
LINUX for S/390

ELF Application Binary Interface
Supplement

LNUX-1007-02

���

LINUX for S/390

ELF Application Binary Interface
Supplement

LNUX-1007-02

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 53.

Edition 1.01 (July 2001)

This edition applies to version 2, release 2, modification 16 of the LINUX kernel and to all subsequent releases and
modifications until otherwise indicated in new editions.

This edition replaces LNUX-1007-01.

© Copyright International Business Machines Corporation 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . v

Tables . vii

About this book . ix
Who should read this book . ix
Prerequisite and related information ix
How to send your comments . ix

Summary of changes . xi

Chapter 1. Low-level system information 1
Machine interface . 2

Processor architecture . 2
Data representation . 3

Function calling sequence . 9
Registers . 9
The stack frame . 10
Parameter passing . 12
Variable argument lists . 14
Return values . 15

Operating system interface . 15
Virtual address space . 15
Page size . 15
Virtual address assignments 15
Managing the process stack 16
Coding guidelines . 16
Processor execution modes 17

Exception interface . 18
Process initialization . 18

Registers . 19
Process stack . 19

Coding examples . 22
Code model overview . 23
Function prolog and epilog 23
Profiling . 25
Data objects . 26
Function calls . 29
Branching . 34
Dynamic stack space allocation 35

DWARF definition . 38

Chapter 2. Object files . 39
ELF Header . 39

Machine Information . 39
Sections . 39

Special Sections . 39
Symbol Table . 40
Relocation . 40

Chapter 3. Program loading and dynamic linking 45
Program Loading . 45
Dynamic Linking . 49

© Copyright IBM Corp. 2001 iii

Dynamic Section . 49
Global Offset Table . 49
Function Addresses . 50
Procedure Linkage Table . 50

Notices . 53
Programming interface information. 54
Trademarks . 54

Bibliography . 55

Index . 57

iv LINUX for S/390: ELF ABI Supplement

Figures

1. Bit and byte numbering in halfwords . 3
2. Bit and byte numbering in words . 3
3. Bit and byte numbering in doublewords . 3
4. Structure smaller than a word . 5
5. No padding . 5
6. Internal padding . 5
7. Internal and tail padding . 5
8. Union padding . 6
9. Bit numbering . 7

10. Left-to-right allocation . 7
11. Boundary alignment . 7
12. Storage unit sharing . 8
13. Union allocation. 8
14. Unnamed bit fields. 8
15. Standard stack frame . 11
16. Register save area . 11
17. Parameter list area . 13
18. Parameter passing example. 14
19. Virtual address configuration . 16
20. Declaration for main. 18
21. Auxiliary vector structure . 19
22. Initial Process Stack . 22
23. Prolog and epilog example . 25
24. Code for profiling . 26
25. Absolute addressing . 27
26. Small model position-independent addressing . 28
27. Large model position-independent addressing . 29
28. Absolute direct function call . 30
29. Small model position-independent direct function call 31
30. Large model position-independent direct function call 32
31. Absolute indirect function call . 33
32. Small model position-independent indirect function call 33
33. Large model position-independent indirect function call 34
34. Branch instruction . 34
35. Absolute switch code . 35
36. Position-independent switch code, all models . 35
37. Dynamic Stack Space Allocation . 37
38. Relocation Fields . 40
39. Executable File Example . 46
40. Process Image Segments . 47
41. Procedure Linkage Table Example . 51
42. Special first entry in Procedure Linkage Table . 52

© Copyright IBM Corp. 2001 v

vi LINUX for S/390: ELF ABI Supplement

Tables

1. Scalar types . 4
2. Bit fields . 6
3. Parameter passing example: Register allocation 14
4. Registers for return values . 15
5. Exceptions and Signals . 18
6. Auxiliary Vector Types, a_type . 19
7. DWARF register number mapping . 38
8. Auxiliary Vector Types Description . 39
9. Special Sections . 39

10. Special Sections Description . 39
11. Relocation Types . 42
12. Relocation type descriptions. 42
13. Program Header Segments . 46
14. Shared Object Segment Example. 48

© Copyright IBM Corp. 2001 vii

viii LINUX for S/390: ELF ABI Supplement

About this book

The S/390® supplement to the Executable and Linkage Format Application Binary
Interface (or ELF ABI), defines a system interface for compiled application
programs. Its purpose is to establish a standard binary interface for application
programs on LINUX® for S/390 systems.

Who should read this book
This book should be read by application programmers who wish to write programs
that will install and run on any system compliant with the System V ABI, and by
system programmers who wish to make their systems so compliant.

Prerequisite and related information
This book is a supplement to the generic ″System V Application Binary Interface″
and should be read in conjunction with it.

How to send your comments
Your feedback is important in helping to provide the most accurate and high-quality
information. If you have any comments about this book or any other LINUX for
S/390 documentation:

v Go to the LINUX for S/390 home page at:

http://www.s390.ibm.com/linux/

There you will find the feedback page where you can enter and submit your
comments.

v Send your comments by e-mail to linux390@de.ibm.com. Be sure to include the
name of the book, the part number of the book, the version of LINUX you are
using, and, if applicable, the specific location of the text you are commenting on
(for example, a page number or table number).

v There may be a comment form at the back of this book. Fill out a copy and
return it by mail or by fax or give it to an IBM representative.

© Copyright IBM Corp. 2001 ix

x LINUX for S/390: ELF ABI Supplement

Summary of changes

Changes to this information for this edition include:

v Correction to addressing in Figure 40 on page 47.

© Copyright IBM Corp. 2001 xi

xii LINUX for S/390: ELF ABI Supplement

Chapter 1. Low-level system information

Machine interface . 2
Processor architecture . 2
Data representation . 3

Byte ordering . 3
Fundamental types . 4
Aggregates and unions . 4
Bit-fields . 6

Function calling sequence . 9
Registers . 9

Register usage . 10
The stack frame . 10
Parameter passing . 12
Variable argument lists . 14
Return values . 15

Operating system interface . 15
Virtual address space . 15
Page size . 15
Virtual address assignments 15
Managing the process stack 16
Coding guidelines . 16
Processor execution modes 17

Exception interface . 18
Process initialization . 18

Registers . 19
Process stack . 19

Coding examples . 22
Code model overview . 23
Function prolog and epilog 23

Prolog . 24
Epilog . 24
Prolog and epilog example 25

Profiling . 25
Data objects . 26
Function calls . 29
Branching . 34
Dynamic stack space allocation 35

DWARF definition . 38

© Copyright IBM Corp. 2001 1

Machine interface
This section describes the processor-specific information for the S/390 processors.

Processor architecture
ESA/390 Principles of Operation (SA22–7201) defines the ESA/390 architecture.

Programs intended to execute directly on the processor use the ESA/390 instruction
set, and the instruction encoding and semantics of the architecture.

An application program can assume that all instructions defined by the architecture
that are neither privileged nor optional exist and work as documented.

To be ABI-conforming the processor must implement the instructions of the
architecture, perform the specified operations, and produce the expected results.
The ABI neither places performance constraints on systems nor specifies what
instructions must be implemented in hardware. A software emulation of the
architecture could conform to the ABI.

There are some instructions in the ESA/390 architecture which are described as
’optional’. LINUX for S/390 requires some of these to be available; in particular:

v additional floating point facilities,

v compare and move extended,

v immediate and relative instructions,

v string instructions.

The ABI guarantees that these instructions are present. In order to comply with the
ABI the operating system must emulate these instructions on machines which do
not support them in the hardware. Other instructions are not available in some
current models; programs using these instructions do not conform to the S/390 ABI
and executing them on machines without the extra capabilities will result in
undefined behavior.

In the ESA/390 architecture a processor runs in big-endian mode. (See “Byte
ordering” on page 3.)

2 LINUX for S/390: ELF ABI Supplement

Data representation

Byte ordering
The architecture defines an 8-bit byte, a 16-bit halfword, a 32-bit word and a 64-bit
doubleword. Byte ordering defines how the bytes that make up halfwords, words
and doublewords are ordered in memory. Most significant byte (MSB) ordering, or
″Big-Endian″ as it is sometimes called, means that the most significant byte of a
structure is located in the lowest addressed byte position in a storage unit (byte 0).

Figure 1 to Figure 3 illustrate the conventions for bit and byte numbering within
storage units of various widths. These conventions apply to both integer data and
floating-point data, where the most significant byte of a floating-point value holds
the sign and the exponent (or at least the start of the exponent). The figures show
big-endian byte numbers in the upper left corners and bit numbers in the lower
corners.

Figure 1. Bit and byte numbering in halfwords

Figure 2. Bit and byte numbering in words

Figure 3. Bit and byte numbering in doublewords

Chapter 1. Low-level system information 3

Fundamental types
Table 1 shows how ANSI C scalar types correspond to those of the S/390
processor. For all types a NULL pointer has the value zero (binary).

Table 1. Scalar types

Type ANSI C
sizeof
(bytes)

Alignment type (S/390)

Character
signed char
char
unsigned char

1 1 byte

Short
signed short
short
unsigned short

2 2 halfword

Integer

signed int
int
unsigned int
enum
signed long
long
unsigned long

4 4 word

Long long
signed long long
long long
unsigned long long

8 8 doubleword

Pointer any-type *
any-type (*) ()

4 4 unsigned word

Floating point

float 4 4
single precision
(IEEE)

double 8 8
double precision
(IEEE)

long double¹ 16 16
extended precision
(IEEE)

¹Compilers and systems may implement the long double data type in some other way, for
performance reasons, using a compiler option. Examples of such formats could be two
successive doubles or even a single double. Such usage does not conform to this ABI
however, and runs the risk of passing a wrongly formatted floating-point number to another
function as an argument. Programs using other formats should transform long double
floating-point numbers to a conforming format before passing them.

Aggregates and unions
Aggregates (structures and arrays) and unions assume the alignment of their most
strictly aligned component, that is, the component with the largest alignment. The
size of any object, including aggregates and unions, is always a multiple of the
alignment of the object. An array uses the same alignment as its elements.
Structure and union objects may require padding to meet size and alignment
constraints:

v An entire structure or union object is aligned on the same boundary as its most
strictly aligned member.

v Each member is assigned to the lowest available offset with the appropriate
alignment. This may require internal padding, depending on the previous
member.

v If necessary, a structure’s size is increased to make it a multiple of the structure’s
alignment. This may require tail padding if the last member does not end on the
appropriate boundary.

4 LINUX for S/390: ELF ABI Supplement

In the following examples (Figure 4 to Figure 8), member byte offsets (for the
big-endian implementation) appear in the upper left corners.

struct {
char c;

};

Figure 4. Structure smaller than a word

struct {
char c;
char d;
short s;
long n;

};

Figure 5. No padding

struct {
char c;
short s;

};

Figure 6. Internal padding

struct {
char c;
double d;
short s;

};

Figure 7. Internal and tail padding

Chapter 1. Low-level system information 5

Bit-fields
C struct and union definitions may have ″bit-fields,″ defining integral objects with a
specified number of bits (see Table 2).

