signifies the name of the Device section to use with this Screen section.

• Identifier — Identifies the Screen section so that it can be referred to by a Server-
Layout section and be utilized.

• Monitor — Tells the name of the Monitor section to be used with this Screen section.

You may also have a Display subsection within the Screen section which tells the
XFree86 server the color depth (Depth) and resolution (Mode) to try first when using
this particular monitor and video card.

106 Chapter 7. X Servers and Clients

ServerFlags

Contains miscellaneous global XFree86 server settings. These settings may be overrid-
den by options placed in the ServerLayout section. Among the most useful settings:

• DontZap — Prevents the use of the [Ctrl]-[Alt]-[Backspace] key combination to imme-
diately terminate the XFree86 server.

• DontZoom — Prevents cycling through configured video resolutions using the [Ctrl]-
[Alt]-[Keypad-Plus] and [Ctrl]-[Alt]-[Keypad-Minus] key combinations.

ServerLayout

Binds together a Screen section with the necessary InputDevice sections and various
options to create a unified collection of preferences used by the XFree86 server as it
starts. If you have more than one ServerLayout section, and the one to use is not speci-
fied on the command line when bringing up the XFree86 server, the first ServerLayout
section in the configuration file is used.

The following options are used in a ServerLayout section:

• Identifier — A unique name used to describe this ServerLayout section.

• InputDevice — The names of any InputDevice sections to be used with the XFree86
server. Most users will only have two lines here, Keyboard0 and Mouse0, the first key-
board and mouse configured for the system. The options CoreKeyboard and Core-
Pointer refer to the fact that these are the preferred keyboard and mouse, respec-
tively, to use with the XFree86 server.

• Screen — The name of the Screen section to use. The number to the left of the name
of the Screen section refers to the particular screen number to use in a multi-head
configuration. For standard single-head video cards, this value is 0. The numbers to
the right give the X and Y absolute coordinates for the upper-left corner of the screen,
by default 0 0.

Below is an example of a typical screen entry:
Screen 0 "Screen0" 0 0

For more information, refer to the XF86Config man page.

To review the current configuration of your XFree86 server, type the xset -q command. This
provides you with information about your keyboard, pointer, screen saver, and font paths.

7.3. Desktop Environments and Window Managers
The configuration of an XFree86 server is useless until accessed by an X client that will use it
to display a program using the hardware controlled by the X server. X clients are programs
designed to take advantage of the X server’s hardware, usually to provide interactivity with
a user.

You do not have to run a complicated window manager in conjunction with a particular
desktop environment to use X client applications. Assuming that you are not already in an
X environment and do not have an .xinitrc file in your home directory, type the xinit

Chapter 7. X Servers and Clients 107

command to start X with a basic terminal window (the default xterm application). You will
see that this basic environment utilizes your keyboard, mouse, video card, and monitor with
the XFree86 server, using the server’s hardware preferences. Type exit at the xterm prompt
to leave this basic X environment.

Of course, most computer users require more features and utility from their GUI. Developers
have added layers of features to create highly developed and interactive environments that
utilize the full power of the XFree86 server. These layers break into two fundamental groups
based on their purpose.

7.3.1. Window Managers
Window managers are X client programs that control the way other X clients are positioned,
resized, or moved. Window managers can also provide titlebars to windows, keyboard focus
by keyboard or mouse, and user-specified key and mouse button bindings. Window man-
agers work with a collection of different X clients, wrapping around the program, making it
look a certain way and appear on the screen in a particular place.

A variety of window managers are included with Red Hat Linux:

• twm — The minimalist Tab Window Manager, which provides the most basic toolset of any
of the window managers.

• fvwm2 — A derivative of the twm window manager incorporating a 3D look with low
memory requirements.

• sawfish — The default window manager for the GNOME desktop environment, which
can be used without GNOME.

• wmaker — WindowMaker is a full-featured GNU window manager designed to emulate the
look and feel of the NEXTSTEP environment.

These window managers can be run as individual X clients to gain a better sense of their
differences. Type the xinit 8 path-to-window-manager 9 command, where 8 path-to-
window-manager 9 is the location of the window manager binary file. The binary file can be
found by typing which 8 window-manager-name 9 or by looking for the name of the win-
dow manager in a bin directory.

7.3.2. Desktop Environments
A desktop environment brings together assorted X clients that can be run together using similar
methods, utilizing a common development environment.

Desktop environments are different from window managers, which only control the appear-
ance and placement of X client windows. Desktop environments contain advanced features
that allow X clients and other running processes to communicate with one another. This
allows all applications written to work in that environment to commonly integrate and be
used in new ways, such as permitting drag-and-drop behavior with text.

GNOME is the default desktop environment for Red Hat Linux, using the GTK+ base wid-
get toolkit and miscellaneous other widgets that extend the base functionality. KDE, another
desktop environment, uses a different toolkit called Qt. GNOME and KDE both contain ad-
vanced productivity applications, such as word processors, spreadsheets, and control panel
devices that allow you to have complete control of the look-and-feel of your user experience.
Both environments can run standard X client applications, and most KDE applications can
run in GNOME, if the Qt libraries are installed.

When you start X using the startx command, a pre-specified desktop environment is uti-
lized. To change the default desktop environment used when X starts, open a terminal and

108 Chapter 7. X Servers and Clients

type the switchdesk command. This brings up a graphical utility that allows you to select
the desktop environment or window manager to use the next time X starts.

Desktop environments utilize window managers to provide the consistency in appearance
between different applications. KDE contains its own window manager, called kwm, specifi-
cally for this functionality.

For information on the customization of the GNOME and KDE desktop environments, see
the Official Red Hat Linux Getting Started Guide.

7.4. Runlevels
Most users run X from runlevels 3 or 5. Runlevel 3 places your system in multi-user mode
with full networking capabilities. The machine will boot to a text-based login prompt with
all necessary preconfigured services started. Most servers are run in runlevel 3, as X is not
necessary to provide any services utilized by most users. Runlevel 5 is similar to 3, except
that it automatically starts X and provides a graphical login screen. Many workstation users
prefer this method, because it never forces them to see a command prompt.

The default runlevel used when your system boots can be found in the /etc/inittab file. If
you have a line in that file that looks like id:3:initdefault:, then your system will boot to
runlevel 3. If you have a line that looks like id:5:initdefault:, your system is set to boot
into runlevel 5. As root, change the runlevel number in this file to set a different default.
Save the file and restart your system to verify that it boots to the correct runlevel. More
information on runlevels can be found in Section 3.4.

7.4.1. Runlevel 3: startx
When in runlevel 3, the preferred way to start an X session is to type the startx command.
startx, a front-end to the xinit program, launches the XFree86 server and connects the X
clients to it. Because you must already be logged into the system at runlevel 3 to be able to
type commands, startx is only designed to bring up certain X clients, such as a desktop
environment, in a particular manner. It does not provide any user authentication.

When startx begins, it looks for a .xinitrc file in the user’s home directory to define
the X clients to run. If it does not find that file present, it will run the system default
/etc/X11/xinit/xinitrc script instead. The startx script then does the same thing with
the .xserverrc file, looking for it in the user’s home directory and then running the
default /etc/X11/xinit/xserverrc script if it cannot be found. Since many different X
clients exist, the xinitrc files are very important. The xserverrc script is less important. It
only sets the X server to connect to the X clients. Since the default X server is already
configured with the /etc/X11/X link, Red Hat Linux does not install a default xserverrc.

The default xinitrc script then looks for user-defined files and default system files, includ-
ing .Xresources, .Xmodmap, and .Xkbmap in the user’s home directory and Xresources,
Xmodmap, and Xkbmap in the /etc/X11/ directory. The Xmodmap and Xkbmap files, if they ex-
ist, are used by the xmodmap utility to configure the keyboard. The Xresources files are read
to assign specific preference values to particular applications.

After setting these options, the xinitrc script executes all scripts located in the
/etc/X11/xinit/xinitrc.d/ directory. ne important script in this directory is xinput,
which configures settings such as the default language to use and the desktop environment
to start from (/etc/sysconfig/desktop).

Next, the xinitrc script tries to execute .Xclients in the user’s home directory and turns to
/etc/X11/xinit/Xclients if it cannot be found. The purpose of the Xclients file is to start
the desktop environment or, possibly, just a basic window manager. The .Xclients script in

Chapter 7. X Servers and Clients 109

the user’s home directory starts the user-specified desktop environment or window manager
in the .Xclients-default file. If .Xclients does not exist in the user’s home directory, the
standard /etc/X11/init/Xclients script attempts to start another desktop environment,
trying GNOME first and then KDE. If a desktop environment cannot be found by this point,
Xclients attempts the default window manager listed in the .wm_style file in the user’s
home directory. If this fails, it cycles through a predefined list of window managers.

The preferred X client applications should now have started by this point, along with the
XFree86 server. If you need more details concerning starting X in runlevel 3, refer to the
startx and xinit man pages and read through the scripts named above.

7.4.2. Runlevel 5: prefdm
Runlevel 5 uses a slightly different method to start X. When the system starts, no one is
logged into the system by default. In order for a user to start a session, they must log in
to the system. In runlevel 5, users authenticating themselves at the console use a display
manager, a special X client that allows the user to submit their login name and password.

Depending on the desktop environments installed on your specific Red Hat Linux system,
three different display managers are available to handle the user authentication. The xdm
display manager is the original X authentication tool. xdm only allows you to log in and start
an X session, nothing more. The gdm display manager, designed to work with the GNOME
desktop environment, and kdm display manager, used with the KDE desktop environment,
allow you to set the desktop environment, or session, you would like to use after authentica-
tion. Additionally, you can restart or halt the system from the login screen. The gdm display
manager also allows you to configure the language you would like to use.

When the system enters runlevel 5, a line in the /etc/inittab file specifies that the
prefdm script is executed in order to determine the preferred display manager to
bring up for user authentication. The prefdm script uses the preferences stated in
the /etc/sysconfig/desktop file to find the proper display manager. If no desktop
environment is specified, prefdm cycles through the gdm, kdm, and xdm display managers to
find one to use. Once one is found, prefdm launches it to handle the user login.

Each of the display managers look to the /etc/X11/xdm/Xsetup_0 file to set up the login
screen. Once the user logs into the system, the /etc/X11/xdm/GiveConsole script runs to
assign ownership of the console to the user. Then, the /etc/X11/xdm/Xsession script runs
to accomplish many of the tasks normally done by the xinitrc script when starting X in
runlevel 3, including setting system and user resources, as well as running the scripts in the
/etc/X11/xinit/xinitrc.d/ directory.

The user can specify which desktop environment they want to utilize when they authenticate
using the gdm or kdm display managers by selecting it from the Session menu. If the desktop
environment is not specified in the display manager, the /etc/X11/xdm/Xsession script
will check the .xsession and .Xclients files in the user’s home directory to decide which
desktop environment to load. As a last resort, the /etc/X11/xinit/Xclients file is used to
select a desktop environment or window manager to use in the same way as runlevel 3.

When the user finishes an X session on the default display (:0) and logs out, the
/etc/X11/xdm/TakeConsole script runs and reassigns ownership of the console to the root
user. The original display manager, which continued running after the user logged in, takes
control by spawning a new display manager. This restarts the XFree86 server, displays a
new login window, and starts the entire process over again.

For more information about how display managers control user authentication, read the xdm
man page.

110 Chapter 7. X Servers and Clients

7.5. Fonts
Red Hat Linux uses xfs (X Font Server) to provide fonts to the XFree86 server and the X
client applications that connect to it. While it is possible to not use xfs and place the paths to
font directories in your XF86Config and XF86Config-4 configuration files, xfs has several
advantages:

• It is easier to add and remove fonts, including editing the font path. The font path is a collection
of paths in the file system where font files are stored. The xfs service keeps the font path
out of the XFree86 configuration files, making it easier to edit.

• Fonts may be stored on one machine acting as a networked font server and can be shared among
multiple X servers over the network. A common set of fonts can be maintained in one place
and easily shared between all users.

• More types of fonts are supported. xfs can handle TrueType, Type1, and bitmap fonts.

The XFree86 configuration files know whether to use xfs or hard coded font paths because of
the FontPath setting in their Files sections. By default, the FontPath is set to unix/:7100.
This tells the XFree86 server to connect to port 7100 using an inner-machine communication
link. The xfs server listening on this port will respond with font information when queried
by the XFree86 server.

The xfs service must be running when X is started. If it is not, you will be returned to
a command prompt with an error similar to failed to set default font path
’unix/:7100’. Check to see if xfs is running using the ps aux | grep xfs command. By
default, xfs is set to start in runlevels 2, 3, 4, and 5, covering all runlevels where you
would run X. If xfs is not running on your system, you can start it as root using the
/sbin/service xfs start command. Use the /usr/sbin/ntsysv, serviceconf, or
/sbin/chkconfig utilities to force it to start at the correct runlevels. For more on
configuring services for a particular runlevel, refer to the chapter titled Controlling Access to
Services in the Official Red Hat Linux Customization Guide

7.5.1. xfs Configuration
The /etc/rc.d/init.d/xfs script starts the xfs server. Several options can be configured
in the /etc/X11/fs/config file:

• alternate-servers — Sets a list of alternate font servers to be used if this font server is
not available. A comma must separate every font server in the list.

• catalogue — An ordered list of font paths to use that contain the font files. A comma
must follow every font path before a new font path can be started in the list.

You can use the string :unscaled immediately after the font path to make the unscaled
fonts in that path load first. Then, you can specify the entire path again, so that other scaled
fonts will also be loaded.

• client-limit — Sets the number of clients this font server will service before refusing to
handle any more. The default is 10.

• clone-self — Decides if the font server will clone a new version of itself when the
client-limit is hit. By default, this option is on. Set it to off to disable this feature.

• default-point-size — Sets the default point size for any font that does not specify this
value. The value for this option is set in decipoints. The default of 120 corresponds to 12
point fonts.

Chapter 7. X Servers and Clients 111

• default-resolutions — Specifies a list of resolutions supported by the XFree86 server.
Each resolution in the list must be separated by a comma.

• deferglyphs — Tells xfs whether to defer the loading of glyphs, which is an image used
to visually represent a font. You can disable this feature (none), enable this feature for all
fonts (all), or turn this this feature on only for 16-bit fonts (16), which are largely used
with Asian languages.

• error-file — Allows you to specify the path and file name of a locations where xfs
errors can be logged.

• no-listen — Tells xfs not to listen using a particular protocol. By default, this option is
set to tcp to prevent xfs from listening on TCP ports, primarily for security reasons. If
you plan on using xfs to serve fonts to networked workstations on a LAN, you need to
remove the tcp from this line.

• port — Specifies the TCP port that xfs will listen on if no-listen does not exist or is
commented out.

• use-syslog — Tells xfs to use the system error log if set to on.

7.5.2. Adding Fonts
When using xfs, adding fonts to your system is rather straightforward. Use the chkfont-
path --list command to see the font paths currently configured on your system. To add
new fonts in a new directory, follow these instructions as the root user:

1. Create a font directory, such as /usr/share/fonts and place the fonts inside that di-
rectory. Be sure to set the permissions correctly; it is only necessary that the files can be
read, no other permissions are necessary.

2. Type the chkfontpath --add : font-directory-path ; command, where the
: font-directory-path ; is the full path to the directory holding the fonts. This will
add this font path to the xfs configuration file.

Note

You must have a fonts.dir file in your new font directory for the chkfontpath command to
work correctly. The creation of the fonts.dir file, as well as any other files used by xfs with
these fonts, is beyond the scope of this document.

Many font collections available for Linux include these files for you, it may not be necessary to
create them by hand.

3. Restart xfs using the /sbin/service xfs restart command. You will also need to
restart your X session.

4. Typing the chkfontpath --list command will show the new font path. Any fonts
you added will be available for use.

The Red Hat Support website contains more information on this subject, see:

http://www.redhat.com/support for additional help documents.

112 Chapter 7. X Servers and Clients

7.6. Additional Resources
Much more can be said about the XFree86 server, the clients that connect to it, and the as-
sorted desktop environments and window managers. Advanced users interested in tweak-
ing their XFree86 configuration will find these additional sources of information useful.

7.6.1. Installed Documentation

• /usr/X11R6/lib/X11/doc — Contains assorted documentation for XFree86, including:

• README — Briefly describes the XFree86 architecture and how to get additional informa-
tion about the XFree86 project as a new user.

• README.Config — Explains the advanced configuration options open to XFree86 ver-
sion 3 users.

• RELNOTES — For advanced users that want to read about the latest features available in
XFree86.

• The following man pages cover particular aspects of the XFree86 server and configuring a
Linux system to use an X environment:

• SuperProbe — Provides an explanation of the SuperProbe program and useful options
that can be used when it is run from the command line.

• Xconfigurator — Looks at how the Xconfigurator program configures various as-
pects of the XFree86 server, examining the advanced options available that can save
you time.

• XF86Config — Contains information about the XFree86 configuration files, including
the meaning and syntax for the different sections within the files.

• XFree86— The primary man page for all XFree86 information, details the difference be-
tween local and network X server connections, explores common environmental vari-
ables, lists command line options, and provides helpful administrative key combina-
tions.

• Xserver— Focuses on the display server that X clients utilize, locally or over a network
connection.

7.6.2. Useful Websites

• http://www.xfree86.org — Home page of the XFree86 project, which produces the
XFree86 open source version of the X Window System. XFree86 is bundled with Red Hat
Linux to control the necessary hardware and provide a GUI environment.

• http://dri.sourceforge.net — Home page of the DRI (Direct Rendering Infrastructure)
project. The DRI is the core hardware 3D acceleration component of XFree86, and their
website proves various resources that may prove helpful.

• http://www.redhat.com/mirrors/LDP/HOWTO/XFree86-HOWTO — A HOWTO doc-
ument detailing the manual installation and custom configuration of XFree86.

• http://www.gnome.org — The home of the GNOME project.

• http://www.kde.org — The home of the KDE desktop environment.

Chapter 7. X Servers and Clients 113

7.6.3. Related Books

• The Concise Guide to XFree86 for Linux by Aron Hsiao; Que — Provides an expert’s view
concerning the operation of XFree86 on Linux systems.

• The New XFree86 by Bill Ball; Prima Publishing — Provides a good, overall look at XFree86
and its relationship with the popular desktop environments, such as GNOME and KDE.

• Beginning GTK+ and GNOME by Peter Wright; Wrox Press, Inc. — Introduces program-
mers to the GNOME architecture, showing them how to get started with GTK+.

• GTK+/GNOME Application Development by Havoc Pennington; New Riders Publishing —
An advanced look into the heart of GTK+ programming, focusing on sample code and a
thorough look at the APIs available.

• KDE 2.0 Development by David Sweet and Matthias Ettrich; Sams Publishing — Instructs
beginning and advanced developers in how to take advantage of the many environment
guidelines required to built QT applications for KDE.

114 Chapter 7. X Servers and Clients

Security Reference

Chapter 8.

Pluggable Authentication Modules (PAM)

Programs that give privileges to users must properly authenticate each user. When you log
into a system, you provide your username and password, and the log in process uses this
username and password to verify your identity.

Pluggable Authentication Modules (PAM) allows the system administrator to set authentication
policies for PAM-aware applications without having to recompile authentication programs.
PAM does this by utilizing a pluggable, modular architecture. Which modules PAM calls for
a particular application is determined by looking at that application’s PAM configuration
file in the /etc/pam.d/ directory.

In most situations, you will never need to alter the default PAM configuration files for a
PAM-aware application. Whenever you use RPM to install programs that require authenti-
cation, they automatically make the changes necessary to do normal password authentica-
tion using PAM. However, if you need to customize the PAM configuration file, you must
understand the structure of this file (see Section 8.2 for more information).

8.1. Advantages of PAM
When used correctly, PAM provides the following advantages for a system administrator:

• It provides a common authentication scheme that can be used with a wide variety of ap-
plications.

• It allows great flexibility and control over authentication for both the system administrator
and application developer.

• It allows application developers to develop their program without implementing a partic-
ular authentication scheme. Instead, they can focus purely on the details of their program.

8.2. PAM Configuration Files
The directory /etc/pam.d/ contains the PAM configuration files for PAM-aware applica-
tions. In earlier versions of PAM, the file /etc/pam.conf was used, but this file is now dep-
recated. The pam.conf file is only read if the /etc/pam.d/ directory is not found.

Each PAM-aware application (or service, as applications designed to be used by many users
are commonly known) has its own file within the /etc/pam.d/ directory.

These files have a specific layout containing calls to modules usually located in the
/lib/security/ directory. Additionally, each line within a PAM configuration file must
specify a module type, a control flag, a path to the module, and, sometimes, module
arguments.

8.2.1. PAM Service Names
Each PAM configuration file in the /etc/pam.d/ directory is named after the service for
which it controls access. It is up to the PAM-aware program to define its service name and
install its PAM configuration file in the pam.d directory. For example, the login program
defines its service name as /etc/pam.d/login.

118 Chapter 8. Pluggable Authentication Modules (PAM)

In general, the service name is the name of the program used to access the service, not the
program used to provide the service. This is why the service wu-ftpd, defines its service name
as /etc/pam.d/ftp.

The next four sections will describe the basic format of PAM configuration files and how
they use PAM modules to perform authentication for PAM-aware applications.

8.3. PAM Modules
There are four types of PAM modules used to control access to services. These types correlate
to different aspects of the authorization process:

• auth — used to authenticate the user by, for example, asking for and checking a password.
It can also set credentials, such as group membership or Kerberos tickets.

• account — used to make sure access is allowed. For example, it could check if the account
has expired. Or it could check if the user is allowed to log in at a particular time of day.

• password — used to set passwords.

• session — used after a user has been authenticated to manage the user’s session. This
module type can also perform additional tasks which are needed to allow access (for ex-
ample, mounting the user’s home directory or making their mailbox available).

Note

An individual module can address more than one of the above module types. For instance
pam_unix.so has components which address all four.

In a PAM configuration file, the module type is the first aspect defined. For example a typical
line in a configuration may look like this:

auth required /lib/security/pam_unix.so

This instructs PAM to look at the auth component of the pam_unix.so module.

8.3.1. Stacking Modules
Modules can be stacked, or placed upon one another, so that multiple modules are used to-
gether for a particular purpose. Therefore the order of the modules is very important in the
authentication process.

Stacking makes it very easy for an administrator to require several conditions to exist before
allowing user authentication. For example, rlogin normally uses five stacked auth mod-
ules, as seen in its PAM configuration file:

auth required /lib/security/pam_nologin.so
auth required /lib/security/pam_securetty.so
auth required /lib/security/pam_env.so
auth sufficient /lib/security/pam_rhosts_auth.so
auth required /lib/security/pam_stack.so service=system-auth

Before someone is allowed to use rlogin, PAM verifies that the /etc/nologin file does
not exist, that they are not trying to log in remotely as root over an unencrypted network

Chapter 8. Pluggable Authentication Modules (PAM) 119

connection, and that any environmental variables can be loaded. Then, a successful rhosts
authentication is performed before the connection is allowed. If rhosts authentication fails,
then standard password authentication is performed.

8.3.2. Creating Modules
New PAM modules can be added at any time, and PAM-aware applications can then use
them. For example, if you create a one-time-password creation method and write a PAM
module to support it, PAM-aware programs can immediately use the new module and pass-
word method without being recompiled or otherwise modified. This is very beneficial be-
cause it lets you mix-and-match, as well as test, authentication methods for different pro-
grams without having to recompile them.

Documentation on writing modules is included with the system in the
/usr/share/doc/pam-version-number/directory.

8.4. PAM Module Control Flags
All PAM modules generate a success or failure result when checked. Control flags tell PAM
what do with the result. Since modules can be stacked in a particular order, control flags give
you the ability to set the importance of a module in respect to the modules that follow it.

Again, consider the rlogin PAM configuration file:

auth required /lib/security/pam_nologin.so
auth required /lib/security/pam_securetty.so
auth required /lib/security/pam_env.so
auth sufficient /lib/security/pam_rhosts_auth.so
auth required /lib/security/pam_stack.so service=system-auth

Important

The order in which required modules are called is not critical. The sufficient and requisite
control flags is what causes order to become important. See below for an explanation of each type
of control flag.

After the module type is specified, the control flags decide how important the success or fail-
ure of that particular module should be in the overall goal of allowing access to the service.

Four types of control flags are defined by the PAM standard:

• required — the module must be successfully checked in order to allow authentication. If
a required module check fails, the user is not notified until all other modules of the same
module type have been checked.

• requisite — the module must be successfully checked in order for the authentication to
be successful. However, if a requisite module check fails, the user is notified immedi-
ately with a message reflecting the first failed required or requisite module.

• sufficient — the module checks are ignored if it fails. But, if a sufficient flagged
module is successfully checked and no required flagged modules above it have failed,
then no other modules of this module type are checked and the user is authenticated.

120 Chapter 8. Pluggable Authentication Modules (PAM)

• optional — the module checks are ignored if it fails. If the module check is successful,
it does not play a role in the overall success or failure for that module type. The only
time a module flagged as optional is necessary for successful authentication is when no
other modules of that type have succeeded or failed. In this case, an optional module
determines the overall PAM authentication for that module type.

A newer control flag syntax allowing for even more control is now available for PAM. Please
see the PAM docs located in the /usr/share/doc/pam-version-number/ directory for in-
formation on this new syntax.

8.5. PAM Module Paths
Module paths tell PAM where to find the pluggable module to be used with the
module type specified. Usually, it is provided as the full path to the module, such as
/lib/security/pam_stack.so. However, if the full path is not given (in other words,
the path does not start with a /), then the module indicated is assumed to be in the
/lib/security/ directory — the default location for PAM modules.

8.6. PAM Module Arguments
PAM uses arguments to pass information to a pluggable module during authentication for
a particular module type. These arguments allow the PAM configuration files for particular
programs to use a common PAM module but in different ways.

For example, the pam_userdb.so module uses secrets stored in a Berkeley DB file to authen-
ticate the user. Berkeley DB is an open source database system designed to be embedded
in many applications to track information. The module takes a db argument, specifying the
Berkeley DB filename to use, which can be different for different services.

So, the pam_userdb.so line in a PAM configuration file look like this:

auth required /lib/security/pam_userdb.so db=path/to/file

Invalid arguments are ignored and do not otherwise affect the success or failure of the
PAM module. When an invalid argument is passed, an error is usually written to
/var/log/messages file. However, since the reporting method is controlled by the PAM
module, the module must be written correctly to log the error to this file.

8.7. Sample PAM Configuration Files
Below is a sample PAM application configuration file:

#%PAM-1.0
auth required /lib/security/pam_securetty.so
auth required /lib/security/pam_unix.so shadow nullok
auth required /lib/security/pam_nologin.so
account required /lib/security/pam_unix.so
password required /lib/security/pam_cracklib.so retry=3
password required /lib/security/pam_unix.so shadow nullok use_authtok
session required /lib/security/pam_unix.so

The first line is a comment as is any line starting with a # character. Lines two through four
stack three modules for login authentication.

auth required /lib/security/pam_securetty.so

Chapter 8. Pluggable Authentication Modules (PAM) 121

This line makes sure that if the user is trying to log in as root, the tty on which they are
logging in is listed in the /etc/securetty file, if that file exists.

auth required /lib/security/pam_unix.so nullok

This line causes the user to be asked for a password and then checks the password using the
information stored in /etc/passwd and, if it exists, /etc/shadow. The pam_unix.somodule
automatically detects and utilizes shadow passwords stored in /etc/shadow to authenticate
users. Please refer to the Section 6.5 for more information on shadow passwords.

The argument nullok instructs the pam_unix.so module to allow a blank password.

auth required /lib/security/pam_nologin.so

This is the final authentication step. It checks to see if the file /etc/nologin exists. If nologin
does exist and the user is not root, authentication fails.

Note

In this example, all three auth modules are checked, even if the first auth module fails. This prevents
the user from knowing at what stage their authentication failed. Such knowledge in the hands of an
attacker could allow them to more easily deduce how to crack the system.

account required /lib/security/pam_unix.so

This line causes any necessary account verification to be done. For example, if shadow pass-
words have been enabled, the account component of the pam_unix.so module will check to
see if the account has expired or if the user has not changed their password within the grace
period allowed.

password required /lib/security/pam_cracklib.so retry=3

If a password has expired, the password component of the pam_cracklib.so module
prompts for a new password. It then tests the newly created password to see whether the it
can easily be determined by a dictionary-based password cracking program. If it fails this
test the first time, it gives the user two more chances to create a strong password, due to the
retry=3 argument.

password required /lib/security/pam_unix.so shadow nullok use_authtok

This line specifies that if the program changes the user’s password, it should use the pass-
word component of the pam_unix.so module to do so. This will happen only if the auth
portion of the pam_unix.so module has determined that the password needs to be changed
— for example, if a shadow password has expired.

The argument shadow tells the module to create shadow passwords when updating a user’s
password.

The argument nullok instructs the module to allow the user to change their password from
a blank password, otherwise a null password is treated as an account lock.

The final argument on this line, use_authtok, provides a good example of how one can stack
PAM modules. This argument tells the module not to prompt the user for a new password.
Instead it is to accept any password that passes through previous password module. This
way all new passwords must pass the pam_cracklib.so test for secure passwords before
being accepted.

122 Chapter 8. Pluggable Authentication Modules (PAM)

session required /lib/security/pam_unix.so

The final line specifies that the session component of the pam_unix.so module will manage
the session. This module logs the username and the service type to /var/log/messages at
the the beginning and end of each session. It can be supplemented by stacking it with other
session modules if you need more functionality.

The next example will review the auth configuration for rlogin:

#%PAM-1.0
auth required /lib/security/pam_nologin.so
auth required /lib/security/pam_securetty.so
auth required /lib/security/pam_env.so
auth sufficient /lib/security/pam_rhosts_auth.so
auth required /lib/security/pam_stack.so service=system-auth

First, pam_nologin.so checks to see if /etc/nologin exists. If is does, no one can log in
except for root.

auth required /lib/security/pam_securetty.so

The pam_securetty.somodule then prevents root logins from occurring on insecure termi-
nals. This effectively disallows all root rlogin attempts for security reasons. If you need to
log in as root, use OpenSSH instead. For more information on the SSH protocol, see Chapter
10.

auth required /lib/security/pam_env.so

The pam_env.so module loads the environmental variables specified in
/etc/security/pam_env.conf.

auth sufficient /lib/security/pam_rhosts_auth.so

The pam_rhosts_auth.so modules then authenticates the user using .rhosts in the user’s
home directory. If this succeeds, PAM immediately authenticates the rlogin session. If
pam_rhosts_auth.so fails to authenticate the user, this failed authentication attempt is
ignored.

auth required /lib/security/pam_stack.so service=system-auth

If the pam_rhosts_auth.somodule fails to authenticate the user, the pam_stack.somodule
performs normal password authentication.

The argument service=system-authmeans the user must now pass through the PAM con-
figuration for system authorization found in /etc/pam.d/system-auth.

Note

If you do not want to prompt for a password when the securetty check fails and determines that
the user is trying to login as root remotely, you can change the pam_securetty.so module from
required to requisite.

Chapter 8. Pluggable Authentication Modules (PAM) 123

8.8. PAM and Device Ownership
Red Hat Linux allows the first privileged user to log in on the physical console of the ma-
chine the ability to manipulate devices and perform tasks normally reserved for root. This is
done through a PAM module called pam_console.so.

8.8.1. Device Ownership
When a user logs into a machine under Red Hat Linux, the pam_console.so module is
called by login or the graphical login program, gdm. If this user is the first user to log in at
the physical console — called the console user — the module grants ownership of a variety
of devices normally owned by root. The console user owns these devices until the last local
session for that user ends. Once the user has logged out, ownership of the devices reverts
back to their default values.

The devices affected include, but are not limited to, sound cards, floppy drives, and CD-
ROM drives.

This allows a local user to manipulate these devices without attaining root, thus simplifying
common tasks for the console user.

You can edit the list of devices controlled by pam_console.so in the file
/etc/security/console.perms.

8.8.2. Application Access
The console user is also allowed access to any program with a file bearing the command
name in the /etc/security/console.apps/ directory. These files do not need to contain
any data, but must have the exact name of the to which command they correspond.

One notable group of applications the console user has access to are three programs which
shut off or reboot the system. These are:

• /sbin/halt

• /sbin/reboot

• /sbin/poweroff

Because these are PAM-aware applications, they call the pam_console.so as a requirement
for use.

For more information see the man pages for pam_console, console.perms, and
console.apps.

8.9. Additional Resources
Much more information about PAM is available than what is covered in this chapter. Various
additional sources of information exist and will prove invaluable in helping to configure and
use PAM on your system.

8.9.1. Installed Documentation

• pam man page — Good introductory information on PAM, including the structure and
purpose of the PAM configuration files.

124 Chapter 8. Pluggable Authentication Modules (PAM)

• /usr/share/doc/pam-version-number — Contains a System Administrators’ Guide, a
Module Writers’ Manual, and an Application Developers’ Manual. Also contains a copy of
the PAM standard, DCE-RFC 86.0.

8.9.2. Useful Websites

• http://www.kernel.org/pub/linux/libs/pam — The primary distribution website for the
Linux-PAM project, containing information on various PAM modules, a FAQ, and addi-
tional PAM documentation.

In addition to these sources, you should read as many configuration file examples as possible
when beginning to work with PAM.

Chapter 9.

TCP Wrappers and xinetd

Controlling access to network services can be a challenge. Firewalls are useful for controlling
access in and out of a particular network, but they can be difficult to configure. TCP wrap-
pers and xinetd control access to services by hostname and IP addresses. In addition, these
tools also include logging and utilization management capabilities that are easy to configure.

9.1. Purpose of TCP Wrappers
Many modern network services, such as SSH, Telnet, and FTP, make use of TCP wrappers, a
program that is designed to stand between an incoming request and the requested service.
TCP wrappers is installed by default with a server-class installation of Red Hat Linux, pro-
viding many advantages over running a variety of different services, each with their own
access control methods.

The idea behind TCP wrappers is that client requests to server applications are "wrapped"
by an authenticating service, allowing a greater degree of access control and logging of who
is attempting to use the service, rather than the usual method of direct client connections to
a service.

The functionality behind TCP wrappers is provided by libwrap.a, a library that network
services, such as xinetd, sshd, and portmap, are compiled against. Additional network ser-
vices, even networking programs you may write, can be compiled against libwrap.a to
provide this functionality. Red Hat Linux bundles the necessary TCP wrapper programs
and library in the tcp_wrappers- < version = RPM file.

9.1.1. TCP Wrapper Advantages
When a user attempts to gain client access to a network service that is using TCP wrappers,
a small wrapper program reports the name of the service requested and the client’s host in-
formation. The wrapper program does not directly send any information back to the client,
and after the access control directives are satisfied, the wrapper is unloaded and frees any re-
sources associated with it. The client and the server can then resume actions without further
wrapper intervention.

TCP wrappers provide two basic advantages over other network service control techniques:

• The connecting client is unaware that TCP wrappers are in use. Legitimate users will not notice
anything different, and attackers never receive any additional information about why their
attempted connections have failed.

• TCP wrappers operate in a manner that is separate from the applications the wrapper program
protects. This allows many applications to share a common set of configuration files for
simpler management.

9.2. Host-Based Access Control Lists
Host-based access for services that use TCP wrappers is controlled by two files: hosts.allow
and hosts.deny. These files, located in the /etc directory, use a simple format to control
access by particular systems or users to certain services on a server.

126 Chapter 9. TCP Wrappers and xinetd

The default rule is to allow anyone to access to the services if no rules are specified in either
hosts.allow or hosts.deny. Rules in hosts.allow take precedence over rules specified in
hosts.deny. Even if a rule specifically denying all access to a particular service is defined
in hosts.deny, hosts specifically given access to the service in hosts.allow are allowed to
access it. All rules in each file take effect from the top down, so the order in which the rules
are placed can be important.

Any changes to these files take effect immediately on the affected services; restarting of the
services is not required.

9.2.1. Formatting Rules
All access control rules are placed on lines within hosts.allow and hosts.deny, and any
blank lines or lines that start with the comment character (#) are ignored. Each rule needs to
be on a separate line.

The rules must be formatted in the following manner:

>
daemon_list ? : > client_list ? [: spawn

>
shell_command ?]

Each of these options refer to a different part of the rule:

• daemon_list— A collection of one or more process names or special wildcards, separated
by whitespace.

• client_list— One or more hostnames, host addresses, patterns, or wildcards, separated
by whitespace, to use when a particular process name matches a requested service.

• shell_command — An optional component that specifies something to be done in the
event a rule is utilized.

Patterns are particularly helpful when specifying groups of clients that may or may not
access a certain service. By placing a "." character at the beginning of a string, all hosts
that share the end of that string are applied to that rule. So, .domain.com would catch both
system1.domain.com and system2.domain.com. The "." character at the end of a string has
the same effect, except going the other direction. This is primarily used for IP addresses,
as a rule pertaining to 192.168.0. would apply to the entire class C block of IP addresses.
Netmask expressions can also be used as a pattern to control access to a particular group of
IP addresses. You can even use asterisks (*) or question marks (?) to select entire groups of
hostnames or IP addresses, so long as you do not use them in the same string as the other
types of patterns.

If your list of hostnames that may access a particular service is too long or is difficult to
control within host.allow or hosts.deny, you can also specify the full path to a file (such as
/etc/telnet.hosts.deny). This file should contain different hostnames, host addresses, or
patterns, separated by whitespace, that you want to allow or deny access to that service. This
method also works well to share access control lists between various services, as changes
would only need to be made in one file to affect each service.

The following wildcards may be used in the access control rules instead of using specific
hosts or groups of hosts:

• ALL — Matches every client with that particular service or even every service using access
control. The ALL wildcard can also apply to daemons.

• LOCAL — Matches any host that does not contain a "." character.

• KNOWN — Matches any host where the hostname and host address are known or where the
user is known.

Chapter 9. TCP Wrappers and xinetd 127

• UNKNOWN — Matches any host where the hostname or host address are unknown or where
the user is unknown.

• PARANOID — Matches any host where the hostname does not match the host address.

Caution

The KNOWN, UNKNOWN, and PARANOID wildcards should be used very carefully, as a disruption in name
resolution may make prevent legitimate users from gaining access to a network service.

The access control language also contains a powerful operator, EXCEPT, which allows sepa-
rate lists to be combined within the same rule line. When EXCEPT is used between two lists,
the first list applies unless an entry from the second list matches an entity covered by the first
list. EXCEPT can be used with daemon or client lists. Consider the following hosts.allow ex-
ample:

all domain.com hosts are allowed to connect
to all services except cracker.domain.com
ALL: .domain.com EXCEPT cracker.domain.com

123.123.123.* addresses can use all services except FTP
ALL EXCEPT in.ftpd: 123.123.123.

Note

Organizationally, it usually makes more sense to use EXCEPT operators sparingly, choosing instead to
place the exceptions to the rule in the other access control file. This allows all administrators to quickly
scan the appropriate files to see what hosts should be allowed or denied access to which services,
without having to work through various EXCEPT operators and work out the appropriate logic.

The best way to manage access control with hosts.allow and hosts.deny is to use the
two files together to achieve the desired results. Users that wish to prevent any hosts other
than specific ones from accessing services usually place ALL: ALL in hosts.deny. Then,
they place lines in hosts.allow, such as portmap, in.telnetd: 10.0.1.24 or in.ftpd:
10.0.1. EXCEPT 10.0.1.1, to selectively let certain hosts in.

Alternatively, some administrators allow anyone to use network services except for spe-
cific hosts. In this case, nothing is placed in hosts.allow and any necessary restrictions are
placed in hosts.deny, such as in.fingerd: 192.168.0.2.

Warning

Be very careful about using hostnames and domain names in both access control files, especially
hosts.deny. Various tricks could be used by an attacker to circumvent rules specifying them by
name. In addition, if your system selectively allows access based on hostname and domain name
information, any disruption in DNS service would prevent even authorized users from using network
services.

Using IP addresses whenever possible can prevent many problems when constructing access control
rules, especially those that deny access.

128 Chapter 9. TCP Wrappers and xinetd

Beyond simply allowing or denying access to services for certain hosts, the access control
language also supports the use of shell commands when that rule is utilized. These shell
commands are most commonly used with deny rules to set up booby traps, which usually
trigger actions that log information about failed attempts to a special file or email an admin-
istrator. This is an example of a booby trap located in the hosts.deny file which will write
a log line containing the date and client information every time a host from the 10.0.1.0 to
10.0.1.255 range attempts to connect via Telnet:

in.telnetd: 10.0.1.: spawn (/bin/echo ‘date‘ %c >> /var/log/telnet.log) &

Various expansions containing specific information about the client, server, and process in-
volved are available to the shell commands:

• %a — The client’s IP address.

• %A — The server’s IP address.

• %c — Various types of client information, such as the username and hostname, or the
username and IP address.

• %d — The daemon process name.

• %h — The client’s hostname (or IP address, if the hostname is unavailable).

• %H — The server’s hostname (or IP address, if the hostname is unavailable).

• %n — The client’s hostname. If unavailable, unknown is printed. If the client’s hostname
and host address do not match, paranoid is printed.

• %N — The server’s hostname. If unavailable, unknown is printed. If the server’s hostname
and host address do not match, paranoid is printed.

• %p — The daemon process ID.

• %s — Various types of server information, such as the daemon process and the host or IP
address of the server.

• %u — The client’s username. If unavailable, unknown is printed.

For a full examination of shell commands, as well as some additional access control exam-
ples, review the hosts_access(5)man page.

Note

Special attention must be given to portmap when using it with host access control lists. Only IP
addresses or the ALL option should be used when specifying hosts to allow or deny, as host names
are not supported. In addition, changes to the host access control lists that concern portmap may
not take affect immediately.

As widely used services, such as NIS and NFS, depend on portmap to operate, be aware of these
limitations before depending on hosts.allow and hosts.deny to control access by certain hosts.

9.3. Access Control Using xinetd

The benefits offered by TCP wrappers are ehnhanced when the libwrap.a library is used in
conjunction with xinetd, a super-daemon that provides additional access, logging, binding,
redirection and resource utilization control.

Chapter 9. TCP Wrappers and xinetd 129

Red Hat Linux configures a variety of popular network services to be used with xinetd,
including FTP, IMAP, POP, and Telnet. When any of these services are accessed via their
port numbers in /etc/services, the xinetd daemon handles the request. Before bringing
up the requested network service by the correct user, xinetd ensures that the client host
information meets the access control rules, the number of instances of this service is under a
particular threshold, and any other rules specified for that service or all xinetd services are
followed. Once the target service is brought up for the connecting client, xinetd goes back
to sleep, waiting for additional requests for the services it manages.

9.3.1. xinetd Configuration Files
The xinet service is controlled by the /etc/xinetd.conf file, as well as the various service-
specific files in the /etc/xinetd.d directory.

9.3.1.1. /etc/xinetd.conf

The xinetd.conf file is the parent of all xinetd-controlled service configuration files, as
the service-specific files are also parsed every time xinetd starts. By default, xinetd.conf
contains some basic configuration settings that apply to every service:

defaults
{
instances = 60

log_type = SYSLOG authpriv
log_on_success = HOST PID
log_on_failure = HOST

}

includedir /etc/xinetd.d

These lines control various aspects of how xinetd does its job:

• instances — Sets the maximum number of requests a particular service can handle at
once.

• log_type — Tells xinetd to use the authpriv log, specified in /etc/syslog.conf
and set to /var/log/secure by default, rather than using another specific file. Using
FILE /var/log/xinetdlog here instead would move xinetd logging to a separate
/var/log/xinetdlog file.

• log_on_success — Lets xinetd know what to log if the connection is successful. By de-
fault, the remote host’s IP address and the process ID of server processing the request are
recorded.

• log_on_failure — Tells xinetd what to log if the connection fails or is not allowed. The
log_on_success and log_on_failure settings in /etc/xinetd.conf are often added to
by each of the different services, meaning that successful and failed connections by each
service will usually log more than what is indicated here.

