

ibm.com/redbooks

Linux
for S/390

Erich Amrehn, Joerg Arndt
Dave Bennin, Mark Cathcart
Richard Higson, Cliff Laking

Richard Lewis, Michael MacIsaac
Susan Matuszewski, Eugene Ong

Hans Dieter Mertiens, Eric Schabell

How can Linux exploit the strengths of
S/390?

What different ways can Linux
be installed on S/390?

Which Linux applications
can run on S/390?

Linux for S/390

September 2000

SG24-4987-00

International Technical Support Organization

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (September 2000)

This edition applies to Linux for S/390 Marist Version, 2.2.15 and SuSE Linux for S/390 pre-relase
distribution. At the time of writing this redbook there was no Linux for S/390 distribution available from
TurboLinux.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix F, “Special notices” on page 501.

Take Note!

Contents

Figures . xvii

Tables. .xxi

Preface . xxiii
The team that wrote this redbook. xxiii
Comments welcome. xxvi

Chapter 1. Technology and business . 1
1.1 The open source revolution . 2
1.2 Technology directions for business innovation 4
1.3 Edge of Network devices and services . 4
1.4 The Utility Service Provision (USP) . 7
1.5 Complexity impedance . 9

Chapter 2. Open source . 11
2.1 The GNU Public License . 12
2.2 The IBM Public License . 13
2.3 Flourishing through open standards . 13
2.4 The Application Framework for e-business . 14
2.5 Summarizing open, shared standards . 14

Chapter 3. Why Linux . 17
3.1 Applications and Linux . 19
3.2 IBM strategy for Linux . 22

3.2.1 An introduction to Linux for S/390 . 25
3.3 Running Linux on S/390 . 26
3.4 Communication and connectivity . 28
3.5 Other device support . 29
3.6 Linux and S/390 benefits . 30
3.7 Application scenarios with Linux on S/390 . 30
3.8 Tools and technologies . 32

3.8.1 DB2 Connect . 34
3.8.2 CICS . 34
3.8.3 IMS. 34
3.8.4 MQ Series . 34
3.8.5 DB2 Universal Database (UDB) . 34
3.8.6 Tivoli Framework end-point support . 35
3.8.7 Tivoli Storage Manager Client. 36
3.8.8 Summary . 37
© Copyright IBM Corp. 2000 iii

Chapter 4. Linux distributions . 39
4.1 What a distribution is . 41

4.1.1 Announced distributions . 41
4.1.2 Distribution media. 42
4.1.3 Roll your own . 42

4.2 Linux documentation . 42

Chapter 5. Native S/390 installation and operation of Linux 45
5.1 Assumptions. 45
5.2 Skills and resources required . 45
5.3 Hardware preparation. 46
5.4 The hardware we used . 47
5.5 Activating Linux for S/390. 48

5.5.1 Creating an IPLable tape . 48
5.5.2 Getting the files to your host system . 52
5.5.3 JCL to create the tape . 53

5.6 Using the Hardware Management Console (HMC) to IPL 57
5.7 Verifying the IPL from tape . 64

5.7.1 IPL messages for Linux . 65
5.7.2 Formatting DASD for Linux . 66
5.7.3 Upload and customize the new file system 71
5.7.4 Creating and activating swap space . 73
5.7.5 Customizing Linux for S/390 configuration files. 75
5.7.6 Creating a new kernel. 77
5.7.7 Write IPL information to DASD . 78
5.7.8 ReIPL with the customized root file system on DASD 80

5.8 Linux for S/390 on a P/390 . 82
5.8.1 Attempting to install on a P/390 . 82

Chapter 6. VM installation and operation of Linux for S/390 85
6.1 Linux for S/390 in a virtual machine (as a guest of VM) 85
6.2 Installing Linux for S/390 . 86

6.2.1 Installation steps overview . 87
6.2.2 Decide on the install method . 87
6.2.3 Prepare the virtual machine to run Linux for S/390 90
6.2.4 Prepare the networking environment . 93
6.2.5 Typical connectivity configuration . 93
6.2.6 Obtain the binary files . 94
6.2.7 Copy files to VM and reblock . 95
6.2.8 Create the initial kernel parameter file . 97
6.2.9 Boot initial Linux for S/390 kernel . 98
6.2.10 Install the root file system . 99
6.2.11 Complete the customization . 99
iv Linux for S/390

6.3 Installing Marist College binaries . 100
6.3.1 Install method . 100
6.3.2 Linux for S/390 virtual machine definitions 100
6.3.3 Networking definitions . 103
6.3.4 Downloading the binaries . 104
6.3.5 Copying Marist files to VM and reblocking 106
6.3.6 Creating the kernel parameter file. 107
6.3.7 Boot the kernel . 108
6.3.8 Install the root file system . 115
6.3.9 Complete customization . 116

6.4 Logging into your Linux for S/390 system . 121
6.5 3215 driver considerations . 121
6.6 IUCV connections. 122
6.7 Linux for S/390 device files and virtual device numbers 122
6.8 Operational considerations . 125

6.8.1 Starting Linux for S/390 virtual machines 125
6.8.2 Stopping Linux for S/390 virtual machines 126
6.8.3 Secondary console interface. 126
6.8.4 Taking backups of Linux for S/390 file systems 127

6.9 Performance considerations . 128
6.9.1 Reducing Linux for S/390 swapping . 129
6.9.2 Virtual machine priority . 131

Chapter 7. Installing SuSE Linux on S/390 . 133
7.1 Types of installation . 133
7.2 System requirements . 133

7.2.1 Required hardware features . 134
7.2.2 Required APARs and fixes . 134
7.2.3 Software . 135

7.3 Connection requirements . 135
7.3.1 Console . 135
7.3.2 Network connection . 136
7.3.3 The telnet client . 136
7.3.4 NFS or FTP server . 137

7.4 IPLing the install system. 137
7.4.1 IPLing from the VM reader . 138
7.4.2 IPLing from tape . 138
7.4.3 IPLing from the CD-ROM (emulated tape) 139
7.4.4 The Load from CDROM or server task 139

7.5 Setting the network parameters in Linux. 140
7.6 Loading the DASD device driver . 141
7.7 Installing with YaST . 142

7.7.1 Finishing the install when using a CTC network device. 162
 v

7.8 Booting the installed system . 163

Chapter 8. Linux for S/390 bootup and shutdown 165
8.1 Linux run levels . 165
8.2 Kernel initialization . 168
8.3 The init process and run level. 171

8.3.1 System init and inittab . 172
8.3.2 Basic system initialization . 174

8.4 Shutdown . 175

Chapter 9. Linux for S/390 administration . 177
9.1 Devices . 177

9.1.1 DASD (direct access storage device) . 179
9.1.2 VM minidisk . 180
9.1.3 XPRAM . 181
9.1.4 Creating a device node with mknod . 182
9.1.5 Linux for S/390 device node assignment 183

9.2 File system types . 185
9.2.1 Block size relation between device and file system 186
9.2.2 The file system table /etc/fstab . 187
9.2.3 Checking and repairing an ext2 file system: e2fsck. 188

9.3 Linux swap space . 188
9.3.1 Creating swap spaces . 189
9.3.2 Activating and deactivating swap spaces 189
9.3.3 Displaying information on swap spaces 189
9.3.4 Preparing swap space . 190

9.4 File systems and devices . 192
9.4.1 Formatting a block device: dasdfmt . 192
9.4.2 Creating a file system: mke2fs . 193
9.4.3 Accessing a file system: mount. 194
9.4.4 Making a device bootable: silo . 195

9.5 Users and groups . 197
9.5.1 Creating a user account: useradd . 198
9.5.2 Modifying a user account: usermod . 199
9.5.3 Deleting a user account: userdel . 199
9.5.4 Verifying the integrity of the passwd file: pwck 200
9.5.5 Creating a new group: groupadd. 200
9.5.6 Modifying a group: groupmod . 201
9.5.7 Deleting a group: groupdel . 201
9.5.8 Verifying the integrity of the group file: grpck 202

9.6 File ownership and access permissions . 202
9.7 Changing passwords . 203
9.8 Shells . 203
vi Linux for S/390

9.9 System logs . 203
9.10 Cron . 206
9.11 Pluggable Authentication Module (PAM). 207
9.12 Interactive administrative utilities . 208

9.12.1 Linuxconf . 208
9.12.2 YAST . 208
9.12.3 YAST2 . 209

Chapter 10. Backup . 211
10.1 The general concept. 211

10.1.1 Backup strategies . 211
10.2 Native backup commands . 213

10.2.1 dump/restore . 214
10.2.2 cpio . 219
10.2.3 tar. 222

10.3 Backup programs and tools . 224

Chapter 11. System maintenance and upgrade 225
11.1 Where to obtain software . 225
11.2 Overview of upgrade strategies . 226
11.3 Software installation with RPM . 226

11.3.1 RPM overview . 226
11.3.2 The RPM database . 227
11.3.3 Querying package information . 228
11.3.4 Checking dependencies . 229
11.3.5 Install and update a package . 230
11.3.6 Post-installation steps for source RPMs 230
11.3.7 Removing a package . 233

11.4 Software installation with tar . 233
11.5 Updating libraries . 235

11.5.1 Upgrading shared libraries . 236
11.5.2 Resolving incompatibilities . 237

11.6 Build and customize the kernel . 238
11.6.1 Preparing a second bootable device . 239
11.6.2 Get the Linux kernel source . 241
11.6.3 Recompiling the S/390 tool chain (binutils and gcc) 243
11.6.4 Preparing /usr/src/linux. 244
11.6.5 Configure and compile the kernel . 246
11.6.6 Install object code only (OCO) modules 249
11.6.7 Activate the new kernel. 250
11.6.8 Post-installation steps. 250

Chapter 12. Changing your root device . 253
12.1 Upgrading from Marist-2.2.xx to Marist-2.2.yy 253
 vii

12.2 Preparing a new volume . 253
12.3 Summation . 257

Chapter 13. Hardware connectivity . 259
13.1 OSA-2 . 259

13.1.1 OSA-2 features. 260
13.1.2 OSA-2 modes . 261

13.2 The 2216 hardware interface . 262
13.2.1 2216 ESCON channel adapter features 263
13.2.2 2216 ESCON channel protocols . 263

13.3 CTC . 264
13.3.1 CTC support . 264

Chapter 14. Linux TCP/IP connectivity . 267
14.1 Assumptions. 267

14.1.1 Skills. 267
14.2 TCP/IP protocols . 267

14.2.1 Transmission Control Protocol (TCP) 268
14.2.2 User Datagram Protocol (UDP). 268
14.2.3 Internet Control Message Protocol (ICMP) 268

14.3 IP address types . 269
14.3.1 Static IP addresses. 269
14.3.2 Dynamic IP addresses . 269

14.4 Configuration files . 269
14.4.1 The hosts file . 269
14.4.2 The services file . 270
14.4.3 The protocols file . 270
14.4.4 The HOSTNAME file. 271
14.4.5 The inetd.conf file . 271

14.5 The network script . 272
14.6 Network daemons . 272

14.6.1 Overview of inetd . 272
14.6.2 Telnetd . 273
14.6.3 Ftpd . 274
14.6.4 Syslogd . 274

14.7 Troubleshooting . 274
14.7.1 The ping command . 274
14.7.2 The netstat command . 275
14.7.3 The ifconfig command . 275
14.7.4 The route command . 276

14.8 Access to data and applications . 277
14.8.1 The telnet command . 277
14.8.2 ftp . 279
viii Linux for S/390

14.8.3 rlogin, rsh and rcp. 279
14.8.4 ssh . 279

Chapter 15. Linux for S/390 connectivity to VM, OS/390, VSE 283
15.1 Configuring the network . 283
15.2 Logical partition . 285

15.2.1 OSA-2 in LPAR. 286
15.3 Linux for S/390 running in a virtual machine 286

15.3.1 Networking definitions . 287
15.3.2 LAN Channel Station (LCS) . 288
15.3.3 IUCV . 291
15.3.4 CTC or IUCV . 297
15.3.5 Linux for S/390 configuration files . 298
15.3.6 VM TCP/IP configuration files . 298

15.4 TCP/IP for OS/390 connectivity . 300
15.4.1 Where to find daemons or services. 302
15.4.2 Troubleshooting OS/390 TCP/IP to Linux for S/390 304
15.4.3 Inetd daemon in OS/390 . 306

15.5 Access to data and applications . 307
15.5.1 OS/390 . 307
15.5.2 VM/ESA . 312
15.5.3 VSE/ESA . 314

Chapter 16. Development tools . 317
16.1 Archiving and compression tools . 317

16.1.1 The gzip command . 317
16.1.2 The bzip2 command . 317
16.1.3 The compress command . 318
16.1.4 The tar command . 318
16.1.5 The zip command . 319
16.1.6 Other archiving tools. 319

16.2 Compilers . 319
16.2.1 The gcc and g++ compilers. 319
16.2.2 Perl. 320
16.2.3 Regina . 321

16.3 Editing Linux files . 321
16.3.1 The vi editor . 321
16.3.2 emacs. 322
16.3.3 joe, jove, pico . 322
16.3.4 The sed editor . 323
16.3.5 The pfe editor . 323
16.3.6 The THE editor . 323

16.4 Make tools . 323
 ix

16.4.1 Make . 323
16.4.2 automake . 324
16.4.3 autoconf . 324

16.5 Source code control tools . 325
16.5.1 RCS and CVS. 325
16.5.2 Kdevelop . 326

16.6 Code analyzers . 326
16.6.1 LCLint. 326
16.6.2 Compiler code analyzer features . 326

16.7 Debugging facilities . 327
16.7.1 The gdb debugger . 327
16.7.2 The Data Display Debugger, ddd . 328
16.7.3 The MALLOC_CHECK_ environment variable 328
16.7.4 nana . 328

16.8 The strace and ltrace tools . 329
16.9 bash’s -v and -x option . 330
16.10 Performance analysis with gprof . 330
16.11 lex and yacc . 331
16.12 A simple example . 332

Chapter 17. File Transfer Protocol (FTP). 335
17.1 Overview of FTP. 335
17.2 TFTP . 335
17.3 Anonymous FTP. 335
17.4 Controlling access . 336

17.4.1 Traditional FTP security . 336
17.4.2 Anonymous FTP security . 336

17.5 Converting files . 337
17.6 Administrative tools . 337

17.6.1 The tcpd command . 337
17.6.2 The FTP daemon . 338
17.6.3 The ftpaccess file . 339
17.6.4 The ftpusers file . 341
17.6.5 The ftpgroups file . 341
17.6.6 The ftphosts file . 341
17.6.7 The ftpconversions file . 342
17.6.8 The ftpcount command . 343
17.6.9 The ftpshut command . 343
17.6.10 The ftpwho command . 344

17.7 Client notes . 344
17.8 A different FTP server - ProFTPD. 345

17.8.1 Obtaining ProFTPD . 346
x Linux for S/390

Chapter 18. Domain Name Service (DNS) . 349
18.1 Introduction to DNS . 349

18.1.1 Assumptions . 349
18.1.2 Skills. 349

18.2 How it works, in theory . 350
18.2.1 In action . 351

18.3 DNS solutions on S/390 . 352
18.3.1 Using OS/390 . 352

18.4 Hardware and software setup . 353
18.4.1 Software not included . 353

18.5 Caching-only name server . 354
18.5.1 Forwarding out of a protected network 355
18.5.2 Configuration files. 355
18.5.3 Starting named . 359
18.5.4 Testing with nslookup . 360

18.6 Tools . 361
18.6.1 dig . 361
18.6.2 The dnsquery program . 362
18.6.3 The host program . 363
18.6.4 The nslookup tool . 364
18.6.5 The nsupdate command . 364

18.7 Summary . 365

Chapter 19. Network File System (NFS) . 367
19.1 Installation of the server . 367
19.2 Customizing . 367

19.2.1 NFS Server. 368
19.2.2 NFS Client . 368

19.3 Operation . 369
19.3.1 As a server for AIX . 370
19.3.2 As a server to OS/2 . 370
19.3.3 As a server for OS/390 . 372
19.3.4 As a client to OS/390 . 374
19.3.5 As a client to VM/ESA. 376
19.3.6 As a client to VSE/ESA. 377
19.3.7 Data representation considerations . 377
19.3.8 OS/390 access security . 378

19.4 VM/ESA access security . 385

Chapter 20. Samba . 389
20.1 Installation . 389

20.1.1 Installing from an RPM binary or source 389
20.1.2 Installing from source in the original package 389
 xi

20.2 Customization . 393
20.2.1 Starting Samba automatically . 393
20.2.2 Starting SWAT automatically . 393
20.2.3 Using SWAT to customize Samba . 394
20.2.4 Additional resources . 395
20.2.5 Client-side operation. 396
20.2.6 Finding a Samba server from Windows. 396
20.2.7 Supplying the proper credentials from Windows 397
20.2.8 Accessing a Samba share from a DOS prompt 398
20.2.9 Accessing a Samba share from a GUI 399

20.3 Tools . 399
20.3.1 SWAT. 399
20.3.2 smbclient . 402

Chapter 21. The Apache Web server . 405
21.1 Installation . 406

21.1.1 Obtaining a later Apache level . 406
21.1.2 Exploding the Apache tar file . 406
21.1.3 Building Apache . 407
21.1.4 Customization. 410
21.1.5 Server configuration settings . 411
21.1.6 Virtual hosting . 412
21.1.7 Operation . 412
21.1.8 CGI and SSI . 414
21.1.9 SSL . 417
21.1.10 Web Server security considerations 417

Chapter 22. Firewall configuration . 421
22.1 Installation . 422
22.2 Customization . 424
22.3 Operation . 429

Chapter 23. Printing with Linux . 431
23.1 Devices . 431
23.2 Using VM resources . 432
23.3 Using OS/390 resources . 433
23.4 Using Linux as a print data hub . 434

Chapter 24. Linux security issues . 435
24.1 Consider using remote logging . 435
24.2 Disable unnecessary services . 435
24.3 Files and file system security . 436
24.4 Disable remote login for root . 437
24.5 Use encrypted connections . 437
xii Linux for S/390

24.6 Use scp instead of FTP . 437
24.7 Use a tcp wrapper (tcpd) . 438
24.8 Use shadow passwords . 438
24.9 X11 server access control . 439
24.10 Consult the security-related Internet sites regularly 439

Chapter 25. Sources of help and information 441
25.1 man pages . 441
25.2 info . 442
25.3 help . 442
25.4 howto . 443
25.5 RFC . 443
25.6 The Internet . 444
25.7 Books . 444
25.8 Finding a file. 444
25.9 Determining the type of command . 445
25.10 DAU . 445

Chapter 26. Monitoring the system . 447
26.1 Linux facilities and tools . 447

26.1.1 log files . 447
26.1.2 The proc file system . 447
26.1.3 top . 448
26.1.4 ps . 448
26.1.5 pstree . 448
26.1.6 who and w . 449
26.1.7 xosview . 450
26.1.8 xload . 450
26.1.9 procmeter . 450
26.1.10 uptime . 450
26.1.11 free . 450
26.1.12 du and df . 451
26.1.13 fuser . 451

26.2 VM tools . 451

Appendix A. Intel architecture, S/390 architecture 453
A.1 Architecture description . 453

A.1.1 IA32 . 453
A.1.2 S/390 . 456
A.1.3 I/O subsystem. 459

A.2 Symmetric multiprocessing . 460
A.2.1 Intel SMP . 460
A.2.2 IBM SMP. 462

A.3 RAS considerations . 464
 xiii

A.3.1 Intel Profusion chip set RAS considerations. 464
A.3.2 S/390 RAS considerations . 464

A.4 Comparing the IA32 and S/390 architectures . 466

Appendix B. VM/ESA virtual machines. 469
B.0.1 The CP directory . 470
B.0.2 Processors . 472
B.0.3 Storage . 472
B.0.4 Minidisks . 473
B.0.5 Reader, punch, printer . 473
B.0.6 The console . 474
B.0.7 Channel-to-channel device . 474
B.0.8 Virtual I/O . 474
B.0.9 CMS . 475

Appendix C. Linux for S/390 I/O implementation 477

Appendix D. The parameter file . 481
D.1 DASD . 481

D.1.1 Syntax. 481
D.1.2 Example . 482

D.2 Mdisk . 482
D.2.1 Syntax. 482
D.2.2 Example . 482

D.3 Root . 482
D.3.1 Syntax. 483
D.3.2 Example . 483

D.4 Xpram . 483
D.4.1 Syntax. 483
D.4.2 Example . 484

D.5 Ctc/Escon . 484
D.5.1 Syntax. 484
D.5.2 Example . 484

D.6 IUCV . 485
D.6.1 Syntax. 485
D.6.2 Example . 485

D.7 3215 Line mode terminal . 485
D.7.1 Syntax. 485
D.7.2 Example . 486

Appendix E. Troubleshooting and avoiding pitfalls 487
E.1 Cannot boot big file system on VM - /etc/fstab not modified. 487
E.2 Editing /etc/fstab with vi - be sure the last line has a newline 487
E.3 Irritating RPM messages/RPM update with RPM 488
xiv Linux for S/390

E.4 Native Linux silo command - use the proper flags 488
E.5 Linux under VM won’t boot - forgot to ftp files in FB80 489
E.6 Linux under VM won’t boot after improper shutdown 489
E.7 Use the -c flag with the ping command. 490
E.8 Linux under VM - can’t find the vertical bar on the keyboard 490
E.9 Rerun silo after changing the kernel parameter file 490
E.10 Linux under VM - reserve the minidisk . 490
E.11 Linux under VM - format the minidisk . 490
E.12 Linux under VM - IPL hangs . 491
E.13 Device not registered by the kernel . 491
E.14 Cannot mount file system - block sizes not the same. 491
E.15 Disk device ranges in kernel parameter file . 492
E.16 RAM disk full . 492
E.17 The Virtual CTC connection does not start . 492
E.18 Bad superblock . 493
E.19 Error when running dasdfmt . 493
E.20 minidisk.sh . 494
E.21 The script with the networking questions is gone 495
E.22 MTU size problems . 499

Appendix F. Special notices . 501

Appendix G. Related publications. 505
G.1 IBM Redbooks . 505
G.2 IBM Redbooks collections . 505
G.3 Other resources . 506
G.4 Referenced Web sites . 507

How to get IBM Redbooks . 511
IBM Redbooks fax order form . 512

Index . 513

IBM Redbooks review . 521
 xv

xvi Linux for S/390

Figures

1. Infrastructure for e-business . 6
2. The Application Framework for e-business . 14
3. The open standards platform . 15
4. Application infrastructure . 20
5. Application deployment platform pyramid . 22
6. IBM UNIX/Linux strategy . 24
7. Linux on S/390 options . 26
8. Linux on S/390 structure . 40
9. Allocation attributes of the parmline file . 49
10. Win95/NT FTP example. 52
11. OS/2 FTP example . 53
12. Size of parmline file on tape. 56
13. HMC CPC Images Work Area . 58
14. Load with unit address of tape drive . 59
15. cat /var/log/dmesg . 60
16. HMC display of network initialization . 61
17. Delaying tr0 initialization . 62
18. HMC Send Command dialog . 63
19. cat /proc/cpuinfo command . 64
20. cat /proc/meminfo command . 64
21. cat proc/interrupts command . 65
22. Output of the df command . 65
23. Output of the ifconfig command . 65
24. cat /var/log/dmesg command. 66
25. cat /proc/devices command . 67
26. Major number 94 - DASD. 68
27. cat /proc/dasd/devices command . 69
28. mknods already performed on Marist file system 69
29. Tar uncompress of big file system . 72
30. cat of /proc/swaps . 75
31. Customized fstab . 75
32. cat /etc/sysconfig/network-scripts/ifcfg-tr0 . 76
33. cat /etc/resolv.conf . 77
34. Silo command warning message . 79
35. Successful silo command . 80
36. Shutdown messages on the HMC . 81
37. Telnet sessions on shutdown. 81
38. Load profile for IPLing Linux for S/390 on DASD. 82
39. DASD partitioning scheme. 89
40. Sample CP directory definition for Linux for a S/390 virtual machine 91
© Copyright IBM Corp. 2000 xvii

41. Networking configuration with Linux for S/390 running in a virtual machine94
42. Matching Linux for S/390 and VM TCP/IP definitions 104
43. Marist College Linux for S/390 download Web site 105
44. Paging in a three-tier storage model . 129
45. YaST: warning message about a small terminal size 143
46. YaST: language selection . 143
47. YaST: selection of the installation medium . 144
48. YaST: entering the data for the NFS server. 145
49. YaST: selecting the installation menu . 145
50. YaST: select swap partition menu . 146
51. YaST: creating filesystems menu . 146
52. YaST: the mount point menu . 147
53. YaST: the format mode menu . 147
54. YaST: confirmation before actually creating file systems 148
55. YaST: reading the description data . 149
56. YaST: The main installation menu . 149
57. YaST: the load configuration menu . 150
58. YaST: the various software packages . 151
59. YaST: individual packages in series n . 151
60. YaST: automatically resolving dependencies . 152
61. YaST: some dependencies cannot be resolved automatically 153
62. YaST: the consequences menu. 153
63. YaST: the installing package menu . 154
64. YaST: package installation finished . 154
65. YaST: selecting a kernel . 155
66. YaST: list of time zones . 155
67. YaST: local time or GMT . 156
68. YaST: hostname and domain name . 156
69. YaST: real network selection . 157
70. YaST: DHCP server choice . 157
71. YaST: network devices . 158
72. YaST: network addresses . 158
73. YaST: inetd . 159
74. YaST: portmapper . 159
75. YaST: nameserver configuration . 160
76. YaST: network device and module . 160
77. YaST: sendmail configuration . 161
78. YaST: SuSEconfig is running. 161
79. Block usage w/ different block sizes, DASD format & file system make . 187
80. Kernel configuration with menuconfig . 247
81. OSA-2 ENTR, FDDI, ATM, and FENET features. 259
82. IP network topology . 285
83. Where to enter network definitions in Linux for S/390 and VM TCP/IP . . 287
xviii Linux for S/390

84. OSA-2 connections for Linux for S/390 running in a virtual machine. . . . 288
85. CTC connections for Linux for S/390 running in a virtual machine 290
86. IUCV connections for Linux for S/390 running in a virtual machine. 293
87. Two-TC/IP-stack configuration for OS/390 . 301
88. Package build process. 325
89. Browser’s view of Anonymous FTP server . 340
90. Internet domain name space (partial representation) 351
91. The named.conf file . 356
92. The 127.0.0 file . 358
93. A dig sample . 362
94. A dnsquery sample . 363
95. A host example . 364
96. Mounting file system on Linux for S/390 from OS/2 client 371
97. Mount/unmount scenario Linux as a NFS Server for OS/390 373
98. Incremental backup of files on Linux from OS/390 374
99. Mount OS/390 data with a binary view . 377
100.Mountings for text and binary view of data . 377
101.Directory listing of hfs as seen from Linux. 381
102.Directory listing of /bin on hfs as seen from Linux. 382
103.Contents of /u/hdm directory on OS/390 . 383
104.Creating test data from the client . 383
105.Mounting an OS/390 data set on Linux for S/390 384
106.Display of a mounted OS/390 data set . 385
107.Building open source software packages . 390
108.SWAT main window . 395
109.SWAT password management interface. 401
110.SWAT password management without UNIX synchronization 402
111.SWAT with UNIX password sync setting. 402
112.Apache webserver testpage . 411
113.Downloading from the Internet onto the Linux server 431
114.Printing from Linux to VM-managed printers . 432
115.Address translation on IA32 processors . 454
116.Translation of a virtual address to a real one . 458
117.The Profusion chip set. 461
118.The binodal cache . 463
119.S/390 system resources . 469
120.Virtual machines running under the control of a hypervisor 470
 xix

xx Linux for S/390

Tables

1. DASD devices . 50
2. What you really get with “dasd” not specified . 51
3. “dasd” specified with correct devices . 51
4. Using a range on the “dasd” statement . 51
5. OS/390 UNIX System Services HFS vs. Linux for S/390 customization . . 73
6. Device managers and emulated S/390 devices. 90
7. Record lengths for Linux for S/390 boot files . 95
8. FTP subcommands for reblocking files . 96
9. Details of Linux for S/390 minidisks. 101
10. Pairing device numbers in CP COUPLE commands 103
11. Description of files at Marist College Linux for S/390 download site 105
12. Files required by the install method . 106
13. Linux for S/390 device names and S/390 device numbers 124
14. New Linux for S/390 device names and S/390 device numbers. 124
15. Required APARs and fixes . 135
16. Run levels . 165
17. Characteristics of S/390 block devices . 179
18. Device node characteristics for S/390 devices . 183
19. device node association with auto detect . 184
20. Basic characteristics of the ext2 file system . 186
21. Commands to create different types of swap spaces 190
22. From a raw device to processes accessing file systems 192
23. Comparison of backup commands . 213
24. Backup level concept . 215
25. URL references to Linux for S/390 service . 225
26. OSI model . 268
27. Linux for S/390 network driver choices . 283
28. Executables and documentation installed with bind8 354
© Copyright IBM Corp. 2000 xxi

xxii Linux for S/390

Preface

The strengths of S/390 are well known: rock-solid reliability, the ability to run
multiple diverse workloads, and highly scalable technology make S/390 an
ideal choice for hosting key e-business applications. Now Linux has joined the
S/390 family of operating systems, bringing a wealth of open source
applications, middleware, and trained developers to help you respond to your
business challenges quicker than ever before.

This IBM Redbook is aimed at beginners and intermediate Linux users with a
S/390 operating system background. It covers Linux for S/390 Marist
distribution (2.2.15) and a prerelease of the SuSE Linux for S/390 distribution.
At the time of writing, there was no distribution available from TurboLinux.

The first four chapters offer an overview of Linux’s origin, how it fits into the
IBM strategy, what open source means, and why using Linux for S/390 is
significant from an IBM perspective. These chapters are also suitable as a
management overview.

The main part of the book will help you install Linux for S/390 in different
environments. It discusses basic system administration tasks that can help
you manage your Linux for S/390 system. It also introduces a wide range of
services, such as Samba, NFS, and Apache. You will learn what each service
is, what it is capable of, and how to install it. The services are not covered in
detail, since they are very comprehensive; however, sources for more
detailed information are documented.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Poughkeepsie
Center.

Erich Amrehn is a certified IT Specialist at the International Technical
Support Organization, Poughkeepsie Center. Before joining the ITSO, he
worked as technical consultant to the IBM System/390 division for
e-commerce on S/390 in Europe, the Middle East and Africa. He also has 13
years of VM experience in various technical positions in Germany and other
areas in Europe, as well as worldwide.

Joerg Arndt is a software developer who works for SuSE (Germany). He has
16 years of experience in software development, consulting and teaching,
and has worked exclusively with Linux since 1994. He holds a degree in
© Copyright IBM Corp. 2000 xxiii

theoretical physics from the Technical University of Berlin. His areas of
expertise include Linux programming and scientific programming (see
http://www.jjj.de/). He has written on time series analysis, Fast Fourier
Transform (FFT) algorithms, and the number pi.

Mark Cathcart is technology strategist to IBM Corporate Technology
Marketing where he has responsibility for Linux, Open Source, Java, and
XML. Previously, he was Principal Consultant for OS/390 New Technology
including Java, EJB, Component Software, e-business et al. His first
presentation to IBM on XML was in late 1997, almost two years before the
official IBM XML launch in 9/99. Mark did the first ever demonstration of
linking Java to legacy systems at WWW5 in Paris in 1996, and more recently
(8/98) was part of the IBM Academy of Technology project to redesign Java
for IBM servers. Mark is a member of the IBM S/390 Software Design Council
and an IBM UK Technical Staff Member (http://www.ibm.com/s390/corner).

Richard Higson is a consultant for Syskoplan AG (Germany). He worked as
a system developer for mini-sized multiuser systems in the “pre-PC era”
before becoming a systems programmer with VM/VSE. He then specialized in
networking (SNA, TCP/IP) and UNIX. He has been using Linux since early
1993, put Syskoplan on the ’net in 1994 with Linux, helped build “the world’s
largest Linux Cluster” (Paderborn, December 1998), and spoke about this at
the August 1999 Open Software Conference in Monterey. He became
involved with Linux for S/390 in December 1999. He is an active supporter of
the Debian GNU/Linux distribution.

Cliff Laking is a Senior Technical Specialist who works for IBM in the United
Kingdom. He has over 25 years of experience in Information Technology. He
holds a Bachelor of Arts degree from Victoria University of Wellington, New
Zealand. His IBM career has been spent working primarily with the VM/ESA
operating system. Other areas of interest include APPC programming, the
IBM Network Station, and S/390 LAN integration tools such as LFS/ESA and
Tivoli ADSM. He now focuses mostly on e-business solutions for S/390.

Richard Lewis is a Consulting I/T Specialist with the IBM Washington System
Center. He has worked with the VM operating system for the past 16 years within
IBM, both as a system programmer and technical support specialist. Richard has
been active within the VM user community both as an IBM representative to the
Guide VM Group, and as an IBM representative to the VM Cluster at SHARE.
He has given numerous presentations at these venues over the years, covering a
wide variety of topics related to the VM operating system and VM program
products. Richard has been working with Linux for S/390 since late 1999, and
created the first hands-on Linux for S/390 Installation Workshop offered by IBM.
xxiv Linux for S/390

Michael MacIsaac is a team leader for S/390 redbooks and workshops at the
ITSO Poughkeepsie Center. He writes about and teaches classes on OS/390
UNIX and now Linux. Michael has worked at IBM for 13 years, mainly as a
UNIX programmer.

Susan Matuszewski is a system programmer at GAD Gesellschaft für
automatische Datenverarbeitung e.G. in Germany. She worked as a
consultant and programmer on software development projects and has 11
years of experience on OS/390 (MVS), including UNIX System Services. Her
areas of expertise include implementing AIX and different Linux distributions.
Additional areas of interest include object-oriented programming and Internet
solutions.

Hans Dieter Mertiens is a Senior Technical Marketing Specialist in Germany.
He holds a diploma in physics from the University of Hamburg. He worked at
several IBM installations as a system programmer and systems analyst
before joining IBM in 1984. Since 1991 he has worked for the S/390 division,
focusing mainly on new functions of MVS or later OS/390, like APPC/MVS
and later POSIX. His areas of expertise include UNIX System Services on
OS/390, application porting, and integrating UNIX Services into the traditional
OS/390 world. He has participated in several residencies dealing with UNIX
and OS/390 at the ITSO Centers in Poughkeepsie and Raleigh.

Eugene Ong is an Advisory Software Engineer who has worked for IBM since
1987. He spent 11 years in large system software design and development,
which included products such as TSO/E, APPC/MVS, APPC/RRS, and
System Logger. He joined IBM’s Customer Enablement Lab (CEL) in 1998.
His present areas of expertise in the CEL include benchmarking and proofs of
concept in areas such as UNIX System Services, Webserver, DB2, and
TCP/IP. He holds a masters degree in Computer Science from the
Polytechnic University of New York. This was his first residency at the ITSO.

Eric Schabell is an IT Specialist working for IBM in the Netherlands. He has
two years of experience in IBM working in the S/390 enviornment and more
than four years with Linux. He is working on a degree in Computer Science
from the Vrije Universiteit in Amsterdam, Netherlands. His areas of interest
include Linux, UNIX, DB2, and networking. He is currently the Linux
Knowledge Center leader for IBM Netherlands.

Thanks to the following people for their contributions to this project:

Boas Betzler, Dr. Holger Smolinski, Martin Schwidefsky
IBM Germany
 xxv

Dave Bennin, Roy Costa
International Technical Support Organization, Poughkeepsie Center

Romney White, Stephen Record
IBM Endicott

Bernd Kaindl, Marcus Kraft, Joachim Schroeder
SuSE Germany

Sándor Bárány
M&M Investitionsberatungs GmbH Austria

Thanks also to Alfred Schwab, Terry Barthel and Alison Chandler for their
editorial assistance, and to Ella Buslovich for her graphics assistance.
IBM Poughkeepsie

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

 • Fax the evaluation form found in “IBM Redbooks review” on page 521 to
the fax number shown on the form.

 • Use the online evaluation form found at http://www.redbooks.ibm.com/

 • Send your comments in an Internet note to redbook@us.ibm.com
xxvi Linux for S/390

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Technology and business

Whether your company is a “dot-com” or a bricks and mortar company, the
Internet and e-business have changed everything—from the way you interact
with and reach your customers—to how you work with your partners, your
suppliers, their suppliers, your contractors, and your subcontractors. In fact,
the Internet and e-business have changed the products, processes, and
procedures that make up our very organizations.

Because of these changes, we all face an era of business innovation, an era
in which opportunity and complexity may go hand in hand. However, it doesn't
have to be that way. Through the adoption of truly open industry standards,
we can reduce and eliminate much of the complexity and allow business
innovation to flourish. A discussion of the approaches to open industry
standards can be found in 2.3, “Flourishing through open standards” on
page 13.

Yet even with this explosion of change, we are witnessing only the emergence
of e-business! The initial solutions and approaches resemble the initial steps
of a child—random, somewhat uncoordinated, many taken very quickly with
occasional stumbles. Yet, as it is with a small child, this initial stage is an
essential part of the growth and maturity of e-business, and of the next
generation of e-business solutions.

Some people feel that, as with a child, e-business will take 20 years to
become fully mature, fully useful, and able to fulfill its destiny. Whether or not
you agree with this assessment, it’s apparent that we are at the crossroads of
a number of interdependent generations of technologies. Web browser and
Web server technologies, wireless and mobile devices, as well as Web
application programming all serve the Internet/e-business arena.

Yet all these developments face a rapid succession of changes and
progression as the new business requirements of the Internet and new
technology force a never-ending succession of revisions, extensions, and
reexamination of what is used, how it is used, and how it can be applied.

In this environment there appear to be a number of established and emerging
technologies that will continue to evolve at a rate and in a way that can benefit
users, developers, and suppliers, and which seem to offer the biggest and
best opportunity to support the rapid progression and evolution of the Internet
and e-business toward maturity.
© Copyright IBM Corp. 2000 1

1.1 The open source revolution

The technologies that offer the biggest benefit and most promise in this era of
evolution and rapid change are firmly based in the world of open source. In
Chapter 2, “Open source” on page 11, we examine what open source is, what
it means, and what it doesn't mean. However, while open source software
development has existed in one form or another since the first software
programmable computers were invented, open source and its antecedents
have become especially important with the advent of the Internet.

The Internet came into existence because of a mix of formally and informally
agreed-to standards that are vendor-neutral and universally accessible.
These standards, by definition, were a mix of established and new
technologies such as the File Transfer Protocol (FTP), Gopher, the HyperText
Transfer Protocol (HTTP) and the HyperText Markup Language (HTML). They
all flourished on an established but growing base of TCP/IP networking
protocols and network interoperability layers.

The explosion of the World Wide Web into popular consciousness came
about through a set of standards implemented through an open academic
development model that shared research work and provided for a series of
rapid, successive improvements. Since the initial implementations were
available in the form in which they were created (programmer source code),
they could be easily adapted and adopted, and problems could be identified
and resolved quickly.

Today, almost all implementations of common Web-based tools can be traced
back to these early efforts. Many still use some source code from these
original implementations, and some of these implementations have gone on
to become market leaders and provide direction for that technology.

One example of this is the Apache Web server. Depending on the date and
author of the latest Web server usage study, the Apache Web server runs
something more than 60% of all Web servers. Apache is a direct descendent
of the original Web server and owes much of its market share to the fact that
it is available in source code and can be adapted, fixed, and extended by a
large community of dedicated programmers based around the world (and
thus around the clock), at academic, not-for-profit, and commercial
organizations.

Another example of this evolutionary technology is the Linux operating
system. Like Apache, Linux (or, more correctly, GNU/Linux) is available in
programmer source code. This has enabled Linux to move from being an
academic project by a single programmer, to being another key technology
2 Linux for S/390

enabler for current and future Internet and e-business projects. (For more
information about GNU, refer to Chapter 2, “Open source” on page 11.)

This redbook examines Linux running on IBM System/390 hardware. Later, in
3.3, “Running Linux on S/390” on page 26, we review what it is and how it can
be used, including what modes it can be run in on S/390-compatible
hardware.

Also in Chapter 3, “Why Linux” on page 17, we examine why Linux has
emerged, what purpose it serves and why it will continue to grow and evolve.
Its use will continue to expand through the evolution and business innovation
that will be the mainstay of technology changes in the next few years.

Is this because Linux is a better operating system? No. Is it because Linux is
openly available across a wide variety of systems? Partially. Is it because
Linux is available in source code? Yes. Essentially it is that Linux is available
as a set of shared, open standards that will allow it to evolve and improve into
a better operating system. Through its availability in source code format, it is
possible for Linux to support a wide variety of hardware systems.

But most importantly, like the Internet that it so adeptly supports, Linux is a
mixture of established open standards and protocols and emerging standards
that are Linux itself.

This was positioned for analysts by IBM Chief Executive Lou Gerstner on
May 9, 2000, when discussing IBM's e-business strategy and business
performance.

When discussing imperatives, he said:

“The first is host or operating system software, which is now and always
will be a continually shrinking percentage of our revenue. We're not fretting
about this because, frankly, operating systems no longer hold the strategic
importance they once had in our industry. In a world of open standards,
which is where the world is going, the operating system platforms—ours or
anyone else's in the open world—are not going to be control points
anymore.

They won't be where the growth is, and they won't even command the
margins they once did.”

We look at this further in Chapter 3, “Why Linux” on page 17, but the point
here is to establish that it isn't an operating system, it is a set of truly open,
shared standards that makes the further use and growth of Linux inevitable.
Chapter 1. Technology and business 3

To fully understand the role of Linux and open, shared standards, we need to
look at some technology directions before finally returning to look at some
potential pitfalls.

1.2 Technology directions for business innovation

A number of things can be said to be “universal truths” about computer
technology:

 • The big keeps getting smaller
 • The fast keeps getting faster
 • Adaptation is as good as adoption

Who would have thought just a few years ago, when IBM took on and beat the
World Chess champion, that the power provided by a highly complex, large
server would be available at an affordable cost in a desktop configuration?

Looking even further back, it was at one time inconceivable that the world
would need more than six mainframe computers, let alone that the power of
those early mainframe computers would be surpassed by the computing
power in a digital watch! It was also the case that it was once believed that
just 640 thousand bytes of computer memory would be “more than enough,”
when today’s inexpensive computer systems are routinely supplied with 64
million bytes!

As business innovation looks to technology for opportunities for greater
market presence, improved shareholder value, and ultimately increased
profitability, the exploitation of these smaller, faster and more powerful
technologies is at the leading edge of this business innovation.

1.3 Edge of Network devices and services

These technologies will increasingly find their way into a wide variety of
wireless, mobile, and connected devices. Support of these Edge of Network
devices will require a new breed of servers, both local and remote, and a new
breed of solution.

Businesses and technology companies have learned through the first
generations of the Internet and recent technology innovations that one size
does not fit all.

Regardless of what operating system you apply this to, IBM AIX, OS/400,
OS/390; any commercial UNIX derivative, such as Sun Solaris, Hewlett
Packard’s HP-UX, and especially Microsoft-based operating systems such as
4 Linux for S/390

Windows NT, Windows 95, Windows 98, Windows CE—when applied to the
various computing models in current and emerging use, there were significant
constraints or drawbacks when trying to apply an existing operating system to
these models, let alone to span technology models.

Often the reason for this failure was an unwillingness to release, or give up, a
significant part or portion of the operating system. Because the operating
system was not a shared or open standard, including most UNIX derivatives,
it could not be changed or redefined by anyone except the vendor or owner.
This established a control point that ultimately worked against the best
interest of both the operating system and the vendor.

Linux, by contrast, through its availability as open source code (that is, its
implementation as a set of shared standards), offers the potential for the
deployment of common tools and technologies for the next generation of
e-business.

In Figure 1 on page 6, we see the evolution of an architecture for a Next
Generation e-business infrastructure—a variety of types and classes of
computing devices:

 • Client devices—traditional desktop systems, mobile and wireless
solutions, and appliance-type devices

 • Server service providers—single function appliance, presentation,
directory, security servers

 • Web application servers

 • Traditional business transaction and data servers
Chapter 1. Technology and business 5

Figure 1. Infrastructure for e-business

Many of these will exist both internally in an organization and externally at
partners and suppliers, and increasingly many more will also be on the other
side of the Internet at consumers and customers.

The new devices, especially mobile, wireless and appliance-based devices,
are sometimes referred to as being at the edge of the network. That is, they
are loosely connected into what your organization would consider to be the
very outside edge of its corporate network extended to the Internet.

To support these devices, a new class of simple, quickly implemented and
often single-function servers will be needed. These are the edge servers
seen in Figure 1. In some cases it is reasonable to expect these servers to be
at the edge of your network. Again, some may be deployed directly at
customer, consumer, and partner locations.

Many of these new types of servers will also exist on the border between your
Information Technology infrastructure and your Web infrastructure, and will
require qualities of service and availability traditionally associated with
transactional systems. These edge servers will fulfill a number of roles, such
as messaging servers that directly support appliances outside your network.
They will also provide caching, content filtering, load balancing, and quality of

Web

Storage

Internet

Directory
& Security
Service

Web
Application

Servers

Transaction
Servers

Data
Servers

Web
Presentation

Servers

E
d

g
e

S
er

ve
rs

Intranets

Extranets

Service
Providers

IT

Yesterday's edgeTommorow's edge Today's edge
6 Linux for S/390

service routing. In addition there will be a role for application servers to
respond to requests and messages from mobile, pervasive, and
appliance-based systems.

These appliance servers will need to be integrated into your environment, but
for the sake of business innovation this cannot afford to be a long, costly and
complex process. You'll need to act quickly and decisively when it comes to
deploying these servers.

So, where might Linux play in this scenario? Simply put, based on the
organization and the business need, everywhere: clients, server service
providers, Web, directory, security, application, database, and transaction
servers.

Many organizations, though, will have requirements for components of this
solution to run with different scalability, availability, and integration
requirements. Supporting a few hundred Edge of Network devices is very
different from supporting, say, ten thousand, one hundred thousand, or
potentially millions and millions of devices.

This is where the IBM Linux strategy—a simple strategy to endorse and
support the tools, technologies and open vendor-neutral standards of
Linux—becomes very attractive. In 3.2, “IBM strategy for Linux” on page 22,
we look at the role and opportunity for IBM S/390.

1.4 The Utility Service Provision (USP)

A key attribute required to support this new world of mobile, wireless and
edge computing, is the provision of a wide range of services, services that
have been converged into a single service entity that does not have the
artificial separation of applications common in the computing marketplace
today.

Often, people discuss Internet Service Providers (ISPs), Application Service
Providers (ASPs), applications like Customer Relationship Management
(CRM), Enterprise Resource Planning (ERP), Business Intelligence (BI), and
processes such as server consolidation, as if they were entirely separate
applications and attributes of computer systems. They are not. Convergence
of these technologies and applications will be required as the service
provision of computer processing becomes much more like that of a utility.

An important attribute of the Utility Service Provision (USP) is that it is always
on. It is always on because that is what consumers will expect, since the
clients will always be on. The provision of an “always on” service isn't just an
Chapter 1. Technology and business 7

extension of 24 x 7 high availability; it is a statement about high availability
not measured in hours, days, or weeks, but in years, perhaps even decades.

This high availability is then combined with applications that can process a
request straight through, connecting directly and indirectly to back-end
systems, to databases, to partners, suppliers, finance organizations, etc., so
that a single request can be completely fulfilled within seconds or minutes,
not in one or two days or even longer.

For example, when a refrigerator calls in for service, it is not a simple matter
of just recording the call. It requires coordination with:

 • The scheduling and dispatching system that sends out an engineer

 • The parts supply system to make sure the parts are available, which in
turn works with the supply chain to make sure a replacement is ordered if
needed

 • The product history data to record the call and do product trend analysis

 • Billing, accounting, and more

The point is that what might seem a simple interaction can spawn hundreds of
events, each event can spawn its own events, and so on, both internal to your
organization and externally.

To support this type of an environment, servers need to provide attributes that
are often associated with S/390 hardware and software: workload
management to make sure that important work is carried out as required by
service level agreements; coordination of priority with other concurrent
processes; logical partitioning of resources to systems and subsystems so
that appliance servers, Web application servers, transaction and database
servers can themselves be serviced. Servers need to be able to be brought
up and down as required for new software updates, to have system software
upgraded, applications changed, and more. All this will need to be done
without interrupting the service to the user and while continuing to provide
straight-through processing (STP).

While many of these attributes can be achieved by S/390 hardware, it is when
the hardware is used in conjunction with OS/390, VM/ESA, VSE/ESA,
together with the ability to quickly deploy simple, single-function servers and
services based on the open standards world supported by Linux, that this
solution becomes compelling.
8 Linux for S/390

1.5 Complexity impedance

In order to be able to deliver on this vision, in fact in order to make any
reasonable progress in e-business, you need to consider how you will
address the integration required.

One approach is to build custom components, based on custom protocols
(many of which are individually negotiated with suppliers), data formats and
protocols; this would have been the approach often taken in the 1970s and
1980s. While this might be a reasonable process to support one or two new
customers, individual appliances, or mobile devices, it simply is not
sustainable with a wide range of mobile devices, and causes problems when
working with more than a few partners and suppliers.

In the 1990s, with the push for a single UNIX, the advent of the Internet and a
general acceptance of the benefits of standards, this started to change. The
need for interoperability became more important than a single computer
architecture becoming all-powerful, as some expected. The number of
computer systems and architectures actually grew with the emergence of
mobile and wireless devices, the adoption of standard networking protocols,
etc. Also, after many years of understanding the benefit of getting
programmers out of the business of plumbing, we started to see this become
possible through the advent of technologies such as Java and its integrated
application services and servers.

As we go forward, complexity will grow by orders of magnitude based on the
numbers of interconnected systems needed to support applications. In this
environment it becomes even more important to support and endorse truly
open standards to minimize complexity. Vendor extensions of standards are
to be avoided, especially those that are not available through open source,
since you cannot rely on the implementation, cannot depend on ongoing
vendor support and endorsement, and cannot afford to have to make changes
when a vendor decides to change the implementation or extension.

Simply put, information technology should cooperate on shared standards
and compete on corresponding implementations; for example, function,
performance, quality, services, technical support, industry vertical value,
integrated solutions, price, business partners, and so forth.

In this environment, tools and technologies such as Linux, XML, the emerging
Simple Object Access Protocol (SOAP) and other open industry standards
become essential. It is in this context that there is a continuing push to make
Java and especially the enterprise definition, Java 2 Enterprise Edition, a
truly open standard rather than one controlled by a single vendor.
Chapter 1. Technology and business 9

10 Linux for S/390

Chapter 2. Open source

As explained previously, open, shared industry standards are essential for
e-business to continue to grow and flourish.

Open source has existed in one guise or another for many years—in fact,
since the inception of software programmable computers. It is not the
purpose of this book to be the definitive guide to open source, but it is worth
reviewing one of the key open source initiatives and providing a definition for
the goals of this book.

For a detailed discussion of the types of open source and their pros and cons,
as perceived by the Free Software Foundation, refer to:

http://www.gnu.org/philosophy/free-sw.html

(Note: IBM does not endorse or necessarily agree with the definitions and
opinions expressed by the Free Software Foundation. The purpose of
including this reference is that the Free Software Foundation, and its founder,
Richard Stallman, are widely accepted to be an authoritative source on the
subject.)

Various types of software available today include:

 • Open source—with a number of different licenses including BSD, Apache,
and GNU/Linux

 • Royalty-free libraries

 • Royalty-free executables

 • Shareware

 • Noncommercial

 • Trial/test software

 • Commercial

Within each of these categories is a wide range of types of software. For
example, under commercial software, IBM has distributed commercial
software under a number of different licensing conditions. This includes
software with source code, software with source code that could not be
modified, and software without source code. So, it’s not always clear to which
category some software actually belongs.

It is worth describing a few of these types.
© Copyright IBM Corp. 2000 11

2.1 The GNU Public License

To establish this right from the start: GNU stands for “GNU is Not UNIX.” The
GNU General Public License, simply referred to by many as the GPL,
provides for software distributed with source code and a series of rights that
establish what a user can do with the software and source code. This is a
significant difference from a traditional software license, which typically
establishes the rights of the producer and tells the users what they cannot do
with the software and source code.