Table 2. Bit fields

Bit-field type Width n Range

signed char

char

unsigned char

1 to 8

-2n�¹ to 2n�¹ - 1

0 to 2n - 1

0 to 2n - 1

signed short

short

unsigned short

1 to 16

-2n�¹ to 2n�¹ - 1

0 to 2n - 1

0 to 2n - 1

signed int

int

unsigned int

enum

signed long

long

unsigned long

1 to 32

-2n�¹ to 2n�¹ - 1

0 to 2n - 1

0 to 2n - 1

0 to 2n - 1

-2n�¹ to 2n�¹ - 1

0 to 2n - 1

0 to 2n - 1

signed long long

long long

unsigned long long

1 to 64

-2n�¹ to 2n�¹ - 1

0 to 2n - 1

0 to 2n - 1

″Plain″ bit-fields (that is, those neither signed nor unsigned) always have
non-negative values. Although they may have type short, int or long (which can
have negative values), bit-fields of these types have the same range as bit-fields of

union {
char c;
short s;
int j;

};

Figure 8. Union padding

6 LINUX for S/390: ELF ABI Supplement

the same size with the corresponding unsigned type. Bit-fields obey the same size
and alignment rules as other structure and union members, with the following
additions:

v Bit-fields are allocated from left to right (most to least significant).

v A bit-field must entirely reside in a storage unit appropriate for its declared type.
Thus, a bit-field never crosses its unit boundary.

v Bit-fields must share a storage unit with other structure and union members
(either bit-field or non-bit-field) if and only if there is sufficient space within the
storage unit.

v Unnamed bit-fields’ types do not affect the alignment of a structure or union,
although an individual bit-field’s member offsets obey the alignment constraints.
An unnamed, zero-width bit-field shall prevent any further member, bit-field or
other, from residing in the storage unit corresponding to the type of the
zero-width bit-field.

The following examples (Figure 9 through Figure 14) show structure and union
member byte offsets in the upper left corners. Bit numbers appear in the lower
corners.

Figure 9. Bit numbering

Figure 10. Left-to-right allocation

Figure 11. Boundary alignment

Chapter 1. Low-level system information 7

Figure 12. Storage unit sharing

Figure 13. Union allocation

Figure 14. Unnamed bit fields

8 LINUX for S/390: ELF ABI Supplement

Function calling sequence
This section discusses the standard function calling sequence, including stack
frame layout, register usage, and parameter passing.

Registers
The ABI makes the assumption that the processor has 16 general purpose registers
and 16 IEEE floating point registers. S/390 processors have 16 general purpose
registers; newer models have 16 IEEE floating point registers but older systems
have only four non-IEEE floating point registers. On these older machines LINUX
for S/390 emulates 16 IEEE registers within the kernel. The width of the general
purpose registers is 32 bits, and the width of the floating point registers is 64 bits.
The use of the registers is described in the table below.

Register name Usage Call effect

r0, r1 General purpose Volatile¹

r2, r3 Parameter passing and
return values

Volatile

r4, r5 Parameter passing Volatile

r6 Parameter passing Saved²

r7 - r11 Local variables Saved

r12 Local variable, commonly
used as GOT pointer

Saved

r13 Local variable, commonly
used as Literal Pool
pointer

Saved

r14 Return address Volatile

r15 Stack pointer Saved

f0, f2 Parameter passing and
return values

Volatile

f4, f6 General purpose Saved

f1, f3, f5, f7 – f15 General purpose Volatile

Access register 0 Reserved for system use Volatile

Access registers 1-15 General purpose Volatile

¹Volatile: These registers are not preserved across function calls.

²Saved: These registers belong to the calling function. A called function shall save these
registers’ values before it changes them, restoring their values before it returns.

v Registers r6 through r13, r15, f4 and f6 are nonvolatile; that is, they ″belong″
to the calling function. A called function shall save these registers’ values before
it changes them, restoring their values before it returns.

v Registers r0, r1, r2, r3, r4, r5, r14, f0, f1, f2, f3, f5, f6 through f15
are volatile; that is, they are not preserved across function calls.

v Furthermore the values in registers r0 and r1 may be altered by the interface
code in cross-module calls, so a function cannot depend on the values in these
registers having the same values that were placed in them by the caller.

Chapter 1. Low-level system information 9

The following registers have assigned roles in the standard calling sequence:

r12 Global Offset Table pointer. If a position-independent module
uses cross-linking the compiler must point r12 to the GOT as
described in “Dynamic Linking” on page 49. If not this register
may be used locally.

r13 Commonly used as the Literal Pool pointer. If the Literal Pool
is not required this register may be used locally.

r14 This register will contain the address to which a called
function will normally return. r14 is volatile across function
calls.

r15 The stack pointer (stored in r15) will maintain an 8-byte
alignment. It will always point to the lowest allocated valid
stack frame, and will grow towards low addresses. The
contents of the word addressed by this register may point to
the previously allocated stack frame. If required it can be
decremented by the called function – see “Dynamic stack
space allocation” on page 35.

Signals can interrupt processes. Functions called during signal handling have no
unusual restrictions on their use of registers. Moreover, if a signal handling function
returns, the process will resume its original execution path with all registers restored
to their original values. Thus programs and compilers may freely use all registers
listed above, except those reserved for system use, without the danger of signal
handlers inadvertently changing their values.

Register usage
With these calling conventions the following usage of the registers for inline
assemblies is recommended:

v General registers r0 and r1 should be used internally whenever possible

v General registers r2 to r5 should be second choice

v General registers r12 to r15 should only be used for their standard function.

The stack frame
A function will be passed a frame on the runtime stack by the function which called
it, and may allocate a new stack frame. A new stack frame is required if the called
function will in turn call further functions (which must be passed the address of the
new frame). This stack grows downwards from high addresses. Figure 15 on
page 11 shows the stack frame organization. SP in the figure denotes the stack
pointer (general purpose register r15) passed to the called function on entry.
Maintenance of the back chain pointers is not a requirement of the ABI, but the
storage area for these pointers must be allocated whether used or not.

10 LINUX for S/390: ELF ABI Supplement

The format of the register save area created by the gcc compiler is:

The following requirements apply to the stack frame:

v The stack pointer shall maintain 8-byte alignment.

Figure 15. Standard stack frame

Figure 16. Register save area

Chapter 1. Low-level system information 11

v The stack pointer points to the first word of the lowest allocated stack frame. If
the ″back chain″ is implemented this word will point to the previously allocated
stack frame (towards higher addresses), except for the first stack frame, which
shall have a back chain of zero (NULL). The stack shall grow downwards, in
other words towards lower addresses.

v The called function may create a new stack frame by decrementing the stack
pointer by the size of the new frame. This is required if this function calls further
functions. The stack pointer must be restored prior to return.

v The parameter list area shall be allocated by the caller and shall be large enough
to contain the arguments that the caller stores in it. Its contents are not
preserved across calls.

v Other areas depend on the compiler and the code being compiled. The standard
calling sequence does not define a maximum stack frame size.

The stack space for the register save area and back chain must be allocated by the
caller. The size of these is 96 bytes.

Except for the stack frame header and any padding necessary to make the entire
frame a multiple of 8 bytes in length, a function need not allocate space for the
areas that it does not use. If a function does not call any other functions and does
not require any of the other parts of the stack frame, it need not establish a stack
frame. Any padding of the frame as a whole shall be within the local variable area;
the parameter list area shall immediately follow the stack frame header, and the
register save areas shall contain no padding.

Parameter passing
Arguments to called functions are passed in registers. Since all computations must
be performed in registers, memory traffic can be eliminated if the caller can
compute arguments into registers and pass them in the same registers to the called
function, where the called function can then use these arguments for further
computation in the same registers. The number of registers implemented in a
processor architecture naturally limits the number of arguments that can be passed
in this manner.

For LINUX for S/390, the following applies:

v General registers r2 to r6 are used for integer values.

v Floating point registers f0 and f2 are used for floating point values.

If there are more than five integral values or two floating point values, the rest of
the arguments are passed on the stack 96 bytes above the initial stack pointer.

Beside these general rules the following rules apply:

v char, short and int are passed in general registers.

v long long are passed in two consecutive general registers if the next available
register is smaller than 6. If the upper 32 bits would end in general register 6
then this register is skipped and the whole 64 bit value is passed on the stack.

v Structures with a size of 1, 2 or 4 bytes are passed as integral values.

v Structures with a size of 8 bytes are passed as an integral value in two registers.

v All other structures are passed by reference. If needed, the called function makes
a copy of the value.

v Complex numbers are passed as structures.

12 LINUX for S/390: ELF ABI Supplement

The following algorithm specifies where argument data is passed for the C
language. For this purpose, consider the arguments as ordered from left (first
argument) to right, although the order of evaluation of the arguments is unspecified.
In this algorithm fr contains the number of the next available floating-point register,
gr contains the number of the next available general purpose register, and starg is
the address of the next available stack argument word.

INITIALIZE
Set fr=0, gr=2, and starg to the address of parameter word 1.

SCAN If there are no more arguments, terminate. Otherwise, select one of the
following depending on the type of the next argument:

DOUBLE_OR_FLOAT:
A DOUBLE_OR_FLOAT is one of the following:

v A single length floating point type,

v A double length floating point type.

If fr>2, that is, if there are no more available floating-point registers,
go to OTHER. Otherwise, load the argument value into
floating-point register fr, set fr to fr+2, and go to SCAN.

SIMPLE_ARG
A SIMPLE_ARG is one of the following:

v One of the simple integer types no more than 32 bits wide (char,
short, int, long, enum).

v A pointer to an object of any type.

v A struct or a union of 1, 2 or 4 bytes.

v A struct or union of another size, or a long double, any of
which shall be passed as a pointer to the object, or to a copy of
the object where necessary to enforce call-by-value semantics.
Only if the caller can ascertain that the object is ″constant″ can it
pass a pointer to the object itself.

If gr>6, go to OTHER. Otherwise load the argument value into general
register gr, set gr to gr+1, and go to SCAN. Values shorter than 32
bits are sign- or zero-extended (as appropriate) to 32 bits.

Figure 17. Parameter list area

Chapter 1. Low-level system information 13

DOUBLE_ARG
A DOUBLE_ARG is one of type long long, or is a struct or a union of
size 8 bytes.

If gr>5 set gr to 7 and go to OTHER. Load the lower-addressed
word of the long long into gr and the higher-addressed word into
gr+1, set gr to gr+2, and go to SCAN.