Various logging options are available for use in /etc/xinetd.conf and the service-specific
xinetd configuration files:

• ATTEMPT — Logs the fact that a failed attempt was made. (log_on_failure)

• DURATION — Logs the length of time the service is used by a remote system.
(log_on_success)

• EXIT — Logs the exit status or termination signal of the service. (log_on_success)

130 Chapter 9. TCP Wrappers and xinetd

• HOST — Logs the remote host’s IP address. (log_on_failure and log_on_success)

• PID — Logs the process ID of the server receiving the request. (log_on_success)

• RECORD — Records information about the remote system in the case the service cannot
be started. Only particular services, such as login and finger, may use this option.
(log_on_failure)

• USERID — Logs the remote user using the method defined in RFC 1413 for all multi-
threaded stream services. (log_on_failure and log_on_success)

Other options for /etc/xinetd.conf are available, such as per_source, which limits the
maximum number of connections from a particular IP address to a specific service.

9.3.1.2. Files in the /etc/xinetd.d Directory

The various files in the /etc/xinetd.d directory are read every time xinetd starts, due to
the includedir /etc/xinetd.d statement at the bottom of /etc/xinetd.conf. These files,
with names such as finger, ipop3, and rlogin, relate to the various services controlled by
xinetd.

The files in /etc/xinetd.d use the same conventions and options as what is seen in
/etc/xinetd.conf. The primary reason they are in separate configuration files, one for
each service, is to make it easier to add and remove services from the domain of xinetd
without affecting its other services.

To get an idea of how these files are structured, consider the wu-ftp file:

service ftp
{

socket_type = stream
wait = no
user = root
server = /usr/sbin/in.ftpd
server_args = -l -a
log_on_success += DURATION USERID
log_on_failure += USERID
nice = 10
disable = yes

}

The first line defines the service’s name that is being configured. Then, the lines within the
brackets contain a variety of different settings that define how this service is supposed to be
started and used. The wu-ftp file states that the FTP service uses a streaming socket type
(rather than dgram), the binary executable file to use, the arguments to pass to the binary, the
information to log in addition to the /etc/xinetd.conf settings, the priority with which to
run the service, and more.

The use of xinetd with a particular service also can serve as a basic level of protection from
a Denial of Service (DoS) attack. The max_load option takes a floating point value to set a
CPU usage threshold when no more connections for a particular service will be accepted,
preventing certain services from overwhelming the system. The cps option accepts an inte-
ger value to set a rate limit on the number of connections available per second. Configuring
this value to something low, such as 3, will help prevent attackers from being able to flood
your system with too many simultaneous requests for a particular service.

Chapter 9. TCP Wrappers and xinetd 131

9.3.1.3. Access Control within xinetd

Users of xinetd services can choose to use the TCP wrapper host access control files
(hosts.allow and hosts.deny), provide access control via the xinetd configuration files,
or a mixture of both. Information concerning the use of TCP wrapper host access control
files can be found in Section 9.2. This section will discuss using xinetd to control access to
the services it controls.

Note

Unlike TCP wrapper host access control files, any changes to xinetd configuration files require a
restart of the xinetd service, as well as a restart of any service affected by the change, to go into
affect.

The xinetd host access control available through its various configuration files is different
from the method used by TCP wrappers. While TCP wrappers places all of the access con-
figuration within two files, /etc/hosts.allow and /etc/hosts.deny, each service’s file in
/etc/xinetd.d can contain access control rules based on the hosts that will be allowed to
use that service.

The following options are supported in the xinetd files to control host access:

• only_from — Allows the hosts specified to use the service.

• no_access — Blocks these hosts from using this service.

• access_times — Specifies the time range when a particular service may be used. The
time range must be stated in a HH:MM-HH:MM format using 24-hour notation.

The only_from and no_access options can use a list of IP addresses or host names, or you
can specify an entire network. Like TCP wrappers, combining xinetd access control with
the proper logging configuration for that service, you can not only block the request but also
record every attempt to access it.

For example, the following /etc/xinetd.d/telnet file can be used to block telnet access
to a system by a particular network group and restrict the overall time range that even legit-
imate users can log in:

service telnet
{

disable = no
flags = REUSE
socket_type = stream
wait = no
user = root
server = /usr/sbin/in.telnetd
log_on_failure += USERID
no_access = 10.0.1.0/24
log_on_success += PID HOST EXIT
access_times = 09:45-16:15

}

In this example, when any system from the 10.0.1.0/24 subnet, such as 10.0.1.2, tries to tel-
net into the boo host, they will receive a message stating Connection closed by foreign
host. In addition, their login attempt is logged in /var/log/secure:

May 15 17:35:47 boo xinetd[16188]: START: telnet pid=16191 from=10.0.1.2
May 15 17:38:49 boo xinetd[16252]: START: telnet pid=16256 from=10.0.1.2

132 Chapter 9. TCP Wrappers and xinetd

May 15 17:38:49 boo xinetd[16256]: FAIL: telnet address from=10.0.1.2
May 15 17:38:49 booxinetd[16252]: EXIT: telnet status=0 pid=16256

9.3.1.4. Binding and Port Redirection

The service configuration files for xinetd also support binding the service to a particular IP
address and redirecting incoming requests for that service to another IP address, hostname,
or port.

Binding, controlled with the bind option in the service configuration files, specifically links
the service to a particular IP address in use with the system, only allowing requests that
use that IP address to access the service. This is particularly useful for systems with multiple
network adapters and using multiple IP addresses, such as machines being used as firewalls,
with one network adapter facing the Internet and the other connected to an internal network.
Attackers attempting to connect for a specific service, such as telnet or FTP, via the Internet
connection may be blocked from connecting to the service while internal users may connect
to the service via the NIC connected to the internal network.

The redirect option, which accepts an IP address or hostname followed by a port number,
tells the service to redirect any requests for this service to the specified location. This feature
can be used to point to another port number on the same system, redirect the request to
different IP address on the same machine, shift the request to a totally different system and
port number, or any combination of these options. In this way, a user connecting to certain
service on a system may be rerouted to another system with no disruption.

The xinetd daemon is able to accomplish this redirection by spawning a process that stays
alive for the duration of the connection between the requesting client machine and the host
actually providing the service, transferring data between the two systems.

The real strength of the bind and redirect options can be seen when they are used together.
By binding a service to a particular IP address on a system and then redirecting requests for
this service to a second machine that only the first machine can see, you can use an internal
system to provide services for a totally different network. Alternatively, these options can
be used to limit the exposure of a particular service on a multihomed machine to a known
IP address, as well as redirect any requests for that service to another machine specially
configured for that purpose.

For example, consider a system that is used as a firewall with this setting for its telnet service:

service telnet
{

socket_type = stream
wait = no
server = /usr/sbin/in.telnetd
log_on_success += DURATION USERID
log_on_failure += USERID
bind = 123.123.123.123
redirect = 10.0.1.13 21 23

}

The bind and redirect options in this file will ensure that the telnet service on the machine
is bound to the external IP address (123.123.123.123), the one facing the Internet. In addition,
any requests for telnet service sent to 123.123.123.123 will be redirected via a second network
adapter to an internal IP address (10.0.1.13) that only the firewall and internal systems can
access. The firewall will then send the communication between the two systems, and the
connecting system will think it is connected to 123.123.123.123 when it is actually connected
to a different machine.

Chapter 9. TCP Wrappers and xinetd 133

This feature is particularly useful for users with broadband connections and only one fixed
IP address. When using Network Address Translation (NAT), the systems behind the gate-
way machine, which are using internal-only IP addresses, are not available from outside the
gateway system. However, when certain services controlled by xinetd are configured with
the bind and redirect options, the gateway machine can act as a type of proxy between out-
side systems and a particular internal machine configured to provide the service. In addition,
the various xinetd access control and logging options are also available for additional pro-
tection, such as limiting the number of simultaneous connections for the redirected service.

9.4. Additional Resources
Additional information concerning TCP wrappers and xinetd is available on system docu-
mentation and on the Web.

9.4.1. Installed Documentation
The bundled documentation on your system is a good place to start looking for additional
TCP Wrappers, xinetd, and access control configuration options.

• /usr/share/doc/tcp_wrappers- @ version A — Contains a README file that discusses
how TCP wrappers work and the various hostname and host address spoofing risks that
exist.

• /usr/share/doc/xinetd- @ version A — Includes a README file that discusses aspects of
access control and a sample.conf file with various ideas for modifying /etc/xinetd.d
service configurations.

• For detailed information concerning the creation of TCP wrapper access control rules, read
the hosts_access(5)and hosts_options(5) man pages.

• The xinetd(8) and xinetd.conf(5) man pages contain additional information for creating
xinetd configuration files and a description of how xinetd works.

9.4.2. Useful Websites

• http://www.xinetd.org — The home of xinetd, containing sample configuration files, a
full listing of features, and an informative FAQ.

• http://www.macsecurity.org/resources/xinetd/tutorial.shtml — A thorough tutorial
that discusses many different ways to tweak default xinetd configuration files to meet
specific security goals.

134 Chapter 9. TCP Wrappers and xinetd

Chapter 10.

SSH Protocol

SSH™ allows users to log into host systems remotely. Unlike rlogin or telnet SSH encrypts
the login session, making it impossible for intruders to collect clear-text passwords.

SSH is designed to replace common methods for remotely logging into another system
through a command shell. A related program called scp replaces older programs designed to
copy files between hosts such as ftp or rcp. Because these older applications do not encrypt
passwords between the client and the server, you avoid them whenever possible. Using se-
cure methods to remotely log in to other systems will decrease the security risks for both
your system and the remote system.

10.1. Introduction
SSH (or Secure SHell) is a protocol for creating a secure connection between two systems. In
the SSH protocol, the client machine initiates a connection with a server machine.

The following safeguards are provided by SSH:

• After an initial connection, the client verifies it is connecting to the same server during
subsequent sessions.

• The client transmits its authentication information to the server, such as a username and
password, in an encrypted format.

• All data sent and received during the connection is transferred using strong, 128 bit en-
cryption, making it extremely difficult to decrypt and read.

• The client has the ability to use X11 1 applications launched from the shell prompt. This
technique, called X11 forwarding, provides a secure means to use graphical applications
over a network.

Because the SSH protocol encrypts everything it sends and receives, it can be used to secure
otherwise insecure protocols. Using a technique called port forwarding, an SSH server can
become a conduit to secure insecure protocols, like POP, increasing overall system and data
security.

Red Hat Linux 7.3 includes the general OpenSSH package (openssh), the OpenSSH server
(openssh-server) and client (openssh-clients) packages. Please see the chapter titled
OpenSSH in the Official Red Hat Linux Customization Guide for instructions on installing and
deploying OpenSSH. Also note that the OpenSSH packages require the OpenSSL package
(openssl). OpenSSL installs several important cryptographic libraries that help OpenSSH
provide encrypted communications.

A large number of client and server programs can use the SSH protocol. Several different
SSH client versions are available for almost every major operating system in use today. Even
if the users connecting to your system are not running Red Hat Linux, they can still find and
use an SSH client native for their operating system.

1. X11 refers to the X11R6 windowing display system, traditionally referred to as X. Red Hat Linux

includes XFree86, a widely used, open source X Window System, which is based on X11R6.

136 Chapter 10. SSH Protocol

10.1.1. Why Use SSH?
Threats to network traffic include packet sniffing, DNS and IP spoofing 2 and the prolif-
eration of fake routing information. In general terms, these threats can be categorized as
follows:

• Interception of communication between two systems — In this scenario, a third party exists
somewhere on the network between communicating entities and makes a copy of the
information being passed between them. The intercepting party may intercept and keep
the information, or it may alter the information and send it on to the intended recipient.

• Impersonation of a particular host — Using this strategy, an intercepting system pretends to
be the intended recipient of a message. If the strategy works, the client remains unaware
of the deception and continues to communicate with the interceptor as if its traffic had
successfully reached its destination.

Both techniques cause information to be intercepted, possibly for hostile reasons. The results
can be disastrous, whether that goal is achieved by listening for all packets on a LAN or a
hacked DNS server pointing to a maliciously duplicated host.

If SSH is used for remote shell logins and file copying, these security threats can be greatly
diminished. A server’s digital signature provides verification for its identity. The entire com-
munication between client and server systems cannot be used if intercepted, because each
of the packets is encrypted. Attempts to spoof the identity of either side of a communica-
tion will not work, since each packet is encrypted using a key known only by the local and
remote systems.

10.2. Event Sequence of an SSH Connection
The following series of events helps protect the integrity of SSH communication between
two hosts.

First, a secure transport layer is created so that the client knows that it is communicating with
the correct server. Then, the communication is encrypted between the client and server using
a symmetric cipher.

With a secure connection to the server in place, the client authenticates itself to the server
without worrying that the authentication information may be compromised.

Finally, with the client authenticated to the server, several different services can be safely and
securely used through the connection, such as an interactive shell session, X11 applications,
and tunneled TCP/IP ports.

10.3. Layers of SSH Security
The SSH protocol allows any client and server programs built to the protocol’s specifications
to communicate securely and to be used interchangeably.

Two varieties of SSH currently exist. SSH version 1 contains several patented encryption al-
gorithms (however, several of these patents have expired) and a security hole that potentially
allows for data to be inserted into the data stream. The OpenSSH suite under Red Hat Linux
7.3 uses SSH version 2.0 by default, although it also supports version 1. It is recommended
that you use SSH version 2-compatible servers and clients whenever possible

2. Spoofing means an intruder sends network packets that falsely appear to be from a trusted host on
the network.

Chapter 10. SSH Protocol 137

SSH protocol versions 1 and 2 both add layers of security with each of these layers providing
its own type of protection.

10.3.1. Transport Layer
The primary role of the transport layer is to facilitate safe and secure communication be-
tween the two hosts at the time of and after authentication. Usually running over TCP/IP,
the transport layer accomplishes this by handling the encryption and decryption of data and
providing integrity protection of data packets as they are sent and received. In addition, the
transport layer provides compression, speeding the transfer of information.

Once an SSH client contacts a server, key information is exchanged so that the two systems
can correctly construct the transport layer. The following steps occur during this exchange:

• Key exchange

• The public key algorithm to be used

• The symmetric encryption algorithm to be used

• The message authentication algorithm to be used

• The hash algorithm to be used

During the key exchange, the server identifies itself to the client with a host key. Of course, if
this client has never communicated with this particular server before, then the server’s key
will be unknown to the client. OpenSSH gets around this problem by allowing the client to
accept the server’s host key the first time an SSH connection occurs. Then, in subsequent
connections, the server’s host key can be checked with a saved version on the client, provid-
ing confidence that the client is indeed communicating with the intended server.

Caution

It is possible for an attacker to masquerade as the SSH server during the initial contact since the
local system does not know the difference between the intended server and a false one set up by an
attacker. To help prevent this you should verify the integrity of a new SSH server by contacting the
server administrator before connecting for the first time.

SSH is designed to work with almost any kind of public key algorithm or encoding format.
After an initial key exchange creates a hash value used for exchanges and a shared secret
value, the two systems immediately begin calculating new keys and algorithms to protect
authentication and future data sent over the connection.

After a certain amount of data has been transmitted using a particular key and algorithm (the
exact amount depends on the SSH implementation), another key exchange occurs, which
generates another set of hash values and a shared secret value. Even if an attack is able to
determine the hash and shared secret values, the attacker would have to determine this in-
formation each time a new key exchange is made to continue to monitor the communication.

10.3.2. Authentication
Once the transport layer has constructed a secure tunnel to pass information between the
two systems, the server tells the client the different authentication methods supported, such
as using a private key-encoded signature or typing a password. The client will then try to
authenticate itself to the server using any of the supported methods.

138 Chapter 10. SSH Protocol

Servers can be configured to allow different types of authentication, which gives each side
the optimal amount of control. The server can decide which encryption methods it will sup-
port based on its security model, and the client can choose the order of authentication meth-
ods to attempt from among the available options. Thanks to the secure nature of the SSH
transport layer, even seemingly insecure authentication methods, such as a host-based au-
thentication, are safe to use.

Most users requiring a secure shell will authenticate using a password. Since the password is
encrypted when moving over the the transport layer, it can be safely sent across any network.

10.3.3. Connection
After a successful authentication over the SSH transport layer, multiple channels are opened
by multiplexing3 the single connection between the two systems. Each of these channels
handles communication for different terminal sessions, forwarded X11 sessions, or other
services seeking to use the SSH connection.

Both clients and servers can create a new channel. Each channel is then assigned a different
number for each end of the connection. When the client attempts to open a new channel,
the clients sends the channel number along with the request. This information is stored by
the server and is used to direct communication to that channel. This is done so that differ-
ent types of sessions will not affect one another and so that when a given session ends, its
channel can be closed without disrupting the primary SSH connection.

Channels also support flow-control, which allows them to send and receive data in an orderly
fashion. In this way, data is not sent over the channel until the client receives a message that
the channel is open.

The client and server negotiate the characteristics of each channel automatically, depending
on the type of service the client requests and the way the user is connected to the network.
This allows great flexibility in handling different types of remote connections without having
to change the basic infrastructure of the protocol.

10.4. OpenSSH Configuration Files
OpenSSH has two different sets of configuration files: one for client programs (ssh, scp, and
sftp) and one for the server service (sshd).

System-wide SSH configuration information is stored in the /etc/ssh/ directory:

• moduli — Contains Diffie-Hellman groups used for the Diffie-Hellman key exchange
which is critical for constructing a secure transport layer. When keys are exchanged at the
beginning of an SSH session, a shared, secret value is created which cannot be determined
by either party alone. This value is then used to provide host authentication.

• ssh_config — The system-wide default SSH client configuration file. It is overridden if
one is also present in the user’s home directory (~/.ssh/config).

• sshd_config — The configuration file for sshd.

• ssh_host_dsa_key — The DSA private key used by sshd.

• ssh_host_dsa_key.pub — The DSA public key used by sshd.

• ssh_host_key — The RSA private key used by sshd for version 1 of the SSH protocol.

3. A multiplexed connection consists of several signals being sent over a shared, common medium.

With SSH, different channels are sent over a common secure connection.

Chapter 10. SSH Protocol 139

• ssh_host_key.pub— The RSA public key used by sshd for version 1 of the SSH protocol.

• ssh_host_rsa_key— The RSA private key used by sshd for version 2 of the SSH protocol.

• ssh_host_rsa_key.pub — The RSA public key used by sshd for version 2 of the SSH
protocol.

User-specific SSH configuration information is stored in the user’s home directory within
the ~/.ssh/ directory:

• authorized_keys — The file that holds a list of "authorized" public keys. If a connecting
user can prove that they know the private key which corresponds to any of these, then
they are authenticated. Note, this is only an optional authentication method.

• id_dsa — Contains the DSA authentication identity of the user.

• id_dsa.pub — The DSA public key of the user.

• id_rsa — The RSA public key used by sshd for version 2 of the SSH protocol.

• identity — The RSA private key used by sshd for version 1 of the SSH protocol.

• known_hosts — This file contains DSA host keys of SSH servers accessed by the user.
This file is very important for ensuring that the SSH client is connecting the correct SSH
server. If a host’s key has changed, and you are not absolutely certain why, you should
contact the system administrator of the SSH server to make sure that the server has not
been compromised. If a server’s host keys are legitimately altered by a re-installation of
Red Hat Linux the next time you log into that server you will be notified that the host
key stored in the known_hosts file does not match. To connect to the server, the user must
open the known_hosts file in a text editor and delete the key for that host. This allows the
SSH client to create a new host key.

See the man pages for ssh and sshd for information concerning the various directives avail-
able in the SSH configuration files.

10.5. More Than a Secure Shell
A secure command line interface is just the beginning of the many ways SSH can be used.
Given the proper amount of bandwidth, X11 sessions can be directed over an SSH channel.
Or, by using TCP/IP forwarding, previously insecure port connections between systems can
be mapped to specific SSH channels.

10.5.1. X11 Forwarding
Opening an X11 session over an established SSH connection is as easy as running an X pro-
gram on the local machine. When an X program is run from the secure shell prompt, the
SSH client and server create a new secure channel, and the X program data is sent over that
channel to your client machine transparently.

X11 forwarding can be very useful. For example, you can use X11 forwarding to create a se-
cure, interactive session with up2date on the server to update packages. To do this, connect
to the server using ssh and type:

up2date &

You will be asked to supply the root password for the server. Then, the Red Hat Update
Agent will appear and you can update your packages on the server as though you were
sitting in front of the machine.

140 Chapter 10. SSH Protocol

10.5.2. Port Forwarding
With SSH you can secure otherwise insecure TCP/IP protocols via port forwarding. When
using this technique, the SSH server becomes an encrypted conduit to the SSH client.

Port forwarding works by mapping a local port on the client to a remote port on the server.
SSH allows you to map any port from the server to any port on the client; the port numbers
do not need to match for it to work.

To create a TCP/IP port forwarding channel which listens for connections on the localhost,
use the following command:

ssh -L local-port:remote-hostname:remote-port username@hostname

Note

Setting up port forwarding to listen on ports below 1024 requires root access.

So if you want to check your email on a server called mail.domain.com using POP through
an encrypted connection, you can use the following command:

ssh -L 1100:mail.domain.com:110 mail.domain.com

Once the port forwarding channel is in place between the two machines, you can direct your
POP mail client to use port 1100 on localhost to check for new mail. Any requests sent to
port 1100 on your system will be directed securely to the mail.domain.com server.

If mail.domain.com is not running an SSH server daemon, but you can log in via SSH to a
machine on the same network, you can still use SSH to secure the part of the POP connection.
However, a slightly different command is needed:

ssh -L 1100:mail.domain.com:110 other.domain.com

In this example, you are forwarding your POP request from port 1100 on your machine
through the SSH connection on port 22 to other.domain.com. Then, other.domain.com con-
nects to port 110 on mail.domain.com to allow you to check for new mail. Using this tech-
nique, only the connection between your system and other.domain.com is secure.

Port forwarding can also be used to get information securely through network firewalls.
If the firewall is configured to allow SSH traffic via its standard port (22) but block access
through other ports, a connection between two hosts using the blocked ports is still possible
by redirecting their communication over an established SSH connection.

Note

Using port forwarding to forward connections in this manner allows any user on the client system
to connect to the service to which you are forwarding connections. If the client system becomes
compromised, the attacker will also have access to forwarded services.

System administrators concerned about port forwarding can disable this functionality on the server by
specifying a No parameter for the AllowTcpForwarding line in /etc/ssh/sshd_config and restarting
the sshd service.

Chapter 10. SSH Protocol 141

10.6. Requiring SSH for Remote Connections
For SSH to be truly effective in protecting your network connections, you must stop using
all insecure connection protocols, such as telnet and rsh. Otherwise, a user’s password
may be protected using ssh for one log in only to be captured when they log in again using
telnet.

To disable insecure connection methods to your system, use the command line program
chkconfig, the ncurses-based program ntsysv, or the graphical application serviceconf.
All of these tools require root access.

Some services to disable include:

• telnet

• rsh

• ftp

• rlogin

• wu-ftpd

• vsftpd

For more information on runlevels and configuring services with chkconfig, ntsysv, and
serviceconf, refer to the chapter titled Controlling Access to Services in the Official Red Hat
Linux Customization Guide.

142 Chapter 10. SSH Protocol

Chapter 11.

Kerberos

Kerberos is a network authentication protocol created by MIT which uses secret-key cryptog-
raphy to secure passwords over the network. Encrypting passwords with Kerberos can help
to thwart unauthorized users trying to intercept passwords on the network, thus adding an
extra layer of system security.

11.1. Advantages of Kerberos
Most conventional network systems use password-based authentication schemes. When a
user needs to authenticate to a service running on a network server, they type in their pass-
word for each service that requires authentication. Their password is sent over the network,
and the server verifies their identity using the password.

However, the transmission of password information in some authenticated services is done
in clear text. Any system cracker with access to the network and a packet analyzer, also
known as a packet sniffer, can intercept any passwords sent in this manner.

The primary design goal of Kerberos is to eliminate the clear-text passwords transfered
across a network. The proper use of Kerberos dramatically lessens the threat of packet snif-
fers intercepting passwords on your network .

11.2. Kerberos Disadvantages
Kerberos removes a common and severe security threat. However, it may be difficult to
implement for various reasons:

• Migrating user passwords from a standard UNIX password database, such as
/etc/passwd or /etc/shadow, to a Kerberos password database can be tedious as there
is no automated mechanism to perform this task. Refer to the Kerberos FAQ Question
2.23 or see Section 11.8 for more detailed information concerning this issue.

• Kerberos has only partial compatibility with the Pluggable Authentication Modules
(PAM) system used by most servers running Red Hat Linux. For more information on
this issue, see Section 11.5.

• For an application to use Kerberos, its source must be modified to make the appropriate
calls into the Kerberos libraries. For some applications, this can be quite problematic due to
size or frequency that krb libraries must be called. For other applications, changes must be
made to the way in which the server and client side communicate. Again, this may require
extensive programming. Closed-source applications that do not have Kerberos support by
default are often the most problematic.

• Kerberos assumes that you are using trusted hosts on an untrusted network. Its primary
goal is to prevent clear-text passwords from being sent across that network. However, if
anyone other than the proper user has physical access to any of the hosts, especially the
one that issues tickets used for authentication, the entire Kerberos authentication system
is at risk of being compromised.

• Kerberos is an all or nothing solution. If you decide to use Kerberos on your network,
you must remember any passwords transferred to a service which does not use Kerberos
for authentication run the risk of being captured by packet sniffers. Thus, your network
gains no benefit from the use of Kerberos. To secure your network with Kerberos, you

144 Chapter 11. Kerberos

must either kerberize all applications which send clear-text passwords or do not use those
applications on your network at all.

11.3. Kerberos Terminology
Like any other system, Kerberos has its own terminology to define various aspects of the
service. Before learning how the service works, it is important to learn the following terms.

ciphertext

Encrypted data.

clear-text

Unencrypted, human-readable data.

client

An entity on the network (a user, a host, or an application) that can get a ticket from
Kerberos.

credential cache or ticket file

A file which contains the keys for encrypting communications between a user and var-
ious network services. Kerberos 5 supports a framework for using other cache types,
such as shared memory, but files are more thoroughly supported.

crypt hash

A one way hash used to authenticate users. While more secure than clear text, it is fairly
easy to decrypt for an experienced cracker.

key

Data used when encrypting or decrypting other data. Encrypted data cannot be de-
crypted without the proper key or extremely good guessing.

Key Distribution Center (KDC)

A service that issues Kerberos tickets, usually run on the same host as the Ticket Grant-
ing Server

key table or keytab

A file that includes an unencrypted list of principals and their keys. Servers retrieve
the keys they need from keytab files instead of using kinit. The default keytab file is
/etc/krb5.keytab. The /usr/kerberos/sbin/kadmind command is the only service
that uses any other file (it uses /var/kerberos/krb5kdc/kadm5.keytab).

principal

A user or service that can authenticate using Kerberos. A principal’s name is in the form
root[/instance]@REALM. For a typical user, the root is the same as their login ID. The
instance is optional. If the principal has an instance, it is separated from the root with
a forward slash ("/"). An empty string ("") is considered a valid instance (which differs
from the default NULL instance), but using it can be confusing. All principals in a realm
have their own key, which is derived from their password or randomly set for services.

Chapter 11. Kerberos 145

realm

A network that uses Kerberos, composed of one or more servers called KDCs and a
potentially large number of clients.

service

A program accessed over the network.

ticket

A temporary set of electronic credentials that verify the identity of a client for a partic-
ular service.

Ticket Granting Service (TGS)

A server that issues tickets for a desired service which are in turn given to users for
access to the service. The TGS usually runs on the same host as the KDC

Ticket Granting Ticket (TGT)

A special ticket that allows the client to obtain additional tickets without applying for
them from the KDC.

11.4. How Kerberos Works
Now that the Kerberos terminology has been defined, the following is an overview of how
a Kerberos authentication system works.

On a non-kerberized network, when a user requests a network service that requires authen-
tication, the user is prompted to type in their password. The password is then transmitted
in clear-text or as a crypt hash over the network to allow access to the service. Unfortu-
nately, this means that anyone intercepting packets on the network can potentially find out
the username and password of users on the network.

Kerberos deal with this threat by using symmetric encryption and a trusted third party —
known as the Key Distribution Center or KDC — to authenticate users on a network to
services on a network. Once authenticated, Kerberos stores a ticket specific to that session
on the user’s machine and any kerberized service will look for this ticket rather than asking
the user to authenticate using a password.

When a user on a kerberized network logs in to their workstation, their principal is sent to
the Key Distribution Center as a request for a Ticket Granting Ticket (TGT). This request can
be sent by the login program so that it is transparent to the user or can be sent by the kinit
program after the user logs in.

The KDC checks for the principal in its database. If the principal is found, the KDC creates a
TGT, encrypts it using the user’s key and sends it back to the user.

The login program or kinit decrypts the TGT using the user’s key (which it computes from
the user’s password). The TGT is set to expire after a certain period of time and stored in
the client machine’s credentials cache. The expiration time is set so a compromised TGT can
only be used for a certain period of time (usually eight hours). This is safer than tradition
password model because a compromised password can be used until it is changed. Once the
TGT is issued, the user will not have to re-enter their password to the KDC until the TGT
expires or they logout and login again.

When the user needs access to a network service, the client uses the TGT to request a ticket
for the service from the Ticket Granting Service (TGS), which runs on the KDC. The TGS
issues a ticket for the desired service, which is then used to authenticate the user.

146 Chapter 11. Kerberos

Warning

The Kerberos system can be compromised anytime any user on the network authenticates against
a non-kerberized service by sending a password in clear text. therefore use of non-kerberized ver-
sions of services should be discouraged. Such services include telnet and ftp. Use of other secure
protocols, such as OpenSSH or SSL secured services, however, is acceptable.

This, of course, is a broad overview of how Kerberos authentication on a network would
typically work. For a more in-depth look at Kerberos authentication, refer to Section 11.8.

Note

Kerberos depends on certain network services to work correctly. First, Kerberos requires approximate
clock synchronization between the machines on the network. A clock syncing program should be set
up for the network. Since certain aspects of Kerberos rely on the Domain Name Service (DNS), be
sure that the DNS entries and hosts on the network are all properly configured. See the Kerberos V5
System Administrator’s Guide, provided in PostScript and HTML formats in /usr/share/doc/krb5-
server-version-number, (where version-number is the version installed on the system) for more
information.

11.5. Kerberos and PAM
Currently, kerberized services do not make use of Pluggable Authentication Modules (PAM)
at all — a kerberized server bypasses PAM completely. Applications that use PAM can make
use of Kerberos for password checking if the pam_krb5 module (provided in the pam_krb5
package) is installed. The pam_krb5 package contains sample configuration files that allow
services like login and gdm to authenticate users and obtain initial credentials using their
passwords. If access to network servers is always done using kerberized services or services
that use GSS-API, like IMAP, the network can be considered reasonably safe.

Careful administrators will not add Kerberos password checking to all network services
because most of the protocols used by these services do not encrypt the password before
sending it over the network — obviously something to avoid.

The next section will describe how to set up a basic Kerberos server.

11.6. Configuring a Kerberos 5 Server
When you are setting up Kerberos, install the server first. If you need to set up slave servers,
the details of setting up relationships between master and slave servers are covered in the
Kerberos 5 Installation Guide (in the /usr/share/doc/krb5-server- B version-number C di-
rectory).

To install a Kerberos server:

1. Be sure that you have clock synchronization and DNS working on your server before
installing Kerberos 5. Pay particular attention to time synchronization between the Ker-
beros server and its various clients. If the server and client clocks are different by more
than five minutes (this default amount is configurable in Kerberos 5), Kerberos clients
will not be able to authenticate to the server. This clock synchronization is necessary to
prevent an attacker from using an old authenticator to masquerade as a valid user.

Chapter 11. Kerberos 147

You should set up a Network Time Protocol (NTP) compatible client/server network
using Red Hat Linux, even if you are not using Kerberos. Red Hat Linux 7.3 includes
the ntp package for easy installation. See http://www.eecis.udel.edu/~ntp for addi-
tional information on NTP.

2. Install the krb5-libs, krb5-server, and krb5-workstation packages on the dedi-
cated machine which will run your KDC. This machine needs to be secure — if possi-
ble, it should not run any services other than the KDC.

If you would like to use a Graphical User Interface (GUI) utility to administrate Ker-
beros, you should also install the gnome-kerberos package. It contains krb5, a GUI
tool for managing tickets, and gkadmin, a GUI tool for managing Kerberos realms.

3. Edit the /etc/krb5.conf and /var/kerberos/krb5kdc/kdc.conf configuration files
to reflect your realm name and domain-to-realm mappings. A simple realm can be
constructed by replacing instances of EXAMPLE.COM and example.com with your
domain name — being certain to keep uppercase and lowercase names in the correct
format — and by changing the KDC from kerberos.example.com to the name of
your Kerberos server. By convention, all realm names are uppercase and all DNS host-
names and domain names are lowercase. For full details on the formats of these files,
see their respective man pages.

4. Create the database using the kdb5_util utility from a shell prompt:
/usr/kerberos/sbin/kdb5_util create -s

The create command creates the database that will be used to store keys for your
Kerberos realm. The -s switch forces creation of a stash file in which the master server
key is stored. If no stash file is present from which to read the key, the Kerberos server
(krb5kdc) will prompt the user for the master server password (which can be used to
regenerate the key) every time it is started.

5. Edit the /var/kerberos/krb5kdc/kadm5.acl file. This file is used by kadmind to de-
termine which principals have access to the Kerberos database and their level of access.
Most organizations will be able to get by with a single line:
*/admin@EXAMPLE.COM *

Most users will be represented in the database by a single principal (with a NULL, or
empty, instance, such as joe@EXAMPLE.COM). With this configuration, users with a
second principal with an instance of admin (for example, joe/admin@EXAMPLE.COM)
will be able to wield full power over the realm’s Kerberos database.

Once kadmind is started on the server, any user will be able to access its services by
running kadmin or gkadmin on any of the clients or servers in the realm. However,
only users listed in the kadm5.acl file will be able to modify the database in any way,
except for changing their own passwords.

Note

The kadmin and gkadmin utilities communicate with the kadmind server over the network, and
they use Kerberos to handle authentication. Of course, you need to create the first principal
before you can connect to the server over the network to administer it. Create the first principal
with the kadmin.local command, which is specifically designed to be used on the same host
as the KDC and does not use Kerberos for authentication.

148 Chapter 11. Kerberos

Type the following kadmin.local command at the KDC terminal to create the first
principal:
/usr/kerberos/sbin/kadmin.local -q "addprinc username/admin"

6. Start Kerberos using the following commands:
/sbin/service krb5kdc start
/sbin/service kadmin start
/sbin/service krb524 start

7. Add principals for your users using the addprinc command with kadmin or using the
Principal => Add menu option in gkadmin. kadmin and kadmin.local on the master
KDC are a command line interfaces to the Kerberos administration system. As such,
many commands are available after launching the kadmin program. Please see the kad-
min man page for more information.

8. Verify that your server will issue tickets. First, run kinit to obtain a ticket and store it
in a credential cache file. Then use klist to view the list of credentials in your cache
and use kdestroy to destroy the cache and the credentials it contains.

Note

By default, kinit attempts to authenticate you using the login username of the account you
used when you first logged into your system (not the Kerberos server). If that system username
does not correspond to a principal in your Kerberos database, you will get an error message. If
that happens, just give kinit the name of your principal as an argument on the command line
(kinit principal).

Once you have completed the steps listed above, your Kerberos server should be up and
running. Next, you will need to set up your Kerberos clients.

11.7. Configuring a Kerberos 5 Client
Setting up a Kerberos 5 client is less involved than setting up a server. At minimum, you
should install the client packages and provide your clients with a valid krb5.conf config-
uration file. Kerberized versions of rsh and rlogin will also require some configuration
changes.

1. Be sure that you have time synchronization in place between the Kerberos client and
KDC. See Section 11.6 for more information. In addition, DNS should be working prop-
erly on the Kerberos client before installing the Kerberos client programs.

2. Install the krb5-libs and krb5-workstation packages on all of the clients in your
realm. You must supply your own version of /etc/krb5.conf for your client worksta-
tions; usually this can be the same krb5.conf used by the KDC.

3. Before a particular workstation in your realm can allow users to connect using kerber-
ized rsh and rlogin, that workstation will need to have the xinetd package installed
and have its own host principal in the Kerberos database. The kshd and klogind server
programs will also need access to the keys for their service’s principal.

Using kadmin, add a host principal for the workstation. The instance in this case will
be the hostname of the workstation. Because you will never need to type the password

Chapter 11. Kerberos 149

for this principal again, and you probably do not want to bother with coming up with
a good password. You can use the -randkey option to kadmin’s addprinc command
to create the principal and assign it a random key:
addprinc -randkey host/blah.example.com

Now that you have created the principal, you can extract the keys for the worksta-
tion by running kadmin on the workstation itself , and using the ktadd command within
kadmin:
ktadd -k /etc/krb5.keytab host/blah.example.com

In order to use the kerberized versions of rsh and rlogin, you must enable klogin,
eklogin, and kshell. 1

4. Other kerberized network services will need to be started. To use kerberized telnet,
you must enable krb5-telnet. 1

To provide FTP access, create and extract a key for a principal with a root of ftp, with
the instance set to the hostname of the FTP server. Then enable gssftp. 1

The IMAP server included in the imap package will use GSS-API authentication using
Kerberos 5 if it finds the proper key in /etc/krb5.keytab. The root for the principal
should be imap. The CVS gserver uses a principal with a root of cvs and is otherwise
identical to a pserver.

That should be all you need to do to set up a simple Kerberos realm.

11.8. Additional Resources
For more information on Kerberos, refer to the following resources.

11.8.1. Installed Documentation

• /usr/share/doc/krb5-server- D version-number E — The Kerberos V5 Installation Guide
and the Kerberos V5 System Administrator’s Guide in PostScript and HTML formats. You
must have the krb5-server RPM package installed.

• /usr/share/doc/krb5-workstation- D version-number E — The Kerberos V5 UNIX
User’s Guide in PostScript and HTML formats. You must have the krb5-workstation
RPM package installed.

1. Refer to the chapter titled Controlling Access to Services in the Official Red Hat Linux Customization
Guide for details on enabling services.
1. Refer to the chapter titled Controlling Access to Services in the Official Red Hat Linux Customization
Guide for details on enabling services.
1. Refer to the chapter titled Controlling Access to Services in the Official Red Hat Linux Customization
Guide for details on enabling services.

150 Chapter 11. Kerberos

11.8.2. Useful Websites

• http://web.mit.edu/kerberos/www — Kerberos: The Network Authentication Protocol web-
page from MIT.

• http://www.nrl.navy.mil/CCS/people/kenh/kerberos-faq.html — The Kerberos
Frequently Asked Questions (FAQ).

• ftp://athena-dist.mit.edu/pub/kerberos/doc/usenix.PS — The PostScript version of
Kerberos: An Authentication Service for Open Network Systems by Jennifer G. Steiner, Clifford
Neuman, and Jeffrey I. Schiller. This document is the original paper describing Kerberos.

• http://web.mit.edu/kerberos/www/dialogue.html — Designing an Authentication Sys-
tem: a Dialogue in Four Scenes originally by Bill Bryant in 1988, modified by Theodore Ts’o in
1997. This document is a conversation between two developers who are thinking through
the creation of a Kerberos-style authentication system. The conversational style of the dis-
cussion make this a good starting place for people who are completely unfamiliar with
Kerberos.

• http://www.ornl.gov/~jar/HowToKerb.html — How to Kerberize your Site.

Chapter 12.

Installing and Configuring Tripwire

Tripwire software can help to ensure the integrity of critical system files and directories by
identifying all changes made to them. Tripwire configuration options include the ability to
receive alerts via email if particular files are altered and automated integrity checking via
a cron job. Using Tripwire for intrusion detection and damage assessment helps you keep
track of system changes and can speed the recovery from a break-in by reducing the number
of files you must restore to repair the system.

Tripwire compares files and directories against a baseline database of file locations, dates
modified, and other data. It generates the baseline by taking a snapshot of specified files and
directories in a known secure state. (For maximum security, Tripwire should be installed and
the baseline created before the system is at risk from intrusion.) After creating the baseline
database, Tripwire compares the current system to the baseline and reports any modifica-
tions, additions, or deletions.

Warning

While a valuable tool when auditing the security state of your system, Tripwire is not supported by
Red Hat, Inc.. Contact Tripwire, Inc., (http://www.tripwire.com) for support options.

12.1. How to Use Tripwire
The following flowchart illustrates how Tripwire should be used:

152 Chapter 12. Installing and Configuring Tripwire

Figure 12-1. How to Use Tripwire

The following steps should be taken to properly install, use and maintain Tripwire:

1. Install Tripwire and customize the policy file — If not already done, install the
tripwire RPM (see Section 12.2.1). Then, customize the sample configuration
(/etc/tripwire/twcfg.txt) and policy (/etc/tripwire/twpol.txt) files and run
the configuration script (/etc/tripwire/twinstall.sh). For more information, see
Section 12.2.2.

2. Initialize the Tripwire database — Build a database of critical system files to monitor based
on the contents of the new, signed Tripwire policy file (/etc/tripwire/tw.pol). For

Chapter 12. Installing and Configuring Tripwire 153

more information, see Section 12.7.

3. Run a Tripwire integrity check — Compare the newly-created Tripwire database with
the actual system files, looking for missing or altered files. For more information, see
Section 12.8.

4. Examine the Tripwire report file — View the Tripwire report file using twprint to note
integrity violations. For more information, see Section 12.9.

5. Take appropriate security measures — If monitored files have been altered inappropriately,
you can either replace the originals from backups or reinstall the program.

6. Update the Tripwire database file — If the integrity violations are intentional and valid,
such as if you intentionally edited a file or replaced a particular program, you should
tell Tripwire’s database file to not report them as violations in future reports. For more
information, see Section 12.10.

7. Update the Tripwire policy file — If you need to change the list of files Tripwire monitors
or how it treats integrity violations, you should update your sample policy file
(/etc/tripwire/twpol.txt), regenerate a signed copy (/etc/tripwire/tw.pol),
and update your Tripwire database. For more information, see Section 12.11.

Refer to the appropriate sections within this chapter for detailed instructions on these steps.

12.2. Installation Instructions
Once installed, Tripwire must also be correctly initialized to be able to keep a close watch
on your files. These sections detail how to install the program, if it is not already present on
your system, and then how to initialize the Tripwire database.

12.2.1. RPM Installation Instructions
The easiest way to install Tripwire is to install the tripwire RPM during the Red Hat Linux
7.3 installation process. However, if you have already installed Red Hat Linux 7.3, you can
use RPM, Gnome-RPM, or Kpackage to install the Tripwire RPM from the Red Hat Linux
7.3 CD-ROMs. The following steps outline this process using RPM:

1. Locate the RedHat/RPMS directory on the Red Hat Linux 7.3 CD-ROM.

2. Locate the tripwire binary RPM by typing ls -l tripwire* in the RedHat/RPMS
directory.

3. Type rpm -Uvh F name G (where F name G is the name of the Tripwire RPM found in
step 2)

4. After installing the tripwire RPM, follow the post-installation instructions outlined
below.

Note

The release notes and README file are located in /usr/share/doc/tripwire- H version-number I .
These documents contain important information about the default policy file and other issues.

154 Chapter 12. Installing and Configuring Tripwire

12.2.2. Post-Installation Instructions
The tripwire RPM installs the program files needed to run the software. After you have
installed Tripwire, you must configure it for your system as outlined in the following steps:

1. If you already know of several changes that should be made to the configuration
file (/etc/tripwire/twcfg.txt) or the policy file (/etc/tripwire/twpol.txt), edit
those files now.

Note

While you should edit your configuration and policy files to customize Tripwire to your particu-
lar situation, editing the configuration or policy files is not required to use Tripwire. If you plan
to modify the configuration or policy files, you must make these changes before running the
configuration script (/etc/tripwire/twinstall.sh). If you modify the configuration or policy
files after running the configuration script, you must re-run the configuration script before ini-
tializing the database file. Keep in mind that you can edit the configuration and policy files after
initializing the database file and running an integrity check.

2. Type /etc/tripwire/twinstall.sh at the command line as root and press [Enter] to
run the configuration script. The twinstall.sh script walks you through the processes
of setting passphrases, generating the cryptographic keys that protect the Tripwire con-
figuration and policy files, and signing these files. See Section 12.6 for more information
on setting passphrases.

Note

Once encoded and signed, the configuration file (/etc/tripwire/tw.cfg) and policy file
(/etc/tripwire/tw.pol) generated by running the /etc/tripwire/twinstall.sh script
should not be renamed or moved.