The GNU license permits modification of the original program, provided that
you retain the GPL and redistribute under the same terms and conditions.
This means the modifications you build must also be modifiable by others: it
requires you to distribute your source code.

This is important because it establishes a base from which a software design
can be quickly and effectively extended, and then maintained on an ongoing
basis independent of the success or failure of the original author.

As we will see in Chapter 3, “Why Linux” on page 17, Linux was developed
(and continues to be developed) under the auspices of the GPL. Hence, the
formal name for Linux is GNU/Linux. Any modifications you make to the
source code that makes up the core Linux system, or any other component of
the Linux system distributed under the GPL, must also be distributed with the
GPL.

A key aspect of the GPL is that you cannot choose which parts to comply with
and which to ignore. For example, one cannot say “I will take your source and
modify it, but you can’t have mine for the same purpose”; instead, it’s all or
nothing.

Key to the portability and availability of open source software and the Linux
operating system is the GNU C Compiler, or GCC. GCC is often the starting
point for many GNU programming projects, UNIX applications, and for Linux.

(Open Source Software on OS/390, SG24-5944, contains many open source
packages that also run on OS/390, as does Porting UNIX Applications to
OpenEdition for VM/ESA, SG24-5458.)

It is because of these open source, GPL-based tools and technologies that
open standards can really thrive and flourish. This offers the ability to a
programmer to build and extend the work of another, and to choose to use or
discard the work of another.
12 Linux for S/390

In the Internet world, the availability of tools and technologies that encourage
the distribution of and access to code, and the communication between
programmers, has truly accelerated distributed development and made open
source work.

2.2 The IBM Public License

An initial IBM Public License is now available and the first software packages
have been distributed, with source code, under this license.

The IBM Public License is not meant to compete or replace the GPL. It is a
license that grants rights to the user and at the same time protects the legal
entity that is IBM from liability connected with the program.

One of the first programs released under the IBM Public License was the
IBM/LOTUS 1.1 revision of the Microsoft Simple Object Access Protocol. The
1.1 level has been submitted to the W3C for ratification as a new open,
shared standard for objects on the Web. The IBM implementation of SOAP
has been offered through open source for inclusion in the Apache Web
server.

Perhaps surprisingly, IBM has already released a package of Tools and toys
for OS/390 written mainly by IBMers under the IBM Public License.

2.3 Flourishing through open standards

It is through this evolutionary process, and because of the availability of
source code, that small teams of programmers, individual developers, and
corporate teams from organizations like IBM can work together to drive
forward shared standards, which will be an essential component of the next
generation of e-business.

Given the availability of Linux source code, much of the innovation will be
done, as it is now, using a version or derivative of Linux. This allows
programmers to start from a known base, using a known toolset, to make
modifications as appropriate and produce derivative works. These derivative
works can then become available across all versions of Linux, ensuring a
strong “food chain” for further innovation and, importantly, for the adoption of
shared, open standards through access to source code.

This adoption of shared open standards through access to common source
code will continue to cause interface and protocols to become commodities.
Chapter 2. Open source 13

Adam Goodwin, publisher of Linux magazine, said “Anything that can be
commodotized [in Linux] will be”.

2.4 The Application Framework for e-business

For programmers and users of IBM Software, IBM offers the Application
Framework for e-business. This framework provides a guide for the standards
that IBM is incorporating into its platform-independent middleware and
application services and servers. It is a repository of design patterns, open
source contributions, and reusable, code-based developer roadmaps.

Figure 2. The Application Framework for e-business

Building applications based on standards incorporated into the framework
means that your business applications can use and exploit those standards
through IBM software across a wide range of platforms, including but not
limited to Sun Solaris, HP-UX, Microsoft Windows NT, and the IBM operating
systems OS/390, OS/400 AIX, and Dynix/PTX; the new and increasingly
important member in this fold is Linux.

Even where these standards do not exist natively on a given framework
platform, they will be provided by IBM software, thus protecting your
investment in business application exploitations using the framework.

2.5 Summarizing open, shared standards

Building on the Linux standards base, combined with TCP/IP networking,
Web technologies such as HTTP, XML for data interoperability, and
programming reusability and portability and emerging standards such as
SOAP for object access, open standards are providing the basis for current
and future e-business applications.

Windows NT

Application Framework
for e-business

Build Run Manage

Linux AIX NetWare Solaris HP-UX OS/2 OS/400 OS/390
14 Linux for S/390

Figure 3. The open standards platform

Throughout this section the subject of cost, or price, has not been mentioned
simply to avoid getting drawn into a debate that is much less important to the
big picture: the cost of software compared to its value.

While some software may be available free, that does not imply it has no
value. In fact, quite the contrary is often true. Software openly available can
be quickly and easily adopted and adapted to meet individual and
organizational needs. This, in turn, can be highly valuable to the organization
or individual and to the organizations and individuals they work with, as it can
enable rapid and compatible deployment.

As Richard Stallman, the Founder of the Free Software Foundation,
succinctly put it, “To understand the concept, you should think of ‘free
speech’, not ‘free beer’.”

Following is a list of useful URLs:

http://www.opensource.org Open Source Initiative
http://www.gnu.org Free Software Foundation
http://www.linux.org Linux
http://www.apache.org Apache Software Foundation
http://www.ietf.cnri.reston.va.us Internet Engineering Task Force

Linux
Standards Base

HTTP
(Web)

TCP

XML

Java
SOAP
Chapter 2. Open source 15

16 Linux for S/390

Chapter 3. Why Linux

In Chapter 1, “Technology and business” on page 1, we explored the business
and technical landscape that led to the adoption of shared, open standards
as essential to greater exploitation of the Internet and e-business. Linux is
one of the best examples of a shared open source standard. Now we look at:

 • Why Linux?
 • The IBM Linux strategy
 • Applications and Linux
 • An introduction to Linux and Linux on S/390

Finally, we describe what Linux is, how it is constructed, and some technical
implementation considerations.

The TowerGroup (http://www.towergroup.com) estimated in a November 1999
report (Linux in the Financial Services Industry: Not Just Your Developer’s
Operating System) that “Worldwide, spending on Linux information
technology (IT) by the top 100 financial institutions is expected to increase
from $50 million in 1998 to $200 million by 2003, growing at a compound
annual growth (CAGR) rate of 32%. Investment in Linux IT by the financial
services industry represents only a small portion, less than 10% of all
spending on Linux IT”.

International Data Corp. (IDC) reported at the same time (11/99) that the use
of Linux consisted of:

 • 45% Web servers
 • 42% networking servers
 • 38% e-mail/messaging
 • 28% database
 • 26% file/print

and that Linux was growing “bottom-up” and that many Chief Information
Officers were only just discovering that they have Linux. Also that:

 • The Linux server market grew 93.2% from 1998 to 1999.
 • Approximately 1.3 million server licenses were shipped in 1999.
 • Linux has over 11 million users worldwide.

True to its origins in education and academic research, Linux has garnered a
significant following within the same communities, primarily because it’s
available at no charge, but also because of its availability in source code
format. Add to this the fact that there is an ever-increasing range of tools and
technologies available at little or no cost for Linux, many of which, like the
© Copyright IBM Corp. 2000 17

GNU tools, also come with source code, and you have a compelling platform
for both educational value and cost savings.

While Linux may have come to the fore in the commercial IT press only over
the past 18 months, it has been popular in education and research for at least
the last 3-5 years. This means that there already exists a body of people who
know Linux, understand how to use it, have experience with what it does well,
and are able to put it to work—albeit in some limited form, such as a Web
server or file server—in commercial organizations.

Through early successes in these limited fields, we can expect to see organic
growth in the types of applications that are run with Linux. More on this later
in 3.7, “Application scenarios with Linux on S/390” on page 30. However,
Linux has also gained and will continue to grow in several other significant
areas:

 • Support - Traditional “community” sources, through online, Internet-based
newsgroups, Web sites etc. will continue to support, extend and fix Linux,
in addition to the arrival of commercial support options from dot-com Linux
distributors such as TurboLinux and SuSe. Traditional software and
service companies such as IBM Global Services also extend their support
offerings to Linux.

 • Self-healing software - Through the availability of source code, and an
innate desire to carve out a niche for themselves in the Linux community
(described in Eric Raymond’s work as Homesteading the Noosphere), the
technical community is quick to find and resolve any problems and to
extend Linux both for their own benefit and that of the community. While it
is difficult to make direct comparisons, many extensions of Linux have
gone from being an idea to final implementation in less than one month.
This is unheard of in other standards.

 • Efficiency - Various organizations have tried and tested Linux and found it
to deliver excellent performance for the function it contains. For example, a
Microsoft employee wrote in an analysis of Linux that “Linux outperforms
many UNIXs in most major performance categories (networking, disk I/O,
process ctx switch, etc.)”. The complete note is at
www.opensource.org/halloween/halloween1.html. In addition, through the
availability of source code, Linux can be pared down to the bare essential
function needed to fulfill a specific business need, rather than having to
address a general purpose computing need.

 • Heterogeneous interoperability - Because Linux doesn't seek to dominate
computing, some of the key tools and technologies available for Linux are
to allow it to share file systems, rich media, communications protocols,
and programming environments with other industry software platforms,
18 Linux for S/390

such as UNIX, Microsoft Windows NT, and IBM OS/390 and OS/400
systems.

Through these initiatives, Linux has already been made available on some 35
different hardware platforms, including everything from embedded Linux
systems - http://embedded-linux.org - to supercomputers, including a Beowolf
cluster of 256 IBM Netfinity Servers with a total of 512 processors at the
University of New Mexico at Los Lobos, and now on the IBM S/390 mainframe
server, the subject of this book.

3.1 Applications and Linux

Although it is a fine line, and one which will generate some debate, generally
Linux is well-supported by tools, technologies and middleware. However,
business applications already running on Linux are few and far between.
Where they are, they use the services of an application server, rather than
depending on Linux directly for these services.

The same can be said for the open source world. While there are many open
source tools and technologies, there are precious few business applications
available through open source. While open source-based systems have
started to make inroads into layer-3 (as shown in Figure 4 on page 20), they
still have some way to go, despite being pervasive in layer-1 and layer-2 for
Linux systems.

The reason for this can be seen by looking at Figure 4 on page 20. Here we
see that in order to produce business applications quickly and efficiently (a
benchmark for today’s connected world), business applications depend on a
software stack. There has been a concerted effort by software vendors since
the mid-1990s to develop application generation tools and design application
programming models that get business programmers out of the plumbing of a
computer system so they can concentrate on producing the processes, rules
and procedures that model a business.
Chapter 3. Why Linux 19

Figure 4. Application infrastructure

One example of this is the IBM WebSphere Application Server in its
Advanced and Enterprise editions. This fulfills the role of an application
server, layer-3 and layer-4 in Figure 4, and provides a structure for
Independent Software Vendors and solution providers to plug in business
components and component services in layers 5 through layer-7; see

http://www.ibm.com/software/webservers/appserv/download_linux.html

The IBM WebSphere Business Components, formally known as the San
Francisco Frameworks, take this up another layer, providing:

 • Reduced development time
 • Improved time to market
 • Flexible applications
 • Simple portability
 • Improved value to your organization
 • Mix and match solutions
 • Unique performance, availability and scale

This is accomplished through the availability of the IBM WebSphere
Application Server on a wide variety of platforms, both with and without Linux.

Applications

Application Components

Common Business Components

Advanced Component Services

Application Server & Middleware

Networking

Server Platform inc. Operating System

layer 7

layer 1
20 Linux for S/390

Linux is a key enabler for WebSphere, especially in the fast growing world of
e-business, but since WebSphere applications are written in Java and use the
Enterprise Java specification, they can be moved between architectures
without requiring recompilation through the Java “Write once, run anywhere”
capability.

While Linux applications, adhering to the core Linux Application Programming
Interfaces (APIs), allow application portability, this does not provide binary
portability between different hardware platforms. Applications have to be
recompiled to move from platform to platform.

It is also true that the typical corporate application developers have had little
exposure to the open source and free software community and precious little
opportunity to contribute to it, since the programming languages they write in
are different. Whereas the open source world tends to write in C, C++ and
Assembler or machine code, business programmers typically write in COBOL,
Java, Visual Basic or other more common business languages.

Increasingly, Linux is becoming an application development reference
platform for key software providers. There are already a number of Java
Development Toolkits (JDKs) for Linux from IBM, Sun, Blackdown etc. and
these are being supplemented with Integrated Development Environments
(IDEs) from IBM and other vendors. IBM also provides an Application
Development Environment, which includes VisualAge for Java
(http://www.ibm.com/vadd), DB2 database and WebSphere, and more, for
complete application development, unit testing and debugging in a Linux
environment.

While there is still some way to go in the support for Linux on S/390, early
indications are good. BMC Software announced initial deployment for Linux
for S/390 system management, using PATROL technology. Software AG and
IBM announced a joint initiative to bring Software AG’s Tamino XML
Information Server to Linux for IBM's S/390 platform.

For the latest status of Independent Software Vendor (ISV) products for use
with Linux on S/390, see:

http://www.ibm.com/s390/appsource/

To further facilitate the adoption of Linux for S/390, members of PartnerWorld
for Developers, S/390 will have porting/enablement programs in place for
Linux for S/390. Both the San Mateo, California, and Waltham,
Massachusetts, Solution Partnership Centers (SPCs), as well as both the
Dallas Host Competency/Early Test Center and Boeblingen, Germany's
S/390 Technical Marketing Competency Center will be ready to accept and
Chapter 3. Why Linux 21

schedule ISV requests for enablement, testing and verification of applications
in the Linux for S/390 environment. For further information, see:

http://www.ibm.com/spc

3.2 IBM strategy for Linux

While this chapter sets out some of the strategic elements of IBM’s Linux
plan, it is not meant to be all-encompassing, especially since the strategy is
still evolving.

Figure 5 shows the Application Deployment Platform Pyramid, which is based
on three principles:

1. Application development on a widely available, volume platform
2. Volume platform for initial deployment with minimal barriers
3. Minimal barriers for scale from low to high and improved Quality of Service

(QoS).

Figure 5. Application deployment platform pyramid

This strategy establishes Linux as a key development and deployment
platform, especially when taking into consideration the point made in 3.1,
“Applications and Linux” on page 19. Business logic is enabled through key

S
c
a
l
e

&

Q
o
S

Server Platform

Development

Native
Linux

Deployment

3

22

1

22 Linux for S/390

Java application servers such as WebSphere Application Server, and via
CICS Transaction Server and Lotus Domino. Tools and technologies are
enabled through the Linux standards base and APIs, including shared, open
standards such as XML, HTTP and TCP/IP et al. For further information, see:

http://www.lotus.com/home.nsf/welcome/dominolinux

The IBM strategy focuses on five distinct but overlapping areas:

Hardware Enable hardware for Linux including Netfinity, RS/6000, S/390,
AS/400, NUMA-Q, ThinkPad, Intellistation clients and
NetworkStations

Software Key products and middleware ported to Linux including, but
not limited to, WebSphere, DB2, Lotus Domino, VisualAge
Java, MQSeries, etc.

Services WW Support, Training, Professional and Consulting Services
offerings

Alliances WW Partners with Caldera, Red Hat, SuSE, TurboLinux on
solution delivery and support

Open Source Significant code contributions and technical resources
working with the open source community

When looking specifically at IBM Server platforms, the strategy translates into
an execution strategy, not an invention strategy. Simply put, it is to make Linux
applications work.

To do this, IBM will provide an implementation of Linux for S/390, RS/6000,
AS/400, Sequent NUMA-Q and Netfinity servers. From a software
perspective, Linux should be able to fully interoperate with operating systems
on these server platforms, including OS/390, VM/ESA, VSE/ESA, AIX and
Windows NT. Additionally, the AIX and OS/400 operating systems will provide
Linux interfaces (API) to support applications developed on Linux, and
through AIX will provide an Application Binary Interface (ABI) to support Linux
platforms in compiled format for both AIX on PowerPC and Monterey on IA64
and PowerPC.
Chapter 3. Why Linux 23

Figure 6. IBM UNIX/Linux strategy

Figure 6 shows the simplified dedicated function server, which, among other
roles, is the edge and appliance servers discussed earlier, on the left. On the
right are the high function data center and enterprise class transaction and
database servers. On the extreme right one might expect to see OS/390
systems that provide this function and more. However, this diagram is
focussed on IBM’s UNIX/Linux strategy and you can see Linux fulfilling a
growing role from the dedicated server space up through the middle-tier
server. AIX, DYNIX/ptx and Monterey currently provide significantly more
function than Linux, and they address the need for high function, enterprise
UNIX servers.

Application portability is provided from left to right via the Linux operating
system running on IBM hardware. Applications that need a more advanced
infrastructure than this, but still need a UNIX operating system, can be written
to run with the APIs of AIX, DYNAIX/ptx or Monterey. Beyond this, if
applications need to be integrated with existing data and applications on
VM/ESA or OS/390, they can be ported to those systems.

The key to application portability, platform independence and programmer
productivity and other benefits already discussed, is to use Java. This is
achieved through the portability of Java executable programs, or byte-code,

SimpleSimple ComplexComplex

LinuxLinux

Data CenterData Center
Highly ScalableHighly Scalable

Industrial Industrial
StrengthStrength

Mid-TierMid-Tier
Web/Commerce Web/Commerce

ServersServers

Dedicated Dedicated
FunctionsFunctions

SimpleSimple
PackagedPackaged

AIX DYNIX/ptx MontereyAIX DYNIX/ptx Monterey
24 Linux for S/390

and through the services of an application server such as the IBM
WebSphere Application Server. You develop on one platform and choose a
deployment platform based on your requirements, not one chosen by any
single vendor.

This application, server hardware and server software enablement
encompasses both Linux itself and the shared, open standards available
through Linux and through the IBM Application Framework for e-business,
and establishes a link from level-1 to level-5 (as shown in Figure 4 on page
20) and beyond.

Following are useful Web links for further information:

http://www.ibm.com/linux

 • Links to IBM Linux and open source sites

 • IBM hardware for Linux

 • IBM software for Linux

 • IBM service and support for Linux

 • IBM alliances

http://www.ibm.com/developerWorks

 • Comprehensive online resource for the developer community

 • Linux zone

 • Open source zone

 • Java, XML, security, Web architecture zones

3.2.1 An introduction to Linux for S/390
Finally we arrive at Linux for S/390, the subject of this book. When discussing
Linux and S/390, an assumption is made that you have some knowledge of
S/390. In fact, readers are expected to have some detailed knowledge of and
experience with S/390 in order to proceed beyond these introductions and
overview notes. However, for the purpose of this section, we summarize key
attributes of S/390 hardware and software as needed.

First, why S/390 and Linux? Well, because you can! In order to understand
Linux and its attraction, we embarked on a research project to see what it
would take to make Linux available on S/390 hardware. This project, run by
the IBM Boeblingen laboratory, soon came to the conclusion that not only was
it possible, but a true version of Linux running on S/390 could be produced -
not an implementation, not a Linux clone, not a set of Linux APIs on OS/390,
Chapter 3. Why Linux 25

not an EBCDIC-based Linux, but a true, completely compatible Linux on
S/390 running in ASCII mode.

This is significant because it bypasses many of the challenges associated
with the UNIX System Services of OS/390 and VM/ESA. The UNIX System
Services run in EBCDIC mode and often require UNIX applications not only
to be recompiled, but sometimes to be extensively modified in order to work
at all. So, Linux on S/390 is not like Linux, it is Linux!

3.3 Running Linux on S/390

There are three common alternatives for running Linux on S/390 hardware
systems, and a fourth on the way. The three common options are illustrated in
Figure 7.

Figure 7. Linux on S/390 options

1. Native hardware support

Linux can be run natively on IBM or an IBM S/390-compatible processor
that supports the Relative and Immediate Instruction support. These were
first introduced on the IBM 9672 G2 processor and are also available on
the P/390 and R/390 processors, and the Multiprise 2000 and Multiprise
3000 systems. Only one Linux system can be run at any one time.

Applications

1. Native
processor

Li
nu

x
+

 A
pp

s

2. Logical
Partitions

Li
nu

x
+

 A
pp

s
Li

nu
x

+
 A

pp
s

O
S

/3
90

 +
 A

pp
s

V
M

+
 A

pp
s

V
S

E
+A

pp
s

Up
to
15

Linux + Apps

VM/ESA

3. VM/ESA
Guests

Linux + Apps

Linux + Apps

OS/390 +
Apps

Linux + Apps

VSE/ESA +
Apps

Linux + Apps

Linux + Apps

Only

limited by

available

system

resources

CMS CMS CMS

CMS CMS CMS

CMS CMS

CMS CMSCMS

CMS

CMS

CMS

CMS

CMS

Linux + Apps

4. Virtual Image
Facility

Linux +
Apps

Linux + Apps

Linux + Apps

Linux + Apps

Linux +
Apps

Linux +
Apps

Linux +
Apps

Linux + Apps

Linux + Apps

Linux + Apps

Linux + Apps

Linux + Apps

Linux + Apps

Linux +
Apps

Linux +
Apps

Linux +
Apps

Linux +
Apps

Linux +
Apps

Linux +
Apps

Linux +
Apps

Linux +
Apps
26 Linux for S/390

Advantages

Provides full native access to the system without other prerequisite
software. For a single application server that requires a large amount of
memory, and high speed unconstrained channel and device support and
access, this may be very interesting.

Disadvantages

Lacks full support for all S/390 attachable devices. Requires access to the
machine hardware console to boot the system and for any Linux system
debugging.

2. Logical Partition Support

Linux runs in one or more logical partitions. S/390 processors can support
the partitioning of the native hardware support into 15 different logical
partitions. Logical partitions are an allocation of the available processor
resource, either shared or dedicated; and devices that are dedicated but
can be serially switched between partitions and an allocation of memory.
Processor sharing is possible on a system with any number of CPUs, even
if there is only one.

This sharing is done by a sophisticated processor controller that gives a
partition access to the processor for an amount of time. It also interrupts a
partition when its time allocation or time-slice has been used up, or when
the software running in the processor has no more work to do. The
time-slice can also be interrupted when another, higher-priority partition
has work to do, in which case the current partition will be suspended until
the time-slice of the higher-priority partition is used up or this partition has
no more work to do.

Memory is not shared between logical partitions but divided among the
partitions. Each logical partition can be individually started and stopped
without interfering with another logical partition.

Advantages

The ability to run and manage up to 15 individual Linux systems. Perhaps
more compelling is the ability to run a number of Linux partitions
concurrent with an OS/390 or VSE/ESA partition providing high value
services such as transactions and access to existing applications and
data.

Disadvantages

Access to a system console to start and restart a Linux partition, to define
or change the definition of a partition or do any Linux system debugging;
device support is the same as native execution.
Chapter 3. Why Linux 27

3. VM/ESA GUEST Support

Linux runs as a guest operating system in one or more VM Virtual
Machines. (If you are familiar with the concept of the Java Virtual Machine,
where software is used to model a common software instruction set across
different platforms, well, this is the converse. VM/ESA uses architectural
hardware functions in S/390 to virtualize the S/390 instruction set, making
each guest (similar to a process or address space) think it has its own
dedicated S/390 processor.) Any number of Linux or other guests,
including OS/390, VSE/ESA and the CMS Interactive System can run
concurrently. The number of concurrent guests is limited by the resources
available to virtualize them.

Advantages

The ability to use devices, both virtual and real, supported by VM and not
directly supported by Linux, is a plus. This is especially true of
communication between guest virtual machines, which can be done at
extremely high speed. Included in this virtual device support is
virtualization of the system console, one per virtual machine. The guest
console can be accessed by any networking method supported by
VM/ESA, including rlogin, telnet, 3270 via TCP/IP, and 3270 via SNA. This
means you can start, restart, and debug remotely. Your virtual machine is
protected by a user ID and password. You can automate, manage, and
administer virtual machines using CMS.

Disadvantage

If you want to run a large number of Linux systems concurrently, VM/ESA
can be complex. VM/ESA skills are needed, and a number of new things
need to be learned.

4. Virtual Image Facility (VIF)

At the time of writing, IBM is planning to release a new product (VIF) that
will extend the function of logical partitioning, combining it with some of
the features of VM/ESA but without requiring the skill or knowledge of
VM/ESA in order to install, build, and run a system that supports 15 or
more concurrent Linux systems. At this stage it is too early to describe the
pros and cons of this solution.

3.4 Communication and connectivity

Communicating from the outside of an S/390-based Linux system is achieved
via TCP/IP through the Open Systems Adapter-2 (OSA-2), which supports
Token-Ring, Ethernet, Fast Ethernet, Fiber Distributed Data Interface (FDDI),
and Asynchronous Transfer Mode (ATM), or via an IBM Channel-to-Channel
28 Linux for S/390

Adapter (CTCA) that can be connected to other channels on the same or
different IBM S/390 processors. (A channel can be thought of as a path to a
device. However, it is actually much more than that and is managed by a
processor-independent subsystem that can deliver high performance and
support a large number of devices.)

These options are available when running in any of the modes shown in
Figure 7 on page 26. In addition, when running Linux as a guest in a virtual
machine, you can also use a virtual CTCA or another virtual driver provided
by VM, called IUCV. Communication between these virtualized devices is
extremely fast since you are effectively communicating at almost memory
speed between virtual machines. It is worth stating, even though it might
seem obvious, that since these devices are virtual, i.e., they do not really
exist, you cannot use them to communicate with external systems of users.
You must use either the OSA-2 or real CTCA. Of course, Linux systems can
communicate via a mixture of real devices for external communication and
virtual devices for internal communication.

In the future, we expect to deliver a virtual communications driver that works
between logical partitions and delivers low-latency, high-speed
communication that has performance similar to IUCV between VM/ESA
guests.

Application programs running on Linux can communicate using standard
TCP/IP facilities with no change, whether communicating between Linux
systems running on S/390 or with external systems. So, for example, you cna
use TCP/IP sockets, Remote Procedure Call (RPC), and so on.

For more detail on connectivity, see Chapter 14, “Linux TCP/IP connectivity”
on page 267.

3.5 Other device support

In addition to communication and connectivity, a number of other devices are
supported when running in one or more of the modes supported by S/390
when running Linux. More information on specific support is included in later
chapters. Of note is the virtual disk, or minidisk (MDISK), support provided by
VM/ESA. This allows a portion of a real disk drive (device) to be used by a
Linux system as if it were a real disk drive. VM/ESA delivers this support
across a much wider range of real disk drives than are supported in LPAR or
native mode.
Chapter 3. Why Linux 29

3.6 Linux and S/390 benefits

Running Linux on S/390 in any of the supported modes inherits most of the
IBM hardware benefits, such as the architecture and implementation of:

 • Guaranteed data integrity

 – 100% error detection
 – Error-corrected memory, cache and I/O bus
 – Memory storage key protection

 • Reduced customer cost

 – Dynamic activation of spare processor in event of a failure
 – Dynamic Storage Reconfiguration
 – Dynamic I/O Reconfigration

 • Minimized customer impact

 – Deferred repair
 – Deferred upgrade

These functions provide significant value, even when used alone with Linux.
No other hardware platform brings all these functions to Linux. However, the
real value of running Linux on S/390 is how you run it, and what you do with it.

3.7 Application scenarios with Linux on S/390

How you run Linux on S/390 depends on which of the supported S/390
modes you need. The selection of the mode depends on how many
concurrent Linux systems you will need to run. As previously discussed, this
can span from a single Linux system to perhaps hundreds or thousands of
concurrent Linux systems.

We cannot predict all the ways you will want to run Linux on S/390. However,
there are a number of predictable scenarios and categories.

Large scale application server
Running one or two large-scale application, database, or Web servers,
thereby exploiting the reliability, availability, security, memory, and most
importantly, the I/O subsystem, of S/390.

Network integrator
Consolidating distributed or rack-mounted Linux servers supporting a Web
and network infrastructure consisting of APACHE, BIND and more onto a
single, high-availability server and running multiple Linux systems
concurrently. This minimizes the cost of running the configuration through
30 Linux for S/390

reduced hardware redundancy, reduced operational requirements, etc. S/390
provides fine grain sharing of processor resources. This might be attractive to
Internet Service Providers and offers some interesting possibilities for
running “edge and appliance servers” on S/390 hardware, providing high
availability, unrivaled reliability and on-demand growth with S/390
nondisruptive hardware capacity growth.

Server consolidation
Taking the workload of two or more Linux directory, application, database or
file server systems and running them as one or more Linux images on S/390.
Combining multiple Linux systems into one is attractive for reduced cost of
ownership and operational simplicity reasons. S/390 enables this by providing
both higher reliability and increased I/O bandwidth, both of which can be
common requirements for running multiple mirrored systems. This might be
attractive to Application Server Providers.

Application, transaction and database integration
Where Linux systems, e-business, Web, or application servers need to
integrate with existing OS/390, VM/ESA or VSE/ESA systems. Previously,
this was only possible using network or, at best, S/390 I/O channel
connections. This meant that any high-volume requests would bottleneck on
the connection between the Linux system and the S/390 server. It would also
introduce additional points of failure in software and hardware. A common
solution to these points of failure is to replicate the middle-tier server. This in
turn introduces new points of failure and grows the complexity and cost of the
total solution. Running Linux in a logical partition or as a guest of VM/ESA
means that the hardware and connectivity points of failure are eliminated and
data can be transferred between the Linux and S/390 server application at
very high speeds utilizing open industry standard interfaces.

This is especially interesting when considering the options for exploiting DB2
for OS/390. DB2 for OS/390 can, in real time (in read and write mode), share
its relational database between multiple OS/390 systems using the OS/390
and S/390 Parallel Sysplex support. This provides for almost limitless
scalability of the database and nondisruptive upgrades through the addition of
entirely new OS/390 systems into the sysplex while sharing the same
database.

Linux-based systems that would find this attractive include both ISP and ASP
systems leveraging S/390 resources.

Testing and development servers and services
The ability to run a very large centralized server that can multiplex Linux
systems might be very attractive. The ability to do nondisruptive restarts of
Chapter 3. Why Linux 31

server images, that is, the ability to use the function provided by VM/ESA for
remote system level debugging and problem determination could prove to be
very attractive in an educational or large-cale Linux development
environment. (“Hey, its Linux running on the mainframe but I can reboot and
restart when I want and it doesn't affect anyone else!”)

3.8 Tools and technologies

In the Linux arena there are a rapidly growing number of software
implementations that span a broad range of technology areas. These tools
and technologies include both open source and commercial software
initiatives.

A great deal of open source software has already been recompiled and is
running on S/390. Available are, for example:

 • Apache HTTP server
 • Bind Domain Name server
 • GNU/GCC Toolset and compilers
 • Journaling File System (JFS from IBM)
 • Samba File server
 • Logical Volume Manager (LVM from IBM)

IBM is porting its significant middleware and products to Linux. In a S/390
environment, some of the more significant requests we are getting are to
enable Linux to exploit OS/390 and VSE/ESA database and transaction
systems. Announced plans include e-business enabling infrastructure
technologies such as DB2 UDB and a Java Virtual Machine. We include a
brief description of the products, tools and technologies being made available
by IBM to help you understand how you might use them.

The IBM WebSphere Application Server
WebSphere is the industry's leading Web application software platform. The
Advanced Edition is a complete application server platform that leverages a
Java Virtual machine to deliver a transactional infrastructure for running
Enterprise Java Beans as well as servlets and Java Server Pages.

WebSphere is currently available in Standard and Enterprise Editions for
OS/390. The Standard implementation uses the IBM HTTP server powered
by the Domino GO Web server shipped as part of the OS/390 operating
system. WebSphere Advanced Edition for Linux will be powered by the
Apache Web server.
32 Linux for S/390

Applications can be developed using VisualAge for Java on any of its
supported development environments, including Linux, and then deployed on
either WebSphere Advanced Edition on Linux running on S/390, or on
WebSphere Standard Edition (servlets and JSPs only) or WebSphere
Enterprise Edition (servlets, JSPs and EJBs), both running on OS/390.

An additional advantage offered by WebSphere Advanced Edition on Linux for
S/390 is that it will now be available to VM/ESA and VSE/ESA customers who
previously didn't have access to WebSphere without running OS/390. This
will include connector technology to allow WebSphere to connect to DB2
VM/VSE and at a later date to CICS Transaction Server for VSE. This brings
IBM’s leading development and deployment tools in a S/390 environment to
customers who previously didn't have access to them or were unable to
deploy applications on their preferred platform!

JAVA 2 support
IBM will provide an implementation of its industry-leading Java Virtual
Machine (JVM) technology for use with the IBM WebSphere Application
Server for Linux on S/390. At the time of writing, this was expected to be
based on a Java 1.2.2 JVM. The JVM and associated base Java classes
provide the basic portability and platform independence for Java-based
applications. This is augmented and extended using the Enterprise
Java-based services and classes contained in the IBM WebSphere
Application Server Advanced Edition. These services include, but are not
limited to, services such as: Name, Directory, Security, Transaction,
Messaging, and Database and Application Connection.

The Java 2 support will provide Servlet, Java Server Pages (JSP) and
Enterprise Java Bean support through the IBM WebSphere Application
Server for Linux on S/390.

Connector technology
In support of WebSphere and the Enterprise Java initiatives, IBM will provide
connector technology that can be used stand-alone, or in conjunction with the
Common Connector Framework (CCF) that is embodied in VisualAge for Java
and in the WebSphere Application Server and also is the foundation for the
Java 2 Connector Framework.

Initially, IBM will provide connector technology for:

 • DB2
 • CICS
 • IMS
 • MQ Series
 • DB2 Universal Database
Chapter 3. Why Linux 33

 • Tivoli Framework End Point support
 • Tivoli Storage Manager Client

3.8.1 DB2 Connect
DB2 Connect will provide Java connectivity, JDBC, SQLJ connection to any
DRDA-capable database. These include DB2 running in OS/90, VM/ESA and
VSE/ESA. DRDA is an industry standard connectivity into relational
databases. Other alternatives are also possible.

3.8.2 CICS
The CICS Transaction Gateway will provide Java connectivity into CICS
Transaction Server running on OS/390 (and at a later date to VSE/ESA). It
provides the ability to be used either through Servlets, JSPs or by
stand-alone Java applications running on Linux for S/390. In whichever mode
you use the CICS Transaction Gateway, you will be able to exploit and
integrate with existing applications running under CICS. When using CICS for
OS/390 you can use existing applications or write new applications, also in
Java.

3.8.3 IMS
For customers using IMS as a transaction manager on OS/390, the IMS
Connect feature will provide connectivity from WebSphere Application Server
into existing IMS transactions.

3.8.4 MQ Series
Applications running on Linux for S/390 can be integrated with existing S/390
and non-S/390 applications by using the MQ Series Client. MQ Series Clients
are provided on an unrivaled number of platforms, providing the most open
messaging software in the industry. This support allows applications to be
built and deployed for any platform, including S/390, and allows isolation
between the client and the server. This isolation allows the client to be moved
from platform to platform without requiring any change at the server. The
server just receives its input in the form of a message on a queue.

3.8.5 DB2 Universal Database (UDB)
DB2 Universal Database (UDB) for Linux is a full-featured relational
database, and part of the DB2 family. It is initially being offered on Linux for
S/390 to address two main requirements. The first is that a relational
database is required when using the IBM WebSphere Application Server
Advanced Edition, that is, the ability to store local data for Session, Entity
34 Linux for S/390

beans, and to provide JDBC and SQLJ access to a local relational database.
Running DB2 in Linux makes sense and provides a complete solution for
stand-alone e-business Linux systems where there is no need to integrate
with OS/390, VM/ESA or VSE/ESA.

The second reason DB2 is being offered for Linux on S/390 is so that local
programs can exploit it for its relational database capabilities inside the Linux
system, for example business intelligence, data mining, and customer
relationship management solutions.

It should be noted that while DB2 UDB for Linux is a world-class Linux
relational database, it does not have all the features and functions of DB2
running on OS/390, and has not been modified in any way to exploit S/390
features and hardware.

If you design a solution that needs DB2 for OS/390, or VM/ESA, or VSE/ESA
features, or access to data or tables held in those systems, you can use DB2
Connect to access them remotely. Where the Linux system is running on the
same S/390 hardware system, or where it is interconnected via a high-speed
connection to the system, or where only low volume access is needed, this
method avoids the need to replicate data and reduces management and
additional hardware cost while not affecting overall application performance.

3.8.6 Tivoli Framework end-point support
Today’s computing environment relies more and more on distributed systems
for information system needs, where users at the client workstations perceive
the network as one big server or service provider. The Internet, distributed
computing, or network computing ties people, information, and resources
more closely together, but brings a challenge when considering the
management of these systems. Managers face the complex problem of
maintaining many different types of hardware and operating systems.

The Tivoli Framework is a solution that addresses modern 3-tier computing
environments providing support for management server/end-point manager,
end-point gateway, and end-points. An end-point can be managed, but it
cannot manage or be managed through.

This 3-tier architecture provides:

 • Increased flexibility in planning or managing customers' enterprises
 • Increased functionality
 • Lower cost
 • Lower maintenance
 • Increased scalability
Chapter 3. Why Linux 35

Adding Linux and specifically Linux for S/390 operating system platform
support brings additional operating system platforms into the robust Tivoli
management environment, that is, an increased ability to perform end-to-end
enterprise management, regardless of the platform.

 • Using Tivoli to leverage common services in the Tivoli framework

This means that when Tivoli improves a common service (for example, the
scheduler), the other Tivoli applications “inherit” the improvements.
Further, a set of common services allows the customer to lay down one
source of systems management “plumbing” that does the integration work.

 • Reduce the cost and complexity of using multiple management tools

With point products, the customer is forced to be the integrator. In other
words, for many customers the act of integrating multiple systems
management tools that don't work together is a major part of the problem.
The Tivoli Management Framework serves as a single point of integration
for Tivoli and third-party applications. Since all of these products can “plug
into” the framework and exploit its capabilities, the customer is no longer
forced to be the integrator.

Linux end-point support means that one or more Linux systems running on
S/390, in any of the supported modes of operation, and running the Tivoli
end-point support, can be managed and automated with, and benefit from, an
enterprise-wide Tivoli-based systems management and automation solution.

3.8.7 Tivoli Storage Manager Client
The Tivoli Storage Manager is a hierarchical, client- and server-based backup
and archive product. The clients and servers run on a wide range of platforms
and connect to each other using industry standard communication and
connectivity, such as TCP/IP over a 100 Mb Ethernet or FDDI.

The Tivoli Storage Manager Client, running in Linux on S/390, can be used to
back up, archive, restore, and retrieve files and databases from a server that
might typically be running on an OS/390 system, exploiting the high
availability services and storage support, such as IBM Tape Library support.
Tivoli Storage Manager Servers also run on a wide number of other platforms.

Availability of the Tivoli Storage Manager Client, as with the Tivoli Framework
end-point support, brings Linux on S/390 into an enterprise-wide solution,
allowing the files and databases used in Linux to be effectively managed by
an existing storage management infrastructure.
36 Linux for S/390

3.8.8 Summary
The IBM middleware for Linux for S/390 will give customers the flexibility to
use Linux as an e-business server to link mission-critical applications running
on S/390 operating systems directly to the Web. Customers can take
advantage of S/390 reliability, security, scalability and nonstop operation to
run Linux applications concurrently with other line-of-business applications,
such as enterprise resource planning, customer service, and supply chain
management running on OS/390, VM/ESA and VSE/ESA, as well as other
S/390 operating environments such as TPF and ALCS.

In addition, customers can take advantage of the new middleware capabilities
to increase the integration and performance of the Linux applications running
on S/390. For example, back-end mission-critical applications running on
OS/390, VM or VSE will be accessible at near memory speeds, bypassing the
network connection between the two applications.

Customers can also gain the cost savings resulting from the consolidation of
workloads from many Linux systems onto a single S/390 system. Beta
versions of the IBM e-business Enterprise Connectors for Linux for S/390,
IBM DB2 Universal Database for Linux for S/390, and IBM WebSphere
Application Server, Advanced Edition, with Java 2 support, and Tivoli
Framework support will be available in the third quarter of 2000.

General availability will follow in the fourth quarter. The release date for Tivoli
Storage Manager Client for Linux for S/390 will be announced later this year.
Chapter 3. Why Linux 37

38 Linux for S/390

Chapter 4. Linux distributions

Linux has a number of unique characteristics. Not only is it available in open
source, as discussed earlier, but it is also available from a number of different
sources. Linux can be obtained in source format and built by an individual
user or organization.

However, to support more complex hardware, for example a large number of
PC servers from many different suppliers, or one or two major UNIX hardware
servers, and you have a considerable task. This is further complicated when
you consider the range of solutions one or more of those systems could be
used for -- application development, office productivity, Web servers,
e-business application servers, database servers, thin clients, kiosks, etc.,
etc. To address these and other requirements, including supplying a range of
Linux-based tools and technologies, a number of standard Linux
“distributions” have come about.

These distributions can typically be obtained from either the Internet itself via
download, or on CD-ROM. Some come with little or no documentation, and no
support, and cost little or nothing. Others come with some documentation and
have some support available, others come with comprehensive
documentation and a range of support and service offerings. In addition,
distributions are targeted at a particular market, such as desktop PCs, Web
servers etc. and provide the hardware drivers and other tools and
technologies needed to support that environment.

IBM is working with four Linux distribution partners, Caldera, Red Hat,
TurboLinux, and SuSE, as discussed earlier in 3.2, “IBM strategy for Linux” on
page 22. For Linux on S/390, we are specifically working with SuSE and
TurboLinux on S/390-specific distributions.

All Linux distributions share the same common Linux kernel and development
libraries. Most also provide custom components that ease the installation and
maintenance of Linux systems. You can see from Figure 8 on page 40 that
Linux for S/390 contains the common Linux kernel, architecture-independent
and hardware-dependent parts, including a number of S/390-specific
functions and device drivers, and all the common, non-S/390 library and
application interfaces.
© Copyright IBM Corp. 2000 39

Figure 8. Linux on S/390 structure

A Linux system for almost any other hardware platform would typically look
just the same. The key here is that tools and technologies programmed to use
the common Linux interfaces will not see any difference, and it is very unlikely
that they will need any platform-specific code or function.

Most of the interfaces in Linux are supported by nearly every version of the
UNIX operating system, and Linux implements much of the industry standard
IEEE POSIX specification and has a C language compiler available. Through
the GNU tools that support the ANSI Standard C programming language,
Linux is widely supported by applications. However, it is not just another
UNIX. Through its open source availability, through its licensing making this
source code freely available and modifiable, it is a good platform on which to
build and run applications.

In addition to the POSIX and ANSI standards, Linux supports a wide range of
other industry standards such as NFS, FTP, HTTP and more.

Linux for S/390 adheres to the standards and interfaces found on other Linux
implementations. It runs in ASCII mode and supports common applications
and development tools such as the GNU tools. This is key to deployment and
use of Linux for S/390, since application porting is not required. Our
experience has been that most applications simply need to be recompiled in
order to run on S/390.

Today, Linux is supported by most major hardware and software vendors
including IBM, as already discussed. Once considered a “hacker’s” system,

GNUGNU
compilercompiler GNU C runtime libraryGNU C runtime library

Linux kernel includingLinux kernel including
some device driverssome device drivers

GNUGNU
binutilsbinutils

Linux applications

Architecture
dependent, IBM
contributed

Architecture
independent,
non-IBM
contributed
40 Linux for S/390

Linux is making inroads in the corporate world. Examples of Linux
implementations can be found in both financial and non-financial business
entities. The most common uses are found in enterprise network
infrastructure services such as e-mail, printer, file, and Web servers.

4.1 What a distribution is

A distribution is a coherent collection of software packages built for a Linux
kernel on a particular architecture. It includes a methodology for getting and
installing other packages as needed.

In Linux folklore, distribution started with SLS (for Software Landing Systems)
and Slackware; it was only considerably later that companies started
producing Linux distributions commercially.

The word “distribution” is one of those words that can cause lengthy
discussions, even skirmishes, between the “followers” of the various flavors of
Linux. The leaders of the various distributions are working together
constructively on the Linux Standards Base (LSB):

http://www.linuxbase.org

The goal of the LSB is to develop and promote a set of standards that will
increase compatibility among Linux distributions and enable software
applications to run on any compliant Linux system. In addition, the LSB will
help coordinate efforts to recruit software vendors to port and write products
for Linux.

4.1.1 Announced distributions
There is the Marist Distribution, which was the first publicly visible S/390
Linux distribution, and the one that this redbook is based on, see:

http://linux390.marist.edu/

Thinking Objects Software GmbH was among the first to get a system up and
running:

http://linux.s390.org/

To date, there have been announcements from SuSE, Turbo-Linux and
Debian that they are in the process of preparing distributions:

http://www.suse.com/PressReleases/ibmsuse.html
http://www.turbolinux.com/news/pr/ibm_s390.html
http://www.debian.org/News/weekly/2000/15/
Chapter 4. Linux distributions 41

4.1.2 Distribution media
This will be a decision by individual distributors, and will vary.

Obviously, from the point of view of an S/390 customer, a package on a
distribution medium that customers are familiar with (such as SMP/E) would
be the easiest to handle and integrate with existing procedures.

The Linux distributors are, of course, more familiar with the platforms they
have running at the moment, such as i386, alpha, arm, m68k, mips, pa-risk,
powerpc, sparc, and sparc-64. Two newcomers, ia64 and s390, are just
joining the field, but will have a lot to contribute..

There is a lot of learning to be done by:

 • Members of the Linux community who want to understand the strengths
the mainframe is bringing to Linux

 • Members of the S/390 community who want to understand what Linux and
open source can do for the mainframe

4.1.3 Roll your own
There is nothing to stop you from building your own distribution. If you have
needs that are not met by the current distributions, then building your own
specialized distribution is one way of “scratching that itch” (to quote Eric
Raymond, a popular open source advocate). This is what “freedom” is about,
when talking about free software.

If this is something you want to consider, then you will be spending time
studying the work done by the “Linux from scratch” site. It does not have
anything about S/390 yet (but that will change); see:

http://www.linuxfromscratch.org/

4.2 Linux documentation

While the remainder of this book covers in depth many of the tasks and
functions you may be required to perform to install and support a Linux on
S/390, eventually you might need additional information not contained in this
book.

One of the best places to look for this is in the Linux Documentation Project
(LDP). The LDP creates and maintains the standard online manual pages
(manpages) on Linux, as well as collections of documents on how to perform
specific functions, some in great depth. You can find the LDP at:
42 Linux for S/390

http://www.linuxdoc.org

There are many servers around the world that contain the same contents as
the sunsite.unc.edu site. These are called mirrors. Some of the Linux
distributions also include some or all of the documentation from the LDP.

In addition to traditional documentation, Linux is extensively supported
through newsgroups. In fact, Linux is supported through newsgroups more
than any other operating system, and most software packages. This is
because Linux “grew up” on the Internet through the same newsgroups. The
main Linux newsgroups can be found in the comp.os.linux.* hierarchy.

Finally, for documentation and information on Linux there are also a number
of mailing lists. One such mailing list, based out of Marist College in New York
state, USA, was one of the original sources of information on Linux for S/390.
This can be subscribed to by sending a note to Listserv@vm.marist.edu with
this line in the body of the note:

SUBSCRIBE LINUX-VM your name
Chapter 4. Linux distributions 43

44 Linux for S/390

Chapter 5. Native S/390 installation and operation of Linux

In a native LPAR on S/390, Linux for S/390 can be installed on S/390
hardware via VM, VSE, OS/390, and on a native LPAR. This chapter steps
you through the process of building an IPLable Linux for S/390 tape, IPLing
from it, customizing a new file system, and IPLing once more, but from
DASD.

5.1 Assumptions

At this point, we make the following assumptions:

 • The installer has access, or can work with an individual who has access,
to an OS/390 operating system in order to do the following:

 – Transfer (FTP) files from a workstation to OS/390.

 – Have a user ID capable of submitting JCL to copy code and create
3490 tapes.

 – Have authorization to vary devices online and offline.

 • Access to a tape drive such as a 3490 and, of course, a 3490 (or
equivalent) tape. Make sure you know the unit address/device number of
the tape drive.

 • Access to a Hardware Management Console (HMC).

Many of the instructions here are extensions of the instructions given in the
document Linux for S/390: Installation, Configuration, and Use. We strongly
recommend that you read this document before proceeding.This document
can be obtained from the Linux for S/390 site hosted by Marist College at:

http://linux390.marist.edu

All downloaded code mentioned in this chapter came from the Marist
distribution version 2.2.15, dated 05/19/00.

5.2 Skills and resources required

You may be saying, “I’m a Linux programmer, so why should I be worried
about where, what, and how Linux for S/390 is installed as far as hardware is
concerned?”. And you’d be correct—after Linux for S/390 is activated. But
until then, planning and prior knowledge such as the following is required:

 • You (or a system programmer) must first carve a partition for Linux for
S/390 out of an S/390 Central Electronics Complex (CEC). You probably
© Copyright IBM Corp. 2000 45

will not have a dedicated machine for this. We have seen that a mixture of
both Linux/UNIX and OS/390 skills is required for the Linux for S/390
installation.

 • You need at least read access to the system IOCDS to see the
subchannel path id (CHPID) layout of the Linux for S/390 partition.

 • You need access to a DASD and the layout that will be used by the Linux
for S/390.

Note: Linux for S/390 will only be able to access 64 DASD devices. If you
only expect to IPL from tape to satisfy your curiosity, then DASD will not
be needed.

 • Some knowledge of the text editor vi is needed.

 • If you want connectivity through a network, then knowledge of the network
is required. The following information should be obtained before
attempting a Linux for S/390 network-enabled installation:

 – Type of network device (OSA2 Token Ring or Ethernet, CTC, or
ESCON)

 – Host name of the Linux for S/390 system

 – IP address of the Linux for S/390 system

 – Peer IP address (for CTC or ESCON)

 – Broadcast IP address (for OSA2, typically x.y.z.255)

 – Gateway IP address (for OSA2)

 – Domain name server IP address

 – Subnet mask

 – Network address (typically x.y.z.0)

 – DNS search domain (that is in our project, itso.ibm.com)

5.3 Hardware preparation

Linux for S/390 runs in a separate partition. It does not run on top of the
OS/390 operating system the way that OS/390 UNIX System Services does.

Throughout this chapter, the terms LPAR and partition are used
interchangeably. Do not confuse a S/390 partition with a Linux for S/390
minor device partition.

Terminology
46 Linux for S/390

 • A minimum of 1 CPU is required. It need not be dedicated. However, in
order to better monitor the partition and debug problems, we recommend
that you first install and test on one dedicated processor until the system
goes into production.

 • Linux for S/390 has a maximum RAM size of 1920 MB. Therefore, it is
unnecessary to allocate more than 1920 MB of central storage for your
Linux for S/390 partition. The absolute minimum amount of storage
required for Linux for S/390 is approximately 12 MB—but your possibilities
are limited with such a system.

Instead, we recommend that you have a system with a minimum of 64 MB.
This should be enough to do daily Linux for S/390 work for 1 to 5 users
and have a Web server running. For further details on Web servers, see
Chapter 21, “The Apache Web server” on page 405.

As a minimum, we recommend that only the required device CHPIDs be
online for the Linux for S/390 partition during its first installation. They are:

 • DASD (if more than a tape IPL is expected)

 • 3490 tape drive

 • OSA card or communication equivalent

5.4 The hardware we used

Following are the partition specifications we used to install and customize
Linux for S/390:

System: 9672-X77
Central storage: 768 MB
Expanded storage: 64 MB 1

1 Expanded storage can be accessed via the XPRAM function. See 9.1.3, “XPRAM” on page 181 for details.

At the time of writing, kernel version 2.2.14 was limited to a maximum
number of devices. That is, if more than 1000 devices were configured
online to the Linux for S/390 partition, the kernel would get confused on
IPL and hang. No error messages would be displayed, nor would there
be a disabled wait state.

This limitation was lifted with kernel version 2.2.15, which we IPLed and
ran, but on an LPAR that did not have over 1000 devices online.
Therefore, that aspect of 2.2.15 was not tested.