OTHER
Arguments not otherwise handled above are passed in the parameter words
of the caller’s stack frame. SIMPLE_ARGs, as defined above, are considered
to have 4-byte size, with simple integer types shorter than 32 bits sign- or
zero-extended (as appropriate) to 32 bits. float arguments are considered
to have 4-byte size; long long and double arguments are considered to
have 8-byte size. Pad the stack by increasing starg to satisfy the alignment
requirements of the argument, and copy the argument byte for byte to the
new stack position. Update starg to point to the next byte after this copy,
then go to SCAN.

The contents of registers and words which are skipped by the above algorithm for
alignment purposes (padding) are undefined.

As an example, assume the declarations and the function call shown in Figure 18.
The corresponding register allocation and storage would be as shown in Table 3.

Table 3. Parameter passing example: Register allocation

General purpose registers Floating-point registers Stack frame offset

r2: i f0: g 96: ll

r3: j f2: f 104: h

r4: k 112: m

r5: l

r6: -

In this example r6 is unused as the long long variable ll will not fit into a single
register.

Variable argument lists
Some otherwise portable C programs depend on the argument passing scheme,
implicitly assuming that 1) all arguments are passed on the stack, and 2) arguments
appear in increasing order on the stack. Programs that make these assumptions
have never been portable, but they have worked on many implementations.
However, they do not work on the ESA/390 architecture because some arguments
are passed in registers. Portable C programs use the header files <stdarg.h> or
<varargs.h> to deal with variable argument lists on S/390 and other machines as
well.

int i, j, k, l;
long long ll;
double f, g, h;
int m;

x = func(i, j, g, k, l, ll, f, h, m);

Figure 18. Parameter passing example

14 LINUX for S/390: ELF ABI Supplement

Return values
In general, arguments are returned in registers, as described in Table 4.

Table 4. Registers for return values

Type Returned in register:

char, short, int and long general register 2 (r2)

long long general registers 2 and 3 (r2, r3)

double and float floating point register 0 (f0)

Structures are returned on the stack, in the segment allocated by the caller. The
pointer to the stack is passed as an invisible first argument in register 2.

Functions shall return float or double values in f0, with float values rounded to
single precision. Functions shall return values of type int, long, enum, short and
char, or a pointer to any type as unsigned or signed integers as appropriate, zero-
or sign-extended to 32 bits if necessary, in r2. A structure or union whose size is 1,
2, 4 or 8 bytes shall be returned in r2 and r3 as if it were first stored in an 8-byte
aligned memory area and then the lower addressed half were loaded into r2 and
the higher into r3. Bits beyond the last member of the structure or union are not
defined.

Values of type long long and unsigned long long shall be returned with the lower
addressed half in r2 and the higher in r3.

Values of type long double and structures or unions that do not meet the
requirements for being returned in registers are returned in a storage buffer
allocated by the caller. The address of this buffer is passed as a hidden argument in
r2 as if it were the first argument, causing gr in the argument passing algorithm
above to be initialized to 3 instead of 2.

Operating system interface

Virtual address space
Processes execute in a 31-bit virtual address space. Memory management
translates virtual addresses to physical addresses, hiding physical addressing and
letting a process run anywhere in the system’s real memory. Processes typically
begin with three logical segments, commonly called ″text″, ″data″ and ″stack″. An
object file may contain more segments (for example, for debugger use), and a
process can also create additional segments for itself with system services.

Note: The term ″virtual address″ as used in this document refers to a 31-bit
address generated by a program, as contrasted with the physical address to
which it is mapped.

Page size
Memory is organized into pages, which are the system’s smallest units of memory
allocation. The hardware page size for the ESA/390 architecture is 4096 bytes.

Virtual address assignments
Processes have the full 31-bit address space available to them.

Chapter 1. Low-level system information 15

Figure 19 shows the virtual address configuration on the S/390 architecture. The
segments with different properties are typically grouped in different areas of the
address space. The loadable segments may begin at zero (0); the exact addresses
depend on the executable file format (see “Chapter 2. Object files” on page 39 and
“Chapter 3. Program loading and dynamic linking” on page 45). The process’ stack
resides at the end of the virtual memory and grows downwards. Processes can
control the amount of virtual memory allotted for stack space, as described below.

Note: Although application programs may begin at virtual address 0, they
conventionally begin above 0x1000 (4 Kbytes), leaving the initial 4 Kbytes
with an invalid address mapping. Processes that reference this invalid
memory (for example by de-referencing a null pointer) generate an
translation exception as described in “Exception interface” on page 18.

Although applications may control their memory assignments, the typical
arrangement follows the diagram above. When applications let the system choose
addresses for dynamic segments (including shared object segments), the system
will prefer addresses in the upper half of the address space (above 1 Gbyte).

Managing the process stack
The section “Process initialization” on page 18 describes the initial stack contents.
Stack addresses can change from one system to the next – even from one process
execution to the next on a single system. A program, therefore, should not depend
on finding its stack at a particular virtual address.

A tunable configuration parameter controls the system maximum stack size. A
process can also use setrlimit to set its own maximum stack size, up to the
system limit. The stack segment is both readable and writable.

Coding guidelines
Operating system facilities, such as mmap, allow a process to establish address
mappings in two ways. Firstly, the program can let the system choose an address.
Secondly, the program can request the system to use an address the program
supplies. The second alternative can cause application portability problems because
the requested address might not always be available. Differences in virtual address

Figure 19. Virtual address configuration

16 LINUX for S/390: ELF ABI Supplement

space can be particularly troublesome between different architectures, but the same
problems can arise within a single architecture.

Processes’ address spaces typically have three segments that can change size
from one execution to the next: the stack (through setrlimit); the data segment
(through malloc); and the dynamic segment area (through mmap). Changes in one
area may affect the virtual addresses available for another. Consequently an
address that is available in one process execution might not be available in the
next. Thus a program that used mmap to request a mapping at a specific address
could appear to work in some environments and fail in others. For this reason
programs that want to establish a mapping in their address space should let the
system choose the address.

Despite these warnings about requesting specific addresses the facility can be used
properly. For example, a multiprocess application might map several files into the
address space of each process and build relative pointers among the files’ data.
This could be done by having each process ask for a certain amount of memory at
an address chosen by the system. After each process receives its own private
address from the system it would map the desired files into memory at specific
addresses within the original area. This collection of mappings could be at different
addresses in each process but their relative positions would be fixed. Without the
ability to ask for specific addresses, the application could not build shared data
structures because the relative positions for files in each process would be
unpredictable.

Processor execution modes
Two execution modes exist in the ESA/390 architecture: problem (user) state and
supervisor state. Processes run in problem state (the less privileged). The operating
system kernel runs in supervisor state. A program executes an supervisor call (svc)
instruction to change execution modes.

Note that the ABI does not define the implementation of individual system calls.
Instead programs shall use the system libraries. Programs with embedded system
call or trap instructions do not conform to the ABI.

Chapter 1. Low-level system information 17

Exception interface
The ESA/390 exception mechanism allows the processor to change to supervisor
state as a result of six different causes: system calls, I/O interrupts, external
interrupts, machine checks, restart interruptions or program checks (unusual
conditions arising in the execution of instructions).

When exceptions occur:

1. information (such as the address of the next instruction to be executed after
control is returned to the original program) is saved,

2. program control passes from user to supervisor level, and

3. software continues execution at an address (the exception vector)
predetermined for each exception.

Exceptions may be synchronous or asynchronous. Synchronous exceptions, being
caused by instruction execution, can be explicitly generated by a process. The
operating system handles an exception either by completing the faulting operation
in a manner transparent to the application or by delivering a signal to the
application. The correspondence between exceptions and signals is shown in
Table 5.

Table 5. Exceptions and Signals

Exception Name Signal Examples

Illegal instruction SIGILL Illegal or privileged instruction, Invalid instruction
form, Optional, unimplemented instruction

Storage access SIGSEGV Unmapped instruction or data location access,
Storage protection violation

Alignment SIGBUS Invalid data item alignment, Invalid memory access

Breakpoint SIGTRAP Breakpoint program check

Floating exception SIGFPE Floating point overflow or underflow, Floating point
divide by zero, Floating point conversion overflow,
Other enabled floating point exceptions

The signals that an exception may give rise to are SIGILL, SIGSEGV, SIGBUS,
SIGTRAP, and SIGFPE. If one of these signals is generated due to an exception when
the signal is blocked, the behavior is undefined.

Process initialization
This section describes the machine state that exec creates for ″infant″ processes,
including argument passing, register usage, and stack frame layout. Programming
language systems use this initial program state to establish a standard environment
for their application programs. For example, a C program begins executing at a
function named main, conventionally declared in the way described in Figure 20:

Briefly, argc is a non-negative argument count; argv is an array of argument strings,
with argv[argc] == 0, and envp is an array of environment strings, also terminated
by a NULL pointer.

extern int main (int argc, char *argv[], char *envp[]);

Figure 20. Declaration for main

18 LINUX for S/390: ELF ABI Supplement

Although this section does not describe C program initialization, it gives the
information necessary to implement the call to main or to the entry point for a
program in any other language.

Registers
When a process is first entered (from an exec system call), the contents of registers
other than those listed below are unspecified. Consequently, a program that
requires registers to have specific values must set them explicitly during process
initialization. It should not rely on the operating system to set all registers to 0.
Following are the registers whose contents are specified:

r15 The initial stack pointer, aligned to a 8-byte boundary and pointing to a stack
location that contains the argument count (see “Process stack” for further
information about the initial stack layout)

fpc The floating point control register contains 0, specifying ″round to nearest″
mode and the disabling of floating-point exceptions

Process stack
Every process has a stack, but the system defines no fixed stack address.
Furthermore, a program’s stack address can change from one system to another –
even from one process invocation to another. Thus the process initialization code
must use the stack address in general purpose register r15. Data in the stack
segment at addresses below the stack pointer contain undefined values.

Whereas the argument and environment vectors transmit information from one
application program to another, the auxiliary vector conveys information from the
operating system to the program. This vector is an array of structures, which are
defined in Figure 21.

The structures are interpreted according to the a_type member, as shown in
Table 6.

Table 6. Auxiliary Vector Types, a_type

Name Value a_un

AT_NULL 0 ignored

AT_IGNORE 1 ignored

AT_EXECFD 2 a_val

AT_PHDR 3 a_ptr

AT_PHENT 4 a_val

AT_PHNUM 5 a_val

AT_PAGESZ 6 a_val

typedef struct {
int a_type;
union {

long a_val;
void *a_ptr;
void (*a_fcn)();

} a_un;
} auxv_t;

Figure 21. Auxiliary vector structure

Chapter 1. Low-level system information 19

Table 6. Auxiliary Vector Types, a_type (continued)

AT_BASE 7 a_ptr

AT_FLAGS 8 a_val

AT_ENTRY 9 a_ptr

AT_NOTELF 10 a_val

AT_UID 11 a_val

AT_EUID 12 a_val

AT_GID 13 a_val

AT_EGID 14 a_val

a_type auxiliary vector types are described in ’Auxiliary Vector Types Description’
below.