3. Initialize the Tripwire database file by issuing the /usr/sbin/tripwire --init com-
mand at the command line.

4. Run the first integrity check comparing your new Tripwire database to your system
files by issuing the /usr/sbin/tripwire --check command at the command line and
looking for errors in the generated report.

Once you finish these steps successfully, Tripwire has the baseline snapshot of your filesys-
tem that it needs to check for changes to critical files. Additionally, the tripwire RPM adds
a file called tripwire-check to the /etc/cron.daily directory that will automatically run
an integrity check once per day.

12.3. File Locations
Before working with Tripwire, you should know where important files for the application
are located. Tripwire stores its files in a variety of places depending on their role:

• The /usr/sbin directory stores the tripwire, twadmin, and twprint programs.

Chapter 12. Installing and Configuring Tripwire 155

• The /etc/tripwire directory contains the local and site keys (*.key files) and the initial-
ization script (twinstall.sh), as well as the sample and actual configuration and policy
files.

• The /var/lib/tripwire directory contains the Tripwire database of your system’s files
(*.twd) and a report directory where Tripwire reports are stored. The Tripwire reports,
named host_name-date_of_report-time_of_report.twr, detail the differences
between the Tripwire database and your actual system files.

12.4. Tripwire Components
The Tripwire policy file is a text file containing comments, rules, directives, and variables.
This file dictates the way Tripwire checks your system. Each rule in the policy file specifies a
system object to be monitored. Rules also describe which changes to the object to report and
which to ignore.

System objects are the files and directories you wish to monitor. Each object is identified
by an object name. A property refers to a single characteristic of an object that Tripwire
software can monitor. Directives control conditional processing of sets of rules in a policy
file. During installation, the text policy file (/etc/tripwire/twpol.txt) is encrypted and
renamed, becoming the active policy file (/etc/tripwire/tw.pol).

When first initialized, Tripwire uses the signed policy file rules to create the database file
(/var/lib/tripwire/host_name.twd). The database file is a baseline snapshot of the sys-
tem in a known secure state. Tripwire compares this baseline against the current system to
determine what changes have occurred. This comparison is called an integrity check.

When you perform an integrity check, Tripwire produces report files in the
/var/lib/tripwire/report directory. The report files summarize any file changes that
violated the policy file rules during the integrity check.

The Tripwire configuration file (/etc/tripwire/tw.cfg) stores system-specific informa-
tion, such as the location of Tripwire data files. Tripwire generates the necessary configu-
ration file information during installation, but the system administrator can change param-
eters in the configuration file at any time after that point. Note that the altered configuration
file must be signed in the same way as the policy file in order for it to be used by default.

The configuration file variables POLFILE, DBFILE, REPORTFILE, SITEKEYFILE, and LO-
CALKEYFILE specify the locations of the policy file, database file, report files, and site and
local key files. These variables are defined by default at the time of installation. If you edit
the configuration file and leave any of them undefined, the configuration file will be con-
sidered invalid by Tripwire. This causes an error on the execution of tripwire, making the
program exit.

Note that the altered configuration file must be signed in the same way as the policy file
in order for it to be used by Tripwire. See Section 12.11.1 for instructions on signing the
configuration file.

12.5. Modifying the Policy File
You can specify how Tripwire checks your system by modifying the Tripwire policy file
(twpol.txt). Modifying the policy file to your particular system configuration increases the
usefulness of Tripwire reports by minimizing false alerts for files or programs you are not
using but Tripwire is still reporting as altered or missing.

Locate the default policy file at /etc/tripwire/twpol.txt. An example policy file (located
at /usr/share/doc/tripwire- J version-number K /policyguide.txt) is included to help

156 Chapter 12. Installing and Configuring Tripwire

you learn the policy language. Read the example policy file for instructions on how to edit
the default policy file.

If you modify the policy file immediately after installing the tripwire package, be sure to
type /etc/tripwire/twinstall.sh to run the configuration script. This script signs the
modified policy file and renames it to tw.pol. This is the active policy file used by the trip-
wire program when it executes.

If you modify the sample policy file after running the configuration script, see Section 12.11
for instructions on signing it to make the required tw.pol file.

Note

If you modify the sample policy file, it will not be used by Tripwire until it is signed, encrypted and
made into the new /etc/tripwire/tw.pol file (see Section 12.11).

12.6. Selecting Passphrases
Tripwire files are signed or encrypted using site and local keys, which protect the configu-
ration, policy, database, and report files from being viewed or altered except by users who
know the site and/or local passphrases. This means that, even if an intruder can obtain root
access to your system, they will not be able to alter the Tripwire files to hide their tracks
unless they also know the passphrases. When selecting passphrases, you must use at least
eight alphanumeric and symbolic characters for each passphrase. The maximum length of
a passphrase is 1023 characters. Quotes should not be used as passphrase characters. Also,
make sure that your passphrases are completely different from the root password for the
system.

You should assign unique passphrases for both the site key and the local key. The site key
passphrase protects the site key, which is used to sign Tripwire configuration and policy
files. The local key signs Tripwire database and report files.

Caution

Store the passphrases in a secure location. There is no way to decrypt a signed file if you forget
your passphrase. If you forget the passphrases, the files are unusable and you will have to run the
configuration script again, which also reinitializes the Tripwire database.

12.7. Initializing the Database
When initializing its database, Tripwire builds a collection of filesystem objects based on the
rules in the policy file. This database serves as the baseline for integrity checks.

To initialize the Tripwire database, use the following command:

/usr/sbin/tripwire --init

This command can take several minutes to run.

Chapter 12. Installing and Configuring Tripwire 157

12.8. Running an Integrity Check
When running an integrity check, Tripwire compares the current, actual filesystem objects
with their properties as recorded in its database. Violations are printed to standard output
and saved in a report file that can be accessed later by twprint. For more information on
viewing Tripwire reports, see Section 12.9.

An email configuration option in the policy file even allows particular email addresses to
be sent notices when certain integrity violations occur. See Section 12.12 for instructions on
how to set this up.

To run an integrity check, use the following command:

/usr/sbin/tripwire --check

This command requires some time to run in most situations, depending upon the number of
files to be checked.

12.9. Printing Reports
The twprint -m r command will display the contents of a Tripwire report in clear text. You
must tell twprint which report file to display.

A twprint command for printing Tripwire reports looks similar to the following (all on one
line):

/usr/sbin/twprint -m r --twrfile
/var/lib/tripwire/report/ L name M .twr

The -m r option in the command tells twprint to decode a Tripwire report. The --twrfile
option tells twprint to use a specific Tripwire report file.

The name of the Tripwire report that you want to see includes the name of the host that
Tripwire checked to generate the report, plus the creation date and time. You can review
previously saved reports at any time. Simply type ls /var/lib/tripwire/report to see a
list of Tripwire reports.

Tripwire reports can be rather lengthy, depending upon the number of violations found or
errors generated. A sample report starts off like this:

Tripwire(R) 2.3.0 Integrity Check Report

Report generated by: root
Report created on: Fri Jan 12 04:04:42 2001
Database last updated on: Tue Jan 9 16:19:34 2001

===
Report Summary:
===
Host name: some.host.com
Host IP address: 10.0.0.1
Host ID: None
Policy file used: /etc/tripwire/tw.pol
Configuration file used: /etc/tripwire/tw.cfg
Database file used: /var/lib/tripwire/some.host.com.twd
Command line used: /usr/sbin/tripwire --check

===
Rule Summary:

158 Chapter 12. Installing and Configuring Tripwire

===

Section: Unix File System

Rule Name Severity Level Added Removed Modified
--------- -------------- ----- ------- --------
Invariant Directories 69 0 0 0
Temporary directories 33 0 0 0

* Tripwire Data Files 100 1 0 0
Critical devices 100 0 0 0
User binaries 69 0 0 0
Tripwire Binaries 100 0 0 0

12.9.1. Using twprint to View the Tripwire Database
You can also use twprint to view the entire database or information about selected files
in the Tripwire database. This is useful for seeing just how much information Tripwire is
tracking on your system.

To view the entire Tripwire database, type this command:

/usr/sbin/twprint -m d --print-dbfile | less

This command will generate a large amount of output, with the first few lines appearing
similar to this:

Tripwire(R) 2.3.0 Database

Database generated by: root
Database generated on: Tue Jan 9 13:56:42 2001
Database last updated on: Tue Jan 9 16:19:34 2001

===
Database Summary:
===
Host name: some.host.com
Host IP address: 10.0.0.1
Host ID: None
Policy file used: /etc/tripwire/tw.pol
Configuration file used: /etc/tripwire/tw.cfg
Database file used: /var/lib/tripwire/some.host.com.twd
Command line used: /usr/sbin/tripwire --init

===
Object Summary:
===

Section: Unix File System

Mode UID Size Modify Time
------ ---------- ---------- ----------

/
drwxr-xr-x root (0) XXX XXXXXXXXXXXXXXXXX

/bin
drwxr-xr-x root (0) 4096 Mon Jan 8 08:20:45 2001

/bin/arch
-rwxr-xr-x root (0) 2844 Tue Dec 12 05:51:35 2000

/bin/ash

Chapter 12. Installing and Configuring Tripwire 159

-rwxr-xr-x root (0) 64860 Thu Dec 7 22:35:05 2000
/bin/ash.static

-rwxr-xr-x root (0) 405576 Thu Dec 7 22:35:05 2000

To see information about a particular file that Tripwire is tracking, such as /etc/hosts, type
a different twprint command:

/usr/sbin/twprint -m d --print-dbfile /etc/hosts

The result will look similar to this:

Object name: /etc/hosts

Property: Value:
------------- -----------
Object Type Regular File
Device Number 773
Inode Number 216991
Mode -rw-r--r--
Num Links 1
UID root (0)
GID root (0)

See the twprint man page for other options.

12.10. Updating the Database after an Integrity Check
If you run an integrity check and Tripwire finds violations, you will first need to determine
whether the violations discovered are actual security breaches or the product of authorized
modifications. If you recently installed an application or edited critical system files, Trip-
wire will (correctly) report integrity check violations. In this case, you should update your
Tripwire database so those changes are no longer reported as violations. However, if unau-
thorized changes are made to system files that generate integrity check violations, then you
should restore the original file from a backup or reinstall the program.

To update your Tripwire database to accept the violations found in a report, you must specify
the report you wish to use to update the database. When issuing the command to integrate
those valid violations into your database, be sure to use the most recent report. Type the
following command (all on one line), where name is the name of the report to be used:

/usr/sbin/tripwire --update --twrfile
/var/lib/tripwire/report/ N name O .twr

Tripwire will show you the particular report using the default text editor (specified in the
Tripwire configuration file on the EDITOR line). This is your chance to deselect files that
you do not wish to be updated in the Tripwire database. It is important that you only allow
authorized integrity violations to be changed in the database.

All proposed updates to the Tripwire database start with a [x] before the file name. If you
want to specifically exclude a valid violation from being added to the Tripwire database,
remove the x from the box. To accept any files with an x beside them as changes, write the
file in the editor and quit the text editor. This signals to Tripwire to alter its database and not
report these files as violations.

For example, the default text editor for Tripwire is vi. To write the file with vi and make
the changes to the Tripwire database when updating with a specific report, type :wq in vi’s

160 Chapter 12. Installing and Configuring Tripwire

command mode and press [Enter]. You will be asked to enter your local passphrase. Then, a
new database file will be written to include the valid violations.

After a new Tripwire database is written, the newly authorized integrity violations will no
longer show up as warnings when the next integrity check is run.

12.11. Updating the Policy File
If you want to actually change the files Tripwire records in its database or modify the severity
in which violations are reported, you need to edit your Tripwire policy file.

First, make whatever changes are necessary to the sample policy file
(/etc/tripwire/twpol.txt). A common change to this policy file is to comment out any
files that do not exist on your system so that they will not generate a file not found error
in your Tripwire reports. For example, if your system does not have a /etc/smb.conf file,
you can tell Tripwire not to try to look for it by commenting out its line in twpol.txt:

/etc/smb.conf -> $(SEC_CONFIG) ;

Next, you must tell Tripwire to generate a new /etc/tripwire/tw.pol signed file and
then generate an updated database file based on this policy information. Assuming
/etc/tripwire/twpol.txt is the edited policy file, use this command:

/usr/sbin/twadmin --create-polfile -S site.key /etc/tripwire/twpol.txt

You will be asked for the site passphrase. Then, the twpol.txt file will be parsed and signed.

It is important that you update the Tripwire database after creating a new
/etc/tripwire/tw.pol file. The most reliable way to accomplish this is to delete your
current Tripwire database and create a new database using the new policy file.

If your Tripwire database file is named wilbur.domain.com.twd, type this command:

rm /var/lib/tripwire/wilbur.domain.com.twd

Then type the command to create a new database:

/usr/sbin/tripwire --init

A new database will be created according to the instructions in the new policy file. To make
sure the database was correctly changed, run the first integrity check manually and view the
contents of the resulting report. See Section 12.8 and Section 12.9 for specific instructions on
these points.

12.11.1. Signing the Configuration File
The text file with the configuration file changes (commonly /etc/tripwire/twcfg.txt)
must be signed to replace the /etc/tripwire/tw.cfg and be used by Tripwire when it runs
its integrity check. Tripwire will not recognize any configuration changes until the configu-
ration text file is correctly signed and used to replace the /etc/tripwire/tw.pol file.

If your altered configuration text file is /etc/tripwire/twcfg.txt, type this command to
sign it, replacing the current /etc/tripwire/tw.cfg file:

/usr/sbin/twadmin --create-cfgfile -S site.key /etc/tripwire/twcfg.txt

Since the configuration file does not not alter any Tripwire policies or files tracked by the
application, it is not necessary to regenerate the database of monitored system files.

Chapter 12. Installing and Configuring Tripwire 161

12.12. Tripwire and Email
Tripwire can email someone if a specific type of rule in the policy file is violated. To configure
Tripwire to do this, you first have to know the email address of the person to be contacted
if a particular integrity violation occurs, plus the name of the rule you would like to moni-
tor. Note that on large systems with multiple administrators, you can have different sets of
people notified for certain violations and no one notified for minor violations.

Once you know who to notify and what to notify them about, add an emailto= line to the rule
directive section of each rule. Do this by adding a comma after the severity= line and putting
emailto= on the next line, followed by the email addresses to send the violation reports for
that rule. Multiple emails will be sent if more than one email address is specified and they
are separated by a semi-colon.

For example, if you would like two administrators, Sam and Bob, notified if a networking
program is modified, change the Networking Programs rule directive in the policy file to
look like this:

(
rulename = "Networking Programs",
severity = $(SIG_HI),
emailto = bob@domain.com;sam@domain.com

)

Once a new signed policy file is generated from the /etc/tripwire/twpol.txt file, the
specified email addresses will be notified upon violations of that particular rule. For instruc-
tions on signing your policy file, see Section 12.11.

12.12.1. Sending Test Email Messages
To make sure that Tripwire’s email notification configuration can actually send email cor-
rectly, use the following command:

/usr/sbin/tripwire --test --email your@email.address

A test email will immediately be sent to the email address by the tripwire program.

12.13. Additional Resources
Tripwire can do more than what is covered in this chapter. Refer to these additional sources
of information to learn more about Tripwire.

12.13.1. Installed Documentation

• /usr/share/doc/tripwire- P version-number Q — An excellent starting point for learn-
ing about how to customize the configuration and policy files in the /etc/tripwire di-
rectory.

• Also, refer to the man pages for tripwire, twadmin and twprint for help using those
utilities.

162 Chapter 12. Installing and Configuring Tripwire

12.13.2. Useful Websites

• http://www.tripwire.org — The home of the Tripwire Open Source Project, where you
can find the latest news on the application, including an FAQ list.

Network Services Reference

Chapter 13.

Network Scripts

Using Red Hat Linux, all network communications occur between interfaces and physical
networking devices connected to the system, configured in a particular way, and utilizing at
least one protocol to exchange data with other systems. The different types of interfaces that
exist are as varied as the physical devices they support.

The configuration files for the various network interfaces and the scripts to make activate
and deactivate them are located in the /etc/sysconfig/network-scripts/ directory.
While the existence of particular interface files can differ from system to system, the three
different types of files that exist in this directory, interface configuration files, interface control
scripts, and network function files, work together to enable Red Hat Linux to use various
network devices.

This chapter will explore the relationship between these files and how they are used.

13.1. Interface Configuration Files
Interface configuration files control the operation of individual network interface device. As
your Red Hat Linux system boots, it uses these files to know what interfaces to bring up and
how to configure them. These files are usually named ifcfg- R device S , where R device S
refers to the name of the device that the configuration file controls.

13.1.1. Ethernet Interfaces
One of the most common interface files is ifcfg-eth0, which controls the first network inter-
face card or NIC in the system. In a system with multiple NICs, you will also have multiple
ifcfg-eth files, each one with number at the end of the file name. Because each device has
its own configuration file, you can control how each interface functions.

Below is a sample ifcfg-eth0 for a system using a fixed IP address:

DEVICE=eth0
BOOTPROTO=none
ONBOOT=yes
BROADCAST=10.0.1.255
NETWORK=10.0.1.0
NETMASK=255.255.255.0
IPADDR=10.0.1.27
USERCTL=no

The values required in an interface configuration file can change based on other values. For
example, the ifcfg-eth0 file for an interface using DHCP looks quite a bit different, because
IP information is provided by the DHCP server:

DEVICE=eth0
BOOTPROTO=dhcp
ONBOOT=yes

Most of the time you will probably want to use a GUI utility, such as Network Configurator
(redhat-config-network) to make changes to the various interface configuration files. See
the Official Red Hat Linux Customization Guide for instructions on using this tool.

166 Chapter 13. Network Scripts

You can also edit the configuration file for a given network interface by hand. Below is a
listing of the parameters one can expect to configure in an interface configuration file.

Within each of the interface configuration files, the following values are common:

• BOOTPROTO= T protocol U , where T protocol U is one of the following:

• none — No boot-time protocol should be used.

• bootp — The BOOTP protocol should be used.

• dhcp — The DHCP protocol should be used.

• BROADCAST= T address U , where T address U is the broadcast address.

• DEVICE= T name U , where T name U is the name of the physical device (except dynamically-
allocated PPP devices where it is the logical name).

• IPADDR= T address U , where T address U is the IP address.

• NETMASK= T mask U , where T mask U is the netmask value.

• NETWORK= T address U , where T address U is the network address.

• ONBOOT= T answer U , where T answer U is one of the following:

• yes — This device should be activated at boot-time.

• no — This device should not be activated at boot-time.

• USERCTL= T answer U , where T answer U is one of the following:

• true — Non-root users are allowed to control this device.

• false — Non-root users are not allowed to control this device.

Other common interface configuration files that use these options include ifcfg-lo, which
controls the IP protocol’s local loopback device, ifcfg-irlan0, which arranges settings for
the first infrared device, ifcfg-plip0, which controls the first PLIP device, and ifcfg-tr0,
used with the first Token Ring device.

A local loopback interface is often used in testing, as well as a variety of applications that
require an IP address pointing back to the same system. Any data sent to the loopback device
is immediately returned to the host’s network layer.

The infrared interface allows information between devices, such as a laptop and a printer, to
flow over an infrared link, which works in a similar way to an Ethernet device except that it
commonly occurs over a peer-to-peer connection.

A Parallel Line Interface Protocol (PLIP) connection works much the same way, except that it
utilizes a parallel port.

Token Ring topologies are not as common on Local Area Networks as they once were, having
been eclipsed by Ethernet.

13.1.2. Dialup Interfaces
If you connect to the Internet via PPP dialup connection, you need a configuration file for
that interface as well.

This file is created automatically for you when you use RP3 or Kppp to create a dialup ac-
count. In addition, any changes to dialup account settings are reflected in these interface

Chapter 13. Network Scripts 167

configuration files. The Official Red Hat Linux Getting Started Guide contains instructions for
using these GUI-based dialup connection tools. You can also create and edit this file manu-
ally. A typical ifcfg-ppp0 files looks like this:

DEVICE=ppp0
NAME=test
WVDIALSECT=test
MODEMPORT=/dev/modem
LINESPEED=115200
PAPNAME=test
USERCTL=true
ONBOOT=no
PERSIST=no
DEFROUTE=yes
PEERDNS=yes
DEMAND=no
IDLETIMEOUT=600

Serial Line Internet Protocol (SLIP) is another dialup interface, although it is less commonly
used. SLIP files have interface configuration file names such as ifcfg-sl0.

Among the options not already discussed that may be used in these files:

• DEFROUTE= V answer W , where V answer W is one of the following:

• yes — Set this interface as the default route.

• no — Do not set the interface as the default route.

• DEMAND= V answer W , where V answer W is one of the following:

• yes — This interface will allow pppd to initiate a connection when someone attempts to
use it.

• no — A connection must be manually established for this interface.

• IDLETIMEOUT= V value W , where V value W is number of seconds of idle activity before the
interface will disconnect itself.

• INITSTRING= V string W , where V string W is the init string passed to the modem device.
This option is primarily used with SLIP interfaces.

• LINESPEED= V value W , where V value W is the baud rate of the device. Possible standard
values here include 57600, 38400, 19200, and 9600.

• MODEMPORT= V device W , where V device W is the name of the device that is used to estab-
lish the connection for the interface.

• MTU= V value W , where V value W is the Maximum Transfer Unit (MTU) setting for the inter-
face. The MTU refers to the largest number of bytes of data a frame can carry, not counting
its header information. In some dialup situations, setting this to a value of 576 will result
in fewer dropped packets and slightly improve the throughput for a connection.

• NAME= V name W , where V name W is the reference to the title given to a collection of dialup
connection configurations.

• PAPNAME= V name W , where V name W is the username given during the Password Authentica-
tion Protocol (PAP) exchange that occurs to allow you to connect to a remote system.

• PEERDNS= V answer W , where V answer W is one of the following:

168 Chapter 13. Network Scripts

• yes — This interface will modify your system’s /etc/resolv.conf file entries to use
the DNS servers provided by the remote system when a connection is established.

• no — The /etc/resolv.conf file will not be changed.

• PERSIST= X answer Y , where X answer Y is one of the following:

• yes — This interface should be kept active at all times, even if deactivated after a mo-
dem hang up.

• no — This interface should not be kept active at all times.

• REMIP= X address Y , where X address Y is the remote system’s IP address. This is usually
left unspecified.

• WVDIALSECT= X name Y , where X name Y associates this interface with a dialer configuration
in /etc/wvdial.conf, which contains the phone number to be dialed and other important
information for the interface.

13.1.3. Alias and Clone Files
Two lesser used types of interface configuration files found in /etc/sysconfig/network-
scripts are alias and clone files, which include an additional component in the name of the
file beyond the interface name.

Alias interface configuration files take names in the format of ifcfg- X if-name Y : X alias-
value Y , and they allow an alias to point to an interface. For example, a ifcfg-eth0:0 file
could be configured to specify DEVICE=eth0:0 and a static IP address of 10.0.0.2, serving as
an alias of an Ethernet interface already configured to receive its IP information via DHCP
in ifcfg-eth0. At that point, the eth0 device is bound to a dynamic IP address, but it can
always be referred to on that system via the fixed 10.0.0.2 IP address.

A clone interface configuration file has a name similar to ifcfg- X if-name Y - X clone-
name Y . While an alias file is another way to refer to an existing interface configuration file,
a clone file is used to specify additional options when specifying an interface. For example,
if you have a standard DHCP Ethernet interface called eth0, it may look similar to this:

DEVICE=eth0
ONBOOT=yes
BOOTPROTO=dhcp

Since USERCTL is not set to yes, users cannot bring this interface up and down. To give users
this ability, create a clone called user from ifcfg-eth0 which allows a user to bring up and
down the eth0 interface. The resulting name of the clone would be ifcfg-eth0-user and
would only need one line:

USERCTL=yes

When a user moves to bring up the eth0 interface with the ifup eth0-user command, the
configuration options from ifcfg-eth0 and ifcfg-eth0-user are used together. While this
is a very basic example, this method can be used with a variety of options and interfaces.

The easiest way to create alias and clone interface configuration files is to use the GUI-based
Network Configurator (redhat-config-network) tool.

Chapter 13. Network Scripts 169

13.2. Interface Control Scripts
The interface control scripts control activating and deactivating interface connections. There
are two primary interface control scripts, /sbin/ifdown and /sbin/ifup, that call on control
scripts located in the /etc/sysconfig/network-scripts/directory.

The two primary interface control scripts in the /etc/sysconfig/network-scripts direc-
tory, ifdown and ifup, are symbolic links to the scripts in the /sbin/ directory. When either
of these scripts are called, they accept a value of the interface to be used, such as:

ifup eth0
Determining IP information for eth0... done.

At that point, the /etc/sysconfig/network-scripts/network-functions and
/etc/rc.d/init.d/functions files are used to perform a variety of tasks. See Section 13.3
for more information about these tasks.

After verifying that an interface has been specified and that the user executing the request
is allowed to bring the interface up or down, the correct script for the type of interface de-
vice brings the interface up or down. The following interface control scripts are the most
common:

• ifup-aliases — Configures IP aliases from interface configuration files when more than
one IP address is associated with an interface.

• ifdown-cipcb and ifup-cipcb — Used to bring Crypto IP Encapsulation (CIPE) connec-
tions up and down.

• ifdown-ipv6 and ifup-ipv6 — Contains IPv6-related function calls using environment
variables in various interface configuration files and /etc/sysconfig/network.

• ifup-ipx — Used to bring up an IPX interface.

• ifup-plip — Used to bring up a PLIP interface.

• ifup-plusb — Used to bring up a USB interface for network connections.

• ifdown-post and ifup-post — Contains commands to be executed after an interface is
brought up or down.

• ifdown-ppp and ifup-ppp — Used to bring a PPP interface up or down.

• ifup-routes — Adds static routes for a device as its interface is brought up.

• ifdown-sit and ifup-sit — Contains function calls related to bringing up and down an
IPv6 tunnel within an IPv4 connection.

• ifdown-sl and ifup-sl — Used to bring an SLIP interface up or down.

Be aware that removing or modifying any scripts in the /etc/sysconfig/network-
scripts/ directory can cause interface connections to act strangely or fail, as these scripts.
Only advanced users should modify scripts related to a network interface.

You can also use the init script /etc/rc.d/init.d/network to activate and deactive all
network interfaces configured to start at boot time with the command:

/sbin/service network action

Where action is either start, stop, or restart. You can also use the command
/sbin/service/network status to view a list of configured devices and currently active
devices.

170 Chapter 13. Network Scripts

13.3. Network Functions
Red Hat Linux makes use of several files that contain important functions that are used in
various ways to bring interfaces up and down. Rather than forcing each interface control file
to contain the same functions as another, these functions are grouped together in a few files
that can be sourced when needed.

The most common network functions file is network-functions, located in the
/etc/sysconfig/network-scripts/directory. This file contains a variety of common IPv4
functions useful to many interface control scripts, such as contacting running programs that
have requested information about changes in an interface’s status, setting host names,
finding a gateway device, seeing if a particular device is down or not, and adding a default
route.

As the functions required for IPv6 interfaces are different than IPv4 interfaces, a network-
functions-ipv6 file exists specifically to hold this information. IPv6 support must be en-
abled in the kernel in order to communicate via that protocol. A function is present in this
file that checks for the presence of IPv6 support. Additionally, functions that configure and
delete static IPv6 routes, create and remove tunnels, add and remove IPv6 addresses to an
interface, and test for the existence of an IPv6 address on an interface can also be found in
this file.

Chapter 14.

Firewalling with iptables

The Linux kernel contains advanced tools for packet filtering — the process of controlling net-
work packets as they attempt to enter, move through, and exit your system. Pre-2.4 kernels
contained the ability to manipulate packets using ipchainswhich used lists of rules that ap-
ply to packets at each step of the filtering process. The introduction of the 2.4 kernel brought
with it iptables, which is similar to ipchains but greatly expands on the scope and control
available for filtering network packets.

This chapter focuses on packet filtering basics, defining the differences between ipchains
and iptables, explaining various options available with iptables commands, and show-
ing how filtering rules can be preserved between system reboots.

Warning

The default firewall mechanism under the 2.4 kernel is iptables, but iptables cannot be used if
ipchains are already running. If ipchains are present at boot time, the kernel will issue an error
and fail to start iptables.

These boot error messages do not effect the functionality of ipchains.

If you require instructions for constructing iptables rules or setting up a firewall based on
these rules, please see Section 14.5 for more information.

14.1. Packet Filtering
Traffic moves through a network in packets, which are collections of data in particular sizes.
A file sent over a network between two computers may be comprised of many packets, each
of which holds a small part of the file data. The sending computer takes the file and breaks
it into packets to be sent over the network, using the rules of the network protocol being
utilized. The other computer receives the packets and, using the method specified by the
protocol, reassembles the packets into the file.

Every packet contains information which helps it navigate the network and move to its des-
tination. The packet can tell computers along the way, as well as the destination machine,
where it came from, where it is going, and what type of packet it is, among other things. Most
packets are designed to carry data, although some protocols use packets in special ways. The
Transmission Control Protocol (TCP), for example, uses a SYN packet, which contains no data,
to initiate communication between two systems.

The Linux kernel contains the built-in ability to filter packets, allowing some of them into the
system while stopping others. The 2.4 kernel contains three tables also called rules lists. By
default these tables contain three sets of rule lists: INPUT, OUTPUT, and FORWARD. Every
packet being sent in or out of the machine is subject to one of these lists. When a packet
enters the system via a network interface, the kernel decides if it is destined for the local
system (INPUT) or another destination (FORWARD) to determine the rule list to use with it.
In the same way, if a packet originates on the system and attempts to leave the system, the
kernel will check it against the OUTPUT list.

Each packet may need be checked against multiple rules before emerging at the end of the
chain. The structure and purpose of these rules may vary, but they usually seek to identify
a packet coming from or going to a particular IP address or set of addresses when using a
particular protocol and network service.

172 Chapter 14. Firewalling with iptables

Regardless of their destination, when packets match a particular rule on one of the rule lists,
they are designated for a particular target or action to be applied to them. If the rule specifies
an ACCEPT target for a matching packet, the packet skips the rest of the rule checks and is
allowed to continue to its destination. If a rule specifies a DROP target, that packet is refused
access to the system and nothing is sent back to the host that sent the packet. If a rule specifies
a REJECT target, the packet is dropped, but an error packet is sent to the packet’s originator.

Every chain has a default policy to ACCEPT, DROP, REJECT, or QUEUE the packet to be
passed to userspace. If none of the rules in the chain apply to the packet, then the packet is
dealt with in accordance with the default policy.

The iptables command allows you to configure these rule lists, as well as set up new tables
to be used for your particular situation.

14.2. Differences between iptables and ipchains

At first glance, ipchains and iptables appear to be quite similar. After all, both methods
of packet filtering use chains of rules operating within the Linux kernel to decide not only
which packets to let in or out, but also what to do with packets that match certain rules.
However, iptables offers a much more extensible way of filtering packets, giving the ad-
ministrator a greater amount of control without building too much complexity into the entire
system.

Specifically, users comfortable with ipchains should be aware of the following significant
differences between ipchains and iptables before attempting to use iptables:

• Under iptables, each filtered packet is only processed using rules from one chain rather than
multiple chains. In other words, a FORWARD packet coming into a system using ipchains
would have to go through the INPUT, FORWARD, and OUTPUT chains in order to move
along to its destination. However, iptables only sends packets to the INPUT chain if they
are destined for the local system and only sends them to the OUTPUT chain if the local
system generated the packets. For this reason, you must be sure to place the rule designed
to catch a particular packet in the rule that will actually see the packet.

The advantage is that you now have more control over the disposition of each packet. If
you are attempting to block access to a particular website, it is now possible to block access
attempts from clients running on hosts which use your host as a gateway. An OUTPUT
rule which denies access will no longer prevent access for hosts which use your host as a
gateway.

• The DENY target has been changed to DROP. In ipchains, packets that matched a rule in a
chain could be directed to the DENY target, which silently dropped the packet. This target
must be changed to DROP in iptables to have the same effect.

• Order matters when placing options in a rule. Previously, with ipchains, it did not matter
very much how you ordered the rule options. The iptables command is a bit pickier
about where some options may go. For example, you must now specify the source or
destination port after the protocol (ICMP, TCP, or UDP) to be used in a rule.

• When specifying network interfaces to be used with a rule, you must only use incoming interfaces
(-i option) with INPUT or FORWARD chains and outgoing interfaces (-o option) with FOR-
WARD or OUTPUT chains. This is necessary due to the fact that OUTPUT chains are no
longer used by incoming interfaces, and INPUT chains are not seen by packets moving
through outgoing interfaces.

Chapter 14. Firewalling with iptables 173

This is by no means a comprehensive list of the changes, given that iptables represents a
fundamentally rewritten network filter in use with the kernel. For more specific information,
consult the Linux 2.4 Packet Filtering HOWTO and the sources found in Section 14.5.

14.3. Options Used in iptables Commands
Rules that allow packets to be filtered by the kernel are put into place by running the ipta-
bles command with a number of options after it that identify the types of packets being fil-
tered, the source or destination of those packets, and what to do with the packet if it matches
the rule. The options used with a particular iptables rule must be grouped logically, based
on the purpose and conditions of the overall rule, in order for the rule to be valid.

14.3.1. Tables
A powerful aspect of iptables is that multiple tables can be used to decide the fate of a par-
ticular packet, depending upon the type of packet being monitored and what is to be done
with the packet. Thanks to the extensible nature of iptables, specialized tables can be cre-
ated and stored in the /etc/modules/ Z kernel-version [/kernel/net/ipv4/netfilter/
directory to meet special goals. Think of iptables as being able to run multiple sets of
ipchains rules in defined chains, with each set fulfilling a particular role.

The default table, named filter, contains the standard built-in INPUT, OUTPUT, and FOR-
WARD chains. This is somewhat similar to the standard chains in use with ipchains. How-
ever, by default, iptables also includes two additional tables that perform specific packet
filtering jobs. The nat table can be used to modify the source and destination addresses
recorded in packets, and the mangle table allows you to alter packets in specialized ways.

Each table contains default chains that perform necessary tasks based on the purpose of the
table, but you can easily set up new chains in each of the tables.

14.3.2. Structure
Many iptables commands have the following structure:

iptables [-t Z table-name [] Z command [\Z chain-name []Z parameter-1 [\
Z option-1 [^Z parameter-n [_Z option-n [

In this example, the Z table-name [option allows the user to select a table other than the
default filter table to use with the command. The Z command [option is the center of the
command, dictating a specific action to perform, such as appending or deleting a rule from
a particular chain, which is specified by the Z chain-name [option. Following the Z chain-
name [are pairs of parameters and options that actually define the way the rule will work
and what will happen when a packet matches the rule.

When looking at the structure of an iptables command, it is important to remember that,
unlike most other commands, the length and complexity of an iptables command can
change based on its purpose. A simple command to remove a rule from a chain can be very
short, while a command designed to filter packets from a particular subnet using a variety
of specific parameters and options can be rather lengthy. One way to think about iptables
commands is to recognize that some parameters and options used may create the need to
use other parameters and options to further specify the previous option’s request. In order
to construct a valid rule, this must continue until every parameter and option that requires
another set of options is satisfied.

Type iptables -h to see a comprehensive list of iptables command structures.

174 Chapter 14. Firewalling with iptables

14.3.3. Commands
Commands tell iptables to perform a specific action, and only one command is allowed
per iptables command string. Except for the help command, all commands are written in
upper-case characters.

The iptables commands are:

• -A — Appends the iptables rule to the end of the specified chain. This is the command
used to simply add a rule when rule order in the chain does not matter.

• -C — Checks a particular rule before adding it to the user-specified chain. This command
can help you construct complicated iptables rules by prompting you for additional pa-
rameters and options.

• -D — Deletes a rule in a particular chain by number (such as 5 for the fifth rule in a
chain). You can also type the entire rule, and iptables will delete the rule in the chain
that matches it.

• -E — Renames a user-defined chain. This does not affect the structure of the table at all.
Rather, it just saves you the trouble of deleting the chain, creating it under the new name,
and reconfiguring all of your rules for that chain.

• -F — Flushes the selected chain, which effectively deletes every rule in the the chain. If no
chain is specified, this command flushes every rule from every chain.

• -h — Provides a list of helpful command structures, as well as a quick summary of com-
mand parameters and options.

• -I — Inserts a rule in a chain at a particular point. Assign a number to the rule to be
inserted and iptables will put it there. If no number is specified, iptables will place
your command at the top of the rule list.

Caution

Be aware of which option (-A or -I) you are using when adding a rule. The order of the rules can
be very important when determining if a particular packet applies to one rule or another. Make
sure when adding a rule to the beginning or end of the chain that it does not affect other rules in
that chain.

• -L — Lists all of the rules in the chain specified after the command. To list all rules in all
chains in the default filter table, do not specify a chain or table. Otherwise, the following
syntax should be used to list the rules in a specific chain in a particular table:

iptables -L ` chain-name a -t ` table-name a

Powerful options for the -L command that provide rule numbers and allow more verbose
rule descriptions, among others, are described in Section 14.3.7.

• -N — Creates a new chain with a user-specified name.

• -P — Sets the default policy for a particular chain, so that when packets traverse an entire
chain without matching a rule, they will be sent on to a particular target, such as ACCEPT
or DROP.

• -R — Replaces a rule in a particular chain. You must use a rule’s number after the chain’s
name to replace that rule. The first rule in a chain relates to rule number 1.

• -X — Deletes a user-specified chain. Deleting a built-in chain for any table is not allowed.

Chapter 14. Firewalling with iptables 175

• -Z — Zeros the byte and packet counters in all chains for a particular table.

14.3.4. Parameters
Once certain iptables commands are specified, including those used to add, append,
delete, insert, or replace rules within a particular chain, parameters are required to begin
the construction of the packet filtering rule.

• -c — Resets the counters for a particular rule. This parameter accepts the PKTS and BYTES
options to specify what counter to reset.

• -d — Sets the destination hostname, IP address, or network of a packet that will match
the rule. When matching a network, you can use two different methods for signifying the
netmasks, such as 192.168.0.0/255.255.255.0 or 192.168.0.0/24.

• -f — Applies this rule only to fragmented packets.

By using the ! option after this parameter, only unfragmented packets will be matched.

• -i — Sets the incoming network interface, such as eth0 or ppp0, to use with a particu-
lar rule. With iptables, this optional parameter may only be used with the INPUT and
FORWARD chains when used with the filter table and the PREROUTING chain with
the nat and mangle tables.

This parameter features several useful options that may be used before specifying the
name of an interface:

• ! — Tells this parameter not to match, meaning that any specified interfaces are specif-
ically excluded from this rule.

• + — A wildcard character used to match all interfaces that match a particular string.
For example, the parameter -i eth+ would apply this rule to any Ethernet interfaces
on your system but exclude any other interfaces, such as ppp0.

If the -i parameter is used but no interface is specified, then every interface is affected by
the rule.

• -j — Tells iptables to jump to a particular target when a packet matches a particular
rule. Valid targets to be used after the -j option include the standard options, ACCEPT,
DROP, QUEUE, and RETURN, as well as extended options that are available through modules
loaded by default with the Red Hat Linux iptablesRPM package, such as LOG, MARK, and
REJECT, among others. See the iptables man page for more information on these and
other targets, including rules regarding their use.

You may also direct a packet matching this rule to a user-defined chain outside of the
current chain. This allows you to apply other rules against this packet, further filtering it
with more specific criteria.

If no target is specified, the packet moves past the rule with no action taken. However, the
counter for this rule is still increased by 1, as the packet matched the specified rule.

• -o — Sets the outgoing network interface for a particular rule, and may only be used with
OUTPUT and FORWARD chains in the filter table and the POSTROUTING chain in the
nat and mangle tables. This parameter’s options are the same as those of the incoming
network interface parameter (-i).

176 Chapter 14. Firewalling with iptables

• -p — Sets the IP protocol for the rule, which can be either icmp, tcp, udp, or all, to match
every supported protocol. In addition, lesser used protocols listed in /etc/protocols can
also be utilized. If this option is omitted when creating a rule, the all option is the default.

• -s — Sets the source for a particular packet, using the same syntax as the destination (-d)
parameter.

14.3.5. Match Options
Different network protocols provide specialized matching options which may be set in spe-
cific ways to match a particular packet using that protocol. Of course, the protocol must first
be specified in the iptables command, such as using -p tcp b protocol-name c , to make
the options for that protocol available.

14.3.5.1. TCP Protocol

These match options are available for the TCP protocol (-p tcp):

• --dport — Sets the destination port for the packet. You can use either a network service
name (such as www or smtp), port number, or range of port numbers to configure this
option. To browse the names and aliases of network services and the port numbers they
use, view the /etc/services file. You can also use --destination-port to specify this
match option.

To specify a specific range of port numbers, separate the two numbers with a colon (:),
such as -p tcp --dport 3000:3200. The largest valid range is 0:65535.

You may also use an exclamation point character (!) as a flag after the --dport option to
tell iptables to match all packets which do not use that network service or port.

• --sport — Sets the source port of the packet, using the same options as --dport. You
can also use --source-port to specify this match option.

• --syn— Applies to all TCP packets designed to initiate communication, commonly called
SYN packets. Any packets that carry a data payload are not touched. Placing an exclama-
tion point character (!) as a flag after the --syn option causes all non-SYN packets to be
matched.

• --tcp-flags — Allows TCP packets with specific bits, or flags, set to be matched with
a rule. The --tcp-flags match option accepts two parameters after it, which are flags
for the various bits arranged in a comma-separated list. The first parameter is the mask,
which sets the flags to be examined on the packet. The second parameter refers to the flags
that must be set in the packet to make a match. The possible flags are ACK, FIN, PSH, RST,
SYN, and URG. In addition, ALL and NONE can also be used to match every flag or none of
them.

For example, an iptables rule which contains -p tcp --tcp-flags ACK,FIN,SYN SYN
will only match TCP packets that have the SYN flag set and the ACK and FIN flags unset.

Like many other options, using the exclamation point character (!) after --tcp-flags
reverses the effect of the match option, so that the second parameter’s flags must not be
set in order to match.

• --tcp-option — Attempts to match with TCP-specific options that can be set within
a particular packet. This match option can also be reversed with the exclamation point
character (!).

Chapter 14. Firewalling with iptables 177

14.3.5.2. UDP Protocol

These match options are available for the UDP protocol (-p udp):

• --dport — Specifies the destination port of the UDP packet, using the service name, port
number, or range of port numbers. The --destination-port match option may be used
instead of --dport. See the --dport match option in Section 14.3.5.1 for various ways to
use this option.

• --sport — Specifies the source port of the UDP packet, using the service name, port
number, or range of port numbers. The --source-portmatch option may be used instead
of --sport. See the --dport match option in Section 14.3.5.1 for various ways to use this
option.

14.3.5.3. ICMP Protocol

Packets using the Internet Control Message Protocol (ICMP) can be matched using the fol-
lowing option when -p icmp is specified:

• --icmp-type — Sets the name or number of the ICMP type to match with the rule. A list
of valid ICMP names can be seen by typing the iptables -p icmp -h command.

14.3.5.4. Modules with Additional Match Options

Additional match options are also available through modules loaded when the iptables
command calls them. To use a match option module, you must load the module by name by
including -m d module-name e in the iptables command.

A large number of modules are available by default. It is even possible to create your own
modules to provide additional match option functionality. Many modules exist, but only the
most popular ones are discussed here.

The limit module allows you to place a limit on how many packets will be matched to
a particular rule. This is especially beneficial when logging rule matches so that a flood of
matching packets will not fill up your logs with repetitive messages or use too many system
resources.

• --limit — Sets the number of matches for a particular range of time, specified with a
number and time modifier arranged in a d number e / d time e format. For example, using
--limit 5/hour only lets a rule match five times in a single hour.

If a number and time modifier are not used, the default value of 3/hour is assumed.

• --limit-burst — Sets a limit on the number of packets able to match a rule at one
time. This option should be used in conjunction with the --limit option, and it accepts a
number to set the burst threshold.

If no number is specified, only five packets are initially able to match the rule.

The state module, which uses the --state match option, can match a packet with these
particular connection states:

• ESTABLISHED — The matching packet is associated with other packets in an established
connection.

178 Chapter 14. Firewalling with iptables

• INVALID — The matching packet cannot be tied to a known connection.

• NEW — The matching packet is either creating a new connection or is part of a two-way
connection not previously seen.

• RELATED — The matching packet is starting a new connection related in some way to an
existing connection.