Important
Chapter 5. Native S/390 installation and operation of Linux 47

CPUs: 2 (shared)
CHPIDs: 3 online (DASD, tape drive and OSA card)
OSA card: OSA-2 Token Ring/Ethernet (10 Mb/s)

5.5 Activating Linux for S/390

To install Linux for S/390 on a native LPAR, you must do the following:

1. Build an IPLable tape from downloaded code.

2. Load your Linux for S/390 partition via tape.

3. Format a DASD and create file systems.

4. Uncompress a file system on the formatted DASD.

5. Customize files on the file system.

6. Create and activate swap space.

7. ReIPL from DASD.

5.5.1 Creating an IPLable tape
You will probably find yourself using a workstation to connect to a host
server. In this section we describe how to download the Linux for S/390
binary files to a workstation, upload them to your host system, and create an
IPLable tape.

Download the Linux for S/390 kernel with a tape image and the initial RAM
disk binaries. Then FTP the files up to your host system.

At the time of our installation, the file names for these were:

 • image.tape.bin contained the Linux for S/390 kernel. It is configured to use
an initial RAM disk as a root file system.

 • initrd.bin.gz was the initial RAM disk root file system.

It is assumed that you have access to an OS/390 operating system in order
to create the IPL tape. Access the Linux for S/390 site hosted by Marist
College at:

http://linux390.marist.edu

Attention
48 Linux for S/390

5.5.1.1 Parameter line file (parmline)
A third file, the parameter line file (parmline), is also needed on the IPL tape.

This file tells Linux for S/390 what devices are available for use and what root
file system to mount. The parameter names in the parmline file must all be in
lowercase, whereas the values for these parameters, such as a unit address,
may be in uppercase.

The parmline file can be created on your local workstation and then FTPed up
to the host. The parmline file data set may be preallocated; its attributes are
shown in Figure 9.

Figure 9. Allocation attributes of the parmline file

For a description of the possible parameter line file entries, see Appendix D,
“The parameter file” on page 481. The parmline file should contain the
following entries:

 • dasd=xxxx,(yyyy) | xxxx-yyyy

Where xxxx and yyyy are the hexadecimal unit addresses for your DASD
that you have reserved for your Linux for S/390 LPAR. Only one volume is
needed to save the IPL information. Additional volumes may be specified
for future expansion. A range of volumes can also be specified, that is:
xxxx-yyyy

 • root=/dev/ram0 ro

Data Set Name . . . : userid.PARMLINE.TXT

General Data Current Allocation
 Volume serial . . . : TOTTSQ Allocated tracks . : 1
 Device type : 3390 Allocated extents . : 1
 Organization . . . : PS
 Record format . . . : F
 Record length . . . : 1024
 Block size : 1024 Current Utilization
 1st extent tracks . : 1 Used tracks : 1
 Secondary tracks . : 1 Used extents . . . : 1

 Creation date . . . : 2000/05/01
 Referenced date . . : 2000/05/08
 Expiration date . . : ***None***
Chapter 5. Native S/390 installation and operation of Linux 49

Where ro specifies that the root file system initrd will be mounted
read-only in the event an error condition occurs. An example of an error
condition would be where a previous IPL of Linux for S/390 did not shut
down completely, leaving either the file system still mounted or errors
such as invalid or missing inodes, missing directories or files, and so on.

 • IPLdelay=xyz

Some installations may encounter problems with the OSA-2 card. A time
delay can be placed into the IPL with the IPLdelay keyword. This will allow
the IPL to correctly sense the OSA-2 card. The value xyz is entered in
seconds or minutes (that is, 30s or 1m, respectively). We did not use this
parameter for our native install.

5.5.1.2 Implications of using “dasd” in parmline
Linux for S/390 behaves differently depending on whether the “dasd”
statement is specified in parmline. Differences range from having all DASD
detected (whether Linux for S/390 has access to them or not), to specifying
each DASD that you want to use.

Following are examples of how DASD detection may differ. Assume that our
installation has the attributes shown in Table 1. The 9xx devices will most
likely be on the same CHPID but for this exercise, let’s assume that they are
all different.

Table 1. DASD devices

If the “dasd” statement is omitted from the parmline file, then all DASD
devices defined to the partition will be detected, in order, by subchannel path
identifier. Linux for S/390 assigns device names suffixed with letters starting

DASD device number CHPID Contents

9AC 01B IPL record, large file
system

99A 01C swap space

998 01A empty

24AB 00B not used by Linux
50 Linux for S/390

with “a” (that is: /dev/dasda, /dev/dasdb, and so on), so the DASD
assignments in Table 2 will be made, which are incorrect:

Table 2. What you really get with “dasd” not specified

The “dasd” statement is specified for only those devices defined to the Linux
for S/390 partition in the correct order. For example, if dasd=9AC,99A,998 is
specified, the result would be the correct DASD assignments (as shown in
Table 3), since the subchannel path identifier does not confuse the order.

Table 3. “dasd” specified with correct devices

Using a range on the DASD statement needs special attention as well. For
example, assume the dasd statement is dasd=99A-99E. The assignments in
Table 4 are used, which may not be desirable.

Table 4. Using a range on the “dasd” statement

Linux device DASD device
number

CHPID Assumed
contents

Actual
contents

/dev/dasda 24AB 00B IPL record,
file system

Not used by
Linux

/dev/dasdb 998 01A Swap space Empty

/dev/dasdc 9AC 01B Empty IPL record,
file system

/dev/dasdd 99A 01C Undefined Empty

Linux device DASD device
number

CHPID Assumed
contents

Actual
contents

/dev/dasda 9AC 01B IPL record,
file system

IPL record,
file system

/dev/dasdb 99A 01C Swap space Swap space

/dev/dasdc 998 01A Empty Empty

Linux device DASD device number

/dev/dasda 99A

/dev/dasdb 99B

/dev/dasdc 99C
Chapter 5. Native S/390 installation and operation of Linux 51

5.5.2 Getting the files to your host system
You will need the TCP/IP address of your host OS/390 system. All three files
must be FTPed in binary, and must also use an lrecl of 1024, a blocksize
suitable in your installation, and a fixed record format (RECFM=FB).

The FTP subcommand site is used to achieve this. When using an FTP client
on Windows 95/98/NT, this subcommand needs to be prefixed with the quote
subcommand. Two major parameters have to be set: the space values and
the physical characteristics of the data set. An example of FTPing from
Win95/NT is shown in Figure 10.

Figure 10. Win95/NT FTP example

/dev/dasdd 99D

/dev/dasde 99E

Linux device DASD device number

D:\Linux390>ftp wtsc47
Connected to wtsc47.itso.ibm.com.
220-FTPDMVS1 IBM FTP CS V2R8 at wtsc47oe.itso.ibm.com, 17:07:46 on
2000-04-29.
220 Connection will close if idle for more than 5 minutes.
User (wtsc47.itso.ibm.com:(none)): userid
331 Send password please.
Password:
230 userid is logged on. Working directory is "USERID.".
ftp> quote site lrecl=1024 blksize=8192 recfm=fb �
200 Site command was accepted
ftp> quote site track pri=60 sec=10 �
200 Site command was accepted
ftp> bin
200 Representation type is Image
ftp> put initrd.txt
200 Port request OK.
125 Storing data set USERID.INITRD.TXT
250 Transfer completed successfully.
2991104 bytes sent in 78.00 seconds (38.35 Kbytes/sec)
ftp>
52 Linux for S/390

FTP on OS/390 allocates new data sets with default parameters set in
ftp.data. However, these parameters may not accomplish what you need in
order to store the necessary Linux for S/390 files on OS/390.

Primarily, they are as follows:

 • Data sets on OS/390 have a record format. We suggest you store in a
record format similar to what the tape looks like. At � in Figure 10 we use
a logical record length (lrecl) of 1024, a block size (blksize) of 8192, and a
record format (recfm) of FB. You may use others, but the final copy step
must be able to convert them to the format required by the IPL process.

 • New data sets on OS/390 must be allocated before they can be used. The
size must be large enough to hold the data. In our case we are on disk
model 3390-mod 3. We estimated the size to be about 60 tracks (one track
being about 56 KB). We defined this as the primary size (pri=60), and
allowed the data set to increase by 10 tracks (sec=10) at a time. The
allocation unit is a track. This is shown at � in Figure 10 on page 52.

If you have an OS/2-based workstation, the upload is very similar to the
procedure described previously. Only the site command is entered
differently, that is, without the quote prefix, as shown in Figure 11.

Figure 11. OS/2 FTP example

5.5.3 JCL to create the tape
The IPL tape must be created as an unlabeled 3490 tape. However,
unlabeled tapes are rarely used today. Therefore, we have included a small
job here to show how a standard label tape can be unlabeled:

.
ftp> bin
200 Representation type is Image
ftp> site track pri=60 sec=10
200 Site command was accepted
ftp> site lrecl=1024 blksize=8192 recfm=fb
200 Site command was accepted
ftp> put initrd.txt
200 Port request OK.
125 Storing data set USERID.INITRD.TXT
250 Transfer completed successfully.
2991104 bytes sent in 78.00 seconds (38.35 Kbytes/sec)
ftp>
Chapter 5. Native S/390 installation and operation of Linux 53

//LINUXTP JOB (999,POK),NOTIFY=&SYSUID,
// CLASS=F,MSGCLASS=T,MSGLEVEL=(1,1)
//STEP0 EXEC PGM=IEBGENER
//SYSUT1 DD *
DDD
//SYSUT2 DD DISP=(NEW,PASS),LABEL=(1,BLP),DSN=DUMMY,
// DCB=(RECFM=F,LRECL=1024),
// UNIT=3490
//SYSIN DD DUMMY

The trick is to overwrite the label, which itself is a file on tape. When reading
the tape as a standard labeled tape, it is interpreted as label data and not
available to a program reading that tape. The bypass label processing option
(option BLP) may not be available without intervention by your installation’s
security services.

After all files are uploaded to OS/390, the IPL tape can be created. The
following is a JCL example:

//LINUXTP JOB (999,POK),NOTIFY=&SYSUID,
// CLASS=F,MSGCLASS=T,MSGLEVEL=(1,1)
//IMAGE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=USERID.IMAGE.TXT
//SYSUT2 DD DISP=(NEW,PASS),LABEL=(1,NL),DSN=DUMMY,
// DCB=(RECFM=F,LRECL=1024),
// UNIT=3490
//SYSIN DD DUMMY
//PARMLINE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=USERID.PARMLINE.TEXT
//SYSUT2 DD DISP=(NEW,PASS),LABEL=(2,NL),DSN=DUMMY,
// DCB=(RECFM=F,LRECL=1024),
// VOL=(,RETAIN,,REF=*.IMAGE.SYSUT2),
// UNIT=3490
//SYSIN DD DUMMY
//INITRD EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=USERID.INITRD.TXT
//SYSUT2 DD DISP=(NEW,KEEP),LABEL=(3,NL),DSN=DUMMY,
// DCB=(RECFM=F,LRECL=1024),
// VOL=(,RETAIN,,REF=*.IMAGE.SYSUT2),
// UNIT=3490
//SYSIN DD DUMMY

As the tape has to be written with fixed-length records, DCB parameters are
applied to the SYSUT2 statements. Since the tape is written without labels,
54 Linux for S/390

the names of the data sets on the tape are irrelevant. Linux for S/390 only
expects an order of three files on the tape. The order is:

1. The kernel image file USERID.IMAGE.TXT
2. The parmline file USERID.PARMLINE.TEXT
3. The initial root file system USERID.INITRD.TXT

If your host system is a VM-based environment, you can create the tape from
there, as well. The commands to issue on a CMS virtual machine are as
follows—but make sure that the files are correctly blocked on CMS before
writing the tape:

rew 181
filedef outmove tap1 (recfm f block 1024 lrecl 1024 perm
filedef inmove disk image txt a
move
filedef inmove disk parm file a
move
filedef inmove disk initrd txt a
move
rew 181

Note: Remember to rewind the tape to the beginning.

Since it is unusual to handle text data as in parmline on OS/390 with a width
of 1024 characters, we tested a parmline data set having a fixed record
length of 80. The data set was allocated with attributes as shown:

Data Set Information
 Command ===>

 Data Set Name . . . : USERID.PARMLINE.TXT80

 General Data Current Allocation
 Volume serial . . . : TOTTS3 Allocated tracks . : 3
 Device type : 3390 Allocated extents . : 1
 Organization . . . : PS
 Record format . . . : FB
 Record length . . . : 80
 Block size : 27920 Current Utilization
 1st extent tracks . : 3 Used tracks : 1
 Secondary tracks . : 1 Used extents . . . : 1

 Creation date . . . : 2000/05/23
 Referenced date . . : 2000/05/23
 Expiration date . . : ***None***
Chapter 5. Native S/390 installation and operation of Linux 55

Remember to set the numbering off when editing a parmline data set with
DCB parameters like these and in addition the data must be in lower case.
The parmline data set now looks as follows:

File Edit Confirm Menu Utilities Compilers Test Help
 sss
EDIT HDM.PARMLINE.TXT80 Columns 00001 00072
Command ===> Scroll ===> CSR
 ****** ***************************** Top of Data ******************************
 000001 dasd=9AC,996,998
 000002 root=/dev/ram0 ro
 ****** **************************** Bottom of Data ****************************

In addition, we changed the job step to copy the parmline data set:

//PARMLINE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=HDM.PARMLINE.TXT80
//SYSUT2 DD DISP=(NEW,PASS),LABEL=(2,NL),DSN=DUMMY,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=960),
// VOL=(,RETAIN,,REF=*.IMAGE.SYSUT2),
// UNIT=3490
//SYSIN DD DUMMY

We chose to write with a blocksize of 960 bytes to tape. This means that both
lines—including the trailing blanks—are copied to tape. The data is written in
one physical block of 160 bytes to tape. This is indicated in Figure 12.

Figure 12. Size of parmline file on tape

Size of parmline dataset with LRECL=1024

dasd=9AC,996,998 root=/dev/ram0 ro

Size of parmline dataset with LRECL=80

dasd=9AC,996,998 root=/dev/ram0 ro

1024 bytes

160 bytes (2 80 byte records)
56 Linux for S/390

5.6 Using the Hardware Management Console (HMC) to IPL

HMC connections vary from installation to installation. At the time of writing,
our installation had an HMC talking over TCP/IP to the Support Element (SE)
of each Central Electronics Complex (CEC) via a private Token Ring
connection.

Linux for S/390 installers should be aware that the IPL of Linux for S/390,
whether it be via tape or DASD, must be done on the HMC. There is no
interface available to telnet into the box to perform the IPL, since Linux for
S/390 is not active yet.

Let’s go through the steps to IPL the Linux for S/390 partition from tape, as
well as from DASD.

1. Highlight your Linux for S/390 partition. In our case, this was partition A5
on CEC SCZP701 (see Figure 13 on page 58).

Note the following regarding “how much data is read” from the parmline
file:

 • Linux for S/390 has a general read routine that reads in chunks of 1024
bytes. This routine detects short blocks. When reading the parmline file,
this will normally be the case.

 • Current kernel 2.2.15 handles only parmline data up to 896 bytes. This
is a hard limit. You cannot exceed it.

 • If you have a setting that ends exactly on the last column of a “card”,
insert a blank in column one on the following card if you have to
continue with further parameters. This is necessary because all card
images will be concatenated and presented to the kernel as one line of
text.

Attention

When we speak of reactivating Linux for S/390, we normally use the terms
boot or reboot. But since Linux for S/390 is activated from the HMC, it does
not know anything about activation profiles (an HMC term), etc. So the
terms used are IPL (meaning initial program load) or reIPL. Therefore, we
do not use the terms boot and reboot in this chapter.

Terminology
Chapter 5. Native S/390 installation and operation of Linux 57

2. Double-click Reset Clear on the right side to clear your storage.

Figure 13. HMC CPC Images Work Area

3. After the Reset Clear is done:

 – If IPLing from tape, place your tape into the appropriate tape drive.
Double-click Load (also located on the right), and enter the tape drive
unit address/device number as the load address. In our case, it was
0B31. See Figure 14 on page 59 for an example of the load dialog.
There are no load parameters, so blank this field out.
58 Linux for S/390

Figure 14. Load with unit address of tape drive

 – If IPLing from DASD, it is best to have an activation profile created with
the address of the IPL volume in it. You can also have an activation
profile for tape IPL. Once you have an activation profile, double-click
the Activation task icon on the right of the HMC active window instead
of performing the load task. Again, as on the load panel, the load
address field is filled with the tape unit address/device number of the
IPL DASD. The load parameter remains empty.

4. For both the load and the activate task, you will receive another panel to
confirm the action. Click Yes to confirm.

5. Once the load is complete, double-click Operating messages to wait for
IPL messages. On our local system, these messages appeared within 30
seconds for the tape IPL and almost instantaneously for the DASD IPL.
The messages you see on the HMC will also be captured in file
/var/log/dmesg by Linux for S/390.

Figure 15 on page 60 shows the output of the last screen of the file
/var/log/dmesg after Linux for S/390 has IPLed. For a detailed description
of these messages, see Chapter 8, “Linux for S/390 bootup and shutdown”
on page 165.
Chapter 5. Native S/390 installation and operation of Linux 59

Figure 15. cat /var/log/dmesg

If a tape IPL was used, the tape may now be unloaded from the tape reader.

During the IPL from tape, you will be prompted to enter the information you
gathered about your network interface at the beginning of this chapter. This is
a script (located in /etc/sysconfig/network-scripts, and unfortunately deleted
after running) that is kicked off by Linux for S/390.

After the appropriate information is entered, an insmod command is invoked,
depending on the type of interface. For example, we used an OSA-2 Token
Ring adapter. Linux for S/390 knows this as an LCS device and therefore
invokes the insmod command followed by the LCS device parameters, also
from the netsetup script. The prompts and your answers to these prompts will
be displayed and entered on the HMC. Figure 16 on page 61 shows the
display after you have successfully entered all input and the interface is
initialized by Linux for S/390.

RAM disk driver initialized: 16 RAM disks of 8192K size
loop: registered device at major 7
dasd:initializing...
dasd(eckd):3390/a (3990/1) Cyl: 3339 Head: 15 Sec: 224
dasd(eckd):Estimate: 58786 Byte/trk 2074 byte/kByte 33 kByte/trk
dasd(eckd):Verified: 58786 B/trk 5202 B/Blk(4096 B) 12 Blks/trk 48
kB/trk
dasd:2404080 kB <- 'soft'-block: 4096, hardsect 4096 Bytes
dasd:devno 9ac added as minor 0 (ECKD)
channel: no Channel devices recognized
RAMDISK: Compressed image found at block 0
VFS: Mounted root (ext2 filesystem).
Freeing unused kernel memory: 0k freed
Starting lcs module

lcs: tr0 configured as follows read subchannel=7b0 write subchannel=7b1
hw_address=40:00:09:FF:71:C0 rel_adapter_no=0

lcs configured to use sw statistics,
ip checksumming of received packets is off.
configured to detect
cu_model 0x01,15 rel_adapter(s)
cu_model 0x08,15 rel_adapter(s)
cu_model 0x60,1 rel_adapter(s)
cu_model 0x1F,15 rel_adapter(s)
[root@linuxx log]#
60 Linux for S/390

Figure 16. HMC display of network initialization

There is a possibility that you will run into problems with your network
interface. You will notice this when you have responded to the prompts to the
network script and the message indicating that the initialization of your LCS
device (in our case the Token Ring tr0), has been delayed. See Figure 17 on
page 62 for an example.

If this happens, double-check your network information. Make sure your OSA
card is not shared by more than eight images/systems (kernel version 2.2.15
may have fixed this, but was not tested). In fact, when prompted for the LCS
parameter during the network script, enter the noauto=1 parameter to tell
Linux for S/390 not to autosense the card. You achieve this by specifying the
device number as:

noauto=1 devno_portno_pairs=0x21C0,0

where 21C0 is the device number of our OSA card, and we will be using port 0.
Chapter 5. Native S/390 installation and operation of Linux 61

Figure 17. Delaying tr0 initialization

Unlike with OS/390, when Linux for S/390 is IPLed, there is no resulting
master console to enter commands on. All Linux for S/390 commands are
entered through the HMC using the Send Command button and the dialog
box given. Replies to the network prompts in the previous figure are entered
using this method. Figure 18 on page 63 shows an example.
62 Linux for S/390

Figure 18. HMC Send Command dialog

When using the Send Command dialog, commands may be retrieved by
using the up arrow key, just as you would do on your PC workstation with
doskey active. But this only works for the last command issued. Use of the
control key, such as Cntrl-C, is not supported on the HMC. Also, if you are
working from the HMC only (which is not recommended when Telnet is
available), be advised that when you enter the password for the system, it is
not blanked out with asterisks or blanks; that is, the password can be seen.

The password for root on the tape IPL system is pass4root. It will also be the
same password when you IPL from DASD. Since Cntrl-C is not supported, do
not enter a command that will continually loop, such as ping. Use the -c flag
to specify the number of packets to be sent; for example:

ping <ipadr> -c 3
Chapter 5. Native S/390 installation and operation of Linux 63

5.7 Verifying the IPL from tape

Once the system is IPLed, check it by issuing the following commands and
examining the output for accuracy. This will include things such as CPU
information, network configuration, and file systems mounted.

The cat command concatenates the contents of a file to the console. The
more command (meaning list the contents of a file page by page) is also
available for files that are too large to fit on one screen. Let’s look add some
interesting informations:

cat /proc/cpuinfo

Figure 19. cat /proc/cpuinfo command

Figure 20 shows the output of the cat /proc/meminfo command:

Figure 20. cat /proc/meminfo command

[root@linuxx /root]# cat /proc/cpuinfo
vendor_id : IBM/S390
processors : 2
bogomips per cpu: 144.58
processor 0: version = 97, identification = 050822, machine = 9672
processor 1: version = 97, identification = 150822, machine = 9672

[root@linuxx /root]# cat /proc/meminfo
 total: used: free: shared: buffers: cached:
Mem: 794341376 22081536 772259840 4055040 8388608 4161536
Swap: 0 0 0
MemTotal: 775724 kB
MemFree: 754160 kB
MemShared: 3960 kB
Buffers: 8192 kB
Cached: 4064 kB
SwapTotal: 0 kB
SwapFree: 0 kB
64 Linux for S/390

Figure 21 shows the output of the cat /proc/interrupts command:

Figure 21. cat proc/interrupts command

Figure 22 shows the output of the df command:

Figure 22. Output of the df command

Figure 23 shows the output of the ifconfig command:

Figure 23. Output of the ifconfig command

5.7.1 IPL messages for Linux
All messages issued to the HMC are stored in the file /var/log/dmesg. Figure
24 on page 66 contains an example of its contents. We picked the portion that
shows the DASD initialization. For a more detailed description of the IPL

cat of this file yielded a “bad file descriptor” message. This is due to
an error in the kernel. You should not receive this message. It seems as
though the filename was added to the directory but no actual file
existed.

[root@linuxx /root]# df
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/ram0 7931 7931 0 100% /

[root@linuxx /]# ifconfig
lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:3924 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0

tr0 Link encap:16/4 Mbps TR HWaddr 40:00:09:FF:71:C0
 inet addr:9.12.14.196 Bcast:9.12.14.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:2000 Metric:1
 RX packets:6843 errors:0 dropped:0 overruns:0 frame:0
 TX packets:763 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
Chapter 5. Native S/390 installation and operation of Linux 65

messages, see 8.2, “Kernel initialization” on page 168. As you can see in our
case, the device numbers 998, 99A, and 9AC are being made available for
Linux for S/390.

Figure 24. cat /var/log/dmesg command

5.7.2 Formatting DASD for Linux
In this section we go through the process to configure a DASD for Linux for
S/390 to store the root files system, and the IPL information to IPL from
DASD later.

5.7.2.1 DASD major number/minor number
Linux for S/390 supports a variety of devices. The supported types can be
found in the file /proc/devices. See Figure 25 on page 67 for an example of
the output of the cat /proc/devices command.

dasd:initializing...
dasd(eckd):3390/a (3990/1) Cyl: 3339 Head: 15 Sec: 224
dasd(eckd):Estimate: 58786 Byte/trk 2074 byte/kByte 33 kByte/trk
dasd(eckd):Verified: 58786 B/trk 5202 B/Blk(4096 B) 12 Blks/trk 48
kB/trk
dasd:2404080 kB <- 'soft'-block: 4096, hardsect 4096 Bytes
dasd:devno 998 added as minor 8 (ECKD)
dasd(eckd):3390/a (3990/1) Cyl: 3339 Head: 15 Sec: 224
dasd(eckd):Estimate: 58786 Byte/trk 2074 byte/kByte 33 kByte/trk
dasd(eckd):Verified: 58786 B/trk 5202 B/Blk(4096 B) 12 Blks/trk 48
kB/trk
dasd:2404080 kB <- 'soft'-block: 4096, hardsect 4096 Bytes
dasd:devno 99a added as minor 4 (ECKD)
dasd(eckd):3390/a (3990/1) Cyl: 3339 Head: 15 Sec: 224
dasd(eckd):Estimate: 58786 Byte/trk 2074 byte/kByte 33 kByte/trk
dasd(eckd):Verified: 58786 B/trk 5202 B/Blk(4096 B) 12 Blks/trk 48
kB/trk
dasd:2404080 kB <- 'soft'-block: 4096, hardsect 4096 Bytes
dasd:devno 9ac added as minor 0 (ECKD)
66 Linux for S/390

Figure 25. cat /proc/devices command

The device types are prefixed by their device major numbers. As you can
see, the major number 94 represents DASD. The major number for DASD is
broken down into four minor numbers, starting with 0. The first minor number
represents the device and the remaining three represent the three possible
partitions into which the DASD can be formatted.

For a more detailed discussion on major numbers, minor numbers, and their
uses, see 9.1, “Devices” on page 177. The numbering scheme for two DASD
is shown in Figure 26 on page 68.

[root@linuxx /root]# cat /proc/devices
Character devices:
 1 mem
 2 pty
 3 ttyp
 4 ttyS
 5 console
 10 misc

Block devices:
 1 ramdisk
 7 loop
 94 dasd
 95 mnd
Chapter 5. Native S/390 installation and operation of Linux 67

Figure 26. Major number 94 - DASD

5.7.2.2 DASD limitations
At the time of writing, Linux for S/390 supports up to 64 DASD. Also, though a
major number is broken down into 3 minor numbers (each being a partition),
Linux for S/390 at present supports the formatting of only one partition per
DASD, and this partition takes up the entire volume.

If you want to use your DASD as storage media for your Linux for S/390
system (hard disks), you need to format them using the dasdfmt utility. First
check the file /proc/dasd/devices (use the cat command) to see what devices
have been reserved for your Linux for S/390 system.

There may be an instance where you may not see the major number of 94 for
your DASD in the output of this file (that is, if the mknod commands were not
issued for you in the file system). If this is the case, then issue the following
command:

mknod devicenodename b 94 <minor_number>

where minor_number is contained in /proc/devices. The contents of our
/proc/dasd/devices file are shown in Figure 27 on page 69.

volume label

1

2

1

2

33

55

volume label

minor number
for each
partition

minor number
of next device

minor number
for the device

0

4

68 Linux for S/390

Figure 27. cat /proc/dasd/devices command

Fortunately, for the file system on the Marist site, the nodes “a” through “h”
have already been created for the DASD and the first partition of the DASD.
To see the definitions, look at the contents of your /dev directory. An example
is shown in Figure 28.

Figure 28. mknods already performed on Marist file system

As you can see in Figure 27, devices 9AC, 99A, and 998 have been reserved
for the Linux for S/390 system. We specifically chose not to format the 998
volume to show you that the format is unknown and is identified by n/f. Their
major nodes are all 94 and their minor numbers are assigned in groups of 4,
starting with the number zero. See Figure 26 on page 68 for an illustration.

[root@linuxx /root]# cat /proc/dasd/devices
dev# MAJ minor node Format
09AC 94 0 /dev/dasda 4096
099A 94 4 /dev/dasdb 4096
0998 94 8 /dev/dasdc n/f

[root@linuxx /dev]# cd /root
[root@linuxx /root]# cd /dev
[root@linuxx /dev]# ls -la dasd*
brw-r--r-- 1 root root 94, 0 Jan 5 18:59 dasda
brw------- 1 root root 94, 1 Jan 5 19:00 dasda1
brw-r--r-- 1 root root 94, 4 Jan 5 18:59 dasdb
brw-r--r-- 1 root root 94, 5 Jan 5 19:00 dasdb1
brw-r--r-- 1 root root 94, 8 Jan 5 19:00 dasdc
brw-r--r-- 1 root root 94, 9 Jan 5 19:00 dasdc1
brw-r--r-- 1 root root 94, 12 Jan 5 19:00 dasdd
brw-r--r-- 1 root root 94, 13 Jan 5 19:00 dasdd1
brw-r--r-- 1 root root 94, 16 Jan 5 19:00 dasde
brw-r--r-- 1 root root 94, 17 Jan 5 19:39 dasde1
brw-r--r-- 1 root root 94, 20 Jan 5 19:00 dasdf
brw-r--r-- 1 root root 94, 21 Jan 5 19:39 dasdf1
brw-r--r-- 1 root root 94, 24 Jan 5 19:00 dasdg
brw-r--r-- 1 root root 94, 25 Jan 5 19:39 dasdg1
brw-r--r-- 1 root root 94, 28 Jan 5 19:00 dasdh
brw-r--r-- 1 root root 94, 29 Jan 5 19:39 dasdh1
[root@linuxx /dev]#
Chapter 5. Native S/390 installation and operation of Linux 69

These volumes will later house the boot record, customized file system, and
swap space. Since the initrd file system on tape is limited in space, we need
to allocate space on DASD, create a file system on it, and mount it onto the
initrd file system to continue customization.

We recommend that you dedicate DASDs for your Linux for S/390 system
and not allow any other partition access to them. If not dedicated, another
partition, perhaps an OS/390 system, could gain access to the pack and
accidentally perform a destructive action such as a defrag or initialization of
the pack.

The dasdfmt command is used to format space on the DASD reserved for
Linux. The volume’s Volume Table Of Contents (VTOC) and label area are
erased. Linux for S/390 will know this DASD as /dev/dasda. The format of the
dasdfmt command is:

dasdfmt -b 4096 -f /dev/dasdc

The blocksize (-b 4096) can be any power of 2 between 512 and 4096. Since
the extf2fs file system uses 1 KB blocks, there is a performance gain if you
specify a blocksize of 1024 or higher. We recommend a blocksize of 4096.
Once entered, Linux for S/390 will ask for your confirmation by issuing the
following message:

A reply of yes will cause all data on the volume 0998 to be erased. This
includes IBM volume labels, VTOC, and data. Depending on the size of the
volume, the format may take some time. From our experience, a 3390 Mod 3
(2.1 GB) volume takes over 20 minutes to format. (This, of course, is
contingent upon the type of hardware you are running on. Times at your
installation may differ.)

I am going to format the device /dev/dasdc in the following way:
 Device number of device : 0x998
 Major number of device : 94
 Minor number of device : 8
 Start track : 0
 End track : last track of disk
 Blocksize : 4096

--->> ATTENTION! <<---
All data in the specified range of that device will be lost.
Type "yes" to continue, no will leave the disk untouched:
70 Linux for S/390

If you need to view the dasdfmt process, you may telnet to the Linux for S/390
system, logon as root, and issue the ps -ef command. You will see the
process running, but not its status.

The next thing to do is create a file system on this DASD. This cannot be
done until the dasdfmt is completed. To create a file system, use the mke2fs
command. At the time of writing, the mke2fs command did not support creating
more than one file system on a DASD volume. In other words, the file system
created with the mke2fs command will create a partition, e.g. dasda1, which
will take up a full DASD volume. The format of the mke2fs command is:

mke2fs -b 4096 /dev/dasd<letter>1

where <letter> is the letter assigned to the device from the dasdfmt utility.
The number 1 concatenated to the letter, resulting in dasda1, makes this a
logical partition instead of an entire device dasda. The letter for the device is
set when the DASD is detected.

Remember to access the logical partition when referring to the file system.
For instance, execute dasdfmt on the entire device dasda, not the logical
device dasda1. In the same manner, mount the logical partition (with a file
system on it) dasda1, not an entire device dasda.

5.7.3 Upload and customize the new file system
If you want to be able to IPL from DASD, you will need IPL information written
on DASD and a customized root file system. You may choose to download
the large or small root file system. Their file names at the time of this writing
were initfs_big.tgz for the large root file system, and initfs_small.tgz for the
small root file system. The large file system contains more utilities and
applications, such as the Apache Webserver. They both can be downloaded
from the Linux390 Marist site:

http://linux390.marist.edu

Create a temporary mount point under /mnt for the DASD that was just
formatted. In our case, we use the DASD device dasdc to write our file
system and IPL record on. Issue the mkdir command to create the mount
point. We chose to call it /mnt/dasdc. It can be called anything you like, such
as /mnt/device_num or something that helps you easily recognize which
piece of DASD you have mounted there.

mkdir /mnt/dasd<letter>
Chapter 5. Native S/390 installation and operation of Linux 71

Mount the file system onto this mountpoint:

mount /dev/dasdc1 /mnt/dasdc

FTP the large file system to this mountpoint. The FTP should be done in
binary mode. No uncompressing is necessary; that will be done once the file
system has been transferred.

A file with the extension of .tgz is in compressed format. To uncompress this
file, change your directory to /mnt/dasdc and issue the tar command:

tar xfzBp initfs_big.tgz

If you examine the contents of the /mnt/dasdc directory, you will now see a
root file system similar to the one that dasdc is mounted on. In other words,
there should be very little difference in the file structure between the directory
list of / and the directory list of /mnt/dasdc. An example of the result of the tar
command is shown in Figure 29.

Figure 29. Tar uncompress of big file system

[root@linuxx dasdc]# tar xfzBp initfs_big.tgz
[root@linuxx dasdc]# ls -la
total 115965
drwxr-xr-x 17 root root 4096 May 17 01:35 .
drwxr-xr-x 5 root root 1024 May 17 01:17 ..
drwxr-xr-x 2 root root 4096 May 10 18:16 bin
drwxr-xr-x 2 root root 4096 May 12 14:45 boot
drwxr-xr-x 2 root root 12288 May 9 18:37 dev
drwxr-xr-x 16 root root 4096 May 10 18:16 etc
drwxr-xr-x 3 root root 4096 May 10 18:15 home
-rw-r--r-- 1 root root 118536619 May 17 01:27 initfs_big.tgz
drwxr-xr-x 4 root root 4096 May 10 17:48 lib
drwxr-xr-x 2 root root 16384 May 17 00:33 lost+found
...
72 Linux for S/390

Table 5. OS/390 UNIX System Services HFS vs. Linux for S/390 customization

If you do not need to create a swap space, refer to 5.7.5, “Customizing Linux
for S/390 configuration files” on page 75.

5.7.4 Creating and activating swap space
Swap space is needed to run your system more efficiently. It can be created
in two ways: either by taking up a complete DASD volume for swap, or by

OS/390 UNIX System Services HFS
root file system customization

Linux for S/390 file system
customization

Allocate PDSE for USS root HFS. Dasdfmt of device.

Restore root HFS from dump using
ADDRDSSU.

Create file system with mke2fs.
Uncompress the file system with the tar
command.

Mount restored root HFS on a temporary
mount point.

Mount file system on /mnt/dasd<letter>1.

Customize the restored HFS:
- resolv.conf file
- hosts file
- profile
- pty/tty pairs of /dev

Customize the Linux for S/390 file system:
- resolv.conf file
- ifcfg-tr0 or ifcfg-eth0 (Token Ring or
Ethernet

Update BPXPRM00 if necessary. Customize /etc/fstab.
Create the parmline file.
Execute the silo command for boot
device/record.

IPL or reIPL the system depending on
whose root HFS it is.

ReIPL the Linux for S/390 partition.

As illustrated in Table 5, this Linux for S/390 customization process can
be compared with HFS customization on OS/390 UNIX System
Services. That is, space for an HFS is allocated on an SMS-managed
volume. This HFS is then mounted on a system's temporary mountpoint.
All customization on that HFS is done here. The HFS is then unmounted
and mounted on the system for which it is customized. If this HFS is a
root file system, the customization is done while the target system is
down and will be IPLed when the root HFS is customized and
unmounted.

 Note to OS/390 System Programmers
Chapter 5. Native S/390 installation and operation of Linux 73

allocating a swap file in a file system. As a rule of thumb, the size of the swap
space should be the same as the size of memory; however, the effectiveness
of the swap space depends greatly on memory size and workload.

1. Format DASD as your swap space.

 – Enable a DASD device as your swap space with the mkswap command.
In our case we used:

mkswap /dev/dasda1

 – Activate the swap DASD with the swapon command. In our case we
used:

swapon /dev/dasda1

2. Create a swap file in the file system. This can have the disadvantage of
excess I/O due to swap file fragmentation. A swap file on a separate
DASD partition would be ideal, but this is mentioned for future availability
since DASD partitioning is not yet supported. Our recommendation is to
create a swap file on each device being accessed (that is, a swap file for
dasda1, dasdb1, etc.).

 – Create a directory named /swap with permissions of 700. Allocate a
swap file under /swap. We recommend starting with a size of 64 MB for
the swap file and moving up or down according to your application and
workload. There is no clear-cut answer as to what size is optimum.
Swap sizes have been known to go up to twice the amount of central
storage. Ensure that you have enough space for the swap file on the
file system by issuing a df -k command.

 – Issue the raw copy command dd, using the device /dev/zero to allocate
space in the file system and create the swap file. In our case we used
the following:

dd if=/dev/zero of=/mnt/dasda1/swap/swapfile bs=1M count=64

 – Enable this file with the mkswap command. In our case, we used:

mkswap -c /mnt/dasda1/swap/swapfile

 – Change the mode of the swap directory to 700 (read/write/execute for
owner) and of the swap file to 600 (read/write for owner). In our case
we used:

chmod 700 /mnt/dasda1/swap
chmod 600 /mnt/dasda1/swap/swapfile

 – Activate the swap file with the swapon command:

swapon /mnt/dasda1/swap/swapfile

 – Verify your results, as shown in Figure 30 on page 75.
74 Linux for S/390

Figure 30. cat of /proc/swaps

If needed, Linux for S/390 can access expanded storage for its swap space.
This is much faster than DASD and is discussed in detail in 9.1.3, “XPRAM”
on page 181 and in 9.3.4.1, “Swap space on a ramdisk” on page 190.

5.7.5 Customizing Linux for S/390 configuration files
Now you should be ready to customize the root file system that you have
mounted on /mnt/dasdx (/mnt/dasdc in our case). Several steps are needed
to customize configuration files.

The file /etc/fstab must be updated to have entries pointing to your root file
system and your swap space if you created a swap file. Remember, the fstab
you want is the one in the file system mounted on /mnt/dasdc/etc, not off the
root of your ram disk in /etc. All your customization should be done on files in
the mounted file system. The fstab file, after customization, should look
something like the file shown in Figure 31.

Figure 31. Customized fstab

If you recall, when Linux for S/390 is first IPLed from tape on its ram disk
(initrd), a network script is presented that asks questions about your network

[root@linuxx /swap]# cat /proc/swaps
Filename Type Size Used Priority
/mnt/dasda/swap/swapfile file 65532 0 -1
[root@linuxx /swap]#

As you can see, the swapon command was used to activate the swapfile
/mnt/dasda/swap/swapfile. It is important to note that it is not the swapon
command that gives you your swap space later on with the DASD IPL. It is
an entry in the file /etc/fstab that will cause swapon to be launched.

Note

[root@linuxx /etc]# cat fstab
/dev/dasdc1 / ext2 defaults,errors=remount-ro 0 1
/swap/swapfile swap swap defaults 0 0
none /proc proc defaults 0 0
[root@linuxx /etc]#
Chapter 5. Native S/390 installation and operation of Linux 75

environment. See Figure 16 on page 61 to refresh your memory. Most of that
information is stored in the file /etc/sysconfig/network-scripts/ifcfg-tr0. tr0 was
used in our case since we were configuring a Token Ring interface. Copy this
file to /mnt/dasdc/etc/sysconfig/network-scripts/ifcfg-tr0 with the following
command:

cp /etc/sysconfig/network-scripts/ifcfg-tr0 /
mnt/dasdc/etc/sysconfig/network-scripts/ifcfg-tr0

An example of the contents of this file is shown in Figure 32 on page 76.

Figure 32. cat /etc/sysconfig/network-scripts/ifcfg-tr0

During the IPL from DASD, the kernel looks for file /etc/sysconfig/network.
This file is used as a switch to control network configuration. If the file exists,
then the kernel will examine its contents and configure the network. If it does
not exist, then the kernel will skip that step. Copy the network file from
/etc/sysconfig. In our case we used:

cp /etc/sysconfig/network /mnt/dasdc/etc/sysconfig

Copy the file /etc/conf.modules to the mounted file system. In our case we
used:

cp /etc/conf.modules /mnt/dasdc/etc

There are two files that you can create/update for nameserver support,
/etc/resolv.conf and /etc/hosts. This is not required to get your Linux for S/390
and network interface up and running. You can defer this till later if you want
to have a caching nameserver. For a complete description of setting up the
nameserver, see 18.1, “Introduction to DNS” on page 349.

[root@linuxx network-scripts]# cat ifcfg-tr0
DEVICE=tr0
USERCTL=no
ONBOOT=yes
BOOTPROTO=none
BROADCAST=9.12.14.255
NETWORK=9.12.14.0
NETMASK=255.255.255.0
IPADDR=9.12.14.196
[root@linuxx network-scripts]#
76 Linux for S/390

5.7.5.1 /etc/resolv.conf
The nameserver address and the domain name search order were stored into
this file of the ram disk when the tape IPL network script was run. Copy this
file into /mnt/dasdc/etc/resolv.conf. An example of the contents of
/etc/resolv.conf is shown in Figure 33.

Figure 33. cat /etc/resolv.conf

5.7.5.2 /etc/hosts
Your TCP/IP address and the name it resolves to can be placed into your
host file. The ram disk does not contain this file, so it will have to be created.
Once more, you can use the echo command to create the file since it is only
two lines long. Echo can be used to pipe a line to a file and then append
another line to the bottom of that file:

echo ’127.0.0.1 localhost’ > /mnt/dasdc/etc/hosts
echo ’9.12.14.196 linuxx’ >> /mnt/dasdc/etc/hosts

Both the large and small file systems contain the same network script that
was used when you IPLed with the ram disk. When IPLing from DASD, this
network script will again prompt you for your network environment. Once you
have replied to all the prompts, the script will no longer run on subsequent
IPLs. This gives you an opportunity to change any values that you might have
changed in the interim.

If, however, you are satisfied with the values given from the first IPL and you
don’t want the network script to run again, then delete
/mnt/dasdc/etc/rc.d/rc3.d/S00netsetup, which is a link to
/etc/rc.d/init.d/netsetup.

5.7.6 Creating a new kernel
The large and small file systems already contain the kernel image in the
/mnt/dasdc/boot directory. The file name is /boot/image. If you have another
version of the kernel, it would be placed here. You can build/compile your
own kernel, or copy a precompiled kernel into this directory. Doing so now
places the kernel onto the DASD that you will IPL.

[root@linuxx /etc]# cat resolv.conf
search itso.ibm.com
nameserver 9.12.14.7
[root@linuxx /etc]#
Chapter 5. Native S/390 installation and operation of Linux 77

We recommend that you use a different name for your modified kernel, which
you can later activate using the silo command. Before modifying your kernel,
you should be familiar with 11.6, “Build and customize the kernel” on page
238.

5.7.7 Write IPL information to DASD
We assume that you will use the same disk where you untarred the file
system as your IPL disk. This disk already has the needed system files for
IPL in the boot directory, except the parameter file, which you have to create.

5.7.7.1 Create parameter file
Just as when we IPLed from tape, so when you IPL from DASD, the kernel
will look for a parameter file. You should create one and place it into the
/mnt/dasdc/boot directory. There should be an example of the parameter file
in /boot/parmfile. If you do not want to go into the vi editor to edit this file, you
can do the following to create a new file called parmline:

cd /mnt/dasdc/boot

echo ’dasd=9AC,996,998 root=/dev/dasdc1 ro noinitrd’ > parmline

The noinitrd parameter is required since the kernel that came with the file
system was compiled with initial RAM disk support, and you don’t want that
enabled when you are IPLing from DASD with the full root file system.

5.7.7.2 Write the IPL record to DASD
The final step before IPLing from DASD is to write the IPL record using the
silo command:

cd /mnt/dasdc/boot

../sbin/silo -f <kernel> -d <DASD device>

-p <parameter file> -b <boot sector>

Make sure that the dasd= statement in /mnt/dasdc/boot/parmline is the
same as in the parameter file that was written to the IPL tape. The device
assignments were based on that parmline. If this order is changed on the
IPL DASD, then the assignments will also change. What you think may be
dasdc may no longer be that in this case; additional DASD may be added
to the end of the DASD list.

Note
78 Linux for S/390

For our system, we used:

../sbin/silo -f /mnt/dasdc/boot/image -d /dev/dasdc -p

/mnt/dasdc/boot/parmline -b /mnt/dasdc/boot/ipleckd.boot

While testing kernel version 2.2.15, we ran into a warning message when the
silo command was issued. It stated that the IPL would not be changed unless
the -t2 option was also specified. This is inconsistent since the -t2 parameter
is for testing purposes. See Figure 34 for an example.

Figure 34. Silo command warning message

The command was then issued with the -t2 option and it ran successfully.
See Figure 35 on page 80 for the messages you should see. Development is
aware of this problem.

[root@linuxx boot]# ../sbin/silo -f image -d /dev/dasdc -p parmline -b
IPLeckd.boot
o->image set to image
o->IPLdevice set to /dev/dasdc
o->parmfile set to parmline
o->bootsect set to IPLeckd.boot
Testlevel is set to 2
IPL device is: '/dev/dasdc'
bootsector is: 'IPLeckd.boot'...ok...
bootmap is set to: './boot.aQ5G7z'...ok...
Kernel image is: 'image'...ok...
original parameterfile is: 'parmline'...ok...final parameterfile is:
'parmline'.
..ok...
WARNING: silo does not modify your volume. Use -t2 to change IPL records
ix 0: offset: 0201f7 count: 0c address: 0x00000000
ix 1: offset: 020204 count: 80 address: 0x0000c000
ix 2: offset: 020284 count: 80 address: 0x0008c000
ix 3: offset: 020304 count: 56 address: 0x0010c000
ix 4: offset: 020676 count: 01 address: 0x00008000
Bootmap is in block no: 0x00000003
[root@linuxx boot]#
Chapter 5. Native S/390 installation and operation of Linux 79

Figure 35. Successful silo command

5.7.8 ReIPL with the customized root file system on DASD
You are now ready to reIPL the system. Before you do this, you should reset
the Linux for S/390 system by shutting it down.

5.7.8.1 Shutting down Linux for S/390
We highly recommend that you use the shutdown command to deactivate
Linux. Do this before you reIPL, otherwise you may see messages like File
system still mounted on the next IPL.

There are many variations of the shutdown command. These are discussed in
8.4, “Shutdown” on page 175. The command we used each time was an
immediate shutdown:

shutdown -h now

This command can be entered either from the HMC or an authorized telnet
connection such as one logged on as root. Figure 36 on page 81 shows an

[root@linuxx boot]# ../sbin/silo -f image -d /dev/dasdc -p parmline -b
IPLeckd.boot -t2
o->image set to image
o->IPLdevice set to /dev/dasdc
o->parmfile set to parmline
o->bootsect set to ipleckd.boot
Testonly flag is now 0
Testlevel is set to 0
IPL device is: '/dev/dasdc'
bootsector is: 'ipleckd.boot'...ok...
bootmap is set to: './boot.map'...ok...
Kernel image is: 'image'...ok...
original parameterfile is: 'parmline'...ok...final parameterfile is:
'parmline'.
..ok...
ix 0: offset: 0201f7 count: 0c address: 0x00000000
ix 1: offset: 020204 count: 80 address: 0x0000c000
ix 2: offset: 020284 count: 80 address: 0x0008c000
ix 3: offset: 020304 count: 56 address: 0x0010c000
ix 4: offset: 020676 count: 01 address: 0x00008000
Bootmap is in block no: 0x00020677
[root@linuxx boot]#
80 Linux for S/390

example of the messages displayed on the HMC when the shutdown -h now
command is issued.

Figure 36. Shutdown messages on the HMC

Although you see the message Power down, this does not mean your LPAR
has been powered off. You will receive an indication under the hardware
messages tab that the partition has entered a disabled wait state condition.

When a shutdown is entered from the HMC, all telnet sessions will receive
identical messages, as shown in Figure 37.

Figure 37. Telnet sessions on shutdown

[root@linuxx /]#
Broadcast message from root (console) Wed May 24 01:04:10 2000...

The system is going down for system halt NOW !!
Chapter 5. Native S/390 installation and operation of Linux 81

5.7.8.2 ReIPL from DASD
Now that the system has been safely shut down, you can reIPL using the
HMC. As mentioned earlier, a load profile can be created tailored to your
Linux for S/390 partition. This is done from the task on the right carousel titled
Customize, Delete Activation Profiles. To see an example of the load profile
that we set up for our system here, refer to Figure 38:

Figure 38. Load profile for IPLing Linux for S/390 on DASD

Your Linux for S/390 system should now be up and running.

5.8 Linux for S/390 on a P/390

Linux for S/390 could run on any of the P/390 family of systems. However,
patches for 3215 support may be required.

5.8.1 Attempting to install on a P/390
Linux for S/390 offers two console drivers, a 3215 teletype line printer
emulation, and support for the hardware console (HWC).

82 Linux for S/390

The HWC has no functional equivalent on the P/390 because the P/390 was
an entry-level single-processor machine, not designed to do anything like an
LPAR with PR/SM.

There is a driver (AWS3215.EXE) that supplies a 3215 emulation. However, it
is not known to work for a native P390->L390 installation. The problem
appears to be that the 3215 is not being detected/initialized properly during
the boot sequence. There have been earlier kernel patches to address this
problem, and a parameter has been added to the parameter file
(condev=0x0009).

A fix has been placed on the developerworks Web site that addresses this
problem.
Chapter 5. Native S/390 installation and operation of Linux 83

84 Linux for S/390

Chapter 6. VM installation and operation of Linux for S/390

This chapter describes how to install and operate Linux for S/390 in a virtual
machine running under the control of the VM/ESA operating system.

If you are intending to install Linux for S/390 to run either natively on a S/390
processor or in a logical partition (LPAR), then much of this chapter will not be
relevant and you can skip reading this material.

6.1 Linux for S/390 in a virtual machine (as a guest of VM)

An understanding of VM/ESA and the S/390 processor architecture is
assumed in this chapter. If you have not used VM/ESA before, refer to
Appendix B, “VM/ESA virtual machines” on page 469 for a brief introduction
to S/390 virtual machine concepts and VM/ESA.

VM virtualizes S/390 hardware resources. You can install Linux for S/390 in a
virtual machine using many of the techniques that you would use if installing
on the basic S/390 hardware or in an LPAR. In practice it is easier to use
some of the facilities provided by the Conversational Monitor System (CMS),
a component of VM, to build the medium from which Linux for S/390 can be
booted.

Before installing Linux for S/390 under VM/ESA, you should be running a
supported level of VM/ESA with service applied where relevant.

As Linux for S/390 uses IEEE floating point arithmetic, we recommend to
have the fixes for APARs VM62337 and VM62410 applied before installing

The content of this chapter is based on the files stored on the Marist
College Linux for S/390 download site after May 19, 2000. You can use the
methods described here to install Linux for S/390 with the exception of the
VM minidisk root file system (initmd.bin), which is now archived.

Note that the Linux for S/390 IUCV network driver does not work with these
binaries. There is sometimes a problem with the DASD driver when you
create a file system on a device partition. With larger minidisks that have
been formatted and reserved by CMS, mke2fs tries to write past the end of
the volume. The problem is under investigation.***

Attention
© Copyright IBM Corp. 2000 85

Linux for S/390 in a VM environment. IEEE Floating Point is available only on
IBM 9672 Generation 5 and later processors.

If you are running Linux for S/390 as a guest of VM/ESA Version 2 Release 3,
you will need APAR VM61762 as well. VM61762 is the initial IEEE FP support
and has as prerequisites APARs VM62337 and VM62410. These are in the
Version 2 Release 4 base.

For the VM/ESA TCP/IP product or component, APARs PQ34318 and
PQ37002 are recommended.

6.2 Installing Linux for S/390

There are two different ways to install Linux on S/390, or indeed on any other
processor architecture.