Auxiliary Vector Types Description

AT_NULL
The auxiliary vector has no fixed length; so an entry of this type is used to
denote the end of the vector. The corresponding value of a_un is undefined.

AT_IGNORE
This type indicates the entry has no meaning. The corresponding value of
a_un is undefined.

AT_EXECFD
exec may pass control to an interpreter program. When this happens, the
system places either an entry of type AT_EXECFD or one of type AT_PHDR in
the auxiliary vector. The a_val field in the AT_EXECFD entry contains a file
descriptor for the application program’s object file.

AT_PHDR
Under some conditions, the system creates the memory image of the
application program before passing control to an interpreter program. When
this happens, the a_ptr field of the AT_PHDR entry tells the interpreter where
to find the program header table in the memory image. If the AT_PHDR entry
is present, entries of types AT_PHENT, AT_PHNUM and AT_ENTRY must also be
present. See the section “Chapter 3. Program loading and dynamic linking”
on page 45 for more information about the program header table.

AT_PHENT
The a_val field of this entry holds the size, in bytes, of one entry in the
program header table at which the AT_PHDR entry points.

AT_PHNUM
The a_val field of this entry holds the number of entries in the program
header table at which the AT_PHDR entry points.

AT_PAGESZ
If present this entry’s a_val field gives the system page size in bytes. The
same information is also available through sysconf.

AT_BASE
The a_ptr member of this entry holds the base address at which the
interpreter program was loaded into memory.

AT_FLAGS
If present, the a_val field of this entry holds 1-bit flags. Undefined bits are
set to zero.

20 LINUX for S/390: ELF ABI Supplement

AT_ENTRY
The a_ptr field of this entry holds the entry point of the application program
to which the interpreter program should transfer control.

AT_NOTELF
The a_val field of this entry is non-zero if the program is in another format
than ELF, for example in the old COFF format.

AT_UID
The a_ptr field of this entry holds the real user id of the process.

AT_EUID
The a_ptr field of this entry holds the effective user id of the process.

AT_GID
The a_ptr field of this entry holds the real group id of the process.

AT_EGID
The a_ptr field of this entry holds the effective group id of the process.

Other auxiliary vector types are reserved. No flags are currently defined for
AT_FLAGS on the S/390 architecture.

When a process receives control, its stack holds the arguments, environment, and
auxiliary vector from exec. Argument strings, environment strings, and the auxiliary
information appear in no specific order within the information block; the system
makes no guarantees about their relative arrangement. The system may also leave
an unspecified amount of memory between the null auxiliary vector entry and the
beginning of the information block. A sample initial stack is shown in Figure 22 on
page 22.

Chapter 1. Low-level system information 21

Coding examples
This section describes example code sequences for fundamental operations such
as calling functions, accessing static objects, and transferring control from one part
of a program to another. Previous sections discussed how a program may use the
machine or the operating system, and they specified what a program may and may
not assume about the execution environment. Unlike previous material, the
information in this section illustrates how operations may be done, not how they
must be done.

As before, examples use the ANSI C language. Other programming languages may
use the same conventions displayed below, but failure to do so does not prevent a
program from conforming to the ABI. Two main object code models are available:

Absolute code
Instructions can hold absolute addresses under this model. To execute
properly, the program must be loaded at a specific virtual address, making
the program’s absolute addresses coincide with the process’ virtual
addresses.

Position-independent code
Instructions under this model hold relative addresses, not absolute
addresses. Consequently, the code is not tied to a specific load address,
allowing it to execute properly at various positions in virtual memory.

Figure 22. Initial Process Stack

22 LINUX for S/390: ELF ABI Supplement

The following sections describe the differences between these models. When
different, code sequences for the models appear together for easier comparison.

Note: The examples below show code fragments with various simplifications. They
are intended to explain addressing modes, not to show optimal code
sequences or to reproduce compiler output.

Code model overview
When the system creates a process image, the executable file portion of the
process has fixed addresses and the system chooses shared object library virtual
addresses to avoid conflicts with other segments in the process. To maximize text
sharing, shared objects conventionally use position-independent code, in which
instructions contain no absolute addresses. Shared object text segments can be
loaded at various virtual addresses without having to change the segment images.
Thus multiple processes can share a single shared object text segment, even if the
segment resides at a different virtual address in each process.

Position-independent code relies on two techniques:

v Control transfer instructions hold addresses relative to the Current Instruction
Address (CIA), or use registers that hold the transfer address. A CIA-relative
branch computes its destination address in terms of the CIA, not relative to any
absolute address.

v When the program requires an absolute address, it computes the desired value.
Instead of embedding absolute addresses in instructions (in the text segment),
the compiler generates code to calculate an absolute address (in a register or in
the stack or data segment) during execution.

Because the ESA/390 architecture provides CIA-relative branch instructions and
also branch instructions using registers that hold the transfer address, compilers
can satisfy the first condition easily.

A Global Offset Table (GOT), provides information for address calculation.
Position-independent object files (executable and shared object files) have a table
in their data segment that holds addresses. When the system creates the memory
image for an object file, the table entries are relocated to reflect the absolute virtual
address as assigned for an individual process. Because data segments are private
for each process, the table entries can change – unlike text segments, which
multiple processes share.

Two position-independent models give programs a choice between more efficient
code with some size restrictions and less efficient code without those restrictions.
Because of the processor architecture, a GOT with no more than 1024 entries
(4096 bytes) is more efficient than a larger one. Programs that need more entries
must use the larger, more general code. In the following sections, the term ″small
model position-independent code″ is used to refer to code that assumes the smaller
GOT, and ″large model position-independent code″ is used to refer to the general
code.

Function prolog and epilog
This section describes the prolog and epilog code of functions . A function’s prolog
establishes a stack frame, if necessary, and may save any nonvolatile registers it
uses. A function’s epilog generally restores registers that were saved in the prolog
code, restores the previous stack frame, and returns to the caller.

Chapter 1. Low-level system information 23

Prolog
The prolog of a function has to save the state of the calling function and set up the
base register for the code of the function body. The following is in general done by
the function prolog:

v Save all registers used within the function which the calling function assumes to
be non-volatile.

v Set up the base register for the literal pool.

v Allocate stack space by decrementing the stack pointer.

v Set up the dynamic chain by storing the old stack pointer value at stack location
zero if the ″back chain″ is implemented.

v Set up the GOT pointer if the compiler is generating position independent code.

(A function that is position independent will probably want to load a pointer to the
GOT into a nonvolatile register. This may be omitted if the function makes no
external data references. If external data references are only made within
conditional code, loading the GOT pointer may be deferred until it is known to be
needed.)

v Set up the frame pointer if the function allocates stack space dynamically (with
alloca).

The compiler tries to do as little as possible of the above; the ideal case is to do
nothing at all (for a leaf function without symbolic references).

Epilog
The epilog of a function restores the registers saved in the prolog (which include
the stack pointer) and branches to the return address.

24 LINUX for S/390: ELF ABI Supplement

Prolog and epilog example

Profiling
This section shows a way of providing profiling (entry counting) on S/390 systems.
An ABI-conforming system is not required to provide profiling; however if it does this
is one possible (not required) implementation.

If a function is to be profiled it has to call the _mcount routine after the function
prolog. This routine has a special linkage. It gets an address in register 1 and
returns without having changed any register. The address is a pointer to a
word-aligned one-word static data area, initialized to zero, in which the _mcount
routine is to maintain a count of the number of times the function is called.

For example Figure 24 on page 26 shows how the code after the function prolog
may look.

.LC18:
.string "hello, world\n"
.align 4
.globl main
.type main,@function

main:
Prolog

STM 11,15,44(15) # Save callers registers
BRAS 13,.LTN0_0 # Set up literal pool and branch over

.LT0_0:

.LC21:
.long .LC18

.LC22:
.long printf

.LTN0_0:
LR 1,15 # Load stack pointer in GPR 1
AHI 15,-96 # Allocate stack space
ST 1,0(15) # Save backchain

Prolog end
L 2,.LC21-.LT0_0(13)
L 1,.LC22-.LT0_0(13)
BASR 14,1
SLR 2,2

Epilog
L 4,152(15) # Load return address
LM 11,15,140(15) # Restore registers
BR 4 # Branch back to caller

Epilog end

Figure 23. Prolog and epilog example

Chapter 1. Low-level system information 25

Data objects
This section describes only objects with static storage duration. It excludes
stack-resident objects because programs always compute their virtual addresses
relative to the stack or frame pointers.

Because S/390 instructions cannot hold 31-bit addresses directly, a program has to
build an address in a register and access memory through that register. In order to
do so a function normally has a literal pool that holds the addresses of data objects
used by the function. Register 13 is set up in the function prolog to point to the start
of this literal pool.

Position-independent code cannot contain absolute addresses. In order to access a
local symbol the literal pool contains the (signed) offset of the symbol relative to the
start of the pool. Combining the offset loaded from the literal pool with the address
in register 13 gives the absolute address of the local symbol. In the case of a global
symbol the address of the symbol has to be loaded from the Global Offset Table.
The offset in the GOT can either be contained in the instruction itself or in the literal
pool. See Figure 25 on page 27 for an example.

Figure 25 through Figure 27 show sample assembly language equivalents to C
language code for absolute and position-independent compilations. It is assumed
that all shared objects are compiled as position-independent and only executable
modules may have absolute addresses. The code in the figures contains many
redundant operations as it is only intended to show how each C statement could
have been compiled independently of its context. The function prolog is not shown,
and it is assumed that it has loaded the address of the literal pool in register 13.