These connection states can be used in combination with one another by separating them
with commas, such as -m state --state INVALID,NEW.

To specifically match a hardware MAC address of an Ethernet device, use the mac module,
which accepts --mac-source plus a MAC address as an option. To exclude a MAC address
from a rule, place an exclamation point (!) after the --mac-source match option.

To view other match options available through modules, see the iptables man page.

14.3.6. Target Options
Once a packet has matched a particular rule, the rule can direct the packet to a number of
different targets that decide its fate and, possibly, take additional actions, such as logging
the action. Additionally, each chain has a default target, which is used if none of the rules on
that chain match a packet or if none of the rules which match the packet specify a target.

There are only a few standard targets available to decide what happens with the packet:

• f user-defined-chain g — The name of a previously created and defined chain within
this table with rules that will be checked against this packet, in addition to any other rules
in any other chains that must be checked against this packet.

• ACCEPT — Allows the packet to successfully move on to its destination or another chain.

• DROP — Drops the packet without responding to the requester. The system that sent the
packet is not notified of the failure. The packet is simply removed from the rule checking
the chain and discarded.

• QUEUE — The packet is queued for handling in userspace, where a user or an application,
for instance can do something with it.

• RETURN — Stops checking the packet against rules in the current chain. If the packet with
a RETURN target matches a rule in a chain called from another chain, the packet is returned
to the first chain to resume rule checking where it left off. If the RETURN rule is used on a
built-in chain and the packet cannot move up to its previous chain, the default target for
the current chain decides what is done with it.

In addition to these standard targets, various other targets may be used with extensions
called target modules. For more information about match option modules, see Section 14.3.5.4.

There are many extended target modules, most of which only apply to specific tables or
situations. A couple of the most popular target modules included by default in Red Hat
Linux are:

• LOG Logs all packets that match this rule. Since the packets are logged by the kernel, the
/etc/syslog.conf file determines where these log entries are written. By default, they
are placed in the /var/log/messages file.

Various options can be used after the LOG target to specify the way in which logging occurs:

• --log-level — Sets the priority level a of logging event. A list of priority levels can be
found in the syslog.conf man page.

Chapter 14. Firewalling with iptables 179

• --log-ip-options — Any options set in the header of a IP packet is logged.

• --log-prefix — Places a string before the log line when it is written. Accepts up to
29 characters after the --log-prefix option. This is useful for writing syslog filters for
use in conjunction with packet logging.

• --log-tcp-options — Any options set in the header of a TCP packet is logged

• --log-tcp-sequence — Writes the TCP sequence number for the packet in the log.

• REJECT — Sends an error packet back to the system which sent the packet, and then
DROPs the packet. This target is useful if you would like to notify the system sending
the matching packet of the problem.

The REJECT target accepts a --reject-with h type i option to provide more detail to be
sent with the error packet. The message port-unreachable is the default h type i error
given if no other option is used. For a full list of h type i options that can be used, see the
iptables man page.

Other target extensions, including several that are useful with masquerading using the nat
table, can be found in the iptables man page.

14.3.7. Listing Options
The default list command, iptables -L, provides a very basic overview of the default fil-
ter table’s current rile chains. Additional options exist that provide more information and
arrange that information in specific ways:

• -v — Display verbose output, such as the number of packets and bytes each chain has
seen, the number of packets and bytes each rule has matched, and which interfaces apply
to a particular rule.

• -x — Expands numbers into their exact values. On a busy system, the number of packets
and bytes seen by a particular chain or rule may be abbreviated using K (thousands), M
(millions), and G (billions) at the end of the number. This option forces the full number to
be displayed.

• -n — Displays IP addresses and port numbers in numeric format, rather than the default
hostname and network service format.

• --line-numbers — Lists rules in each chain next to their numeric order in the chain. This
option is useful when attempting to delete a specific rule in a chain, or to locate where to
insert a rule within a chain.

14.4. Storing iptables Information
Rules created with the iptables command are only stored in RAM. If you restart your
system after setting up various iptables rules, they are lost. If you want particular
rules to take effect whenever your system boots, you need to save them to the
/etc/sysconfig/iptables file.

To do this, arrange your tables, chains, and rules the way they should be the next time the
system boots or iptables is restarted, and type the /sbin/service iptables save com-
mand as the root user. This causes the iptables init script to run the /sbin/iptables-save
program and write the current iptables configuration to the /etc/sysconfig/iptables

180 Chapter 14. Firewalling with iptables

file. This file should only be readable by root, so your precise packet filtering rules are not
viewable by average users.

The next time the system boots, the iptables init script will reapply the rules saved in
/etc/sysconfig/iptables by using the /sbin/iptables-restore command.

While it is always a good idea to test a new iptables rule before committing it to the
/etc/sysconfig/iptables file, it is possible to copy iptables rules into this file from an-
other system’s version of this file. This allows you to quickly distribute sets of iptables
rules to many different machines at once.

14.5. Additional Resources
See the sources below for additional information on packet filtering with iptables.

14.5.1. Installed Documentation

• The iptables man page contains a comprehensive description of various commands, pa-
rameters, and other options.

14.5.2. Useful Websites

• http://netfilter.samba.org — Contains assorted information about iptables, including
an FAQ addressing specific problems you may see and various helpful guides by Rusty
Russell, the Linux IP firewall maintainer. The HOWTO documents here cover subjects
such as basic networking concepts, 2.4 kernel packet filtering and NAT configurations.

• http://www.linuxnewbie.org/nhf/intel/security/iptables_basics.html —A very basic
and general look at the way packets move through the Linux kernel, plus an introduction
to constructing simple iptables commands.

• http://www.redhat.com/support/resources/networking/firewall.html — This page has
update-to-date links to a variety of packet filter resources.

Chapter 15.

Apache

The Apache product includes software developed by the Apache Software Foundation
(http://www.apache.org).

The Apache HTTP server is a robust and commercial-grade open source Web server used by
the majority of websites on the Internet. The Red Hat Linux distribution includes Apache,
as well as a number of additional modules which are designed to enhance the functionality
of the server and add strong encryption capabilities. Apache’s default configuration should
work for most users. You may never need to change any of Apache’s configuration direc-
tives. If you do want to change any of the default configuration options, you will need to
know what some of the options are and where to find them. This chapter covers how to use
and configure the Apache Web server.

Warning

If you plan to use the Apache Configuration Tool (apacheconf), a GUI utility provided with Red
Hat Linux, do not edit your Apache Web server’s /etc/httpd/conf/httpd.conf configuration file.
Conversely, if you want to edit httpd.conf by hand, do not use the Apache Configuration Tool.

If you need more information on the Apache Configuration Tool, please see the Official Red Hat
Linux Customization Guide.

After you have installed the apache package, the Apache Web server’s documentation
is available by installing the apache-manual package and pointing a Web browser to
http://localhost/manual/ or you can browse the Apache documentation available on the
Web at http://httpd.apache.org/docs/. The Apache Web server’s documentation contains
a full list and complete descriptions of all of Apache’s configuration options. For your
convenience, this chapter provides short descriptions of the configuration directives used in
the version of Apache provided with Red Hat Linux.

The version of Apache included with Red Hat Linux includes the ability to set up secure Web
servers using the strong SSL encryption provided by the mod_ssl and OpenSSL packages.
When you are reading your Web server’s configuration file, be aware that it includes both a
non-secure and a secure Web server. The secure Web server runs as a virtual host, which is
also configured in the httpd.conf file. For more information about virtual hosts, see Section
15.5.

Note

We do not include FrontPage extensions. The Microsoft™ license prohibits the inclusion of the
extensions in a third party product. To find out more about FrontPage extensions, refer to
http://www.rtr.com/fpsupport/.

15.1. Default Modules
Apache is distributed with a number of modules. By default the following modules are in-
stalled and enabled with the Apache package on Red Hat Linux:

mod_vhost_alias

182 Chapter 15. Apache

mod_env
mod_log_config
mod_log_agent
mod_log_referer
mod_mime
mod_negotiation
mod_status
mod_info
mod_include
mod_autoindex
mod_dir
mod_cgi
mod_asis
mod_imap
mod_actions
mod_userdir
mod_alias
mod_rewrite
mod_access
mod_auth
mod_auth_anon
mod_auth_db
mod_expires
mod_headers
mod_setenvif

The following modules are installed but disabled (see Section 15.4):

mod_mmap_static
mod_mime_magic
mod_speling
mod_auth_any
mod_auth_dbm
mod_auth_ldap
mod_auth_mysql
mod_auth_pgsql
mod_digest
libproxy
mod_cern_meta
mod_usertrack
mod_example
mod_unique_id

The following modules are available by installing additional packages:

mod_bandwidth
mod_throttle
libperl
mod_php
libphp3
libphp4
libdav
mod_roaming
libssl
mod_put
mod_python

Chapter 15. Apache 183

15.2. Starting and Stopping httpd

During the installation process, a Bourne shell script named httpd was saved in
/etc/rc.d/init.d/. To manually stop, start, or check the status of your server, run httpd
with either stop, start, or status as an argument.

To start your server, type the command:

/sbin/service httpd start

If you are running Apache as a secure server, you will be prompted to fill in your password.
After you type it in, your server will start.

To stop your server, type the command:

/sbin/service httpd stop

The command restart is a shorthand way of stopping and then starting your server. The
restart command explicitly stops and then starts your server. You will be prompted for
your password if you are running Apache as a secure server. The restart command looks
like the following:

/sbin/service httpd restart

If you just finished editing something in your httpd.conf file, you do not need to explic-
itly stop and start your server. Instead, you can use the reload command. When you use
reload, you will not need to type in your password. Your password will remain cached
across reloads, but it will not be cached between stops and starts. The reload command
looks like the following:

/sbin/service httpd reload

By default, the httpd process will start automatically when your machine boots. If you are
running Apache as a secure server, you will be prompted for the secure server’s password
after the machine boots, unless you generated a key for your secure server without password
protection.

15.3. Configuration Directives in httpd.conf

The Apache Web server configuration file is /etc/httpd/conf/httpd.conf. The
httpd.conf file is well-commented and somewhat self-explanatory. Its default
configuration will work for most people, so you should not need to change the directives in
httpd.conf. However, you may want to be familiar with the most important configuration
options.

The empty srm.conf and access.conf files are also in the /etc/httpd/conf/ directory.
The srm.conf and access.conf files were formerly used, along with httpd.conf, as con-
figuration files for Apache.

If you need to configure Apache, edit httpd.conf and then either reload, or stop and start
the httpd process. How to reload, stop and start Apache is covered in Section 15.2.

Before you edit httpd.conf, you should first copy the original file to something like
httpd.conf-old, for example. By creating a backup, you can recover potential mistakes
made while editing the new configuration file.

If you do make a mistake, and your Web server does not work correctly, first review what
you have recently edited in httpd.conf. Make sure that you did not make a typo. The next
place to look is your Web server’s error log (/var/log/httpd/error_log). The error log

184 Chapter 15. Apache

may not be easy to interpret, depending on your level of experience. If you have just experi-
enced a problem, however, the last entries in the error log should provide information about
what has happened.

The next sections provide short descriptions of the directives included in httpd.conf.
These descriptions are not exhaustive. If you need more information, refer to the
Apache documentation provided in HTML format at http://localhoast/manual/ or
to the Apache group documentation at http://httpd.apache.org/docs/. For more
information about mod_ssl directives, refer to the documentation included in HTML
format at http://localhost/manual/mod/mod_ssl/ or see the mod_ssl User Manual at
http://www.modssl.org/docs/2.8/.

15.3.1. ServerType
Your ServerType must be set to standalone. By default, your Web server is set to Server-
Type standalone.

ServerType standalone means that the server is started once and then that server handles
all of the connections.

15.3.2. ServerRoot
The ServerRoot is the top-level directory which contains the server’s files. Both your secure
and non-secure servers are set to use a ServerRoot of "/etc/httpd".

15.3.3. LockFile
LockFile sets the path to the lockfile used when the Apache server is compiled with either
USE_FCNTL_SERIALIZED_ACCEPT or USE_FLOCK_SERIALIZED_ACCEPT. LockFile should be
left at its default value.

15.3.4. PidFile
PidFile names the file where the server records its process ID (pid). Your Web server is set
to record its pid in /var/run/httpd.pid.

15.3.5. ScoreBoardFile
The ScoreBoardFile stores internal server process information, which is used
for communication between the parent server process and its child processes.
Red Hat Linux uses shared memory to store the ScoreBoardFile, the default of
/etc/httpd/logs/apache_runtime_status is only used as a fallback.

15.3.6. ResourceConfig
The ResourceConfig directive instructs the server to read the file named after Resource-
Config for more directives. The ResourceConfig directive is commented out, because your
Web server only uses httpd.conf for configuration directives.

Chapter 15. Apache 185

15.3.7. AccessConfig
The AccessConfig directive instructs the server to read the file named after AccessConfig
for more directives, after it has read the file named by ResourceConfig. The AccessConfig
directive is commented out, because your Web server only uses httpd.conf for configura-
tion directives.

15.3.8. Timeout
Timeout defines, in seconds, the amount of time that your server will wait for receipts and
transmissions during communications. Specifically, Timeout defines how long your server
will wait to receive a GET request, how long it will wait to receive TCP packets on a POST or
PUT request and how long it will wait between ACKs responding to TCP packets. Timeout
is set to 300 seconds, which is appropriate for most situations.

15.3.9. KeepAlive
KeepAlive sets whether your server will allow more than one request per connection (in
other words, it will allow persistent connections). KeepAlive can be used to prevent any
one client from consuming too much of the server’s resources.

By default Keepalive is set to off. If Keepalive is set to on and the server becomes very
busy, the server can quickly spawn the maximum number of child processes. In this
situation, the server will slow down significantly. If Keepalive is enabled, it is a good
idea to set the the KeepAliveTimeout low (see Section 15.3.11) and monitor the servers
/var/log/httpd/error_log. This log will report when the server is running out of child
processes.

15.3.10. MaxKeepAliveRequests
This directive sets the maximum number of requests allowed per persistent connection. The
Apache Group recommends a high setting, which will improve your server’s performance.
MaxKeepAliveRequests is set to 100 by default, which should be appropriate for most situ-
ations.

15.3.11. KeepAliveTimeout
KeepAliveTimeout sets the number of seconds your server will wait after a request has
been served before it closes the connection. Once the server receives a request, the Timeout
directive applies instead.

15.3.12. MinSpareServers and MaxSpareServers

The Apache Web server dynamically adapts to the perceived load by maintaining an appro-
priate number of spare server processes based on the traffic. The server checks the number
of servers waiting for a request and kills some if there are more than MaxSpareServers or
creates some if the number of servers is less than MinSpareServers.

Your server’s default MinSpareServers is 5; your server’s default MaxSpareServers is 20.
These default settings should be appropriate in most situations. You should not increase the
MinSpareServers to a large number. Doing so will create a heavy processing load on your
server even when traffic is light.

186 Chapter 15. Apache

15.3.13. StartServers
StartServers sets how many server processes are created upon startup. Since your Web
server dynamically kills and creates server processes based on traffic load, you will not need
to change this parameter. Your Web server is set to start eight server processes at startup.

15.3.14. MaxClients
MaxClients sets a limit on the total number of server processes, or simultaneously con-
nected clients, that can run at one time. You should keep MaxClients at a high number
(your server’s default is set to 150), because no one else will be allowed to connect once
that number of simultaneously connected clients is reached. You can not set MaxClients to
higher than 256 without recompiling Apache. The main reason for having MaxClients is to
keep a runaway Web server from crashing your operating system.

15.3.15. MaxRequestsPerChild
MaxRequestsPerChild sets the total number of requests each child server process serves
before the child dies. The main reason for setting MaxRequestsPerChild is to avoid long-
lived process induced memory leaks. The default MaxRequestsPerChild for your server is
1000.

15.3.16. Listen
The Listen command identifies the ports on which your Web server will accept incoming
requests. Your Web server is set to listen to port 80 for non-secure Web communications and
(in the virtual host tags that define the secure server) to port 443 for secure Web communi-
cations.

If you set Apache to listen to a port under 1024, you must be root to start it. For port 1024
and above, httpd can be started as a regular user.

Listen can also be used to specify particular IP addresses over which the server will accept
connections.

15.3.17. BindAddress
BindAddress is a way of specifying which IP addresses your server will listen to. You should
use the Listen directive instead if you need this functionality. BindAddress is not used by
your Web server; by default it is commented out in httpd.conf.

15.3.18. LoadModule
LoadModule is used to load in Dynamic Shared Object (DSO) modules. More information on
the Apache’s DSO support, including exactly how to use the LoadModule directive, can be
found in Section 15.4. Note, the load order of the modules is important, so do not move them
around.

Chapter 15. Apache 187

15.3.19. IfDefine
The j IfDefine k and j /IfDefine k tags surround configuration directives that are applied
if the "test" stated in the j IfDefine k tag is true. The directives are ignored if the test is false.

The test in the j IfDefine k tags is a parameter name (for example, HAVE_PERL). If the pa-
rameter is defined, meaning that it is provided as an argument to the server’s start-up com-
mand, then the test is true. In this case, when your Web server is started, the test is true and
the directives contained in the IfDefine tags are applied.

By default, j IfDefine HAVE_SSL k tags surround the virtual host tags for your secure
server. j IfDefine HAVE_SSL k tags also surround the LoadModule and AddModule
directives for the ssl_module.

15.3.20. ClearModuleList
The ClearModuleList directive is located immediately before the long list of AddModule
directives. ClearModuleList erases the server’s built-in list of active modules. Then the list
of AddModule directives re-creates the list, immediately after ClearModuleList.

15.3.21. AddModule
AddModule is the directive used to create a complete list of all available modules. You will
use the AddModule directive if you add your own module in as a DSO. For more information
on how AddModule is used for DSO support, see Section 15.4.

15.3.22. ExtendedStatus
The ExtendedStatus directives controls whether Apache generates basic (off) or detailed
server status information (on), when the server-status handler is called. Server-status
is called using Location tags. More information on calling server-status is included in
Section 15.3.71.

15.3.23. Port
Normally, Port defines the port that your server is listening to. Your Web server, however,
is listening to more than one port by default, since the Listen directive is also being used.
When Listen directives are in effect, your server listens at all of those ports. See the descrip-
tion of the Listen directive for more information about Listen.

The Port command is also used to specify the port number used to construct a canonical
name for your server. See Section 15.3.39 for more information about the server’s canonical
name.

15.3.24. User
The User directive sets the userid used by the server to answer requests. User’s setting de-
termines the server’s access. Any files inaccessible to this user will also be inaccessible to
your website’s visitors. The default for User is apache.

The User should only have privileges so that it can access files which are supposed to be
visible to the outside world. The User is also the owner of any CGI processes spawned by
the server. The User should not be allowed to execute any code which is not intended to be
in response to HTTP requests.

188 Chapter 15. Apache

Note

For security reasons, Apache will refuse to run as User root. Using root as the User will create large
security holes for your Web server.

The parent httpd process first runs as root during normal operations but is then immediately
handed off to the apache user. The server must start as root because it needs to bind to a port
below 1024 (the default port for secure Web communications is port 443; the default port for
non-secure Web communications is port 80). Ports below 1024 are reserved for system use,
so they can not be used by anyone but root. Once the server has attached itself to its port,
however, it hands the process off to the User before it accepts any connection requests.

15.3.25. Group
The Group directive is similar to the User. The Group sets the group under which the server
will answer requests. The default Group is apache.

15.3.26. ServerAdmin
ServerAdmin should be the email address of the Web server’s administrator. This email
address will show up in error messages on server-generated webpages, so users can report
a problem by sending email to the server administrator. ServerAdmin is set by default to
root@localhost.

Typically, a good way to set up ServerAdmin is to set it to webmaster@your_domain.com.
Then alias webmaster to the person responsible for the Web server in /etc/aliases. Finally,
run /usr/bin/newaliases to add the new alias.

15.3.27. ServerName
You can use ServerName to set a hostname for your server which is different from your
host’s real name. For example, you might want to use www.your_domain.com when your
server’s real name is actually foo.your_domain.com. Note that the ServerName must be a
valid Domain Name Service (DNS) name that you have the right to use (do not just make
something up).

If you do specify a ServerName, be sure its IP address and server name pair are included in
your /etc/hosts file.

15.3.28. DocumentRoot
The DocumentRoot is the directory which contains most of the HTML files which will be
served in response to requests. The default DocumentRoot for both the non-secure and secure
Web servers is the /var/www/html directory. For example, the server might receive a request
for the following document:

http://your_domain/foo.html

The server will look for the following file in the default directory:

/var/www/html/foo.html

Chapter 15. Apache 189

If you want to change the DocumentRoot so that it is not shared by the secure and the non-
secure Web servers, see Section 15.5.

15.3.29. Directory
l
Directory /path/to/directory m and l /Directory m tags are used to enclose a group

of configuration directives that are meant to apply only to that directory and all of its subdi-
rectories. Any directive which is applicable to a directory may be used within l Directory m
tags. l File m tags can be used in the same way, to apply to a specific file or files.

By default, very restrictive parameters are applied to the root directory, using the Options
(see Section 15.3.30) and AllowOverride (see Section 15.3.31) directives. Under this con-
figuration, any directory on your system which needs more permissive settings has to be
explicitly given those settings.

Using Directory tags, the DocumentRoot is defined to have less rigid parameters, so that
HTTP requests can be served from it.

The cgi-bin directory is set up to allow the execution of CGI scripts, with the ExecCGI op-
tion. If you need to execute a CGI script in another directory, you will need to set ExecCGI
for that directory. For example, if your cgi-bin is /var/www/cgi-bin, but you want to ex-
ecute CGI scripts from within /home/my_cgi_directory, add an ExecCGI directive to a set
of Directory directives like the following to your httpd.conf file:

l
Directory /home/my_cgi_directory m

Options +ExecCGIl
/Directory m

To allow CGI script execution in /home/my_cgi_directory, you will need to take a few
extra steps besides setting ExecCGI. You will also need to have the AddHandler directive
uncommented to identify files with the .cgi extension as CGI scripts. See Section 15.3.65 for
instructions on setting AddHandler. Permissions for CGI scripts, and the entire path to the
scripts, must be set to 0755.

15.3.30. Options
The Options directive controls which server features are available in a particular directory.
For example, under the restrictive parameters specified for the root directory, Options is set
to only FollowSymLinks. No features are enabled, except that the server is allowed to follow
symbolic links in the root directory.

By default, in your DocumentRoot directory, Options is set to include Indexes, Includes
and FollowSymLinks. Indexes permits the server to generate a directory listing for a di-
rectory if no DirectoryIndex (for example, index.html) is specified. Includes means that
server-side includes are permitted. FollowSymLinks allows the server to follow symbolic
links in that directory.

You will also need to include Options statements for directories within virtual hosts direc-
tives, if you want your virtual hosts to recognize those Options.

For example, server side includes are already enabled inside the /var/www/html directory,
because of the Options Includes line within the l Directory "/var/www/html" m direc-
tives section. However, if you want a virtual host to recognize server side includes, you will
need to include a section like the following within your virtual host’s tags:

l
Directory /var/www/html m

Options Includesl
/Directory m

190 Chapter 15. Apache

15.3.31. AllowOverride
The AllowOverride directive sets whether or not any Options can be overridden by the
declarations in an .htaccess file. By default, both the root directory and the DocumentRoot
are set to allow no .htaccess overrides.

15.3.32. Order
The Order directive simply controls the order in which allow and deny directives are eval-
uated. Your server is configured to evaluate the Allow directives before the Deny directives
for your DocumentRoot directory.

15.3.33. Allow
Allow specifies which requester can access a given directory. The requester can be all, a
domain name, an IP address, a partial IP address, a network/netmask pair, and so on. Your
DocumentRoot directory is configured to Allow requests from all meaning everyone has
access.

15.3.34. Deny
Denyworks just like Allow, but you are specifying who is denied access. Your DocumentRoot
is not configured to Deny requests from anyone by default.

15.3.35. UserDir
UserDir is the name of the subdirectory within each user’s home directory where they
should place personal HTML files which are to be served by the Web server.

By default, the subdirectory is public_html. For example, the server might receive the fol-
lowing request:

http://your_domain/~username/foo.html

The server would look for the file:

/home/username/public_html/foo.html

In the above example, /home/username is the user’s home directory (note that the default
path to users’ home directories may be different on your system).

Make sure that the permissions on the users’ home directories are set correctly. Users’ home
directories must be set to 0711. The read (r) and execute (x) bits must be set on the users’ pub-
lic_html directories (0755 will also work). Files that will be served in users’ public_html
directories must be set to at least 0644.

15.3.36. DirectoryIndex
The DirectoryIndex is the default page served by the server when a user requests an index
of a directory by specifying a forward slash (/) at the end of the directory name.

When a user requests the page http://your_domain/this_directory/, they will get ei-
ther the DirectoryIndex page if it exists, or a server-generated directory list. The default

Chapter 15. Apache 191

for DirectoryIndex is index.html index.htm index.shtml index.php index.php4 in-
dex.php3 index.cgi. The server will try to find any one of these files, and will return the
first one it finds. If it does not find any of these files and Options Indexes is set for that di-
rectory, the server will generate and return a listing, in HTML format, of the subdirectories
and files in the directory.

15.3.37. AccessFileName
AccessFileName names the file which the server should use for access control information
in each directory. By default, your Web server is set to use .htaccess, if it exists, for access
control information in each directory.

Immediately after the AccessFileName directive, a set of Files tags apply access control to
any file beginning with a .ht. These directives deny Web access to any .htaccess files (or
other files which begin with .ht) for security reasons.

15.3.38. CacheNegotiatedDocs
By default, your Web server asks proxy servers not to cache any documents which were
negotiated on the basis of content (that is, they may change over time or because of the
input from the requester). If you uncomment CacheNegotiatedDocs, you are disabling that
function and proxy servers will be allowed to cache the documents from then on.

15.3.39. UseCanonicalName
UseCanonicalName is set by default to on. UseCanonicalName allows the server to construct
an URL that references itself, using ServerName and Port. When the server refers to itself in
response to requests from clients, it uses this URL. If you set UseCanonicalName to off, the
server will instead use the value that came in the request from the client to refer to itself.

15.3.40. TypesConfig
TypesConfig names the file which sets the default list of MIME type mappings (filename
extensions to content types). The default TypesConfig file is /etc/mime.types. Instead of
editing /etc/mime.types, the recommended way to add MIME type mappings is to use the
AddType directive.

For more information about AddType, refer to Section 15.3.64.

15.3.41. DefaultType
DefaultType sets a default content type for the Web server to use for documents whose
MIME types can not be determined. Your Web server defaults to assume a plain text content
type for any file with an indeterminate content type.

15.3.42. IfModule
n
IfModule o and n /IfModule o tags surround directives that are conditional. The direc-

tives contained within the IfModule tags are processed under one of two conditions. The
directives are processed if the module contained within the starting n IfModule o tag is
loaded in to the Apache server. Or, if an "!" (an exclamation point) is included before the

192 Chapter 15. Apache

module name, the directives are processed only if the module in the starting p IfModule q
tag is not compiled in.

The mod_mime_magic.cfile is included in these IfModule tags. The mod_mime_magic mod-
ule can be compared to the UNIX file command, which looks at a few bytes of a file’s con-
tents, then uses "magic numbers" and other hints in order to figure out the MIME type of the
file.

If the mod_mime_magic module is compiled in to Apache, these IfModule tags tell the
mod_mime_magic module where the hints definition file is: /usr/share/magic in this case.

The mod_mime_magic module is not compiled in by default. If you would like to use it, see
Section 15.4, for instructions on how to add modules to your server.

15.3.43. HostnameLookups
HostnameLookups can be set to on, off or double. If you allow HostnameLookups (by setting
it to on), your server will automatically resolve the IP address for each connection which re-
quests a document from your Web server. Resolving the IP address means that your server
will make one or more connections to the DNS in order to find out the hostname that corre-
sponds to a particular IP address. If you set HostnameLookups to double, your server will
perform a double-reverse DNS. In other words, after a reverse lookup is performed, a for-
ward lookup is performed on the result. At least one of the IP addresses in the forward
lookup must match the address from the first reverse lookup.

Generally, you should leave HostnameLookups set to off, because the DNS requests add
a load to your server and may slow it down. If your server is busy, the effects of Host-
nameLookups will be noticeable.

HostnameLookups are also an issue for the Internet as a whole. All of the individual connec-
tions made to look up each hostname add up. Therefore, for your own Web server’s benefit,
as well as for the good of the Internet as a whole, you should leave HostnameLookups set to
off.

If you like to see the hostnames in your log files, consider running one of the many log
analyser tools that perform the DNS lookups more efficiently and in bulk when you come to
rotate your log files.

15.3.44. ErrorLog
ErrorLog names the file where server errors are logged. As this directive indicates, the error
log file for your Web server is /var/log/httpd/error_log.

The error log is a good place to look if your Web server generates any errors or fails, and you
are not sure what happened.

15.3.45. LogLevel
LogLevel sets how verbose the error messages in the error logs will be. LogLevel can be set
(from least verbose to most verbose) to emerg, alert, crit, error, warn, notice, info or
debug. The default LogLevel is warn.

Chapter 15. Apache 193

15.3.46. LogFormat
The LogFormat directives in your httpd.conf file set up a format for the messages in your
access log. The actual LogFormat used will depend on the settings given in the CustomLog
directive (see Section 15.3.47).

15.3.47. CustomLog
CustomLog identifies the log file and the log file format. In your Web server’s default config-
uration, CustomLog defines the log file in which accesses to your Web server are recorded:
/var/log/httpd/access_log. You will need to know the location of this file if you want to
generate any access-based server performance statistics for your Web server.

CustomLog also sets the log file format to combined. The common logfile format looks like
this:

remotehost rfc931 authuser [date] "request" status bytes referer user-agent

remotehost

The remote hostname. If the hostname is not available from DNS, or if
HostnameLookups is set to Off, then remotehost will be the IP address of the remote
host.

rfc931

Not used. You will see a - in the log file in its place.

authuser

If authentication was required, this is the username with which the user identified her-
self. Usually, this is not used, so you will see a - in its place.

[date]

The date and time of the request.

"request"

The request string exactly as it came from the browser or client.

status

The HTTP status code which was returned to the browser or client.

bytes

The size of the document.

referer

This can give the URL of the webpage which linked to the the current request.

user-agent

This gives the name of the browser or client making the request.

194 Chapter 15. Apache

15.3.48. ServerSignature
The ServerSignature directive adds a line containing the Apache server version and the
ServerName of the serving host to any server-generated documents (for example, error mes-
sages sent back to clients). ServerSignature is set to on by default. You can change it to
off, so no signature line will be added, or you can change it to EMail. EMail will add a
mailto:ServerAdmin HTML tag to the signature line.

15.3.49. Alias
The Alias setting allows directories to be outside the DocumentRoot directory and yet still
accessible to the Web server. Any URL ending in the alias will automatically resolve to the
alias’ path. By default, one alias is already set up. An icons directory can be accessed by the
Web server, but the directory is not in the DocumentRoot. The icons directory, an alias, is
actually /var/www/icons/, not /var/www/html/icons/.

15.3.50. ScriptAlias
The ScriptAlias setting defines where CGI scripts (or other types of scripts) can be found.
Generally, you do not want to leave CGI scripts within the DocumentRoot. If CGI scripts
are in DocumentRoot, they could potentially be viewed as text documents. Even if you do
not care if people can see and then use your CGI scripts, revealing how they work creates
opportunities for unscrupulous people to exploit any security holes in the script and may
create a security risk for your server. By default, the cgi-bin directory is a ScriptAlias of
/cgi-bin/ and is actually located in /var/www/cgi-bin/.

Your /var/www/cgi-bindirectory has Options ExecCGI set, meaning that execution of CGI
scripts is permitted within that directory.

See Section 15.3.65 and Section 15.3.29 for instructions on how to execute CGI scripts in
directories other than the cgi-bin.

15.3.51. Redirect
When a webpage is moved, Redirect can be used to map the old URL to a new URL. The
format is as follows:

Redirect /path/foo.html http://new_domain/path/foo.html

So, if an HTTP request is received for a page which used to be found at
http://your_domain/path/foo.html, the server will send back the new URL
(http://new_domain/path/foo.html) to the client, which should attempt to fetch the
document from the new URL.

For more advanced Redirection you can use the mod_rewrite module included with the
server.

15.3.52. IndexOptions
IndexOptions controls the appearance of server generated directing listings, by adding
icons, file descriptions, and so on. If Options Indexes is set (see Section 15.3.30), your Web
server may generate a directory listening when your Web server receives an HTTP request
like the following:

http://your_domain/this_directory/

Chapter 15. Apache 195

First, your Web server looks in that directory for a file from the list after the DirectoryIndex
directive (usually, index.html). If your Web server does not find one of those files, it creates
an HTML directory listing of the subdirectories and files in the directory. You can modify
the appearance of this directory listing using certain directives in httpd.conf, including
IndexOptions.

Your default configuration sets FancyIndexing on. If FancyIndexing is turned on, click-
ing on the column headers in the directory listing will sort the order of the display by that
header. Another click on the same header will switch from ascending to descending order
and back. FancyIndexing also shows different icons for different files, depending upon file
extensions. If you use the AddDescription directive and turn FancyIndexing on, then a
short description of a file will be included in the server generated directory listing.

IndexOptions has a number of other parameters which can be set to control the appearance
of server generated directories. Parameters include IconHeight and IconWidth, to make the
server include HTML HEIGHT and WIDTH tags for the icons in server generated webpages;
IconsAreLinks, for making the icons act as part of the HTML link anchor along with the
filename and others.

15.3.53. AddIconByEncoding
This directive names icons which will be displayed by files with MIME encoding, in
server generated directory listings. For example, by default, your Web server shows the
compressed.gif icon next to MIME encoded x-compress and x-gzip files in server
generated directory listings.

15.3.54. AddIconByType
This directive names icons which will be displayed next to files with MIME types in server
generated directory listings. For example, your server is set to show the icon text.gif next
to files with a mime-type of "text," in server generated directory listings.

15.3.55. AddIcon
AddIcon tells the server which icon to show in server generated directory listings for certain
file types or for files with certain extensions. For example, your Web server is set to show the
icon binary.gif for files with .bin or .exe extensions.

15.3.56. DefaultIcon
DefaultIcon names the icon to show in server generated directory listings for files which
have no other icon specified. The unknown.gif image file is the DefaultIcon for those files
by default.

15.3.57. AddDescription
You can use AddDescription to show text that you specify for certain files, in server gener-
ated directory listings (you will also need to enable FancyIndexing as an IndexOptions).
You can name specific files, wildcard expressions or file extensions to specify the files which
this directive should apply to. For example, you could use the following line:

AddDescription "A file that ends in .ni" .ni

196 Chapter 15. Apache

In server generated directory listings, all files with extensions of .ni would have the de-
scription A file that ends in .ni after the filename. Note that you will also need Fan-
cyIndexing turned on.

15.3.58. ReadmeName
ReadmeName names the file which (if it exists in the directory) will be appended to the end
of server generated directory listings. The Web server will first try to include the file as an
HTML document and then try to include it as plain text. By default, ReadmeName is set to
README.

15.3.59. HeaderName
HeaderName names the file which (if it exists in the directory) will be prepended to the start
of server generated directory listings. Like ReadmeName, the server will try to include it as an
HTML document if possible, or in plain text if not.

15.3.60. IndexIgnore
IndexIgnore lists file extensions, partial filenames, wildcard expressions or full filenames.
The Web server will not include any files which match any of those parameters in server
generated directory listings.

15.3.61. AddEncoding
AddEncoding names filename extensions which should specify a particular encoding type.
AddEncoding can also be used to instruct some browsers (not all) to uncompress certain files
as they are downloaded.

15.3.62. AddLanguage
AddLanguage associates filename extensions with specific content languages. This directive
is mostly useful for content negotiation, when the server returns one of several documents
based on the client’s language preference as set in their browser.

15.3.63. LanguagePriority
LanguagePriority allows you to set precedence for different languages in which to serve
files, which will be in effect if the client expressed no preference for language in their
browser.

15.3.64. AddType
Use the AddType directive to define MIME type and file extension pairs. For example, if you
are using PHP4, your Web server is using the AddType directive to make your Web server
recognize files with PHP extensions (.php4, .php3 .phtml .php) as PHP MIME types. The
following directive tells Apache to recognize the .shtml file extension:

AddType text/html .shtml

Chapter 15. Apache 197

You will need to include the above line within the virtual host tags for any virtual hosts
which should allow server side includes.

15.3.65. AddHandler
AddHandler maps file extensions to specific handlers. For example, the cgi-script handler
can be used matched with the extension .cgi to automatically treat a file ending with .cgi
as a CGI script. This will work, even for files outside of the ScriptAlias directory, as long
as you follow the instructions provided here.

You have a CGI AddHandler line in your httpd.conf file:

AddHandler cgi-script .cgi

You will have to uncomment the line. Then Apache will execute CGI scripts for files ending
in .cgi, even if they are outside of the ScriptAlias, which is set by default to locate your
/cgi-bin/ directory in /var/www/cgi-bin/.

You will also need to set ExecCGI as an Options for any directory containing a CGI script.
See Section 15.3.29 for more information about setting ExecCGI for a directory. Additionally,
you will need to make sure the permissions are set correctly for the CGI scripts and the
directories containing CGI scripts. CGI scripts and the entire directory path to the scripts
must be set to 0755.

You will need to add the same AddHandler line to your VirtualHost setup, if you are using
virtual hosts and you want them to also recognize CGI scripts outside the ScriptAlias.

In addition to CGI scripts, your Web server also uses AddHandler to process server-parsed
HTML and imagemap files.

15.3.66. Action
Action allows you to specify a MIME content type and CGI script pair, so that whenever a
file of that media type is requested, a particular CGI script will be executed.

15.3.67. MetaDir
MetaDir specifies the name of a directory where your Web server should look for files con-
taining meta information (extra HTTP headers) to include when serving documents.

15.3.68. MetaSuffix
MetaSuffix specifies the filename suffix for the file that contains meta information (extra
HTTP headers), which should be located in the MetaDir directory.

15.3.69. ErrorDocument
By default, in the event of a problem or error, your Web server outputs a simple and usually
cryptic error message back to the requesting client. Instead of using the default, you can use
ErrorDocument to configure your Web server so that it outputs a customized message or
redirects the client to a local or external URL. The ErrorDocumentdirective simply associates
a HTTP response code with a message or a URL which will be sent back to the client.

198 Chapter 15. Apache

15.3.70. BrowserMatch
The BrowserMatchdirective allows your server to define environment variables and take ap-
propriate actions based on the User-Agent HTTP header field — which identifies the client’s
browser. By default, your Web server uses BrowserMatch to deny connections to specific
browsers with known problems and also to disable keepalives and HTTP header flushes for
browsers that are known to have problems with those actions.

15.3.71. Location
r
Location s and r /Location s tags allow you to specify access control based on the URL.

The next use of Location tags is located within IfModule mod_perl.c tags. These config-
uration directives are in effect if the mod_perl.so DSO is loaded. See Section 15.4 for more
information about adding modules to Apache.

The Location tags name the /var/www/perl directory (an Alias for /perl) as the directory
from which Perl scripts will be served. If a document is requested with an URL containing
/perl in the path, your Web server will look in /var/www/perl/ for the appropriate Perl
script.

Several other r Location s options are commented out in your httpd.conf file. If you want
to enable the functionality they provide, you will need to uncomment the appropriate section
of directives.

Note

The put module is no longer distributed as part of the Apache package. You will have to load the
mod_put package separately.

Immediately after the Perl directives is a section of directives for enabling http put (used by
Netscape Gold’s publish feature), which can post webpages to a Web server. If you want to
allow http put, you will need to uncomment the following lines:

#Alias /upload /tmp
t Location /upload u
EnablePut On
AuthType Basic
AuthName Temporary
AuthUserFile /etc/httpd/conf/passwd
EnableDelete Off
umask 007
t Limit PUT u
require valid-user
t /Limit u
t /Location u

You will also need to uncomment the following lines at the beginning of httpd.conf so that
the mod_put module is loaded when Apache starts:

#LoadModule put_module modules/mod_put.so

#AddModule mod_put.c

If you want to allow people connecting from your domain to see server status reports, you
should uncomment the next section of directives:

Chapter 15. Apache 199

v Location /server-status w
SetHandler server-status
Order deny,allow
Deny from all
Allow from .your_domain.com
v /Location w

You must replace .your_domain.com with your second level domain name.

If you want to provide server configuration reports (including installed modules and con-
figuration directives) to requests from inside your domain, you will need to uncomment the
following lines:

v Location /server-info w
SetHandler server-info
Order deny,allow
Deny from all
Allow from .your_domain.com
v /Location w

Again, you must fill in .your_domain.com.

The next section of directives use Location tags to allow access to
the documentation in /usr/share/doc (for example, with a URL like
http://your_domain/doc/whatever.html). These directives only allow this access to
requests made from the localhost.

Another use of the Location tags is a commented-out section which is intended to track
attacks on your Web server which exploit an old bug from pre-Apache 1.1 days. If you want
to track these requests, uncomment the following lines:

v Location /cgi-bin/phf* w
Deny from all
ErrorDocument 403 http://phf.apache.org/phf_abuse_log.cgi
v /Location w

If these lines are uncommented, your Web server will redirect any requests which end in
/cgi-bin/phf* to a logging CGI script run by the Apache Group.

15.3.72. ProxyRequests
If you uncomment the IfModule tags surrounding the ProxyRequests directives, your
Apache server will also function as a proxy server. You will also need to load the mod_proxy
module. For instructions on how to load in modules, see Section 15.4.

15.3.73. ProxyVia
The ProxyVia command controls whether or not an HTTP Via: header line is sent along with
requests or replies which go through the Apache proxy server. The Via: header will show the
hostname if ProxyVia is set to On, the hostname and Apache version for Full, any Via: lines
will be passed along unchanged for Off, and Via: lines will be removed for Block.

200 Chapter 15. Apache

15.3.74. Cache Directives
A number of cache directives are commented out in the proxy IfModule tags mentioned
above. If you are using the proxy server functionality and you want to also enable the proxy
cache, you should uncomment the cache directives as described. The default settings for
your cache directives should be appropriate for most configurations.

CacheRoot sets the name of the directory which will contain cached files. The default Cache-
Root is /var/cache/httpd.

CacheSize sets how much space the cache can use, in KB. The default CacheSize is 5 KB.

CacheGcInterval sets a number of hours. After that number of hours, files in the cache
will be deleted if the cache is using more space than allowed by CacheSize. The default for
CacheGcInterval is four hours.

Cached HTML documents will be retained (without a reload from the originating Web
server) in the cache for a maximum number of hours set by CacheMaxExpire. The default is
24 hours.

The CacheLastModifiedFactor affects the creation of an expiry (expiration) date for a doc-
ument which did not come from its originating server with its own expiry set. The default
CacheLastModifiedFactor is set to 0.1, meaning that the expiry date for such documents
equals one-tenth of the amount of time since the document was last modified.

CacheDefaultExpire is the expiry time in hours for a document that was received using a
protocol that does not support expiry times. The default is set to one hour.

Any document that is retrieved from a host or domain that matches one set in NoCache
will not be cached. If you know of hosts or domains from which you do not want to cache
documents, uncomment NoCache and set their domains or hostnames here.

15.3.75. NameVirtualHost
You will need to use the NameVirtualHost directive for the IP address and port number, if
necessary, of any name-based virtual hosts you are setting up. The name-based virtual hosts
configuration is used when you want to set up different virtual hosts for different domains,
but you do not have or do not want to use different IP addresses for all of the different
domain names for which your Web server serves documents.

Note

You cannot use name-based virtual hosts with your secure server. Any name-based virtual hosts you
set up will only work with non-secure HTTP connections and non-SSL connections.

You cannot use name-based virtual hosts with your secure server because the SSL handshake (when
the browser accepts the secure Web server’s authenticating certificate) occurs before the HTTP
request which identifies the correct name-based virtual host. In other words, authentication occurs
before there is any identification of different name-based virtual hosts. If you want to use virtual hosts
with your secure server, you will need to use IP address-based virtual hosts.

If you are using name-based virtual hosts, uncomment the NameVirtualHost configuration
directive and add the correct IP address for your server after NameVirtualHost. Then add
more information about the different domains using the VirtualHost tags which surround
the ServerName for each virtual host, plus any other configuration directives which are only
applicable to that virtual host.