The more difficult method is to download the Linux source code from the
Internet, apply the S/390 patches, and then build the Linux kernel and related
binaries for execution on S/390. If you do not have a Linux for S/390
environment already installed and available to you, you would need to carry
out these steps on some other Linux platform and then copy the resulting
binaries over to your S/390 system. This method also requires a detailed
technical understanding of Linux. Consequently, it is unsuitable for anyone
without high-level Linux knowledge and skills.

We did not attempt this type of install.

The easier approach, adopted by most Linux users, is to install pre-built Linux
for S/390 binaries, either packaged by a Linux for S/390 distributor or
downloaded from an Internet site. As this is by far the most common
approach, it is the one we chose to use and document.

We strongly recommend that you have a TCP/IP stack installed on your VM
system if you are going to install Linux for S/390. If you do not have TCP/IP
installed, you will not be able to use the File Transfer Program (FTP) to copy
files from a PC to VM, in which case you will need to use an alternative
method, such as the 3270 File Transfer Program, to upload the files.

Without a VM TCP/IP stack you have two options to connect Linux for S/390
to a network:

 • Use a Linux for S/390 network driver, such as the Open Systems
Adapter-2 (OSA-2) driver, to drive the physical network interface.
86 Linux for S/390

 • Route through a TCP/IP stack running in another S/390 guest operating
system, such as OS/390 or VSE/ESA.

The remainder of this chapter assumes that you have the VM/ESA TCP/IP
Feature or the TCP/IP for VM program product (5735-FAL) installed on your
system.

6.2.1 Installation steps overview
Installing Linux for S/390 binaries in a virtual machine can be broken down
into the following steps:

1. Decide on the install method.
2. Prepare the virtual machine to run Linux for S/390.
3. Prepare the networking environment.
4. Obtain the binary files.
5. Copy the files to VM and reblock.
6. Create the initial kernel options file.
7. Boot the initial Linux for S/390 kernel.
8. Install the root file system tarball.
9. Complete the Linux for S/390 customization.

6.2.2 Decide on the install method
There are several ways to install Linux for S/390 in a VM environment. We
tested most during this project.

Answering the following questions will help you decide on the most suitable
approach for your installation.

Do you want to boot from the virtual reader or from tape?
We found it simpler to install Linux for S/390 by booting from the reader,
rather than having to get a magnetic tape mounted. Your choice will
depend on your particular operational environment and policies. Using
tape makes the process almost identical to that followed when installing in
a logical partition without VM. It is generally easier to use the reader if, as
we found, you have to boot the downloaded kernel several times during
installation.

Which file system do you want to install?
This is an installation-dependent decision. If you have enough disk space
available (around 500 MB), our recommendation is to install the large file
system. This delivers a much richer Linux for S/390 environment
containing preinstalled packages such as the Apache Web server. It also
contains the necessary tools to allow you to install other packages.
Chapter 6. VM installation and operation of Linux for S/390 87

Which disk device drivers are you going to use?
When installing Linux for S/390 on a VM system, you may use either or
both of two disk device drivers: the DASD driver or the VM minidisk driver.
The DASD device driver is mandatory when you run Linux for S/390 in an
LPAR or natively. It may also be used with VM dedicated DASD or
minidisks.

The DASD device driver uses device names of the form dasd<letter>.
Letters are allocated sequentially from “a” as the kernel registers devices
to be managed by this driver.

Depending on how the kernel is compiled, either the Diagnose X'250'
interface or S/390 Start Subchannel (SSCH) instruction can be specified
to initiate disk I/O.

The VM minidisk device driver can only be used with CMS-format
minidisks.These minidisks must be prepared for use by Linux for S/390
with the CMS FORMAT and RESERVE commands.

The VM minidisk device driver uses device names of the form
mnd<letter>. Letters are allocated sequentially from “a” as the kernel
registers devices to be managed by this driver.

The VM minidisk driver always uses Diagnose X'250' for I/O.

The DASD driver supports Extended Count Key Data (ECKD) and Fixed
Block Architecture (FBA) devices. When Linux for S/390 runs in a virtual
machine, it supports any DASD devices supported by VM/ESA.

Either the Diagnose X'250' interface or S/390 Start Subchannel (SSCH)
instruction can potentially be used to drive disk I/O. If you want to boot
Linux for S/390 from a disk device, that disk must use the DASD driver.

The DASD device driver can currently support a single partition on a
device. The structure of the disk device is illustrated in Figure 39 on page
89.

DASD partitions are named dasd<letter>1.

The objective is to leave any boot sector, label or volume identifier (volid)
untouched by the Linux for S/390 file system that you create on the
partition.
88 Linux for S/390

Figure 39. DASD partitioning scheme

We make the following recommendations:

 • Try to use the DASD driver as far as possible for all dedicated Linux for
S/390 disk devices.

 • Use the Diagnose X'250' interface for minidisks as far as possible. This
eliminates the need to deal with error recovery, which will be handled
by the VM/ESA Control Program (CP).

The kernel delivered with the Marist binaries is compiled with two kinds
of support for minidisks: the old VM minidisk driver using Diagnose
X'250' and the new DASD driver using SSCH. Diagnose X'250' support
(dasd_force_diag option) is not enabled for the new DASD driver. The
dasd_force_diag is ignored if you specify it. This maintains compatibility
with previous versions of the kernel and disk device drivers. If you wish
to use the new DASD driver with Diagnose X'250', you will need to
recompile the kernel with the appropriate kernel option. Under S/390
block device drivers, select “Support for DIAG access to CMS reserved
minidisk.” This option is mutually exclusive with the “Support for VM
minidisk” option.

If you enable Diagnose X'250' for the new DASD driver, you can no
longer use the VM minidisk driver.

Important

IPL

records

LNX1 or

no label
/dev/dasd<letter>1

IPL

records
CMS files . . .

IPL

records
CMS1

CMS1

CMS reserved file

/dev/dasd<letter>

/dev/dasd<letter>1
Chapter 6. VM installation and operation of Linux for S/390 89

 • Prepare minidisks that use Diagnose X'250' for I/O with the CMS
FORMAT and RESERVE commands, in order to create CMS label/volid
information.

 • Create a file system on a device partition wherever possible to
preserve this information.

In our install we were unable to follow all these recommendations because
we wanted to show the use of file system partitions. These can be created
only with the DASD driver, and the options specified for S/390 block
devices in the compiled kernel did not specify use of Diagnose X'250' with
that driver.

For a discussion of the relationship between S/390 device numbers and
Linux for S/390 device names, refer to 6.7, “Linux for S/390 device files
and virtual device numbers” on page 122.

Installing on a P/390, R/390, Integrated Server or Multiprise 3000?
These machines allow you to use OS/2 or AIX files to emulate S/390
devices. The device managers in Table 6 can potentially be used to store
the initial kernel and related boot files on OS/2 or AIX.

Table 6. Device managers and emulated S/390 devices

For further information on these device managers, refer to the relevant
hardware product documentation.

6.2.3 Prepare the virtual machine to run Linux for S/390
Before beginning to install Linux for S/390 in a virtual machine, your VM
system administrator must define a virtual machine suitable for running Linux
for S/390.

Here is a sample virtual machine definition (CP directory entry) that is
suitable for running Linux for S/390. It is the one we used to test the
installation of Linux for S/390 in a VM environment.

USER LINUX5 XXXXXXXX 128M 256M G �
IPL CMS PARM AUTOCR �
MACHINE ESA 4 �
CONSOLE 0009 3215 �
SPOOL 000C 3505 A �

OS/2 or AIX device manager Emulated S/390 device

AWSTAPE magnetic tape

AWSOMA magnetic tape

AWS2540 reader/punch
90 Linux for S/390

SPOOL 000D 3525 A �
SPOOL 000E 1403 A �
LINK MAINT 0190 0190 RR �
LINK MAINT 019E 019E RR �
LINK MAINT 019F 019F RR �
LINK MAINT 019D 019D RR �
MDISK 0201 3390 0001 1000 LINUX5 MR �
MDISK 0202 3390 1001 1000 LINUX5 MR �
MDISK 0203 3390 2001 200 LINUX5 MR �
MDISK 0200 3390 3221 20 LINUX2 MR �
MDISK 0191 3390 555 50 VMZU1A MR �

Figure 40. Sample CP directory definition for Linux for a S/390 virtual machine

� The user ID that identifies this virtual machine is LINUX5. The virtual
machine is defined with a default storage of 128 MB, but this can be redefined
up to a maximum of 256 MB. A minimum of 64 MB is recommended.

The virtual machine has class G privilege, which is sufficient to run Linux for
S/390 . This is the same privilege class normally given to a CMS user.

� When you log on to the virtual machine, an IPL of the CMS operating
system will occur automatically (IPL in S/390 terms is equivalent to a Linux for
S/390 kernel boot). Once you have Linux for S/390 installed and ready to run
in production, it is possible to change the IPL statement so that the Linux for
S/390 IPL occurs directly from a disk device. However, by starting CMS first,
you can invoke a profile that will tailor the virtual machine environment before
the IPL of Linux for S/390 . This is a more flexible approach.

� This statement describes the processor architecture of the virtual
machine. Specify ESA and not XC. The maximum number of processors that
can be defined for the use of Linux for S/390 is four. The default is one.

� The CONSOLE statement defines the operating console for the virtual
machine. Although you will use a 3270 device or 3270 terminal emulation
program to access this console, it will operate as a 3215 device. In other
words, line-mode 3215 Channel Command Words (CCWs) are used for
virtual I/O.

� The next three statements define a reader, a punch, and a printer for the
virtual machine.

� These are read-only links to CMS minidisks owned by other virtual
machines. They contain files that CMS users will need.
Chapter 6. VM installation and operation of Linux for S/390 91

� These statements define four minidisks on which Linux for S/390 file
systems and data will be stored. The sizes of these disks were chosen based
on their intended use. You can define as many minidisks for Linux for S/390
as you wish depending on your file system requirements.

These are read/write (R/W) minidisks.

� The 191 minidisk will be accessed automatically by CMS when you log on.
It will hold the CMS files that are needed to build a production Linux for S/390
environment in the virtual machine. The Linux for S/390 kernel does not use
this minidisk.

6.2.3.1 Defining virtual devices
Another way to define virtual devices is with the CP DEFINE command. We
used this command to define channel-to-channel (CTC) devices. For more
information on the CP directory statements used to define a virtual machine,
see VM/ESA Planning and Administration, SC24-5750.

Examples of some other CP directory statements that you might want to
include in the definition of your Linux for S/390 virtual machine follow:

CPU 1 NODEDICATE �
SPECIAL 808 CTCA �
SPECIAL 809 CTCA �
IUCV ANY �
IUCV ALLOW �

� Defining additional processors for a Linux for S/390 virtual machine allows
you to test Linux for S/390 Symmetric Multiprocessor (SMP) support in a
virtualized environment, even when your system has only one real processor
installed. Do not define additional virtual processors unless you want to run
the Linux for S/390 kernel in SMP mode.

The example defines one additional processor for the Linux for S/390 virtual
machine. A virtual processor that is not assigned to a real processor can run
on any available shared real processor.

If you have a S/390 system with multiple processors, you can dedicate one or
more real CPUs to a Linux for S/390 virtual machine. For example, if you had
an IBM 9672 R65 system running VM/ESA, you might dedicate two real CPUs
to a Linux for S/390 virtual machine. To do this you would have CP directory
control statements similar to these:

CPU 0 DEDICATE
CPU 1 DEDICATE
92 Linux for S/390

Dedicating a processor to a virtual machine prevents its use by any other
virtual machine.

� If you are intending to use a CTC connection to communicate from one
Linux for S/390 virtual machine to another, or to the VM TCP/IP stack, you
can define a pair of CTC devices as shown. Each CTC connection uses an
even/odd pair of consecutive device numbers.

These special device definitions are not needed when you use the Inter-User
Communications Vehicle (IUCV) driver to communicate with other Linux for
S/390 virtual machines or the VM/ESA TCP/IP stack.

� These CP directory control statements allow the Linux for S/390 virtual
machine to use IUCV communications. Refer to 6.6, “IUCV connections” on
page 122 for more detail.

6.2.4 Prepare the networking environment
Careful consideration of the networking requirements for Linux virtual
machines is needed since there are so many possibilities. These are
discussed in detail in Chapter 15, “Linux for S/390 connectivity to VM,
OS/390, VSE” on page 283.

If you are intending to use the VM TCP/IP stack as a gateway to your physical
network, your network administrator will need to make suitable VM TCP/IP
definitions for links to your Linux for S/390 virtual machine.

For information on defining links in the VM TCP/IP configuration file, refer to
VM/ESA V2R4.0: TCP/IP Function Level 320 Planning and Customization,
SC24-5847. Another useful reference is the redbook TCP/IP Solutions for
VM/ESA, SG24-5459.

6.2.5 Typical connectivity configuration
A common way to connect multiple Linux for S/390 virtual machines to a
physical network is to use virtual CTC or IUCV connections to the VM TCP/IP
stack, which drives the physical network interface. All Linux for S/390
connections to the network are routed via this stack.

Figure 41 on page 94 illustrates this.
Chapter 6. VM installation and operation of Linux for S/390 93

Figure 41. Networking configuration with Linux for S/390 running in a virtual machine

Advantages of this topology are:

 • It reduces the number of physical network interfaces required.
 • Both IUCV and virtual CTCs provide high bandwidth for TCP/IP traffic.

For TC/IP hosts outside the VM system to communicate with the Linux for
S/390 virtual machines, the local subnet router must have its routing tables
updated. Any IP traffic destined for the IP addresses of the Linux for S/390
virtual machines is routed via the IP address of the VM TCP/IP stack’s
physical network interface.

Figure 83 on page 287 shows where you make TCP/IP definitions for a Linux
for S/390 virtual machine and the TCP/IP stack. Linux for S/390 network
definitions can also be entered using Linux for S/390 commands as described
in 15.1, “Configuring the network” on page 283.

6.2.6 Obtain the binary files
For our project, we used binaries obtained from the Marist College Linux for
S/390 download Web site. The date on which these binaries were released
was 19 May, 2000. They contain a Linux for S/390 kernel at the 2.2.15 level.

Earlier levels of the binaries are archived at the same site.

VM/ESA Control Program (CP)

L

I

N

U

X

1

L

I

N

U

X

2

T

C

P

/

I

P

for

VM

OSA

 virtual CTC or IUCV connections

CMS

network
94 Linux for S/390

Sometimes people experience problems transferring large binary files over
the Internet. There can be a number of reasons for this, which are beyond the
scope of this book to examine. Always try to verify that the number of bytes in
the large files that you download matches the size of those files at the site
from which they were transferred.

At the Marist College download site, the sizes of the root file system tarball
files are displayed, so you can verify that the download has completed
successfully.

Linux for S/390 binaries will typically be downloaded to a PC rather than
directly to a VM user ID. Alternatively, using FTP or a 3270 text-based Web
browser (Charlotte is a 3270 text-based browser that can be downloaded
from the Web; there are also other commercially available 3270 text
browsers), you can download the binaries from a Web site directly to your VM
system without using an intermediate platform. If using FTP, connect to
linux390.marist.edu and log in as user anonymous. The download files are
stored in the /pub/download directory. Because of firewall restrictions, it may
not always be possible to use FTP.

6.2.7 Copy files to VM and reblock
A Linux for S/390 file is just a stream of bytes with no implicit structure,
whereas most S/390 files are record oriented. This implies that to boot the
kernel on S/390, it must have a record structure imposed that is acceptable to
the IPL device.

To boot the Linux for S/390 kernel from the card reader you need to reblock
the kernel file to fixed 80-byte records. Similarly, to boot the Linux for S/390
kernel from a tape, you need to reblock the kernel file to fixed 1024-byte
records.

The same rules apply to any other files that form part of your boot sequence,
for instance a kernel parameter file or a RAM disk file.

Table 7 shows the files that need to be reblocked and the corresponding
record length on VM.

Table 7. Record lengths for Linux for S/390 boot files

File description Record length on VM
(LRECL)

Linux for S/390 kernel for reader
IPL

80

Linux for S/390 kernel for tape IPL 1024
Chapter 6. VM installation and operation of Linux for S/390 95

Do not reblock files that are not part of the initial installation steps.
Specifically, do not reblock either the small or large root file system tarball
files.

To reblock a bytestream file that you are transferring from a personal
computer (PC) to VM, use FTP subcommands that create the target files on
VM with the correct format.

Files can be transferred from a PC to VM running the FTP client either from
VM or the PC. In practice, many PCs do not have an FTP server or daemon
installed. In that case, files will need to be uploaded from the PC to VM by
using the FTP client on the PC.

Table 8 summarizes the FTP subcommands to use when copying Linux for
S/390 binary files from your PC to VM, reblocking during the file transfer. For
the correct logical record length, see Table 7.

Table 8. FTP subcommands for reblocking files

Another way to reblock the kernel and associated files is to copy them to VM
as binary files without reformatting and then reblock using a CMS tool. Use
FTP to copy the files from PC to VM, but omit the quote site or site
subcommands. A simple CMS Pipeline will perform the reblocking:

PIPE < fn ft fm | fblock lrecl 00 | > fn ft fm f lrecl

For example, to reblock the file LINUXVM BIN A to fixed length 80-byte
records, enter:

PIPE < LINUXVM BIN A | fblock 80 00 | > LINUXVM BIN A f 80

Initial RAM disk for reader IPL 80

Initial RAM disk for tape IPL 1024

Copying files to VM FTP subcommands

FTP from PC to VM
bin
quote site fix lrecl
put

FTP from VM to PC
bin
locsite fix lrecl
get

File description Record length on VM
(LRECL)
96 Linux for S/390

If you downloaded the Linux for S/390 binaries without reformatting, use CMS
Pipelines to reblock files to the correct record length and format.

6.2.8 Create the initial kernel parameter file
When the initial Linux for S/390 kernel is booted, it reads a set of values from
a kernel parameter file. This file can be created on VM using the CMS XEDIT
editor.

From the CMS command line prompt enter:

XEDIT fn ft

The name of the file is displayed along with the record format and record
length. When booting from the reader, these should be F and 80, respectively.
If not, enter either or both of the following XEDIT subcommands to rectify this:

recfm f
lrecl 80
trunc 80

Then enter:

serial off
add n

where n is the number of lines you need in your kernel parameter file. This
creates an area on the screen where you can type in the initial Linux for
S/390 boot parameter values. When you have finished entering the parameter
line you can use the Enter or Tab key to return to the XEDIT command line.
Enter:

file

to save and exit from the editor.

For information on the CMS XEDIT editor, consult VM/ESA XEDIT User's
Guide, SC24-5779, or VM/ESA XEDIT Command and Macro Reference,
SC24-5780.

Alternatively, you can create the kernel parameter file on a PC and copy it
over to VM. Make sure that ASCII-to-EBCDIC codepage translation occurs. If
using FTP, do not specify the bin subcommand. If using the 3270 File Transfer
Program, do not request a binary transfer.

For details on the format and syntax of parameters in this file, refer to
Appendix D, “The parameter file” on page 481.
Chapter 6. VM installation and operation of Linux for S/390 97

6.2.9 Boot initial Linux for S/390 kernel
To boot (IPL) the initial Linux for S/390 kernel, a set of files is written to the
IPL medium. Then the CP IPL command is issued with the boot device
number as a parameter.

The CMS record format of these files depends on the type of IPL device, as
explained in Table 7 on page 95.

6.2.9.1 Booting from the reader
If you are using a RAM disk for the initial root file system, enter the following
sequence of commands from CMS:

CP PURGE RDR ALL �
CP SPOOL PUNCH * RDR �
PUNCH VM_reader_kernel_fileid (NOHEADER �
PUNCH parameter_fileid (NOHEADER �
PUNCH RAM_disk_fileid (NOHEADER �
CP IPL 00C CLEAR �

� This command purges the reader of any existing files, so first make sure
nothing is stored there that you wish to keep.

� This command redirects the punch device output to the virtual machine’s
reader, since that is the IPL device.

� Write the three files that will be used by the kernel to the IPL device in
succession. It is important to specify the NOHEADER option. The kernel boot
will fail if you forget to do this.

� This command causes an IPL of the virtual machine from its reader and
the Linux for S/390 kernel boot process begins. The CLEAR parameter clears
the virtual machine’s storage first before any input is taken from the reader.

To avoid having to reenter this set of commands, you can create a REXX
program (analogous to a shell script in Linux for S/390) containing them. See
6.3.7, “Boot the kernel” on page 108 for an example.

6.2.9.2 Booting from tape
These instructions assume the use of a RAM disk for the initial root file
system.

First request the system operator to mount a scratch tape on a real tape drive
and attach the device to your virtual machine as device number 181.
98 Linux for S/390

From CMS enter the following sequence of commands or execute a REXX
program that contains them:

CP REW 181
FILEDEF OUTMOVE TAP1 (REFM F BLOCK 1024 PERM
FILEDEF INMOVE VM_tape_kernel_fileid
MOVE
FILEDEF INMOVE parameter_fileid
MOVE
FILEDEF INMOVE RAM_disk_fileid
MOVE
CP REW 181
CP IPL 181 CLEAR

Ensure that the files you write to tape have been reblocked to fixed 1024-byte
records.

6.2.10 Install the root file system
Once the kernel has booted and your network definitions are activated, you
can use FTP to transfer the large or small root file system tarball onto a Linux
for S/390 disk and unzip the contents. The tarballs are compressed archive
file trees.

The Linux tar command is used to restore the file tree from the compressed
archive file.

Once the root file system is installed, you can change your kernel parameter
file to mount the disk on which your uncompressed file system resides as the
root file system.

The next time you boot the kernel, you will be prompted again for network
definitions, but thereafter they will be saved.

To make further changes to your network definitions, use Linux network
commands such as ifconfig and route.

6.2.11 Complete the customization
You can create a boot sector on a disk managed by the DASD driver to allow
Linux for S/390 to be booted from disk rather than the reader. Other activities
you can perform include:

 • Creating a swapfile
 • Defining devices to be automounted
Chapter 6. VM installation and operation of Linux for S/390 99

6.3 Installing Marist College binaries

This section documents the procedure we followed to install the Linux for
S/390 binaries stored at the Marist College download site.

6.3.1 Install method
We found it most convenient to install the Marist binaries by booting from the
reader and using RAM disk for the initial root file system. This is the method
we describe in detail.

Earlier levels of the Marist binaries included a CMS file containing an initial
root file system image that could be used instead of RAM disk. However, we
did not find it particularly useful when the goal was to install the large root file
system. The initial CMS minidisk root file system is not part of the current set
of binaries.

The advantages and disadvantages of using the initial CMS minidisk image
were as follows:

Advantages

 • TCP/IP not essential to install.
 • No unpacking of a tarball file is required.
 • Initial network definitions can be saved.
 • Can be used as the root file system for a future kernel install.

Disadvantages

 • Linux for S/390 virtual machine needs a larger 191 minidisk.
 • Redundant once large root file system installed.
 • Minidisk must be formatted with a 512-byte block size.

6.3.2 Linux for S/390 virtual machine definitions
The virtual machine configuration we used is described in 6.2.3, “Prepare the
virtual machine to run Linux for S/390” on page 90. Four minidisks were
defined for use by Linux for S/390 as described in Table 9.
100 Linux for S/390

Table 9. Details of Linux for S/390 minidisks

The minidisk sizes defined were sufficient for installing with RAM disk from
reader and tape. It is not necessary to copy the large file system tarball onto
the 191 minidisk, because the Linux FTP program copies it directly into the
Linux for S/390 file system.

We defined a small minidisk to be used solely as boot device. This would
allow the Linux for S/390 kernel to be booted from disk rather than the reader.

From CMS, we formatted and reserved all Linux for S/390 minidisks first. This
was done for two reasons:

1. The Linux for S/390 dasdfmt command requires that a device must already
have been formatted using another disk formatting utility. Failure to do this
will generate kernel error messages.

2. If you enable Diagnose X'250' support for the DASD driver in the kernel,
you prepare minidisks in the same way.

Minidisks formatted and reserved by CMS should require no other formatting
before creating a file system. The only reason we used the Linux for S/390
dasdfmt command was to overcome the Linux bug discovered when creating a
file system on a partition of a device formatted and reserved by CMS.

format 200 g (blksize 4096
DMSFOR603R FORMAT will erase all files on disk G(200). Do you wish to
continue?
Enter 1 (YES) or 0 (NO).
1
DMSFOR605R Enter disk label:
lin200
DMSFOR733I Formatting disk G

Virtual
device
number

Size in
3390
cylinders

Number
of 4K
formatted
blocks

Intended
use

I/O
method

Formatted by

0200 20 3,600 Boot disk SSCH Linux dasdfmt

0201 1000 180,000 big root file
system

SSCH Linux dasdfmt

0202 1000 180,000 empty spare
volume

SSCH Linux dasdfmt

0203 200 36,000 swap disk SSCH Linux dasdfmt
Chapter 6. VM installation and operation of Linux for S/390 101

DMSFOR732I 20 cylinders formatted on G(200)
Reserve lin200 mdisk g
DMSRSV603R RESERVE will erase all files on disk G(200). Do you wish to
continue?
Enter 1 (YES) or 0 (NO).
1
DMSRSV733I Reserving disk G

We repeated this sequence for the other three minidisks. You can use the
same filemode letter (“G” in the example), but it is helpful to specify a disk
label that readily identifies each minidisk volume.

The CMS FORMAT command performs a low level format of the disk device
from the Linux for S/390 point of view. In that sense it is analogous to the
Linux for S/390 dasdfmt command.

We also used a small CMS profile to customize our environment for Linux.
The CMS PROFILE EXEC is executed after every IPL of CMS in the Linux for
S/390 virtual machine.

/* PROFILE EXEC for Linux virtual machine */
'CP LINK TCPMAINT 592 592 RR' �
'ACCESS 592 U' �
'CP DEFINE CTC 808' �
'CP DEFINE CTC 809' �
'CP COUPLE 808 TCPIP 809' �
'CP COUPLE 809 TCPIP 808' �

� These two commands establish access to a minidisk owned by the TCP/IP
service machine. It contains programs such as PING and FTP.

�These two commands define the CTC devices used by Linux for S/390 for
TCP/IP communications. One device is for sending messages and the other
for receiving.

You must couple the Linux for S/390 read channel to the VM TCP/IP write
channel, and the Linux for S/390 write channel to the VM TCP/IP read
channel. Whether you couple even to odd and odd to even, or even to even
and odd to odd, depends on the value coded for adapter number in the
relevant LINK statement in the TC/IP configuration file.
102 Linux for S/390

Table 10 shows the rule.

Table 10. Pairing device numbers in CP COUPLE commands

� These two commands establish the CTC link between the Linux for S/390
virtual machine and the TCP/IP service machine.

6.3.3 Networking definitions
We used the VM TCP/IP stack to route all Linux for S/390 TCP/IP
communications, both to other Linux for S/390 virtual machines, and to the
physical network.

We made our CTC definitions in the PROFILE EXEC. Alternatively, CTC
definitions could be kept in the CP directory entry for the Linux for S/390
virtual machine by including the following control statements:

SPECIAL 808 CTCA
SPECIAL 809 CTCA

To establish a connection to the other end of the link, we needed to issue two
CP COUPLE commands. The COUPLE command connects a CTC device to
a CTC device in the target virtual machine. The coupling statements were
included in our PROFILE EXEC.

Figure 42 on page 104 shows how the network definitions for Linux for S/390
match the relevant definitions for the TCP/IP service machine.

Device
number
pairing

CTC adapter
number in
TCP/IP LINK
definition

even to odd
odd to even

0

even to even
odd to odd

1

Chapter 6. VM installation and operation of Linux for S/390 103

Figure 42. Matching Linux for S/390 and VM TCP/IP definitions

We did not make entries in the VM TCP/IP HOSTS LOCAL file for host name
resolution, since we were using an external DNS server. If you did use the
HOSTS LOCAL file, you would code an entry like this:

HOST : 192.12.9.184 : LINUX5 ::::

Refer to VM/ESA V2R4.0: TCP/IP Function Level 320 Planning and
Customization, SC24-5847, for further information on the syntax of
statements in this file and how to generate the site table from it.

The site table enables name resolution and reverse name resolution without
using a domain name server.

6.3.4 Downloading the binaries
The URL for the Marist College Linux for S/390 download site is

http://linux390.marist.edu/

VM TCP/IP TCPIP DATA file

NSINTERADDR 9.12.2.7
DOMAINORIGIN itso.ibm.com

7
8

VM TCP/IP configuration file

DEVICE VMTOSA LCS 21C0
LINK WTSCVMT IBMTR 0 VMTOSA
...

DEVICE LINUX5 CTC 808
LINK LINUX5V CTC 0 LINUX5
...
HOME

9.12.14.155 WTSCVMT
9.12.9.178 LINUX5V

 ...
GATEWAY

9.12.9.184 = LINUX5V 1500 HOST
...
DEFAULTNET 9.12.14.75 WTSCVMT 2000 0
...
START LINUX5

5

1

3

1

Linux boot network prompts
(not all listed numbers appear in the
corresponding graphic on the right)

1 Network device: channel-to-channel

2 Host name: linux5

3 IP address: 9.12.9.184

4 Net mask: 255.255.255.0

5 Peer IP address: 9.12.9.178

6 Net address: 9.12.9.0

7 DNS IP address: 9.12.2.7

8 DNS search domain: itso.ibm.com
104 Linux for S/390

Figure 43. Marist College Linux for S/390 download Web site

Table 11 shows the binary files that can be found there.

Table 11. Description of files at Marist College Linux for S/390 download site

Description File name

Linux for S/390 kernel with
tape IPL

image.tape.bin

Linux for S/390 kernel with
reader IPL

image.vm.bin

Initial RAM disk initrd.bin.gz
Chapter 6. VM installation and operation of Linux for S/390 105

You do not need to download all the binary files. The ones you choose
depend on the method you intend to follow for installing Linux for S/390 on
your VM system. Table 12 summarizes the required files.

Table 12. Files required by the install method

Use your browser to download the files required to install Linux for S/390 on
VM according to the install method you have chosen.

From a browser on our PC we downloaded all the files except the small root
file system tarball (initfs_small.tgz).

This enabled us to test all the install methods available on VM.

We also downloaded copies of two manuals in Adobe Acrobat PDF format :

 • Installation, Configuration, and Use
 • Network LCS Device Driver

These manuals contain valuable information and guidance to help you install
and customize Linux for S/390. As with the contents of this ITSO redbook,
some information may become outdated in the future.

6.3.5 Copying Marist files to VM and reblocking
From our PC we started an FTP session to VM TCP/IP. Make sure that the
target Linux for S/390 virtual machine is not logged on when you do this or
the VM FTP server will be unable to obtain write access to the 191 minidisk of
the Linux for S/390 virtual machine. (If the target Linux machine was logged

Small root file system initfs_small.tgz

Large root file system initfs_big.tgz

Download site
file

Reader boot Tape boot

image.tape.bin 	

image.vm.bin 	

initrd.bin.gz 	 	

initfs_small.tgz
choose one choose one

initfs_big.tgz

Description File name
106 Linux for S/390

on, you could temporarily detach the 191 minidisk and relink it when you have
finished the file transfer.)

ftp 9.12.14.155
Connected to 9.12.14.155.
220-FTPSERVE IBM VM Level at your_VM_host , 15:20:16 EDT THURSDAY
05/11/00
User (9.12.14.155:(none)): linux5
331 Send password please.
Password:
230 LINUX5 logged in; working directory = LINUX5 191
ftp> bin
200 Representation type is IMAGE.
ftp> lcd \temp\marist
Local directory now C:\temp\marist
ftp> quote site fix 80
200 Site command was accepted.
ftp> put image.vm.bin kernel.marist
200 Port request OK.
150 Storing file 'reader.marist'
250 Transfer completed successfully.
1453976 bytes sent in 7.11 seconds (204.50 Kbytes/sec)
ftp> put initrd.bin.gz initrd.marist
200 Port request OK.
150 Storing file 'initrd.marist'
250 Transfer completed successfully.
3022044 bytes sent in 16.17 seconds (186.86 Kbytes/sec)
ftp> quit

This file transfer session creates two files on the Linux for S/390 virtual
machine 191 minidisk: KERNEL MARIST and INITRD MARIST.

These files were sufficient to boot the Linux for S/390 kernel from the reader
of the Linux for S/390 virtual machine.

6.3.6 Creating the kernel parameter file
Next we logged on to the Linux for S/390 virtual machine and created an
initial kernel parameter file called PARM MARIST to be read by the kernel
during its boot sequence.

We had four minidisks defined for use as Linux for S/390 disk devices, with
device numbers 0200-0203. Thus the kernel parameter line we entered was:

dasd=200-203 root=/dev/ram0 ro
Chapter 6. VM installation and operation of Linux for S/390 107

/dev/ram0 refers to the RAM disk that will be used as the initial root file system
to be mounted by the kernel. The ro parameter indicates that it is mounted
first as a read-only disk.

We were now ready to boot the Linux for S/390 kernel.

6.3.7 Boot the kernel
Although this task can be done manually, we found it productive to create a
small REXX program (script) that carries out the steps automatically.

Our REXX program was called MARIST EXEC:

/* REXX EXEC to boot Linux for S/390 from VM reader */
/* using RAM disk as the initial root file system */
'CP CLOSE RDR'
'CP PURGE RDR CLASS L'
'CP SPOOL PUN * RDR CLASS L'
'PUNCH KERNEL MARIST A (NOHEADER' /* Kernel image */
'PUNCH PARM MARIST A (NOHEADER' /* Parameter file */
'PUNCH INITRD MARIST A (NOHEADER' /* RAM disk root file system */
'CP SPOOL PUN * RDR CLASS A'
'CP SPOOL RDR KEEP CLASS L'
'CP IPL 00C CLEAR'

This was the output on the console after executing the IPL command:

Linux version 2.2.15 (root@linux390.marist.edu) (gcc version 2.95.2
19991024 (release)) #5 SMP Fri May 19 07:49:25 EDT 2000
Command line is:dasd=200-203 dasd_force_diag 201-203 root=/dev/ram0 ro�
We are running under VM �
This machine has no IEEE fpu �
Initial ramdisk at: 0x02000000 (3012560 bytes)
Detected device 0009 on subchannel 0000 - PIM = 80, PAM = 80, POM = FF �
Detected device 000C on subchannel 0001 - PIM = 80, PAM = 80, POM = FF
Detected device 000D on subchannel 0002 - PIM = 80, PAM = 80, POM = FF
Detected device 000E on subchannel 0003 - PIM = 80, PAM = 80, POM = FF
...
Detected device 0201 on subchannel 0008 - PIM = F0, PAM = F0, POM = FF
Detected device 0202 on subchannel 0009 - PIM = F0, PAM = F0, POM = FF
Detected device 0203 on subchannel 000A - PIM = F0, PAM = F0, POM = FF
Detected device 0191 on subchannel 000B - PIM = F0, PAM = F0, POM = FF
Detected device 0200 on subchannel 000C - PIM = F0, PAM = F0, POM = FF
Detected device 0592 on subchannel 000D - PIM = F0, PAM = F0, POM = FF
Detected device 0808 on subchannel 000E - PIM = 80, PAM = 80, POM = FF
Detected device 0809 on subchannel 000F - PIM = 80, PAM = 80, POM = FF
Highest subchannel number detected: 16
SenseID : device 0009 reports: Dev Type/Mod = 3215/00 �
108 Linux for S/390

SenseID : device 000C reports: Dev Type/Mod = 3505/00
SenseID : device 000D reports: Dev Type/Mod = 3525/00
SenseID : device 000E reports: Dev Type/Mod = 1403/00
SenseID : device 0190 reports: CU Type/Mod=3990/E9, Dev Type/Mod=3390/0A
SenseID : device 019E reports: CU Type/Mod=3990/E9, Dev Type/Mod=3390/0A
SenseID : device 019F reports: CU Type/Mod=3990/E9, Dev Type/Mod=3390/0A
SenseID : device 019D reports: CU Type/Mod=3990/E9, Dev Type/Mod=3390/0A
SenseID : device 0201 reports: CU Type/Mod=3990/E9, Dev Type/Mod=3390/0A
SenseID : device 0202 reports: CU Type/Mod=3990/E9, Dev Type/Mod=3390/0A
SenseID : device 0203 reports: CU Type/Mod=3990/E9, Dev Type/Mod=3390/0A
SenseID : device 0191 reports: CU Type/Mod=3990/E9, Dev Type/Mod=3390/0A
SenseID : device 0200 reports: CU Type/Mod=3990/E9, Dev Type/Mod=3390/0A
SenseID : device 0592 reports: CU Type/Mod=3990/E9, Dev Type/Mod=3390/0A
SenseID : device 0808 reports: Dev Type/Mod = 3088/08
SenseID : device 0809 reports: Dev Type/Mod = 3088/08
dasd(setup): added dasd range from 200 to 203.

� These are the boot parameters specified in the parameter file prepared in
6.3.6, “Creating the kernel parameter file” on page 107.

� The Linux for S/390 kernel detects that it is executing under the control of
VM rather than natively or in a logical partition.

� If Linux for S/390 is running in a virtual machine, two conditions must be
met to exploit the IEEE floating point instruction hardware:

 • The feature must be installed on the processor. Generation 5 or later
models of the IBM 9672 processor family have this feature. So does the
Multiprise 3000 processor family.

 • VM support for the hardware feature must also be installed. This was
introduced by APAR VM61762 in VM/ESA Version 2 Release 3. If you
intend to run Linux for S/390 in SMP mode with more than one virtual
processor defined, you should also install APAR VM62410.

APAR VM61762 was incorporated into the 9903 Refresh Service Upgrade
(RSU) for VM/ESA Version 2 Release 3. An easy way to check whether your
VM/ESA system is at or beyond this level of service is to issue the CP
command QUERY CPLEVEL.

The VM/ESA service tool provides a more general way to discover whether
the fix for a particular APAR is applied to your system. More information can
be found in VM/ESA V2R4.0 VMSES/E Introduction and Reference,
GC24-5837.

� This message and the following group show Linux for S/390 sensing the
devices currently defined to the Linux for S/390 virtual machine.
Chapter 6. VM installation and operation of Linux for S/390 109

Refer to 6.7, “Linux for S/390 device files and virtual device numbers” on
page 122 for a discussion of the relationship between Linux for S/390 device
files and virtual device numbers.

� Here Linux for S/390 determines the types of devices it has detected.

The next group of console messages shows the Linux for S/390 kernel
creating and verifying its operational environment

Memory: 124504k/131072k available (1092k kernel code, 4k reserved, 2528k
data, 0k init) �
Dentry hash table entries: 16384 (order 5, 128k)
Buffer cache hash table entries: 131072 (order 7, 512k)
Page cache hash table entries: 32768 (order 5, 128k)
POSIX conformance testing by UNIFIX
Detected 1 CPU's �
Boot cpu address 0
cpu 0 phys_idx=0 vers=FF ident=0D0822 machine=9672 unused=0000
Linux NET4.0 for Linux 2.2
Based upon Swansea University Computer Society NET3.039
NET4: Unix domain sockets 1.0 for Linux NET4.0.
NET4: Linux TCP/IP 1.0 for NET4.0
IP Protocols: ICMP, UDP, TCP
TCP: Hash tables configured (ehash 131072 bhash 65536)
Starting kswapd v 1.5
pty: 256 Unix98 ptys configured
RAM disk driver initialized: 16 RAM disks of 8192K size
loop: registered device at major 7
dasd:initializing...
16 areas reserved for debugging information
reserved 4 areas of 2 pages for debugging dasd
dasd(eckd):3390/a (3990/1) Cyl: 1000 Head: 15 Sec: 224 �
dasd(eckd):Estimate: 58786 Byte/trk 2074 byte/kByte 33 kByte/trk
dasd:0201 trying to access, irq 8, index 1
dasd:0201 is (dasdb) minor 4 (ECKD)
dasd(eckd):Verified: 58786 B/trk 5202 B/Blk(4096 B)12 Blks/trk 48 kB/trk
dasd:0201 (dasdb):720000 kB <- block: 4096 on sector 4096 B
dasd(eckd):3390/a (3990/1) Cyl: 1000 Head: 15 Sec: 224
dasd(eckd):Estimate: 58786 Byte/trk 2074 byte/kByte 33 kByte/trk
dasd:0202 trying to access, irq 9, index 2
dasd:0202 is (dasdc) minor 8 (ECKD)
dasd(eckd):Verified: 58786 B/trk 5202 B/Blk(4096 B)12 Blks/trk 48 kB/trk
dasd:0202 (dasdc):720000 kB <- block: 4096 on sector 4096 B
dasd(eckd):3390/a (3990/1) Cyl: 200 Head: 15 Sec: 224
dasd(eckd):Estimate: 58786 Byte/trk 2074 byte/kByte 33 kByte/trk
dasd:0203 trying to access, irq a, index 3
dasd:0203 is (dasdd) minor 12 (ECKD)
110 Linux for S/390

dasd(eckd):3390/a (3990/1) Cyl: 20 Head: 15 Sec: 224
dasd(eckd):Estimate: 58786 Byte/trk 2074 byte/kByte 33 kByte/trk
dasd:0200 trying to access, irq c, index 0
dasd:0200 is (dasda) minor 0 (ECKD)
dasd(eckd):Verified: 58786 B/trk 5202 B/Blk(4096 B)12 Blks/trk 48 kB/trk
dasd:0203 (dasdd):144000 kB <- block: 4096 on sector 4096 B
dasd(eckd):Verified: 58786 B/trk 5202 B/Blk(4096 B)12 Blks/trk 48 kB/trk
dasd:0200 (dasda):14400 kB <- block: 4096 on sector 4096 B
Partition check:
dasda:(CMS1)/ LIN200: dasda1 (MDSK)�
dasdb:(CMS1)/LIN201: dasdb1(MDSK)
dasdc:(CMS1)/LIN202: dasdc1(MDSK)
dasdd:(CMS1)/LIN203: dasdd1(MDSK)
channel: 2 Parallel channel found - 0 ESCON channel found �
ctc0: read dev: 0808 irq: 000e - write dev: 0809 irq: 000f
RAMDISK: Compressed image found at block 0
VFS: Mounted root (ext2 filesystem).
Freeing unused kernel memory: 0k freed
modprobe: can't locate module char-major-4
"INIT: version 2.74 booting"
!!!Welcome to Red Hat Linux
Mounting proc filesystem [OK]
/etc/rc.d/rc.sysinit: /proc/sys/kernel/sysrq: No such file or directory
modprobe: can't locate module char-major-4
hwclock: Can't open /dev/tty1, errno=19: No such device.
Cannot access the Hardware Clock via any known method. Use --debug
option to see the details of our search for an access method.
Setting clock : Mon May 29 15:35:15 EDT 2000 [OK]
/etc/rc.d/rc.sysinit: /etc/sysconfig/keyboard: No such file or directory
Activating swap partitions [OK]
Setting hostname [OK]
Checking root filesystem
/dev/ram0 was not cleanly unmounted, check forced.
ext2fs_check_if_mount: No such file or directory while determining
whether /dev ram0 is mounted.
/dev/ram0: 1066/2048 files (0.5% non-contiguous), 8005/8192 blocks
[PASSED]
Remounting root filesystem in read-write mode [OK]
Finding module dependencies [OK]
Checking filesystems
[OK]
Mounting local filesystems [OK]
Enabling swap space [OK]
/etc/rc.d/rc.sysinit: /boot/kernel.h: No such file or directory
"INIT: Entering runlevel: 3"
Entering non-interactive startup
Chapter 6. VM installation and operation of Linux for S/390 111

Welcome to Linux for S/390

� The Linux for S/390 kernel detects that it has 128 MB of memory available.
From the point of view of the Linux for S/390 kernel, this is real memory. Its
value equates to size of the memory defined for the Linux for S/390 virtual
machine.

� As only one processor was defined for the Linux for S/390 virtual machine,
the Linux for S/390 kernel will run in uniprocessor mode.

� The Linux for S/390 kernel registers the disks managed by the DASD
device driver.

� The kernel detects that device numbers 200-203 have been formatted
using CMS and displays the volume label for each.

� The pair of CTC devices we defined are registered by the kernel.

Now the Linux for S/390 kernel executes the netsetup script to prompt for
initial network definitions:

Is your machine connected to a network (Yes/No) ?
yes
Select the type of your network device
1) for osa token ring
2) for osa ethernet
3) for channel to channel
Enter your choice (1-3):
3
Please enter your host name:
linux5
Please enter your IP address:
9.12.9.184
Please enter the net mask:
255.255.255.0
Please enter the IP address of your peer:
9.12.9.178
Please enter the net address:
9.12.9.0
Please enter the IP address of the DNS server:
9.12.2.7
Please enter the DNS search domain:
itso.ibm.com

Configuration will be:
Host name : linux5 �
IP address : 9.12.9.184 �
112 Linux for S/390

Net mask : 255.255.255.0 �
Peer IP address : 9.12.9.178 �
Net address : 9.12.9.0 �
DNS IP address : 9.12.2.7 �
DNS search domain: itso.ibm.com �
Is this correct (Yes/No) ?
yes

Bringing up interface lo
Bringing up interface ctc0
Starting portmapper: portmap
Initializing random number generator
Starting INET services: inetd
Starting local
Give root password for maintenance
(or type Control-D for normal startup):
pass4root
[root@linux5 /root]#

It is useful to refer to Figure 42 on page 104 to see how Linux for S/390 and
TCP/IP network definitions were matched.

� This is the host name of the Linux for S/390 virtual machine in the
itso.ibm.com domain.

� This is the IP address of the Linux for S/390 virtual machine. In the VM
TCP/IP configuration file it is specified in the GATEWAY statement. (Static IP
routing is used in all the examples.)

� Because our IP address is on the 9.12.9.0 subnet, we defined a subnet
mask of 255.255.255.0. With a point-to-point connection there is normally no
requirement for a subnet mask.

� This the IP address in the VM TCP/IP stack associated with the CTC link
to the Linux for S/390 virtual machine. In the VM TCP/IP configuration file,
this link and the associated IP address are defined through the following
entries:

HOME
9.12.9.178 LINUX5V

LINUX5V is the name of the CTC link over which connection is made to the
Linux for S/390 virtual machine.

This link name is defined and associated with a network device through these
two statements:
Chapter 6. VM installation and operation of Linux for S/390 113

DEVICE LINUX5 CTC 808
LINK LINUX5V CTC 0 LINUX5

LINUX5 is the network device name for device number 808, the even device
number of the CTC device pair 808/809 defined for the TCPIP service
machine. These are the device numbers to which the Linux for S/390 virtual
machine CTC device numbers are coupled.

Also required is this entry in the GATEWAY statement to tell the VM TCP/IP
stack on which link it can reach the Linux for S/390 virtual machine:

9.12.9.184 = LINUX5V 1500 HOST

1500 is the maximum transmission unit (MTU) or packet size value defined for
this link. Much higher values are often used for CTC links. The MTU value you
use should be determined with your network administrator.

If any bridge or router does not perform IP-layer fragmentation of packets,
you must select an MTU corresponding to the smallest MTU in use by that
bridge or router. Selecting an MTU size that is too large may cause client
applications to hang.

For MTU values recommended by IBM, refer to VM/ESA V2R4.0: TCP/IP
Function Level 320 Planning and Customization, SC24-5847.

� This is the subnetwork in which the Linux for S/390 virtual machine IP
address is defined. The subnet mask must be consistent with the subnetwork
address.

Subnet masks and subnet values are entered in the GATEWAY statement in
the VM TCP/IP configuration file. Because this link is point-to-point, the
parameter HOST is substituted.

� The Domain Name Server (DNS) is often an external machine. In our
environment the DNS machine was on a different subnet. If routing all Linux
for S/390 IP traffic through the VM TCP/IP stack, ensure that the TCP/IP
service machine can communicate with the DNS server.

In the VM TCP/IP service machine, the IP address of the DNS server is
specified by the NSINTERADDR statement in the TCPIP DATA file.

� The DNS search domain is also defined in the TCPIP DATA file.

The search order used to resolve domain names can be tailored to your
needs through coding other statements in the TCPIP DATA file such as
DOMAINLOOKUP, DOMAINORIGIN, DOMAINSEARCH and HOSTNAME.
114 Linux for S/390

The networking prompts will differ if you are configuring an OSA-2 network
link. IUCV connections cannot be defined using the netsetup prompts.

6.3.8 Install the root file system
Once the root user was logged on to the Linux for S/390 console, we installed
the large root file system previously downloaded onto a PC.

First we ran the Linux for S/390 dasdfmt command against device number 201
and created a file system structure on the partition for this device. Take care
to distinguish between the device and the partition defined on it.

[root@linux5 /root]# dasdfmt -f /dev/dasdb -b 4096
I am going to format the device /dev/dasdb in the following way:
 Device number of device : 0x201
 Major number of device : 94
 Minor number of device : 4
 Start track : 0
 End track : last track of disk
 Blocksize : 4096

--->> ATTENTION! <<---
All data in the specified range of that device will be lost.
Type "yes" to continue, no will leave the disk untouched:
yes
Formatting the device. This may take a while (get yourself a coffee).
Finished formatting the device.
Rereading the partition table... done.
[root@linux5 /root]# mke2fs /dev/dasdb1 -b 4096
mke2fs 1.15, 18-Jul-1999 for EXT2 FS 0.5b, 95/08/09
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
90048 inodes, 179997 blocks
8999 blocks (5.00%) reserved for the super user
First data block=0
6 block groups
32768 blocks per group, 32768 fragments per group
15008 inodes per group
Superblock backups stored on blocks:
32768, 98304, 163840
Writing inode tables: 0/6 1/6 2/6 3/6 4/6 5/6 done
Writing superblocks and filesystem accounting information:
done
[root@linux5 /root]# mkdir /mnt/dasdb
[root@linux5 /root]# mount /dev/dasdb1 /mnt/dasdb
Chapter 6. VM installation and operation of Linux for S/390 115

Then we copied the root file system from the PC into our newly formatted
disk.

From the PC:

C:\>ftp 9.12.9.184
Connected to 9.12.9.184.
220 linux5 FTP server (Version wu-2.4.2-VR17(1) Tue Nov 30 13:54:53 CET
1999) ready.
User (9.12.9.184:(none)): root
331 Password required for root.
Password:
230 User root logged in.
ftp> lcd \temp\marist
Local directory now C:\temp\marist
ftp> bin
200 Type set to I.
ftp> cd /mnt/dasdb
250 CWD command successful.
ftp> put initfs_big.tgz
200 PORT command successful.
150 Opening BINARY mode data connection for initfs_big.tgz.
226 Transfer complete.
102179165 bytes sent in 221.76 seconds (460.77 Kbytes/sec)
ftp> quit

Finally, we uncompressed the tar archive:

[root@linux5 /root]# cd /mnt/dasdb
[root@linux5 dasdb]# tar xzpBf initfs_big.tgz

6.3.9 Complete customization
If you would like to boot from disk rather than the reader, you can create a
boot sector record on a disk managed by the DASD driver. We defined a
separate small minidisk (device number 200) for this purpose. You must
create a partition on the disk to leave room for the boot sector to be written at
the front of the device.