STM 7,15,28(15) # Save callers registers
BRAS 13,.LTN0_0 # Jump to function prolog

.LT0_0:

.LC3: .long _mcount # Literal pool entry for _mcount

.LC4: .long .LP0 # Literal pool entry for profile counter

.LTN0_0:
LR 1,15 # Stack pointer
AHI 15,-96 # Allocate new
ST 1,0(15) # Save backchain
LR 11,15 # Local stack pointer
.data
.align 4

.LP0: .long 0 # Profile counter
.text

Function profiler
ST 14,4(15) # Preserve r14
L 14,.LC3-.LT0_0(13) # Load address of _mcount
L 1,.LC4-.LT0_0(13) # Load address of profile counter
BASR 14,14 # Branch to _mcount
L 14,4(15) # Restore r14

Figure 24. Code for profiling

26 LINUX for S/390: ELF ABI Supplement

C S/390 machine instructions (Assembler)

extern int src;
extern int dst;
extern int *ptr;

dst = src;

ptr = &dst;

*ptr = src;

Literal pool
.LT0:
.LC1: .long dst
.LC2: .long src

Code
L 2,.LC1-.LT0(13)
L 1,.LC2-.LT0(13)
MVC 0(4,2),0(1)

Literal pool
.LT0:
.LC1: .long ptr
.LC2: .long dst

Code
L 1,.LC1-.LT0(13)
MVC 0(4,1),.LC2-.LT0(13)

Literal pool
.LT0:
.LC1: .long ptr
.LC2: .long src

Code
L 1,.LC1-.LT0(13)
L 2,.LC2-.LT0(13)
L 3,0(1)
MVC 0(4,3),0(2)

Figure 25. Absolute addressing

Chapter 1. Low-level system information 27

C S/390 machine instructions (Assembler)

extern int src;
extern int dst;
extern int *ptr;

dst = src;

ptr = &dst;

*ptr = src;

Literal pool
.LT0:
.LC1: .long _GLOBAL_OFFSET_TABLE_-.LT0

Code
L 12,.LC1-.LT0(13)
LA 12,0(12,13)
L 2,dst@GOT(12)
L 1,src@GOT(12)
MVC 0(4,2),0(1)

Literal pool
.LT0:
.LC1: .long _GLOBAL_OFFSET_TABLE_-.LT0

Code
L 12,.LC1-.LT0(13)
LA 12,0(12,13)
L 1,ptr@GOT(12)
L 2,dst@GOT(12)
ST 2,0(1)

Literal pool
.LT0:
.LC1: .long _GLOBAL_OFFSET_TABLE_-.LT0

Code
L 12,.LC1-.LT0(13)
LA 12,0(12,13)
L 1,ptr@GOT(12)
L 2,src@GOT(12)
L 3,0(1)
MVC 0(4,3),0(2)

Figure 26. Small model position-independent addressing

28 LINUX for S/390: ELF ABI Supplement

Function calls
Programs can use the ESA/390 BRAS instruction to make direct function calls. A
BRAS instruction has a self-relative branch displacement that can reach 64 Kbytes in
either direction. Hence the use of the BRAS instruction is limited to very rare cases.
The usual method of calling a function is to load the address in a register and use
the BASR instruction for the call. Register 14 is used as the first operand of BASR to
hold the return address as shown in Figure 28 on page 30.

The called function may be in the same module (executable or shared object) as
the caller, or it may be in a different module. In the former case, if the called

C S/390 Assembler

extern int src;
extern int dst;
extern int *ptr;

dst = src;

ptr = &dst;

*ptr = src;

Literal pool
.LT0:
.LC1: .long dst@GOT
.LC2: .long src@GOT
.LC3: .long _GLOBAL_OFFSET_TABLE_-.LT0

Code
L 12,.LC3-.LT0(13)
LA 12,0(12,13)
L 2,.LC1-.LT0(13)
L 1,.LC2-.LT0(13)
L 2,0(2,12)
L 1,0(1,12)
MVC 0(4,2),0(1)

Literal pool
.LT0:
.LC1: .long ptr@GOT
.LC2: .long dst@GOT
.LC3: .long _GLOBAL_OFFSET_TABLE_-.LT0

Code
L 12,.LC3-.LT0(13)
LA 12,0(12,13)
L 2,.LC1-.LT0(13)
L 1,.LC2-.LT0(13)
L 2,0(2,12)
L 1,0(1,12)
ST 1,0(2)

Literal pool
.LT0:
.LC1: .long ptr@GOT
.LC2: .long src@GOT
.LC3: .long _GLOBAL_OFFSET_TABLE_-.LT0

Code
L 12,.LC1-.LT0(13)
LA 12,0(12,13)
L 1,.LC1-.LT0(13)
L 2,.LC2-.LT0(13)
L 1,0(1,12)
L 2,0(2,12)
L 3,0(1)
MVC 0(4,3),0(2)

Figure 27. Large model position-independent addressing

Chapter 1. Low-level system information 29

function is not in a shared object, the linkage editor resolves the symbol. In all other
cases the linkage editor cannot directly resolve the symbol. Instead the linkage
editor generates ″glue″ code and resolves the symbol to point to the glue code. The
dynamic linker will provide the real address of the function in the Global Offset
Table. The glue code loads this address and branches to the function itself. See
“Procedure Linkage Table” on page 50 for more details.

C S/390 machine instructions (Assembler)

extern void func();
extern void (*ptr)();

ptr = func;

func();

(*ptr) ();

Literal pool
.LT0:
.LC1: .long ptr
.LC2: .long func

Code
L 1,.LC1-.LT0(13)
MVC 0(4,1),.LC2-.LT0(13)

Literal pool
.LT0:
.LC1: .long func

Code
L 1,.LC1-.LT0(13)
BASR 14,1

Literal pool
.LT0:
.LC1: .long ptr

Code
L 1,.LC1-.LT0(13)
L 1,0(1)
BASR 14,1

Figure 28. Absolute direct function call

30 LINUX for S/390: ELF ABI Supplement

C S/390 machine instructions (Assembler)

extern void func();
extern void (*ptr)();

ptr = func;

func();

(*ptr) ();

Literal pool
.LT0:
.LC1: .long _GLOBAL_OFFSET_TABLE_-.LT0

Code
L 12,.LC1-.LT0(13)
LA 12,0(12,13)
L 1,ptr@GOT(12)
L 2,func@GOT(12)
ST 2,0(1)

Literal pool
.LT0:
.LC1: .long _GLOBAL_OFFSET_TABLE_-.LT0
.LC2: .long func@PLT-.LT0

Code
L 12,.LC1-.LT0(13)
LA 12,0(12,13)
L 1,.LC2-.LT0(13)
BAS 14,0(1,13)

Literal pool
.LT0:
.LC1: .long _GLOBAL_OFFSET_TABLE_-.LT0

Code
L 12,.LC1-.LT0(13)
LA 12,0(12,13)
L 1,ptr@GOT(12)
L 2,0(1)
BASR 14,2

Figure 29. Small model position-independent direct function call

Chapter 1. Low-level system information 31

C S/390 machine instructions (Assembler)

extern void func();
extern void (*ptr)();

ptr = func;

func();

(*ptr) ();

Literal pool
.LT0:
.LC1: .long ptr@GOT
.LC2: .long func@GOT
.LC3: .long _GLOBAL_OFFSET_TABLE_-.LT0

Code
L 12,.LC3-.LT0(13)
LA 12,0(12,13)
L 2,.LC1-.LT0(13)
L 1,.LC2-.LT0(13)
L 2,0(2,12)
L 1,0(1,12)
ST 1,0(2)

Literal pool
.LT0:
.LC1: .long _GLOBAL_OFFSET_TABLE_-.LT0
.LC2: .long func@PLT-.LT0

Code
L 12,.LC1-.LT0(13)
LA 12,0(12,13)
L 1,.LC2-.LT0(13)
BAS 14,0(1,13)

Literal pool
.LT0:
.LC1: .long ptr@GOT
.LC2: .long _GLOBAL_OFFSET_TABLE_-.LT0

Code
L 12,.LC2-.LT0(13)
LA 12,0(12,13)
L 1,.LC1-.LT0(13)
L 1,0(1,12)
L 2,0(1)
BASR 14,2

Figure 30. Large model position-independent direct function call

32 LINUX for S/390: ELF ABI Supplement

C S/390 machine instructions (Assembler)

extern void func();
extern void (*ptr) ();

ptr = func;

(*ptr) ();

Literal pool
.LT0:
.LC1: .long ptr
.LC2: .long func

Code
L 1,.LC1-.LT0(13)
MVC 0(4,1),.LC2-.LT0(13)

Literal pool
.LT0:
.LC1: .long ptr

Code
L 1,.LC1-.LT0(13)
L 1,0(1)
BASR 14,1

Figure 31. Absolute indirect function call

C S/390 machine instructions (Assembler)

extern void func();
extern void (*ptr) ();

ptr = func;

(*ptr) ();

Literal pool
.LT0:
.LC1: .long _GLOBAL_OFFSET_TABLE_-.LT0

Code
L 12,.LC2-.LT0(13)
LA 12,0(12,13)
L 1,ptr@GOT(12)
L 2,func@GOT(12)
ST 2,0(1)

Literal pool
.LT0:
.LC1: .long _GLOBAL_OFFSET_TABLE_-.LT0

Code
L 12,.LC1-.LT0(13)
LA 12,0(12,13)
L 1,ptr@GOT(12)
L 2,0(1)
BASR 14,2

Figure 32. Small model position-independent indirect function call

Chapter 1. Low-level system information 33

Branching
Programs use branch instructions to control their execution flow. The ESA/390
architecture has a variety of branch instructions. The most commonly used of these
performs a self-relative jump with a 128-Kbyte range (up to 64 Kbytes in either
direction).

C language switch statements provide multi-way selection. When the case labels of
a switch statement satisfy grouping constraints the compiler implements the
selection with an address table. The following examples use several simplifying
conventions to hide irrelevant details:

1. The selection expression resides in register 2.

2. The case label constants begin at zero.

3. The case labels, the default, and the address table use assembly names
.Lcasei, .Ldef and .Ltab respectively.

C S/390 machine instructions (Assembler)

extern void func();
extern void (*ptr) ();

ptr = func;

(*ptr) ();

Literal pool
.LT0:
.LC1: .long ptr@GOT
.LC2: .long func@GOT
.LC3: .long _GLOBAL_OFFSET_TABLE_-.LT0

Code
L 12,.LC3-.LT0(13)
LA 12,0(12,13)
L 2,.LC1-.LT0(13)
L 1,.LC2-.LT0(13)
L 2,0(2,12)
L 1,0(1,12)
ST 1,0(2)

Literal pool
.LT0:
.LC1: .long ptr@GOT
.LC2: .long _GLOBAL_OFFSET_TABLE_-.LT0

Code
L 12,.LC2-.LT0(13)
LA 12,0(12,13)
L 1,.LC1-.LT0(13)
L 1,0(1,12)
L 2,0(1)
BASR 14,2

Figure 33. Large model position-independent indirect function call

C S/390 machine instructions (Assembler)

label:
...
goto label;

.L01:
...
BRC 15,.L01

Figure 34. Branch instruction

34 LINUX for S/390: ELF ABI Supplement

Dynamic stack space allocation
The GNU C compiler, and most recent compilers, support dynamic stack space
allocation via alloca.

Figure 37 shows the stack frame before and after dynamic stack allocation. The
local variables area is used for storage of function data, such as local variables,
whose sizes are known to the compiler. This area is allocated at function entry and
does not change in size or position during the function’s activation.