Chapter 15. Apache 201

15.3.76. VirtualHost
x
VirtualHost y and x /VirtualHost y tags surround any configuration directives which

are intended to apply to a virtual host. Most configuration directives can be used within
virtual host tags, and then they only apply to that particular virtual host.

A set of commented out VirtualHost tags surround some example configuration directives
and placeholders for the information you would need to fill in to set up a virtual host. Please
see Section 15.5, for more information about virtual hosts.

15.3.77. SetEnvIf
The Apache configuration directive SetEnvIf can be used to set environment variables
based on headers in the request. In the supplied httpd.conf file, it is used to disable HTTP
keepalive and to allow SSL to close the connection without a close notify alert from the client
browser. This setting is necessary for certain browsers that do not reliably shut down the SSL
connection.

15.3.78. SSL Configuration Directives
The SSL directives in your server’s httpd.conf file are included to enable secure Web com-
munications using SSL and TLS.

For more information on SSL directives, please point your browser to
http://localhost/manual/mod/mod_ssl/. More information on SSL directives is also
available at http://www.modssl.org/docs/2.8/ssl_reference.html, a chapter in a Web
document about mod_ssl by Ralf Engelschall. The same document, the mod_ssl User
Manual, begins at http://www.modssl.org/docs/2.8/ and is a great reference source for
mod_ssl and for Web cryptography in general.

Note

Do not modify your SSL directives unless you are absolutely sure about what you are doing. In most
cases, the SSL directives are configured appropriately as installed.

15.4. Adding Modules to Your Server
Since Apache 1.3 supports DSOs, you can easily load Apache modules or compile in your
own modules to your Web server. DSO support means that modules may be loaded at run-
time. Since the modules are only loaded as necessary, they will not use any memory unless
they are loaded.

The Apache Group provides complete DSO Documentation at
http://httpd.apache.org/docs/dso.html. After installation of your server, you can also
check http://localhost/manual/mod/ for documentation on Apache modules in HTML
format, if you installed the apache-manual package.

For Apache to use a dynamically shared module, that module must have a LoadModule
line and an AddModule line in httpd.conf. By default, many modules have these two lines
already included in httpd.conf, but a few of the less commonly used modules are com-
mented out. The commented out modules were included during compilation, but they are
not loaded by default.

202 Chapter 15. Apache

If you need to use one of those non-loaded modules, look in the httpd.conf file to see all
the available modules. Each of the available modules has a corresponding LoadModule line.
To show you an example, the LoadModule section begins with these seven lines:

#LoadModule mmap_static_module modules/mod_mmap_static.so
LoadModule vhost_alias_module modules/mod_vhost_alias.so
LoadModule env_module modules/mod_env.so
LoadModule config_log_module modules/mod_log_config.so
LoadModule agent_log_module modules/mod_log_agent.so
LoadModule referer_log_module modules/mod_log_referer.so
#LoadModule mime_magic_module modules/mod_mime_magic.so

Most of the lines are not commented out, indicating that each associated module was com-
piled in and is loaded in by default. The first line is commented out, which means that the
corresponding module, mmap_static_module, was compiled in but not loaded.

To make Apache load an unloaded module, first uncomment the corresponding LoadModule
line. For example, if you wanted to make Apache load in the mime_magic_module, uncom-
ment this line:

#LoadModule mime_magic_module modules/mod_mime_magic.so

Next, you need to uncomment the corresponding line from the AddModule section in
httpd.conf. To continue with our previous example, uncomment the mod_mime_magic
line, which looks like the following:

#AddModule mod_mime_magic.c

Once you have uncommented the LoadModule and AddModule lines for the module that you
want to reload or restart Apache, as covered in Section 15.2. After restarting, the module
should load.

If you have your own module, you can add it to the httpd.conf file so that it is compiled
in and loaded as a DSO. You need the apache-devel package because it installs the include
files, the header files and the APache eXtenSion (APXS) support tool. APXS uses the include
files and the header files to compile your module so that it will work with Apache.

If you have written your own module or are using a third party module, you should be
able to use APXS to compile your module sources outside the Apache source tree, without
needing to tweak any compiler or linker flags. If you need more information on APXS, please
see the Apache documentation at http://httpd.apache.org/docs/dso.html.

Once you have compiled your module using APXS, put your module in the
/usr/lib/apache/ directory. Then your module needs both a LoadModule line and an
AddModule line in the httpd.conf file. After the LoadModule list in httpd.conf, add a line
for the shared object file for your module like the following:

LoadModule foo_module modules/mod_foo.so

Note that you will need to change the name of the module and the name of your shared
object file as appropriate.

At the end of the AddModule list in httpd.conf, add a line for the source code file for your
module like the following:

AddModule mod_foo.c

Note that you will need to change the name of the source code file as appropriate.

Chapter 15. Apache 203

Once you have completed the previous steps, stop and start your Web server as outlined in
Section 15.2. If you have done everything correctly and your module is correctly coded, the
Web server should find your module and load it in as it starts.

15.4.1. The mod_ssl Security Module
The mod_ssl security portion of the Web server is provided as a Dynamic Shared Object
(DSO). This means that if you recompile the Apache Web server the EAPI extension patch
from mod_ssl must be applied. Follow the instructions for building mod_ssl into Apache
included with the mod_ssl documentation, but add the following flag:

./configure [userflags] --with-eapi-only

Then build and install Apache.

Note

Red Hat cannot support re-compiled versions of the Apache Web server. Installation of the shipped
version is supported, but if you re-compile Apache, you are on your own.

15.5. Using Virtual Hosts
You can use Apache’s virtual hosts capability to run different servers for different IP ad-
dresses, different host names, or different ports on the same server. If you are interested in
using virtual hosts, complete information is provided in the Apache documentation on your
machine or on the Web at http://httpd.apache.org/docs/vhosts/.

Note

You cannot use name-based virtual hosts with your Red Hat Linux Advanced Server, because the
SSL handshake occurs before the HTTP request which identifies the appropriate name-based virtual
host. If you want to use name-based virtual hosts, they will only work with your non-secure Web
server.

Virtual hosts are configured within the httpd.conf file, as described in Section 15.3. Please
review that section before you start to change the virtual hosts configuration on your ma-
chine.

15.5.1. The Secure Web Server Virtual Host
The default configuration of your Web server runs a non-secure and a secure server. Both
servers use the same IP address and host name, but they listen on different ports, and the
secure server is a virtual host. This configuration enables you to serve both secure and non-
secure documents in an manner. Setting up the secure HTTP transmission is very resource
intensive, so generally you will be able to serve far fewer pages per second with a secure
server. You need to consider this when you decide what information to include on the secure
server and the non-secure server.

204 Chapter 15. Apache

The configuration directives for your secure server are contained within virtual host tags in
the httpd.conf file. If you need to change anything about the configuration of your secure
server, you will need to change the configuration directives inside virtual host tags.

The non-secure Web server is configured as the "non-virtual" host in the httpd.conf file. If
you want to change something about your non-secure Web server, you will need to change
the configuration directives outside of the virtual host tags.

By default, both the secure and the non-secure Web servers share the same DocumentRoot.
To change the DocumentRoot so that it is no longer shared by both the secure server and
the non-secure server, change one of the DocumentRoot directives. The DocumentRoot out-
side the virtual host tags defines the DocumentRoot for your non-secure Web server. The
DocumentRoot within the virtual host tags that define your secure server is for your secure
server.

The secure Apache server listens on port 443, while your non-secure Web server listens on
port 80. To stop the non-secure Web server from accepting connections find the line which
reads:

Port 80

And change it to read:

Port 443

Then comment out the Listen 80 line.

15.5.2. Setting Up Virtual Hosts
To create a virtual host, you will need to alter the virtual host lines, provided as an example
in httpd.conf or create your own virtual host section.

The virtual host example lines read as follows:

z VirtualHost ip.address.of.host.some_domain.com {
ServerAdmin webmaster@host.some_domain.com
DocumentRoot /www/docs/host.some_domain.com
ServerName host.some_domain.com
ErrorLog logs/host.some_domain.com-error_log
CustomLog logs/host.some_domain.com-access_log common
z /VirtualHost {

Uncomment all of the lines, and add the correct information for the virtual host.

In the first line, change ip.address.of.host.some_domain.com to your server’s IP ad-
dress. Change the ServerName to a valid DNS name to use for the virtual host.

You will also need to uncomment one of the NameVirtualHost lines below:

#NameVirtualHost 12.34.56.78:80
#NameVirtualHost 12.34.56.78

Next change the IP address to the IP address and port, if necessary, for the virtual host.

If you set up a virtual host and want it to listen on a non-default port, you will need to set
up a virtual host for that port and add a Listen directive for corresponding to that port.

Then add the port number to the first line of the virtual host configuration as in the following
example:

z VirtualHost ip_address_of_your_server:12331 {

Chapter 15. Apache 205

This line would create a virtual host that listens on port 12331.

You must restart httpd to start a new virtual host. See Section 15.2 for instructions on how
to start and stop httpd.

Comprehensive information about creating and configuring both
name-based and IP address-based virtual hosts is provided on the Web at
http://httpd.apache.org/docs/vhosts/. Please check the Apache.org’s virtual host
documentation for more details on using virtual hosts.

15.6. Additional Resources
To learn more about Apache, refer to the following resources.

15.6.1. Useful Websites

• http://httpd.apache.org — The official website for the Apache Web server with documen-
tation on all the directives and default modules.

• http://www.modssl.org — The official website for mod_ssl.

• http://www.apacheweek.com — A comprehensive online online weekly about all things
Apache.

15.6.2. Related Books

• Apache Desktop Reference by Ralf S. Engelschall; Addison Wesley

Written by ASF member and mod_ssl author Ralf Engelschall, the Apache Desktop Reference
provides a concise but comprehensive reference guide to using Apache at compilation,
configuration, and run time. This book is available online at http://www.apacheref.com/.

• Professional Apache by Peter Wainwright; Wrox Press Ltd

Professional Apache is from Wrox Press Ltd’s "Programmer to Programmer" series and is
aimed at both experienced and novice Web server administrators.

• Administering Apache by Mark Allan Arnold; Osborne Media Group

This book is targeted at Internet Service Providers who aim to provide more secure ser-
vices.

• Apache Server Unleashed by Richard Bowen, et al; SAMS BOOKS

An encyclopedic source for Apache.

• Apache Pocket Reference by Andrew Ford, Gigi Estabrook; O’Reilly

This is the latest addition to the O’Reilly Pocket Reference series.

206 Chapter 15. Apache

Chapter 16.

Email

Email is one of the most widely used services on the Internet. Red Hat Linux offers many
ways for you to utilize email, whether you are a desktop user or a system administrator.

This chapter looks at popular email protocols that are in use today and various programs
designed to accomplish different types of tasks when dealing with email.

16.1. Protocols
Email, like other network services, uses a variety of protocols. These protocols allow differ-
ent machines, often running different operating systems and utilizing different email pro-
grams, to communicate with one another and transfer mail so it arrives in the proper place.

The following protocols are those most commonly used to transfer email from system to
system.

16.1.1. IMAP
The Internet Message Access Protocol (IMAP) is a method used by email client applications
to access remotely stored messages. When using IMAP, commonly called IMAP4 after the
version of the protocol used, the email messages remain on the remote mail server, where
the user can read or delete them and create, rename, or delete mailboxes to store the email.

In addition, IMAP is fully compatible with important Internet messaging standards, such
as the Multipurpose Internet Mail Extensions (MIME), to allow attachments to be received.
Many email clients that use IMAP can also be configured to cache a copy of the messages lo-
cally, so that you can browse previously read messages when you are not directly connected
to the IMAP server.

IMAP is primarily utilized by users that may access their email using multiple machines,
as messages are stored in a central location and can be accessed by any system with an
IMAP mail client and a connection to the remote IMAP server. Also, users that connect to the
Internet or a private network via a low-bandwidth connection often use IMAP because only
the email header information is pulled off at first. This allows them to defer the downloading
of messages containing large attachments until a time when their limited bandwidth is not
in use. In the same way, email that the user does not want can be deleted without viewing
the message body, saving the need to even download it through their network connection.

The Request for Comment (RFC) documents that cover IMAP contain the assorted details and
specifics about how the protocol is designed to work. RFC-1730 first defined the way IMAP
is used in version 4, but RFC-2060 discusses the current IMAP implementation used with
many IMAP servers, called version IMAP4rev1.

The imap package in Red Hat Linux allows users to connect to your system and receive
their email using IMAP. Secure IMAP connections are supported through Secure
Socket Layer (SSL) technology built into the imapd daemon, allowing it to use the
/usr/share/ssl/certs/imapd.pem certificate file. The stunnel program is not required to
provide SSL-encryption for IMAP connections, though it can be used. See Section 16.6.2 for
more information concerning these two encryption options.

Other free, as well as commercial, IMAP clients and servers are available, many of which
extend the IMAP protocol and provide additional functionality. A comprehensive list can be
found at http://www.imap.org/products/longlist.htm.

208 Chapter 16. Email

16.1.2. POP
The Post Office Protocol (POP) allows email clients to pull off email from remote servers and
save those messages on their local machine. Most POP email clients are automatically con-
figured to delete the message on the email server after it has been successfully transferred to
the client’s system, though this can usually be changed.

To connect to a POP server, the email client opens a TCP connection to port 110 on the server.
At the time the connection is made, the POP server sends the POP client a greeting, after
which the two machines send each other commands and responses specified in the protocol.
As part of this communication, the POP client is asked to authenticate itself in what is called
the Authentication State, where the user’s username and password are sent to the POP server.
If authentication is successful, then the POP client moves on to the Transaction State, where
commands like LIST, RETR, and DELE can be used to list, download, and delete the messages
from the server, respectively. Messages set to be deleted are not actually removed from the
server until the POP client sends the QUIT command to end the session. At this point, the
POP server enters the Update State, where it deletes the flagged messages and cleans up any
resources remaining from this session.

POP is a much simpler protocol than IMAP, since fewer commands are sent between the
client and the server. POP is also slightly more popular, although most major email clients
can use either protocol.

Most POP users only have one system that they use to read email, and they download their
messages to that machine for storage. POP also works well if you do not have a constant
connection to the Internet or the network containing your mail server.

Several RFCs cover the POP protocol, but RFC-1939 defines the basic outline of POP3, the
current version.

Occasionally, you may run into lesser-used POP protocol variants:

• APOP — POP3 with MDS authentication, where an encoded hash of your password is
sent from the email client to the server rather then sending the password in plain text.

• KPOP — POP3 with Kerberos authentication. See Chapter 11 for more information con-
cerning Kerberos authentication.

• RPOP — POP3 with RPOP authentication, which utilizes an ID issued per user, similar to
a password, to authenticate POP requests. However, this ID is not encrypted, so RPOP is
no more secure than standard POP.

Many POP servers, clients, and assorted other applications are available with Red Hat Linux.
If you prefer a graphical email client, either Mozilla Mail or Ximian Evolution is a good
choice. In addition, other email utilities, such as Fetchmail, can retrieve email via POP. If
you are using your Red Hat Linux system as a mail server, the imap package contains POP2
(ipop2) and POP3 (ipop3) daemons in the /usr/sbin/ directory.

16.1.3. SMTP
While the IMAP and POP protocols involve allowing a user to be able to receive and read
their email, the Simple Mail Transfer Protocol (SMTP) is used to send email. Outgoing email
uses SMTP to move from the client’s machine to the server, where it moves along toward
its final destination. Two email servers attempting to move a message between one another
also utilize SMTP to communicate.

SMTP uses port 25 on the server for communication. A basic SMTP exchange begins with
the connecting system issuing a MAIL From: | email-address } command to initiate ex-
change. The receiving system responds with a 250 message to acknowledge receipt of the

Chapter 16. Email 209

first command. Then, the connecting system hands the email addresses to receive the mes-
sage to the receiving system, followed by a DATA message. This tells the receiving system
that the next part of the communication will be the actual body of the email message. When
the connecting system is finished with the email message, it places a single dot (.) on a line.
At that point, the message is considered sent.

SMTP also handles cases where email needs to be forwarded between systems, when the re-
ceiving system knows where to send the message. The protocol can verify that certain users
are indeed served by a particular mail server (the VRFY command) or expand a mailing list
(the EXPN command). Email can also be relayed between two SMTP servers, if both systems
permit such activity.

Unlike IMAP and POP, the SMTP protocol does not require authentication. This means that
SMTP servers can allow anyone on the Internet to use your system to send or relay mail to
large lists of recipients. It is this characteristic of SMTP that makes spam possible. Modern
SMTP applications attempt to minimize this behavior by restricting relaying and allowing
only known hosts to send email.

RFC-821 outlines the basic behavior of SMTP, but several SMTP extensions, made possible
by RFC-1869, have added additional functionality to SMTP over the years by making new
commands available. By initiating a conversation with an SMTP server with an EHLO com-
mand rather than HELO, the connecting server can identify itself as one that supports SMTP
extensions. The receiving server answers with a 250 line containing the various SMTP exten-
sions it supports. Then, the connecting server can use the supported extensions as it wishes
to accomplish the goals of the communication.

One extension adds SMTP Authentication through the AUTH command as outlined in RFC-
2554. Another widely used SMTP extension, detailed in RFC-2034, discusses the use of dot-
separated, standardized error codes for use between SMTP applications. Reading the various
RFCs that involve SMTP provides a background to the way email moves around the Internet.
In addition, you can connect to an SMTP server via telnet by specifying port 25, such as
telnet localhost 25. Executing a few commands and sending a mail manually is a good
way to understand how SMTP communications work.

Red Hat Linux 7.3 uses Sendmail as its SMTP program by default. However, easier to use
applications, such as Postfix, are also installed by default with the operating system.

16.2. Email Program Classifications
In general, all email applications fall into at least one of three classifications. Each of these
classifications plays a specific role in the process of moving and managing email messages.
While most users are only aware of the specific email program they use to receive and send
messages, each of these types is important for making sure email arrives at the correct desti-
nation.

16.2.1. Mail User Agent
A Mail User Agent (MUA) is a program that, at the very least, allows a user to read and
compose email messages. An MUA is often referred to as an email client. Of course, many
MUAs help users do more than that, including retrieving messages via the POP or IMAP
protocols, setting up mailboxes to store messages, or helping present new messages to a
Mail Transfer Agent program that will deliver them to their final destination.

MUA programs may be graphical, such as Mozilla Mail, or have a very simple, text-based
interface, such as mutt or pine.

210 Chapter 16. Email

16.2.2. Mail Transfer Agent
A Mail Transfer Agent (MTA) transfers email messages between machines using SMTP. A
message may involve several MTAs as it moves to its intended destination. Most users are
totally unaware of the presence of MTAs, even though every email message is sent through
at least one MTA.

While the delivery of messages between machines may seem rather straightforward, the
entire process of deciding if a particular MTA can or should accept a message for delivery
to a remote host is quite complicated. In addition, due to problems from spam, use of a
particular MTA is usually restricted by the MTA’s own configuration or network access to
the system running it.

Many of the larger and more complex MUAs can also be used to send email. However,
this action should not be confused with the actions of a true MTA. In order for users not
running their own MTA to move outbound messages off of their machine and onto a remote
machine for delivery, they must use a capacity in the MUA that transfers the message to an
MTA they are authorized to use. However, the MUA does not directly deliver the message
to the intended recipient’s email server — that role is reserved for the MTA.

Red Hat Linux uses Sendmail as its default MTA, though others may be used in its place. It
is important that you disable the currently running MTA before starting up another one, as
both will try to claim port 25 and one or both of the MTAs will then fail to start.

16.2.3. Mail Delivery Agent
A Mail Delivery Agent (MDA) is utilized by the MTA to deliver email to a particular user’s
mailbox. In many cases, an MDA is actually a Local Delivery Agent (LDA), such as /bin/mail
or procmail. However, Sendmail can also play the role of an MDA, such as when it accepts
a message for a local user and appends it to their email spool file. Any program that actually
handles a message for delivery to the point where it can be read by an MUA can be con-
sidered an MDA. Note that MDAs do not transport messages between systems or interface
with the end user.

Many users do not directly utilize MDAs, because only MTAs and MUAs are necessary to
send and receive email. However, some MDAs may be used to sort messages before they are
read by a user, which is a big help if you receive a lot of email.

16.3. Sendmail
Red Hat Linux uses Sendmail as its MTA to deliver messages, whether they are intended for
users on the same system or for remote destinations. Other MTAs do exist (and can be used
well with Red Hat Linux), but most administrators elect to use Sendmail as their MTA due
to its power, scalability, and compliance to important Internet standards, such as SMTP.

Sendmail’s core duty, like other MTAs, is to safely move email between hosts, usually utiliz-
ing the SMTP protocol. However, Sendmail is highly configurable, allowing you to control
almost every aspect of how email is handled, including the protocol used.

16.3.1. History
Sendmail’s roots can be traced to the birth of email, occurring in the decade before the birth
of ARPANET, the precursor to the Internet. In those days, every user’s mailbox was a file
that only they had rights to read, and mail applications simply added text to that file. Every
user had to wade through their mail file to find any old mail, and reading new mail was
a equally difficult. The first actual transfer of a mail message file from one host to another

Chapter 16. Email 211

did not take place until 1972, when email began to be moved by FTP over the NCP network
protocol. This easier method of communication quickly became popular, even to the point
where it made up most of ARPANET’s traffic in less than a year.

However, a lack of standardization between competing protocols made email much harder
to send from some systems. This continued until the ARPANET standardized on TCP/IP in
1982. Soon after, a new protocol, SMTP, materialized for transporting email messages. These
developments, combined with HOSTS files being replaced with DNS, allowed full-featured
MTAs to materialize. Sendmail, which grew out of an earlier email delivery system called
Delivermail, quickly became the standard as the email began to expand and become widely
used.

16.3.2. Purpose and Limitations
It is important to be aware of what Sendmail is and what it can do for you as opposed
to what it is not. In these days of monolithic applications that fulfill multiple roles, you
might initially think that Sendmail is the only application you need to run an email server
within your organization. Technically, this is true, as Sendmail can spool mail to your users’
directories and accepts new email via the command line. But, most users actually require
much more than simple email delivery. They usually want to interact with their email using
an MUA that uses POP or IMAP to download their messages to their local machine. Or, they
may prefer a Web interface to gain access to their mailbox. These other applications can work
in conjunction with Sendmail and SMTP, but they actually exist for different reasons and can
operate separately from one another.

It is beyond the scope of this section to go into all that Sendmail should or could be con-
figured to do. With literally hundreds of different options and rule sets, entire volumes are
dedicated to helping explain everything that can be done and how to fix things that go
wrong. You should consult the many excellent resources on Sendmail in order to shape it to
fit your exact specifications.

However, you should understand what files are installed with Sendmail by default on your
system and know how to make basic configuration changes. You should also be aware of
how to stop unwanted email (spam) and how to extend Sendmail with the Lightweight Di-
rectory Access Protocol (LDAP).

16.3.3. The Default Sendmail Installation
While you can download the source code for Sendmail and build your own copy, many users
prefer to use the version of Sendmail installed by default with their Red Hat Linux system.
You can also use the Red Hat Linux CD-ROMs to reinstall the sendmailRPM at a later point.
Be aware that you must alter the default configuration file for Sendmail to use it as a mail
server for more than one host. See Section 16.3.4 for details.

After installation, the sendmail executable is placed in the /usr/sbin/ directory.

Sendmail’s lengthy and detailed configuration file, sendmail.cf, is installed in the /etc/
directory. You should avoid editing the sendmail.cf file directly. Instead, to make
configuration changes to Sendmail, edit the /etc/mail/sendmail.mc file and use the
included m4 macro processor to create a new /etc/sendmail.cf (after backing up the
original /etc/sendmail.cf, of course). More information on configuring Sendmail can be
found in Section 16.3.4.

Various Sendmail configuration files are installed in the /etc/mail/ directory including:

• access — Specifies which systems can use Sendmail for relaying email.

212 Chapter 16. Email

• domaintable — Allows you to provide domain name mapping.

• local-host-names — The place where you include all aliases for your machine.

• mailertable — Specifies instructions that override routing for particular domains.

• virtusertable— Permits you to do a domain-specific form of aliasing, allowing multiple
virtual domains to be hosted on one machine.

Several of the configuration files in /etc/mail/, such as access, domaintable,
mailertable and virtusertable, must actually store their information in database
files before Sendmail can use any configuration changes. To include any changes you
make to these configurations in their database files, you must run the makemap hash
/etc/mail/ ~ name ��~ /etc/mail/ ~ name � command, where � name � is the name of the
configuration file to convert.

For example, if you want all email addressed to any domain.com account to be delivered to
<bob@otherdomain.com>, you need to add a line to the virtusertable file:

@domain.com bob@otherdomain.com

Figure 16-1. virtusertable example

Then, to add this new information to the virtusertable.db file, execute makemap hash
/etc/mail/virtusertable ~ /etc/mail/virtusertable as root. This will create a new
virtusertable.db that contains the new configuration.

16.3.4. Common Sendmail Configuration Changes
Although a default sendmail.cf file is installed in /etc/ during the Red Hat Linux in-
stallation process, you will need to alter it to utilize some of the program’s more advanced
features.

When altering the Sendmail configuration file, it is best generate a entirely new
/etc/sendmail.cf file instead of editing an existing one.

Important

Before changing the sendmail.cf file, it is a good idea to backup the default version.

To add the desired functionality Sendmail edit the /etc/mail/sendmail.mc file. When you
are finished, use the m4 macro processor to generate a new sendmail.cf by executing the
m4 /etc/mail/sendmail.mc � /etc/sendmail.cf command. After creating a new
/etc/sendmail.cf, you must restart Sendmail to make it take effect. The easiest way to do
this is to type the /sbin/service sendmail restart command as root.

By default, the m4 macro processor is installed with Sendmail. The m4 macro processor is
included with the sendmail-cf package.

Important

The default sendmail.cf does not allow sendmail to accept network connections from any host
other than the local computer. If you want to configure sendmail as a server for other clients, please
edit /etc/mail/sendmail.mc and change DAEMON_OPTIONS to also listen on network devices or
comment out this option all together. Then regenerate /etc/sendmail.cf by running:

Chapter 16. Email 213

This configuration should work for most SMTP-only sites. It will not work for UUCP (UNIX
to UNIX Copy) sites; you will need to generate a new sendmail.cf if you must use UUCP
mail transfers.

You should consult the /usr/share/sendmail-cf/README file before you edit any of the
files in the directories under the /usr/share/sendmail-cf directory, as they can affect how
future /etc/sendmail.cf files are configured.

16.3.4.1. Masquerading

One common Sendmail configuration is to have a single machine act as a mail gateway for
all the machines on the network. For instance, a company may want to have a machine called
mail.bigcorp.com that does all their mail. On that machine, add the names of machines for
which mail.bigcorp.com will handle mail to /etc/mail/local-host-names. Here is an
example:

sendmail.cw - include all aliases for your machine
here.
torgo.bigcorp.com
poodle.bigcorp.com
devel.bigcorp.com

Figure 16-2. Example settings for local-host-names

On the other machines, torgo, poodle, and devel, edit /etc/sendmail.cf to "masquer-
ade" as mail.bigcorp.com when sending mail and to forward any local mail processing to
bigcorp.com. Find the DH and DM lines in /etc/sendmail.cf and edit them as such:

who I send unqualified names to
(null means deliver locally)
DRmail.bigcorp.com

who gets all local email traffic
DHmail.bigcorp.com

who I masquerade as (null for no masquerading)
DMbigcorp.com

Figure 16-3. Example settings for sendmail.cf

With this type of configuration, all mail sent will appear as if it were sent from
bigcorp.com, and any mail sent to torgo.bigcorp.com or the other hosts will be delivered
to mail.bigcorp.com.

16.3.5. Stopping Spam with Sendmail
Email spam can be defined as unnecessary and unwanted email received by a user who never
requested the communication. It is a disruptive, costly, and widespread abuse of Internet
communication standards.

Sendmail has made it relatively easy to block new spamming techniques being employed
to send junk email using your system. It even blocks many of the more usual spamming

214 Chapter 16. Email

methods by default. You would need to consciously activate them by changing your
/etc/mail/sendmail.mc file in a particular way to make your system susceptible.

For example, forwarding of SMTP messages, also referred to as SMTP relaying, has been
disabled by default since Sendmail version 8.9. Before this change occurred, Sendmail would
direct your mail host (x.org) to accept messages from one party (y.com) and send them to
a different party (z.net). Now, however, you have to specifically tell Sendmail to permit
a domain to relay mail through your domain. Simply edit the /etc/mail/relay-domains
file and restart Sendmail by typing the service sendmail restart command as root to
activate the changes.

However, many times, your users may be bombarded with spam from other servers
throughout the Internet that are beyond your control. In these instances, you can use
Sendmail’s access control features available through the /etc/mail/access file. As root,
add the domains that you would like to block or specifically allow access, such as:

badspammer.com 550 Go away and do not spam us anymore
tux.badspammer.com OK
10.0 RELAY

Figure 16-4. Example settings for access

Because /etc/mail/access.db is a database, you need to use makemap to activate your
changes by recreating the database map. This is easily done by running the makemap hash
/etc/mail/access � /etc/mail/access command as root.

This example shows that any email sent from badspammer.comwould be blocked with a 550
RFC-821 compliant error code and message back to the spammer, except for email sent from
the tux.badspammer.com sub-domain, which would be accepted. The last line shows that
any email sent from the 10.0.*.* network can be relayed through your mail server.

As you might expect, this example only scratches the surface of what Sendmail can do in
terms of allowing or blocking access. See the /usr/share/doc/sendmail/README.cf for
more detailed information and examples.

16.3.6. Using Sendmail with LDAP
Using the Lightweight Directory Access Protocol (LDAP) is a very quick and powerful way to
find specific information about a particular user from a much larger group. For example, you
could use an LDAP server to look up a particular email address from a common corporate
directory by a user’s last name. In this kind of implementation, LDAP is largely separate
from Sendmail, with LDAP storing the hierarchical user information and Sendmail only
being given the result of LDAP queries in pre-addressed email messages.

However, Sendmail supports a much greater integration with LDAP, where it uses LDAP
to replace separately maintained files, such as aliases and virtusertables, on different
mail servers that work together to support a medium- to enterprise-level organization. In
short, you can use LDAP to abstract the mail routing level from Sendmail and its separate
configuration files to a powerful LDAP cluster that is being leveraged by many different
applications.

The current version of Sendmail contains support for LDAP. To extend your Sendmail server
using LDAP, first get an LDAP server, such as OpenLDAP, running and properly config-
ured. Then, you need to edit your /etc/mail/sendmail.mc to include:

Chapter 16. Email 215

LDAPROUTE_DOMAIN(’yourdomain.com’)dnl
FEATURE(’ldap_routing’)dnl

Figure 16-5. Example settings for LDAP in sendmail.mc

Note

This is only for a very basic configuration of Sendmail with LDAP. Your configuration should differ
greatly from this depending on your implementation of LDAP, especially if you wish to configure
several Sendmail machines to use a common LDAP server.

Consult /usr/share/doc/sendmail/README.cf for detailed LDAP routing configuration instructions
and examples.

Next, recreate your /etc/sendmail.cf file by running m4 and restarting Sendmail. See Sec-
tion 16.3.4 for instructions on doing this.

For more information on LDAP, see Chapter 19.

16.4. Fetchmail
Fetchmail is a program that can retrieve email from remote servers for on-demand TCP/IP
connections. Many users appreciate the ability to separate the process of downloading their
messages located on a remote server from the process of reading and organizing their email
in an MUA. Designed with the needs of dial-up users in mind, Fetchmail will connect and
quickly download all of your email messages to your mail spool file using any number of
protocols, including the POP3 and IMAP. It can even forward your email messages to an
SMTP server, if necessary.

Before attempting to use Fetchmail, be sure that it is installed on your system. If it is not, you
can install it using the fetchmail RPM on the Red Hat Linux CD-ROMs.

Fetchmail is configured for each user through the use of a .fetchmailrc file in the user’s
home directory. A program bundled with Fetchmail, called fetchmailconf, is very helpful
for configuring a basic .fetchmailrc file that you can customize at will.

Using preferences in the .fetchmailrc file, Fetchmail will check for email on a remote
server and pull it off, attempting to deliver it to port 25 on the local machine, using the
local MTA to place the email in the correct user’s spool file. If Procmail is available, it can
then be utilized to filter the email and place it in a mailbox so that it can be read by an MUA.

16.4.1. Fetchmail Configuration Options
Although it is possible to pass all options on the command line necessary to check for email
on a remote server when executing Fetchmail, using a .fetchmailrc file is much easier. All
of your configuration options go in the .fetchmailrc file, but you can override them at the
time Fetchmail is run by specifying that option on the command line.

A user’s .fetchmailrc file is divided into three particular types of configuration options:

• global options — Gives Fetchmail instructions that control the operation of the program or
provide settings for every connection that checks for email.

• server options — Specifies necessary information about the server being polled, such as the
hostname, as well as preferences you would like to see enforced with a particular email

216 Chapter 16. Email

server, such as the port to check or number of seconds to wait before timing out. These
options affect every user option utilized with that server.

• user options — Contains information, such as username and password, necessary to au-
thenticate and check for email using a particular email server.

Global options go at the top of the .fetchmailrc file, followed by one or more server op-
tions, each of which designate a different email server that Fetchmail should check. User
options follow server options for each user account you would like to check on that email
server. Like server options, multiple user options may be specified for use with a particular
server, such as when you would like to check multiple email accounts on the same server.

Server options are called into service in the .fetchmailrc file by the use of a special option
verb, poll or skip, that precedes any of the server information. The poll action tells Fetch-
mail to use this server option when it is run, which actually checks it for email using the
various user options. Any server options after a skip action, however, are not checked un-
less you specify this server’s hostname when Fetchmail is invoked. The skip option allows
you to set up test configurations in .fetchmailrc and only check using that server when
specifically desired, without affecting any currently working configurations.

A sample .fetchmailrc file looks like this:

set postmaster "user1"
set bouncemail

poll pop.domain.com proto pop3
user ’user1’ there with password ’secret’ is user1 here

poll mail.domain2.com
user ’user5’ there with password ’secret2’ is user1 here
user ’user7’ there with password ’secret3’ is user1 here

Figure 16-6. Example of a basic .fetchmailrc file

In this example, the global are options set so the user is sent email as a last resort
(postmaster option) and all email errors are sent to the postmaster instead of the sender
(bouncemail option). The set action tells Fetchmail that this line contains a global option.
Then, two email servers are specified, one set to check using POP3, and the other for trying
various protocols to find one that works. Two users are checked using the second server
option, but all email found for any users is sent to user1’s mail spool. This allows multiple
mailboxes to be checked on multiple servers, while appearing in a single MUA inbox. Each
user’s specific information begins with the user action.

Note

You do not have to place your password in the .fetchmailrc file. You can omit the with pass-
word ’ � password � ’ section. Fetchmail will then ask for your password when it is started with the
fetchmail command.

While you can set up your .fetchmailrc file manually, it is much easier to let the included
fetchmailconf program do it for you. However, when testing new configurations, it is usu-
ally easier to edit the .fetchmailrc file directly.

As expected with a program that services such a mature network service as email and utilizes
so many protocols, Fetchmail contains many different global, server, and local options. Many
of these options are rarely used or only apply to very specific situations. The fetchmailman
page explains each of these options in detail, but the most common ones are listed here.

Chapter 16. Email 217

16.4.1.1. Global Options

Each global option should be placed on a single line after a set action.

• daemon � seconds � — Tells Fetchmail to automatically use daemon-mode, where it will
stay in the background and poll for mail at the interval specified.

• postmaster — Gives Fetchmail a local user to send mail to in case of delivery problems.

• syslog — Tells Fetchmail to start logging error and status messages in the system’s log
file. By default, this is /var/log/maillog.

16.4.1.2. Server Options

Place server options on their own line in .fetchmailrc after a poll or skip action.

• auth � auth-type � — Specifies the type of authentication to be used. By default, pass-
word authentication is utilized, but some protocols support other types of authentication,
including kerberos_v5, kerberos_v4, and ssh. If the any authentication type is used,
Fetchmail will first try methods that do not require a password, then methods that mask
your password, and finally attempt to send your password in the clear to authenticate to
the server.

• interval � number � — Tells Fetchmail to only poll this server every � number � of times
that it checks for email on all configured servers. This option might be used with email
servers where you rarely receive messages.

• port � port-number � — Overrides the default port number for a specified protocol.

• proto � protocol � — Tells Fetchmail to use a specific protocol, such as pop3 or imap, to
check for messages on this server.

• timeout � seconds � — Configures Fetchmail to give up after a certain interval of server
inactivity. If this value is not set, a default of 300 seconds is assumed.

16.4.1.3. User Options

User options may be placed on their own lines beneath a server option or on the same line
as the server option. In either case, the user options follow the user option (defined below).

• fetchall— Orders Fetchmail to download all messages in the queue, including messages
that have already been viewed. By default, Fetchmail only pulls down new messages.

• fetchlimit � number � — Only allows a certain number of messages to be retrieved be-
fore stopping.

• flush — Tells Fetchmail to delete all previously viewed messages in the queue before
retrieving new messages.

• limit � max-number-bytes � — Allows you to specify that only messages below a par-
ticular size may be retrieved. This option is useful with slow network links, when a large
message will take too long to download.

• password ’ � password � ’ — Specifies the password to be used for this user.

• preconnect " � command � " — Tells Fetchmail to execute the specified command before
retrieving messages for this user.

• postconnect " � command � " — Tells Fetchmail to execute the specified command after
retrieving messages for this user.

218 Chapter 16. Email

• ssl — Allows Fetchmail to collect the message via an encrypted SSL connection, if the
server supports this.

• user " � username � " — Sets the username used by Fetchmail to retrieve messages. This
option should be listed before any other user options.

16.4.2. Fetchmail Command Options
Most of the Fetchmail options that may be used on the command line, when executing the
fetchmail command, mirror the .fetchmailrc configuration options. This is done so that
Fetchmail may be used with or without a configuration file. Most users will not use these
options on the command line, as it is easier to leave them in the .fetchmailrc file to be
utilized whenever Fetchmail is run.

However, there are times when you may want to run the fetchmail command with other
options for a particular purpose. As any options specified at the command line override
configuration file options, you can also issue command options to temporarily override a
.fetchmailrc setting that is causing an error.

16.4.2.1. Informational or Debugging Options

Certain options used after the fetchmail command can provide you with important infor-
mation.

• --configdump — Displays every possible option based on information from .fetch-
mailrc and Fetchmail defaults. No email is retrieved for any users when using this option.

• -s — Executes Fetchmail in silent mode, preventing any messages, other than errors, from
appearing after the fetchmail command.

• -v — Executes Fetchmail in verbose mode, displaying every communication between
Fetchmail and the remote email servers.

• -V — Causes Fetchmail to display detailed version information, list its global options, and
show settings to be used with each user, including the email protocol and authentication
method. No email is retrieved for any users when using this option.

16.4.2.2. Special Options

These options are occasionally useful for overriding defaults often found in the .fetch-
mailrc file.

• -a — Tells Fetchmail to download all messages from the remote email server, whether
new or previously viewed. By default, Fetchmail will only download new messages.

• -k — Causes Fetchmail to leave the messages on the remote email server after download-
ing them. This option overrides the default behavior of deleting messages after download-
ing them.

• -l � max-number-bytes � — Tells Fetchmail to not download any messages over a par-
ticular size and leave them on the remote email server.

• --quit — Quits the Fetchmail daemon process.

More commands and .fetchmailrc options can be found on the fetchmail man page.

Chapter 16. Email 219

16.5. Procmail
Procmail allows you to filter email as it is received from a remote email server, or placed in
your spool file on a local or remote email server. It is powerful, gentle on system resources,
and widely utilized. Procmail, commonly referred to as a Local Delivery Agent (LDA), plays a
small role in delivering email to be read by an MUA.

In order to use Procmail, it must first be installed. Type the rpm -q procmail command to
see if the procmail package is installed. If, for some reason, Procmail is not on your system,
install it from the Red Hat Linux installation CD-ROMs.

Procmail can be invoked in several different ways. As email is placed on your email spool
file, Procmail can be configured to start up, filter the email to locations configured for use
with your MUA, and quit. Or, your MUA could be configured to bring up Procmail any
time a message is received so that messages are moved into their correct mailboxes. In many
cases, the presence of a .procmailrc file in the user’s home directory will invoke Procmail,
if Sendmail is being used.

The actions Procmail takes with an email are dependent upon instructions from particular
recipes, or rules, that messages are matched against by the program. If a message matches
the recipe, then the email will be placed in a certain file, deleted, or otherwise processed.

When Procmail starts, it reads the email message and separates the body from the header
information. Next, Procmail looks for the /etc/procmailrc file and rc files in the
/etc/procmailrcs directory for default, system-wide, Procmail environmental variables
and recipes. Then, Procmail looks for a .procmailrc file in the user’s home directory to
find rules specific to that user. Many users also create additional rc files of their own for
Procmail that are referred to by their .procmailrc file but may be turned on or off quickly
if a mail filtering problem develops.

By default, no system-wide rc files exist in the /etc directory, and no user .procmailrc
files exist. To begin using Procmail, you will need to construct a .procmailrc file with par-
ticular environment variables and recipes explaining what you would like to do with certain
messages.

In most configurations, the decision as to whether Procmail starts and attempts to filter your
email is based the existence of a user’s .procmailrc file. To disable Procmail, but save your
work on the .procmailrc file, move it to a similar file’s name using the mv ~/.procmailrc
~/.procmailrcSAVE command. When you are ready to begin testing Procmail again, change
the name of the file back to .procmailrc. Procmail will begin working again immediately.

16.5.1. Procmail Configuration
Procmail configuration files, most notably the user’s .procmailrc, contain important envi-
ronmental variables. These variables tell Procmail which messages to sort, what to do with
the messages that do not match any recipes, and so on.

These environmental variables usually appear in the .procmailrc file at the beginning, in
the following format, each on their own line:

�
env-variable � =" � value � "

Figure 16-7. Structure of an environmental variable line

In this example, the � env-variable � is the name of the variable, and the � value � section
defines the variable.

Many environment variables are not used by most Procmail users, and many of the more
important environment variables are already defined a default value. Most of the time, you
will be dealing with the following variables:

220 Chapter 16. Email

• DEFAULT — Sets the default mailbox where messages that do not match any recipes will
be placed.

The default DEFAULT value is the same as $ORGMAIL.

• INCLUDERC — Specifies additional rc files containing more recipes for messages to be
checked against. This allows you to break up your Procmail recipe lists into individual
files that fulfill different roles, such as blocking spam and managing email lists, that can
then be turned off or on by using comment characters in the user’s .procmailrc file.

For example, two lines in a user’s .procmailrc file may look like this:

MAILDIR=$HOME/Msgs
INCLUDERC=$MAILDIR/lists.rc
INCLUDERC=$MAILDIR/spam.rc

Figure 16-8. Example of the INCLUDERC option in use

If the user would like to turn off the Procmail filtering of their email lists but leave spam
control in place, they could simple comment out the first INCLUDERC line with a # character.

• LOCKSLEEP — Sets the amount of time, in seconds, between attempts by Procmail to use a
particular lockfile. The default is eight seconds.

• LOCKTIMEOUT— Sets the amount of time, in seconds, that must pass after a lockfile was last
modified before Procmail will assume that the lockfile is simply old and can be deleted.
The default is 1024 seconds.

• LOGFILE — The location and file to contain any Procmail informational or error messages.

• MAILDIR — Sets the current working directory for Procmail. If set, all other Procmail paths
are relative to this directory.

• ORGMAIL — Specifies the original mailbox, or another place to put the messages if they
cannot be placed in the default or recipe-required location.

By default, a value of /var/spool/mail/$LOGNAME is used.

• SUSPEND — Sets the amount of time, in seconds, that Procmail will pause if a necessary
resource, such as swap space, is not available.

• SWITCHRC — Allows a user to specify an external file containing additional Procmail
recipes, much like the INCLUDERC option, except that recipe checking is actually stopped
on the referring configuration file and only the recipes on the SWITCHRC-specified file are
used.

• VERBOSE — Causes Procmail to log much more information. This option is useful for de-
bugging.

Other important environmental variables are pulled from your shell, such as LOGNAME, which
is your login name, HOME, which is the location of your home directory, and SHELL, which is
your default shell.