6.3.9.1 Creating a boot sector
First, we did a low-level format:

[root@linux5 /]# dasdfmt -f /dev/dasda -b 4096

I am going to format the device /dev/dasda in the following way:
 Device number of device : 0x200
 Major number of device : 94
 Minor number of device : 0
116 Linux for S/390

 Start track : 0
 End track : last track of disk
 Blocksize : 4096

--->> ATTENTION! <<---
All data in the specified range of that device will be lost.
Type "yes" to continue, no will leave the disk untouched:
yes
Formatting the device. This may take a while (get yourself a coffee).
Finished formatting the device.
Rereading the partition table... done.
root@linux5 /]#

Then we created the partition dasda1 on the dasda device. In the next steps
take care to distinguish between the device and the partition defined on it:

[root@linux5 /]# mke2fs /dev/dasda1 -b 4096
mke2fs 1.15, 18-Jul-1999 for EXT2 FS 0.5b, 95/08/09
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
3616 inodes, 3597 blocks
179 blocks (4.98%) reserved for the super user
First data block=0
1 block group
32768 blocks per group, 32768 fragments per group
3616 inodes per group

Writing inode tables: 0/1 done
Writing superblocks and filesystem accounting information: done
[root@linux5 /]#

We created a boot directory in the partition created on the boot device. Then
we copied the boot files from the boot directory on device dasdb into it:

[root@linux5 /]# mkdir /mnt/dasda
[root@linux5 /]# mount /dev/dasda1 /mnt/dasda
[root@linux5 /]# cd /mnt/dasda
[root@linux5 dasda]# mkdir boot
[root@linux5 dasda]# mount
/dev/ram0 on / type ext2 (rw,errors=remount-ro)
none on /proc type proc (rw)
/dev/dasdb on /mnt/dasdb type ext2 (rw)
/dev/dasda1 on /mnt/dasda type ext2 (rw)
[root@linux5 dasda]# cd /mnt/dasdb/boot
[root@linux5 boot]# cp * /mnt/dasda/boot
Chapter 6. VM installation and operation of Linux for S/390 117

[root@linux5 boot]# cd /mnt/dasda/boot

Then we copied the kernel from the VM 191 minidisk to ensure we were using
the same version we had booted from the reader:

[root@linux5 boot]# ftp 9.12.14.155
Connected to 9.12.14.155.
220-FTPSERVE IBM VM Level at WTSCVMT.ITSO.IBM.COM, 18:45:08 EDT THURSDAY
05/18/00
220 Connection will close if idle for more than 5 minutes.
Name (9.12.14.155:root):
linux5
331 Send password please.
Password:
########
230-LINUX5 logged in; working directory = LINUX5 191 (ReadOnly)
230 write access currently unavailable due to other links
Remote system type is VM.
ftp> bin
200 Representation type is IMAGE.
ftp> get kernel.marist image
local: image remote: marist.image
200 Port request OK.
150 Sending file 'kernel.marist'
250 Transfer completed successfully.
1447840 bytes received in 0.148 secs (9.6e+03 Kbytes/sec)
ftp> quit

Next we created a kernel parameter file in the boot directory on the dasda1
partition:

[root@linux5 boot]# ed image.parm
image.parm: No such file or directory
.a
dasd=200-203 root=/dev/dasdb1 ro noinitrd
.
wq
65
[root@linux5 boot]#

Next we built the boot sector record using the silo command:

[root@linux5 boot]# silo -f image -d /dev/dasda -p image.parm -b
./ipleckd.boot -t2
o->image set to image
o->ipldevice set to /dev/dasda
o->parmfile set to image.parm
118 Linux for S/390

o->bootsect set to ./ipleckd.boot
Testonly flag is now 0
Testlevel is set to 0
IPL device is: '/dev/dasda'
bootsector is: './ipleckd.boot'...ok...
bootmap is set to: './boot.map'...ok...
Kernel image is: 'image'...ok...
original parameterfile is: 'image.parm'...ok...final parameterfile is:
'image.parm'...ok...
ix 0: offset: 0000a4 count: 0c address: 0x00000000
ix 1: offset: 0000b1 count: 80 address: 0x0000c000
ix 2: offset: 000131 count: 80 address: 0x0008c000
ix 3: offset: 0001b1 count: 63 address: 0x0010c000
ix 4: offset: 000218 count: 01 address: 0x00008000
Bootmap is in block no: 0x00000219
[root@linux5 boot]#

Finally, we updated the file /etc/fstab to reflect the root file system device,
dasdb1:

[root@linux5 /etc]# cd /mnt/dasdb/etc
[root@linux5 etc]# cat fstab
/dev/dasda1 / ext2 defaults,errors=remount-ro 0 1
none /proc proc defaults 0 0
[root@linux5 etc]# sed 's/dasda1/dasdb1/g' fstab > fstab2
[root@linux5 etc]# cat fstab2
/dev/dasdb1 / ext2 defaults,errors=remount-ro 0 1
none /proc proc defaults 0 0
[root@linux5 etc]# mv fstab2 fstab

After shutting down Linux for S/390, we were able to boot directly from the
200 minidisk with the CP command IPL 200.

6.3.9.2 Creating a swap file
We had defined a 200-cylinder minidisk (203) to be used as a swap file.

To create a swap file on the disk and activate it, we entered :

[root@linux5 /root]# dasdfmt -f /dev/dasdd -b 4096
I am going to format the device /dev/dasdd in the following way:
 Device number of device : 0x203
 Major number of device : 94
 Minor number of device : 12
 Start track : 0
 End track : last track of disk
 Blocksize : 4096

Chapter 6. VM installation and operation of Linux for S/390 119

--->> ATTENTION! <<---
All data in the specified range of that device will be lost.
Type "yes" to continue, no will leave the disk untouched:
yes
Formatting the device. This may take a while (get yourself a coffee).
dasd:called format ioctl
Finished formatting the device.
 dasdd:(nonl)/ : dasdd1
Rereading the partition table... done
[root@linux5 /root]# mkswap /dev/dasdd1
Setting up swapspace version 1, size = 147439616 bytes
[root@linux5 /root]# chmod 600 /dev/dasdd1
[root@linux5 /root]# swapon /dev/dasdd1

An entry in the /etc/fstab file will activate the swap space on a subsequent
boot of the Linux for S/390 kernel. See 9.2.2, “The file system table /etc/fstab”
on page 187 for how to do this.

6.3.9.3 Setting the time
The S/390 processor Time of Day (TOD) clock is set to Coordinated Universal
Time (UTC). When VM/ESA is IPLed and the CP prompts for the date and
time, it uses TIMEZONE_DEFINITION statements in SYSTEM CONFIG to
work out the value to store in the real TOD clock.

By default, a guest virtual machine uses the real system TOD clock. Clock
requests from a virtual machine are intercepted and their effect is limited to
that virtual machine. The real system TOD clock is never changed by a guest
virtual machine. When a SET CLOCK (SCK) instruction is issued in a virtual
machine, an offset from the real system clock is computed and stored in an
offset of the primary control block for that virtual machine. Specify OPTION
TODENABLE in the directory entry for guests that need to use the SCK
instruction to set the virtual machine's TOD clock. The guest virtual machine
can also use its own facilities to establish the correct time zone. OPTION
TODENABLE is not necessary to specify a time zone offset in a guest virtual
machine.

We did not investigate whether Linux for S/390 tries to issue an SCK
instruction. The Linux for S/390 virtual machine would need the TODENABLE
option in its CP directory entry if it does.

Our experience was that Linux for S/390 would show the correct time by using
the standard Linux for S/390 facility to specify the local time zone.

For example, this command sets the time to the US Pacific time zone:

mv /etc/localtime /etc/localtime.old
120 Linux for S/390

ln -s /usr/share/zoneinfo/PST8PDT /etc/localtime

The VM CP command QUERY OFFSET displays the difference between the
system’s current time zone and UTC.

6.3.9.4 Taking a backup
You should ensure that you always have the means to reboot the kernel in
case you lose a disk device, or some other catastrophe occurs. VM gives you
many options to safeguard your kernel.

Perhaps the simplest protection is to keep a copy of the kernel file, RAM disk
and current kernel parameter file on a CMS minidisk (and tape), so that the
kernel can be booted from the reader if necessary.

6.3.9.5 Other customization tasks
Now that you have a working Linux for S/390 environment, the remaining
customization that you may wish to carry out is identical to when Linux for
S/390 is running natively or in an LPAR. Refer to 5.7.5, “Customizing Linux for
S/390 configuration files” on page 75 for information on how to tailor several
important files in your root file system.

6.4 Logging into your Linux for S/390 system

Once you have established network connectivity for your Linux for S/390
virtual machine, you can use telnet from a workstation to log in. This means
that the virtual machine console is not required and can be disconnected.

From the Linux for S/390 console prompt, enter the CP DISCONNECT
command

#CP DISCONNECT

To log in to Linux for S/390 from your workstation, enter:

telnet linux5

From a VM CMS session you can also use the VM TCP/IP stack to telnet to
Linux for S/390 .

6.5 3215 driver considerations

When using the Linux for S/390 virtual machine console to enter Linux for
S/390 commands, there is no Ctrl key defined because it is operating as a
3215 device. This makes it impossible to enter control characters directly. The
Chapter 6. VM installation and operation of Linux for S/390 121

character “^” in combination with certain other characters can emulate the
Ctrl key:

 • ^c is interpreted as Ctrl+C.

 • ^d is interpreted as Ctrl+D.

 • ^z is interpreted as Ctrl+Z.

 • ^n is used at the end of the input line (on the terminal) to prevent the
generation of a new line character.

If the special characters don’t seem to work, make sure that you are using a
suitable codepage on your terminal emulator. One that works is codepage
037 United States.

6.6 IUCV connections

The netsetup script packaged on the Marist binary distribution does not
prompt for IUCV connections.

If you decide to use IUCV instead of CTC connections from Linux for S/390 to
the VM TCP/IP stack, you will need to take the following actions:

 • Make sure that the Linux for S/390 and VM TCP/IP service machines are
suitably authorized for IUCV communications.

 • Define an IUCV link definition in the TCP/IP configuration file.

 • Make an IUCV entry in the kernel parameter file.

 • Use Linux for S/390 ifconfig and route commands to define and activate
the IUCV link from Linux for S/390.

Further details can be found in 15.3.3, “IUCV” on page 291.

As with CTC links to the VM TCP/IP stack, IUCV links are point-to-point
connections. This means that your local router definitions must be enhanced
to route IP traffic for the Linux for S/390 IP addresses through the VM TCP/IP
network interface.

6.7 Linux for S/390 device files and virtual device numbers

The CP QUERY ALL command displays the device numbers, device types,
and associated subchannel numbers for all the devices defined in the Linux
for S/390 virtual machine. These are assigned in the order in which the
devices were first defined to the virtual machine, either through the CP
directory or after the virtual machine was logged on.
122 Linux for S/390

cp query all
STORAGE = 0128M
XSTORE = none
CPU 00 ID FF0D082296720000 (BASE)
CONS 0009 ON LDEV L0008 TERM START HOST TCPIP FROM 009.012.002.125
 ...
 0009 SUBCHANNEL = 0000
RDR 000C CL A NOCONT NOHOLD EOF READY
 000C 3505 CLOSED NOKEEP NORESCAN SUBCHANNEL = 0001
PUN 000D CL A NOCONT NOHOLD COPY 001 READY FORM STANDARD
 ...
 000D SUBCHANNEL = 0002
PRT 000E CL A NOCONT NOHOLD COPY 001 READY FORM STANDARD
 ...
 000E SUBCHANNEL = 0003
DASD 0190 3390 VMZRES R/O 107 CYL ON DASD 09B0 SUBCHANNEL = 0004
DASD 0191 3390 VMZU1A R/W 50 CYL ON DASD 09B7 SUBCHANNEL = 000B
DASD 019D 3390 VMZU1A R/O 120 CYL ON DASD 09B7 SUBCHANNEL = 0007
DASD 019E 3390 VMZP1P R/O 300 CYL ON DASD 09B2 SUBCHANNEL = 0005
DASD 019F 3390 VMZP1P R/O 400 CYL ON DASD 09B2 SUBCHANNEL = 0006
DASD 0200 3390 LINUX2 R/W 20 CYL ON DASD 09BA SUBCHANNEL = 000C
DASD 0201 3390 LINUX5 R/W 1000 CYL ON DASD 09BD SUBCHANNEL = 0008
DASD 0202 3390 LINUX5 R/W 1000 CYL ON DASD 09BD SUBCHANNEL = 0009
DASD 0203 3390 LINUX5 R/W 200 CYL ON DASD 09BD SUBCHANNEL = 000A
DASD 0592 3390 VMZU1R R/O 56 CYL ON DASD 09B5 SUBCHANNEL = 000D
CTCA 0808 COUPLED TO TCPIP 0809 SUBCHANNEL = 000E
CTCA 0809 COUPLED TO TCPIP 0808 SUBCHANNEL = 000F

There is a crucial difference between Linux for S/390 and traditional S/390
operating systems. In VM/ESA, when a virtual device is created, CP builds a
virtual device block to represent that device. A subchannel number is
associated with the virtual device block at that time. Redefining a device
number using the CP DEFINE command does not create a new virtual device
block. The new device number still has the original subchannel number.

If you detach a device with the CP DETACH command, the associated virtual
control blocks are destroyed.

Linux for S/390 has a different view of devices. It expects devices to always
appear in the same sequence. Linux for S/390 identifies a disk device based
on the order in which it finds it. If you have a kernel parameter:

dasd=200 mdisk=201,202,203 root=/dev/mndc ro
Chapter 6. VM installation and operation of Linux for S/390 123

Linux for S/390 builds a list of disk devices as shown in Table 13.

Table 13. Linux for S/390 device names and S/390 device numbers

Virtual device number 203 is the device upon which the Linux for S/390 kernel
will mount the root file system.

If you change the virtual device configuration, the boot parameter must be
altered to show the new device number sequence and any consequential
change to the device name of the Linux for S/390 root file system .

If device number 201 is detached and the kernel parameter is left unchanged,
Linux for S/390 will make the associations between its device names and
device numbers shown in Table 14.

Table 14. New Linux for S/390 device names and S/390 device numbers

To reflect the detached device, the kernel parameter must be altered as
follows:

dasd=200 mdisk=202,203 root=/dev/mndb ro

We strongly advise that you list which disk devices Linux for S/390 will use
with dasd and mdisk entries in the kernel parameter specification. If you fail to
do this, Linux for S/390 will order all the virtual DASD devices it recognizes by
subchannel number.

Avoid use of the autodetect parameter in the kernel parameter file, since it
will automatically register all minidisks defined for the Linux for S/390 virtual
machine as devices that Linux for S/390 might want to use. It is difficult to be

Device name Virtual device
number

dasda 200

mnda 201

mndb 202

mndc 203

device name device number

dasda 200

mnda skipped

mndb 202

mndc 203
124 Linux for S/390

certain that you haven’t inadvertently added virtual disk devices to your
configuration, perhaps through linking to another virtual machine’s minidisks
to access a CMS application.

6.8 Operational considerations

Running Linux for S/390 in a virtual machine presents some unique
opportunities to use VM/ESA for operational management, monitoring and
control.

6.8.1 Starting Linux for S/390 virtual machines
Like any other virtual machine, a Linux for S/390 virtual machine can be
autologged by an authorized CMS user. If you are running several Linux for
S/390 virtual machines and want them all to start automatically, this can be
done with either the CP AUTOLOG or XAUTOLOG commands.

See VM/ESA V2R4.0 CP Command and Utility Reference, SC24-5773 for
further information.

The USER statement in the CP directory entry for a virtual machine has an
AUTOONLY option that restricts its being started to autologging only.

See VM/ESA V2R4.0 Planning and Administration, SC24-5750 for further
information.

Another useful VM/ESA facility is the CP LOGON BY command, which
permits specified user IDs to log on to the Linux for S/390 virtual machine as
a proxy user.

When a Linux for S/390 virtual machine is autologged, it is common practice
for it to IPL CMS first and then execute a PROFILE EXEC that ends with a
command to IPL from the Linux for S/390 boot device.

Here is an example we tested:

/* PROFILE EXEC for Linux virtual machine to be autologged */
'CP LINK TCPMAINT 592 592 RR'
'ACCESS 592 U'
'CP DEF CTC 808'
'CP DEF CTC 809'
'CP COUPLE 808 TCPIP 809'
'CP COUPLE 809 TCPIP 808'
'SET RUN ON'
'SET SECUSER LINUXMON'
'CP DISC' '15'X 'IPL 200'
Chapter 6. VM installation and operation of Linux for S/390 125

Alternatively, if booting from disk, you could alter the IPL statement in the CP
directory entry for the Linux for S/390 virtual machine to:

IPL boot_device_number

6.8.2 Stopping Linux for S/390 virtual machines
Always use the Linux for S/390 shutdown command rather than halt if you
wish to stop your Linux for S/390 server.

You can also quiesce a Linux for S/390 virtual machine to a lower run level by
using the Linux for S/390 init command.

After Linux for S/390 has shut down, you can reboot just by entering the CP
IPL command from the Linux for S/390 virtual machine console. Linux for
S/390 will boot from whichever device it was previous booted.

6.8.3 Secondary console interface
With suitable authorization, a disconnected Linux for S/390 virtual machine
can have its console output redirected to another VM user ID. That user ID
also has the ability to send commands to the disconnected Linux for S/390
virtual machine, which are treated as input from the Linux for S/390 virtual
machine console.

Coupled with another standard VM facility, Programmable Operator, this
provides a very powerful tool for managing multiple Linux for S/390 virtual
machines. The Programmable Operator can filter and respond automatically
to messages from multiple virtual machines based on a set of
installation-defined rules. This facility is documented in VM/ESA V2R4.0
Planning and Administration, SC24-5750.

The secondary console user ID for a Linux for S/390 virtual machine may be
specified in the CP directory entry for that machine. For example:

CONSOLE 0009 3215 T PROP

will redirect console messages to the PROP virtual machine when the Linux
for S/390 virtual machine is running disconnected. It can also be specified in
the PROFILE EXEC of a Linux for S/390 virtual machine by using the CP SET
SECUSER command. The secondary user ID can enter console input on
behalf of the Linux for S/390 virtual machine by using the CP SEND
command. This is documented in VM/ESA V2R4.0 CP Command and Utility
Reference, SC24-5773.
126 Linux for S/390

Using the CP SEND command from CMS converts messages to upper case,
so we wrote a small REXX program called CPSEND to overcome this
problem:

/* REXX EXEC to send console input to a Linux virtual machine */
parse arg linuxid cmd
upper linuxid
cpcmd = 'SEND' linuxid cmd
cprc = substr(Diagrc(8,cpcmd),1,9)
exit cprc

To test the secondary console facility with Linux for S/390, we booted a Linux
for S/390 kernel in one virtual machine, set the secondary user ID, and then
disconnected. Logged on as the secondary user ID, we entered a series of
Linux for S/390 commands on behalf of the Linux for S/390 virtual machine.
Here is one example:

cpsend linux5 df
Ready; T=0.01/0.01 16:12:45
LINUX5 : df
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/dasda1 707876 501304 170612 75% /

This technique could be used from a central point of control to manage many
Linux for S/390 virtual machines.

You might wish to quiesce all your Linux for S/390 servers while taking
backups, or use this method to shut down multiple Linux for S/390 guests
prior to a shutdown of VM/ESA.

We found that after issuing a Linux for S/390 shutdown -h now command, we
could re-IPL a Linux for S/390 virtual machine just by issuing cpsend
Linux_VM_userid IPL from the secondary user ID.

6.8.4 Taking backups of Linux for S/390 file systems
VM offers a number of ways to take backups of Linux for S/390 file systems:

 • CMS file backup

 • DASD Dump Restore (DDR)

 • SnapShot

 • Tivoli ADSM client and NFS

 • Proprietary VM backup products
Chapter 6. VM installation and operation of Linux for S/390 127

6.8.4.1 CMS file backup
Linux for S/390 disks that are formatted and reserved by CMS are CMS files.
They can therefore be backed up using the CMS TAPE DUMP command or
some another proprietary VM backup product. This type of backup treats the
whole Linux for S/390 volume as a single file. It does not provide granularity
at the Linux for S/390 file level. To restore a single Linux for S/390 file you
must restore the entire CMS reserved file.

6.8.4.2 DDR
This standard CMS utility backs up minidisks or full volumes on a block or
track basis. It has no understanding of the file structure contained on the disk.
This type of backup is device dependent and at a volume entity level. To
restore a single file, you must restore the whole backed-up volume.

6.8.4.3 SnapShot
If you have a disk subsystem that supports IBM’s RAMAC SnapShot for
VM/ESA, you can take instantaneous snapshot logical copies of complete
Linux for S/390 disk volumes. These can be backed up using the VM DASD
Dump Restore (DDR) program to magnetic tape without affecting the source
data.

6.8.4.4 Tivoli ADSM client and NFS
Using the Tivoli ADSM client for a workstation or OS/390 OpenEdition, and
mounting the Linux for S/390 file system NFS from that client, you can back
up Linux for S/390 data with file level granularity.

While this provides a comprehensive backup capability, it has the
disadvantage that data flows from Linux for S/390 to the ADSM client and
then directly to the Tivoli ADSM server.

6.8.4.5 Proprietary VM backup products
VM backup products from Independent Software Vendors (ISV) can also be
used to back up Linux for S/390 data. Some have the ability not only to back
up CMS files, but also to incrementally back up full volumes, irrespective of
the file structures they contain. This is achieved by keeping track of changed
tracks or blocks on the volume.

6.9 Performance considerations

The factors that affect the performance of a virtual machine running Linux for
S/390 are the same as for any other virtual machine.
128 Linux for S/390

There are techniques to reduce paging, increase the share of system
resources, and map data on minidisks into memory.

As with many performance improvements, there is frequently a trade-off
involved. Any performance-related change should be made only after
consideration and understanding of the likely effects on the rest of the
system. For a more comprehensive discussion, refer to VM/ESA V2R4.0
Performance, SC24-5782.

6.9.1 Reducing Linux for S/390 swapping
When you have a swap file defined for Linux for S/390, double paging can
potentially occur. VM/ESA may page Linux for S/390 memory onto its own
paging devices and Linux for S/390 may swap pages of its own memory into a
Linux for S/390 swap file.

This is illustrated in Figure 44.

Figure 44. Paging in a three-tier storage model

Page x of Linux for S/390 virtual storage is resident in both the “real” storage
of the Linux for S/390 virtual machine and the real storage of the system.
Page y is resident in the “real” storage of the Linux for S/390 virtual machine

Real storage managed by VM/ESA

 Control Program

Linux "real" storage

managed by Linux

(Linux virtual storage

managed by CP)

page z

Linux swap device

page q

VM paging device

page y

page x

page x

page y

512 Mb64 Mb256 Mb

page x

page y

page z

Linux virtual storage

page q
Chapter 6. VM installation and operation of Linux for S/390 129

but has been paged out by the VM/ESA Control Program from real storage.
Page z did not fit into the “real” storage of the Linux for S/390 virtual machine
and was swapped out to the Linux for S/390 swap file. When Linux for S/390
tried to swap in page z to page q of its “real” storage, the target page q had
been paged out by CP and must be paged in again. This leads to inefficient
double paging.

Techniques that can reduce or eliminate double paging are:

 • Make the storage of the Linux for S/390 virtual machine bigger to eliminate
or minimize swapping. This can be a somewhat self-defeating exercise. As
you increase the amount of storage available to the Linux for S/390 virtual
machine, Linux for S/390 will tend to consume the additional capacity by
caching more Linux for S/390 files in its storage.

 • Dedicate real storage to the Linux for S/390 virtual machine by making it a
V=R or V=F guest. CP will do no paging and leave memory management
to the Linux for S/390 virtual machine.

Since VM/ESA has a highly efficient block paging mechanism, you may find it
preferable to let VM page rather than have Linux for S/390 swap. In any
situation, the trade-offs must be evaluated.

Another way to reduce the likelihood of a Linux for S/390 virtual machine’s
storage being paged by CP is with the CP SET RESERVED command. You
can reserve a number of pages that a virtual machine is entitled to have
resident in real storage at all times.

The Linux for S/390 XPRAM driver allows the Linux for S/390 kernel to map a
swap file onto S/390 expanded storage. While this technique would have the
most obvious value when Linux for S/390 runs in an LPAR, it could be used by
a Linux for S/390 virtual machine that had S/390 expanded storage dedicated
to it.

6.9.1.1 Minidisk caching
VM/ESA provides a number of tools to map minidisks into real storage,
thereby avoiding normal disk I/O.

Minidisk cache is a data-in-memory technique that attempts to improve
performance by decreasing the I/O to DASD required for minidisk I/O.
Minidisk cache trades increased use of real and expanded storage for
decreased DASD I/O.

Since paging to DASD increases as the amount of available real and
expanded storage decreases, you should expect some increase in paging I/O.
130 Linux for S/390

When planning what data should be enabled for minidisk cache, it is generally
better to start with everything enabled and then eliminate poor candidates
later.

The maximum benefit of minidisk cache is achieved with read-only data that
is referenced multiple times. If you have multiple Linux for S/390 virtual
machines that can share a read-only minidisk, that minidisk can be an ideal
candidate for minidisk caching.

6.9.1.2 Virtual disks
Virtual disks in storage are temporary Fixed Block Architecture (FBA)
minidisks allocated from real memory instead of requiring I/O to real disk
devices. Because the I/O overhead is avoided, virtual disks in storage may be
faster to use than other minidisks.

However, the improved I/O performance can be a trade-off for increased
storage requirements or increased paging activity.

Virtual disk is a good candidate for the swap device of a Linux for S/390
virtual machine. A virtual disk can be defined in the CP directory entry for a
Linux for S/390 virtual machine. It is created at logon time. The CMS
PROFILE EXEC should then invoke the CMS FORMAT and RESERVE
commands to prepare the minidisk for use by Linux for S/390 when it is
booted.

6.9.1.3 Expanded storage driver
Linux for S/390 has a driver that allows S/390 expanded storage to be used to
cache Linux for S/390 data. It is more likely to be used in an LPAR, but should
work if expanded storage is dedicated to the Linux for S/390 virtual machine.

S/390 processors support an architectural maximum of 2 gigabytes of central
storage. However, additional memory can be defined as expanded storage.
Memory in expanded storage is addressable as 4 KB blocks.

The Linux for S/390 XPRAM device driver is a block device driver that allows
Linux for S/390 to access expanded storage. Thus XPRAM can be used as a
basis for fast swap devices and/or fast file systems.

6.9.2 Virtual machine priority
The share of the real processor and other resources available to a virtual
machine can be controlled using CP commands such as SET SHARE.
Shares are specified in weights, which can be absolute or relative and may
also be limited or capped.
Chapter 6. VM installation and operation of Linux for S/390 131

The CP SET QUICKDSP command ensures that a virtual machine does not
need to compete for sufficient real storage whenever it has work to do, but
can run immediately.

There are many other commands and settings that affect the performance of
Linux for S/390 running in a virtual machine.
132 Linux for S/390

Chapter 7. Installing SuSE Linux on S/390

This chapter describes how to install SuSE Linux for S/390. Since it is based
on a prerelease version, there might be minor differences between how
screens are shown here and how they appear in the final release of SuSE
Linux for S/390.

You will need the SuSE Linux for S/390 CD. We used the beta 2 version,
dated July 28, 2000. At the time of writing of this book, it was available on the
Web at:

ftp://ftp.suse.com/pub/suse/s390/pre-suse-s390.iso

7.1 Types of installation

You can install SuSE Linux on an LPAR. Use the hardware console (SE or
HMC) to IPL and set up the network connection for Linux. This type of
installation requires either booting from a tape (or emulated tape on MP3000)
or using the Load from CDROM or Server task in the SE.

Alternatively, you can install SuSE Linux under VM/ESA, in which case a
3270 screen will be used for the initial steps. Linux will then normally be
booted through the reader (although a tape IPL is also possible). This is the
most flexible setup, especially if you plan to do development or testing, where
the Linux system has to be IPLed more often.

Note: Although you can install SuSE Linux for S/390 in native mode (that is,
using the whole machine), we do not recommend this method. Instead, use
LPARs, VM/ESA, or VIF because these methods offer greater system
flexibility.

After the network is set up, you must connect to the Linux system with a
terminal that supports full-screen mode (a line mode terminal such as a 3270
does not work). A telnet session from a Linux (or Windows) workstation
should be opened to proceed with the installation using YaST (which means
Yet another Setup Tool, the SuSE menu-based installation and administration
utility). At this point there is no difference between the types of installation,
except for a few settings.

7.2 System requirements

This section describes the system requirements (hardware, microcode level
and software) needed to install SuSE Linux for S/390.
© Copyright IBM Corp. 2000 133

7.2.1 Required hardware features
The following features must be on the system:

7.2.1.1 Memory and processor
You need at least 128 MB of RAM. The processor must be of the CMOS
generation and be at least G2, although using a G5 or better is
recommended.

G3, G4 and MP2000 do not support IEEE floating point in the hardware.
Because of this, you might see performance degradation if you run Linux for
S/390 and Linux applications on such machines, as IEEE floating point will be
emulated by software.

However, since IEEE exception handling is not emulated, you’ll get warning
messages whenever a program tries to use it.

7.2.1.2 DASD volumes
If you install natively or in an LPAR, you need at least one dedicated 3390
model 3 disk; however, two are recommeded so a swap space can be utilized.

Note: Real 3390 disks attached to real 3990 controllers are not supported.

If you install as a VM guest, you need one 3390 model 3 for the root file
system, and 200 (or more) cylinders for the swap space. You also need a
minidisk with 20 (or more) cylinders if you want to boot (IPL) from a disk and
not from the VM reader.

7.2.1.3 Tape unit
If you install natively or in an LPAR, you need temporary access to a tape
unit. On a Multiprise 3000, you need access to the emulated tape.

If you install as a VM guest, a tape unit is not required if you install using the
VM reader.

7.2.2 Required APARs and fixes
Table 15 on page 135 lists the APARS and fixes needed.
134 Linux for S/390

Table 15. Required APARs and fixes

7.2.3 Software
If you install natively or in an LPAR, you need an S/390 operating system to
create a tape (OS/390, VM/ESA or VSE/ESA). You also need a utility like
DITTO or IEBGENER to copy the installation files onto a tape.

On a Multiprise 3000, you can use emulated I/O or the Load from CDROM or
Server feature, so you don't need to create a tape.

If you install from a VM reader, you only need VM/ESA.

7.3 Connection requirements

This section describes the connection requirements, such as console and
network access, needed to install SuSE Linux for S/390.

7.3.1 Console
If you install natively or in LPAR, use the console that is integrated with the
Hardware Management Console (HMC) or the Support Element (SE).

If you install as a VM guest, use the virtual machine console of the Linux for
S/390 guest, that is, the (real or emulated) 3270 terminal through which you

System APAR or fix number

VM/ESA VM61762 is required if the version of VM is V2R3.0.
VM62337 is required when using IEEE FPU under VM.
VM62410 is required when using IEEE FPU under VM.
VM62520 is required to run LINUX guests with more than one
virtual CPU.
VM62573 is required to avoid FRE001 abend when telnetting into
VM in line mode.
PQ34318 is required when using TCP/IP under VM.
VM62337 and VM62410 are required only to run on G5, G6, or
Multiprise 3000 processors.

Multiprise 3000 Microcode fix EC F34643 MCL048.
Microcode fix EC 34663 MCL087 load from CD.

9672 (G5/G6) Microcode fix MCL025 EC 99918 load from CD.

All systems OSA Express Fast Ethernet card LIC code level 324.
Chapter 7. Installing SuSE Linux on S/390 135

log on to VM. To connect from a SuSE Linux workstation, install the package
x3270 from the series xap on that workstation.

The intended use of the console is solely to launch Linux. After Linux is
running, use a telnet connection directly to Linux for S/390 to log into Linux
and access the shell and other applications such as vi or YaST.

7.3.2 Network connection
A TCP/IP network connection is required in order to get files from the FTP or
NFS server and to telnet into the Linux system. The connection can be one of
the following:

 OSA (OSA-2, OSA Express)

 CTC (virtual or real)

 ESCON channels

 PCI adapter (emulated I/O, only on MP3000)

All network connections require the correct setup on both Linux for S/390 and
the remote system, and a correct routing between both ends.

7.3.3 The telnet client
You need telnet in full-screen mode (as previously mentioned, a line mode
terminal such as a 3270 does not work). With Windows, for example, you can
use PuTTY, a freeware telnet/SSH client that can be found on the Internet at:

http://www.chiark.greenend.org.uk/~sgtatham/putty/

Note that Windows terminal programs tend to have the following problems,
listed here with their possible workarounds:

 • They can put meaningless values into the TERM variable.

As a workaround, type the following on the command line before you start
YaST:

export TERM=vt220

 • They can intercept certain keys (like the function keys); pressing one of
the function keys often triggers actions like displaying copyright notices
instead of just handing the keystroke to telnet. Even when some function
keys work normally, others may deliver the escape character, which
causes YaST to abort the current dialog.
136 Linux for S/390

As a workaround, use Ctrl-f 1 for F1, Ctrl-f 2 for F2 and so on (Ctrl-f 0
for F10). If the tab key does not work, use the arrow up and arrow down
keys to switch between the entries or actions.

 • They use nonstandard character sets; for example, the characters used for
the subwindow borders of YaST might not be displayed correctly.

No workaround is needed, since this problem is only cosmetic.

Because of these problems, we strongly recommend that you use SuSE Linux
(on a PC or workstation) since it comes with a telnet client and terminals that
work as expected.

Note: With YaST, the terminal has to be at least 25 lines by 80 columns.
Therefore you may have to resize the terminal before launching YaST.

7.3.4 NFS or FTP server
The installation loads the software packages from the CD via NFS or FTP.
You can use SuSE Linux to supply the installation files, because both an NFS
server (as package aaa_base in series a) and an FTP server (as package
nkitb in series a) are included in the SuSE Linux distribution. You will probably
want to use the same workstation that is used to connect via telnet.

Note that there is no NFS server included in Windows. The Rockridge
extension (the standard for long filenames on an ISO9660 file system, used
for CDs) is not supported by Windows. This, plus the fact that Windows
applies case conversions on filenames, may cause installations from a
Windows NFS or FTP server to fail.

Testing the server
To test the NFS server, mount the CDROM directory on the server (often
done via the command mount /dev/cdrom /cdrom) and set up the /etc/exports
file so NFS clients can access the CD. Now mount the CDROM directory from
your local workstation with an NFS client (for example; mount nfsserver:/cdrom
/mnt/susecd) and try copying a file from the CD.

To test the FTP server, connect to it as an ordinary user and download a file.
(Do not try to connect as root, because by default on Linux, the user root is
not allowed to connect.)

7.4 IPLing the install system

The installation of SuSE Linux begins with IPLing the installation system, a
RAM disk-based system that contains all programs necessary for the actual
Chapter 7. Installing SuSE Linux on S/390 137

installation. Before connecting via telnet to the system, of course, you must
set up the network.

7.4.1 IPLing from the VM reader
To IPL from the reader, first connect to the FTP server with the installation CD
and transfer the kernel, parameter file, and RAMdisk as fixed block 80 byte
records. Following are example FTP commands:

bin
locsite fix 80
cd /cdrom/suse/images
get vmrdr.ikr vmlinux.txt
get parmline linux.parm
get initrd initrd.txt
quit

Then create a REXX EXEC that punches the files into the reader and IPLs
Linux from the reader (Note: be sure you don’t have any important files in
your reader as all files are first purged):

type lin exec
/* */
’close rdr’
’purge rdr all’
’spool punch * rdr’
’punch vmlinux txt a (noh’
’punch linux parm a (noh’
’punch initrd txt a (noh’
’change rdr all keep nohold’
’ipl 00c’

Alternatively, you may want to create a file that just IPLs from the reader. This
EXEC can be used if the proper files are already in your reader:

type lipl exec
/* */
’change rdr all keep nohold’
’ipl 00c’

7.4.2 IPLing from tape
To IPL from tape, you have to use a tape description file. Some sample files
(named awsoma*.tdf) are on the CD in the directory /suse/images/. These
files contain lists of files that are to be transferred to tape. It is possible the file
may have to be modified:

@TDF
H:\SUSE\IMAGES\TAPEIPL.IKR UNDEFINED RECSIZE 1024
138 Linux for S/390

H:\SUSE\IMAGES\PARMLINE UNDEFINED RECSIZE 1024
H:\SUSE\IMAGES\INITRD UNDEFINED RECSIZE 1024
TM
TM
EOT

7.4.3 IPLing from the CD-ROM (emulated tape)
With Multiprise 3000, you can IPL directly from the CD-ROM; the SE
emulates a tape with the data on the CD-ROM.

To do this, you first have to set up emulated I/O in the IOCDS. Then you
“rewind” the emulated tape by issuing the following on the OS/2 console
(assuming that 080 is the emulated I/O device number):

F:\> awsmount 080 /rew /D /R

Then select LOAD with the same device.

Note: You may have to try the rewind and load task several times before it
actually works, there will be a fix (provided by IBM) for that in the future.

7.4.4 The Load from CDROM or server task
With Multiprise 3000 and Parallel Enterprise Server (Generation 5 or 6), you
have the option of IPLing from the local or Hardware Management Console
(HMC) CD-ROM or an FTP server. To be able to use this new function you
have to be on the following microcode level:

 • Multiprise 3000 MCL 087 EC 34663

 • Parallel Enterprise Server (Generation 5 or 6) MCL025 EC 99918

After starting the task from the HMC, a dialog appears that lets you choose
whether you want to load from CDROM or an FTP server. If you load from an
FTP server, you’ll have to enter the hostname (or IP) of the server, your user
ID, and the password for FTP access.

The next menu lets you select among the existing files having a .ins
extension. These files contain a list of the files that actually get loaded (in a
certain order).

For the SuSE installation CD, the corresponding files are:

 • F:\suse\images\linux.ins (on the HMC), or

 • /cdrom/suse/images/linux.ins (on an FTP server, assuming that the mount
point of the CD-ROM is /cdrom).
Chapter 7. Installing SuSE Linux on S/390 139

Loading this file causes the (Linux-) install system to be IPLed.

7.5 Setting the network parameters in Linux

Note that in the dialogs shown in this section, user responses are printed in
bold.

Initially you are asked which network device is to be used, as follows:

First, select the type of your network device:
0) no network
1) for osa token ring
2) for osa ethernet
3) for channel to channel
4) for escon channel
Enter your choice (1-4): 3

In our case, we entered 3 for a CTC connection. The script continues:

Please enter your full host name (e.g. s390.suse.com): suse390.mydom.com
Please enter your IP address: 123.123.123.7
Please enter the net mask: 255.255.255.0

For CTC, which is a point-to-point connection, the IP of the peer (which will
also serve as a gateway) is requested:

Please enter the IP address of your peer: 123.123.123.88

For non-point-to-point connections, the broadcast IP and the gateway IP must
be given. You will not see these two lines for CTC or IUCV:

Please enter the broadcast address: 123.123.123.255
Please enter the gateway address: 123.123.123.77

For all network types, you must give the DNS information:

Please enter the IP address of the DNS server: 123.123.55.66
Please enter the DNS search domain (e.g. suse.com): mydom.com

The data is summarized and you can either confirm it or redo the input in
case of an error. After accepting the network information, SuSE Linux should
IPL onto the RAMdisk. Many lines of output will go by. Watch to verify that the
networking device comes up successfully.

Next, you continue by loading the DASD device driver.
140 Linux for S/390

7.6 Loading the DASD device driver

Now that networking is up, you should be able to telnet into the new system:

telnet 123.123.123.7

Then login as user root:

Connected to localhost.
Escape character is '^]'.
Welcome to SuSE Linux 7.0 (S/390) - Kernel 2.2.16 (3).
suse390 login: root
Password:

Press Enter after you are prompted for the password (the root password is
empty for the install system). Note that no characters are echoed in any way
when a password is entered.

A prompt like the following indicates that the login was successful:

suse390:~ #

To load the DASD device driver, first perform a check by issuing the following
command:

insmod dasd dasd=probeonly

That will load the driver in probeonly mode, which means all DASD is probed,
but not accessed. If you issue the following command, you can print a list of
all accessible DASDS:

cat /proc/dasd/devices

For the prerelease we used, only the following error message was displayed:

cat: /proc/dasd/devices: Cannot allocate memory

Therefore, we chose the alternative method of issuing this command from the
VM control program (this command can only be issued from the 3215 console
session):

#cp q dasd
00: CP Q DA
00: DASD 0190 3390 VMZU2R R/O 107 CYL ON DASD 09B6 SUBCHANNEL = 0004
00: DASD 0191 3390 VMZU1R R/W 10 CYL ON DASD 09B5 SUBCHANNEL = 0008
00: DASD 019D 3390 VMZU1A R/O 102 CYL ON DASD 09B7 SUBCHANNEL = 0007
00: DASD 019E 3390 VMZP1P R/O 300 CYL ON DASD 09B2 SUBCHANNEL = 0005
00: DASD 019F 3390 VMZP1P R/O 400 CYL ON DASD 09B2 SUBCHANNEL = 0006
00: DASD 0200 3390 LINUX2 R/W 200 CYL ON DASD 09BA SUBCHANNEL = 0009
00: DASD 0222 3390 LINUX4 R/W 2000 CYL ON DASD 09BC SUBCHANNEL = 000A
00: DASD 0224 3390 LINUX2 R/W 1000 CYL ON DASD 09BA SUBCHANNEL = 000B
00: DASD 0235 3390 LINUX7 R/W 3000 CYL ON DASD 0999 SUBCHANNEL = 000C
00: DASD 05FA 3390 VMZU1A R/O 100 CYL ON DASD 09B7 SUBCHANNEL = 0014
Chapter 7. Installing SuSE Linux on S/390 141

00: DASD 05FB 3390 VMZU1A R/O 100 CYL ON DASD 09B7 SUBCHANNEL = 0013
00: DASD 05FC 3390 VMZU1A R/O 100 CYL ON DASD 09B7 SUBCHANNEL = 0012
00: DASD 05FD 3390 VMZU1A R/O 100 CYL ON DASD 09B7 SUBCHANNEL = 0011
00: DASD 05FE 3390 VMZU1A R/O 100 CYL ON DASD 09B7 SUBCHANNEL = 0010

To unload the driver again, issue:

rmmod dasd

Note: The probeonly step was introduced as a “stop and think” point in order
to make absolutely sure that no DASDs that belong to other operating
systems are accessed. It is not strictly necessary, so its use is optional.

The actual load of the device drivers is done by the command:

insmod dasd dasd=222,224,235

The numbers represent the subset of device numbers that you, after
double-checking, decided to really use for SuSE Linux for S/390.

The following command provides a final check, if needed:

cat /proc/dasd/devices

0222(ECKD) at (94:0) is dasda:active at blocksize: 4096, 360000 blocks, 1406 MB
0224(ECKD) at (94:4) is dasdb:active at blocksize: 4096, 180000 blocks, 703 MB
0235(ECKD) at (94:8) is dasdc:active at blocksize: 4096, 540000 blocks, 2109 MB

7.7 Installing with YaST

Having logged in as root, you can check that the TERM variable is meaningful
by issuing:

echo $TERM

In return, you might receive something like this:

jeosverycoolterm

You can fix it by issuing the following (note the absence of the ‘$’):

export TERM=vt220

Now you can start YaST:

yast

Should YaST issue a warning about the terminal having less than 25 lines of
at least 80 characters, as shown in Figure 45 on page 143, you can stop
YaST, resize the terminal, and start YaST again.
142 Linux for S/390

Figure 45. YaST: warning message about a small terminal size

However, some Windows terminals just can’t be resized. In that case, a
different telnet client must be used. A good free one is Tera Term. See their
home page at:

http://hp.vector.co.jp/authors/VA002416/teraterm.html

After starting YaST, you are asked which language you want to use:

Figure 46. YaST: language selection
Chapter 7. Installing SuSE Linux on S/390 143

The next screen lets you choose the installation medium:

Figure 47. YaST: selection of the installation medium

In this example we choose NFS, but FTP would also be a valid option.

If you are using FTP, you have to enter the server IP and the directory. In
addition you are asked for user name (login) and password you want to use.
As you may remember, by default the user root is not allowed to connect, so
you should create an ordinary user to connect to the FTP server.

Next, as shown in Figure 48 on page 145, the NFS Server data has to be
entered, including the IP address (or DNS name) of the server and the
directory (mount point) of the SuSE CD-ROM.
144 Linux for S/390

Figure 48. YaST: entering the data for the NFS server

In this case the mount point is /cdrom.

Choose the type of installation in the following screen:

Figure 49. YaST: selecting the installation menu

In our case, we chose Install Linux from scratch, since this was a new
installation.
Chapter 7. Installing SuSE Linux on S/390 145

Selecting the swap partition is the next task:

Figure 50. YaST: select swap partition menu

The screen reflects the specific situation for our setup; you will see different
sizes and device numbers. Note that using swap space, while recommended,
is not absolutely necessary.

Now that swap space has been set up, the file systems have to be created:

Figure 51. YaST: creating filesystems menu
146 Linux for S/390

You need to define a mount point for each partition that SuSE Linux will
access; the F4 key brings you to the corresponding menu (Note: you may
have to press Ctrl+F4):

Figure 52. YaST: the mount point menu

At least one partition must be mounted as the root file system (mountpoint
“/”). In this example, we install the entire file system over root. Next, you have
to determine the format method:

Figure 53. YaST: the format mode menu
Chapter 7. Installing SuSE Linux on S/390 147

You will be promted for the format method of each partition. Here, Normal
format is the usual choice. The Format and check option should not be
necessary on the hardware we use and would take long time. Choosing the
Do not format option only makes sense when a (Linux-) file system already
exists on the partition; the files from the previous installation will stay on the
disk in this case.

In Figure 53 on page 147, the DASD at address 235 was not attached to the
Linux installation; however, we still can format and mount (permanently or
temporarily) the partition later from the installed system.

A confirmation request follows:

Figure 54. YaST: confirmation before actually creating file systems

With the kernel versions we used at the time of writing, only the ext2 type of
file system is available. Later on, other file system types, notably the reiser
file system, will be available. The F3 key allows you to modify the type of file
system.

Having created the file systems, YaST then proceeds by reading the
description of the packages available on the installation medium:
148 Linux for S/390

Figure 55. YaST: reading the description data

Select the software packages you want to install:

Figure 56. YaST: The main installation menu

To use a preconfigured selection as the base for your installation, select Load
configuration.
Chapter 7. Installing SuSE Linux on S/390 149

A menu with several predefined configurations appears:

Figure 57. YaST: the load configuration menu

The asterisks indicate previous configurations (here, the default installation
configuration). Pressing the space bar on any configuration will mark it as
user-selected. When leaving the menu, you can decide to add your selections
to the previously chosen ones, or to replace the previous configuration with
the one you made.

You should ensure that the choice selected will fit on the available disk space.
If you don’t like one of the predefined sets of Linux configurations, you can
adapt the software selection by selecting individual packages. This possibility
is shown in Figure 58 and Figure 59 on page 151. Even after the installation
is complete, you can still use YaST to install or deinstall packages from the
CD-ROM.
150 Linux for S/390

Back in the main installation menu, choose the Change/create
configuration option to select or deselect individual software packages:

Figure 58. YaST: the various software packages

Select a series to browse the packages (here, we chose series n):

Figure 59. YaST: individual packages in series n

You can mark a package for installation (indicated by [i] or [X]), or for
replacement with the package on the installation medium (indicated by [R]),
or for deletion (indicated by [D]). A package not installed is tagged as [].
Chapter 7. Installing SuSE Linux on S/390 151

Note that some software packages have dependencies on other software
packages, and certain packages (those of the base system) are absolutely
necessary. YaST will warn you when you are likely to make a mistake and
give you a chance to correct it.

Pressing F5 will check the dependencies for the configuration selected so far:

Figure 60. YaST: automatically resolving dependencies

If YaST offers to automatically resolve the dependencies, allow it to do so by
choosing AUTO.
152 Linux for S/390

Figure 61. YaST: some dependencies cannot be resolved automatically

You needn’t be concerned about dependencies that YaST can’t resolve
because these are redundant packages, so you can select Continue if you
get the message that dependencies could not be resolved automatically.

In our case, after returning to the main installation menu, we chose what if ...
to check the size of the installation:

Figure 62. YaST: the consequences menu
Chapter 7. Installing SuSE Linux on S/390 153

Next, we started the installation as shown in Figure 63 (this step may take 20
minutes or more):

Figure 63. YaST: the installing package menu

After the installation completes, you are returned to the main installation
menu:

Figure 64. YaST: package installation finished
154 Linux for S/390

After choosing Main menu to proceed, you are asked which kernel to install.
Select the default kernel as shown in Figure 65:

Figure 65. YaST: selecting a kernel

You are presented with a list of time zones; choose the one you need:

Figure 66. YaST: list of time zones

You can choose to set your clock to local time, or to Greenwich Mean Time
(GMT):
Chapter 7. Installing SuSE Linux on S/390 155

Figure 67. YaST: local time or GMT

Ensure your choice corresponds to the actual setting of the hardware clock.

The hostname and DNS domain defaults to what you entered when the initial
netsetup script ran:

Figure 68. YaST: hostname and domain name

You should not need to make changes here.
156 Linux for S/390

The next menu relates to connectivity; choose Real network:

Figure 69. YaST: real network selection

Although you have the option to set up your system as a DHCP server, we did
not do so:

Figure 70. YaST: DHCP server choice

At the time of writing, the prerelease version did not present CTC/IUCV in the
network device section for the network setup; therefore, we chose eth0 which
Chapter 7. Installing SuSE Linux on S/390 157

will have to be fixed later as described in 7.7.1, “Finishing the install when
using a CTC network device” on page 162.

Figure 71. YaST: network devices

The address, netmask, and gateway (from the netsetup script) should be
correct:

Figure 72. YaST: network addresses
158 Linux for S/390

We needed to start inetd in order to open a telnet connection later, so we
chose Yes:

Figure 73. YaST: inetd

The portmapper is needed for NFS servers, but we decided not to set up the
system as an NFS server:

Figure 74. YaST: portmapper

The nameserver configuration has to be entered:
Chapter 7. Installing SuSE Linux on S/390 159

Figure 75. YaST: nameserver configuration

You can enter up to three nameserver IPs.

The following menu allows you to name a module for the networking device,
as some network devices are implemented as kernel modules:

Figure 76. YaST: network device and module

A sendmail configuration can be selected from the next menu:
160 Linux for S/390

Figure 77. YaST: sendmail configuration

We decided not to have sendmail running on the system.

When all necessary steps have been finished, SuSEconfig is launched as is
shown in Figure 78. This script automatically finishes the install by creating
and modifying the proper files in the Linux file system.

Figure 78. YaST: SuSEconfig is running

YaST will finish after this step.
Chapter 7. Installing SuSE Linux on S/390 161

7.7.1 Finishing the install when using a CTC network device
At the time of this writing, YaST cannot set up a Channel to Channel (CTC)
network device,so if you are using one you have to modify the rc.config file on
the newly created disk. This was the case in our example install.

We had to mount the newly created DASD device as YaST unmounts after
finishing:

mount /dev/dasdb1 /mnt

Remember to edit /mnt/etc/rc.config, because this file will become
/etc/rc.config after we re-IPL. We edited rc.config file on DASD:

vi /mnt/etc/rc.config

We changed the line beginning with IFCONFIG_0=... to the following:

IFCONFIG_0="9.12.9.182 pointopoint 9.12.9.176 netmask 255.255.255.0 up”

Note that the statement is: pointopoint not pointtopoint. The first IP is ours,
and the second is that of the peer.

After saving, you can leave the editor.

Note: We sometimes experienced broken network connections with Linux
(the terminal “froze” after a few minutes). In such cases, the Maximum
Transfer Unit (MTU) has to be decreased; see Appendix E.22, “MTU size
problems” on page 499.

You can decrease the MTU by adjusting the mtu parameter (ask your network
administrator for the correct setting) by changing the IFCONFIG_0 line to:

IFCONFIG_0="9.12.9.182 mtu 1492 up”

Unmount the DASD (note that the statement is umount, not unmount):

umount /mnt

If the umount fails, it is probably because you forgot to leave the mounted file
system before trying to unmount it (a directory cannot be unmounted if any
process has that directory as its current directory), so issue the following:

cd /

Then try the umount command again.
162 Linux for S/390

7.8 Booting the installed system

In the 3270 terminal, IPL the installed system:

#cp ipl 222 clear

After you receive the usual bootup messages, you’ll see the following lines at
the first bootup of a freshly installed system:

Started the SuSE-Configuration Tool.
Running in full featured mode.
Reading /etc/rc.config and updating the system...
Executing /sbin/conf.d/SuSEconfig.groff...
Executing /sbin/conf.d/SuSEconfig.perl...
Executing /sbin/conf.d/SuSEconfig.sendmail...
Executing /sbin/conf.d/SuSEconfig.susehilf...
Executing /sbin/conf.d/SuSEconfig.susehilf.add...
Executing /sbin/conf.d/SuSEconfig.ypclient...
Creating /usr/share/info/dir...
Processing index files of all manpages...
Finished.

--

 Now scripts have to be started. They will be started in one
 minute. You can find a log file under /var/log/Config.bootup.
 It will also be printed on console 9.
 You can now already use your system. If you shut down the system
 before the scripts are finished, they are executed again at the
 next system startup.

 Press <RETURN> to continue...