The parameter list area holds ″overflow″ arguments passed in calls to other
functions. (See the OTHER label in “Parameter passing” on page 12.) Its size is also
known to the compiler and can be allocated along with the fixed frame area at
function entry. However, the standard calling sequence requires that the parameter
list area begin at a fixed offset (96) from the stack pointer, so this area must move
when dynamic stack allocation occurs.

C S/390 machine instructions (Assembler)

switch(j)
{
case 0:

...
case 1:

...
case 3:

...
default:
}

Literal pool
.LT0:
.LC1: .long .Ltab

Code
LHI 1,3
CLR 2,1
BRC 2,.Ldef
SLL 2,2
A 2,.LC1-.LT0(13)
L 1,0(2)
BR 1

.Ltab: .long .Lcase0
.long .Lcase1
.long .Ldef
.long .Lcase3

Figure 35. Absolute switch code

C S/390 machine instructions (Assembler)

switch(j)
{
case 0:

...
case 1:

...
case 3:

...
default:
}

Literal pool
.LT0:
.LC1: .long .Ltab-.LT0

Code
LHI 1,3
CLR 2,1
BRC 2,.Ldef
SLL 2,2
L 1,.LC1-.LT0(13)
LA 1,0(1,13)
L 2,0(1,2)
LA 2,0(2,13)
BR 2

.Ltab: .long .Lcase0-.LT0
.long .Lcase1-.LT0
.long .Ldef-.LT0
.long .Lcase3-.LT0

Figure 36. Position-independent switch code, all models

Chapter 1. Low-level system information 35

Data in the parameter list area are naturally addressed at constant offsets from the
stack pointer. However, in the presence of dynamic stack allocation, the offsets from
the stack pointer to the data in the local variables area are not constant. To provide
addressability a frame pointer is established to locate the local variables area
consistently throughout the function’s activation.

Dynamic stack allocation is accomplished by ″opening″ the stack just above the
parameter list area. The following steps show the process in detail:

1. After a new stack frame is acquired, and before the first dynamic space
allocation, a new register, the frame pointer or FP, is set to the value of the
stack pointer. The frame pointer is used for references to the function’s local,
non-static variables. The frame pointer does not change during the execution of
a function, even though the stack pointer may change as a result of dynamic
allocation.

2. The amount of dynamic space to be allocated is rounded up to a multiple of 8
bytes, so that 8-byte stack alignment is maintained.

3. The stack pointer is decreased by the rounded byte count, and the address of
the previous stack frame (the back chain) may be stored at the word addressed
by the new stack pointer. The back chain is not necessary to restore from this
allocation at the end of the function since the frame pointer can be used to
restore the stack pointer.

Figure 37 on page 37 is a snapshot of the stack layout after the prolog code has
dynamically extended the stack frame.

36 LINUX for S/390: ELF ABI Supplement

The above process can be repeated as many times as desired within a single
function activation. When it is time to return, the stack pointer is set to the value of
the back chain, thereby removing all dynamically allocated stack space along with
the rest of the stack frame. Naturally, a program must not reference the dynamically
allocated stack area after it has been freed.

Even in the presence of signals, the above dynamic allocation scheme is ″safe.″ If
a signal interrupts allocation, one of three things can happen:

v The signal handler can return. The process then resumes the dynamic allocation
from the point of interruption.

v The signal handler can execute a non-local goto or a jump. This resets the
process to a new context in a previous stack frame, automatically discarding the
dynamic allocation.

v The process can terminate.

Regardless of when the signal arrives during dynamic allocation, the result is a
consistent (though possibly dead) process.

Figure 37. Dynamic Stack Space Allocation

Chapter 1. Low-level system information 37

DWARF definition
This section defines the ″Debug with Arbitrary Record Format″ (DWARF) debugging
format for the S/390 processor family. The S/390 ABI does not define a debug
format. However, all systems that do implement DWARF shall use the following
definitions.

DWARF is a specification developed for symbolic source-level debugging. The
debugging information format does not favor the design of any compiler or
debugger.

The DWARF definition requires some machine-specific definitions. The register
number mapping is specified for the S/390 processors in Table 7.

Table 7. DWARF register number mapping

DWARF number S/390 register

0-15 gpr0-gpr15

16 fpr0

17 fpr2

18 fpr4

19 fpr6

20 fpr1

21 fpr3

22 fpr5

23 fpr7

24 fpr8

25 fpr10

26 fpr12

27 fpr14

28 fpr9

29 fpr11

30 fpr13

31 fpr15

32–47 cr0-cr15

48–63 ar0-ar15

64 PSW mask

65 PSW address

38 LINUX for S/390: ELF ABI Supplement

Chapter 2. Object files

ELF Header . 39
Machine Information . 39

Sections . 39
Special Sections . 39
Symbol Table . 40

Symbol Values . 40
Relocation . 40

Relocation Types . 40

This section describes the Executable and Linking Format (ELF).

ELF Header

Machine Information
For file identification in e_ident the S/390 processor family requires the values
shown in Table 8.

Table 8. Auxiliary Vector Types Description

Position Value Comments

e_ident[EI_CLASS] ELFCLASS32 For all 32bit implementations

e_ident[EI_DATA] ELFDATA32MSB For all Big-Endian
implementations

The ELF header’s e_flags field holds bit flags associated with the file. Since the
S/390 processor family defines no flags, this member contains zero.

Processor identification resides in the ELF header’s e_machine field and must have
the value 22, defined as the name EM_S390.

Sections

Special Sections
Various sections hold program and control information. The sections listed in
Table 9 are used by the system and have the types and attributes shown.

Table 9. Special Sections

Name Type Attributes

.got SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.plt SHT_PROGBITS SHF_ALLOC + SHF_WRITE +
SHF_EXECINSTR

Special sections are described in Table 10.

Table 10. Special Sections Description

Name Description

© Copyright IBM Corp. 2001 39

Table 10. Special Sections Description (continued)

.got This section holds the Global Offset Table, or GOT. See “Coding
examples” on page 22 and “Global Offset Table” on page 49 for more
information.

.plt This section holds the Procedure Linkage Table, or PLT. See
“Procedure Linkage Table” on page 50 for more information.

Symbol Table

Symbol Values
If an executable file contains a reference to a function defined in one of its
associated shared objects, the symbol table section for the file will contain an entry
for that symbol. The st_shndx field of that symbol table entry contains SHN_UNDEF.
This informs the dynamic linker that the symbol definition for that function is not
contained in the executable file itself. If that symbol has been allocated a Procedure
Linkage Table entry in the executable file, and the st_value field for that symbol
table entry is nonzero, the value is the virtual address of the first instruction of that
PLT entry. Otherwise the st_value field contains zero. This PLT entry address is
used by the dynamic linker in resolving references to the address of the function.
See “Function Addresses” on page 50 for details.

Relocation

Relocation Types
Relocation entries describe how to alter the instruction and data relocation fields
shown in Figure 38 (bit numbers appear in the lower box corners; byte numbers
appear in the upper left box corners).

Figure 38. Relocation Fields

40 LINUX for S/390: ELF ABI Supplement

word32 This specifies a 32-bit field occupying 4 bytes, the alignment of which is 4
bytes unless otherwise specified.

half16 This specifies a 16-bit field occupying 2 bytes with 2-byte alignment (for
example, the immediate field of an ″Add Halfword Immediate″ instruction).

pc16 This specifies a 16-bit field occupying 2 bytes with 2-byte alignment. The
signed value in this field is shifted to the left by 1 before it is used as a
program counter relative displacement (for example, the immediate field of
an ″Branch Relative″ instruction).

low12 This specifies a 12-bit field contained within a halfword with a 2-byte
alignment. The 12 bit unsigned value is the displacement of a memory
reference.

byte8 This specifies a 8-bit field with a 1-byte alignment.

Calculations in Table 11 on page 42 assume the actions are transforming a
relocatable file into either an executable or a shared object file. Conceptually, the
linkage editor merges one or more relocatable files to form the output. It first
determines how to combine and locate the input files, next it updates the symbol
values, and then it performs relocations.

Relocations applied to executable or shared object files are similar and accomplish
the same result. The following notations are used in Table 11 on page 42:

A Represents the addend used to compute the value of the relocatable field.

B Represents the base address at which a shared object has been loaded
into memory during execution. Generally, a shared object file is built with a
0 base virtual address, but the execution address will be different.

G Represents the section offset or address of the Global Offset Table. See
“Coding examples” on page 22 and “Global Offset Table” on page 49 for
more information.

L Represents the section offset or address of the Procedure Linkage Table
entry for a symbol. A PLT entry redirects a function call to the proper
destination. The linkage editor builds the initial PLT. See “Procedure
Linkage Table” on page 50 for more information.

O Represents the offset into the GOT at which the address of the relocation
entry’s symbol will reside during execution. See “Coding examples” on
page 22 and “Global Offset Table” on page 49 for more information.

P Represents the place (section offset or address) of the storage unit being
relocated (computed using r_offset).

R Represents the offset of the symbol within the section in which the symbol
is defined (its section-relative address).

S Represents the value of the symbol whose index resides in the relocation
entry.

Relocation entries apply to bytes, halfwords or words. In either case, the r_offset
value designates the offset or virtual address of the first byte of the affected storage
unit. The relocation type specifies which bits to change and how to calculate their
values. The S/390 family uses only the Elf32_Rela relocation entries with explicit
addends. For the relocation entries, the r_addend field serves as the relocation
addend. In all cases, the offset, addend, and the computed result use the byte
order specified in the ELF header.

Chapter 2. Object files 41

The following general rules apply to the interpretation of the relocation types in
Table 11:

v ″+″ and ″-″ denote 32-bit modulus addition and subtraction, respectively. ″>>″
denotes arithmetic right-shifting (shifting with sign copying) of the value of the left
operand by the number of bits given by the right operand.

v For relocation type half16, the upper 16 bits of the value computed must be all
ones or all zeroes. For relocation type pc16, the upper 15 bits of the value
computed must be all ones or all zeroes and the lowest bit must be zero. For
relocation type low12, the upper 20 bits of the value computed must all be zero
and for relocation type byte8, the upper 24 bits of the value computed must all
be zero.

v Reference in a calculation to the value G or O implicitly creates a GOT entry for
the indicated symbol and a reference to L implicitly creates a PLT entry.