A comprehensive explanation of all environments variables, as well as their default values,
is available on the procmailrc man page.

Chapter 16. Email 221

16.5.2. Procmail Recipes
New users often find the construction of recipes the most difficult part of learning to use
Procmail. To some extent, this is understandable, as recipes do their message matching using
regular expressions, which is a particular format used to specify qualifications for a matching
string. However, regular expressions are not very difficult to construct and even less diffi-
cult to understand when read. Additionally, the consistency of the way Procmail recipes are
written, regardless of regular expressions, makes it easy to figure out what is going on.

A thorough explanation of regular expressions is beyond the scope of this chapter. The struc-
ture of Procmail recipes is more important, and useful sample Procmail recipes can be found
at various places on the Internet, including http://www.iki.fi/era/procmail/links.html. The
proper use and adaptation of the regular expressions found in these recipe examples de-
pends upon an understanding of Procmail recipe structure. Introductory information spe-
cific to basic regular expression rules can be found on the grep man page.

A Procmail recipe takes the following form:

:0 � flags � : � lockfile-name �

* � special-condition-character �]� condition-1 �
* � special-condition-character �]� condition-2 �
* � special-condition-character �]� condition-N �

� special-action-character ��� action-to-perform �

Figure 16-9. Structure of a Procmail recipe

The first two characters in a Procmail recipe are a colon and a zero. Various flags can option-
ally be placed after the zero to control what Procmail does when processing this recipe. A
colon after the � flags � section specifies that a lockfile will be created for this message. If a
lockfile is to be created, you specify its name in the � lockfile-name � space.

A recipe can contain several conditions to match against the message. If it has no conditions,
every message will match the recipe. Regular expressions are placed in some conditions in
order to facilitate a match with a message. If multiple conditions are used, they must all
match in order for an action to be performed. Conditions are checked based on the flags set
in the recipe’s first line. Optional special characters placed after the * character can further
control the condition.

The � action-to-perform � specifies what is to happen to a message if it matches one of the
conditions. There can only be one action per recipe. In many cases, the name of a mailbox
is used here to direct matching messages into that file, effectively sorting the email. Special
action characters may also be used before the action is specified.

16.5.2.1. Delivering vs. Non-Delivering Recipes

The action used if the recipe matches a particular message determines whether recipe is
considered delivering or non-delivering. A delivering recipe contains an action that writes the
message to a file, sends the message to another program, or forwards the message to another
email address. A non-delivering recipe covers any other actions, such as when a nesting block
is used. A nesting block is an action contained in braces { } that designates additional actions
to perform on messages that match the recipe’s conditions. Nesting blocks can be nested,
providing greater control for identifying and performing actions on messages.

Delivering recipes that match messages causes Procmail to perform the action specified and
stop comparing the message against any other recipes. Messages that match conditions in
non-delivering recipes will continue to be compared against other recipes in the current and

222 Chapter 16. Email

following rc files. In other words, non-delivering recipes cause the message to continue
through the recipes after the specified action is taken on it.

16.5.2.2. Flags

Flags are very important in determining how or if a recipe’s conditions are compared to a
message. The following flags are commonly used:

• A — Specifies that this recipe will only be used if the last previous recipe without an A or
a flag also matched this message.

To ensure that the action on this last previous matching recipe was successfully completed
before allowing a match on the current recipe, use the a flag instead.

• B — Parse the body of the message and look for matching conditions.

• b — Use the body in any resulting action, such as writing the message to a file or forward-
ing it. This is the default behavior.

• c — Generate a carbon copy of the email. This is useful with delivering recipes, since the
required action can be performed on the message and a copy of the message can continue
being processed in the rc files.

• D — Makes the egrep comparison case-sensitive. By default, the comparison process is not
case-sensitive.

• E — Similar to the A flag, except that the conditions in this recipe are only compared to
the message if the immediately preceding recipe without an E flag did not match. This is
comparable to an else action.

Use the e flag instead if you only want this recipe checked if the preceding recipe matched
but the action failed.

• f — Uses the pipe as a filter.

• H — Parses the header of the message and looks for matching conditions. This occurs by
default.

• h — Uses the header in a resulting action. This is the default behavior.

• w — Tells Procmail to wait for the specified filter or program to finish and report whether
or not it was successful before considering the message filtered.

If you would like to ignore "Program failure" messages when deciding whether a filter or
action succeeded, use the W option instead.

Additional flags can be found in the procmailrc man page.

16.5.2.3. Specifying a Local Lockfile

Lockfiles are very useful with Procmail to ensure that more than one process does not try to
alter a certain message at the same time. You can specify a local lockfile by placing a colon (:)
after any flags on a recipe’s first line. This will create a local lockfile based on the destination
filename plus whatever has been set in the LOCKEXT global environment variable.

Alternatively, you can specify the name of the local lockfile to be used with this recipe after
the colon.

Chapter 16. Email 223

16.5.2.4. Special Conditions and Actions

Particular characters used before Procmail recipe conditions and actions change the way
they are interpreted.

The following characters may be used after the * character at the beginning of a recipe’s
condition line:

• ! — Inverts the condition, causing a match to occur only if the condition does not match
the message.

• � — Checks to see if the message is under the specified number of bytes.

• � — Checks to see if the message is over a particular number of bytes.

The following characters are used to perform special actions:

• ! — Tells Procmail to forward the message to the specified email addresses

• $ — Refers to a variable set earlier in the rc file. This is usually used to set a common
mailbox that will be referred to by various recipes.

• | — The pipe character tells Procmail to start a specific program to deal with this message.

• { and } — Constructs a nesting block, used to contain additional recipes to apply to match-
ing messages.

If no special character is used at the beginning of the action line, then Procmail assumes that
the action line is specifying a mailbox where the message should be written.

16.5.2.5. Recipe Examples

Procmail is an extremely flexible program, allowing you to match messages with very spe-
cific conditions and then perform detailed actions on them. As a result of this flexibility,
however, composing a Procmail recipe from scratch to achieve a certain goal can be difficult
for new users.

The best way to develop the skills to build Procmail recipe conditions stems from a strong
understanding of regular expressions combined with looking at many examples built by
others. The following very basic examples exist to serve as a demonstration of the structure
of Procmail recipes and can provide the foundation for more intricate constructions.

The most basic recipes does not even contain conditions, as is demonstrated in Figure 16-10.

:0:
new-mail.spool

Figure 16-10. Example with no conditions

The first line starts the recipe by specifying that a local lockfile is to be created but does not
specify a name, leaving Procmail to use the destination filename and the LOCKEXT to name
it. No condition is specified, so every message will match this recipe and, therefore, will be
placed in the single spool file called new-mail.spool, located within the directory specified
by the MAILDIR environment variable. An MUA can then view the messages in this file.

This basic recipe could go at the end of all rc files to direct messages to a default location. A
more complicated example might grab messages from a particular email address and throw
them away, as can be seen in Figure 16-11.

224 Chapter 16. Email

:0
* ^From: spammer@domain.com
/dev/null

Figure 16-11. Example of email sent to /dev/null

With this example, any messages sent by spammer@domain.com are immediately moved to
/dev/null, deleting them.

Caution

Be very careful that a rule is working correctly before moving messages matching it to /dev/null,
which is a permanent deletion. If your recipe conditions inadvertently catch unintended messages,
you will not even know you are missing those messages unless the sender tells you.

A better solution is to point the recipe’s action to a special mailbox that you can check from time to
time in order to look for false positives, or messages that inadvertently matched the conditions. Once
you are satisfied that no messages are accidentally being matched, you can delete the mailbox and
direct the action to send the messages to /dev/null.

Procmail is primarily used as a filter for email, automatically placing it in the right place so
that you do not have to sort it manually. The recipe in Figure 16-12 grabs email sent from a
particular mailing list and puts in the correct folder for you.

:0:
* ^(From|CC|To).*tux-lug
tuxlug

Figure 16-12. Example of list filtering

Any messages sent from the tux-lug@domain.com mailing list will be placed in the tuxlug
mailbox automatically for your MUA. Note that the condition in this example will match the
message if it has the mailing list’s email address on the From, CC, or To lines.

Procmail can also be used to block spam, although this is not a good long-term solution for
junk mail. Consider the following temporary spam filtering solution in Figure 16-13, where
multiple recipes are set to use a common mailbox to store the junk.

SPAM=junk

:0:
* To??^$
$SPAM

:0:
* ^(To|CC):.*,.*,.*,.*,.*,.*,.*,.*,.*,.*,.*,
$SPAM

:0:
* ^Message-Id:.* � [^@]* �
$SPAM

Figure 16-13. Example of a basic spam filter

In this example, the junk mailbox is associated with the SPAM variable, so that you can
change the mailbox that holds your spam in one place. Then, three recipes look for mes-
sages to send to the junk mailbox.

Chapter 16. Email 225

The first recipe looks for messages that have no recipient in the To line. The second recipe
matches any messages with 12 or more recipients. The third recipe looks for messages with
a bad message ID.

These simple examples are provided to help get you started creating recipes. Consult the
many Procmail online resources available from Section 16.7 to see more detailed and pow-
erful recipes.

16.6. Security
Like any other service that flows over a network unencrypted, important email information,
such as usernames, passwords, and entire messages, may be intercepted and viewed, all
without the knowledge of the email server or client. When using standard POP and IMAP
protocols, all authentication information is sent "in the clear," meaning that someone on a
network between the client and the remote server can easily view it.

16.6.1. Secure Email Clients
Thankfully, most Linux MUAs designed to check email on remote servers support SSL to
encrypt messages as they are sent back and forth over the network. In order to use SSL
when retrieving email, it must be enabled on the email client and server.

SSL is easy to enable on the client-side, often done with the click of a button in the MUA’s
configuration area. Secure IMAP and POP have known port numbers (993 and 995, respec-
tively) that the MUA will use to authenticate and download messages.

Popular MUAs included with Red Hat Linux, such as Mozilla Mail, mutt, and pine, offer
SSL-encrypted email sessions.

16.6.2. Secure Email Servers
Offering SSL encryption to IMAP and POP users on the email server is almost as easy. Red
Hat Linux also includes the stunnel package, which is an SSL encryption wrapper that
wraps around standard, non-secure network traffic for certain services and prevents inter-
ceptors from being able to "sniff" the communication between client and server.

The stunnel program uses external SSL libraries, such as the OpenSSL libraries included
with Red Hat Linux, to provide strong cryptography and protect your connections. You can
apply to a Certificate Authority (CA) for an SSL certificate, or you can create a self-signed
certificate to provide the benefit of the SSL encrypted communication.

To create a self-signed SSL certificate, change to the /usr/share/ssl/certs/directory, type
the make stunnel.pem command, and answer the questions. Then, use stunnel to start the
mail daemon that you wish to use.

For example, the following command could be used to start the IMAP server included with
Red Hat Linux:

/usr/sbin/stunnel -d 993 -l /usr/sbin/imapd imapd

You should now be able to open an IMAP email client and connect to your email server
using SSL encryption. Of course, you will probably want to go a step further and configure
your stunnel-wrapped IMAP server to automatically start up at the correct runlevels.

For more information about how to use stunnel, read the stunnel man page or refer to the
documents in the /usr/share/doc/stunnel- � version-number � directory.

226 Chapter 16. Email

Alternatively, the imap package bundled with Red Hat Linux contains the ability to pro-
vide SSL encryption on its own without stunnel. For secure IMAP connections, create the
SSL certificate by changing to the /usr/share/ssl/certs/ directory and running the make
imapd.pem command. Then, set the imapd service to start at the proper runlevels.

You can also use the ipop3 package bundled with Red Hat Linux to provide SSL encryption
on its own without stunnel.

16.7. Additional Resources
Many users initially find email programs difficult to configure, primarily due to the large
number of options available. Below is a list of additional documentation to help you properly
configure your mail applications.

16.7.1. Installed Documentation

• Information about how to configure Sendmail is included with the sendmail and
sendmail-cf packages.

• /usr/share/doc/sendmail/README.cf — Contains information on m4, file locations
for Sendmail, supported mailers, how to access enhanced features, and more.

• /usr/share/doc/sendmail/README — Contains information on the Sendmail direc-
tory structure, IDENT protocol support, details on directory permissions, and the com-
mon problems these permissions can cause if misconfigured.

In addition, the sendmail and aliases man pages contain helpful information
covering various Sendmail options and the proper configuration of the Sendmail
/etc/mail/aliases file, respectively.

• /usr/share/doc/fetchmail- � version-number � — Contains a full list of Fetchmail fea-
tures in the FEATURES file and an introductory FAQ document.

• /usr/share/doc/procmail- � version-number � — Contains a README file that provides
an overview of Procmail, a FEATURES file that explores every program feature, and an FAQ
file with answers to many common configuration questions.

When learning how Procmail works and creating new recipes, the following Procmail man
pages are invaluable:

• procmail — Provides an overview of how Procmail works and the steps involved with
filtering email.

• procmailrc — Explains the rc file format used to construct recipes.

• procmailex — Gives a number of useful, real-world examples of Procmail recipes.

• procmailsc — Explains the weighted scoring technique used by Procmail to see if a
particular recipe matches a certain message.

Chapter 16. Email 227

16.7.2. Useful Websites

• http://www.redhat.com/mirrors/LDP/HOWTO/Mail-Administrator-HOWTO.html —
Provides an overview of how email works and examines possible email solutions and
configurations on the client and server sides.

• http://www.redhat.com/mirrors/LDP/HOWTO/Mail-User-HOWTO — Looks at email
from the user’s perspective, investigates various popular email client applications and
gives an introduction to topics such as aliases, forwarding, auto-replying, mailing lists,
mail filters, and spam.

• http://www.redhat.com/mirrors/LDP/HOWTO/mini/Secure-POP+SSH.html —
Demonstrates a way to retrieve POP email using SSH with port forwarding, so that your
email passwords and messages will be transferred securely.

• http://www.sendmail.net — Contains news, interviews, and articles concerning Send-
mail, including an expanded view of the many options available.

• http://www.sendmail.org — Offers a thorough technical breakdown of Sendmail features
and configuration examples.

• http://tuxedo.org/~esr/fetchmail — The home page for Fetchmail, featuring an online
manual, and a thorough FAQ.

• http://www.procmail.org — The home page for Procmail, with links to assorted mailing
lists dedicated to Procmail as well as various FAQ documents.

• http://www.ling.helsinki.fi/users/reriksso/procmail/mini-faq.html — An excellent
Procmail FAQ, with troubleshooting tips and details about file locking and the use of
wildcard characters.

• http://www.uwasa.fi/~ts/info/proctips.html — Points out dozens of tips that make us-
ing Procmail in various situations much easier, including how to test .procmailrc files
and use Procmail scoring to decide if a particular action should be taken.

16.7.3. Related Books

• Sendmail by Bryan Costales with Eric Allman et al; O’Reilly & Associates — A good Send-
mail reference written with the assistance of the original creator of Delivermail and Send-
mail.

• Removing the Spam: Email Processing and Filtering by Geoff Mulligan; Addison-Wesley Pub-
lishing Company — A volume that looks at various methods used by email administrators
that use established tools, such as Sendmail and Procmail, to manage spam problems.

• Internet Email Protocols: A Developer’s Guide by Kevin Johnson; Addison-Wesley Publishing
Company — Provides a very thorough review of major email protocols and the security
they provide.

• Managing IMAP by Dianna Mullet and Kevin Mullet; O’Reilly & Associates — Details the
steps required to configure an IMAP server.

228 Chapter 16. Email

Chapter 17.

Berkeley Internet Name Domain (BIND)

Today, the Internet and almost all local networks depend upon a working and reliable Do-
main Name Service (DNS), which is used to resolve names of systems into IP addresses and
vice versa.

In order to facilitate DNS on your network, a nameserver is required to translate these names
into the IP addresses necessary to make the connection. In addition, a nameserver can trans-
late IP addresses back into a system’s name, commonly called a reverse lookup.

This chapter discusses BIND, the structure of its configuration files, and how it may be lo-
cally or remotely administered.

For BIND configuration instructions using the GUI BIND Configuration Tool, please see
Official Red Hat Linux Customization Guide. Note that, if you are using the BIND Configura-
tion Tool, you should not manually edit your BIND configuration files because any manual
changes will be overwritten by the BIND Configuration Tool.

17.1. Introduction to DNS and BIND
Systems using IP networks must know the IP address of a remote machine in order to con-
nect to it. However, most users prefer to use names of machines, such as hostname or a fully
qualified domain name (FQDN), to specify a system when connecting to it. In addition, many
programs utilize domain names in their configuration files when referring to a remote sys-
tem, in order to allow IP addresses to be changed without modifying the system’s name,
among other reasons. The service that facilitates this is caused DNS, and it is normally im-
plemented using centralized servers that are authoritative for some domains and refer to
other DNS servers for information they do not already know.

DNS is made possible through the use of nameserver daemons that perform the IP/name
translation. A client application will request information from the nameserver, usually con-
necting to it on the server’s port 53. The nameserver will attempt to resolve the FQDN based
on its resolver library, which may contain authoritative information about the host requested
or cached data about that name from an earlier query. If the nameserver does not already
have the answer in its resolver library, it will turn to other nameservers, called root name-
servers, to determine which nameservers are authoritative for the FQDN in question. Then,
with that information, it will query the authoritative nameservers for that name to determine
the IP address. If performing a reverse lookup, the same procedure is used, except the query
is made with an unknown IP address rather than a name.

17.1.1. Zones
On the Internet, the FQDN of a host can be broken down into different sections, and these
sections are organized in a hierarchy much like a tree, with a main trunk, primary branches,
secondary branches, and so forth. Consider the following FQDN:

bill.sales.domain.com

Figure 17-1. Example of a fully qualified domain name

When looking at how a FQDN is resolved to find the IP address that relates to a particular
system, you must read the name from right to left, with each level of the hierarchy divided
by dots (.). In this example, the com defines the top level domain for this FQDN. The domain

230 Chapter 17. Berkeley Internet Name Domain (BIND)

name is a sub-domain under com, with sales as a sub-domain under domain. The name
furthest left in a FQDN is the hostname, identifying a particular machine.

Except for the hostname, every section is a called a zone, which defines a particular names-
pace. A namespace controls the naming of the sub-domains to its left. While this example only
contains two sub-domains, a FQDN must contain at least one sub-domain but may include
many more, depending upon the namespace organization in use.

Zones are defined on authoritative nameservers through the use of zone files, which describe
the namespace of that zone, the mail servers to be used for a particular domain or sub-
domain, and much more. Zone files are stored on primary nameservers (also called master
nameservers), which are truly authoritative and where changes are made to the files, and
secondary nameservers (also called slave nameservers), which receive their zone files from the
primary nameservers. Any nameserver can be a primary and secondary nameserver for dif-
ferent zones at the same time, and they may also be considered authoritative for multiple
zones. It all depends on the nameserver’s particular configuration.

17.1.2. Types of Nameservers
There are four primary nameserver configuration types:

• master — Stores original and authoritative zone records for a certain namespace, answer-
ing questions from other nameservers searching for answers concerning that namespace.

• slave — Also answers queries from other nameservers concerning namespaces for which it
is considered an authority. However, slave nameservers get their namespace information
from master nameservers via a zone transfer, where the slave sends the master a NOTIFY
request for a particular zone and the master responds with the information, if the slave is
authorized to receive the transfer.

• caching-only — Offers name to IP resolution services but is not authoritative for any zones.
Answers for all resolutions are usually cached in a database stored in memory for a fixed
period of time, usually specified by the retrieved zone record, for quicker resolution for
other DNS clients after the first resolution.

• forwarding — Forwards requests to a specific list of nameservers to be resolved. If none of
the specified nameservers can perform the resolution, the process stops and the resolution
fails.

A nameserver may be one or more of these types. For example, a nameserver can be a master
for some zones, a slave for others, and only offer forwarding resolution.

17.1.3. BIND as a Nameserver
Red Hat Linux includes BIND, which is a very popular, powerful, open source nameserver.
BIND uses the named daemon to provide its name resolution services. All configuration
information for BIND is kept in the /etc/named.conf file and its zone files are in the
/var/named/ directory. The structure and options for these various types of files can be
found in Section 17.2.

BIND version 9 includes a utility called /usr/sbin/rndc to allow the administration of the
running named daemon. More information about rndc can be found in Section 17.3.

Chapter 17. Berkeley Internet Name Domain (BIND) 231

17.2. BIND Configuration Files
The BIND nameserver named server uses the /etc/named.conf file for configuration. All
zone files are placed in the /var/named/ directory.

Warning

Do not manually edit the /etc/named.conf file or any files in the /var/named/ directory if you are
using the BIND Configuration Tool. Any manual changes to those files will be overwritten the next
time the BIND Configuration Tool is used.

The /etc/named.conf file must be free of errors in order for named to start. While some er-
roneous options used in with some statements are not considered critical enough to stop the
server, any errors in the statements themselves will prevent the named service from starting.

17.2.1. /etc/named.conf
The /etc/named.conf file is a collection of statements using nested options placed in el-
lipses { }. A sample /etc/named.conf file is organized similar to Figure 17-2.

�
statement-1 � ["

�
statement-1-name � "] [

�
statement-1-class �] {�

option-1 � ;�
option-2 � ;�
option-N � ;

};

�
statement-2 � ["

�
statement-2-name � "] [

�
statement-2-class �] {�

option-1 � ;�
option-2 � ;�
option-N � ;

};

�
statement-N � ["

�
statement-N-name � "] [

�
statement-N-class �] {�

option-1 � ;�
option-2 � ;�
option-N � ;

};

Figure 17-2. Sample organization of /etc/named.conf

The " � statement-name � " is only needed with acl, include, server, view, and zone state-
ments. The � statement-N-class � may only be specified with the zone statement.

Comments may be placed in /etc/named in nested C-style characters /* */ or after // and
characters.

The following statements may be used in /etc/named.conf:

• acl
�
acl-name � — Configures an access control list of IP addresses to be allowed or

disallowed certain named services. Most of the time, individual IP addresses or IP network
notation (such as 10.0.1.0/24) is used identify the exact IPs.

A few access control lists are already defined, so you do not have to configure an acl
statement to define them:

• any — Matches every IP address.

232 Chapter 17. Berkeley Internet Name Domain (BIND)

• localhost — Matches any IP address in use by the local system.

• localnets — Matches any IP address on any network to which the local system is
connected .

• none — Matches no IP addresses.

When utilized with other /etc/named.conf statements and their options, acl statements
can be very useful in ensuring the proper use of your BIND nameserver. Consider the
example in Figure 17-3.

acl black-hats {
10.0.2.0/24;
192.168.0.0/24;

};

acl red-hats {
10.0.1.0/24;

};

options {
blackhole { black-hats; };
allow-query { red-hats; };
allow-recursion { red-hats; };

}

Figure 17-3. Example of acl statements in use

This named.conf contains two access control lists (black-hats and red-hats.

• controls — Configures various security requirements necessary to use the rndc com-
mand to administer the named service.

See Section 17.3.1.1 to see how the controls statement should look, including various
options that may only be used with it.

• include " � file-name � " — Includes the specified file within the current configuration
file, allowing sensitive configuration data (such as keys) to be placed in a separate file
with permissions that prevent non-privileged users from reading it.

• key " � key-name � " — Defines a particular key by name. Keys are used to authenticate
various actions, such as secure updates or the use of the rndc command. Two options are
used with key:

• algorithm � algorithm-name � — The type of algorithm used, such as dsa or hmac-
md5.

• secret " � key-value � " — The encrypted key.

See Figure 17-22 for an example of a key statement.

• logging — Allows for the use of multiple types of logs, called channels. By using the
channel option within the logging statement, a customized type of log, with its own file
name (file), size limit (size), versioning (version), and level of importance (severity),
can be constructed. Once a customized channel has been defined, a category option is
used the categorize the channel and begin logging when named is restarted.

By default, named logs standard messages to the syslog daemon, which places them
in /var/log/messages. This occurs because several standard channels are built into

Chapter 17. Berkeley Internet Name Domain (BIND) 233

BIND with various severity levels, such as one that handles informational logging
messages (default_syslog) and another that specifically handles debugging messages
(default_debug). A default category, called default, uses the built-in channels to do
normal logging without any special configuration.

Customizing the logging process can be a very detailed process and is beyond the scope of
this chapter. For information on creating custom BIND logs, see the BIND 9 Administrator
Reference Manual.

• options — Assigns values to many assorted options, including the use of forwarders, the
location of the named working directory, the names of the various files, and much more.

The following options are among the most commonly used:

• allow-query— Specifies which hosts are allowed to query this nameserver. By default,
all hosts are allowed to query. An access control list or collection of IP addresses or
networks may be used here to only allow particular hosts to query the nameserver.

• allow-recursion — Similar to allow-query, except it applies to recursive queries. By
default, all hosts are allowed to perform recursive queries on the nameserver.

• directory — Changes the named working directory to something other than the de-
fault, /var/named.

• forward — Controls how forwarding occurs, if the forwarders option contains valid
IP addresses designating where to send requests.

If the first option is used, then the nameservers specified in the forwarders option
are queried first for the information, and if they do not have it, named will attempt the
resolution itself.

If the only option is used, named will not attempt the resolution itself if the forwarders
are not successful.

• forwarders — Specifies a list of nameservers where requests should be forwarded for
resolution.

• listen-on — Specifies the network interface that named will use to listen for queries.
By default, all interfaces are used.

This option is useful if you have more than one network interface and would like to
limit the systems that can make requests of your nameserver. For example, if you have
a machine serving as a gateway and a nameserver, and you would like to block any
requests except those that originate from your private network, your listen-on option
might look like Figure 17-4.

options {
listen-on { 10.0.1.1; };

};

Figure 17-4. Example of listen-on option

In this way, only requests that arrive from the network interface serving the private
network (10.0.1.1) will be accepted.

• notify — Controls whether named notifies the slave servers when a zone is updated.
The default is yes, but you can set this to no, to prevent slaves from being notified, or
explicit, to only notify servers in an also-notify list.

234 Chapter 17. Berkeley Internet Name Domain (BIND)

• pid-file — Allows you to specify the location of the process ID file created by named
when it starts.

• statistics-file — Allows you to specify the location of where the statistics file is
written. By default, named statistics are saved in /var/named/named.stats.

Dozens of other options are also available, many of which rely upon one another to work
properly. See the BIND 9 Administrator Reference Manual for more details.

• server — Defines particular options that affect how named should act toward remote
nameservers, especially regarding notifications and zone transfers.

The transfer-format option controls whether one resource record is sent with each
message (one-answer) or multiple resource records are sent with each message (many-
answers). While many-answers is more efficient, only newer BIND nameservers under-
stand it.

• trusted-keys — Contains assorted public keys used for DNSSEC. See Section 17.4.3 for
an introduction to BIND security.

• view " � view-name � " — Creates special views that respond with a particular type of
information depending upon the host contacting the nameserver. This allows some hosts
to receive one answer regarding a particular zone while other hosts receive totally different
information. Alternatively, certain zones may only be made available to particular trusted
hosts while non-trusted hosts can only make queries for other zones.

Multiple views may be used, so long as their names are unique. The match-clients op-
tion specifies the IP addresses that apply to a particular view. Any option statements may
also be used within a view, overriding the global options already configured for named.
Most view statements contain multiple zone statements that apply to the match-clients
list. The order in which view statements are listed is important, as the first view statement
that matches a particular client’s IP address is used.

See Section 17.4.2 for more information about the view statement.

• zone " � zone-name � " — Specifies particular zones for which this nameserver is author-
itative. The zone statement is primarily used to specify the file containing the zone’s con-
figuration and pass certain options about that zone to named that override other global
option statements used in /etc/named.conf.

The name of the zone is important, as it is the default value assigned to the $ORIGIN
directive used in the zone file and is appended to non-FQDNs. So, for example, if this
zone statement defines the namespace for domain.com, you should use domain.com as
the � zone-name � so it will be placed at the end of hostnames used in the zone file.

The most common zone statement options include:

• allow-query — Specifies the clients that are allowed to request information about this
zone. The default is to allow all query requests.

• allow-transfer — Specifies the slave servers that are allowed to request a transfer of
the zone’s information. The default is to allow all transfer requests.

• allow-update — Specifies the hosts that are allowed to dynamically update informa-
tion in their zone. The default is to deny all dynamic update requests.

Be very careful about allowing hosts to update information about their zone. Do not
enable this option unless the host specified is completely trusted. It is generally better to

Chapter 17. Berkeley Internet Name Domain (BIND) 235

have an administrator manually update the zone’s records and reload the named service,
if possible.

• file — Specifies the name of the file in the named working directory that contains the
zone’s configuration data. The default is /var/named.

• masters— Used if the zone is defined as a slave type. The masters option tells a slave’s
named the IP addresses from which to request authoritative zone information.

• notify — Works in a similar manner to the notify option used with the option state-
ment.

• type — Defines the type of zone. The following types may be used:

• forward — Tells the nameserver to forward all requests for information about this
zone to other nameservers.

• hint — A special type of zone that is used to point to the root nameservers, which are
used to resolve queries when a zone is not otherwise known. You should not need to
configure a hint zone beyond the default in /etc/named.conf.

• master — Designates this nameserver as authoritative for this zone. A zone should
be set as the master type if you have the zone’s configuration files on this system.

• slave — Designates this nameserver as a slave server for this zone, telling named to
request the zone’s configuration files from the master nameserver’s IP address for
that zone.

• zone-statistics— Tells named to keep statistics concerning this zone, writing them to
either the default location (/var/named/named.stats) or the place specially designated
by the statistics-file option in the server statement, if it exists.

17.2.1.1. Sample Zone Statements

Most changes to the /etc/named.conf file of a master or slave nameserver concerns adding,
modifying, or deleting zone statements. While these zone statements can contain many op-
tions, most nameservers use few of them. The following zone statements are very basic ex-
amples that may be used in a master-slave nameserver relationship.

A zone statement on a primary nameserver hosting the domain domain.com may look like
Figure 17-5.

zone "domain.com" IN {
type master;
file "domain.com.zone";
allow-update { none; };

};

Figure 17-5. Example of a simple master zone statement

This zone statement names the zone domain.com, sets the type as master, tells named to
read the /var/named/domain.com.zone file to configure the zone, and to allow no updates
by any other hosts.

A slave server’s zone statement for domain.com might look like Figure 17-6.

236 Chapter 17. Berkeley Internet Name Domain (BIND)

zone "domain.com" {
type slave;
file "domain.com.zone";
masters { 192.168.0.1; };

};

Figure 17-6. Example of a simple slave zone statement

This zone statement tells named on the slave server to look to the 192.168.0.1 master
server to find out the configuration information for the zone called domain.com.
The information the slave server receives from the master server is saved in the
/var/named/domain.com.zone file.

17.2.2. Zone Files
Zone files, which contain information about a particular namespace, are stored in the named
working directory. By default, this is /var/named. Each zone file is named according to the
file option data in the zone statement, usually in a way that relates to the domain in ques-
tion and identifies the file as containing zone data, such as example.com.zone.

Each zone file may contain directives and resource records. Directives tell the nameserver to
do a certain thing or apply a special setting to the zone. Resource records define the parameters
of the zone, assigning an identity within the zone’s namespace to particular systems. Direc-
tives are optional, but resource records are required to provide nameservice to that zone. All
directives and resource records should go on their own lines.

Comments can be placed after semicolon characters (;) in zone files.

17.2.2.1. Zone File Directives

Directives are identified by the leading $ character before the name of the directive and
usually placed at the top of the zone file.

The following directives are the most commonly used:

• $INCLUDE — Tells named to include another zone file in this zone file at the place where
the directive is used. This allows additional zone settings to be stored apart from the main
zone file.

• $ORIGIN — Sets the domain name to be appended to any unqualified records, such as
those that only specify the host and nothing more.

For example, a zone file may contains the following line:

$ORIGIN domain.com

At this point, any names that are used in resource records and do not end in a trailing dot
(.) will have this domain name added to them. So, in other words, when the zone record
is read by the nameserver, the first line below will be interpreted as the second line:

ftp IN CNAME server1
ftp.domain.com. IN CNAME server1.domain.com.

Note

The use of the $ORIGIN directive is unnecessary if you name the zone in /etc/named.conf the
same as the value you would assign to $ORIGIN. The zone’s name is used as the $ORIGIN direc-
tive’s value by default.

Chapter 17. Berkeley Internet Name Domain (BIND) 237

• $TTL — Sets the default Time to Live (TTL) value for the zone. This is the number, in sec-
onds, given to nameservers that tells how long the zone’s resource records should continue
to be valid. A resource record can contains its own TTL value, which would override this
directive.

Increasing this value tells remote nameservers to cache this zone’s information for a longer
time. This reduces the number of queries made concerning this zone, but it also lengthens
the amount of time required to proliferate resource record changes.

17.2.2.2. Zone File Resource Records

Zone file resource records contain columns of data, separated by whitespace, that define the
record. All zone file resource records are assigned a particular type, which designates the
record’s purpose. The following types of resource records are the most commonly used:

• A — Address record, which specifies an IP address to assign to a name.
�
host � IN A

�
IP-address �

Figure 17-7. Sample A record configuration

If the � host � value is omitted, then an A record points to a default IP address for the top
of the namespace. This system will be the target of all non-FQDN requests.

Consider the following A record examples for the domain.com zone file:

IN A 10.0.1.3
server1 IN A 10.0.1.5

Figure 17-8. Example A records

Requests for domain.com are pointed to 10.0.1.3, while requests for server1.domain.com
are pointed to 10.0.1.5.

• CNAME — Canonical name record, which tells the nameserver that one name is also known
as another.
�
alias-name � IN CNAME

�
real-name �

Figure 17-9. Sample CNAME record configuration

In Figure 17-9, any requests sent to the � alias-name � will point to the host named�
real-name � . CNAME records are most commonly used to point services that use a com-

mon naming scheme to the correct host.

Consider the example in Figure 17-10, where an A record sets a particular hostname to an
IP address and a CNAME record points the commonly used www hostname to it.

238 Chapter 17. Berkeley Internet Name Domain (BIND)

server1 IN A 10.0.1.5
www IN CNAME server1

Figure 17-10. Example CNAME record

• MX — Mail eXchange record, which tells where mail sent to a particular namespace con-
trolled by this zone should go.

IN MX � preference-value ¡� email-server-name

Figure 17-11. Sample MX record configuration

In Figure 17-11, the � preference-value allows you to numerically rank the email
servers you would prefer to receive email for this namespace, giving preference to some
email systems over others. The MX resource record with the lowest � preference-value
is preferred over the others, but you can set multiple email servers with the same value to
distribute email traffic between them.

The � email-server-name may be a hostname or FQDN, as long as it points to the
correct system.

IN MX 10 mail.domain.com.
IN MX 20 mail2.domain.com.

Figure 17-12. Example MX records

In this example, the first mail.domain.com email server is preferred to the
mail2.domain.com email server when receiving email destined for the domain.com
domain.

• NS — NameServer record, which announces the authoritative nameservers for a particular
zone.

IN NS � nameserver-name

Figure 17-13. Sample NS record configuration

The � nameserver-name should be a FQDN.

In Figure 17-14, two nameservers are listed as authoritative for a domain. It is not im-
portant whether these nameservers are slaves or if one is a master; they are both still
considered authoritative.

IN NS dns1.domain.com.
IN NS dns2.domain.com.

Figure 17-14. Example NS records

• PTR — PoinTeR record, designed to point to another part of the namespace.

PTR records are primarily used for reverse name resolution, as they point IP addresses
back to a particular name. See Section 17.2.2.4 for more examples of PTR records in use.

• SOA — Start Of Authority record, proclaiming important authoritative information about
the namespace to the nameserver.

Chapter 17. Berkeley Internet Name Domain (BIND) 239

Located after the directives, an SOA record is the first resource record in a zone file.

@ IN SOA ¢ primary-name-server £ ¢ hostmaster-email £ (
¢ serial-number £
¢ time-to-refresh £

¢ time-to-retry £
¢ time-to-expire £
¢ minimum-TTL £)

Figure 17-15. Sample SOA record configuration

The @ symbol places the $ORIGIN directive (or the zone’s name, if the $ORIGIN direc-
tive is not set) as the namespace being defined by this SOA resource record. The pri-
mary nameserver that is authoritative for this domain is used for the ¢ primary-name-
server £ , and the email of the person to contact about this namespace is substituted for
the ¢ hostmaster-email £ .

The ¢ serial-number £ is incremented every time you change the zone file so that named
will know that it should reload this zone. The ¢ time-to-refresh £ tells any slave servers
how long to wait before asking the master nameserver if any changes have been made to
the zone. The ¢ serial-number £ value is used by the slave to determine if it is using
outdated zone data and should refresh it.

The ¢ time-to-retry £ tells the slave nameserver the interval to wait before issuing an-
other refresh request, if the master nameserver is not answering. If the master has not
replied to a refresh request before the ¢ time-to-expire £ elapses, the slave stops re-
sponding as an authority for requests concerning that namespace.

The ¢ minimum-TTL £ requests that other nameservers cache the zone’s information for at
least this amount of time (in seconds).

With BIND, all times refer to seconds. However, you can also use abbreviations for other
units of time other than seconds, such as minutes (M), hours (H), days (D), and weeks (W).
The table in Table 17-1 shows an amount of time in seconds and the equivalent time in
another format.

Table 17-1. Seconds compared to other time units

Seconds Other Time Units

60 1M

1800 30M

3600 1H

10800 3H

21600 6H

43200 12H

86400 1D

259200 3D

604800 1W

31536000 365D

The following example demonstrates how a basic SOA resource record might look.

240 Chapter 17. Berkeley Internet Name Domain (BIND)

@ IN SOA dns1.domain.com. hostmaster.domain.com. (
2001062501 ; serial
21600 ; refresh after 6 hours
3600 ; retry after 1 hour
604800 ; expire after 1 week
86400) ; minimum TTL of 1 day

Figure 17-16. Example SOA records

17.2.2.3. Zone File Examples

Seen individually, the directives and resource records can be difficult to grasp. However,
everything makes much more sense when it is placed together in a common file.

In Figure 17-17, a very basic zone file is shown.

$ORIGIN domain.com
$TTL 86400
@ IN SOA dns1.domain.com. hostmaster.domain.com. (

2001062501 ; serial
21600 ; refresh after 6 hours
3600 ; retry after 1 hour
604800 ; expire after 1 week
86400) ; minimum TTL of 1 day

IN NS dns1.domain.com.
IN NS dns2.domain.com.

IN MX 10 mail.domain.com.
IN MX 20 mail2.domain.com.

IN A 10.0.1.5

server1 IN A 10.0.1.5
server2 IN A 10.0.1.7
dns1 IN A 10.0.1.2
dns2 IN A 10.0.1.3

ftp IN CNAME server1
mail IN CNAME server1
mail2 IN CNAME server2
www IN CNAME server2

Figure 17-17. An example of a basic zone file

In this example, standard directives and SOA values are used. The authoritative nameservers
are set to be dns1.domain.com and dns2.domain.com, which have A records that tie them
to 10.0.1.2 and 10.0.1.3, respectively.

The email servers configured with the MX records point to server1 and server2 via CNAME
records. Since the server1 and server2 names do not end in a trailing dot (.), the
$ORIGIN domain is placed after them, expanding them to server1.domain.com and
server2.domain.com. Through the related A resource records, their IP addresses can be
determined.

Chapter 17. Berkeley Internet Name Domain (BIND) 241

The popular FTP and Web services, available at the standard ftp.domain.com and
www.domain.com names, are pointed toward machines providing the appropriate services
for those names using CNAME records.

17.2.2.4. Reverse Name Resolution Zone Files

A reverse name resolution zone file is used to translate an IP address in a particular names-
pace into a FQDN. It looks very similar to a standard zone file, except that PTR resource
records are used to link the IP addresses to a certain system’s name.

A PTR record is written in a manner similar to Figure 17-18.

¤
last-IP-digit ¥ IN PTR

¤
FQDN-of-system ¥

Figure 17-18. Sample PTR record configuration

The ¤ last-IP-digit ¥ relates to the last number in an IP address that should point to a
particular system’s FQDN.

In Figure 17-19, IP addresses 10.0.1.20 through 10.0.1.25 are pointed to corresponding
FQDNs.

$ORIGIN 1.0.10.in-addr.arpa
$TTL 86400
@ IN SOA dns1.domain.com. hostmaster.domain.com. (

2001062501 ; serial
21600 ; refresh after 6 hours
3600 ; retry after 1 hour
604800 ; expire after 1 week
86400) ; minimum TTL of 1 day

IN NS dns1.domain.com.
IN NS dns2.domain.com.

20 IN PTR alice.domain.com.
21 IN PTR betty.domain.com.
22 IN PTR charlie.domain.com.
23 IN PTR doug.domain.com.
24 IN PTR ernest.domain.com.
25 IN PTR fanny.domain.com.

Figure 17-19. An example of a basic reverse zone resolution file

This zone file would be called into service with a zone statement in the /etc/named.conf
file that looks similar to Figure 17-20.

zone "1.0.10.in-addr.arpa" IN {
type master;
file "domain.com.rr.zone";
allow-update { none; };

};

Figure 17-20. An example of a reverse resolution zone statement

There is very little difference between this example an a standard zone statement, except
for how the zone is named. Note that a reverse name resolution zone requires the first three
blocks of the IP address to be reversed and ".in-addr.arpa" to be included after them. This

242 Chapter 17. Berkeley Internet Name Domain (BIND)

allows the single block of IP numbers used in the reverse name resolution zone file to be
correctly attached with this zone.

17.3. Using rndc

BIND includes a utility called rndc which allows you to use command line statements
to administer the named daemon, locally, or remotely. The rndc program uses the
/etc/rndc.conf file for its configuration options, which can be overridden with command
line options.

In order to prevent unauthorized users on other systems from controlling BIND on your
server, a shared secret key method is used to explicitly grant privileges to particular hosts.
In order for rndc to issue commands to any named, even on a local machine, the keys used
in /etc/named.conf and /etc/rndc.conf must match.

17.3.1. Configuration Files
Before attempting to use the rndc command, verify that the proper configuration lines are
in place in the necessary files. Most likely, your configuration files are not properly set if you
run rndc and see a message that states:

rndc: connect: connection refused

17.3.1.1. /etc/named.conf

In order for rndc to be allowed to connect to your named service, you must have a controls
statement in your /etc/named.conf file when named starts. The sample controls statement
shown in Figure 17-21 will allow you to execute rndc commands locally.

controls {
inet 127.0.0.1 allow { localhost; } keys { ¦ key-name § ; };

};

Figure 17-21. Sample controls statement in /etc/named.conf

This statement tells named to listen on the default TCP port 953 of the loopback address and
allow rndc commands coming from the localhost, if the proper key is given. The ¦ key-
name § relates to the key statement, which is also in the /etc/named.conf file. A sample key
statement is shown in Figure 17-22.

key " ¦ key-name § " {
algorithm hmac-md5;
secret " ¦ key-value § ";

};

Figure 17-22. Sample key statement in /etc/named.conf

In this case, the ¦ key-value § is a HMAC-MD5 key. You can generate your own HMAC-
MD5 keys with the following command:

dnssec-keygen -a hmac-md5 -b ¦ bit-length § -n HOST ¦ key-file-name §

Chapter 17. Berkeley Internet Name Domain (BIND) 243

A key with at least a 256-bit length is good idea. The actual key that should be placed in the¨
key-value © area can found in the ¨ key-file-name © .

The name of the key used in /etc/named.conf should be something other than key.

17.3.1.2. /etc/rndc.conf

To configure rndc to automatically use the key specified in /etc/named.conf for the lo-
calhost, three statements are needed. The options statement allows you to set the default
server and key for rndc to use, as seen in Figure 17-23.

options {
default-server localhost;
default-key "

¨
key-name © ";

};

Figure 17-23. Sample options statement in /etc/rndc.conf

Optionally, the rndc command can be told to use a default key when accessing a particular
server, as seen in Figure 17-24.

server localhost {
key "

¨
key-name © ";

};

Figure 17-24. Sample server statement in /etc/rndc.conf

However, this server statement is only really helpful if you connect to multiple servers with
rndc.

The key is the most important statement in /etc/rndc.conf.

key "
¨
key-name © " {

algorithm hmac-md5;
secret "

¨
key-value © ";

};

Figure 17-25. Sample key statement in /etc/rndc.conf

The ¨ key-name © and ¨ key-value © should be exactly the same as their settings in
/etc/named.conf.