At this point, you should press RETURN.

Have a lot of fun!

 Your SuSE Team

INIT: Entering runlevel: 2
Master Resource Control: previous runlevel: N, switching to runlevel: 2
Setting up network device ctc0 done
Setting up routing (using /etc/route.conf) done
Re-Starting syslog services done
Initializing random number generator done
Starting service httpd done
Starting service at daemon: done
Starting INET services (inetd) done
Chapter 7. Installing SuSE Linux on S/390 163

Starting CRON daemon done
Starting Name Service Cache Daemon done
Master Resource Control: runlevel 2 has been reached
Give root password to login: XXXX

In our case, we entered XXX as our root password here.

bash-2.04#

At this point, you should be logged in to your new SuSE Linux for S/390
system.
164 Linux for S/390

Chapter 8. Linux for S/390 bootup and shutdown

At this point we assume you have a Linux for S/390 system up and running
and have seen many messages during the initial load of Linux for S/390, so
now let’s have a closer look at what happens at system startup and shutdown.

8.1 Linux run levels

After basic initialization, the system switches to a so-called run level, which
means that a certain set of processes are started. Run levels 0 and 6 are
reserved for system use. Run level 1 should be kept unchanged for
emergency assistance. Run levels 2 to 5 have a predefined behavior, but they
are open for modification by the system administrator. Table 16 lists the run
levels based on the Marist file system, which are identical to most
distributions.

Table 16. Run levels

You can find the scripts executed by the rc script in the directory
/etc/rc.d/init.d/ (/sbin/init.d/ for SuSE). One example is the netsetup
script started at the first Linux boot to create the network parameter files like
/etc/HOSTNAME, /sysconfig/network and
/sysconfig/network-scripts/ifcfg-<ip-dev>.

These scripts, which manage startup and stoppage of certain services
(typically daemons), have a common structure that defines a set of possible
actions like start, stop, status, restart, and reload. The syslog script that
starts the syslog daemon may serve as an example:

[root@linux6 init.d]# cat syslog
#!/bin/sh
#

Run level Description

0 Halt the system

1 Single user mode

2 Multiuser mode without NFS

3 Multiuser mode

4 Unused

5 Multiuser mode with graphical login (X11)

6 Reboot the system
© Copyright IBM Corp. 2000 165

syslog Starts syslogd/klogd.
#
#
chkconfig: 2345 30 99
description: Syslog is the facility by which many daemons use to log \
messages to various system log files. It is a good idea to always \
run syslog.

Source function library.
. /etc/rc.d/init.d/functions

[-f /sbin/syslogd] || exit 0
[-f /sbin/klogd] || exit 0

RETVAL=0

See how we were called.
case "$1" in
 start)
 echo -n "Starting system logger: "
 # we don't want the MARK ticks
 daemon syslogd -m 0
 RETVAL=$?
 echo
 echo -n "Starting kernel logger: "
 daemon klogd
 echo
 [$RETVAL -eq 0] && touch /var/lock/subsys/syslog
 ;;
 stop)
 echo -n "Shutting down kernel logger: "
 killproc klogd
 echo
 echo -n "Shutting down system logger: "
 killproc syslogd
 RETVAL=$?
 echo
 [$RETVAL -eq 0] && rm -f /var/lock/subsys/syslog
 ;;
 status)
 status syslogd
 status klogd
 RETVAL=$?
 ;;
 restart|reload)
 $0 stop
 $0 start
166 Linux for S/390

 RETVAL=$?
 ;;
 *)
 echo "Usage: syslog {start|stop|status|restart}"
 exit 1
esac

exit $RETVAL

To get the status of the syslog service call the script with entry point status:

/etc/rc.d/init.d/syslog status

The following messages indicate the status:

syslogd (pid 308) is running...
klogd (pid 319) is running...

The entry points start, stop, and restart can be used in a similar fashion.

Symbolic links to scripts like this determine which services are started (in
which order) for each run level. The separate run levels correspond to the
links in the directories /etc/rc.d/rc<runlevel>.d. The name Snn<script> refers
to the script called with the start (S = start) parameter, while Knn<script>
refers to the script called with the stop (K = kill) parameter. The sequence in
which to run the scripts is determined by the nn number in the name of the
link. On our system, the links for run level 3 were as follows:

[root@linux6 rc3.d]# ls -l /etc/rc.d/rc3.d
total 0
lrwxrwxrwx 1 root root 16 May 2 10:57 K55routed -> ../init.d/routed
lrwxrwxrwx 1 root root 14 May 2 10:57 K80nscd -> ../init.d/nscd
lrwxrwxrwx 1 root root 17 May 2 10:57 S00netsetup ->../init.d/netsetup
lrwxrwxrwx 1 root root 17 May 2 10:57 S10network -> ../init.d/network
lrwxrwxrwx 1 root root 17 May 2 10:57 S11portmap -> ../init.d/portmap
lrwxrwxrwx 1 root root 16 May 2 10:57 S20random -> ../init.d/random
lrwxrwxrwx 1 root root 15 May 2 10:57 S25netfs -> ../init.d/netfs
lrwxrwxrwx 1 root root 16 May 2 10:57 S30syslog -> ../init.d/syslog
lrwxrwxrwx 1 root root 14 May 2 10:57 S50inet -> ../init.d/inet
lrwxrwxrwx 1 root root 15 May 2 10:57 S85httpd -> ../init.d/httpd
lrwxrwxrwx 1 root root 13 May 2 10:57 S90xfs -> ../init.d/xfs
lrwxrwxrwx 1 root root 11 May 2 10:57 S99local -> ../rc.local

The script netsetup is called first (S00*), followed by network (S10*), and the
last script to be executed is rc.local (S99*).

One can add script calls by adding a symbolic link; for example to add a
service (started by myscript) that should be started as the last one in this run
level, run the following:

ln -s /etc/rc.d/init.d/myscript /etc/rc.d/rc3.d/S95myscript
Chapter 8. Linux for S/390 bootup and shutdown 167

S99local points to a special script where the system administrator can specify
all actions that do not belong elsewhere. (Not all distributions use S99local.
SuSE, for example, uses script boot.local, which is called before the first run
level is entered.)

8.2 Kernel initialization

To boot the system, the Linux for S/390 kernel is loaded into memory from
either intrd-Image (ramdisk) or from the hard disk (dasd) you created with the
silo command.

At initialization time, the kernel prints messages to the system console
documenting the process. Most of the messages are saved in the system log
files.

Linux version 2.2.15 (root@linux6)(gcc version 2.95.2 19991024
(release)) #4 SMP Tue May 17 19:45:19 EDT 2000
Command line is: mdisk=400 dasd=190,19e,19f,19d,191,200,300,400,192
root=/dev/dasdf1 ro noinitrd �
We are running under VM �
This machine has no IEEE fpu
Initial ramdisk at: 0x00800000 (8388608 bytes)
Detected device 0009 on subchannel 0000 - PIM = 80, PAM = 80, POM = FF�
......
Detected device 080A on subchannel 000E - PIM = 80, PAM = 80, POM = FF
Detected device 080B on subchannel 000F - PIM = 80, PAM = 80, POM = FF
Highest subchannel number detected: 16
SenseID :Device 0009 reports: Dev Type/Mod = 3215/00
SenseID :Device 000C reports: Dev Type/Mod = 3505/00
SenseID :Device 0190 reports: CU Type/Mod = 3990/E9, Dev Type/Mod = 3390/0A
.......
SenseID :Device 0191 reports: CU Type/Mod = 3990/E9, Dev Type/Mod = 3390/0A
SenseID :Device 0200 reports: CU Type/Mod = 3990/E9, Dev Type/Mod = 3390/0A
SenseID :Device 0300 reports: CU Type/Mod = 3990/E9, Dev Type/Mod = 3390/0A
SenseID :Device 0400 reports: CU Type/Mod = 3990/E9, Dev Type/Mod = 3390/0A
SenseID :Device 0192 reports: CU Type/Mod = 3990/E9, Dev Type/Mod = 3390/0A
SenseID :Device 080A reports: Dev Type/Mod = 3088/08
SenseID :Device 080B reports: Dev Type/Mod = 3088/08

dasd: added dasd range from�
Calibrating delay loop... 147.05 BogoMIPS �
Memory: 119424k/131072k available (1052k kernel code, 4k reserved, 2400k
data, 0k init)
Dentry hash table entries: 16384 (order 5, 128k)
Buffer cache hash table entries: 131072 (order 7, 512k)
Page cache hash table entries: 32768 (order 5, 128k)
POSIX conformance testing by UNIFIX
Detected 1 CPU's
Boot cpu address 0
cpu 0 phys_idx=0 vers=FF ident=0D0822 machine=9672 unused=0000
168 Linux for S/390

Linux NET4.0 for Linux 2.2
Based upon Swansea University Computer Society NET3.039
NET4: Unix domain sockets 1.0 for Linux NET4.0.
NET4: Linux TCP/IP 1.0 for NET4.0
IP Protocols: ICMP, UDP, TCP
TCP: Hash tables configured (ehash 131072 bhash 65536)
Starting kswapd v 1.5
RAM disk driver initialized: 16 RAM disks of 8192K size
mnda: register device at major 5F with 179803 blocks 4096 blksize �
mndb: register device at major 5F with 179803 blocks 4096 blksize
loop: registered device at major 7
dasd:initializing...
dasd(eckd):3390/a (3990/1) Cyl: 107 Head: 15 Sec: 224
dasd(eckd):Estimate: 58786 Byte/trk 2074 byte/kByte 33 kByte/trk
dasd(eckd):Verified: 58786 B/trk 5202 B/Blk(4096 B) 12 Blks/trk 48
kB/trk
dasd:77040 kB <- 'soft'-block: 4096, hardsect 4096 Bytes
dasd:devno 190 added as minor 0 (ECKD)
..........
Partition check: �
dasda:(nonl)/ : dasda1
dasdb:(nonl)/ : dasdb1
dasdc:(CMS1)/Z-DISK: dasdc1(CMS)
dasdd:(CMS1)/HELP! : dasdd1(CMS)
dasde:(CMS1)/LIN191: dasde1(CMS)
dasdf:(nonl)/ : dasdf1
xpraminfo:initializing:
xpraminfo: number of devices (partitions): 1
xpraminfo: size of partition 0 to be set automatically
xpraminfo: hardsector size: 4096B
xpraminfo: 20480 kB expanded memory found.
xpraminfo: automatically determined partition size: 20480 kB
channel: 2 Parallel channel found - 0 ESCON channel found
ctc0: read dev: 080a irq: 000e - write dev: 080b irq: 000f �
VFS: Mounted root (ext2 filesystem) readonly.

Freeing unused kernel memory: 0k freed
INIT: version 2.74 booting �

��Display of the current active kernel parameters from the parameter file.
These parameters are:

root= Device corresponding to the root file system. The parameter ro
(read-only) tells that the root file system should be mounted
read-only for file system check.
Chapter 8. Linux for S/390 bootup and shutdown 169

Later, during system startup, it is remounted read-write. Noinitrd
has to be specified when the kernel is compiled with ramdisk
support, but there is no ramdisk. Here are two examples:

/dev/ram0 ro points to the ramdisk.

/dev/dasda ro noinitrd points to a disk.

mdisk= minidisks that are associated to the system in the order of
device node assignment. For more information on minidisk, see
9.1.2, “VM minidisk” on page 180.

dasd= DASD devices that are associated to the system in order of
device node assignment

A complete list of parameter options and restrictions is documented in
Appendix D, “The parameter file” on page 481.

��Detection of the environment Linux for S/390 is running in, which can be
VM, native, or LPAR.

��Detection of devices and device characteristics by subchannel.

��Honoring the dasd= specifications from the kernel parameter.

��Measurement of processor speed which is used to calculate delay loops
for several device drivers; in a shared environment like S/390, you may
see different BogoMIPS, depending on the workload within the S/390
complex.

��Associate Linux device node, major number and minor number to the
block devices, mnd = minidisk, dasd = DASD devices.

��Display of all devices specified by the dasd= kernel parameter. If these
devices are formatted and reserved by VM/CMS, the type and volume
information is displayed. Devices formatted and reserved by CMS will be
displayed as:

dasd<letter>:(CMS1)/<volid> : dasd<letter>1 (MDSK)

Devices formatted by CMS but not reserved will be displayed as:

dasd<letter>:(CMS1)/<volid> : dasd<letter>1 (CMS)

xpram* messages show information about expanded storage used with
the xpram device driver. For more information, see 9.1.3, “XPRAM” on
page 181 in this chapter.

��Initialization of the network devices like ctc, tr, or eth.
170 Linux for S/390

�Mount the root file system as specified in the kernel parameter root=
statement and free up some of the memory used by the memory-loaded
kernel.

��Enter the init process basic startup; also refer to 8.3 on page 171.

The kernel initialization ends here and should not be modified. The next step
in bringing up the system is the init process.

8.3 The init process and run level

The init process is always the first process started by the kernel. The
following messages appear after entering the init process at boot time:

INIT: version 2.74 booting �
Starting lcs module �
No lcs capible cards found
/lib/modules/2.2.14/net/lcs.o: init_module: Device or resource busy
Mounting proc filesystem [OK] �
/etc/rc.d/rc.sysinit: /proc/sys/kernel/sysrq: No such file or directory
unrecognized option ̀ -S'
Setting clock (srm): Thu May 12 18:42:04 EDT 2000 [OK]
Activating swap partitions swapon: warning: /dev/dasdi1 has insecure
permissions 0644, 0600 suggested
swapon: cannot stat /mnt/swap/swapfs1: No such file or directory �
swapon: cannot stat /mnt/swap/swapfs2: No such file or directory
[FAILED]
Setting hostname linux6 [OK]
Checking root filesystem
/dev/dasdf1: clean, 31367/225344 files, 163545/449997 blocks
[OK]
Remounting root filesystem in read-write mode [OK]
Finding module dependencies [OK]
Checking filesystems
/dev/dasdg1: clean, 13/27008 files, 23918/26997 blocks
[OK]
Mounting local filesystems [OK]
Enabling swap space [OK]
 INIT: Entering runlevel: 3 �
Entering non-interactive startup
Bringing up interface lo [OK]
Bringing up interface ctc0 [OK]
Starting portmapper: [OK]
Initializing random number generator [OK]
Mounting other filesystems [OK]
Starting system logger: [OK]
Chapter 8. Linux for S/390 bootup and shutdown 171

Starting kernel logger: [OK]
Starting INET services: [OK]
Starting httpd: [OK]
Starting X Font Server: [OK]
Give root password for maintenance
(or type Control-D for normal startup):

��Start the init process which runs rc.sysinit; at this point the boot

process switches to a point where it can be customized.

��Load the lan channel station (Ics) driver module for OSA-card
enablement; this is done with the insmod or modprobe command.

��More basic settings are made as defined in the shell script rc.sysinit,
which executes tasks like clock setting and file system checking and
mounting. See 8.3.2, “Basic system initialization” on page 174 for more
information.

��Startup swap devices (swap files and swap devices as listed in
/etc/fstab). See 9.3, “Linux swap space” on page 188 for more
information.

��Enter run level 3, described in more detail in 8.1, “Linux run levels” on
page 165.

8.3.1 System init and inittab
The kernel starts the init process (which always has process ID 1), which
first reads /etc/inittab. This file describes which processes are started at
bootup and which processes should be started and or restarted after
termination of a running Linux environment. The syntax for each line is
specified in the fixed format code:runlevel:action:command.

code A 2 to 4 character identifier (usually only 2).

run level Specifies by run level number where this command is
executed.

action Determines what to do. Possible actions are:

initdefault Sets default run level
sysinit Basic system init that runs only once at boot time
respawn Restart the command if terminated
wait Wait for completion before doing anything else

command The command to execute.
172 Linux for S/390

Lines that begin with a # (pound sign or hash) are comments and are not
processed. Following is an example of the inittab:

inittab This file describes how the INIT process should set up
the system in a certain run-level.
#
Author: Miquel van Smoorenburg, <miquels@drinkel.nl.mugnet.org>
Modified for RHS Linux by Marc Ewing and Donnie Barnes

id:3:initdefault:�

System initialization.
si::sysinit:/etc/rc.d/rc.sysinit �

l0:0:wait:/etc/rc.d/rc 0�
l1:1:wait:/etc/rc.d/rc 1
l2:2:wait:/etc/rc.d/rc 2
l3:3:wait:/etc/rc.d/rc 3
l4:4:wait:/etc/rc.d/rc 4
l5:5:wait:/etc/rc.d/rc 5
l6:6:wait:/etc/rc.d/rc 6

Things to run in every runlevel.
ud::once:/sbin/update

Run gettys in standard runlevels �
1:2345:respawn:/sbin/sulogin /dev/console
#1:2345:respawn:/sbin/mingetty tty1
#2:2345:respawn:/sbin/mingetty tty2
#3:2345:respawn:/sbin/mingetty tty3
#4:2345:respawn:/sbin/mingetty tty4
#5:2345:respawn:/sbin/mingetty tty5
#6:2345:respawn:/sbin/mingetty tty6

Run xdm in runlevel 5
xdm is now a separate service
#x:5:respawn:/etc/X11/prefdm -nodaemon

��Default run level line

You can switch a running system to another run level by issuing the init
command as follows:

init 1

This would bring the system to run level 1. The command runlevel
shows the current and previous run level:

[root@linux6 /root]# runlevel
N 3

The current run level is 3, and N indicates that no run level was active
before.

��System initialization line

rc.sysinit is a shell script (in Linux for S/390) to handle basic system
initialization such as activating modules for the lcs device driver,
Chapter 8. Linux for S/390 bootup and shutdown 173

synchronizing the system clock and mounting file systems. See 8.3.2,
“Basic system initialization” on page 174 for a more detailed description.

��Set run levels

The script /etc/rc.d/rc executes other scripts as appropriate for the
specified run level. The run level scripts are found in the directory
/etc/rc.d/rc<runlevel>.d/. This may be different for other distributions (e.g.
/sbin/init.d/ for SuSE).

��Provide a virtual console

Normally on Linux, six or more virtual consoles are started. This enables
the system administrator to hop between sessions by pressing Alt-Fn
(where n is the console number). However, due to the limited capability
of the 3215 data stream, there is only one virtual console on Linux for
S/390. The respawn action makes sure that this virtual console is
restarted if the sulogin process has died for some reason.

8.3.2 Basic system initialization
For basic system initialization init calls rc.sysinit (/sbin/init.d/boot for
SuSE) as specified in the sysinit row of /etc/inittab. This shell script activates
the necessary modules like the lcs device driver, synchronizes the system
clock with the underlying layer (TOD or simulated by VM), and checks and
mounts the file systems. Our rc.sysinit looked like this:

[root@linux6 init.d]# cat rc.sysinit
. /etc/sysconfig/network
Source functions. /etc/rc.d/init.d/functions
insmod /lib/modules/2.2.14/net/lcs.o
Print a banner. ;)
action "Mounting proc filesystem" mount -n -t proc /proc /proc
. /etc/sysconfig/clock
action "Activating swap partitions" swapon -a
action "Setting hostname ${HOSTNAME}" hostname ${HOSTNAME}
Set the NIS domain nameif [-n "$NISDOMAIN"]; then action "Setting NIS domain name
$NISDOMAIN" domainname $NISDOMAIN

if [-f /fsckoptions]; then fsckoptions=`cat /fsckoptions`
STRING="Checking root filesystem" initlog -c "fsck -T -a $fsckoptions /"
Add /proc to /etc/mtab mount -f -t proc /proc /proc
Enter root and /proc into mtab., mount -f / , mount -f /proc
Mount all other filesystems (except for NFS and /proc, which is already# mounted).
action "Mounting local filesystems" mount -a -t nonfs,smbfs,ncpfs,proc
Configure machine if necessary.
if [-x /usr/bin/passwd]; then /usr/bin/passwd root
if [-x /usr/sbin/netconfig]; then /usr/sbin/netconfig
if [-x /usr/sbin/timeconfig]; then /usr/sbin/timeconfig
if [-x /usr/sbin/authconfig]; then /usr/sbin/authconfig --nostart
if [-x /usr/sbin/ntsysv]; then /usr/sbin/ntsysv --level 35
Reread in network configuration data. . /etc/sysconfig/network
Reset the hostname. action "Resetting hostname ${HOSTNAME}" hostname ${HOSTNAME}
Reset the NIS domain name. action "Resetting NIS domain name $NISDOMAIN" domainname
$NISDOMAIN

Delete X locks, rm -f /tmp/.X*-lock
174 Linux for S/390

Right, now turn on swap in case we swap to files. swapon -a >/dev/null 2>&1
cat > /boot/kernel.h << EOF make kernel headers
Now that we have all of our basic modules loaded and the kernel going,
let's dump the syslog ring somewhere so we can find it later
dmesg > /var/log/dmesg

8.4 Shutdown

To bring the system down properly, you issue the shutdown command. This
sets the run level to 0. During shutdown, the file system buffers are written to
the disk, the file systems are marked as clean and finally unmounted.
Improper shutdown (like simply deactivating via the HMC) would leave the file
systems marked as not clean and cause a file system check at the next
reboot. The commands shutdown -r <time> or reboot enter run level 6 to halt,
and then restart, the system.

With the shutdown command, one must always specify the time (now , +mm,
time of day) at which to halt the system. For example:

shutdown -h now Halt the system immediately

shutdown -h +10 Halt the system in 10 minutes

shutdown -h 13:00 Halt the system at 1:00 pm

If you want to cancel the shutdown before the process has started, you can
issue a shutdown -c command.

Following is an example of shutdown messages sent to the console:

[root@linux6 /root]# shutdown -h now
INIT: Switching to runlevel: 0 �
INIT: Sending processes the TERM signal
INIT: Sending processes the KILL signal �
Shutting down X Font Server: [OK]
Shutting down http: [OK]
Stopping INET services: [OK]
Saving random seed [OK]
Stopping portmap services: [OK]
Shutting down interface ctc0 [OK] �
Disabling IPv4 automatic defragmentation [OK]
Shutting down kernel logger: [OK]
Shutting down system logger: [OK]
Starting killall [OK]
Sending all processes the TERM signal...
Turning off swap �
Unmounting filesystems
Unmounting proc filesystem

��The init process switches to run level 0. The processes that are running
receive a TERM signal, which should bring them down gracefully.

��If there are processes still running, they are sent the KILL signal.
Chapter 8. Linux for S/390 bootup and shutdown 175

��The network devices and kernel modules are deactivated.

��The swap spaces are deactivated and the file systems are unmounted.
176 Linux for S/390

Chapter 9. Linux for S/390 administration

The first part of this chapter describes devices (including DASD, minidisk,
XPRAM and swap space) and the tasks you need to perform to make them
ready for use within a Linux for S/390 system. The second part lists tasks to
administer the usage of the system (like user administration, shells, and basic
security settings).

9.1 Devices

An important concept to remember is: to Linux, everything is a file.

The hardware (such as disks and printers) attached to the system and many
software mechanisms (e.g. the virtual garbage can, /dev/null) are
represented as devices within Linux. The devices correspond to special files
(device files or device nodes) usually found in the directory /dev/.

With this layer of abstraction, it is possible to operate on everything using file
operations. As an example, one does not need special commands to fill the
entire disk represented by /dev/dasdf with zeros; instead, the following simple
statement does it:

dd if=/dev/zero of=/dev/dasdf

The device /dev/zero is the Linux source of bytes with the value zero.

The preceding, rather destructive, command may seem somewhat useless,
as it does not leave anything useful on the whole disk. However, in situations
where data has to be physically erased (for security reasons), this is the way
to do it. Removing a file only unlinks it from its inode; the contents are still
somewhere on the disk surface.

There are two types of devices, block devices (block-oriented operation) and
character devices (character-oriented operation). With block devices (most
notably disks) the data transfer happens in multiples of their block size.
Character devices transfer data in units of bytes.

Devices have a major number and a minor number. The major number
identifies the device type and the minor number identifies the unit or instance
of that device.

The file /proc/devices can be used to get a list of device types supported by
the kernel; the output is a list of major numbers followed by the base name of
the appropriate device file:
© Copyright IBM Corp. 2000 177

[root@linux6 /proc]# cat /proc/devices
Character devices:
 1 mem
 2 pty
 3 ttyp
 4 ttyS
 5 ptmx
 10 misc
128 ptm
136 pts

Block devices:
 1 ramdisk
 7 loop
35 xpram
94 dasd
95 mnd

To work with anything via its device, the following three conditions must be
met:

1. If it is a piece of hardware, it must be attached.

2. The Linux kernel must support it. With Linux, the kernel device drivers can
be compiled either into the kernel binary itself or compiled as modules that
can be loaded after boot.

3. The appropriate device file must be present. The type of the device is
determined by its major number. The minor number typically selects one
particular device of several identical devices, or a certain part of one
device (like a partition on a disk).

The major and minor numbers are listed in the file
/usr/src/linux/Documentation/devices.txt.

The major and minor numbers of the device files are listed by simply using
the ls -l command in the /dev directory:

brw-r--r-- 1 root root 94, 0 Feb 20 09:14 dasda
brw-r--r-- 1 root root 94, 1 Feb 20 09:14 dasda1
brw-r--r-- 1 root root 94, 4 Feb 20 09:14 dasdb
brw-r--r-- 1 root root 94, 5 Feb 20 09:14 dasdb1
brw-r--r-- 1 root root 94, 8 Feb 20 09:14 dasdc
brw-r--r-- 1 root root 94, 9 Feb 20 09:15 dasdc1

Note the b in the first column of the permission bits; this indicates that the file
represents a block device.
178 Linux for S/390

Due to the great importance of the DASD, minidisk, and XPRAM devices, we
give an overview of these in Table 17 and dedicate the next few sections to
describing them.

Table 17. Characteristics of S/390 block devices

Note: Although not normally necessary, you can use the Linux dasdfmt
command on a minidisk, but it must be formatted by CMS first.

9.1.1 DASD (direct access storage device)
The Linux for S/390 DASD driver manages all S/390 disk devices as block
devices with a major number of 94. By default, Linux for S/390 probes all
available disk devices (auto-detects) at startup time. Additionally you can
select specific devices using the dasd= kernel parameter.

The device itself is separated into 4 addressable areas that are associated
with minor numbers. The first minor number represents the physical volume,
while the other 3 are reserved for the partitions, as shown in the following
example.

 • The first DASD gets a major number of 94 and starts with minor 0, so:

minor 0 = address physical device
minor 1 = first partition
minor 2 = second partition (future design)
minor 3 = third partition (future design)

 • The second DASD gets a major number of 94 and starts with the next free
minor number to get a unique major/minor number associated:

Device type Format method Device node
(x = a-z)

Partition
able

Boot record/special
considerations

Native DASD or
hardware
emulated DASD

Linux dasdfmt
command

/dev/dasd<n> yes Device must be partitioned to
contain book record,
kernel parameter dasd= or
autodetected.

VM minidisk
(DASD driver)

CMS FORMAT and
RESERVE or Linux
dasdfmt

/dev/dasd<n> yes Kernel must be recompiled to
enable dasd_force_diag
support.

VM minidisk
(minidisk driver)

CMS FORMAT and
RESERVE

/dev/mnd<n> no Default for the Marist
distribution 2.2.15.

XPRAM No format needed /dev/xpram<n> no File system must have a block
size of 4K (or multiple) on this
device.
Chapter 9. Linux for S/390 administration 179

minor 4 = address physical device
minor 5 = first partition
minor 6 = second partition (future design)
minor 7 = third partition (future design)

As you only have one major number for DASD devices, theoretically a
maximum of 64 DASDs can be associated to the system.

At the moment a device can only contain one partition per volume, but this
may be enhanced in the future. The location of the first partition is behind a
reserved area for the boot record. This record is needed for the initial load of
the Linux kernel.

Linux accesses the devices through the /dev/dasd<n> device node, the
partition on the device through /dev/dasd<n>1. We discuss device nodes in
more detail later in this chapter.

9.1.2 VM minidisk
Under VM you can partition a real disk volume into minidisks. This gives great
flexibility to the size of devices. As you can see from Table 17 on page 179,
minidisks can be low level-formatted in two different ways for use by Linux for
S/390:

1. By using the Linux dasdfmt command (not accessible as a CMS file).

 - This is not recommended for minidisks.

 - dasdfmt will destroy any CMS label/volid information.

2. By using CMS format and the reserve command (accessible as a CMS
file).

 - This is recommended for minidisks.

 - CMS label/volid information is preserved, provided the file system is
created on a Linux device partition.

To format and reserve a minidisk, use the CMS commands:

format <device number> <filemode> (blksize <blksize>
reserve linux mdisk <filemode>

When enabled in the kernel, as a general rule you should specify the
dasd_force_diag= kernel parameter in combination with the dasd= parameter
for minidisks.
180 Linux for S/390

The old minidisk driver (before 2.2.15)
To specify that you want a minidisk managed by the old Linux for S/390 VM
minidisk device driver, use the kernel parameter mdisk=.

Linux associates device nodes (names) /dev/mnd<letter> with the devices
and assigns a major number of 95. If you have the 2.2.15 level of the kernel
and have been using the mdisk= kernel parameter, you might consider using
dasd= and dasd_force_diag= for minidisk devices. This necessitates
recompiling the kernel.

The DASD driver
This is the same driver as for the type 2 minidisks. Use the dasd_force_diag=
kernel parameter in combination with the dasd= parameter. Linux associates
device node /dev/dasd<letter> with the devices and the major number 94.

The file /proc/dasd/devices lists both CMS-formatted and Linux-formatted
devices. However, apart from referring to the boot messages, there is no way
to detect if the device was formatted by CMS! Remember, if you use the Linux
dasdfmt command, it will destroy any VM/CMS information.

Refer to Appendix E.20, “minidisk.sh” on page 494 for the minidisk.sh script
that creates a file like /proc/dasd/devices but includes the original CMS label
information.

9.1.3 XPRAM
S/390 hardware usually has expanded storage. This is not as fast as central
storage, but is much faster than accessing DASD; therefore, it is great for
swap space. Expanded storage has no analogy on the PC.

Although Linux addresses only about 2 GB of memory, you can access
expanded storage as file system or swap space under Linux. The xpram
driver will map a file system or a swap space into the expanded storage.

A xpram device has major number 35 and can be partitioned, starting with
minor number 0 for the first partition. You can have up to 32 partitions. The
associated device node is /dev/xpram<letter>. Xpram devices can be
assigned by kernel or module parameters for use by the insmod or modprobe
commands (specified in /etc/modules.conf or in rc.sysinit).

Following is a explanation of the xpram parameter:

 • The xpram kernel parameter is as follows:

xpram_parts=<number_of_partitions>[,size[,....]]*
Chapter 9. Linux for S/390 administration 181

Number_of_partitions can contain a number from 1 to 32, and the default
is 1.

The size specification of the kernel parameter is divided in three parts:
<hex/decimal><number><unit>. For the first part, the value 0x means the
second part will be a hexadecimal value.

For the third part, the unit can be k or K for kilobyte, m or M for megabyte,
and g or G for gigabyte. A size of 0 requests the driver to allocate the rest
of expanded storage that is available. See the following examples:

xpram_parts=1,0x200m Refers to one partition (/dev/xpram0) with a size of
(hex) 200 megabytes. In decimal, that is 512 MB

xpram_parts=2,200m,1g Refers to two partitions, one with a size of 200 MB
(/dev/xpram0) and a second with a size of 1 GB
(/dev/xpram1)

 • The xpram module parameter is as follows:

devs=<number_of_partitions>,sizes=<size>[,size....]

Number_of_partitions can contain a number from 1 to 32, and the default
is 1.

The size for the module parameter can only contain decimal numbers. The
specification of a unit is not allowed. The size is interpreted as kilobyte
specification.

At boot time, the xpram driver auto-detects the expanded storage and
associates it with the /dev/xpram0 node (up to 2 GB) if there is no kernel
parameter active. Following is an example of some xpram driver output:

xpraminfo:initializing:
xpramdebug: major 35
xpraminfo: number of devices (partitions): 1
xpraminfo: size of partition 0 to be set automatically
xpramdebug: memory needed (for sized partitions): 0 kB
xpramdebug: partitions to be sized automaticallys: 1
xpraminfo: hardsector size: 4096B
xpraminfo: 20480 kB expanded memory found.
xpraminfo: automatically determined partition size: 20480 kB

9.1.4 Creating a device node with mknod
Device nodes are associated with a major number which identifies the device
type and a minor number which identifies the unit of a device. They allow
programs to access hardware devices through the kernel device drivers. All
182 Linux for S/390

device nodes are located in the directory /dev. Table 18 gives an overview of
the block devices with their numbers in Linux for S/390.

Table 18. Device node characteristics for S/390 devices

Use the mknod command (as superuser) to create a new device node.
Following is the syntax of the command

mknod [-m permissions] name type(c=char,b=block) major minor

The permission option -m is optional, but consider what permissions are really
needed on the device. Incorrectly set permissions may give unwanted access
to a device (through raw reads on the device node), bypassing file security. A
recommended value is 600.

For example, to create a device node for the ninth DASD device, issue the
command:

mknod /dev/dasdi b 94 32

For an explanation on the association of minor numbers, see 9.1.1 on page
179.

9.1.5 Linux for S/390 device node assignment
For all examples in this chapter we use the device node-dependent messages
from Chapter 8, “Linux for S/390 bootup and shutdown” on page 165.

The kernel parameters influence the association of device nodes. This could
be important, as your file systems (including the root file system) are
accessed through a device node mapping (e.g. root=/dev/dasda1).

When no DASD kernel parameters are specified, the system will auto-detect
the DASD devices. The order is determined by subchannel; see the extract of
the boot messages:

Detected device 0190 on subchannel 0004 - PIM = F0, PAM = F0, POM = FF
Detected device 0191 on subchannel 0008 - PIM = F0, PAM = F0, POM = FF
Detected device 0200 on subchannel 0009 - PIM = F0, PAM = F0, POM = FF
Detected device 0300 on subchannel 0009 - PIM = F0, PAM = F0, POM = FF

Device node
(n = 1 letter)

Major
number

Minor number Maintained in directory

/dev/dasd<n> 94 4 numbers for
each disk

/proc/dasd/devices

/dev/xpram<n> 35 0-31 nowhere; look in startup
messages with command dmesg
Chapter 9. Linux for S/390 administration 183

Detected device 0400 on subchannel 0009 - PIM = F0, PAM = F0, POM = FF
Detected device 0192 on subchannel 000C - PIM = F0, PAM = F0, POM = FF

Table 19. device node association with auto detect

In this example, based on the unit addresses, the conclusion can be drawn
that a device node association will be as shown in the “Expected device
node...” column of Table 19. As you can see from the boot messages above,
the system uses a different method for assigning device nodes based on the
subchannel number when auto detecting the devices. See the Table 19
column entitled “Device node assignment through auto detect” for the result.

The file /proc/dasd/devices reports the DASD device numbers with their
associated major and minor numbers:

cat /proc/dasd/devices
dev# MAJ minor node Format
0190 94 0 /dev/dasda n/a
0191 94 4 /dev/dasdb n/a
0200 94 8 /dev/dasdc 4096
0300 94 12 /dev/dasdd 4096
0400 94 16 /dev/dasde 4096
0192 94 20 /dev/dasdf 4096

Imagine you want to format the device with unit address 192 without first
looking in the /proc/dasd/devices file. You would specify the device node
/dev/dasdc since the device is the third DASD in the device number
sequence, but this will format the device 200 instead!

To avoid this and have the DASD ordered correctly, you can specify the kernel
parameter dasd=. The order of appearance in the dasd= parameter line(s)
determines the assignment of the device nodes.

dasd=190-192,200,300,400

Unit address Expected device node
depending on device
number sequence

Device node assignment
through auto detect

190 /dev/dasda (minor 0) /dev/dasda (minor 0)

191 /dev/dasdb (minor 4) /dev/dasdb (minor 4)

192 /dev/dasdc (minor 8) /dev/dasdf (minor 20)

200 /dev/dasdd (minor 12) /dev/dasdc (minor 8)

300 /dev/dasde (minor 16) /dev/dasdd (minor 12)

400 /dev/dasdf (minor 20) /dev/dasde (minor 16)
184 Linux for S/390

The previous parameter line example will result in a device node assignment
as shown in the column entitled “Expected device node...” in Table 19 on
page 184.

From our experience with the above scenarios, we recommend that you
specify the device containing the root file system first in the dasd= kernel
parameter, to avoid having an invalid root file system when adding additional
DASDs.

9.2 File system types

Linux supports various kinds of file systems, among them:

ext2 A second extended file system, mainly developed for Linux,
the de facto standard Linux file system.

reiserfs A journalled file system (all changes to the file system are
logged). Though considered superior to a conventional file
system, this file system is not commonly used.

JFS Journaled File System (JFS) provides fast file system restart
in the event of a system crash. Using database journaling
techniques, JFS can restore a file system to a consistent state
in a matter of seconds or minutes, versus hours or days with
non-journaled file systems

nfs The network file system, the de facto standard for accessing
remote file systems over the network (see Chapter 19,
“Network File System (NFS)” on page 367).

swap The swap “file system”, used to page out currently unused
memory pages. This file system is not mounted.

When you specify a DASD range like dasd=190-400 in the parameter line, a
set of minor numbers is reserved for each device (up to the maximum
minor numbers of 64) regardless of whether the device exists.

Therefore, the system will reserve minor numbers for devices 190 - 22F
and then print a message saying that the specified range is too large, and
ignore devices 230-400 for minor number assignment.

Note
Chapter 9. Linux for S/390 administration 185

procfs A virtual file system (it actually exists in memory) where the
kernel provides system information accessible with file
operations.

smbfs The Samba file system, allows file sharing with windows
clients.

With Linux for S/390 you will most likely use the ext2 or the reiser file system.
The limitations of the ext2 file system are listed in Table 20.

Table 20. Basic characteristics of the ext2 file system

More detailed information on the ext2 file system can be found on the Web at:

http://web.mit.edu/tytso/www/linux/ext2intro.htm

File systems read and write operations are buffered in storage. Invoking the
sync command forces the system to physically write all file data to the device.
Normally this automatically happens periodically, and also during unmount of
a file system.

9.2.1 Block size relation between device and file system
During formatting of the device, a block size is specified. For example, the
following command specifies a block size of 4098 bytes:

dasdfmt -b 4096 -f /dev/dasd<n>

The block size of the file system specified during mke2fs should be larger than
or equal to the block size given to the dasdfmt command. If you format with
block size 4 k and create an ext2 file system with block size 1 k, you can
address (from a file system point of view) 1 k, but this 1 k will be stored on the
device in a 4 k block, leaving 3 k unaddressable.

Maximum file system size 4 terabytes

Maximum file size 2 gigabytes

Maximum file name length 255 characters

Default inode allocation 1 inode per 4096 bytes
186 Linux for S/390

Figure 79 illustrates this scenario.

Figure 79. Block usage w/ different block sizes, DASD format & file system make

According to our experience we recommend that you specify 4 k as the block
size when formatting devices.

9.2.2 The file system table /etc/fstab
The file /etc/fstab contains information about the file system type that some
devices contain and where they should be mounted. All entries that do not
contain the noauto option are mounted during boot.

#<device> <mountpoint><fs type><mount opts><to-be-dumped><fsck order>
/dev/dasdf1 / ext2 defaults,errors=remount-ro 0 1
none /proc proc defaults 0 0
/dev/dasdg1 /mnt ext2 defaults 0 2
/dev/dasdi1 swap swap defaults 0 0

The <device> specifies the partition on the block device (/dev/dasd<n>1) or a
file containing a file system. The <mountpoint> represents the directory on
which the file system is to be mounted over. Typically the mount point is an
empty directory. Swap spaces have the entry swap. The field <fs type>
determines the file system type. The field <mount opts> (mount options) is a
comma-separated list of options specific for the file system type. The number
<to-be-dumped> is used for dump processing. It tells the kernel whether to
dump (1) or not to dump (0) the file system. The second number <fsck order>
specifies the order in which the file systems are checked at boot time. The
root file system should have a 1 in that field, all others a 2. file systems such
as swap space and /proc that do not need checking have a value of 0.

The kernel mounts file systems at boot time listed in /etc/fstab in order of
appearance, therefore the root file system must be listed first.

After booting you can use mount -a command to mount all listed file systems
that do not have the option noauto. This could be used to activate the
changes made in the /etc/fstab file.
Chapter 9. Linux for S/390 administration 187

9.2.3 Checking and repairing an ext2 file system: e2fsck
An ext2 file system can be in an inconsistent state after an unclean shutdown
or after being mounted (read-write) from two different Linux partitions at the
same time. During boot up, the system does a file system check on file
systems that are marked unclean and have an entry in /etc/fstab. However,
you can manually initiate a file system check with the e2fsck command:

e2fsck /dev/dasdh1

For file systems that are marked clean, you have to issue the e2fsck
command with the force option:

e2fsck -f /dev/dasdh1

e2fsck checks and repairs file system inconsistencies. It performs a check
over all inodes and checks the directories and their connectivity. Directories
that have lost their association will be connected to the /lost+found directory.
Next e2fsck checks the reference count for all inodes, verifying the links and
validating the file system summary information.

Note: A file system must be unmounted or mounted read-only for this task in
order to prevent any other process from changing the contents of the file
system.

9.3 Linux swap space

When more memory is required than physically exists on the system, swap
spaces are used. This is the difference between real memory (physical) and
virtual memory (physical memory plus swap space).

The total size of the virtual memory that can be accessed by Linux for S/390
is slightly less than 2 GB (1919 MB). With less than 2 GB of physical RAM,
swap areas can be used to expand the available memory.

Linux uses the technique of paging, which means that blocks of memory
(memory pages, whose size is 4 kilobytes) that are not currently in use are
temporarily moved to the swap device. In contrast to paging, swapping is the
process of exporting all pages of a process at once. Even though the device
is called swap space, Linux does not really swap out a process.

A swap space can be a block device (disk or partition on disk) or a regular file.
For Linux for S/390, expanded storage can be used as a block device through
the XPRAM driver. If you have expanded storage available, this might be the
preferred solution (see 9.3.4.1, “Swap space on a ramdisk” on page 190).
188 Linux for S/390

If the system already has swap space assigned, the free command will
display this information in a separate row:

total used free shared buffers cached
Mem: 127616 22808 104808 22488 868 6832
-/+ buffers/cache: 15108 112508
Swap: 236132 0 236132

The decision whether to use disk partitions or swap files is highly dependent
on your environment. See 6.9.1, “Reducing Linux for S/390 swapping” on
page 129 and the discussion in each swap space description for more
information.

9.3.1 Creating swap spaces
The mkswap [-c] device command is used set up a swap area. The device can
be a device like /dev/xpram<n>, /dev/dasd<n>1, or a file.

The option -c requests a check for bad blocks on a block device before
creating a swap area. If any are found, the count is printed. The following
example creates a swap file on the first partition on the device dasdf:

mkswap /dev/dasdf1

9.3.2 Activating and deactivating swap spaces
To activate a swap area use the swapon command. The swapon -a command
activates all swap areas listed in /etc/fstab.

Active swap spaces can be deactivated with the swapoff command.

9.3.3 Displaying information on swap spaces
There are two possibilities to verify that a swap space is active: using the
swapoff command together with the option -s, or using the information stored
in the /proc file system.

$ cat /proc/swaps

Both produce the following identical output:

Filename Type Size Used Priority
/dev/dasdf1 partition 143980 0 -1
/dev/xpram0 partition 0 4 -2
/mnt/swap/swap001 file 51196 0 -3
/mnt/swap/swap002 file 40956 0 -4

The listed swap spaces are a partition on a DASD drive, a partition in
expanded storage, and two swap files in the directory /mnt/swap.
Chapter 9. Linux for S/390 administration 189

9.3.4 Preparing swap space
The commands to create a swap space are nearly the same for all
implementations. See Table 21 for an overview.

You can have up to 8 swap areas comprising the swap space. You can
concatenate different styles (swap files with different block size and swap
partitions).

Table 21. Commands to create different types of swap spaces

We recommend adjusting the file permission bits of the device node or file to
600 using the chmod command (explained in 9.6, “File ownership and access
permissions” on page 202).

To reserve space for a swap file, use the dd command. For example:

$ dd if=/dev/zero of=/dev/swap1 bs=1M count=128

Option bs of the dd command specifies the block size and count specifies the
number of blocks to copy. So in this example we copy 128 blocks of 1
megabyte from the input file (if) to the output file (of). Always double-check
the dd command before you actually enter it; a wrong device given as of=
argument will be overwritten with zeroes!

9.3.4.1 Swap space on a ramdisk
To create a swap device on a ramdisk, you need to have access to expanded
storage through the xpram driver.

1. Set up as swap area. For example:

xpram swap partition swap file

Device /dev/xpramn /dev/dasdn1 /dev/dasdn1
(minidisk)

/dev/dasdn1 /dev/dasdn1
(minidisk)

Command
to prepare

Check
availability of
expanded
storage

dasdfmt none
needed

dasdfmt
mke2fs
mkdir /swap
chmod 700 <dir>
mount /swap
dd

mke2fs
mkdir /swap
chmod 700 <dir>
mount /swap
dd

Command
to activate

mkswap <partition>
chmod 600 <partition>
swapon <partition>
add entry in /etc/fstab
check with swapoff -s

mkswap <swap>
chmod 600 <swap>
swapon <swap>
add entry in /etc/fstab
check with swapoff -s
190 Linux for S/390

$ mkswap /dev/xpram0

2. Adjust the access permissions for the device:

$ chmod 600 /dev/xpram0

3. Activate the swap space:

$ swapon /dev/xpram0

4. Optionally, add the entry to the file /etc/fstab.

5. Verify that the swap space is active:

$ swapoff -s

9.3.4.2 Swap space on a partition
For a swap space on a partition you need a formatted device with a block size
of 4 k, the size of Linux’s memory pages.

1. Prepare to create the swap space:

$ dasdfmt -b 4096 -f /dev/dasda1
$ mke2fs -b 4096 /dev/dasda1

2. Create a swap file system:

$ mkswap /dev/dasda1

3. Adjust the access permissions:

$ chmod 600 /dev/dasda1

4. Activate the swap space:

$ swapon /dev/dasd<n>1

5. Optionally, add the entry to the file /etc/fstab.

6. Verify that the swap space is active:

$ swapoff -s

9.3.4.3 Swap file
In order to use a swap file you need a mounted file system with a block size of
4 k, the size of Linux’s memory pages. The free space on the file system must
be larger than the size of the swap file.

1. Create a directory for the swap file. For example:

$ mkdir /swap

2. Create a swap file of size 128 MB:

$ dd if=/dev/zero of=/swap/swapfs1 bs=1M count=128

3. Set up as swap area:
Chapter 9. Linux for S/390 administration 191

$ mkswap -c /swap/swapfs1

4. Adjust the access permissions of the file:

$ chmod 600 /swap/swapfs1

5. Activate the swap file:

$ swapon /swap/swapfs1

6. Optionally, make an entry in /etc/fstab.

9.4 File systems and devices

In the next sections we cover commands to go from a raw hardware device to
file systems which can be used with Linux. The list of commands and terms
used is shown in Table 22. The background information needed is provided in
Chapter 8, “Linux for S/390 bootup and shutdown” on page 165.

Table 22. From a raw device to processes accessing file systems

9.4.1 Formatting a block device: dasdfmt
Prior to creating a file system on a device, it must be formatted with the
dasdfmt command. See Table 17 on page 179 for information on how to
determine the devices that need to be formatted with dasdfmt. Following is the
syntax of the dasdfmt command:

dasdfmt [-tvy] [-s start_track] [-e end_track]
[-b blocksize] -f dev_filename | -n 390_devno

Aspect of file system Component Command

Hardware device DASD (3380, 3390, 9345)
Expanded storage

N/A

Driver DASD ECKD driver
Minidisk driver
Xpram driver

Kernel parameter
Module parameter

Device node /dev/dasd*
/dev/mnd*
/dev/xpram*

mknod

Partition /dev/dasd,n.1 dasdfmt

File system ext2 file system
swap file system

mke2fs
mkswap

Boot Boot sector silo
192 Linux for S/390

Using the -v (verbose) flag, more messages are displayed. The -y flag omits
the prompt to reconfirm the format request. The -t flag sets the command to
test mode; the device will not actually be formatted. To format only a part of
the device, you can specify a range with -s start_track and -e end_track
flags.

The block size can be 512, 1024, 2048 or 4096 bytes. As the ext2 file system
uses a minimum of 1024 bytes for a block, 1024 bytes or higher is
recommended. For a discussion on block sizes to use see 9.2.1, “Block size
relation between device and file system” on page 186.

In most cases only a few options are used. For example:

dasdfmt -b <blocksize> -f <device node>
dasdfmt -b <blocksize> -n <s390-devnr>

In order to format the device /dev/dasdc (with an S/390 device address of 192
in our example), the command can be specified in these two ways:

dasdfmt -b 4096 -f /dev/dasdc
dasdfmt -b 4096 -n 192

The system will prompt you to reconfirm the request:

$ dasdfmt -b 4096 -f /dev/dasdc
I am going to format the device /dev/dasdc in the following way:
 Device number of device : 0x192
 Major number of device : 94
 Minor number of device : 8
 Start track : 0
 End track : last track of disk
 Blocksize : 4096

--->> ATTENTION! <<---
All data in the specified range of that device will be lost.
Type yes to continue, no will leave the disk untouched: yes

The dasdfmt command will erase all data on the volume, including the volume
label and volume table of contents (VTOC) of other operating systems.
Depending on the size of the device, it may take some time to complete.

The dasdfmt command can only format previously formatted devices (i.e.
devices that were formatted with any other format utility at least once).

9.4.2 Creating a file system: mke2fs
A file system can be created on a formatted device. The command mke2fs
creates an empty ext2 file system on a device. Following is the syntax:
Chapter 9. Linux for S/390 administration 193

mke2fs [-b <block size>] /dev/dasd<n>1 | /dev/xpram<n>

For example, to create an ext2 file system of /dev/dasdc1, you would issue
the following command:

mke2fs -b 4096 /dev/dasdc1
mke2fs 1.15, 18-Jul-1999 for EXT2 FS 0.5b, 95/08/09
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
27008 inodes, 26997 blocks
1349 blocks (5.00%) reserved for the super user
First data block=0
1 block group
32768 blocks per group, 32768 fragments per group
27008 inodes per group

Writing inode tables: done
Writing superblocks and filesystem accounting information: done

The logical block size can be 1024, 2048 or 4096 bytes. The block size
influences device use and performance. As the kernel reads in blocks, a big
block size speeds up I/O (fewer I/O requests), but the smallest addressable
unit to write to is a block so even a 1 k file will reserve 1 block (i.e., 4 k on the
device).

For a discussion of block sizes to use see 9.2.1, “Block size relation between
device and file system” on page 186.

9.4.3 Accessing a file system: mount
To automatically mount a file system on boot up, an entry in /etc/fstab is
needed (see 9.2.2, “The file system table /etc/fstab” on page 187). Manual
mounting is done via the mount command:

mount -t type dev mountpoint

See 9.2, “File system types” on page 185 for valid file system types.

A mount point is a directory. Normally the directory is empty. If it is not, any
files it might contain are hidden as long as a file system is mounted over it.
The following command mounts the file system that is on /dev/dasdg1 over
the directory /mnt:

mount -t ext2 /dev/dasdg1 /mnt
194 Linux for S/390

The mount command without any options or parameters shows the mounted
file systems:

$ mount
/dev/dasdf1 on / type ext2 (rw,errors=remount-ro)
none on /proc type proc (rw)
/dev/dasdg1 on /mnt type ext2 (rw)

9.4.4 Making a device bootable: silo
To load a Linux for S/390 image from a device, the device has to contain a
boot record (this is known as the IPL record in OS/390 terminology). Only
devices formatted with the dasdfmt command can have a boot record. The
block size of the device must be either 2 k or 4 k.

The silo command is used to create a boot record (Linux on the PC uses the
lilo command, while Linux on some other platforms use the milo command)
The syntax of silo is as follows:

silo -d /dev/dasd<letter> -f <image_file> -p <parmfile> -b <bsfile>

The input files for the silo command have to be on the same device as the
boot record. Do not rely on defaults; instead, you should always specify the
following four flags, which are recommended for use with silo:

-d The device on which the boot record will be written. The boot record is
written on the first blocks of this device. Therefore the device node
representing the whole disk has to be specified.