Table 11. Relocation Types

Name Value Field Calculation

R_390_NONE 0 none none

R_390_8 1 byte8 S + A

R_390_12 2 low12 S + A

R_390_16 3 half16 S + A

R_390_32 4 word32 S + A

R_390_PC32 5 word32 S + A - P

R_390_GOT12 6 low12 O + A

R_390_GOT32 7 word32 O + A

R_390_PLT32 8 word32 L + A

R_390_COPY 9 none (see below)

R_390_GLOB_DAT 10 word32 S + A (see below)

R_390_JMP_SLOT 11 none (see below)

R_390_RELATIVE 12 word32 B + A (see below)

R_390_GOTOFF 13 word32 S + A - G

R_390_GOTPC 14 word32 G + A - P

R_390_GOT16 15 half16 O + A

R_390_PC16 16 half16 S + A - P

R_390_PC16DBL 17 pc16 (S + A - P) >> 1

R_390_PLT16DBL 18 pc16 (L + A - P) >> 1

Table 12. Relocation type descriptions

Name Description

R_390_COPY The linkage editor creates this relocation type for dynamic
linking. Its offset member refers to a location in a writable
segment. The symbol table index specifies a symbol that should
exist both in the current object file and in a shared object.
During execution, the dynamic linker copies data associated
with the shared object’s symbol to the location specified by the
offset.

42 LINUX for S/390: ELF ABI Supplement

Table 12. Relocation type descriptions (continued)

R_390_GLOB_DAT This relocation type resembles R_390_32, except that it sets a
Global Offset Table entry to the address of the specified symbol.
This special relocation type allows one to determine the
correspondence between symbols and GOT entries.

R_390_JMP_SLOT The linkage editor creates this relocation type for dynamic
linking. Its offset member gives the location of a Procedure
Linkage Table entry. The dynamic linker modifies the PLT entry
to transfer control to the designated symbol’s address (see
“Procedure Linkage Table” on page 50).

R_390_RELATIVE The linkage editor creates this relocation type for dynamic
linking. Its offset member gives a location within a shared object
that contains a value representing a relative address. The
dynamic linker computes the corresponding virtual address by
adding the virtual address at which the shared object was
loaded to the relative address. Relocation entries for this type
must specify 0 for the symbol table index.

Chapter 2. Object files 43

44 LINUX for S/390: ELF ABI Supplement

Chapter 3. Program loading and dynamic linking

Program Loading . 45
Dynamic Linking . 49

Dynamic Section . 49
Global Offset Table . 49
Function Addresses . 50
Procedure Linkage Table . 50

This section describes how the Executable and Linking Format (ELF) is used in the
construction and execution of programs.

Program Loading
As the system creates or augments a process image, it logically copies a file’s
segment to a virtual memory segment. When – and if – the system physically reads
the file depends on the program’s execution behavior, on the system load, and so
on. A process does not require a physical page until it references the logical page
during execution, and processes commonly leave many pages unreferenced.
Therefore, if physical reads can be delayed they can frequently be dispensed with,
improving system performance. To obtain this efficiency in practice, executable and
shared object files must have segment images of which the offsets and virtual
addresses are congruent modulo the page size.

Virtual addresses and file offsets for the S/390 processor family segments are
congruent modulo 4 Kbytes. The value of the p_align field of each program header
in a shared object file must be 0x1000 (4 Kbytes). Figure 39 on page 46 is an
example of an executable file assuming an executable program linked with a base
address of 0x00400000 (4 Mbytes).

© Copyright IBM Corp. 2001 45

Table 13. Program Header Segments

Member Text Data

p_type PT_LOAD PT_LOAD

p_offset 0x0 0x1bf58

p_vaddr 0x400000 0x41cf58

p_paddr unspecified unspecified

p_filesz 0x1bf58 0x17c4

p_memsz 0x1bf58 0x2578

p_flags PF_R+PF_X PF_R+PF_W

p_align 0x1000 0x1000

Although the file offsets and virtual addresses are congruent modulo 4 Kbytes for
both text and data, up to four file pages can hold impure text or data (depending on
page size and file system block size).

v The first text page contains the ELF header, the program header table, and other
information.

v The last text page may hold a copy of the beginning of data.

v The first data page may have a copy of the end of text.

v The last data page may contain file information not relevant to the running
process.

Logically, the system enforces memory permissions as if each segment were
complete and separate; segment addresses are adjusted to ensure that each logical
page in the address space has a single set of permissions. In the example in

Figure 39. Executable File Example

46 LINUX for S/390: ELF ABI Supplement

Table 13 on page 46 the file region holding the end of text and the beginning of data
is mapped twice; at one virtual address for text and at a different virtual address for
data.

The end of the data segment requires special handling for uninitialized data, which
the system defines to begin with zero values. Thus if the last data page of a file
includes information beyond the logical memory page, the extraneous data must be
set to zero by the loader, rather than to the unknown contents of the executable file.
’Impurities’ in the other three segments are not logically part of the process image,
and whether the system clears them is unspecified. The memory image for the
program in Table 13 is presented in Figure 40.

Figure 40. Process Image Segments

Chapter 3. Program loading and dynamic linking 47

One aspect of segment loading differs between executable files and shared objects.
Executable file segments may contain absolute code. For the process to execute
correctly, the segments must reside at the virtual addresses assigned when building
the executable file, with the system using the p_vaddr values unchanged as virtual
addresses.

On the other hand, shared object segments typically contain position-independent
code. This allows a segment’s virtual address to change from one process to
another, without invalidating execution behavior. Though the system chooses virtual
addresses for individual processes, it maintains the ″relative positions″ of the
segments. Because position-independent code uses relative addressing between
segments, the difference between virtual addresses in memory must match the
difference between virtual addresses in the file. Table 14 shows possible shared
object virtual address assignments for several processes, illustrating constant
relative positioning. The table also illustrates the base address computations.

Table 14. Shared Object Segment Example

Source Text Data Base Address

File 0x00000200 0x0002a400

Process 1 0x40000000 0x4002a400 0x40000000

Process 2 0x40010000 0x4003a400 0x40010000

Process 3 0x40020000 0x4004a400 0x40020000

Process 4 0x40030000 0x4005a400 0x40030000

48 LINUX for S/390: ELF ABI Supplement

Dynamic Linking

Dynamic Section
Dynamic section entries give information to the dynamic linker. Some of this
information is processor-specific, including the interpretation of some entries in the
dynamic structure.

DT_PLTGOT
The d_ptr field of this entry gives the address of the first byte in the
Procedure Linkage Table (.PLT in “Procedure Linkage Table” on page 50).

DT_JMPREL
This entry is associated with a table of relocation entries for the PLT. For
S/390 this entry is mandatory both for executable and shared object files.
Moreover, the relocation table’s entries must have a one-to-one
correspondence with the PLT. The table of DT_JMPREL relocation entries is
wholly contained within the DT_RELA referenced table. See “Procedure
Linkage Table” on page 50 for more information.

Global Offset Table
Position-independent code cannot, in general, contain absolute virtual addresses.
Global Offset Tables hold absolute addresses in private data, thus making the
addresses available without compromising the position-independence and
sharability of a program’s text. A program references its GOT using
position-independent addressing and extracts absolute values, thus redirecting
position-independent references to absolute locations.

When the dynamic linker creates memory segments for a loadable object file, it
processes the relocation entries, some of which will be of type R_390_GLOB_DAT,
referring to the GOT. The dynamic linker determines the associated symbol values,
calculates their absolute addresses, and sets the GOT entries to the proper values.
Although the absolute addresses are unknown when the linkage editor builds an
object file, the dynamic linker knows the addresses of all memory segments and
can thus calculate the absolute addresses of the symbols contained therein.

A GOT entry provides direct access to the absolute address of a symbol without
compromising position-independence and sharability. Because the executable file
and shared objects have separate GOTs, a symbol may appear in several tables.
The dynamic linker processes all the GOT relocations before giving control to any
code in the process image, thus ensuring the absolute addresses are available
during execution.

The dynamic linker may choose different memory segment addresses for the same
shared object in different programs; it may even choose different library addresses
for different executions of the same program. Nevertheless, memory segments do
not change addresses once the process image is established. As long as a process
exists, its memory segments reside at fixed virtual addresses.

The format and interpretation of the Global Offset Table is processor specific. For
S/390 the symbol _GLOBAL_OFFSET_TABLE_ may be used to access the table. The
symbol refers to the start of the .got section. Two words in the GOT are reserved:

v The word at _GLOBAL_OFFSET_TABLE_[0] is set by the linkage editor to hold the
address of the dynamic structure, referenced with the symbol _DYNAMIC. This
allows a program, such as the dynamic linker, to find its own dynamic structure

Chapter 3. Program loading and dynamic linking 49

without having yet processed its relocation entries. This is especially important
for the dynamic linker, because it must initialize itself without relying on other
programs to relocate its memory image.

v The word at _GLOBAL_OFFSET_TABLE_[1] is reserved for future use.

The Global Offset Table resides in the ELF .got section.

Function Addresses
References to a function address from an executable file and from the shared
objects associated with the file must resolve to the same value. References from
within shared objects will normally be resolved (by the dynamic linker) to the virtual
address of the function itself. References from within the executable file to a
function defined in a shared object will normally be resolved (by the linkage editor)
to the address of the Procedure Linkage Table entry for that function within the
executable file.

To allow comparisons of function addresses to work as expected, if an executable
file references a function defined in a shared object, the linkage editor will place the
address of the PLT entry for that function in its associated symbol table entry. See
“Symbol Values” on page 40 for details. The dynamic linker treats such symbol table
entries specially. If the dynamic linker is searching for a symbol and encounters a
symbol table entry for that symbol in the executable file, it normally follows these
rules:

v If the st_shndx field of the symbol table entry is not SHN_UNDEF, the dynamic linker
has found a definition for the symbol and uses its st_value field as the symbol’s
address.

v If the st_shndx field is SHN_UNDEF and the symbol is of type STT_FUNC and the
st_value field is not zero, the dynamic linker recognizes this entry as special and
uses the st_value field as the symbol’s address.

v Otherwise, the dynamic linker considers the symbol to be undefined within the
executable file and continues processing.

Some relocations are associated with PLT entries. These entries are used for direct
function calls rather than for references to function addresses. These relocations
are not treated specially as described above because the dynamic linker must not
redirect PLT entries to point to themselves.

Procedure Linkage Table
Much as the Global Offset Table redirects position-independent address calculations
to absolute locations, the Procedure Linkage Table redirects position-independent
function calls to absolute locations. The linkage editor cannot resolve execution
transfers (such as function calls) from one executable or shared object to another,
so instead it arranges for the program to transfer control to entries in the PLT. The
dynamic linker determines the absolute addresses of the destinations and stores
them in the GOT, from which they are loaded by the PLT entry. The dynamic linker
can thus redirect the entries without compromising the position-independence and
sharability of the program text. Executable files and shared object files have
separate PLTs.

As mentioned above, a relocation table is associated with the PLT. The DT_JMPREL
entry in the _DYNAMIC array gives the location of the first relocation entry. The
relocation table entries match the PLT entries in a one-to-one correspondence
(relocation table entry 1 applies to PLT entry 1 and so on). The relocation type for

50 LINUX for S/390: ELF ABI Supplement

each entry shall be R_390_JMP_SLOT. The relocation offset shall specify the address
of the GOT entry containing the address of the function and the symbol table index
shall reference the appropriate symbol.