To test all of the settings, try the rndc reload command. You should see response similar to
this:

rndc: reload command successful

If the command was not successful, carefully go over the /etc/named.conf and
/etc/rndc.conf files and look for errors.

Caution

You should make sure that unprivileged users cannot read or write the /etc/rndc.conf file.

244 Chapter 17. Berkeley Internet Name Domain (BIND)

17.3.2. Command Line Options
An rndc command takes the following form:

rndc ª options «\ª command «^ª command-options «

Figure 17-26. Structure of a rndc command

The ª options « area is not required, and you do not have to use ª command-options «
unless the command requires them.

When executing rndc on a properly configured localhost, the following commands are avail-
able:

• halt — Stops the named service immediately.

• querylog — Turns on logging of all queries made by clients to this nameserver.

• refresh — Refreshes the nameserver’s database.

• reload — Tells the nameserver to reload the zone files but keep all other previously
cached responses. This allows you to make changes to zone files and have them take effect
on your master and slave servers without losing all stored name resolutions.

If your changes only affected a particular zone, you can tell named to only reload that one
zone. Type the name of the zone after the reload command.

• stats — Dumps the current named stats to the /var/named/named.stats file.

• stop — Stops the server gracefully, saving any dynamic update and IXFR data before
exiting.

Occasionally, you may want to override the default settings in the /etc/rndc.conf file. The
following options are available:

• -c ª configuration-file « — Tells rndc to use a configuration file other than the de-
fault /etc/rndc.conf.

• -p ª port-number « — Specifies a different port number to use for the rndc connection
other than the default 953.

• -s ª server « — Tells rndc to send the command to a server other than the default-
server option in /etc/rndc.conf file.

In order for this to work, you must have configured the other named service to accept
commands from your host and have the key for that nameservice.

• -y ª key-name « — Allows you to specify a key other than the default-key option in
/etc/rndc.conf file.

Additional information about these options can be found in the rndc man page.

17.4. BIND Advanced Features
Most BIND implementations only use named to provide name resolution services or to act as
an authority for a particular domain or sub-domain. However, BIND version 9 has a number
of advanced features that, when properly configured and utilized, allow for a more secure
and efficient DNS service.

Chapter 17. Berkeley Internet Name Domain (BIND) 245

Caution

Some of these advanced features, such as DNSSEC, TSIG, and IXFR, should only be used in net-
work environments with nameservers that support the features. If your network environment includes
non-BIND or older BIND nameservers, check to see if a particular advanced feature is available
before attempting to use it.

Do not assume another type of nameserver supports all of these features, as many do not.

All of the features discussed here are discussed in greater detail in the BIND 9 Administrator
Reference Manual. See Section 17.6 for places to find this manual.

17.4.1. DNS Protocol Enhancements
BIND supports Incremental Zone Transfers (IXFR), where slave nameserver will only down-
load the updated portions of a zone modified on a master nameserver. The standard transfer
AXFR process requires that the entire zone be transferred to each slave nameserver for even
the smallest change. For very popular domains with very lengthy zone files and many slave
nameservers, IXFR makes the notification and update process much less resource intensive.

Note that IXFR is only available if you are also using dynamic updating to make changes
to master zone records. If you are manually editing zone files to make changes, AXFR will
be used. More information on dynamic updating is available in the BIND 9 Administrator
Reference Manual.

17.4.2. Multiple Views
Through the use of the view statement in /etc/named.conf, BIND allows you to configure
a nameserver to answer queries for some clients in a different way than it answers them for
others.

This is primarily used to deny particular types of DNS queries from clients outside of your
network, while allowing those same queries from clients on the local network.

The view statement uses the match-clients option to match IP addresses or entire networks
and give them special options and zone data.

17.4.3. Security
BIND supports a number of different methods to protect the updating and transfer of zones,
on both master and slave nameservers:

• DNSSEC — Short for DNS SECurity, this feature allows for zones to be cryptographically
signed with a zone key.

In this way, the information about a specific zone can be verified as coming from a name-
server that has signed it with a particular private key, as long as the recipient has that
nameserver’s public key.

BIND version 9 also supports the SIG(0) public/private key method of message authenti-
cation.

• TSIG — Short for Transaction SIGnatures, a shared secret key exists on the master and slave
server, verifying that a transfer from master to slave is authorized.

246 Chapter 17. Berkeley Internet Name Domain (BIND)

This feature strengthens the standard IP address-based method of transfer authorization.
An attacker would not only need to have access to the IP address to transfer the zone, but
they would also need to know the secret key.

BIND version 9 also support TKEY, which is another shared secret key method of autho-
rizing zone transfers.

17.4.4. IP version 6
BIND version 9 can provide nameservice in IP version 6 (IPv6) environments, through the
use of A6 zone records.

If your network environment includes both IPv4 and IPv6 hosts, you should use the lwresd
lightweight resolver daemon on your network clients. This daemon is essentially a very
efficient, caching-only nameserver, which understands the new A6 and DNAME records used
with IPv6. See the lwresd man page for more information.

17.5. Common Mistakes to Avoid
It is very common for beginners to make mistakes when editing BIND configuration files or
run in to initial difficulties using named. Be sure to avoid the following problems:

• Make sure you increment the serial number when editing a zone file.

If the serial number is not incremented, your master nameserver may have the correct,
new information, but your slave nameservers will never be notified of the change or at-
tempt to refresh their data of that zone.

• Be careful to use ellipses and semi-colons correctly in the /etc/named.conf file.

An omitted semi-colon or unclosed ellipse section will cause named to refuse to start.

• Remember to place dots (.) in zone files after all FQDNs and omit them on hostnames.

The dot denotes a fully qualified domain name. If the dot is omitted, then named will place
the name of the zone or the $ORIGIN value after the name to complete it.

• If you are having problems with your firewall blocking connections from your named to other
nameservers, you should manually tell named to use port 53 for upstream queries.

BIND version 9 uses random ports above 1024 query other nameservers to resolve names,
just like other DNS clients do, connecting to the remote nameserver’s port 53. Some fire-
walls, however, expect nameservers to communicate with each other with both systems
using port 53. You can place the following line in the options statement to force named to
send queries from port 53:

query-source address * port 53;

Chapter 17. Berkeley Internet Name Domain (BIND) 247

17.6. Additional Resources
The following sources of information will provide additional resources regarding BIND.

17.6.1. Installed Documentation

• BIND features a full-range of installed documentation covering many different topics,
each placed in its own subject directory:

• /usr/share/doc/bind- ¬ version-number ­ — Contains a README file with a list of the
most recent features.

• /usr/share/doc/bind- ¬ version-number ­ /arm — Contains HTML and SGML of
the BIND 9 Administrator Reference Manual, which details BIND resource requirements,
how to configure different types of nameservers, perform load balancing, and other
advanced topics. For most new users of BIND, this is the best place to start.

• /usr/share/doc/bind- ¬ version-number ­ /draft — Contains assorted technical
documents that look at issues related to DNS service and some methods proposed to
address them.

• /usr/share/doc/bind- ¬ version-number ­ /misc — Contains documents designed
to address specific advanced issues. Users of BIND version 8 should consult the
migration document for specific changes they must make when moving to BIND
9. The options file lists all of the options implemented in BIND 9 that are used in
/etc/named.conf.

• /usr/share/doc/bind- ¬ version-number ­ /rfc — Every RFC document related to
BIND is in this directory.

• The following man pages are also useful:

• named — Explores assorted arguments that can be used to control the BIND nameserver
daemon, such as the use of an alternative configuration file and running on a different
port number or as a different user.

• rndc — Explains the different options available when using the rndc command to con-
trol a BIND nameserver.

17.6.2. Useful Websites

• http://www.isc.org/products/BIND — The home page of the BIND project, where you
can find information concerning current releases and download a PDF version of the BIND
9 Administrator Reference Manual.

• http://www.redhat.com/mirrors/LDP/HOWTO/DNS-HOWTO.html — Covers the use
of BIND as a resolving, caching nameserver or the configuration of various zone files
necessary to serve as the primary nameserver for a domain.

248 Chapter 17. Berkeley Internet Name Domain (BIND)

17.6.3. Related Books

• DNS and BIND by Paul Albitz and Cricket Liu; O’Reilly & Associates — A popular ref-
erence that explains both common and esoteric BIND configuration options, as well as
providing strategies to secure your DNS server.

• The Concise Guide to DNS and BIND by Nicolai Langfeldt; Que — Looks at the connec-
tion between multiple network services and BIND, with an emphasis on task-oriented,
technical topics.

Chapter 18.

Network File System (NFS)

NFS (Network File System) exists to allow remote hosts to mount partitions on a particular
system and use them as though they were local filesystems. This allows files to be orga-
nized in a central location, while providing the functionality of allowing authorized users
continuous access to them.

Two versions of NFS are currently in use. NFS version 2, which has been around for several
years, is widely supported by various operating systems. NFS version 3 has several more
features, including a variable file handle size and better error reporting. Red Hat Linux sup-
ports both NFSv2 and NFSv3, and uses NFSv3 by default when connecting with a server
which supports it.

This chapter will focus on NFS version 2, though many of the concepts discussed also apply
to version 3. Additionally, only fundamental NFS concepts and supplemental information
will be provided. For specific instructions regarding the configuration and operation of NFS
on client or server machines, see the chapter titled Network File System (NFS) in Official Red
Hat Linux Customization Guide.

18.1. Methodology
Linux uses a combination of kernel-level support and continuously running daemon pro-
cesses to provide NFS file sharing, however, NFS support must be enabled in the Linux
kernel to function. NFS uses Remote Procedure Calls (RPC) to route requests between clients
and servers, meaning that the portmap service must be enabled and active at the proper
runlevels for NFS communication to occur. Working with portmap, various other processes
ensure that a particular NFS connection is allowed and may proceed without error:

• rpc.mountd — The running process that receives the mount request from an NFS client
and checks to see if it matches with a currently exported filesystem.

• rpc.nfsd — The process that implements the user-level part of the NFS service. It works
with the Linux kernel to meet the dynamic demands of NFS clients, such as providing
additional server threads for NFS clients to utilize.

• rpc.lockd — A daemon that is not necessary with modern kernels. NFS file locking is
now done by the kernel. It is included with the nfs-utils package for users utilizing
older kernels that do not include this functionality by default.

• rpc.statd — Implements the Network Status Monitor (NSM) RPC protocol. This provides
reboot notification when an NFS server is restarted without being gracefully brought
down.

• rpc.rquotad — An RPC server that provides user quota information for remote users.

Not all of these programs are required for NFS service. The only services that must be en-
abled are rpc.mountd, rpc.nfsd, and portmap. The other daemons provide additional func-
tionality, based on the particular requirements of your server environment.

NFS version 2 uses the User Datagram Protocol (UDP) to provide a stateless network connec-
tion between the client and server. (NFS version 3 can use UDP or TCP running over an IP.)
The stateless UDP connection minimizes network traffic, as the NFS server sends the client
a cookie after the client is authorized to access the shared volume. This cookie, or random
value that is stored on the server’s side, is passed with any RPC requests from the client
to the server. The NFS server can be restarted without affecting the clients and the cookie
remains intact.

250 Chapter 18. Network File System (NFS)

Using NFS, authentication only occurs when the client is attempting to mount to a remote
filesystem. The NFS server uses the /etc/hosts.allow and /etc/hosts.deny files to de-
termine if a particular host should be specifically permitted or prevented access via NFS.
Then, the NFS server refers to the /etc/exports file to uncover that host’s privileges for the
various mounts available. After granting access, any file and directory operations are sent to
the server using remote procedure calls.

Warning

NFS mount privileges are granted specifically to a host, not a user. If you grant a host access to a
particular part of your hard drive with NFS, users of that machine will have access to your shared
data.

When configuring the /etc/exports file, be extremely careful when sharing directories with read-
write permissions (rw) to a remote host. Users of remote systems mounting your export will be able
to modify data in the exported filesystem.

18.1.1. NFS and portmap

NFS relies upon remote procedure calls (RPC) to function. portmap is required to map RPC
requests to the correct services. RPC processes notify portmap when they start, revealing
the port number they are monitoring and the RPC program numbers they expect to serve.
The client system then contacts portmap on the server with a particular RPC program num-
ber. portmap then redirects the client to the proper port number to communicate with its
intended service.

Because RPC-based services rely on portmap to make all connections with incoming client
requests, portmap must be available before any of these services start. If, for some reason,
the portmap service unexpectedly quits, restart portmap and any services running when it
was started.

The portmap service can be used with the host access files (/etc/hosts.allow and
/etc/hosts.deny) to control which remote systems are permitted to use RPC-based
services on your machine. See Chapter 9 for more information. Access control rules for
portmap will affect all RPC-based services. Alternatively, you can specify each of the
NFS RPC daemons to be affected by a particular access control rule. The man pages for
rpc.mountd and rpc.statd contain information regarding the precise syntax of these rules.

18.1.1.1. portmap Status

As portmap provides the coordination between RPC services and the port numbers utilized
to communicate with them, it is useful to be able to get a picture of the current RPC ser-
vices using portmap when troubleshooting. The rpcinfo command shows each RPC-based
service with its port number, RPC program number, version, and IP protocol type (TCP or
UDP).

To make sure the proper NFS RPC-based services are enabled for portmap, rpcinfo can be
useful:

[root@bleach /]# rpcinfo -p some.machine.com
program vers proto port
100000 2 tcp 111 portmapper
100000 2 udp 111 portmapper
100024 1 udp 1024 status
100024 1 tcp 1024 status
100011 1 udp 819 rquotad

Chapter 18. Network File System (NFS) 251

100011 2 udp 819 rquotad
100005 1 udp 1027 mountd
100005 1 tcp 1106 mountd
100005 2 udp 1027 mountd
100005 2 tcp 1106 mountd
100005 3 udp 1027 mountd
100005 3 tcp 1106 mountd
100003 2 udp 2049 nfs
100003 3 udp 2049 nfs
100021 1 udp 1028 nlockmgr
100021 3 udp 1028 nlockmgr
100021 4 udp 1028 nlockmgr

[root@bleach /]#

The -p option probes the portmapper on the specified host or defaults to localhost if no
specific host is listed. Other options are available from the rpcinfo man page.

From the output above, various NFS services can be seen running. If one of the NFS services
does not start up correctly, portmap will be unable to map RPC requests from clients for
that service to the correct port. In many cases, restarting NFS as root (/sbin/service nfs
restart) will cause those service to correctly register with portmap and begin working.

18.2. NFS Server Configuration Files
Configuring a system to share files and directories using NFS is straightforward. Every
filesystem being exported to remote users via NFS, as well as the access rights relating
to those filesystems, is located in the /etc/exports file. This file is read by the exportfs
command to give rpc.mountd and rpc.nfsd the information necessary to allow the remote
mounting of a filesystem by an authorized host.

The exportfs command allows you to selectively export or unexport directories without
restarting the various NFS services. When exportfs is passed the proper options, the filesys-
tems to be exported are written to /var/lib/nfs/xtab. Since rpc.mountd refers to the xtab
file when deciding access privileges to a filesystem, changes to the list of exported filesys-
tems take effect immediately.

Various options are available when using exportfs:

• -r Causes all directories listed in /etc/exports to be exported by constructing a new
export list in /etc/lib/nfs/xtab. This option effectively refreshes the export list with
any changes that have been made to /etc/exports.

• -a Causes all directories to be exported or unexported, depending on the other options
passed to exportfs.

• -o options Allows the user to specify directories to be exported that are not listed in
/etc/exports. These additional filesystem shares must be written in the same way they
are specified in /etc/exports. This option is used to test an exported filesystem before
adding it permanently to the list of filesystems to be exported.

• -i Tells exportfs to ignore /etc/exports; only options given from the command line are
used to define exported filesystems.

• -u Unexports directories from being mounted by remote users. The command exportfs
-ua effectively suspends NFS file sharing while keeping the various NFS daemons up. To
allow NFS sharing to continue, type exportfs -r.

252 Chapter 18. Network File System (NFS)

• -v Verbose operation, where the filesystems being exported or unexported are displayed
in greater detail when the exportfs command is executed.

If no options are passed to the exportfs command, it displays a list of currently exported
filesystems.

Changes to /etc/exports can also be read by reloading the NFS service with the ser-
vice nfs reload command. This keeps the NFS daemons running while re-exporting the
/etc/exports file.

18.2.1. /etc/exports
The /etc/exports file is the standard for controlling which filesystems are exported to
which hosts, as well as specifying particular options that control everything. Blank lines are
ignored, comments can be made using #, and long lines can be wrapped with a backslash
(\). Each exported filesystem should be on its own line. Lists of authorized hosts placed af-
ter an exported filesystem must be separated by space characters. Options for each of the
hosts must be placed in parentheses directly after the host identifier, without any spaces
separating the host and the first parenthesis.

In its simplest form, /etc/exports only needs to know the directory to be exported and the
hosts permitted to utilize it:

/some/directory bob.domain.com
/another/exported/directory 192.168.0.3

After re-exporting /etc/exports with the /sbin/service nfs reload command, the
bob.domain.com host will be able to mount /some/directory and 192.168.0.3 can
mount /another/exported/directory. Because no options are specified in this example,
several default NFS preferences take effect:

• ro Read-only. Hosts mounting this filesystem will not be able to change it. To allow hosts
to make changes to the filesystem, you must specify rw (read-write).

• async Allows the server to write data to the disk when it sees fit. While this is not impor-
tant if the host is accessing data as read-only, if a host is making changes to a read-write
filesystem and the server crashes, data could be lost. By specifying the sync option, all
file writes must be committed to the disk before the write request by the client is actually
completed. This may lower performance.

• wdelay Causes the NFS server to delay writing to the disk if it suspects another write
request is imminent. This can improve performance by reducing the number of times
the disk must be accessed by separate write commands, reducing write overhead. Use
no_wdelay to turn this feature off, which only works if you are using the sync option.

• root_squash Makes any client accesses to the exported filesystem, made as the root user
on the client machine, take place as the nobody user ID. This effectively "squashes" the
power of the remote root user to the lowest local user, preventing remote root users
from acting as though they were the root user on the local system. Alternatively, the
no_root_squash option turns off root squashing. To squash every remote user, includ-
ing root, use the all_squash option. To specify the user and group IDs to use with re-
mote users from a particular host, use the anonuid and anongid options, respectively. In
this way, you can create a special user account for remote NFS users to share and specify
(anonuid= ® uid-value ¯ ,anongid= ® gid-value ¯), where ® uid-value ¯ is the user ID
number and ® gid-value ¯ is the group ID number.

In order to override these defaults, you must specify an option that takes its place. For ex-
ample, if you do not specify rw, then that export will only be shared read-only. Each default
for every exported filesystem must be explicitly overridden. Additionally, other options are

Chapter 18. Network File System (NFS) 253

available where no default value is in place. These include the ability to disable sub-tree
checking, allow access from insecure ports, and allow insecure file locks (necessary for cer-
tain early NFS client implementations). See the exports man page for details on these lesser
used options.

When specifying hosts to be allowed to use a particular exported filesystem, a variety of
methods can be used, including:

• single host — Where one particular host is specified with a fully qualified domain name,
hostname, or IP address.

• wildcards — Where a * or ? character is used to take into account a grouping of fully
qualified domain names or IP addresses or those that match a particular string of letters.

However, be careful when using wildcards with fully qualified domain names, as they
tend to be more exact than you would expect. For example, the use of *.domain.com
as wildcard will allow sales.domain.com to access the exported filesystem, but not
bob.sales.domain.com. To match both possibilities, as well as sam.corp.domain.com, you
would have to provide *.domain.com *.*.domain.com.

• IP networks — Allows the matching of hosts based on their IP addresses within a larger net-
work. For example, 192.168.0.0/28 will allow the first 16 IP addresses, from 192.168.0.0
to 192.168.0.15, to access the exported filesystem but not 192.168.0.16 and higher.

• netgroups — Permits an NIS netgroup name, written as @ ° group-name ± , to be used.
This effectively puts the NIS server in charge of access control for this exported
filesystem, where users can be added and removed from an NIS group without affecting
/etc/exports.

Warning

The way in which the /etc/exports file is formatted is very important, particularly concerning the
use of space characters. Remember to always separate exported filesystems from hosts and hosts
from one another with a space character. However, there should be no other space characters in the
file unless they are used in comment lines.

For example, the following two lines do not mean the same thing:

/home bob.domain.com(rw)
/home bob.domain.com (rw)

The first line allows only users from bob.domain.com read-write access to the /home directory.
The second line allows users from bob.domain.com to mount the directory read-only (the default),
but the rest of the world can mount it read-write. Be careful where space characters are used in
/etc/exports.

18.3. NFS Client Configuration Files
Any NFS share made available by a server can be mounted using various methods. Of
course, the share can be manually mounted, using themount command, to acquire the ex-
ported filesystem at a particular mount point. However, this requires that the root user type
the mount command every time the system restarts. In addition, the root user must remember
to unmount the filesystem when shutting down the machine. Two methods of configuring
NFS mounts include modifying the /etc/fstab or utilizing the autofs service.

254 Chapter 18. Network File System (NFS)

18.3.1. /etc/fstab
Placing a properly formatted line in the /etc/fstab file has the same effect as
manually mounting the exported filesystem. The /etc/fstab file is read by the
/etc/rc.d/init.d/netfs script at system startup. The proper filesystem mounts,
including NFS, are put into place.

A sample /etc/fstab line to mount an NFS export looks like the following:

²
server ³ : ² /path/of/dir ³ ² /local/mnt/point ³ nfs

²
options ³ 0 0

The ² server-host ³ relates to the hostname, IP address, or fully qualified domain name
of the server exporting the filesystem. The ² /path/to/shared/directory ³ tells the server
what export to mount. The ² /local/mount/point ³ specifies where on the local filesystem
to mount the exported directory. This mount point must exist before /etc/fstab is read or
the mount will fail. The nfs option specifies the type of filesystem being mounted.

The ² options ³ area specifies how the filesystem is to be mounted. For example, if the
options area states rw,suid on a particular mount, the exported filesystem will be mounted
read-write and the user and group ID set by the server will be used. Note, parentheses are
not to be used here. For more mount options, see Section 18.3.3.

18.3.2. autofs
One drawback to using /etc/fstab is that, regardless of how much you use that mounted
filesystem, your system must dedicate resources to keep that mount in place. This is not a
problem with one or two mounts, but when your system is maintaining mounts to a dozen
systems at one time, overall system performance can suffer. An alternative to /etc/fstab is
to use the kernel-based automount utility, which will mount and unmount NFS filesystems
automatically, saving resources.

The autofs script, located in /etc/rc.d/init.d, is used to control automount through the
/etc/auto.master primary configuration file. While automount can be specified on the
command line, it is more convenient to specify the mount points, hostname, exported di-
rectory, and options in a set of files rather than typing them all by hand. By running autofs
as a service that starts and stops in designated runlevels, the mount configurations in the
various files can be automatically implemented. In order to use autofs, you must have the
autofs RPM installed on your system.

The autofs configuration files are arranged in a parent-child relationship. A main config-
uration file (/etc/auto.master) refers mount points on your system that are linked to a
particular map type, which take the form of other configuration files, programs, NIS maps,
and other less common mount methods. The auto.master file contains lines referring to
each of these mount points, organized like this:

²
mount-point ³ ²

map-type ³

The ² mount-point ³ indicates where the device or exported filesystem should mount on
your local filesystem. The ² map-type ³ relates to the way in which the mount point will
be mounted. The most common method for auto mounting NFS exports is to use a file as
the map type for the particular mount point. The map file, usually named auto.

²
mount-

point ³ , where ² mount-point ³ is the mount point designated in auto.master, contains
lines that look like this:

²
directory ³ ² mount-options ³ ² host ³ : ² exported-filesystem ³

The ² directory ³ refers to the directory within the mount point where the exported
filesystem should be mounted. Much like a standard mount command, the host

Chapter 18. Network File System (NFS) 255

exporting the filesystem, as well as the filesystem being exported, are required in the´
host µ : ´ exported-filesystem µ section. To specify particular options to be used when

mounting the exported filesystem, place them in the ´ mount-options µ section, separated
by commas. For NFS mounts that use autofs, you should definitely place -fstype=nfs in
the ´ mount-options µ section, at a minimum.

While autofs configuration files can be used for a variety of mounts to many types of de-
vices and filesystems, they are particularly useful in creating NFS mounts. For example,
some organizations store a user’s /home directory on a central server via an NFS share. Then,
they configure the auto.masterfile on each of the workstations to point to an auto.home file
containing the specifics for how to mount the /home directory via NFS. This allows the user
to access personal data and configuration files in their /home directory by logging in any-
where on the internal network. The auto.master file in this situation would look similar to
this:

/home /etc/auto.home

This sets up the /home mount point on the local system to be configured by the
/etc/auto.home file, which may look similar to this:

* -fstype=nfs,soft,intr,rsize=8192,wsize=8192,nosuid server.domain.com:/home/&

This line states that any directory a user tries to access under the local /home directory (due
to the asterisk character) should result in an NFS mount on the server.domain.com system
within its exported /home filesystem. The mount options specify that each /home directory
NFS mounts should use a particular collection of settings. For more information on mount
options, including the ones used in this example, see Section 18.3.3.

18.3.3. Common NFS Mount Options
Beyond mounting a filesystem via NFS on a remote host, a number of different options
may be specified at the time of the mount that can make it easier to use. These options
can be utilized with manual mount commands, /etc/fstab settings, and autofs, and other
mounting methods.

The following options are the most popular for NFS mounts:

• hard or soft specifies whether the program using a file via an NFS connection should
stop and wait (hard) for the server to come back online if the host serving the exported
filesystem is unavailable, or if it should report an error (soft).

If you specify hard, you will not be able to terminate the process waiting for the NFS
communication to resume unless you also specify the intr option.

If you specify soft, you can set an additional timeo= ´ value µ option, where ´ value µ
specifies the number of seconds to pass before the error is reported.

• intr allows NFS requests to be interrupted if the server goes down or cannot be reached.

• nolock is occasionally required when connecting to older NFS server. To require locking,
use the lock option.

• noexec does not permit the execution of binaries on the mounted filesystem. This is useful
if your Red Hat Linux system is mounting a non-Linux filesystem via NFS that contains
binaries that will not execute on your machine.

• nosuid does not allow set-user-identifier or set-group-identifier bits to take effect.

256 Chapter 18. Network File System (NFS)

• rsize=8192 and wsize=8192 may speed up NFS communication for reads (rsize) and
writes (wsize) by setting a larger data block size, in bytes, to be transferred at one time.
Be careful when changing these values; some older Linux kernels and network cards may
not work well with larger block sizes.

• nfsvers=2 or nfsvers=3 specify which version of the NFS protocol to use.

Many more options are available on the mountman page, including options to be used when
mounting non-NFS filesystems.

18.4. Securing NFS
NFS works well for sharing entire filesystems with a large number of known hosts in a
largely transparent manner. Many users accessing files over an NFS mount may not be aware
that the filesystem they are using is not local to their system. However, with ease of use
comes a variety of potential security problems.

The following points should be considered when exporting NFS filesystems on a server or
mounting them on a client. Doing so will minimize NFS security risks and better protect
your data and equipment.

18.4.1. Host Access
NFS controls who can mount an exported filesystem based on the host making the mount
request, not the user that will utilize the filesystem. Hosts must be given explicit rights to
mount the exported filesystem. Access control is not possible for users, other than file and
directory permissions. In other words, when you export a filesystem via NFS to a remote
host, you are not only trusting the host you are allowing to mount the filesystem. You are
also allowing any user with access to that host to use your filesystem as well. The risks of
doing this can be controlled, such as requiring read-only mounts and squashing users to a
common user and group ID, but these solutions may prevent the mount from being used in
the way originally intended.

Additionally, if an attacker gains control of the DNS server used by the system exporting the
NFS filesystem, the system associated with a particular hostname or fully qualified domain
name can be pointed to an unauthorized machine. At this point, the unauthorized machine
is the system permitted to mount the NFS share, since no username or password information
is exchanged to provide additional security for the NFS mount. The same risks hold true to
compromised NIS servers, if NIS netgroups are used to allow certain hosts to mount an NFS
share. By using IP addresses in /etc/exports, this kind of attack is more difficult.

Wildcards should be used sparingly when granting host access to an NFS share. The scope
of the wildcard may encompass systems that you may not know exist and should not be
allowed to mount the filesystem.

18.4.2. File Permissions
Once the NFS filesystem is mounted read-write by a remote host, protection for each shared
file involves its permissions, and its user and group ID ownership. If two users that share the
same user ID value mount the same NFS filesystem, they will be able to modify each others
files. Additionally, anyone logged in as root on the client system can use the su - command
to become a user who could access particular files via the NFS share.

The default behavior when exporting a filesystem via NFS is to use root squashing. This sets
the user ID of anyone utilizing the NFS share as the root user on their local machine to

Chapter 18. Network File System (NFS) 257

a value of the server’s nobody account. You should never turn off root squashing unless
multiple users with root access to your server does not bother you.

If you are only allowing users to read files via your NFS share, consider using the
all_squash option, which makes every user accessing your exported filesystem to take the
user ID of the nobody user.

18.5. Additional Resources
Administering an NFS server can be a challenge. Many options, including quite a few not
mentioned in this chapter, are available for exporting NFS filesystems or mounting them as
a client. Consult these sources of information for more details.

18.5.1. Installed Documentation

• /usr/share/doc/nfs-utils- ¶ version-number · — Covers the way NFS is
implemented in Linux, including a look at various NFS configurations and their impact
on file transfer performance.

• The following man pages are very helpful:

• mount — Contains a comprehensive look at mount options for both NFS server and
client configurations.

• fstab — Gives details for the format of the /etc/fstab file used to mount filesystems
at system boot.

• nfs — Provides detail on NFS-specific filesystem export and mount options.

• exports— Shows common options used in the /etc/exports file when exporting NFS
filesystems.

18.5.2. Related Books

• Managing NFS and NIS by Hal Stern, Mike Eisler, and Ricardo Labiaga; O’Reilly & Asso-
ciates — Makes an excellent reference guide for the many different NFS export and mount
options available.

• NFS Illustrated by Brent Callaghan; Addison-Wesley Publishing Company — Provides
comparisons of NFS to other network filesystems and shows, in detail, how NFS com-
munication occurs.

258 Chapter 18. Network File System (NFS)

Chapter 19.

Lightweight Directory Access Protocol (LDAP)

19.1. What is LDAP?
LDAP (Lightweight Directory Access Protocol) is a proposed open standard for accessing global
or local directory services over a network and/or the Internet. A directory, in this sense, is
very much like a phone book. LDAP can handle other information, but at present it is typ-
ically used to associate names with phone numbers and email addresses. LDAP directories
are designed to support a high volume of queries, but the data stored in the directory does
not change very often.

LDAP is much more useful than a paper phone book, because LDAP’s design is intended
to support propagation over LDAP servers throughout the Internet, much like the Domain
Name Service (DNS). DNS servers help to connect computers to one another based on fully
qualified domain names or the type of service requested from a domain, such as mail ex-
change. Without DNS servers, hostnames could not be translated into IP addresses, which
are required for TCP/IP communication. In the future, LDAP could provide the same type
of global access to many types of directory information. Currently, LDAP is more commonly
used within a single large organization, like a college or a company, for directory services.

LDAP is a client-server system. An LDAP client connects to an LDAP server and either
queries it for information or provides information that needs to be entered into the directory.
The server either answers the query, refers the query to another LDAP server, or accepts the
information for incorporation into the directory, based on the permission of the user.

LDAP is sometimes known as X.500 Lite. X.500 is an international standard for directories
and full-featured, but it is also complex, requiring a lot of computing resources and the full
OSI stack. LDAP, in contrast, can run easily on a PC and over TCP/IP. LDAP can access
X.500 directories but does not support every capability of X.500.

This chapter will refer to the configuration and use of OpenLDAP, an open source imple-
mentation of LDAP. OpenLDAP includes slapd (a stand-alone LDAP server), slurpd (a
stand-alone LDAP replication server), libraries implementing the LDAP protocol, utilities,
tools, and sample clients.

19.2. Pros and Cons of LDAP
The main benefit of using LDAP is the consolidation of certain types of information within
your organization. For example, all of the different lists of users within your organization can
be merged into one LDAP directory. This directory can be queried by any LDAP-enabled
applications that need this information. It can also be used by users who need directory
information.

Other LDAP benefits include its ease of implementation (compared to X.500) and its well-
defined Application Programming Interface (API), which means that the number of LDAP-
enabled applications and LDAP gateways should increase in the future.

On the negative side, if you want to use LDAP, you will need LDAP-enabled applications or
the ability to use LDAP gateways. While LDAP usage should only increase, currently there
are not very many LDAP-enabled applications available for Linux. Also, while LDAP does
support some access control, it does not possess as many security features as X.500.

260 Chapter 19. Lightweight Directory Access Protocol (LDAP)

19.3. Uses for LDAP
Several Netscape applications, including web browsers using the Netscape Roaming Access
feature, are LDAP-enabled. Sendmail can use LDAP to look up addresses. Evolution has
LDAP support. Your organization can use LDAP as an organization-wide directory and/or
name service (in place of NIS or flat files). You can even use a personal LDAP server to keep
track of your own email address book (see Section 19.11).

Since LDAP is an open and configurable protocol, it can be used to store almost any type of
information relating to a particular organizational structure.

19.3.1. LDAP Applications
Several LDAP client applications are available that greatly simplify viewing and changing
LDAP information:

• LDAP Browser/Editor — A user-friendly tool written in 100% Java for easy deployment
across different platforms, available at http://www.iit.edu/~gawojar/ldap

• GQ — A GTK-based LDAP client, available with the Red Hat Linux 7.3 distribution or at
http://biot.com/gq

19.3.2. LDAP and PAM
LDAP can be used as an authentication service via the pam_ldap module. LDAP is com-
monly used as a central authentication server so that users have a unified login that covers
console logins, POP servers, IMAP servers, machines connected to the network using Samba,
and even Windows NT/2000 machines. Using LDAP, all of these login situations can rely
on the same user ID and password combination, greatly simplifying administration. The
pam_ldap module is provided in the nss_ldap package.

19.4. LDAP Terminology
An entry is one unit in an LDAP directory. An entry is identified or referenced by its unique
Distinguished Name (DN).

An entry has attributes, which are pieces of information directly associated with the entry.
For example, an organization could be an LDAP entry. Attributes associated with the orga-
nization might be its fax number, its address, and so on. People can also be entries in the
LDAP directory. Common attributes for people include their telephone numbers and their
e-mail addresses.

Certain attributes are required, while other attributes are optional. An objectclass sets which
attributes are required and which are optional. Objectclass definitions are found in various
schema files, located in the /etc/openldap/schema directory.

The LDAP Data Interchange Format (LDIF) is an ASCII text format for LDAP entries. Files
that import or export data to and from LDAP servers must be in LDIF format. An LDIF
entry looks like this:

[¸ id ¹]
dn: ¸ distinguished name ¹
¸ attrtype ¹ : ¸ attrvalue ¹
¸ attrtype ¹ : ¸ attrvalue ¹
¸ attrtype ¹ : ¸ attrvalue ¹

Chapter 19. Lightweight Directory Access Protocol (LDAP) 261

An entry can contain as many º attrtype » : º attrvalue » pairs as needed. A blank line
indicates that the entry is finished and that another entry is about to begin.

Caution

Your ¼ attrtype ½ and ¼ attrvalue ½ pairs must be defined in a schema before they can be used.
You cannot simply define them in an LDIF file and expect an LDAP server without corresponding data
in its schema files to be able to use this information.

Everything enclosed within º¾» is variable and can be set by you when you add an LDAP
entry, with the exception of the º id » . The º id » is a number normally set by the LDAP
tools when you add an entry, and you will probably never need to manually set one.

19.5. OpenLDAP 2.0 Enhancements
OpenLDAP 2.0 represents a major upgrade for the application, bringing with it:

• LDAPv3 Support — Now works with SASL, TLS, and SSL, among other improvements,
in full compliance with RFC 2251-2256; many of the changes since LDAPv2 are aimed to
help make LDAP a much more secure protocol.

• IPv6 Support — Now supports the next generation Internet Protocol.

• LDAP Over IPC — OpenLDAP can communicate within a particular system without hav-
ing to go over a network, making it more secure.

• Updated C API — Improves the way programmers can connect to and use the application.

• LDIFv1 Support — Full compliance with the LDAP Data Interchange Format (LDIF) ver-
sion 1.

• Enhanced Stand-Alone LDAP Server — Includes an updated access control system, thread
pooling, better tools and much more.

19.6. OpenLDAP Files
OpenLDAP configuration files are installed into the /etc/openldap directory. If you do an
ls on /etc/openldap, you will see the following files and directory:

ldap.conf ldapsearchprefs.conf schema
ldapfilter.conf ldaptemplates.conf slapd.conf

19.6.1. slapd.conf
The /etc/openldap/slapd.conf file contains the configuration information needed by
your slapd LDAP server. You will need to edit this file to make it specific to your domain
and server.

The suffix line names the domain for which the LDAP server will provide information. The
suffix line should be changed from:

suffix "dc=your-domain, dc=com"

so that it reflects your domain name. For example:

262 Chapter 19. Lightweight Directory Access Protocol (LDAP)

suffix "dc=acmewidgets, dc=com"

or

suffix "dc=acmeuniversity, dc=edu"

The rootdn entry is the DN for a user who is unrestricted by the access control or admin-
istrative limit parameters set for operations on the LDAP directory. The rootdn user can be
thought of as the root user for the LDAP directory. The rootdn line needs to be changed from:

rootdn "cn=root, dc=your-domain, dc=com"

to something like:

rootdn "cn=root, dc=redhat, dc=com"

or

rootdn "cn=ldapmanager, dc=my_organization, dc=org"

Change the rootpw line from:

rootpw secret

to something like

rootpw {crypt}s4L9sOIJo4kBM

In the above example, you are using an encrypted root password, which is a much better idea
than leaving a plain text root password in the slapd.conf file. To make this crypt string, you
can use Perl:

perl -e "print crypt(’passwd’,’a_salt_string’);"

In the previous Perl line, salt_string is a two character salt, and passwd is the plain text
version of the password.

You could also copy a passwd entry out of /etc/passwd, but this will not work if the passwd
entry is an MD5 password (the default in Red Hat Linux 7.3).

19.6.2. The schema Directory
New to OpenLDAP version 2, the schema directory holds the various LDAP definitions,
previously located in the slapd.at.conf and slapd.oc.conf files. All attribute syntax def-
initions and objectclass definitions are now located in the different schema files. The various
schema files are referenced in /etc/openldap/slapd.conf using include lines, as shown
in this example:

include /etc/openldap/schema/core.schema
include /etc/openldap/schema/cosine.schema
include /etc/openldap/schema/inetorgperson.schema
include /etc/openldap/schema/nis.schema
include /etc/openldap/schema/rfc822-MailMember.schema
include /etc/openldap/schema/autofs.schema
include /etc/openldap/schema/kerberosobject.schema

Chapter 19. Lightweight Directory Access Protocol (LDAP) 263

Caution

You should not modify any of the schema items defined in the schema files installed by OpenLDAP.

You can extend the schema used by OpenLDAP to support additional attribute types and
object classes using the default schema files as a guide. To do this, create a local.schema
file in the /etc/openldap/schema directory. Reference this new schema within slapd.conf
by adding the following line below your default include schema lines:

include /etc/openldap/schema/local.schema

Next, go about defining your new attribute types and object classes within the
local.schema file. Many organizations use existing attribute types and object classes from
the schema files installed by default and modify them for use in the local.schema file. This
can help you to learn the schema syntax while meeting the immediate needs of your
organization.

Extending schemas to match certain specialized requirements is quite involved and beyond
the scope of this chapter. Visit http://www.openldap.org/doc/admin/schema.html for in-
formation on writing new schema files.

19.7. OpenLDAP Daemons and Utilities
The OpenLDAP package includes two daemons: slapd and slurpd.

The slapd daemon is the stand-alone LDAP daemon, which you will need to run to support
LDAP.

The slurpd daemon controls the replication of LDAP directories over a network by sending
changes from the master LDAP directory to slave LDAP directories. You will not need to run
slurpd unless you have more than one LDAP server on your network. If you have two or
more LDAP servers, slurpd will keep the various LDAP directories in sync.

OpenLDAP also includes some utilities in /usr/bin for adding, modifying and deleting
entries in an LDAP directory:

• ldapmodify — Modify entries in an LDAP database, accepting input via a file or standard
input.

• ldapadd — Adds entries to your directory, accepting input via a file or standard input;
ldapadd is actually a hard link to ldapmodify -a.

• ldapsearch — Searches for entries in the LDAP directory using a shell prompt.

• ldapdelete— Deletes entries from an LDAP directory, accepting input via a file or a shell
prompt.

With the exception of ldapsearch, each of these utilities is much more easily used by ref-
erencing a file with the changes to be made rather than typing the commands one after the
other. Each of their respective man pages covers the syntax of these files.

To import or export blocks of information with a slapd directory or perform similar admin-
istrative tasks, different utilities, located in /usr/sbin, are required:

• slapadd — Adds entries from an LDIF file to an LDAP directory. For example, execute
/usr/sbin/slapadd -l ldif where ldif is the name of the LDIF file containing the
new entries.

264 Chapter 19. Lightweight Directory Access Protocol (LDAP)

• slapcat — Pulls entries out of an LDAP directory and saves them in an LDIF file. For ex-
ample, execute /usr/sbin/slapcat -l ldif where ldif is the name of the target LDIF
file to contain the entries from the LDAP directory.

• slapindex — Reindexes the slapd database based on the actual current database content.
Execute /usr/sbin/slapindex to begin reindexing.

• slappasswd — Generates a user password value for use with ldapmodify or the rootpw
value in /etc/openldap/slapd.conf. Execute /usr/sbin/slappasswd to create the
password.

Warning

Be sure to stop slapd before using slapadd, slapcat or slapindex. Otherwise, you are risking the
consistency of your LDAP database.

See the man pages for each of these utilities for more information about how to use them.

19.8. Modules for Adding Extra Functionality to LDAP
Red Hat Linux includes several packages that add functionality to LDAP.

The nss_ldap module is an LDAP module for the Solaris Nameservice Switch (NSS). NSS is
a set of C library extensions necessary for accessing LDAP directory information, instead
of or in addition to the Network Information Service (NIS) name service and/or flat files. The
nss_ldap module is needed to use LDAP as a native name service.

The pam_ldap module is needed to integrate LDAP authentication into the Pluggable Au-
thentication Modules (PAM) API. If you use pam_ldap, users can authenticate and change
their password using LDAP directories. The nss_ldap and pam_ldap modules are provided
in the nss_ldap package.

Red Hat Linux also includes LDAP modules for the Apache Web server. The auth_ldap
module is for authenticating HTTP clients against the user entries in an LDAP directory. The
php-ldap module adds LDAP support to the PHP4 HTML-embedded scripting language.
The auth_ldap and php-ldap modules must be compiled into Apache as Dynamic Shared
Objects (DSOs) in order to work.

19.9. OpenLDAP Setup Overview
This section provides a quick overview for installing and configuring an OpenLDAP direc-
tory. For more details, refer to the Quick-Start Guide on the OpenLDAP website available
at

http://www.openldap.org/doc/admin/quickstart.html

and the LDAP Linux HOWTO available at

(http://www.redhat.com/mirrors/LDP/HOWTO/LDAP-HOWTO.html

1. Install the openldap, openldap-servers, and openldap-clients RPMs, and any
other LDAP-related RPMs that you need if they are not installed.

Chapter 19. Lightweight Directory Access Protocol (LDAP) 265

2. Edit the /etc/openldap/slapd.conf file to reference your LDAP domain and server.
Refer to Section 19.6.1 for more information.

3. Start slapd with the command:
/sbin/service/ldap start

After you have configured LDAP correctly, you can use chkconfig or serviceconf to
configure LDAP to start up with the system.

4. Create your LDAP directory. Examples of LDAP entries are provided at the PADL Soft-
ware website:
http://www.padl.com/ldap_examples.html

5. Add entries to your LDAP directory with ldapadd.

6. Use ldapsearch to see if slapd is working.

7. At this point, your LDAP directory should exist. You can now configure your LDAP-
enabled applications to use the LDAP directory.