-f The name of the kernel image.

-p The file containing the kernel parameters (for example dasd= or root=).
For a list of possible values in the parameter file, see Appendix D,
“The parameter file” on page 481.

-b The boot sector file. This file is created together with the image file
during kernel build. This data will be written to the first blocks of the
device.

-t Set the command in test mode. A test number of 1 specifies
do-not-test, while a number > 1 specifies a test level. It is not
expected, but the flag -t2 is required with the 2.2.15 kernel. This is
confirmed by the following warning message:

WARNING: silo does not modify your volume. Use -t2 to change IPL
records
Chapter 9. Linux for S/390 administration 195

Additional silo flags are:

-F Specify a configuration file to set silo defaults.

-V Display the version of the silo command.

-v Set a deeper message level (verbose).

-B Set the name of the boot map created by the silo command.

We assume a directory /boot, together with the files needed to create a boot
record. For a discussion on how to create a boot record on another device,
see 11.6.1, “Preparing a second bootable device” on page 239.

For example, you should see the following files in the directory /boot:

$ cd /boot
$ ls -l
total 1444
-rwxr-xr-x 1 root root 1453976 Feb 20 09:43 image
-rwxr-xr-x 1 root root 2048 Feb 20 09:43 ipleckd.boot
-rw-r--r-- 1 root root 80 May 18 09:15 parm.line

Following is an example of creating a boot record with silo:

silo -f image -d /dev/dasdb -p parm.line -b ipleckd.boot

The silo command creates files boot.map and kernel.h. Messages about the
process are displayed in the following example:

o->ipldevice set to /dev/dasdb
o->image set to image
o->bootsect set to ipleckd.boot
o->parmfile set to parm.line
Verbosity value is now 2
IPL device is: '/dev/dasdb'...ok...(94/4)
bootsector is: 'ipleckd.boot'...ok...
Kernel image is: 'image'...ok...
parameterfile is: 'parm.line'...ok...
ix 0: offset: 00007f count: 0c address: 0x00000000
ix 1: offset: 00008c count: 80 address: 0x0000c000
ix 2: offset: 00010c count: 80 address: 0x0008c000
ix 3: offset: 00018c count: 57 address: 0x0010c000
ix 4: offset: 0001e4 count: 0e address: 0x00163000
ix 5: offset: 0001f3 count: 01 address: 0x00008000
Bootmap is in block no: 0x000001f4
196 Linux for S/390

It is recommended that the configuration file be named /etc/silo.conf. In our
tests we used this file:

[root@linux6 /etc]# cat /etc/silo.conf
ipldevice = /dev/dasd00
image = /boot/image
bootsect = /boot/ipleckd.boot
map = /boot/boot.map
parmfile=/boot/parm.line
testlevel=2

Besides the silo command specific defaults, you can set kernel parameters in
this file. These are normally in the file specified with the -p option of silo.
These kernel parameters are:

ramdisk= Name of the ramdisk

root= Name of the root partition

readonly Mount the root device read-only before reading
/etc/fstab

append=[parameterlist] parameters like mem=, mdisk=, dasd=,
dasd_force_diag=, xpram=, ipldelay= as described
in Appendix D, “The parameter file” on page 481

9.5 Users and groups

While the UNIX user enters his user name (or login) and password to log on
to the system, his identity is represented by a unique integer. This number is
called the user identifier (UID). By convention, a lower UID range (e.g. 0..499)
is reserved for accounts that exist for system-level services.

The UID zero is reserved for the so called superuser or “root”. Daemon (a
UNIX term for a process that is designed to run continuously) users have
UIDs typically in the range 1 to 99. These users are defined for programs
running in the background that offer certain services. Examples are: named
(name service); wwwrun (http server script execution); and database back ends
like postfix. Which daemon users are actually present on a particular system
depends on which services have been installed. Some daemons also run with
root privileges.

The user nobody (usually UID 65534) exists for certain tasks where no
special rights are required (or wanted), such as the automatic update of the
file database.
Chapter 9. Linux for S/390 administration 197

Every user belongs to an initial (or login) group. Groups, similar to users,
consist of a clear text name and an integer identifier, the group identifier
(GID). One group can contain more than one user and one user can belong to
more than one group.

Groups are a means of granting certain rights to users. As an example, some
users of might be added to a group which grants the right to access a
common working directory. Similarly, a user might make some files readable
for the members of his login group.

The command su allows a user to run a shell with another UID (and GID).
Authentication (entering the password of the account that one switches to) is
required except for root.

9.5.1 Creating a user account: useradd
The useradd command creates a new user. It is in the /usr/sbin directory which
may not be in your PATH.

useradd [-d <home>][-g <group>] [-G additional groups>] [-m]
[-s <shell>] [-u <uid>] [-p passwd] <username>

The options are:

c Comment (usually full name of the user).

d The home directory to be created.

g The default group for the user by name or by GID. If you do not specify a
group, Linux will create a group with the same name as the user and the
next free group id >=500. The user is then the only member in this new
group.

G Additional groups the user should belong to.

m Create the home directory specified by the -d option if it does not exist.

s Basic shell, i.e. program to run at login time. For more information about
shells, see 9.8, “Shells” on page 203.

u Numeric user ID associated with the user name. If this value is not
specified, the system will associate the next free user id >=500.

p Set initial password.

For example, to add a user named user1, issue the command:

useradd -m -d /home/user1 -p dummypw -c ’Sam Adams’ user1

This user will have the password dummypw which he can change using the
passwd command. An entry will be created in the file /etc/passwd:
198 Linux for S/390

[root@linux6 /etc]# grep user1 /etc/passwd
user1:!tyj61STZId5Iw!:501:501:Sam Adams:/home/user1:/bin/bash

The format of the passwd entries is:

user:password:uid:gid:description:home:login_shell

The defaults used when creating a user are defined by settings in the file
/etc/default/useradd. To display or change the defaults, use useradd with the
-D option:

[root@linux6 /etc]# useradd -D
GROUP=100
HOME=/home
INACTIVE=-1
EXPIRE=
SHELL=/bin/bash
SKEL=/etc/skel

9.5.2 Modifying a user account: usermod
To change the characteristics of a user, use the usermod command. Its options
are:

c New comment

g New initial group ID or group name for the user

G Comma-separated list of supplementary group the user should be in.
The user will be removed from groups not listed here.

s Change login shell

u Specify the user ID for which to change any values

l Change the login name of the user

Some attributes can only be changed when the user is not currently logged
in. The usermod changes file ownership of the /home directory of the user
when changing any relevant data like the group id. The following command
will assign a new name to the user with UID 500.

$ usermod -u 500 -l name2

9.5.3 Deleting a user account: userdel
The userdel command deletes a user. Following is the syntax:

userdel -r user2

The option -r causes the home directory of the user to be deleted. Userdel
does not delete any files owned by the user that are not stored in the user’s
Chapter 9. Linux for S/390 administration 199

home directory. Files owned by the user can be found (before deleting the
user) with:

find / -user user2

Deletion of all those files can be achieved with the following command (use
care when using find and rm):

find / -user user2 -exec rm -f {} \;

The groups the user belongs to will not be deleted even if the user is the last
one in that group.

9.5.4 Verifying the integrity of the passwd file: pwck
The command pwck does a consistency check for the file /etc/passwd. It
checks for:

 • Correct number of fields

 • Unique user names

 • Valid user and group identifiers

 • Valid primary groups

 • Valid home directories

 • Valid login shells

It also prints a warning for any user who has no password.

9.5.5 Creating a new group: groupadd
The groupadd command adds a group. Following is the syntax:

groupadd [-g <groupid>] [-f] <groupname>

-g Specifies the group ID. Group IDs 0 - 499 are reserved for system
usage.

-f Abort with an error if the group already exists.

For example, the following command creates a group named group1 with the
next free GID >=500:

$ groupadd group1

The groups are listed in the file /etc/group:

[root@linux6 /etc]# cat /etc/group
root::0:root
bin::1:root,bin,daemon
200 Linux for S/390

daemon::2:root,bin,daemon
sys::3:root,bin,adm
adm::4:root,adm,daemon
tty::5:
disk::6:root
lp::7:daemon,lp
mem::8:
kmem::9:
wheel::10:root
mail::12:mail
news::13:news
uucp::14:uucp
man::15:
games::20:
gopher::30:
dip::40:
ftp::50:
nobody::99:
users::100:
utmp:x:22:
xfs:x:101:
group1:x:500:
group2:x:610:

This file has the following format:

name:password_of_group:gid:list_of_users

9.5.6 Modifying a group: groupmod
To change a group, use the groupmod command. Following is the syntax:

groupmod [-g <gid>] [-n <newname>] <groupname>

-g Change the group ID.

-n Change the name of the group.

The following example changes the GID of group1 to 603:

groupmod -g 603 group1

Be aware that if you change the GID of a group, GID does not change the GID
of the users and files. This can result in problems accessing files.

9.5.7 Deleting a group: groupdel
The command groupdel deletes a group. Following is the syntax:

groupdel group2
Chapter 9. Linux for S/390 administration 201

The initial or primary group of any user cannot be deleted with groupdel. With
the groups command you can determine to which groups a user belongs:

groups user1

9.5.8 Verifying the integrity of the group file: grpck
The grpck command checks the /etc/group file for inconsistencies. It works
similar to the pwck command described in 9.5.4, “Verifying the integrity of the
passwd file: pwck” on page 200.

9.6 File ownership and access permissions

Files created by a user belong to him and his login group. File ownership can
only be changed by the superuser by using the chown command. The group
can also be changed by the owner of the file, but only to a group that he is a
member of. The following command makes jj the new owner of the named file,
and makes math its group.

chown jj.math /somewhere/fft.c

The following command makes fbi the new owner of the /elsewhere/xfiles/
directory and all the files and directories in it:

chown -R fbi/elsewhere/xfiles/

The chmod command changes the access permissions of files. The access
permissions (write, read, execute) for different domains of users (owner, initial
group of owner, everybody) can be granted by the owner of the file. For
example, the following command adds the permission to execute the file
progfile to the owner (u stands for user) and members of the file’s group (g):

chmod ug+x progfile

The following command allows everybody (a stands for all) to read the file
message.txt.:

chmod a+r message.txt

The following command withdraws rights to read, write, or execute (or enter
directories) for mysecrets and any file or directory within (option -R stands for
recursive) to everybody except the file owner:

chmod -R go-rwx mysecrets/

See the chmod manpage for more details:

man chmod
202 Linux for S/390

9.7 Changing passwords

The passwd command allows a user to change his password interactively by
simply entering passwd without arguments. The old password must be entered
first, and then the new password has to be entered twice (to avoid problems
caused by typos). The superuser can change the password of any user
(without having to know the current password) by using the passwd command
followed by the username.

9.8 Shells

A shell is an interface that allows a user to work with the operating system.
Several different shells are available with Linux; some of the more important
are:

/bin/sh Bourne shell (now a link to bash).

/bin/bash Bourne Again Shell. It is the default shell of almost all existing
Linux installations.

/bin/csh C shell (now a link to tcsh); its syntax is somewhat similar to C

/bin/tcsh enhanced C shell.

/bin/ksh Korn shell; compatible to the bourne shell. It combines the
characteristics of bourne and C shell.

/bin/zsh Z shell; enhanced version of the Korn shell.

To determine which shell one is currently using, enter:

[root@linux6 /root]# echo $SHELL
/bin/bash

During login, the system calls the shell that is set in the /etc/passwd file for
this user. The login shell can be changed interactively using the chsh
command.

9.9 System logs

The system log daemon syslogd logs various kinds of system activity. It is
started during runlevel processing at boot time (/rc<N>.d/S30syslog).

The /etc/syslog.conf file contains the configuration of syslogd. It describes
which kind and level of information is logged into which file. The configuration
file on our system looks like this:

[root@linux6 /etc]# cat syslog.conf
Chapter 9. Linux for S/390 administration 203

Log anything (except mail) of level info or higher.
Don't log private authentication messages!
*.info;mail.none;authpriv.none /var/log/messages
authpriv.* /var/log/secure
Log all the mail messages in one place.
mail.* /var/log/maillog
*.emerg *
Save mail and news errors of level err and higher in a
special file.
uucp,news.crit /var/log/spooler
Save boot messages also to boot.log
local7.*

The first information in the configuration files contains messages in the form
systemapplication.level . It can be repeated several times, separated by
semicolons. Possible system applications can be:

auth Used by user authentication (login) programs.

cron Used by the cron daemon.

daemon Used by miscellaneous daemons.

kern Used by the Linux kernel itself.

lpr Used by the line printer daemon.

mail Used by the mail daemon.

news Used by the news daemon.

syslog Used by syslog itself.

uucp Used by UUCP daemon.

local0-7 Used by miscellaneous daemons and applications; for example the
application chat writes its messages to facility local2.

The level determines the severity of the message and can contain:

none Do not write messages.

debug Debugging messages.

info Miscellaneous information messages.

notice Something may be wrong.

warning A condition that may cause trouble if not checked.

err An error condition.

crit A critical error.

alert A severe error.
204 Linux for S/390

emerg An irrecoverable error has occurred within the kernel, often followed
by kernel panic on your screen.

The second field contains the location to store the messages. This can be any
filename or * for the current virtual console or terminal (xterm) started with
the -c option.

You can change the syslogd configuration by editing the configuration file. To
tell syslogd to reread the file after changes, send the HUP signal to it:

$ kill -HUP ‘cat /var/run/syslogpid‘

The command cat /var/log/syslog.pid gives the current process ID of the
syslog daemon. You can also determine the process ID with the ps -ef or ps
auxw command.

Log rotation
The syslog and other daemons normally append the log files. Therefore, over
time, log files can grow very big. To avoid this you can use the logrotate
command. It rotates, compresses, and mails system logs as specified in the
configuration file. The main logrotate configuration file is /etc/logrotate.conf:

[root@linux6 /etc]# cat logrotate.conf
rotate log files weekly
weekly
keep 4 weeks worth of backlogs
rotate 4
send errors to root
errors root
create new (empty) log files after rotating old ones
create
uncomment this if you want your log files compressed
#compress
RPM packages drop log rotation information into this directory
include /etc/logrotate.d
no packages own lastlog or wtmp -- we'll rotate them here
/var/log/wtmp {
 monthly
 create 0664 root utmp
 rotate 1
}
/var/log/lastlog {
 monthly
 rotate 1
}
system-specific logs may be configured here
Chapter 9. Linux for S/390 administration 205

Other software will put its logrotate configuration in a file in the
/etc/logrotate.d/ directory. The cron mechanism is used to start the logrotate
command automatically. You can find a shell script doing the log rotation in
the directory /etc/cron.daily.

9.10 Cron

Cron is a simple scheduler that executes predefined commands at specified
times. It searches the directory /var/cron/tabs for crontab files (lists of
scheduled commands; see man 5 crontab) which are named after user
accounts in /etc/passwd. In addition, the /etc/crontab file and files in
/etc/cron.d/ are searched for system crontab entries. System crontab entries
have an additional user field that determine the user id under which the
respective command is started.

A typical system crontab file might look like the following:

[root@linux6 /etc]# cat /etc/crontab
SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root
HOME=/

01 * * * * root run-parts /etc/cron.hourly
02 4 * * * root run-parts /etc/cron.daily
22 4 * * 0 root run-parts /etc/cron.weekly
42 4 1 * * root run-parts /etc/cron.monthly

In the first few lines, the environment is set, while in the remainder of the file
there is one row for each command to be scheduled. The format of the fields
is as follows:

minute hour day month dayofweek user command.

Possible values are 0-59 for minute, 0-23 for hour, 0-31 for day, 0-12 for month
and 0-7 for dayofweek. Ranges (for example 1-3) and comma-separated lists
(for example 1,3,5,7 or 0-3,5-7) are allowed. An asterisk (“*”) stands for “all
values”. A forward slash specifies periodic operation: “*/2” would mean “every
two minutes” if specified in the minute field. For further information see the
chrontab manpage man 5 crontab.

Note that crontabs are not shell scripts; many of the comfortable features of
your favorite shell (for example the backtick mechanism) are not available in
crontabs. If you like to do more complex things than a single command, you
206 Linux for S/390

will typically create a shell script for the job and call that script from the
crontab.

As the cron daemon sends standard output (stdout) and error messages
(stderr) via mail to the owner of the crontab (or the account specified as
MAILTO in the crontab), it is sometimes necessary to redirect unwanted
output into the virtual garbage can (/dev/null); the following command
discards messages on stdout let only allows error messages into the mail:

somecmd > /dev/null

The following command appends any output to the file somefile. The standard
error is redirected to standard output by the 2>&1 statement:

somecmd >> somefile 2>&1

To list your crontab as a user, simply enter:

crontab -l

To edit your crontab, use the command:

crontab -e

Do not directly edit the crontab files; the above command will launch the
editor specified in the VISUAL (or EDITOR) environment variable, let you edit
the entries, and finally schedule your jobs with cron (see the crontab man
page).

9.11 Pluggable Authentication Module (PAM)

The Linux Pluggable Authentication Module (PAM) is a set of libraries that
handle the authentication tasks of services on the system. The library
provides a general Application Programming Interface (API) that
privilege-granting programs such as login and su defer to perform standard
authentication tasks. The principal feature of the PAM approach is that the
nature of the authentication is dynamically configurable.

With PAM, one can easily configure account verification, user authentication,
password management and session management for different services. The
configuration files for PAM are located in the directory /etc/pam.d/. These are
named after the services whose authentication they configure; one file,
named “other” is for the default rules. A line of the configuration files is of the
form:

type control module-path module-arguments
Chapter 9. Linux for S/390 administration 207

The type field can be a value of account, auth, password or session; it
addresses the authentication task to be configured. The control field can be a
value of requisite, required, sufficient or optional; it sets the behavior in
case of authentication failure. The module-path and module-arguments fields
name the (path and) binary of the PAM module to be used, and possible
calling arguments.

9.12 Interactive administrative utilities

The Marist Linux big file system does not include an interactive administrative
utility; therefore, you may want to get a separate application. These types of
applications often give the Linux administrator a graphical, rather than a
command line interface, and allow the administrator to do activities which are
task-based rather than command-based. Two commonly used utilities of this
type are linuxconf and YAST.

9.12.1 Linuxconf
The linuxconf tool includes a user interface for configuration tasks and an
activator. On the Web see:

http://www.solucorp.qc.ca/linuxconf/

There are different user interfaces:

Text-based This works everywhere on a terminal or using a Telnet
session.

Web interface This works through any Web browser and has no need
for a http server. Linuxconf handles the http protocol
itself and is started from the inetd server.

Graphical interface There are two GUI front ends (Java or wxXT toolkit).

Command line Configuration via a shell script. It is mainly used to
handle major changes with lots of repetitive tasks.

9.12.2 YAST
YAST is an acronym for Yet Another Setup Tool. It is a tool to install,
configure, and administer the SuSE Linux distribution. It offers the ability to
install or update software packages and perform many system tasks like
network configuration, user administration, and security. YAST has a text-
based user interface.
208 Linux for S/390

9.12.3 YAST2
YAST2 is Yet Another Setup Tool, next generation. It is the successor of YAST
and comes with both a text-based and graphical (X11) user interface.
Compared to YAST, it offers some enhanced functionality, most notably
remote installation and administration.
Chapter 9. Linux for S/390 administration 209

210 Linux for S/390

Chapter 10. Backup

Backing up your system is an essential, but often tedious, task. In this chapter
we discuss general methods of doing backups and detail the commands you
can use to back up the system (or part of it).

10.1 The general concept

Before you start a backup, first decide which errors you want to recover from.

 • Physical errors, such as:

 – Total loss of the system and its data, so that you need a disaster
recovery plan

 – Loss of a single device

 • Logical errors, such as:

 – Users who accidentally delete files

 – Failure of software that forces you to go back to a previous level of a
data file or software

10.1.1 Backup strategies
For a backup that covers physical errors, you will want to do a per device or
per file system backup. Together with your backup, you should also store
information about the system (that is, location of the data and customization
of the system). For disaster recovery, the backup files have to be at a remote
location.

For a backup that covers logical errors, it may be sufficient to back up the file
system or directory. Optional information about the image of the system may
also be helpful.

Both backup strategies have the need for meaningful backup names that
include information on what, when, and how the backup was taken.

10.1.1.1 Automating backup
Do not rely on a person to make your backups; instead, automate the steps
so you do not miss a backup cycle. An easy way is to do this is by using cron;
see 9.10, “Cron” on page 206.

Include a script to check the success of the backup itself. For example, use
grep -v to analyze the backup log. The script can be used to inform the
administration users of errors or uncommon messages via e-mail.
© Copyright IBM Corp. 2000 211

10.1.1.2 Storing backup data

As tape is not supported today, there are limited ways to store backup data.
These are:

 • On DASD owned by the same Linux. For the S/390 architecture, this
DASD can be at a remote location.

 • On a remote file system using NFS (see Chapter 19, “Network File System
(NFS)” on page 367).

 • On tape through another system (UNIX or OS/390 USS, VM/ESA) with
access to tape drives and to the Linux for S/390 data (using FTP, NFS, or
Samba, to name a few options).

 • VM/ESA offers additional flexibility to back up Linux for S/390. For more
information see 6.8.4, “Taking backups of Linux for S/390 file systems” on
page 127 .

To keep track of the backups—where they are stored and how they are
created—we recommend that you take some additional steps:

 • Create a list of backup files on a second system.

 • Store a layout of the backed-up system on a second system.

 • Keep track of basic changes that may influence the backup commands,
such as the installation of new kernel versions. Test the compatibility of the
commands after each change.

Knowing how to recover the data is as important as the backup itself. Be
familiar with the restore commands. This will make your task a lot easier if a
disaster occurs.

You should also give some consideration to how long you want to keep old
backup files. Such planning has the potential of saving a considerable amount
of space and may help make backups to DASD devices more attractive for
your installation.

A useful discussion on backup concepts and utilities for UNIX platforms can
be found in UNIX Backup and Recovery by W. Curtis Preston, published by

Linux for S/390 does not support tapes (3480/3490) at the time of writing.
For more information about tape support check the Marist List Server and
the Linux for S/390 distributions (SuSE and TurboLinux).

Note
212 Linux for S/390

O’Reilly & Associates, ISBN 1565926420. Some chapters of the book,
including helpful scripts, can be found on the Internet at:

http://www.backupcentral.com/

This Web page also includes links for downloading free backup utilities.

10.2 Native backup commands

In general, you have four possibilities to back up the system with native Linux
for S/390 commands. The command names for backup and restore are the
same except for the dump command. Backups created with the dump command
have to be restored with the restore command.

Which possibility (command) you should use depends on:

 • What kind of backup you want to create (quick backup or disaster recovery
backup, logical or physical backup)

 • The commands you are familiar with

Table 23 compares the commands you can use for backup.

Table 23. Comparison of backup commands

Characteristic/Task Dump/Restore GNU cpio GNU tar

Complexity Complicated but
good for multilevel
backup

Mostly simple,
needs find

Simple,
needs find

Incremental backup Yes,
through levels

Yes, but has to use
find

Yes, but has to use
find and has limits

Multivolume archive Yes Yes Yes

How to find a list of
archived files

Simple,
index in front
(restore -r)

Search entire file
(cpio -it)

Search entire file
(tar -t)

Find specific files Interactive
(supports ls and
cd commands)

Complex,
search entire file,
wildcards allowed

Complex,
search entire file,
no wildcards allowed

Backup protocol Generate after
backup with
restore -t dumplog

cpio -v 2> cpiolog tar cvf 2> tarlog

Restore archive with
absolute path to
different location

Always relative
to current work
directory

Limited functionality
with cpio -I

Complicated,
only by using chroot
Chapter 10. Backup 213

There is another archive command, pax, that is similar to tar.The pax
command creates a portable archive. It can read other file formats such as
the tar and cpio formats. If you already use the pax command on other
platforms, it is worth installing it on Linux for S/390. By default it is not
included in the Marist big file system.

10.2.1 dump/restore
The dump command is the only one that directly supports incremental backup.
The restore command has powerful functionality, such as interactive restore
and indexing.

10.2.1.1 Backup using dump
To back up the file system, issue the dump command:

dump <level> unbBf blocking_factor records archive_file fs_to_save

The options are:

<level> A number from 0 to 9 (level 0 = full backup, 1 to 9 = incremental
backups).

b The blocksize; the number of kilobytes per dump record.

B The number of dump records per volume; this option overrides the
calculation of tape size based on length and density. Specify a
very high number, for example 10000000, to inactivate tape size
calculation when dumping to DASD (otherwise dump will prompt
for a new tape during backup).

u Update the file /etc/dumpdates after a successful dump.

n Notify the members of a specified group whenever dump requires
attention.

Uses System backup System backup,
transfer files
between systems

Quick backup,
transfer files
between systems

Characteristic/Task Dump/Restore GNU cpio GNU tar

If the dump and restore commands are not included in your file system, you
can download the dump package (dump-0.4b4-11.s390.rpm). This package
provides the dump and restore commands for the ext2 file system.

Hint
214 Linux for S/390

f Write the backup to filename (f archive_file).

There are two further options, used for informational purposes:

w List information on all file systems.

W List those file systems that need to be backed up (dumped).

When you run the dump command for the first time on a system, you have to
create an empty /etc/dumpdates file. This file must be owned by root.

touch /etc/dumpdates

Dump writes a table of contents at the beginning of the archive file. This index
is created before the backup data is written. It does not honor changes made
while the dump task is active.

The level of the dump command specifies how often a full backup shall be
executed and how often an incremental backup shall be executed. Use level 0
to do a full backup and levels 1 to 9 for the incremental backups, where each
level backs up whatever was changed since the last backup with the next
lower level.

Table 23 presents a concept using incremental backup:

Table 24. Backup level concept

This example is for a large system with lots of data:

 • Once a week a full backup is taken; in our example we call it day 1.

 • On day 2, a level 3 backup is taken that saves all changes since the last
full backup on day 1.

 • On day 3, the level 2 backup saves all changes done after day 1. In a
recovery situation after day 3 where you need to restore the latest files,
you would only need the backups of day 1 and day 3.

Day Level Data-Backup

1 0 Full backup

2 3 All changes since day 1

3 2 All changes since day 1

4 5 All changes since day 2

5 4 All changes since day 2

6 7 All changes since day 3

7 6 All changes since day 3
Chapter 10. Backup 215

 • Day 4 to 7 do the same switching of the backup levels as day 2 and 3. This
enables you to have more than two backup levels, without having to
restore up to 7 backups in case of a crash. At worst, you would need the
levels 0, 2, 4, and 6 for a recovery on day 7.

10.2.1.2 The restore command
To restore data saved with the dump command, use the restore command:

restore [trxi] vbfy blocking_factor archive_file fs_to_restore

The restore type/function can be specified with the following options:

t Means display the content of a backup

r Means restore entire archive file (recursive)

x Means extract only listed files from the archive file

i Means interactive restore

The restore behavior is influenced by the following options:

v The verbose option - displays detailed information during restore.

b Specify the blocking factor (block size) used for the dump command. If
this option is not specified, restore tries to determine the block size
dynamically.

f Specify the archive file, -f archive_file. If you do not specify the
archive file, the restore will expect the input from the default tape drive

y Attempt to recover from read errors (skip over bad blocks).

Option -r requires starting with the level 0 archive file. You have to restore in
level order; otherwise, the restore will fail.

As the backup of the files is done with relative paths, you have to change to
the directory where you want to restore the file into before starting the
restore.

For option -x, specify the exact path and file name. To restore two files named
file1 and file2 from the directory dir1, enter:

restore rbvfy 126 /archives/archive.file.dump ./dir1/file1 ./dir1/file2

To determine what’s in the archive file, you can create a table of contents
with:

restore tbfy 126 /archives/home.day.dump
216 Linux for S/390

For the interactive option of restore, call restore with -i. This will provide a
shell with limited functionality. You can use the following commands: cd for
change directory; ls to list files; pwd to list the current directory name. In
addition, you can issue restore-specific commands like add, delete and
extract.

To add a file to the restore list, use add filename or add *pattern*. This will
mark the selected file with an asterisk (*) when displaying the filelist with ls.
To delete a file from the restore list, use delete filename or delete *pattern*.
After having marked all the files you want to restore, initiate the restore with
the extract command.

Following is a example of a dump with an interactive restore session.

 • Dump the directory /home/sujoma in /tmp/dump.home:

[root@linux6 /]# dump 0ubBf 64 10000000 /tmp/dump.home /home/sujoma
 DUMP: Date of this level 0 dump: Thu Jun 2 13:50:41 2000
 DUMP: Date of last level 0 dump: the epoch
 DUMP: Dumping /dev/dasdf1 (/) to /tmp/dump.home
 DUMP: mapping (Pass I) [regular files]
 DUMP: mapping (Pass II) [directories]
 DUMP: estimated 125378 tape blocks on 0.01 tape(s).
 DUMP: Volume 1 started at: Thu Jun 2 13:50:41 2000
 DUMP: dumping (Pass III) [directories]
 DUMP: dumping (Pass IV) [regular files]
 DUMP: DUMP: 125811 tape blocks on 1 volumes(s)
 DUMP: finished in 129 seconds, throughput 975 KBytes/sec
 DUMP: Volume 1 completed at: Thu Jun 2 13:52:50 2000
 DUMP: Volume 1 took 0:02:09
 DUMP: Volume 1 transfer rate: 975 KB/s
 DUMP: level 0 dump on Thu Jun 2 13:50:41 2000
 DUMP: DUMP: Date of this level 0 dump: Thu Jun 2 13:50:41 2000
 DUMP: DUMP: Date this dump completed: Thu Jun 2 13:52:50 2000
 DUMP: DUMP: Average transfer rate: 975 KB/s
 DUMP: Closing /tmp/dump.home
 DUMP: DUMP IS DONE

 • Create a table of contents to verify the dump:

[root@linux6 /tmp]# restore tbfy 64 dump.home | less
Level 0 dump of / on linux6:/dev/dasdf1 (dir home/sujoma)
Label: none
Dump date: Thu Jun 2 13:50:41 2000
Dumped from: the epoch
 2 .
 112686 ./home
Chapter 10. Backup 217

 113991 ./home/sujoma
 113992 ./home/sujoma/.bash_history
 114231 ./home/sujoma/rpms
 114232 ./home/sujoma/rpms/THE-3_0-1_s390.rpm
 114233 ./home/sujoma/rpms/sed-3_02-4_s390.rpm
 114234 ./home/sujoma/rpms/ncurses-4_2-25_s390.rpm
........

 • Change into the destination directory for restore:

cd /tmp

 • Call the interactive restore, select a file to restore, and extract it from the
dump file (all actions are in bold letters):

[root@linux6 /tmp]# restore -if dump.home
restore > ls
.:
home/
restore > cd home/sujoma/rpms
restore > ls
./home/sujoma/rpms:
Regina-0_08h-1_s390.rpm ncurses-4_2-25_s390.rpm
Regina-devel-0_08h-1_s390.rpm ncurses-devel-4_2-25_s390.rpm
THE-3_0-1_s390.rpm pam-0_68-7_s390.rpm
bzip2-0_9_5c-1_s390.rpm rpm-3_0_3-3_s390.rpm
crontabs-1_7-7_noarch.rpm samba-2_0_5a-12_s390.rpm
dump-0_4b4-11_s390.rpm samba-client-2_0_5a-12_s390.rpm
fileutils-4_0-8_s390.rpm samba-common-2_0_5a-12_s390.rpm
gpm-1_17_9-3_s390.rpm sed-3_02-4_s390.rpm
joe-2_8-22_s390.rpm sh-utils-2_0-1_s390.rpm
knfsd-1_4_7-7_s390.rpm sysreport-1_0-1_2_noarch.rpm
knfsd-clients-1_4_7-7_s390.rpm textutils-2_0-2_s390.rpm
logrotate-3_3-1_s390.rpm tmpwatch-2_0-1_s390.rpm
lvm_0_8final_tar.tar xosview-1_7_1-2_s390.rpm
mc-4_5_40-2_s390.rpm xsysinfo-1_7-1_s390.rpm
mcserv-4_5_40-2_s390.rpm

restore > add THE-3_0-1_s390.rpm
restore > ls
./home/sujoma/rpms:
 Regina-0_08h-1_s390.rpm ncurses-4_2-25_s390.rpm
 Regina-devel-0_08h-1_s390.rpm ncurses-devel-4_2-25_s390.rpm
*THE-3_0-1_s390.rpm pam-0_68-7_s390.rpm
 bzip2-0_9_5c-1_s390.rpm rpm-3_0_3-3_s390.rpm
 crontabs-1_7-7_noarch.rpm samba-2_0_5a-12_s390.rpm
 dump-0_4b4-11_s390.rpm samba-client-2_0_5a-12_s390.rpm
 fileutils-4_0-8_s390.rpm samba-common-2_0_5a-12_s390.rpm
 gpm-1_17_9-3_s390.rpm sed-3_02-4_s390.rpm
218 Linux for S/390

 joe-2_8-22_s390.rpm sh-utils-2_0-1_s390.rpm
 knfsd-1_4_7-7_s390.rpm sysreport-1_0-1_2_noarch.rpm
 knfsd-clients-1_4_7-7_s390.rpm textutils-2_0-2_s390.rpm
 logrotate-3_3-1_s390.rpm tmpwatch-2_0-1_s390.rpm
 lvm_0_8final_tar.tar xosview-1_7_1-2_s390.rpm
 mc-4_5_40-2_s390.rpm xsysinfo-1_7-1_s390.rpm
 mcserv-4_5_40-2_s390.rpm
restore > extract
You have not read any tapes yet.
Unless you know which volume your file(s) are on you should start
with the last volume and work towards the first.
Specify next volume #: 1
set owner/mode for '.'? [yn] n
restore > quit

 • Take a look at the restored file:

[root@linux6 /tmp]# ls -l
drwxr-xr-x 3 root root 4096 May 16 15:12 home
-rw------- 1 root tty 9720 Jun 2 13:57
rstdir959881841-XXXXVJrA9i

The restore information is created in the current directory, and the selected
file for restore is THE-3_0-1_s390.rpm in home/sujoma/rpms/ of the current
directory.

10.2.2 cpio
The archive utility cpio packs files together like tar does. It creates and reads
file archives. The restore processing includes recovery from data corruption
in an archive file.

Because cpio has many options, it is not easy to handle. You should get some
practice with the cpio command so you know how to use it efficiently in the
case of a recovery situation.

10.2.2.1 Backup using cpio
By default, cpio reads the list of files to be archived from standard input
(stdin) and writes the archive to standard output (stdout):

cpio -o [aBcv] [-C block_value]

Create the list of files to be archived with either the ls or find command.

ls | cpio -oacvB > /archives/backup.cpio
find . -print | cpio -oacvB > /archives/backup.cpio

The find command is more powerful and can be used to do a partial archive.
Chapter 10. Backup 219

Note: It is important to archive the files relative to the current working
directory. This provides greater flexibility when restoring files. Archives
created with absolute paths can only be restored to the original path (except
with use of chroot or cpio -I commands).

If you have a script that determines which files need to be archived, you can
pass the output file (by using pipelines) of this script to the cpio command
using the following command example:

cat /tmp/filelist | cpio -oacvB > /archives/backup.cpio

For the cpio archive function (create a backup), use the -o flag with any of the
following useful options (cpio -o<options>):

-a Reset the access time to the value before the backup executed.
This is important if you have processes that rely on a real access
time. With the backup, all files would otherwise get the time of the
last backup as access time.

-c This is the default for the GNU cpio used by Linux. Specify ASCII
header format, as this is the most compatible format across
platforms.

If you archive and restore only with GNU cpio, you can use the
-newc option instead. This is the new ASCII header format which
supports bigger file systems.

-v Print list of files that are archived to standard error (as standard
output is reserved for the archive file itself)

-B Block size for input and output; we recommend you use 5120
bytes per record. The default is 512 bytes per record. You have to
remember the block size for the restore process.

-C Like -B, but block size can be any positive integer (-C<value>)

-O Only available in the GNU cpio, it allows you to specify an output
archive file instead of just writing to standard output (-O filename).

10.2.2.2 Restore using cpio
After the archive is done to restore a cpio archive, you need to know the exact
block size of the archive (backup). Because Linux uses GNU cpio, the header
format is detected by cpio automatically.

If you do not know how the archive was created, try to validate it with the
following command:

cpio -itv -C <block_size_you_expect> < /tmp/unknown.archive.cpio
220 Linux for S/390

For the cpio restore, use the -i flag with any of the following options .

cpio -i [options] [-C block_value][patterns]

Here is a detailed list of the options used to restore files:

t Generate a table of contents.

d Create directories as needed.

m Restore files with original modified-time instead of restore time.

u Unconditional overwrite all files.

“pattern” Restore files matching the pattern. Pattern can be repeated
several times. Wildcards like an asterisk (*) can be used at any
position, including the first character. A pattern */myfile will restore
myfile from any path in the directory.

r Interactively rename files during restore.

When you only need specific files of the archive /archives/backup.cpio to be
restored, you should first create a table of contents:

cpio -ipt < /archives/backup.cpio

To restore only the needed files, use the following command, where pattern
can be repeated several times and can contain wildcards:

cpio -iBdmuv “pattern1” “pattern2” < /archives/backup.cpio

To restore all files of the archive, change to the specific directory and use:

cpio -iBdmuv < /archives/backup.cpio

10.2.2.3 Incremental backup with cpio
Because cpio uses a file list to determine which files have to be archived,
incremental backup is possible. With a little helper file it is even possible to
create different concept levels for the backups, as we show in Table 24 on
page 215.

We started with a full backup of the directory to be archived, for example, an
application directory named /appl:

cd /appl

We created a dummy file in /appl to save the time of the backup:

touch dummy.cpio.level.0

We backed up the files of the directory and all its sub-directories:

find . -print | cpio -oacvB > /archives/appl.level.0.cpio
Chapter 10. Backup 221

For the next backup we create a level 2 backup, which leaves level 1 free for
consolidation:

touch dummy.cpio.level.2
find . -newer dummy.cpio.level.0 -print | cpio -oacvB >
/archives/appl.level.2.cpio

The find command with the option -newer looks for files that were modified
more recently than the file specified, which in our case was the dummy file
dummy.cpio.level.0.

We perform a level 3 and level 4 backup on the next days. Each backup refers
to the dummy file level - 1 (for example, level 4 refers to dummy.cpio.level.3).
Now we create a level 1 backup:

touch dummy.cpio.level.1
find . -newer dummy.cpio.level.0 -print | cpio -oacvB >
/archives/appl.level.1.cpio

The appl directory itself indicates the sequence of the backups through the
timestamps of the dummy files:

[root@linux6 /appl]# ls -l
total 0
-rw-r--r-- 1 root root 0 May 10 10:30 dummy.cpio.level.0
-rw-r--r-- 1 root root 0 May 17 10:33 dummy.cpio.level.1
-rw-r--r-- 1 root root 0 May 12 10:31 dummy.cpio.level.2
-rw-r--r-- 1 root root 0 May 14 10:29 dummy.cpio.level.3
-rw-r--r-- 1 root root 0 May 16 10:32 dummy.cpio.level.4

10.2.3 tar
The tar command is an easy-to-use archive command that is used in
everyday system work, not just for backup purposes. It should be used for
quick backups, but it is not the first choice for everyday backups.

Tar is more portable than the other backup commands we discussed so far.
Even non-UNIX operating systems like Windows can read tar archives, for
example, with programs like WinZip.

Linux for S/390 provides the GNU version of tar, so in this section we discuss
the functionality of GNU tar.

10.2.3.1 Backup using the tar command
To create a backup with the tar command using the -c option, enter:

tar -cvpf /archives/backup.tar “pattern”
222 Linux for S/390

The options are:

c Create a new archive.

v Print information while archiving (verbose).

f Specify an output file name -f archive.tar.

p Save all file attributes, e.g. file permission bits, ownership bit.

pattern Archive files matching the pattern. Wildcards are allowed except
for the first character.

A command to back up the entire file system would look like:

tar -cvpf /archive/full-backup-mydate.tar -directory /
-exclude=mnt -exclude=proc -exclude=archives

Exclude all directories that are mounted temporarily, special file systems like
/proc, and the directory containing the archives with the -exclude option of tar.

GNU tar provides the useful option -W to verify the archive after it was written:

tar -cvpWf /archives/backup.tar <pathname><filename>

A table of contents for a tar file can be created with:

tar -tf /archives/backup.tar > /archives/backup.tar.toc

10.2.3.2 Restore using the tar command
To restore an archive file with the -x option, type:

tar -xvpf /archives/backup.tar [“pattern”]

To preserve the original owner of the files, you have to call tar from a
superuser id.

The options are:

x Restore from an archive file.

v Print information while restoring (verbose).

f Specify an archive name as input -f archive.tar.

p Restore all file attributes, e.g. file permission bits, ownership bit.

pattern Restore files matching the pattern. The pathname and filename
must exactly match the name in the archive file. Wildcards are not
allowed. To work with wildcards during restore, use tar in
combination with the grep command.
Chapter 10. Backup 223

10.2.3.3 Incremental backup with tar
There are only limited ways to use tar to create an incremental backup.You
can create a list of files to be archived with the find command. This can be
done similar to the cpio incremental scenario on page 221. For the following
example we chose a kind of manual incremental backup based on the find
command.

The find command can produce a list of files that have been changed since a
certain period of time (in this example, 24 hours):

find / -mtime -1 \! -type d -print > /tmp/mylist

All directory entries are excluded with \! -type d, and the output of find is
written to /tmp/mylist. If NFS file systems are connected to your system, the
file mylist will also include files of connected NFS file systems. If you want to
exclude the NFS file systems from your backup, you have to edit mylist and
delete the NFS-specific entries.

Specify the -T option of tar to read the file name list as input for the backup:

tar -cv -T /tmp/mylist -f /archives/backup.incremental.tar

10.3 Backup programs and tools

There are some “free” tools that assist and manage the backup process
available on the Internet. In addition, you may find backup programs offered
by different software vendors. One problem with most of them is that they are
not yet ported to Linux for S/390. You can consider porting the “free” tools
yourself, or check out the Internet from time to time to see if anyone has
ported backup tools for Linux for S/390.
224 Linux for S/390

Chapter 11. System maintenance and upgrade

In this chapter we explain the steps needed to set up a new system (build a
kernel) or install new software. We look at the installation software using Red
Hat Package Manager (RPM). For those who are familiar with OS/390, RPM
is a limited SMP/E, and for VM folks, it is VMSES/E.

In addition, we briefly discuss installation from source code, as well as
installing or dealing with libraries.

11.1 Where to obtain software

At present, you can build a kernel with all tools on your own, or use the Marist
file system. In the future you will have distributions available from companies
like SuSE and TurboLinux.

Table 25. URL references to Linux for S/390 service

At the time of writing, the Marist Web page provides the latest documentation
on Linux for S/390 and the associated drivers. You should obtain this
documentation as a complement to this redbook.

For more documentation on the SuSE distribution, check the following Web
sites:

ftp://ftp.suse.com/pub/suse/s390/SuSEbookS390.pdf
http://www.s390.ibm.com/linux/installfest/l390fpr3.pdf
http://www.s390.ibm.com/linux/installfest/l390fin2.pdf

Even though Linux for S/390 updates are not included, you can track recent
updates to software at:

http://www.freshmeat.net/

What you need Where to find it

kernel source http://www.kernel.org/

patches http://oss.software.ibm.com/
developerworks/opensource/linux390/index.html

Marist file system http://linux390.marist.edu/

S/390 RPMs http://www.linux.s390.org/

SuSE distribution ftp://ftp.suse.com/pub/suse/s390/pre-suse-s390.iso
© Copyright IBM Corp. 2000 225

For the Linux for S/390 distribution URLs, see 4.1.1, “Announced
distributions” on page 41.

11.2 Overview of upgrade strategies

To upgrade the Linux kernel to a new version, you can do one of the following:

 • Download the new kernel version and the associated patches from the
Internet, and then compile the new kernel and activate it. This strategy is
discussed in 11.6, “Build and customize the kernel” on page 238.

 • Completely upgrade to a new Linux version (e.g. by installing a new
distribution). This will not only upgrade Linux to a new version, but also
create a full root file system. If installed on a device other than your
running system, you can copy your modifications to the new file system.

 • Use one of the distribution’s tools to upgrade the Linux kernel and the
associated software. This will be the most comfortable method in the
future.

To update the software on your system you can use packages in different
formats like those for Red Hat Package Manager (RPM), .deb (the Debian
package manager), or simply tar archives. Using RPM (or .deb) is generally
more comfortable than using “plain” tar archives. For one thing, the package
managers keep a database of the installed software and check the
dependencies before actual installation. Another plus is the comfortable
deinstallation that is available with the package managers. In contrast,
software installed from tar archives can only be removed manually.

The software packages can come either as precompiled binaries or as source
code archives. In the latter case, you’ll have to compile the software before
you can use it.

11.3 Software installation with RPM

In this section we describe how to install software using Red Hat Package
Manager (RPM), which has become the most widely used package manager
in the Linux world.

11.3.1 RPM overview
RPM, used by most Linux distributions, keeps track of all kinds of information
about packages.
226 Linux for S/390

Among other things, RPM does the following:

 - It remembers what packages you have installed.

 - It remembers which files came with which packages.

 - It allows you to install software (packages) with one command.

 - It removes software (packages) with a single command.

 - It writes warning messages if installing a package is going to overwrite
needed files.

 - It warns if removing a package will remove a file needed by other
packages.

RPM has five basic functions: installing, uninstalling, upgrading, querying,
and verifying software packages.

Every package has a common structure (design) for the package name e.g.
bzip2-0.9.5c-1_s390.rpm, which includes the package name (bzip2), version
(0.9.5c), release (1), and architecture (s390).

Although the software itself is the same, each distribution will tailor and ship
its own RPM packages of the same software. The differences between
distributors are mostly in the area of file locations and possible patches for
RPM packages. Always try to get the RPM package adapted for the
distribution you use.1

11.3.2 The RPM database
The RPM database contains information about each piece of software
installed with RPM. Database information can be accessed through the rpm
command.

The initdb option creates a new, empty RPM database:

rpm --initdb

No information can currently be migrated or copied into a RPM database. To
insert information about packages, you have to install the software using the
rpm command.

To rebuild a broken RPM database you can use the rebuilddb option; this can
be a lifesaver when RPM fails due to a broken database:

rpm --rebuilddb

1 The Marist big-file system is not a distribution in any formal sense, it is a dump of a running Linux for S/390 image. You
can find some RPMs for S/390-specific Linux on the Web page at: http://www.linux.s390.org/
Chapter 11. System maintenance and upgrade 227

Note that the -rebuilddb command restores a previous backup of the RPM
database; it does not validate the whole system for installed packages.

11.3.3 Querying package information
Querying the RPM database of installed packages is accomplished with rpm
-q. This query function examines the contents of a package (list of files,
space needed, destination of files) and also checks dependencies and
possible conflicts with other packages.

RPM offers many ways to specify what information to display about a queried
package. The following list of options can be used to select the information
you are interested in:

rpm -q[ildc][-p package] [-f <file>]

The options are:

-i Display detailed package information (name, description,
release, size, build date, install date and other helpful
information)

-l List all files within this package

-d List all files marked as documentation files

-c List all files marked as configuration files

-a Query all currently installed packages

-f <file> Query the package owning <file>

-p <packagefile> Query the package <packagefile>

When you enter the rpm -q command without the -p<packagefile> option,
specify the software name (e.g. bzip2):

rpm -qi bzip2

The following information about the package is displayed. (If the package is
not installed, the message package bzip2 is not installed is displayed.):

Name : bzip2 Relocations: /usr
Version : 0.9.5c Vendor: Thinking Objects
Software
Release : 1 Build Date: Wed Apr 27 08:18:21
2000
Install date: Fri May 6 17:38:25 2000 Build Host: piranha.think
Group : Applications/File Source RPM:
bzip2-0.9.5c-1.src.rpm
Size : 278402 License: GPL
228 Linux for S/390

Packager : Fritz Elfert <felfert@to.com>
Summary : A file compression utility.

Description :
Bzip2 is a freely available, patent-free, high quality data compressor.
Bzip2 compresses files to within 10 to 15 percent of the capabilities
of the best techniques available. However, bzip2 has the added benefit
of being approximately two times faster at compression and six times
faster at decompression than those techniques. Bzip2 is not the
fastest compression utility, but it does strike a balance between speed
and compression capability.

Install bzip2 if you need a compression utility.

To list the files that belong to the bzip2 package, use rpm -ql. All files owned
by this package are displayed with full pathnames.

To list all RPM installed packages, issue the command:

rpm -qa

11.3.4 Checking dependencies
Whenever you install new software, you should always check the
dependencies. (Otherwise, if dependencies are not completely resolved, you
may end up with a system that does not support basic commands.) This is
especially important when updating basic software like RPM itself, compilers,
or packages with shared libraries.

The --test option of RPM checks whether a package is installable and which
components are missing, if any. It also checks for conflicts with other software
packages:

[root@linux6 rpms]# rpm -Uv --test samba-2_0_5a-12_s390.rpm
error: failed dependencies:
 pam >= 0.64 is needed by samba-2.0.5a-12
 samba-common = 2.0.5a is needed by samba-2.0.5a-12
 /usr/bin/killall is needed by samba-2.0.5a-12
 fileutils is needed by samba-2.0.5a-12
 sed is needed by samba-2.0.5a-12
 /bin/sh is needed by samba-2.0.5a-12
 libpam.so.0 is needed by samba-2.0.5a-12
 libtermcap.so.2 is needed by samba-2.0.5a-12
 /bin/csh is needed by samba-2.0.5a-12
 /bin/sh is needed by samba-2.0.5a-12
 /usr/bin/awk is needed by samba-2.0.5a-12
Chapter 11. System maintenance and upgrade 229

In cases where you want to install a software package and ignore any
dependencies, use the option --nodeps to deactivate dependency checking.
This option can be useful if non-RPM software was installed and you have
manually checked that all the dependencies will correctly resolve. In the big
file system from Marist distribution, not all installed software packages are
RPM packages.

11.3.5 Install and update a package
RPM automates the process of installing binary software on the system. For
source packages, you have to perform post-installation steps.

Two options can be used to install a package. The -i option installs a new
package:

rpm -ivh samba-common-2_0_5a-12_s390.rpm

The -U option updates (and installs) a package. In general, use the -U option
for installing and upgrading RPM packages.

rpm -Uvh samba-common-2_0_5a-12_s390.rpm

To specify the verbose operation, use the -v option. By specifying -h, a
progress indicator (hash marks) is displayed while the package is being
installed.

Configuration files that are part of the package are stored with the extension
.rpmorig. Check these configuration files for new parameters. A warning is
displayed for every new configuration file:

[root@linux6 rpms]# rpm -Uvh --nodeps sh-utils-2_0-1_s390.rpm
warning: /etc/pam.d/su saved as /etc/pam.d/su.rpmorig sh-utils

11.3.6 Post-installation steps for source RPMs
A source RPM contains source code in a tar file, along with specifications and
possibly additional patches. Because the Marist file system is partly based on
Red Hat structure, the RPM installation step will place these files in
subdirectories under /usr/src/redhat/.

In a non-Red Hat Linux system, they might be stored in subdirectories
under/usr/src/packages/.