To illustrate Procedure Linkage Tables, Figure 41 shows how the linkage editor
might initialize the PLT when linking a shared executable or shared object.

As described below the dynamic linker and the program cooperate to resolve
symbolic references through the PLT. Again, the details described below are for
explanation only. The precise execution-time behavior of the dynamic linker is not
specified.

1. The caller of a function in a different shared object transfers control to the start
of the PLT entry associated with the function.

2. The first part of the PLT entry loads the address from the GOT entry associated
with the function to be called. The control is transferred to the code referenced
by the address. If the function has already been called at least once, or lazy
binding is not used, then the address found in the GOT is the address of the
function.

3. If a function has never been called and lazy binding is used then the address in
the GOT points to the second half of the PLT. The second half loads the offset
in the symbol table associated with the called function. Control is then
transferred to the special first entry of the PLT.

4. This first entry of the PLT entry (Figure 42 on page 52) calls the dynamic linker
giving it the offset into the symbol table and the address of a structure that
identifies the location of the caller.

5. The dynamic linker finds the real address of the symbol. It will store this
address in the GOT entry of the function in the object code of the caller and it
will then transfer control to the function.

6. Subsequent calls to the function from this object will find the resolved address in
the first half of the PLT entry and will transfer control directly without invoking
the dynamic linker.

* # PLT for executables (not position independent)
PLT1 BASR 1,0 # Establish base
BASE1 L 1,AGOTENT-BASE1(1) # Load address of the GOT entry

L 1,0(0,1) # Load function address from the GOT to r1
BCR 15,1 # Jump to address

RET1 BASR 1,0 # Return from GOT first time (lazy binding)
BASE2 L 1,ASYMOFF-BASE2(1) # Load offset in symbol table to r1

BRC 15,-x # Jump to start of PLT
.word 0 # Filler

AGOTENT .long ? # Address of the GOT entry
ASYMOFF .long ? # Offset into the symbol table

* # PLT for shared objects (position independent)
PLT1 BASR 1,0 # Establish base
BASE1 L 1,AGOTOFF-BASE1(1) # Load offset into the GOT to r1

L 1,(1,12) # Load address from the GOT to r1
BCR 15,1 # Jump to address

RET1 BASR 1,0 # Return from GOT first time (lazy binding)
BASE2 L 1,ASYMOFF-BASE2(1) # Load offset in symbol table to r1

BRC 15,-x # Jump to start of PLT
.word 0 # Filler

AGOTOFF .long ? # Offset in the GOT
ASYMOFF .long ? # Offset in the symbol table

Figure 41. Procedure Linkage Table Example

Chapter 3. Program loading and dynamic linking 51

The LD_BIND_NOW environment variable can change dynamic linking behavior. If its
value is not null the dynamic linker resolves the function call binding at load time,
before transferring control to the program. In other words the dynamic linker
processes relocation entries of type R_390_JMP_SLOT during process initialization. If
LD_BIND_NOW is null the dynamic linker evaluates PLT entries lazily, delaying symbol
resolution and relocation until the first execution of a table entry.

Note: Lazy binding generally improves overall application performance because
unused symbols do not incur the overhead of dynamic linking. Nevertheless,
two situations make lazy binding undesirable for some applications:

1. The initial reference to a shared object function takes longer than
subsequent calls because the dynamic linker intercepts the call to
resolve the symbol, and some applications cannot tolerate this
unpredictability.

2. If an error occurs and the dynamic linker cannot resolve the symbol, the
dynamic linker will terminate the program. Under lazy binding, this might
occur at arbitrary times. Once again, some applications cannot tolerate
this unpredictability. By turning off lazy binding, the dynamic linker forces
the failure to occur during process initialization, before the application
receives control.

* # PLT0 for static object (not position-independent)
PLT0 ST 1,28(15) # R1 has offset into symbol table

BASR 1,0 # Establish base
BASE1 L 1,AGOT-BASE1(1) # Get address of GOT

MVC 24(4,15),4(1) # Move loader info to stack
L 1,8(1) # Get address of loader
BR 1 # Jump to loader
.word 0 # Filler

AGOT .long got # Address of GOT

PLT0 for shared object (position-independent)
PLT0 ST 1,28(15) # R1 has offset into symbol table

L 1,4(12) # Get loader info (object struct address)
ST 1,24(15) # Store address
L 1,8(12) # Entry address of loader in R1
BR 1 # Jump to loader

Figure 42. Special first entry in Procedure Linkage Table

52 LINUX for S/390: ELF ABI Supplement

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information about the products
and services currently available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and verify the operation
of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM

© Copyright IBM Corp. 2001 53

has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Programming interface information
This book contains information and examples which are not intended to be used as
a programming interface of LINUX for S/390.

Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States, other countries, or both:

IBM ESA/390
S/390 System/390
zSeries z/Architecture

LINUX is a registered trademark of Linus Torvalds and others.

Other company, product, and service names may be trademarks or service marks
of others.

54 LINUX for S/390: ELF ABI Supplement

Bibliography

Related publications:

v ESA/390 Principles of Operation: SA22–7201

v System V Application Binary Interface

© Copyright IBM Corp. 2001 55

56 LINUX for S/390: ELF ABI Supplement

Index

A
absolute code 22
address

application 16
function 50
indirect 26
mapping 16
virtual 15, 45, 49

address space 15
aggregates 4
application address 16
arguments 13, 14

to main 18
arrays 4
auxiliary vector 19

base address 20
effective group id 21
effective user id 21
end 20
entries 20
entry point 21
entry size 20
file descriptor 20
flags 20
ignore 20
not ELF 21
page size 20
program header table 20
real group id 21
real user id 21
types 19, 39

B
base address, auxiliary vector 20
big-endian 2, 3
binding, lazy 51
bit-fields 6
branch instructions 34
byte ordering

doubleword 3
halfword 3
word 3

C
calling convention, registers 10
calling sequence, function 9
char type 4, 6
code

absolute 22
examples 22
guidelines 16
model 23
position-independent 22

current instruction address 23

D
data objects 26
Debug with Arbitrary Record Format (DWARF) 38
doubleword byte ordering 3
dynamic linking 40, 43, 49, 50
dynamic section 49
dynamic segments 16
dynamic stack space allocation 35

E
ELF header 39, 46
entry counting 25
enum type 4, 6
epilog, function 23, 24
exceptions 18

F
file descriptor, auxiliary vector 20
file identification 39
flags, auxiliary vector 20
floating point control register 19
floating point type 4
frame pointer 35
function

address 50
allocating dynamic stack 35
call 29
calling sequence 9
epilog 23, 24
main 18
prolog 23, 24
return values 15

G
Global Offset Table (GOT) 10, 23, 26, 30, 39, 41, 43,

49, 50

H
halfword byte ordering 3
header

ELF 39, 46
program 46

I
initial process stack 22
initialization of process 18
int type 4, 6

© Copyright IBM Corp. 2001 57

L
lazy binding 51
link register 23
linkage editor 50
linkage table, procedure 50
linking, dynamic 49, 50
literal pool 10, 26
long long type 4, 6
long type 4, 6

M
main

arguments 18
function 18

N
notices 53

O
object file 39, 49

P
page size 15
parameter

list 35
passing 12

pointer
frame 35
stack 10, 19, 23, 35

pointer type 4
position-independent code 22, 49
Principles of Operation 2
problem state 17
Procedure Linkage Table (PLT) 40, 41, 43, 49, 50
process image 45
process image segments 47
process initialization 18
process stack 16, 19
processor execution mode 17
processor identification 39
profile 25
program base 16
program header 46
program header table, auxiliary vector 20
program loading 45
prolog, function 23, 24

R
register

calling convention 10
DWARF mapping 38
floating point 9
floating point control 19
general 9
link 23

register (continued)
parameter passing 12
usage 10, 19

relocation
entries 40
types 42

return address 10
return values 15

S
section

dynamic 49
special 39

shared object segment 48
short type 4, 6
signal handling 10
signed char type 4, 6
signed int type 4, 6
signed long long type 4, 6
signed long type 4, 6
signed short type 4, 6
space allocation 35
special sections 39
stack 24

dynamic space allocation 35
frame 10, 23, 25, 35
initial process 22
pointer 10, 19, 23, 35
process 16, 19
runtime 10

structures 4
as return values 15

supervisor state 17
switch 34
symbol

table 40
values 40

T
trademarks 54
type

char 4, 6
enum 4, 6
floating point 4
int 4, 6
long 4, 6
long long 4, 6
pointer 4
short 4, 6
signed char 4, 6
signed int 4, 6
signed long 4, 6
signed long long 4, 6
signed short 4, 6
unsigned char 4, 6
unsigned int 4, 6
unsigned long 4, 6
unsigned long long 4, 6
unsigned short 4, 6

58 LINUX for S/390: ELF ABI Supplement

U
unions 4
unsigned char type 4, 6
unsigned int type 4, 6
unsigned long long type 4, 6
unsigned long type 4, 6
unsigned short type 4, 6
user state 17

V
virtual address 15, 45, 49

W
word byte ordering 3

Index 59

60 LINUX for S/390: ELF ABI Supplement

Readers’ Comments — We’d Like to Hear from You

LINUX for S/390
ELF Application Binary Interface
Supplement

Publication No. LNUX-1007-02

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
LNUX-1007-02

LNUX-1007-02

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM CORPORATION
Attn: LINUX for S/390
6300 Diagonal Highway
Boulder, CO, USA
80301-9151

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

LNUX-1007-02

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Prerequisite and related information
	How to send your comments

	Summary of changes
	Chapter 1. Low-level system information
	Machine interface
	Processor architecture
	Data representation
	Byte ordering
	Fundamental types
	Aggregates and unions
	Bit-fields

	Function calling sequence
	Registers
	Register usage

	The stack frame
	Parameter passing
	Variable argument lists
	Return values

	Operating system interface
	Virtual address space
	Page size
	Virtual address assignments
	Managing the process stack
	Coding guidelines
	Processor execution modes

	Exception interface
	Process initialization
	Registers
	Process stack

	Coding examples
	Code model overview
	Function prolog and epilog
	Prolog
	Epilog
	Prolog and epilog example

	Profiling
	Data objects
	Function calls
	Branching
	Dynamic stack space allocation

	DWARF definition

	Chapter 2. Object files
	ELF Header
	Machine Information

	Sections
	Special Sections
	Symbol Table
	Symbol Values

	Relocation
	Relocation Types

	Chapter 3. Program loading and dynamic linking
	Program Loading
	Dynamic Linking
	Dynamic Section
	Global Offset Table
	Function Addresses
	Procedure Linkage Table

	Notices
	Programming interface information
	Trademarks

	Bibliography
	Index
	Readers’ Comments — We'd Like to Hear from You