19.10. Configuring Your System to Authenticate Using
OpenLDAP
This section provides a brief overview of how to configure your Red Hat Linux system to au-
thenticate using OpenLDAP. Unless you are an OpenLDAP expert, you will probably need
more documentation than is provided here. Please refer to the references provided in Section
19.11 for more information.

19.10.1. Install the Necessary LDAP Packages
First, you should make sure that the appropriate packages are installed on both the LDAP
server and the LDAP client machines. The LDAP server needs the openldap-server pack-
age.

The LDAP client machines need the following packages installed: openldap, openldap-
clients, auth_ldap, and nss_ldap.

19.10.2. Edit the Configuration Files

19.10.2.1. Edit slapd.conf

Next, edit the /etc/openldap/slapd.conf file to make sure it matches the specifics of your
organization.

Please refer to Section 19.6.1 for instructions on editing slapd.conf.

19.10.2.2. Edit ldap.conf

Edit the ldap.conf file on the LDAP server and clients.

Edit /etc/ldap.conf, the configuration file for nss_ldap and pam_ldap, to reflect your or-
ganization and search base. The file /etc/openldap/ldap.conf is the configuration file for

266 Chapter 19. Lightweight Directory Access Protocol (LDAP)

the command line tools such as ldapsearch and ldapadd, and it will also need to be edited
for your LDAP setup. Client machines will need to have both of these files modified.

19.10.2.3. Edit /etc/nsswitch.conf

To use nss_ldap, you will need to add ldap to the appropriate fields in
/etc/nsswitch.conf. (Be very careful when editing this file; be sure that you know what
you are doing.) For example:

passwd: files ldap
shadow: files ldap
group: files ldap

19.10.2.4. PAM and LDAP

To have standard PAM-enabled applications use LDAP for authentication, run authconfig
and select Use LDAP. (PAM is beyond the scope of this LDAP overview, so if you need help,
consult Chapter 8 and the PAM man pages.)

19.10.3. Migrate Your Old Authentication Information to LDAP Format
The /usr/share/openldap/migration directory contains a set of shell and Perl scripts for
migrating your old authentication information into LDAP format. (You must have Perl in-
stalled on your system to use these scripts.)

First, you will need to modify the migrate_common.ph file so that it reflects your domain.
The default DNS domain should be changed from:

$DEFAULT_MAIL_DOMAIN = "padl.com";

to something like:

$DEFAULT_MAIL_DOMAIN = "your_company.com";

The default base should also be changed, from:

$DEFAULT_BASE = "dc=padl,dc=com";

to something like:

$DEFAULT_BASE = "dc=your_company,dc=com";

Next, decide which script to use based on Table 19-1.

Table 19-1. LDAP Migration Scripts

Existing name service Is LDAP
running?

Script to Use

/etc flat files yes migrate_all_online.sh

/etc flat files no migrate_all_offline.sh

NetInfo yes migrate_all_netinfo_online.sh

Chapter 19. Lightweight Directory Access Protocol (LDAP) 267

Existing name service Is LDAP
running?

Script to Use

NetInfo no migrate_all_netinfo_offline.sh

NIS (YP) yes migrate_all_nis_online.sh

NIS (YP) no migrate_all_nis_offline.sh

Run the appropriate script based on your existing name service.

The README and the migration-tools.txt files in /usr/share/openldap/migration pro-
vide more details on how to migrate the information.

19.11. Additional Resources
More information concerning LDAP is available. Please review these sources, especially the
OpenLDAP website and the LDAP HOWTO, before configuring LDAP on your system.

19.11.1. Installed Documentation

• The ldap man page is a good place to get started for an introduction to LDAP. Also, man
pages exist for the various LDAP daemons and utilities. Please check the man pages if you
need more information on ldapmodify, ldapsearch, and the like.

• /usr/share/docs/openldap-versionnumber — Contains a general README document
and miscellaneous information.

19.11.2. Useful Websites

• http://www.openldap.org — Home of the OpenLDAP Project, the collaborative effort
to develop a "robust, commercial-grade, fully featured, and open source LDAP suite of
applications and development tools."

• http://www.redhat.com/mirrors/LDP/HOWTO/LDAP-HOWTO.html — LDAP Linux
HOWTO document, covering the installation through authentication and logging.

• http://www.padl.com — Developers of nss_ldap and pam_ldap, among other useful
LDAP tools.

• http://www.innosoft.com/ldapworld — Contains information concerning LDAP RFCs
and LDAP version 3 specifications.

• http://www.kingsmountain.com/ldapRoadmap.shtml — Jeff Hodges’ LDAP Road Map
contains links to several useful FAQs and emerging news concerning the LDAP protocol.

• http://www.rudedog.org/auth_ldap — Home of the auth_ldap authentication module
for Apache.

• http://www.stanford.edu/~bbense/Inst.html — Discusses the use of LDAP with Send-
mail.

• http://www.webtechniques.com/archives/2000/05/wilcox — A useful look at manag-
ing groups in LDAP.

• http://www.ldapman.org/articles — Articles that offer a good introduction to LDAP, in-
cluding methods to design an directory tree and customizing directory structures.

268 Chapter 19. Lightweight Directory Access Protocol (LDAP)

19.11.3. Related Books

• Implementing LDAP by Mark Wilcox; Wrox Press, Inc.

• Understanding and Deploying LDAP Directory Services by Tim Howes et al.; Macmillan Tech-
nical Publishing

Appendixes

Appendix A.

General Parameters and Modules

This appendix is provided to illustrate some of the possible parameters that may be needed
by certain drivers1 for particular hardware devices. In most cases, these additional parame-
ters are unnecessary, since the kernel may already be able to use the device without them.
You should only use the settings provided in this appendix if you are having trouble get-
ting Red Hat Linux to use a particular device or you need to override the system’s default
parameters for the device.

During the installation of Red Hat Linux, some limits are placed on file systems and particu-
lar device drivers supported by the kernel. After installation, however, support exists for all
file systems available under Linux. At the time of installation, the modularized kernel has
support for (E)IDE devices (including ATAPI CD-ROM drives), SCSI adapters, and network
cards.

Note

Because Red Hat Linux supports installation on many different types of hardware, some drivers
(including those for SCSI adapters, network cards, and many CD-ROMs) are not built into the Linux
kernel used by the installation program. Rather, they are available as modules and are loaded as you
need them during the installation process. If necessary, you will have the chance to specify options
for these modules when they are loaded from the driver disk.

To specify module parameters when a driver is loaded, type linux expert at the boot:
prompt and insert the driver disk when prompted to do so by the installation program. After
reading the driver disk, the installation program will ask you to select the type of device
you are configuring. On that screen, you can elect to specify a module parameter. Then, the
installation program will display a screen where you can type the correct parameters based
on the particular type of device you are configuring.

After the installation is complete, you may want to rebuild a kernel that includes support
for your specific hardware configuration. Note that in most cases, a custom-built kernel is
not necessary. See the Official Red Hat Linux Customization Guide for more information about
rebuilding your kernel.

A.1. Specifying Module Parameters
If you are providing parameters upon loading a module, you can usually specify them using
one of two different methods:

• Specify a full set of parameters in one statement. For example, the parameter
cdu31=0x340,0 could be used with a Sony CDU 31 or 33 at port 340 with no IRQ.

• Specify the parameters individually. This method is used when one or more parameters in
the first set are not needed. For example, cdu31_port=0x340 cdu31a_irq=0 can be used
as the parameter for the same CD-ROM used as an example for the first method. An OR is
used in the CD-ROM, SCSI, and Ethernet tables in this appendix to show where the first
parameter method stops and the second method begins.

1. A driver is software enabling your system to use a particular hardware device. Without the driver,

the kernel may not know how to correctly utilize the device.

272 Appendix A. General Parameters and Modules

Note

Only use one method, and not both, when loading a module with particular parameters.

Caution

When a parameter has commas, make sure you do not put a space after a comma.

A.2. CD-ROM Module Parameters

Note

Not all of the CD-ROM drives that are listed are supported. Please check the Hardware Compati-
bility List on Red Hat’s website at http://hardware.redhat.com to make sure your CD-ROM drive is
supported.

Even though parameters are specified after loading the driver disk and specifying the device,
one of the more commonly used parameters (hdX=cdrom) can be entered at the boot prompt
(boot:) during installation. This exception to the rule is allowed since it deals with support
for IDE/ATAPI CD-ROMs, which is already part of the kernel.

In the following tables, most modules listed without any parameters can either be auto-
probed to find the hardware or they require you to manually change settings in the module
source code and recompile.

Table A-1. Hardware Parameters

Hardware Module Parameters

ATAPI/IDE CD-ROM
Drives

hdX=cdrom

Aztech CD268-01A, Orchid
CD-3110, Okano/Wearnes
CDD110, Conrad TXC,
CyCDROM CR520,
CyCDROM CR540
(non-IDE)

aztcd.o aztcd=io_port

Sony CDU-31A CD-ROM cdu31a.o cdu31a=io_port,IRQ OR
cdu31a_port=base_addr
cdu31a_irq=irq

Philips/LMS CDROM drive
206 with cm260 host adapter
card

cm206.o cm206=io_port,IRQ

Goldstar R420 CD-ROM gscd.o gscd=io_port

Appendix A. General Parameters and Modules 273

Hardware Module Parameters

ISP16, MAD16, or Mozart
sound card CD-ROM
interface (OPTi 82C928 and
OPTi 82C929) with
Sanyo/Panasonic, Sony, or
Mitsumi drives

isp16.o isp16=io_port,IRQ,dma,
drive_type OR
isp16_cdrom_base=io_port
isp16_cdrom_irq=IRQ
isp16_cdrom_dma=dma
isp16_cdrom_type=drive_type

Mitsumi CD-ROM,
Standard

mcd.o mcd=io_port,IRQ

Mitsumi CD-ROM,
Experimental

mcdx.o mcdx=io_port_1,IRQ_1,
io_port_n,IRQ_n

Optics storage 8000 AT
"Dolphin" drive, Lasermate
CR328A

optcd.o

Parallel-Port IDE CD-ROM pcd.o

SB Pro 16 Compatible sbpcd.o sbpcd=io_port

Sanyo CDR-H94A sjcd.o sjcd=io_port OR
sjcd_base=io_port

Sony CDU-535 & 531 (some
Procomm drives)

sonycd535.o sonycd535=io_port

Here are some examples of these modules in use:

Table A-2. Hardware Parameters Configuration Examples

Configuration Example

ATAPI CD-ROM, jumpered as master on
the second IDE channel

hdc=cdrom

non-IDE Mitsumi CD-ROM on port 340,
IRQ 11

mcd=0x340,11

Three non-IDE Mitsumi CD-ROM drives
using the experimental driver, io ports 300,
304, and 320 with IRQs 5, 10 and 11

mcdx=0x300,5,0x304,10,0x320,11

Sony CDU 31 or 33 at port 340, no IRQ cdu31=0x340,0 OR cdu31_port=0x340
cdu31a_irq=0

Aztech CD-ROM at port 220 aztcd=0x220

Panasonic-type CD-ROM on a
SoundBlaster interface at port 230

sbpcd=0x230,1

Phillips/LMS cm206 and cm260 at IO 340
and IRQ 11

cm206=0x340,11

Goldstar R420 at IO 300 gscd=0x300

Mitsumi drive on a MAD16 soundcard at
IO Addr 330 and IRQ 1, probing DMA

isp16=0x330,11,0,Mitsumi

Sony CDU 531 at IO address 320 sonycd535=0x320

274 Appendix A. General Parameters and Modules

Note

Most newer Sound Blaster cards come with IDE interfaces. For these cards, you do not need to use
sbpcd parameters; only use hdX parameters.

A.3. SCSI parameters

Table A-3. SCSI Parameters

Hardware Module Parameters

Adaptec 28xx, R9xx, 39xx aic7xxx.o

3ware Storage Controller 3w-xxxx.o

NCR53c810/820/720,
NCR53c700/710/700-66

53c7,8xx.o

AM53/79C974 (PC-SCSI)
Driver

AM53C974.o

Most Buslogic (now Mylex)
cards with "BT" part number

BusLogic.o

Mylex DAC960 RAID
Controller

DAC960.o

MCR53c406a-based SCSI NCR53c406a.o

Initio INI-9100UW a100u2w.o a100u2w=io,IRQ,scsi_id

Adaptec AACRAID aacraid.o

Advansys SCSI Cards advansys.o

Adaptec AHA-152x aha152x.o aha152x=io,IRQ,scsi_id

Adaptec AHA 154x amd
631x-based

aha1542.o

Adaptec AHA 1740 aha1740.o

Appendix A. General Parameters and Modules 275

Hardware Module Parameters

Adaptec AHA-274x,
AHA-284x, AHA-29xx,
AHA-394x, AHA-398x,
AHA-274x, AHA-274xT,
AHA-2842, AHA-2910B,
AHA-2920C,
AHA-2930/U/U2,
AHA-2940/W/U/UW/AU/,
U2W/U2/U2B/, U2BOEM,
AHA-2944D/WD/UD/UWD,
AHA-2950U2/W/B,
AHA-3940/U/W/UW/,
AUW/U2W/U2B,
AHA-3950U2D,
AHA-3985/U/W/UW,
AIC-777x, AIC-785x,
AIC-786x, AIC-787x, AIC-788x
, AIC-789x, AIC-3860

aic7xxx.o

ACARD ATP870U PCI SCSI
Controller

atp870u.o

Compaq Smart Array 5300
Controller

cciss.o

Compaq Smart/2 RAID
Controller

cpqarray.o

Compaq FibreChannel
Controller

cpqfc.o

Domex DMX3191D dmx3191d.o

Data Technology Corp
DTC3180/3280

dtc.o

DTP SCSI host adapters
(EATA/DMA) PM2011B/9X
ISA, PM2021A/9X ISA,
PM2012A, PM2012B,
PM2022A/9X EISA,
PM2122A/9X, PM2322A/9X,
SmartRAID PM3021, PM3222,
PM3224

eata.o

DTP SCSI Adapters PM2011,
PM2021, PM2041, PM3021,
PM2012B, PM2022, PM2122,
PM2322, PM2042, PM3122,
PM3222, PM3332, PM2024,
PM2124, PM2044, PM2144,
PM3224, PM3334

eata_dma.o

Sun Enterprise Network
Array (FC-AL)

fcal.o

Future Domain TMC-16xx
SCSI

fdomain.o

276 Appendix A. General Parameters and Modules

Hardware Module Parameters

NCR5380 (generic driver) g_NCR5380.o

ICP RAID Controller gdth.o

I2O Block Driver i2o_block.o

IOMEGA MatchMaker
parallel port SCSI adapter

imm.o

Always IN2000 ISA SCSI card in2000.o in2000=setup_string:value
OR in2000
setup_string=value

Initio INI-9X00U/UW SCSI
host adapters

initio.o

IBM ServeRAID ips.o

AMI MegaRAID 418, 428, 438,
466, 762

megaraid.o

NCR SCSI controllers with
810/810A/815/
825/825A/860/875/876/895
chipsets

ncr53c8xx.o ncr53c8xx=option1:value1,
option2:value2,...OR
ncr53c8xx="option1:value1
option2:value2..."

Pro Audio Spectrum/Studio
16

pas16.o

PCI-2000 IntelliCache pci2000.o

PCI-2220I EIDE RAID pci2220i.o

IOMEGA PPA3 parallel port
SCSI host adapter

ppa.o

Perceptive Solutions PSI-240I
EIDE

psi240i.o

Qlogic 1280 qla1280.o

Qlogic 2x00 qla2x00.o

QLogic Fast SCSI FASXXX
ISA/VLB/PCMCIA

qlogicfas.o

QLogic ISP2100 SCSI-FCP qlogicfc.o

QLogic ISP1020 Intelligent
SCSI cards IQ-PCI, IQ-PCI-10,
IQ-PCI-D

qlogicisp.o

Qlogic ISP1020 SCSI SBUS qlogicpti.o

Future Domain TMC-885,
TMC-950 Seagate ST-01/02,
Future Domain TMC-8xx

seagate.o controller_type=2
base_address=base_addr
irq=IRQ

Cards with the sym53c416
chipset

sym53c416.o sym53c416=PORTBASE,[IRQ]
OR sym53c416 io=PORTBASE
irq=IRQ

Appendix A. General Parameters and Modules 277

Hardware Module Parameters

Trantor T128/T128F/T228
SCSI Host Adapter

t128.o

Tekram DC-390(T) PCI tmscsim.o

UltraStor 14F/34F (not 24F) u14-34f.o

UltraStor 14F, 24F, and 34F ultrastor.o

WD7000 Series wd7000.o

Here are some examples of these modules in use:

Table A-4. SCSI Parameters Configuration Examples

Configuration Example

Adaptec AHA1522 at port 330, IRQ 11, SCSI
ID 7

aha152x=0x330,11,7

Adaptec AHA1542 at port 330 bases=0x330

Future Domain TMC-800 at CA000, IRQ 10 controller_type=2 base_address=0xca000
irq=10

A.4. Ethernet Parameters

Table A-5. Ethernet Module Parameters

Hardware Module Parameters

3Com 3c501 3c501.o 3c501=io_port,IRQ

3Com 3c503 and
3c503/16

3c503.o 3c503=io_port,IRQ OR 3c503
io=io_port_1,io_port_n
irq=IRQ_1,IRQ_n

3Com EtherLink Plus
(3c505)

3c505.o 3c505=io_port,IRQ OR 3c505
io=io_port_1,io_port_n
irq=IRQ_1,IRQ_2

3Com EtherLink 16 3c507.o 3c507=io_port,IRQ OR 3c507
io=io_port irq=IRQ

3Com EtherLink III 3c509.o 3c509=io_port,IRQ

3Com ISA EtherLink XL
"Corkscrew"

3c515.o

3Com EtherLink PCI
III/XL Vortex (3c590,
3c592, 3c595, 3c597)
Boomerang (3c900,
3c905, 3c595)

3c59x.o full_duplex=
0 is off
1 is on

RTL8139, SMC EZ Card
Fast Ethernet

8139too.o

278 Appendix A. General Parameters and Modules

Hardware Module Parameters

RealTek cards using
RTL8129 or RTL8139
Fast Ethernet chipsets

8139too.o

Apricot 82596 82596.o

Ansel Communications
Model 3200

ac3200.o ac3200=io_port,IRQ OR ac3200
io=io_port_1,io_port_n
irq=IRQ_1,IRQ_n

Alteon AceNIC Gigabit acenic.o

Aironet Arlan 655 arlan.o

Allied Telesis AT1700 at1700.o at1700=io_port,IRQ OR at1700
io=io_port irq=IRQ

Broadcom BCM5700
10/100/1000 ethernet
adapter

bcm5700.o

Crystal
SemiconductorCS89[02]0

cs89x0.o

EtherWORKS DE425
TP/COAX EISA, DE434
TP PCI, DE435/450
TP/COAX/AUI PCI
DE500 10/100 PCI
Kingston, LinkSys,
SMC8432, SMC9332,
Znyx31[45], and
Znyx346 10/100 cards
with DC21040 (no
SROM), DC21041[A],
DC21140[A], DC21142,
DC21143 chipsets

de4x5.o de4x5=io_port OR de4x5 io=io_port
de4x5 args=’ethX[fdx]
autosense=MEDIA_STRING’

D-Link DE-600 Ethernet
Pocket Adapter

de600.o

D-Link DE-620 Ethernet
Pocket Adapter

de620.o

DIGITAL DEPCA &
EtherWORKS DEPCA,
DE100, DE101, DE200
Turbo, DE201Turbo
DE202 Turbo TP/BNC,
DE210, DE422 EISA

depca.o depca=io_port,IRQ OR depca
io=io_port irq=IRQ

Digi Intl. RightSwitch
SE-X EISA and PCI

dgrs.o

Davicom
DM9102(A)/DM9132/
DM9801 Fast Ethernet

dmfe.o

Appendix A. General Parameters and Modules 279

Hardware Module Parameters

Intel Ether Express/100
driver

e100.o e100_speed_duplex=X
If X =
0 = autodetect speed and duplex
1 = 10Mbps, half duplex
2 = 10Mbps, full duplex
3 = 100Mbps, half duplex
4 = 100Mbps, full duplex

Intel EtherExpress/1000
Gigabit

e1000.o

Cabletron E2100 e2100.o e2100=io_port,IRQ,mem OR e2100
io=io_port irq=IRQ mem=mem

Intel EtherExpress Pro10 eepro.o eepro=io_port,IRQ OR eepro
io=io_port irq=IRQ

Intel i82557/i82558 PCI
EtherExpressPro driver

eepro100.o

Intel EtherExpress 16
(i82586)

eexpress.o eexpress=io_port,IRQ OR eexpress
io=io_port irq=IRQ
options=
0x10 10base T half duplex
0x20 10base T full duplex
0x100 100base T half duplex
0x200 100baseT full duplex

SMC EtherPower II 9432
PCI (83c170/175 EPIC
series)

epic100.o

Racal-Interlan ES3210
EISA

es3210.o

ICL EtherTeam 16i/32
EISA

eth16i.o eth16i=io_port,IRQ OR eth16i
ioaddr=io_port IRQ=IRQ

EtherWORKS 3 (DE203,
DE204 and DE205)

ewrk3.o ewrk=io_port,IRQ OR ewrk
io=io_port irq=IRQ

A Packet Engines
GNIC-II Gigabit

hamachi.o

HP PCLAN/plus hp-plus.o hp-plus=io_port,IRQ OR hp-plus
io=io_port irq=IRQ

HP LAN Ethernet hp.o hp=io_port,IRQ OR hp io=io_port
irq=IRQ

100VG-AnyLan Network
Adapters HP J2585B,
J2585A, J2970, J2973,
J2573 Compex
ReadyLink
ENET100-VG4,
FreedomLine 100/VG

hp100.o hp100=io_port,name OR hp100
hp100_port=io_port
hp100_name=name

280 Appendix A. General Parameters and Modules

Hardware Module Parameters

IBM Token Ring 16/4,
Shared-Memory IBM
Token Ring 16/4

ibmtr.o ibmtr=io_port OR io=io_port

AT1500, HP J2405A,
most NE2100/clone

lance.o

Mylex LNE390 EISA lne390.o

NatSemi DP83815 Fast
Ethernet

natsemi.o

NE1000 / NE2000
(non-pci)

ne.o ne=io_port,IRQ OR ne io=io_port
irq=IRQ

PCI NE2000 cards
RealTEk RTL-8029,
Winbond 89C940,
Compex RL2000, PCI
NE2000 clones, NetVin,
NV5000SC, Via 82C926,
SureCom NE34

ne2k-pci.o

Novell NE3210 EISA ne3210.o

MiCom-Interlan NI5010 ni5010.o

NI5210 card (i82586
Ethernet chip)

ni52.o ni52=io_port,IRQ OR ni52
io=io_port irq=IRQ

NI6510 Ethernet ni65.o

IBM Olympic-based PCI
token ring

olympic.o

AMD PCnet32 and AMD
PCnetPCI

pcnet32.o

SIS 900/701G PCI Fast
Ethernet

sis900.o

SysKonnect SK-98XX
Gigabit

sk98lin.o

SMC Ultra and SMC
EtherEZ ISA ethercard
(8K, 83c790)

smc-ultra.o smc-ultra=io_port,IRQ OR smc-ultra
io=io_port irq=IRQ

SMC Ultra32 EISA
Ethernet card (32K)

smc-ultra32.o

Sun BigMac Ethernet sunbmac.o

Sundance ST201 Alta sundance.o

Sun Happy Meal
Ethernet

sunhme.o

Sun Quad Ethernet sunqe.o

ThunderLAN tlan.o

Appendix A. General Parameters and Modules 281

Hardware Module Parameters

Digital 21x4x Tulip PCI
Ethernet cards SMC
EtherPower 10
PCI(8432T/8432BT)
SMC EtherPower 10/100
PCI(9332DST) DEC
EtherWorks 100/10
PCI(DE500-XA) DEC
EtherWorks 10
PCI(DE450) DEC
QSILVER’s, Znyx 312
etherarray Allied Telesis
LA100PCI-T Danpex
EN-9400, Cogent EM110

tulip.o io=io_port

VIA Rhine PCI Fast
Ethernet cards with
either the VIA
VT86c100A Rhine-II PCI
or 3043 Rhine-I D-Link
DFE-930-TX PCI 10/100

via-rhine.o

AT&T GIS (nee NCR)
WaveLan ISA Card

wavelan.o wavelan=[IRQ,0],io_port, NWID

WD8003 and
WD8013-compatible
Ethernet cards

wd.o wd=io_port,IRQ,mem, mem_end OR
wd io=io_port irq=IRQ mem=mem
mem_end=end

Compex RL100ATX-PCI winbond.o

Packet Engines Yellowfin yellowfin.o

Here are some examples of these modules in use:

Table A-6. Ethernet Parameter Configuration Examples

Configuration Example

NE2000 ISA card at IO address 300 and IRQ
11

ne=0x300,11 ether=0x300,11,eth0

Wavelan card at IO 390, autoprobe for IRQ,
and use the NWID to 0x4321

wavelan=0,0x390,0x4321
ether=0,0x390,0x4321,eth0

A.4.1. Using Multiple Ethernet Cards
You can use multiple Ethernet cards in one machine. If each card uses a different driver (for
example, a 3c509 and a DE425), you simply need to add alias (and possibly options) lines
for each card to /etc/modules.conf. See the Official Red Hat Linux Customization Guide for
more information.

If any two Ethernet cards use the same driver (such as two 3c509 cards or a 3c595 and a
3c905), you will need to either give the two card addresses on the driver’s options line (for
ISA cards) or simply add one alias line for each card (for PCI cards).

282 Appendix A. General Parameters and Modules

For additional information about using more than one Ethernet card, see the Linux Ethernet-
HOWTO at http://www.redhat.com/mirrors/LDP/HOWTO/Ethernet-HOWTO.html.

Index

Symbols
.fetchmailrc, 215

global options, 217
server options, 217
user options, 217

.procmailrc, 219
/dev directory, 20
/etc directory, 20
/etc/exports, 252
/etc/fstab, 92, 254

adding partitions to, 91
/etc/hosts.allow, 125
/etc/hosts.deny, 125
/etc/lilo.conf, settings in, 58
/etc/named.conf, 231
/etc/pam.conf, 117
/etc/pam.d, 117
/etc/sysconfig, 75

amd, 65
apm-scripts directory, 75
apmd, 65
arpwatch, 65
authconfig, 65
cbq directory, 75
clock, 66
desktop, 66
dhcpd, 66
firewall, 66
gpm, 67
harddisks, 67
hwconf, 67
identd, 67
init, 68
ipchains, 68
iptables, 69, 179
irda, 69
keyboard, 69
kudzu, 70
mouse, 70
named, 71
netdump, 71
network, 71
network-scripts directory, 75

(See Also network)
networking directory, 75
ntpd, 72
pcmcia, 72
radvd, 72
rawdevices, 72
redhat-config-users, 73
rhn directory, 75
samba, 73

sendmail, 73
soundcard, 73
squid, 73
tux, 74
ups, 74
vncservers, 74
xinetd, 75

/etc/sysconfig, directories in, 75
/etc/sysconfig, files in, 63
/etc/sysconfig/network-scripts, 165
/etc/X11/XF86Config, 103
/etc/X11/XF86Config-4, 103
/etc/xinetd.conf, 129
/etc/xinetd.d directory, 130
/initrd, 24
/lib directory, 20
/mnt directory, 20
/opt directory, 20
/proc

additional resources, 56
installed documentation, 56
useful websites, 56

apm, 26
bus directory, 42
cmdline, 27
cpuinfo, 27
devices, 28
directories, 39
dma, 29
driver directory, 42
execdomains, 29
fb, 29
file systems, 29
files

top-level, 26
ide directory, 43

device directories, 43
interrupts, 30
iomem, 31
ioports, 31
irq directory, 44
isapnp, 32
kcore, 32
kmsg, 33
ksyms, 33
loadavg, 33
locks, 33
mdstat, 34
meminfo, 34
misc, 35
modules, 35
mounts, 36
mtrr, 36
net directory, 45
partitions, 37
pci, 37

284

process directories, 39
scsi directory, 45
self directory, 41
slabinfo, 38
stat, 38
swaps, 39
sys directory, 47

controlling with sysctl, 55
dev directory, 48
fs directory, 49
kernel directory, 49
net directory, 51
vm directory, 53

sysvipc directory, 54
tty directory, 54
uptime, 39
version, 39
viewing files, 25

/proc directory, 21
/proc file system, 25
/sbin directory, 21
/usr directory, 21
/usr/local directory, 22, 23
/var directory, 22
/var/named/, 236

A
access control, 125
AccessConfig

Apache configuration directive, 185
AccessFileName

Apache configuration directive, 191
Action

Apache configuration directive, 197
AddDescription

Apache configuration directive, 195
AddEncoding

Apache configuration directive, 196
AddHandler

Apache configuration directive, 197
AddIcon

Apache configuration directive, 195
AddIconByEncoding

Apache configuration directive, 195
AddIconByType

Apache configuration directive, 195
AddLanguage

Apache configuration directive, 196
AddModule

Apache configuration directive, 187
AddType

Apache configuration directive, 196
Alias

Apache configuration directive, 194

Allow
Apache configuration directive, 190

AllowOverride
Apache configuration directive, 190

Apache, 181
additional resources, 205

related books, 205
useful websites, 205

configuration, 181, 183
re-compiling, 203
reloading, 183
restarting, 183
running without security, 203
server status reports, 198
starting, 183
stopping, 183

APXS Apache utility, 202
autofs, 254

B
Berkeley Internet Name Domain

(See BIND)
BIND, 229

additional resources, 247
installed documentation, 247
related books, 248
useful websites, 247

common mistakes, 246
configuration, 231

reverse name resolution, 241
zone file directives, 236
zone file examples, 240
zone file resource records, 237
zone files, 236

features, 244
DNS enhancements, 245
IPv6, 246
multiple views, 245
security, 245

introduction, 229
nameserver types, 230
specifics, 230
zones, 229

rndc, 242
/etc/named.conf, 242
/etc/rndc.conf, 243
command line options, 244
configuration files, 242

sample zone statements, 235
BindAddress

Apache configuration directive, 186
boot process, 57

chain loading, 80
direct loading, 80

285

init, 60
x86, 57

booting
single-user mode

GRUB, 63
LILO, 63

BrowserMatch
Apache configuration directive, 198

C
cache directives for Apache, 200
CacheNegotiatedDocs

Apache configuration directive, 191
CD-ROM

module parameters, 272
CGI scripts

allowing execution outside cgi-bin, 189
outside the ScriptAlias, 197

chkconfig, 77
ClearModuleList

Apache configuration directive, 187
common logfile format, 193
configuration

Apache, 183
SSL, 201
virtual hosts, 203

configuration directives, Apache, 184
AccessConfig, 185
AccessFileName, 191
Action, 197
AddDescription, 195
AddEncoding, 196
AddHandler, 197
AddIcon, 195
AddIconByEncoding, 195
AddIconByType, 195
AddLanguage, 196
AddModule, 187
AddType, 196
Alias, 194
Allow, 190
AllowOverride, 190
BindAddress, 186
BrowserMatch, 198
CacheNegotiatedDocs, 191
ClearModuleList, 187
CustomLog, 193
DefaultIcon, 195
DefaultType, 191
Deny, 190
Directory, 189
DirectoryIndex, 190
DocumentRoot, 188
ErrorDocument, 197

ErrorLog, 192
ExtendedStatus, 187
for cache functionality, 200
for SSL functionality, 201
Group, 188
HeaderName, 196
HostnameLookups, 192
IfDefine, 187
IfModule, 191
IndexIgnore, 196
IndexOptions, 194
KeepAlive, 185
KeepAliveTimeout, 185
LanguagePriority, 196
Listen, 186
LoadModule, 186
Location, 198
LockFile, 184
LogFormat, 193
LogLevel, 192
MaxClients, 186
MaxKeepAliveRequests, 185
MaxRequestsPerChild, 186
MaxSpareServers, 185
MetaDir, 197
MetaSuffix, 197
MinSpareServers, 185
NameVirtualHost, 200
Options, 189
Order, 190
PidFile, 184
Port, 187
ProxyRequests, 199
ProxyVia, 199
ReadmeName, 196
Redirect, 194
ResourceConfig, 184
ScoreBoardFile, 184
ScriptAlias, 194
ServerAdmin, 188
ServerName, 188
ServerRoot, 184
ServerSignature, 194
ServerType, 184
SetEnvIf, 201
StartServers, 186
Timeout, 185
TypesConfig, 191
UseCanonicalName, 191
User, 187
UserDir, 190
VirtualHost, 201

conventions
document, xii

copying and pasting text
when using X, xv

286

CustomLog
Apache configuration directive, 193

D

default modules, 181
DefaultIcon

Apache configuration directive, 195
DefaultType

Apache configuration directive, 191
Deny

Apache configuration directive, 190
desktop environments, 107

(See Also XFree86)
devices, local

ownership of, 123
(See Also PAM)

directories
/dev, 20
/etc, 20
/lib, 20
/mnt, 20
/opt, 20
/proc, 21, 25

(See Also /proc file system)
/sbin, 21
/usr, 21
/usr/local, 22, 23
/var, 22

Directory
Apache configuration directive, 189

DirectoryIndex
Apache configuration directive, 190

display manager, 109
documentation

experienced user, xii
finding appropriate, ix
first-time users, x

books, xi
newsgroups, xi
websites, xi

guru, xii
DocumentRoot

Apache configuration directive, 188
changing, 203
changing shared, 204

drag and drop, xv
DSOs

loading, 201

E
e-mail

(See email)
e2fsck, 93
e2label

assigning partition labels with, 91
email, 207

additional resources, 226
installed documentation, 226
related books, 227
useful websites, 227

Fetchmail, 215
Procmail, 219
program classifications, 209
protocols, 207

IMAP, 207
POP, 208
SMTP, 208

security, 225
clients, 225
servers, 225

Sendmail, 210
types

Mail Delivery Agent, 210
Mail Transfer Agent, 210
Mail User Agent, 209

ErrorDocument
Apache configuration directive, 197

ErrorLog
Apache configuration directive, 192

Ethernet, 165
module parameters, 277
supporting multiple cards, 281

ExtendedStatus
Apache configuration directive, 187

F
fdisk

commands, 90
partitioning with, 90

feedback
contact information, xvi

Fetchmail, 215
additional resources, 226
command options, 218

informational, 218
special, 218

configuration options, 215
global options, 217
server options, 217
user options, 217

FHS, 19, 20
file system

ext2

287

reverting from ext3, 93
ext3, 89, 91, 91

(See Also mkfs)
converting from ext2, 92
creating, 90
features, 89

hierarchy, 19
labeling

(See e2label)
organization, 20
standard, 20
structure, 19
virtual

(See /proc file system)
formating disk drives

(See mkfs)
FrontPage, 181

G

Group
Apache configuration directive, 188

groups, 95
standard, 96
user private, 95, 98

rationale, 99
GRUB, 79

additional resources, 87
installed documentation, 87
useful websites, 87

boot process, 79
changing runlevels with, 63
chaning runlevels with, 84
commands, 84
defining, 79
features, 80
installing, 81
interfaces, 83

command line, 84
menu, 83
menu entry editor, 84
order of use, 84

menu configuration file, 86
commands, 86
structure, 86

terminology, 81
devices, 81
files, 82
root filesystem, 83

H

halt, 77
HeaderName

Apache configuration directive, 196
hierarchy, file system, 19
HostnameLookups

Apache configuration directive, 192
http put, 198
httpd.conf

(See configuration directives, Apache)

I

IfDefine
Apache configuration directive, 187

IfModule
Apache configuration directive, 191

IndexIgnore
Apache configuration directive, 196

IndexOptions
Apache configuration directive, 194

init, 60
init, SysV-style, 62
initscript utilities, 77
introduction, ix
iptables, 171

additional resources, 180
installed documentation, 180
useful websites, 180

different from ipchains, 172
match options, 176

modules, 177
options, 173

commands, 174
listing, 179
parameters, 175
structure, 173
tables, 173
target, 178

protocols
ICMP, 177
TCP, 176
UDP, 177

storing information, 179

288

K
KeepAlive

Apache configuration directive, 185
KeepAliveTimeout

Apache configuration directive, 185
Kerberos, 143

additional resources, 149
installed documentation, 149
useful websites, 150

advantages of, 143
and PAM, 146
disadvantages of, 143
how it works, 145
kerberize, 143
Key Distribution Center (KDC), 145
setting up clients, 148
setting up server, 146
terminology, 144
Ticket Granting Service(TGS), 145
Ticket Granting Ticket (TGT), 145

kernel, 271
drivers, 271

L
labeling disk partitions

(See e2label)
LanguagePriority

Apache configuration directive, 196
LDAP

additional resources, 267
installed documentation, 267
related books, 268
useful websites, 267

applications, 260
authentication using, 265
daemons and utilities, 263
enhancements, 261
files, 261

schema directory, 262
slapd.conf, 261

modules for extra functionality, 264
overview, 259
pros and cons, 259
terminology, 260
uses for, 260
using with PAM, 260

Listen
Apache configuration directive, 186

LoadModule
Apache configuration directive, 186

Location
Apache configuration directive, 198

LockFile
Apache configuration directive, 184

log files, 183
common logfile format, 193

LogFormat
Apache configuration directive, 193

LogLevel
Apache configuration directive, 192

M

Mail Delivery Agent, 210
Mail Transfer Agent, 210
Mail User Agent, 209
MaxClients

Apache configuration directive, 186
MaxKeepAliveRequests

Apache configuration directive, 185
MaxRequestsPerChild

Apache configuration directive, 186
MaxSpareServers

Apache configuration directive, 185
MDA

(See Mail Delivery Agent)
MetaDir

Apache configuration directive, 197
MetaSuffix

Apache configuration directive, 197
MinSpareServers

Apache configuration directive, 185
mkfs

formating ext3 partitions with, 91
module parameters, 271

specifying, 271
modules

Apache
loading, 201
your own, 202

default, 181
mod_ssl

provided as a DSO, 203
mouse

how to use, xv
MTA

(See Mail Transfer Agent)
MUA

(See Mail User Agent)

289

N

NameVirtualHost
Apache configuration directive, 200

Netscape Navigator
publish feature, 198

network
configuration, 165
control scripts, 169
functions, 170
interfaces, 165

alias, 168
clone, 168
dialup, 166
Ethernet, 165

scripts, 165
Network File System

(See NFS)
NFS, 249

additional resources, 257
installed documentation, 257
related books, 257

client
/etc/fstab, 254
autofs, 254
configuration, 253
mount options, 255

methodology, 249
portmap, 250
security, 256

file permissions, 256
host access, 256

server
configuration, 251

non-secure Web server
disabling, 204

ntsysv, 77

O

objects, dynamically shared
(See DSOs)

OpenLDAP, 259
OpenSSH, 135

configuration files, 138
Options

Apache configuration directive, 189
Order

Apache configuration directive, 190

P
packet filtering, 171
PAM, 117

additional resources, 123
installed documentation, 123
useful websites, 124

advantages, 117
arguments, 120
configuration files, 117
control flags, 119
module paths, 120
modules, 118

components, 118
stacking, 118
stacking modules, 121
types, 118

pam_console
local device ownership, 123

samples configurations, 120
service names, 117
shadow passwords, 121

pam_console
(See PAM)

parameters
CD-ROM module, 272
Ethernet modules, 277
module, 271

partitioning
(See fdisk)

password, 121
(See Also PAM)

shadow passwords, 121
PidFile

Apache configuration directive, 184
Pluggable Authentication Modules

(See PAM)
Pluggable Authentication Modules (PAM)

and Kerberos, 146
Port

Apache configuration directive, 187
portmap, 250

rpcinfo, 250
prefdm, 109
Procmail, 219

additional resources, 226
configuration, 219
recipes, 221

delivering, 221
examples, 223
flags, 222
local lockfiles, 222
non-delivering, 221
special actions, 223
special conditions, 223

programs

290

running at boot time, 77
proxy server, 199, 200
ProxyRequests

Apache configuration directive, 199
ProxyVia

Apache configuration directive, 199
public_html directories, 190

R
rc.local

modifying, 77
ReadmeName

Apache configuration directive, 196
Red Hat Linux-specific file locations, 24

/etc/sysconfig/, 24
(See Also /etc/sysconfig)

/usr/lib/rhs, 24
/var/lib/rpm, 24
/var/spool/up2date/, 24

Redirect
Apache configuration directive, 194

resize2fs, 93
ResourceConfig

Apache configuration directive, 184
rpcinfo, 250
runlevels, 75

changing with GRUB, 63, 84

S
ScoreBoardFile

Apache configuration directive, 184
ScriptAlias

Apache configuration directive, 194
SCSI, 271
secure server

reloading, 183
restarting, 183
starting, 183
stopping, 183

security
configuring, 201
running Apache without, 203

Sendmail, 210
additional resources, 226
aliases, 213
common configuration changes, 212
default installation, 211
history, 210
LDAP and, 214
limitations, 211
masquerading, 213
purpose, 211
spam, 213

with UUCP, 212
server side includes, 189, 196

virtual hosts, 189
ServerAdmin

Apache configuration directive, 188
ServerName

Apache configuration directive, 188
ServerRoot

Apache configuration directive, 184
ServerSignature

Apache configuration directive, 194
ServerType

Apache configuration directive, 184
serviceconf, 77
services

system
configuring with chkconfig, 77
configuring with ntsysv, 77
configuring with serviceconf, 77

SetEnvIf
Apache configuration directive, 201

shadow
(See passwords)

utilities, 100
shutdown, 77
SSH, 135

configuration files, 138
introduction, 135, 136
layers, 136
port forwarding, 140
protocol, 135, 136

authentication, 137
connection, 138
transport layer, 137

requiring, 141
TCP/IP forwarding, 139
why use, 136
X11 forwarding, 139
X11 sessions, 139

SSL directives, 201
standard

groups, 96
users, 95

starting
Apache, 183
secure server, 183

StartServers
Apache configuration directive, 186

startx, 108
stopping

Apache, 183
secure server, 183

structure
common, 19

structure, file system, 19
stunnel, 225

291

sysctl, 55
system

shutdown, 77
system request key

enabling, 47
SysV init, 62

directories used by, 62
runlevels used by, 75

T
TCP wrappers, 125

access control, 125
operators, 127
patterns, 126
shell commands, 127
wildcards, 126

additional resources, 133
installed documentation, 133
useful websites, 133

advantages, 125
purpose, 125
xinetd, 128

Timeout
Apache configuration directive, 185

Tripwire, 151
additional resources, 161

installed documentation, 161
useful websites, 162

components, 155
configuration file

signing, 160
configuration of, 154
database

initializing, 156
updating, 159

email functions, 161
testing, 161

file locations, 154
installation of, 153
installation of RPM, 153
integrity check

running, 157
passphrases

selecting, 156
policy file

modifying, 155
updating, 160

printing reports, 157
twprint and the database, 158
use of, 151

troubleshooting
after editing httpd.conf, 183
error log, 192

tune2fs

checking partition labels with, 91

converting to ext3 with, 92

reverting to ext2 with, 93

TypesConfig

Apache configuration directive, 191

U

UseCanonicalName

Apache configuration directive, 191

User

Apache configuration directive, 187

user private groups, 95, 98

rationale behind, 99

UserDir

Apache configuration directive, 190

users, 95

personal HTML directories, 190

standard, 95

utilities

shadow, 100

V

virtual hosts

configuring, 203

Listen command, 204

name-based, 203

Options, 189

server side includes, 189, 196

VirtualHost

Apache configuration directive, 201

W

webmaster

email address for, 188

window managers, 107

(See Also XFree86)

X
X client

(See XFree86)
X server

(See XFree86)
X Window System

(See XFree86)
overview, 101
X client, 101
X server, 101

x86
boot process, 79

XFree86, 101
additional resources, 112

installed documentation, 112
related books, 113
useful websites, 112

clients
desktop environments, 107
window managers, 107

desktop environments, 107
fonts, 110

adding, 111

configuration, 110
xfs, 110

runlevel
3, 108
5, 109

runlevels, 108
server, 102

configuration, 103
structure, 101
window managers, 107
X clients, 106
Xconfigurator, 101

xfs, 110
(See Also XFree86)

adding fonts, 111
configuration, 110

xinetd, 128
/etc/xinetd.conf, 129
access control, 131
binding, 132
configuration, 129
port redirection, 132

xinit, 106