As a simple example to demonstrate this, we use the linux_logo source file
and install it using the following RPM command:

rpm -iv linux_logo-3_0-2_src.rpm
230 Linux for S/390

This will create two directories, SOURCES and SPECS:

/usr/src/redhat/SOURCES/linux_logo-3.0.tar.gz
/usr/src/redhat/SPECS/linux_logo.spec

Next, we change to the SPECS directory:

cd /usr/src/redhat/SPECS/

We issue the RPM command with the build option -bi, specifying the specs
file:

rpm -bi linux_logo.spec

The rpm -bi command will do some preparation steps such as untar the tar
file, apply patches if necessary, and compile the software:

Executing: %prep
+ umask 022
+ cd /usr/src/redhat/BUILD
+ cd /usr/src/redhat/BUILD
+ rm -rf linux_logo-3.0
+ /bin/gzip -dc /usr/src/redhat/SOURCES/linux_logo-3.0.tar.gz
+ tar -xvvf -
drwxr-xr-x vince/users 0 1999-04-02 14:21 linux_logo-3.0/
-rw-r--r-- vince/users 13661 1999-04-02 01:29
linux_logo-3.0/linux_logo.c
........
-rw-r--r-- vince/users 2949 1999-03-26 19:36
linux_logo-3.0/linux_logo.1
+ STATUS=0
+ [0 -ne 0]
+ cd linux_logo-3.0
++ /usr/bin/id -u
+ [0 = 0]
+ /bin/chown -Rhf root .
++ /usr/bin/id -u
+ [0 = 0]
+ /bin/chgrp -Rhf root .
+ /bin/chmod -Rf a+rX,g-w,o-w .
+ exit 0
Executing: %build
+ umask 022
+ cd /usr/src/redhat/BUILD
+ cd linux_logo-3.0
+ CFLAGS=-O2 -fomit-frame-pointer
+ touch dummy.tmp~
+ make clean
rm -f *.o
Chapter 11. System maintenance and upgrade 231

rm -f linux_logo
rm *~
+ make
Compiling for Linux
Edit the Makefile to change Platform
Edit defaults.h to change Default Values
gcc -O2 -Wall -DLINUX_ANSI -c linux_logo.c
gcc -O2 -Wall -DLINUX_ANSI -c sysinfo.c
In file included from sysinfo.c:23:
sysinfo_ix86.c: In function `get_hw_info':
sysinfo_ix86.c:60: warning: `mem' might be used uninitialized in this
function
gcc -O2 -Wall -DLINUX_ANSI -c bogomips.c
gcc -O2 -Wall -DLINUX_ANSI -o linux_logo linux_logo.o bogomips.o
sysinfo.o
+ exit 0
Executing: %install
+ umask 022
+ cd /usr/src/redhat/BUILD
+ cd linux_logo-3.0
+ mkdir -p /var/tmp/linux_logo-root/usr/bin
/var/tmp/linux_logo-root/usr/man/ma1
+ install -s linux_logo /var/tmp/linux_logo-root/usr/bin/linux_logo
+ install linux_logo.1
/var/tmp/linux_logo-root/usr/man/man1/linux_logo.1
+ exit 0
Processing files: linux_logo
Executing: %doc
+ umask 022
+ cd /usr/src/redhat/BUILD
+ cd linux_logo-3.0
+ DOCDIR=/var/tmp/linux_logo-root/usr/doc/linux_logo-3.0
+ export DOCDIR
+ rm -rf /var/tmp/linux_logo-root/usr/doc/linux_logo-3.0
+ /bin/mkdir -p /var/tmp/linux_logo-root/usr/doc/linux_logo-3.0
+ cp -pr ANNOUNCE.logo BUGS CHANGES README USAGE.FAQ samples
/var/tmp/linux_log0
+ exit 0
Finding Provides: (using /usr/lib/rpm/find-provides)...
Finding Requires: (using /usr/lib/rpm/find-requires)...
Requires: ld.so.1 libc.so.6 libc.so.6(GLIBC_2.0) libc.so.6(GLIBC_2.1)

Instead of doing prep and build in one step by using the -bi option, you can
do a two-step process by using the -bp and -bc options, as follows.
232 Linux for S/390

For the %prep phase:

rpm -bp

For the %build phase:

rpm -bc

After the build is done, you will find a new directory called
/usr/src/redhat/BUILD/linux_logo-3.0.

Refer the to RPM man page for more information. For complete information
on the necessary post-installation steps for source code RPMs, refer to the
installation information provided with the package itself.

The build-root set in the %install phase is:

/var/tmp/linux_logo-root/

Finally, you can test the just-installed software with the command:

/var/tmp/linux_logo-root/usr/bin/linux_logo

11.3.7 Removing a package
Uninstalling (removing) a package is just as simple as installing if you use the
-e <packagename> option with the package name:

rpm -ev joe

Be aware that you may encounter a dependency error when uninstalling a
package if other installed packages depend on the one you trying to uninstall.
To force RPM to ignore that type of error and uninstall the package anyway,
use the --nodeps option. However, this may not be desirable since the
dependent package may fail after your uninstall is done.

11.4 Software installation with tar

Apart from using the RPM method, you have other options for downloading
tar files containing the desired software in source or binary format. Using
these options, however (and in contrast to RPM), you have to check
dependencies and prerequisites manually. Therefore, we recommend that
you use the RPM software packages whenever possible.

In this section we briefly describe how to deal with the tar installation method.
A tar file is similar to a package; it contains all files and directories, including
their file permissions and ownership. Tar files can contain either binaries
Chapter 11. System maintenance and upgrade 233

(sometimes accompanied by an installation program like setup or install), or
source (including a configure script made by the GNU autoconf system).

The tar packages are usually gzip-compressed with the file ending .tar.gz.
Use the -z option with the tar command because otherwise, tar will not
recognize the file.

Before extracting a tar file, check the contents with the following command:

[root@linux6 hdm]# tar -tzf samba-2_0_7.tar.gz | more
samba-2.0.7/
samba-2.0.7/COPYING
samba-2.0.7/docs/
samba-2.0.7/docs/faq/
samba-2.0.7/docs/faq/Samba-Server-FAQ-2.html
samba-2.0.7/docs/faq/Samba-Server-FAQ-1.html
samba-2.0.7/docs/faq/Samba-meta-FAQ.txt
samba-2.0.7/docs/faq/sambafaq-2.html
samba-2.0.7/docs/faq/sambafaq-3.html
samba-2.0.7/docs/faq/sambafaq-1.html
...
samba-2.0.7/source/groupdb/groupfile.c
samba-2.0.7/source/groupdb/aliasfile.c
samba-2.0.7/source/configure

To get even more detailed information, you can include the verbose option
(tar -tzvf <myfile.tar.gz>). From the example above you can see that every
file in the tar file has samba-2.0.7 as its first directory. Therefore, you do not
need to make a separate directory, since tar will create one.

Now untar the package with tar -xzvf <myfile.tar.gz>.

You should find a README or INSTALL file that describes the steps to install
the software you have just untared from the source tar files. This file normally
point to a configure script. This script will auto-detect information about the
system and automatically configures the build environment for the source
code.

After running configure, the next step is to compile the software.
234 Linux for S/390

After you have prepared for the compile, use the make command to compile
the software and the make install command to copy the executables into the
appropriate directory for usage.

A more complete example on installing software from a source tar file is
documented in 20.1.2, “Installing from source in the original package” on
page 389.

11.5 Updating libraries

There are two kinds of libraries: static and dynamic (meaning dynamically
loadable). Static libraries (filenames *.a for Archive) are linked to program
binaries at compile time. Dynamic libraries are loaded at runtime.

Dynamic libraries are naturally implemented as shared libraries (filenames
*.so for Shared Object). When more than one process using a certain shared
library is running, these processes share the memory pages containing the
library code.

Note: Although the terms shared and dynamic are often used
interchangeably, we use the term shared in this discussion.

The dynamic feature means not having the same library code in multiple
executables, which saves disk space. The shared feature means not holding
multiple instances of the library code in memory, which saves memory space.

For statically linked libraries, the executable holds its own copy of the library
routines. The program has to be relinked to use a new version of the library.
Updated shared libraries will take effect the next time the dynamic loader
ld.so is called by a program to load these libraries. This is normally the time a
program is started, but it can also occur later.

Because the S/390 architecture in Linux is very “young”, you may find some
configure scripts that do not include the S/390 architecture. If you
encounter this problem, check the config.guess and config.sub files for the
appropriate sections on the S/390 architecture. If you don’t have the S/390
sections in these files copy them from a package that installed correctly in
your Linux for S/390 system.

Note
Chapter 11. System maintenance and upgrade 235

With shared libraries, new versions automatically take effect. A significant
advantage of this is that corrected versions of shared libraries can magically
“repair” all corresponding binaries without the need of recompilation. Note,
however, that new major version of a dynamic library cannot be used with an
executable built with a previous version.

As an example, let’s look at the bzip2 library files, which can be found in the
directory /usr/lib:

libbz2.a �
libbz2.so -> libbz2.so.0.0.0�
libbz2.so.0 -> libbz2.so.0.0.0 �
libbz2.so.0.0.0 �

��This is the static version in the library package.

��This is the dynamic version in the library package (shared library).

��These are symbolic links for the dynamic linker ld.so.

When a program is started, the dynamic linker looks for a library name
libname.so.major_version or libname.so. Ld.so always searches the
directories /lib and /usr/lib first. Then it searches the directories listed in the
files /etc/ld.so.conf.

If an environment variable LD_LIBRARY_PATH is set, the linker will search in
the directories specified in this variable first, and then continue with the
standard search order.

The ldd command examines which shared libraries are required by an
executable:

[root@linux6 bin]# ldd /bin/rpm
librpmbuild.so.0 => /usr/lib/librpmbuild.so.0 (0x40019000)
libdb.so.2 => /lib/libdb.so.2 (0x40048000)
libz.so.1 => /usr/lib/libz.so.1 (0x40058000)
libbz2.so.0 => /usr/lib/libbz2.so.0 (0x40068000)
librpm.so.0 => /usr/lib/librpm.so.0 (0x40076000)
libc.so.6 => /lib/libc.so.6 (0x400c3000)
/lib/ld.so.1 => /lib/ld.so.1 (0x40000000)

11.5.1 Upgrading shared libraries
When upgrading a shared library, it is important that the symbolic link
libname.so.major_version always points to a library file during the process.

Copy the new library file to the correct directory:
236 Linux for S/390

cp -a libbz2.so.0.0.1 /usr/lib/

Both versions of the dynamic shared library are now in /usr/lib:

libbz2.so -> libbz2.so.0.0.0
libbz2.so.0 -> libbz2.so.0.0.0
libbz2.so.0.0.0
libbz2.so.0.0.1

Change the symbolic links to the new library. It is important to update the
symbolic link in one step by issuing ln -sf. Otherwise, commands using the
library will no longer work after the link is removed:

ln -sf /usr/lib/libbz2.so.0.0.1 /lib/libbz2.so.0
ln -sf /usr/lib/libbz2.so.0.0.1 /lib/libbz2.so

Now the symbolic links point to the new library version:

libbz2.so -> libbz2.so.0.0.1
libbz2.so.0 -> libbz2.so.0.0.1
libbz2.so.0.0.0
libbz2.so.0.0.1

Run ldconfig to regenerate the shared library cache used by ld.so. The
command ldconfig is used to maintain the shared library system. If a new
shared library is installed on the system, a new entry has to be created in
/etc/ld.so.cache. In addition, ldconfig sets the symbolic links.

When you install shared libraries with RPM, the post-installation script of
RPM runs the ldconfig.

11.5.2 Resolving incompatibilities

After the distributions for Linux for S/390 become generally available,
you should not expect incompatibilities with the library structures on
your system. There is, however, a slight chance that you might run
into library incompatibilities with the Marist “distribution”, due to the
speed at which these packages were hammered together, just to get
running code up, working and out to people, so you should not
expect the usual standards of quality assurance, etc. as would be
found with a regular distribution.

Note
Chapter 11. System maintenance and upgrade 237

Shared libraries with different major numbers are incompatible. This is no
problem for programs that need the libname.so.major_version library, as you
can simply keep both versions on the system.

In case this is no solution, you should either upgrade the programs that have
this incompatibility problem or use a different LD_LIBRARY_PATH
environment variable.

However, different environment variables will only work for a limited number of
programs that suffer from incompatibility. For each of these affected
programs, you should rename the executable and write a kind of wrapper
script with the original executable name. The script should first set the
environment variable LD_LIBRARY_PATH and then execute the binary. The
old shared library must be in a different directory than the actual version.

In our example the wrapper script for the program mypg (which we renamed
to mypg.prog) could look like this:

#! /bin/sh
export LD_LIBRAY_PATH=/usr/lib/diffdir
exec mypg.prog

So if the user calls program mypg, the script mypg is called instead, which will
export and use the old library and then call the program (mypg.prog) with the
right (old) library.

11.6 Build and customize the kernel

Installing a kernel from source sounds like a complicated task, but it isn’t
really that difficult. If the kernel you have supports all the options you want,
then there’s no need to change it.

However, what if you want a feature that was not selected, or want to remove
something that you’re not going to use at all? Or what if there is a patch or
workaround needed to remove a bug or vulnerability discovered in the kernel
version you are running, and you need to compile a kernel from source?

Follow these steps to create a new kernel from source:

1. Start by establishing a second bootable device in case something goes
wrong. This is always sound advice, and should be part of your site
administration policy anyway.

Note that silo-2.2.x only allows one kernel per boot device, unlike the linux
loaders on most other Linux platforms, which often allow one of several
238 Linux for S/390

different kernels to be selected at boot time. Thus, for s390-ibm-linux, it is
even more important that you have an alternate kernel boot path.

This is easier on VM, but can also be done in an LPAR.

2. Get the source.

3. Install the source.

4. Patch it with S/390 specifics.

5. Clean up all extraneous files.

6. Check the basic configuration.

7. Configure the kernel.

8. Check all dependencies.

9. Compile the kernel.

10.Activate the image.

11.Create the boot record.

12.Boot with the new boot record.

All distributions should give you the opportunity to install the Linux system
including the source code and compiler tools, and therefore enable you to
customize the current kernel to your needs. In that case you would start with
step 5.

11.6.1 Preparing a second bootable device
Regardless of which operating system you run, you should always have a
standby method available to get the system back up and running in case
something goes down and refuses to come back up the way you want it to.

There are two ways to ensure that you can boot a valid Linux system:

 • Keep a bootable tape or VM initrd image available. This will load the
starter file system you used during your first installation of Linux, so you

This section was written from the perspective of an LPAR installation.
The differences between PR/SM and VM are subtle, but one of the most
striking (and underestimated) differences is that the “unit of allocation”
for disk space on an LPAR is 3390-x Full-Pack, whereas on VM it would
be very reasonable to assign a couple of 20-cylinder (3390) minidisks to
act as boot devices. The same restriction applies to swapdevices.

Note
Chapter 11. System maintenance and upgrade 239

may be able to repair a system that cannot get up. However, be aware that
your production Linux will be down for that time.

 • Make a second device bootable. Then you will may be able to switch boot
devices and keep the production root file system accessible.

Since there should already be a bootable tape or ramdisk, let’s discuss how
to set up a second bootable device.You need a Linux-formatted device with a
file system on it:

[dasdfmt -b 4096 -f /dev/dasdc]
mke2fs -b 4096 /dev/dasdc1

Create a mount point and mount the device on it:

cd /
mkdir /appl
mount /dev/dasdc1 /appl
mkdir /appl/boot.alternate

Now a second boot directory is needed, because it has to be on the same
device as the silo boot record. In the example we first created a directory
/appl. Because the boot directory is very small, you can use the /appl
directory, for example, for your own applications without losing a whole
device.

Note: You can skip these steps and create a boot.alternate directory on any
Linux-formatted device with a file system that is already mounted.

Copy your existing /boot directory to the /appl/boot.alternate directory:

cd /boot
cp -a /appl/boot.alternate

Now you have the same kernel on both boot directories. Because you know
that this kernel boots cleanly, you can use silo to create a boot record on the
new device, and because you use the same root file system, the kernel
parameters stay the same:

cd /appl/boot.alternate/
silo -f image -d /dev/dasdc -p parm.line -b ipleckd.boot
[root@linux6 /boot.alternate]# silo -f image -d /dev/dasdc -p parm.line
-b ipleckd.boot
o->image set to image
o->ipldevice set to /dev/dasda
o->parmfile set to parm.line
o->bootsect set to ipleckd.boot
IPL device is: '/dev/dasdc'
bootsector is: 'ipleckd.boot'...ok...
240 Linux for S/390

Kernel image is: 'image'...ok...
parameterfile is: 'parm.line'...ok...
ix 0: offset: 00007e count: 0c address: 0x00000000
ix 1: offset: 00008b count: 80 address: 0x0000c000
ix 2: offset: 00010b count: 80 address: 0x0008c000
ix 3: offset: 00018b count: 57 address: 0x0010c000
ix 4: offset: 0001e4 count: 01 address: 0x00008000
Bootmap is in block no: 0x0000007d

Now make the appl directory permanently visible in the root file system. For
boot.alternate itself, this is mandatory because the boot record holds
all-important data:

vi /etc/fstab
/dev/dasdf1 / ext2 defaults,errors=remount-ro 0 1
/dev/dasdg1 /mnt/swap ext2 defaults 0 2
/dev/dasdi1 swap swap defaults 0 0
/mnt/swap/swapfs1 swap swap defaults 0 0
/mnt/swap/swapfs2 swap swap defaults 0 0
none /proc proc defaults 0 0
/dev/dasdc1 /applext2 defaults,errors=remount-ro 0 3

After these steps, you are ready to test the second boot device:

shutdown -h now

When the system is down, reload the system, specifying the new IPL address
during load from HMC or via the VM command #CP IPL <device_number>
CLEAR.

11.6.2 Get the Linux kernel source
The kernel and the Linux for S/390 specific patches are available on the
Internet. You can download the kernel itself form the official kernel Web site
or from the country mirror nearest you:

http://www.kernel.org/
ftp://ftp.kernel.org
ftp://ftp.de.kernel.org/ (for example,in Germany)

In our scenario we downloaded the Linux 2.2.15 file linux-2.2.15.tar.gz . Note
that the S/390 code has now been integrated into the rest of the mainline
kernel, so you probably won’t need to apply the S/390 patches unless there is
a specific patch which you require which hasn’t been integrated into the main
kernel tree yet.
Chapter 11. System maintenance and upgrade 241

The version number of the kernel follows a specific order. An even number
like 2.0.x or 2.2.x represents a stable Linux release, while an odd number like
2.1.x or 2.3.x is a development release.

Note that the S/390 was initially written to fit into the 2.2.x (stable) Kernel
Tree. It is unusual to integrate a change as large as a completely new
architecture into the stable kernel tree, but this was the design decision taken
by the Böblingen team and accepted by the kernel maintainers, and in
retrospect, it worked very well. It gave the developers a more stable platform
to develop with, and the assurance that any bugs they were seeing were more
likely to be caused by the new too chain or implementation, and not because
the kernel itself might be having growing pains due to the ongoing
development work of the other (unstable) kernel developments.

The Linux for S/390 specific patch files have the ending diff.tar.gz and can
be found on the following Web site:

http://oss.software.ibm.com/
developerworks/opensource/linux390/download_src.html

In our case, we downloaded the patch file linux-2.2.15-s390.diff.tar.gz.

You will also need the object code only (OCO) modules from the Internet that
are compatible with the new kernel. We downloaded lcs-2_2_15.tar.gz for the
module lcs.o from:

http://oss.software.ibm.com/
developerworks/opensource/linux390/download_obj.html.

One problem specific to the upgrade from Linux 2.2.14 to Linux 2.2.15 was an
enhancement in the binutils and gcc compiler. The versions on the
Marist-2.2.14 file system had no support for the new CSP instruction used in
Linux kernel 2.2.15.

Without the new utilities we got an error during kernel make, saying that the
compiler does not know the new CSP instruction:

{standard input}: Assembler messages:
{standard input}:1654: Error: Unrecognized opcode: `csp'

You can ignore the error for the moment but the long-term production solution
should be to get the right set of the new utilities which fits the new 2.2.15
kernel.
242 Linux for S/390

11.6.3 Recompiling the S/390 tool chain (binutils and gcc)
For this task, we first had to compile the binutils and the gcc compiler itself
because of the new CSP instruction. (You will probably not have to rebuild the
compiler tool chain yourself unless there are further changes to the binutils
and gcc components and the distribution you are using has not yet provided
you with a newer gcc.) Normally you would just install the newer RPMs for
binutils and gcc instead.

However, if you need to do it “the hard way”, here’s how.

1. Install the binutils assembler to support the CSP instruction:

 - To keep all data in one place, install it into the source directory:
cd /usr/src

 - Check the contents of the tar file: tar -tvzf binutils.tar.gz
 - Unpack the tar file: tar -xvzf binutils.tar.gz
 - Create a directory for the build process to keep it separate from the

source:
mkdir /usr/src/binutils-build

 - Change to the new directory: cd binutils-build
 - Call the script command to capture the terminal messages of the next

step into a file: script binutils.config.out
 - Call configure to prepare for compilation:

../binutils/configure --prefix=/usr/local

 - Exit the script command: exit

Review the messages in the file binutils.config.out, and then compile
binutils by using make.You can capture the terminal messages with the
script command, as done before.

Copy the binaries into /usr/local (the prefix specified during configure
processing) with make install. Note that you have to be root for this
task. It may replace the binutils, including the shared libraries, that are
currently in use. Decide if you want to do a backup of these files before
you call the make install.

 - Change the PATH environment variable to reflect /usr/local/bin (if not
already present).

 - Check the PATH settings with: echo $PATH
 - Set the path variable (example in bash syntax) for the current shell

with:
export PATH=/usr/local/bin:$PATH

2. Install the gcc compiler:

 - As with binutils, start in the source directory: cd /usr/src
 - Check contents of the tar file: tar -tvzf gcc.tar.gz
Chapter 11. System maintenance and upgrade 243

 - Unpack the tar file: tar -xvzf gcc.tar.gz
 - Create a directory for the build process to keep it separate from the

source: mkdir /usr/src/gcc-build
 - Change to the new directory: cd gcc-build
 - Call the script command to capture the terminal messages of the next

step into a file: script gcc.config.out
 - Call the configure to prepare for compilation:

../gcc/configure --prefix=/usr/local \
--enable-languages=”c” \
--with-newlib

 - Exit the script command: exit

Then review the messages in the file gcc.config.out

 - Compile gcc: make
 - You can capture the terminal messages with the script command, as

done before.

The compile lasts a while. It will end with one error in libiberty, which
can be ignored:

make[1]: *** [strerror.o] Error 1
make[1]: Leaving directory
`/usr/src/gcc-build/s390-ibm-linux/libiberty'
make: *** [all-target-libiberty] Error 2

 - Copy the binaries into /usr/local (the prefix specified during configure
processing) using: make install

 - You have to be root for this task. It may replace the gcc, including
shared libraries that are currently in use. Decide if you want to do a
backup of these files before you call the make install.

Now you are positioned to install the new kernel.

11.6.4 Preparing /usr/src/linux
For this task, you have to be in the /usr/src directory. If you already have a
kernel source in this directory, you should have a symbolic link from linux to
linux-2.2.14. Remove this link to avoid overwriting linux-2.2.14.

cd /usr/src

In the tar file, locate the name of the tar root directory:

tar -tvzf /usr/src/download/linux-2_2_15_tar.gz

Untar the file:

tar -xvzf /usr/src/download/linux-2_2_15_tar.gz
244 Linux for S/390

Now you have a directory Linux that contains the linux-2.2.15 source.
Rename it, as follows:

mv /usr/src/linux /usr/src/linux-2.2.15

Then reestablish the Linux link:

ln -s /usr/src/linux-2.2.15 /usr/src/linux

Ensure that both these links point to the new kernel:

ln -sf /usr/src/linux/include/linux /usr/include/linux
ln -sf /usr/src/linux/include/asm /usr/include/asm

Next untar the s390 diff tar file:

tar -xvzf /usr/src/download/linux-2_2_15-s390_diff_tar.gz

This step will provide the file linux-2.2.15-s390.diff that is used with the patch
command.

From the /usr/src directory, patch the original kernel with the S/390
architecture specifications. This patch will assume that the files are in
directory linux-2.2.15:

/usr/bin/patch -sp0 < /usr/src/download/linux-2.2.15-s390.diff

Patch is a very “silent” command, so if you get no feedback, it means it was
successful.

After these steps, your /usr/src directory should look similar to this :

drwxr-xr-x 14 tux1 tuxgrp 4096 Apr 15 08:29 binutils
drwxr-xr-x 10 root root 4096 May 17 18:47 binutils-build
drwxr-xr-x 17 tux1 tuxgrp 4096 May 4 09:44 gcc
drwxr-xr-x 7 root root 4096 May 17 15:05 gcc-build
lrwxrwxrwx 1 root root 21 May 17 15:53 linux ->
/usr/src/linux-2.2.15
drwxr-xr-x 14 1046 xfs 4096 Jan 4 13:12 linux-2.2.14
drwxr-xr-x 14 sujoma sujoma 4096 May 4 20:16 linux-2.2.15

If you are using the kernel NFS daemon knfsd, you will experience problems
when setting the link to the new Linux version. The NFS daemon reads the
file /usr/src/linux/System.map and detects a higher version of the kernel.
You will not be able to start the daemon with the new kernel source directory.
In this case, establish the link to Linux-2.2.14 and work for the next steps
with the Linux-2.2.15 directory instead of the symbolic link Linux.

Note
Chapter 11. System maintenance and upgrade 245

11.6.5 Configure and compile the kernel

For the next steps, change to the directory with the Linux-2.2.15 source:

cd /usr/src/linux

Clean up all extraneous files from any previous kernel builds; that is, remove
all object modules to force a complete rebuild of the kernel:

make clean

If you do not know how to set the parameters, just start with these defaults. It
worked for our installation.

There are three basic frontends provided for you to select the kernel options
you would like to have for this kernel. It doesn’t really matter which one you
choose, although most people use make menuconfig.

All of these frontends produce a file called /usr/src/linux/.config, which is then
used to actually generate the kernel you have specified. It you are unsure of
which values to chose, note that the defaults (provided in
/usr/src/linux/arch/s390/config.in) will produce a working kernel for most
environments.

1. Do a make config (and make oldconfig)

This is the no-frills bash script that prompts for every option and goes through
it step by step. (There is nothing fancy about it, and it should even work with
the 3215 teletype.) The possible answers are specified in brackets after the
question. Default settings are in capital letters. If you type a wrong answer
you cannot go back, but you can exit with Control-C and restart the config
dialog from the beginning. Here is a short example of what it looks like:

[root@linux6 linux-2.2.15]# make config
rm -f include/asm

(cd include ; ln -sf asm-s390 asm)
/bin/sh scripts/Configure arch/s390/config.in
#
Using defaults found in .config
#
*
* Code maturity level options

This section discusses compiling a standard 2.2.xx kernel assuming
that all the S/390-specific code and patches have already been applied.

Note
246 Linux for S/390

*
Prompt for development and/or incomplete code/drivers
(CONFIG_EXPERIMENTAL) [Y/n/?] Y
*
* Processor type and features
*
Symmetric multi-processing support (CONFIG_SMP) [Y/n/?]

There is a slight variation on this called make oldconfig which will
regenerate a kernel using the same settings as found in the (existing)
.config file. This is normally only used when you want to recompile a new
(2.2.15) kernel using the .config file you remembered to copy over from
your last kernel (2.2.14) version. It is even polite enough to recognize
when there are new parameters available which weren’t in the older kernel
source tree, and will ask for clarification if it encounters an unanswered
question.

2. Do a make menuconfig

This is the classic character interface. It will work with any well-behaved
ssh, xterm or telnet session. You can navigate forwards and backwards
through the options and call help functions if you need further explanation.
The first screen of menuconfig is shown in Figure 80 on page 247.

Figure 80. Kernel configuration with menuconfig

You can use the up and down cursor keys to scroll through the various option
lines. You can use Enter to select an option line (a line with “-->” implies that
there is a further menu “behind” this option line).
Chapter 11. System maintenance and upgrade 247

When you get to a question, you can answer it with “space” or one of the
letters as described on the top four lines of the menu. Use the Tab key to
navigate between the body of the application and the bottom line (for
example, to “exit” a submenu and return to the higher level question).

3. Do a make xconfig

Linux also provides an X application to configure the kernel. It is very “point
and shoot”. It does, of course, presume that you already have a kernel up and
running well enough to be using X-windows over TCP/IP.

Decide which tool you want to use and configure the kernel options with:

make menuconfig

When finished, take the exit option. It will ask you if you want to save this
kernel configuration. If you are not satisfied (or if you just wanted to browse
the settings and touched one of them by accident), don’t panic. Just exit, and
answer no to the question save the kernel configuration?

Next, the dependencies for the kernel you have just defined need to be
generated:

make dep

The kernel build itself will write a lot of messages. If you want to keep a
record of this for later, call the script command to capture the terminal
messages:

script /home/sjm/kernel.make

Compile the kernel:

make image

Use the exit command to close the script process. You can review all
messages of the kernel compile in /home/sjm/kernel.make.

The new kernel image is stored in the /usr/src/linux-2.2.15/arch/s390/boot
directory:

[root@linux6 boot]# ls -l
total 1520
-rw-r--r-- 1 root root 1011 May 17 18:24 Makefile
-rwxr-xr-x 1 root root 1507976 May 17 19:51 image
-rw-r--r-- 1 root root 5589 May 17 18:24 ipldump.S
-rwxr-xr-x 1 root root 1024 May 17 19:51 ipldump.boot
-rw-r--r-- 1 root root 8953 May 17 18:24 ipleckd.S
-rwxr-xr-x 1 root root 2048 May 17 19:51 ipleckd.boot
248 Linux for S/390

-rw-r--r-- 1 sujoma sujoma 4866 Jan 4 13:12 iplfba.S
-rwxr-xr-x 1 root root 1024 May 17 19:51 iplfba.boot

If an option M (for module) was selected during kernel configuration, create
the modules:

make modules

Copy them into /lib/modules/linux-2.2.15:

make modules_install

If you find this hard to remember, you can do it on two lines:

make menuconfig
make clean dep modules modules_install image

11.6.6 Install object code only (OCO) modules
If you require an OCO module, you now have to make sure that it is placed in
the correct directory (for example: /lib/modules/2.2.15/net/lcs.o).

Get the /etc/rc.d/rc.sysinit script from the Marist 2.2.15 file system. Note that
it has changed a lot, especially in the module loading section. In 2.2.14, it did
a insmod /lib/modules/2.2.14/lcs.o. Now it looks for the modules with the
depmod command:

[root@linux6 /]# depmod -a -v
/lib/modules/2.2.15/net/lcs-2.2.15.o
/lib/modules/2.2.15/block/xpram.o

This generates /lib/modules/2.2.15/modules.dep for kernel 2.2.15, which is
used to load the modules.

Note: If you receive messages like the following, it probably means that you
have deposited other non-kernel things, such as LICENSE README or
TROUBLESHOOTING) in the /lib/modules/2.2.15 net directory:

modprobe: not an ELF file
modprobe: not an ELF file
modprobe: not an ELF file

To see the file generated by the depmod command:

[root@linux6 2.2.15]# cat modules.dep
/lib/modules/2.2.15/net/lcs-2.2.15.o:
/lib/modules/2.2.15/block/xpram.o:
Chapter 11. System maintenance and upgrade 249

11.6.7 Activate the new kernel
Use one of the bootable devices to activate the kernel. We decided to use the
boot.alternate directory for this. Change into the kernel directory:

cd /usr/src/linux-2.2.15/arch/s390/boot

Copy the files needed for silo to the boot directory. In this case, we were
booting from an ECKD device:

cp -a ipleckd.boot /appl/boot.alternate
cp -a image /appl/boot.alternate/

Create a new boot record on the device that will reflect the new kernel:

silo -f image -d /dev/dasdc -p parm.line -b ipleckd.boot

Now activate kernel 2.2.15. Halt the Linux system and boot it from the device
address reflecting /dev/dasd<n> node specified in the -d option of silo. This
example uses /dev/dasdc.

The booted system will run under kernel 2.2.15:

[root@linux6 /root]# uname -a
Linux linux6 2.2.15 #4 SMP Tue May 17 19:45:19 EDT 2000 s390 unknown

11.6.8 Post-installation steps
xpram driver
Linux 2.2.15 supports the new xpram driver. You might need to create the
device nodes for this new block device with mknod:

mknod /dev/xpram0 b 35 0

Create some xpram nodes just in case you need more than one. The
following list shows the first 5 device nodes for xpram:

[root@linux6 /dev]# ls -l xpr*
brw-r--r-- 1 root root 35, 0 May 18 13:59 xpram0
brw-r--r-- 1 root root 35, 1 May 18 14:00 xpram1
brw-r--r-- 1 root root 35, 2 May 18 14:00 xpram2
brw-r--r-- 1 root root 35, 3 May 18 14:00 xpram3
brw-r--r-- 1 root root 35, 4 May 18 14:00 xpram4

update binary directories
Note that the s390-ibm-linux kernel provides two kernel-dependent utilities
(binaries) dasdfmt and silo, which are created during the kernel compilation
phase, and now need to be moved into your /sbin path.
250 Linux for S/390

Because these utilities are kernel-dependant, and because they might well
change between kernel versions (sometimes referred to as code drops), we
recommend copying them to /sbin with a name that reflects the kernel-tree
which they came from (such as dasdfmt-2.2.15 or silo-2.2.15), and using a
soft link to address them, as follows.

mv /sbin/silo /sbin/silo-2.2.14
mv /sbin/dasdfmt /sbin/dasdfmt-2.2.14
cp /usr/src/linux/arch/s390/tools/silo /sbin/silo-2.2.15
cp /usr/src/linux/arch/s390/tools/dasdfmt /sbin/dasdfmt-2.2.15
ln -s /sbin/silo-2.2.15 /sbin/silo
ln -s /sbin/dasdfmt-2.2.15 /sbin/dasdfmt

If you then chose to revert to an older kernel version, you would need to
change the links back to the appropriate version of the utility.

Many new functions were integrated in the new Marist file system. If you did
not have a lot of modifications done in the file system, we recommend you
install the entire file system available at the Marist Internet page.

Recommendation
Chapter 11. System maintenance and upgrade 251

252 Linux for S/390

Chapter 12. Changing your root device

In this chapter we show you not only how to go from Marist-2.2.14 to
Marist-2.2.15, but also what you might need to know when upgrading
operating systems or going from one distribution level to another. Assuming
that when you finish reading the main part of this redbook, you are
comfortable with UNIX/Linux and equally fluent in the mainframe disciplines,
you should be able to get through an upgrade without any major headaches.

12.1 Upgrading from Marist-2.2.xx to Marist-2.2.yy

Assume the following constellation:

 • You have Marist-2.2.xx up and running.

 • Now there’s a Marist-2.2.yy.

 • You don’t want to lose your data, but you do want to be at the latest level.

 • You decide to install the new system into its own (new) root partition, and
later reuse the older disk for other things.

If you have VM, this task is considerably eased by the fact that you would
probably have a Linux service machine defined where the new disks can be
attached as needed and tailored to your specifications.

If you are running LPAR (or native), or if you are Linux root, but do not have
VM->MAINT authority, then you can also change your root device by following
these steps, adapting them to your needs.

12.2 Preparing a new volume

Assume the following machine:

G5->LPAR->VM/ESA->L390
the CMS “PROFILE EXEC” links the CTCAs and IPLs 0222 clear
Following DASD are defined.
DASD 0200 3390 LINUX2 R/W 200 CYL DASD used as swap
DASD 0222 3390 LINUX4 R/W 2000 CYL DASD current root /
DASD 0224 3390 LINUX2 R/W 1000 CYL CMS
DASD 0235 3390 LINUX7 R/W 3000 CYL DASD used as /data
The parameter line in the boot record on 0200 is as follows:
mdisk= dasd=200,222,235 root=/dev/dasdb1 ro noinitrd

Disk 224 was the CMS disk we used to hold the Marist data, kernels, initrd
and so on. When the Marist-2.2.15 came out, we decided to use it as the new
© Copyright IBM Corp. 2000 253

root device. This meant that when we ran dasdfmt on it, to use it with the
DASD driver, we would be changing the order of “visible” disks when Linux
boots. It would become /dev/dasdc and move device 0235 down to
/dev/dasdd. This was the theory; in practice it worked somewhat differently
than expected.

If you want to think of this in PC terms, consider what happens to a PC with
one SCSI controller and three disks at SCSI id(0,2,4). When you add a new
disk at SCSI id(3), what used to be the third disk is now the fourth.

Linux does not yet have a method for adding new (disk) devices at run-time.
This is being worked on in the 2.3.x series.

Edit the parameter line (in /boot/parmfile, on our system) to reflect the new
device. Use silo to set up the boot record and reboot, expecting the init script
/etc/rc.sysinit (on the Marist distribution) to fail when it hits the unformatted
disk.

It does fail, as shown:

INIT: version 2.74 booting
Checking root filesystem
/dev/dasdb1: clean, 51634/180224 files, 232285/359997 blocks
[OK]
Remounting root filesystem in read-write mode [OK]
Finding module dependencies [OK]
Checking filesystems
(null):
The superblock could not be read or does not describe a correct ext2
filesystem. If the device is valid and it really contains an ext2
filesystem (and not swap or ufs or something else), then the superblock
is corrupt, and you might try running e2fsck with an alternate
superblock:
 e2fsck -b 8193 <device>

fsck.ext2: Bad magic number in super-block while trying to open
/dev/dasdc1
[FAILED]

*** An error occurred during the file system check.
*** Dropping you to a shell; the system will reboot
*** when you leave the shell.
Give root password for maintenance

We are now in “single user mode”, run level 1, with no network and only the
root disk mounted, running through a teletype. This is exactly the environment
254 Linux for S/390

needed for changing things like /etc/fstab and mount points—if you can avoid
it, do not have your system fully up, with all services and users.

[root@linux3 /root]# df
df
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/dasdb1 1417324 906476 438852 67% /

Verify that the new disk has been seen correctly, as follows:

[root@linux3 /root]# cat /proc/dasd/dev*
dev# MAJ minor node Format
0200 94 0 /dev/dasda 4096
0222 94 4 /dev/dasdb 4096
0224 94 8 /dev/dasdc 4096
0235 94 12 /dev/dasdd 4096

The new disk at 224 used to be CMS, but we now want it to become DASD, so
we format it with dasdfmt -b 4096 -n 224 and mke2fs -b 4096 /dev/dasdc1 to
put a file system on it.

Now we fix /etc/fstab to move device 235, the old “third disk”, to “fourth disk”.
We only have a teletype, so we’ll use sed, the stream editor.

Here’s the old fstab file:

cat fstab

/dev/dasda1 none swap sw 0 0
/dev/dasdb1 / ext2 defaults,errors=remount-ro 0 1
/dev/dasdc1 /data ext2 defaults 0 2
none /proc proc defaults 0 0

We substitute all dasdc1 with dasdd1:

sed "s/dasdc1/dasdd1/g" fstab > fstab.new

Here is the result:

cat fstab.new
/dev/dasda1 none swap sw 0 0
/dev/dasdb1 / ext2 defaults,errors=remount-ro 0 1
/dev/dasdd1 /data ext2 defaults 0 2
none /proc proc defaults 0 0

It looks good, so we add a line for the new dasdc1 to be mounted at /newroot.
The sort is just a way of moving it from /etc/fstab.new to /etc/fstab and making
it more readable:

echo ’/dev/dasdc1 /newroot ext2 defaults 0 3’ >>/etc/fstab.new
Chapter 12. Changing your root device 255

sort /etc/fstab.new -o /etc/fstab

After verifying that /etc/fstab looks OK, we add a new top-level directory
mount point for the newroot file system when it comes back up.

mkdir /newroot
sync
shutdown -r now

After the system comes back, and we verify that the disks are mounted
correctly, we need to untar the Marist big file system onto the new root disk.
We mount the transfer directory from a laptop via NFS and untar the Marist
initfs_big.tgz. (This route was chosen because the target disk was too small
for both the tar file itself and the payload it carried.)

root@linux3:/ $ df
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/dasdb1 1417324 906544 438784 67% /
/dev/dasdc1 479468 20 454700 0% /newroot
/dev/dasdd1 2126008 1129624 888388 56% /data
glurp:/home/higson/xfer
 3809728 2746232 869964 76% /glurp
$ (cd /newroot ; tar xvzBf /glurp/dist/MARIST-5-19-00/initfs_big.tgz)

Now we need to save some of the personality of the old root disk on the new
one. You can type in a small loop to do the copying, as opposed to doing each
copy on a separate line:

$ for i in hosts profile passwd passwd- resolv.conf syslog.conf
> do
> echo copying $i
> cp /etc/$i /newroot/etc
> done
copying hosts
copying profile
copying passwd
copying passwd-
copying resolv.conf
copying syslog.conf
root@linux3:/newroot $

You can pick up some other files, as well:

cp /usr/local/bin/* /newroot/usr/local/bin
cp /etc/sysconfig/network /new/root/etc/sysconfig
cp /etc/sysconfig/network-scripts/ifcfg-ctc0 \

/new/root/etc/sysconfig/network-scripts

The new root disk will also need the mount points for the other file systems:
256 Linux for S/390

mkdir /newroot/data /newroot/oldroot

Now we need to edit /newroot/etc/fstab (which will become /etc/fstab when
we boot from there). Note that many distributions use an fstab, with very nice
spacing and all the arguments aligned with tabs or blanks to make it look
pretty. This doesn’t get you much on the S/390, because you might need to
edit it with echo, sed, and other “teletypisms”.

/dev/dasda1 none swap sw 0 0
/dev/dasdc1 / ext2 defaults,errors=remount-ro 0 1
/dev/dasdb1 /oldroot ext2 defaults 0 2
/dev/dasdd1 /data ext2 defaults 0 3
none /proc proc defaults 0 0

After copying /boot/* to /newroot/boot, we ran /newroot/sbin/silo from
/newroot/boot.

It looks OK, so we tried a shutdown:

shutdown -h now

After editing the boot exec a script to reflect the new boot device (224), we
expected the system to come up smoothly, but instead it stopped with a CP
message complaining about running S/370 code.

As a workaround, we reformatted the disk with format 224 d under CMS and
rebooted from 222. We did not use the dasdfmt utility, but instead did a mke2fs
/dev/dasdc1. We repopulated /newroot as previously described, pulled over
the “personality files” (/etc/passwd et al), and did silo in /newroot/boot. We
then rebooted to CMS, changed the boot exec over to 224 again and
rebooted from 224. This time it worked.

12.3 Summation

So what can we conclude from this experience? Possibly the problem lies
with the consolidated DASD driver and its view of disk and partition geometry.
silo writes a boot block telling the dasd-ipl code where to find the kernel,
parm card and possible initrd; these being given as absolute disk blocks
relative to the start of the partition. The start of the partition will be an integer
number of blocks from absolute zero (0).

Keep in mind that at the time of writing, Linux for S/390 had only been public
for a few months—and it is surprisingly mature for a port of this age. However,
there were major changes in the 2.2.14 and 2.2.15 DASD drivers, and the
system used had also been used to develop 2.2.15 and 2.2.16_pre4 kernels,
Chapter 12. Changing your root device 257

so this was very definitely a “developers’ machine” and not set up for steady
production.

Presumably, after Linux for S/390 distributions from SuSE, TurboLinux and
Debian become available, the combination of kernel drivers, tool chains and
libraries will have stabilized considerably.
258 Linux for S/390

Chapter 13. Hardware connectivity

This chapter discusses some of the hardware interfaces that can be used on
S/390 in connecting a Linux for S/390 to the network.

13.1 OSA-2

OSA-2 provides SNA/APPN/HPR and TCP/IP applications with direct access
to Ethernet, Token Ring, Fiber Distributed Data Interface (FDDI), and
Asynchronous Transfer Mode (ATM) local area network clients; see Figure 81.

Figure 81. OSA-2 ENTR, FDDI, ATM, and FENET features

OSA-2 offers integrated, industry-standard LAN connectivity in a seamless
manner, helping to reduce the total cost of computing and enhancing
investments in local area networks (LANS). OSA-2 can use the current LAN
infrastructure to provide connectivity to LAN backbones, other servers, high
speed workstations, intelligent hubs, repeats, and routers in a
heterogeneous, multivendor environment.

S/390 Server

ATM,
Frame Relay
Network

SwitchSwitch

SDLC

X.25

V.35

Switch/Router

Ethernet
10/100 Mbps

Switch/Router

Token Ring
4/16 Mbps

ATM
Network

155Mbps
ATM

FDDI
100 Mbps

OSA-2
© Copyright IBM Corp. 2000 259

OSA-2 is an integrated hardware feature that has been implemented as a
channel type on S/390 servers. It appears to application software as a
channel-attached device. The small size of the hardware package allows the
feature to be plugged into an I/O slot in a Central Processing Complex (CPC)
or I/O expansion cage of the S/390 server.

OSA-2 is defined to the hardware as a new type of S/390 channel. As such, it
is highly integrated into the hardware configuration to take advantage of the
availability characteristics of S/390 servers.

The OSA-2 features are supported by the S/390 Open Systems Adapter
Support Facility (OSA/SF) program product. OSA/SF allows you to customize
the OSA-2 hardware to run in different modes. In some cases, the use of
OSA/SF is optional, while in others it is required. It includes software that may
be installed to run on a PC to communicate with OSA/SF on the host system
and the OSA hardware feature. This product delivers a simple means to
configure and manage OSA-2 and to download software updates (to the
OSA-2 adapter) for supported applications.

When the S/390 server is running in LPAR (logically partitioned) mode, it is
possible to configure OSA-2 so that any or all LPARs may share the same
LAN connection. This is called port sharing. Port sharing support is provided
by OSA/SF.

13.1.1 OSA-2 features
The OSA-2 Ethernet/Token Ring (ENTR) feature has two independent ports.
These can be configured in either half duplex or full duplex as one of the
following:

 • Two 10Mbps Ethernets

 • Two 4/16 Mbps Token Rings

 • One 10 Mbps Ethernet and one 4/16 Mbps Token Ring

This provides maximum flexibility.

The OSA-2 FDDI feature has one 100 Mbps port that supports single ring or
dual ring attachment, as well as attachment to an optical bypass switch.

The OSA-2 ATM feature has one 155 Mbps physical port and two logical ports
that provide access to Ethernet and Token Ring LANs, and Wide Area
Networks (WANs), attached to a high-speed ATM network. Each logical port
is configured independently and supports TCP/IP, SNA/APPN, or both,
260 Linux for S/390

depending on the configured mode of operation. There is a single mode and a
multimode fiber OSA-2 ATM feature.

The OSA-2 Fast Ethernet (FENET) feature has one port that can be attached
to either a 100 Mbps or 10 Mbps Ethernet LAN, in either full duplex or half
duplex mode. It uses auto negotiation to set the LAN speed and duplex mode
of the port. The port LAN speed and duplex mode can also be set explicitly.

13.1.2 OSA-2 modes
With the introduction of OSA/SF for OS/390 V2R1, VM/ESA, and VSE/ESA, a
graphical user interface (GUI) supporting Microsoft Windows 95 and Windows
NT is now available, as well as the current OS/2 GUI, making it easier to find
a nondedicated workstation to run the client application.

The OSA-2 can be configured, using OSA/SF, into several mode
combinations depending on your system and network requirements:

 • TCP/IP Passthru Mode (nonshared port)

In this mode, an OSA-2 port is capable of transferring TCP/IP LAN traffic
to and from just one TCP/IP host or logical partition. This is the default
mode of OSA-2 and does not require configuration using OSA/SF.

 • TCP/IP Passthru Mode (shared port)

In this mode, an OSA-2 port is capable of transferring TCP/IP LAN traffic
to and from more than one TCP/IP host within multiple logical partitions.
The use of OSA/SF is required for this configuration.

 • SNA Mode (nonshared port)

In this mode, an OSA-2 port is capable of transferring SNA LAN traffic to
and from just one SNA host. The use of OSA/SF is required for this
configuration.

 • SNA Mode (shared port)

In this mode, an OSA-2 port is capable of transferring SNA LAN traffic to
and from multiple SNA hosts in different logical partitions. The use of
OSA/SF is required for this configuration.

 • TCP/IP and SNA Mixed Mode (shared port)

In this mode, an OSA-2 port is capable of transferring TCP/IP and SNA
LAN traffic to and from more than one TCP/IP and SNA logical partition.
The use of OSA/SF is required for this configuration.

 • TCP/IP and SNA Mixed Mode for OSA-2 ATM LAN Emulation (ATM LE)
Chapter 13. Hardware connectivity 261

In this mode, the one physical ATM port may be configured into two logical
ports. Each logical port may then be configured to support TCP/IP, or SNA
traffic, or both. Each logical port is capable of transferring TCP/IP and
SNA LAN traffic to and from one or multiple TCP/IP and SNA logical
partitions. The use of OSA/SF is required for this configuration.

 • HPDT ATM Native Mode for APPN and TCP/IP (Classical IP RFC1577)

In this mode, the OSA-2 adapter supports Permanent Virtual Channels
(PVC) and Switched Virtual Channels (SVC) for APPN and TCP/IP
connections.

The ATM network media may be either multimode or single-mode fiber
optic cables. An OSA-2 running in HPDT ATM Native mode cannot support
any other mode at the same time. The use of OSA/SF is required for this
configuration.

 • ATM IP Forwarding (RFC 1483)

In this mode, the OSA-2 adapter supports direct connectivity to the Wide
Area Network (WAN), allowing consolidation of WAN data traffic and
carrying it on a single LAN backbone.

TCP/IP traffic is carried over ATM between the S/390 OSA-2 ATM card and
the Ascend B-STDX 8000 and 9000 Multiservice WAN platforms. The
Ascend switch then translates the protocol from ATM into a WAN protocol -
Frame Relay or Switched Multimegabit Data service (SMDS). If the
incoming or outgoing traffic is not Frame Relay, the switch encapsulates
the data (for example: X.25/HDLC, SNA/SDLC). The switch can also
convert protocols such as Point-to-Point Protocol (PPP) (for example: IP,
Netware SPX/IPX) into Frame Relay. The use of OSA/SF is required for
this configuration.

For further information on OSA-2, see S/390 I/O Connectivity Handbook,
SG24-5444.

13.2 The 2216 hardware interface

The 2216 is another hardware interface you can use on S/390 to connect your
Linux for S/390 system. The 2216 Nways Multiaccess Connector functions as
a host gateway for SNA/APPN and TCP/IP applications and devices attached
to LANs, WANs, and ATM. The 2216 Model 400, which has eight slots for
network adapters and one for a system card, supports two different channel
adapters for channel attachment, one being an ESCON channel adapter and
the other a Parallel channel adapter. Of the eight slots available for network
adapters in the 2216, up to four channel adapters for ESCON/parallel or a
262 Linux for S/390

mixture of ESCON and PARALLEL can be used. The Escon channel adapter
can attach directly to the mainframe ESCON channel or an ESCON director.

13.2.1 2216 ESCON channel adapter features
The ESCON 2216 channel adapter provides access to SNA and TCP/IP
applications from LANs, WANs, and ATM over a duplex-to-duplex multimode
fiber cable. The adapter features some of the following:

 • Up to four ESCON adapters are supported in the 2216.

 • Support of 64 subchannel addresses with software program MAS V3R2
PTF01 providing the 2216 with access to 16 hosts using LCS (LAN
Channel Station) protocol.

 • Connectivity provided for Ethernet, Token-Ring, FDDI, and ATM.

13.2.2 2216 ESCON channel protocols
The IBM 2216 ESCON channel adapter supports three types of channel
protocols: LAN Channel Station (LCS), Link Services Architecture (LSA), and
Multi-Path Channel (MPC). Each channel protocol supports several network
protocols with LSA supporting SNA only and MPC+ also supporting both SNA
and TCP/IP.

LCS is a channel protocol supported by TCP/IP host applications on the host.
Each application defines a consecutive pair of subchannels with one for
TCP/IP to read and the other for TCP/IP to write.

LSA is an interface to support SNA traffic over the channel. Each LSA path is
a single bidirectional subchannel between the host application and the 2216
ESCON channel adapter. The host SNA application (VTAM) issues a READ
command immediately following each WRITE command to receive data from
the channel.

MPC+ is a Data Link Control interface on the channel. Each MPC+ path
consists of one or more read subchannels and one or more write
subchannels. These subchannels are bound together to form a transmission
group. VTAM and the 2216 ESCON adapter exchange XIDs to identify the
number and direction of subchannels at initialization, and then each frame
has a header to indicate the sending/receiving applications.

In the 2216, all subchannels are connected to the base net handler, which in
turn is connected to one or more virtual handlers. This differs from the 3172
ICP (Interconnect Controller Program), in which each subchannel is
connected to one or more real LAN adapters. Each virtual net handler
Chapter 13. Hardware connectivity 263

supports one of the three channel protocols (LCS, LSA, MPC) and
sends/receives the data to another net handler representing a network
connection. There may or may not be any real LAN adapters connected to the
2216. As a gateway between the host and users, the 2216 creates an
appearance of a LAN adapter so that the host application believes it’s
communicating with a real LAN.

For further information on 2216, see IBM 2216 and Network Utility Host
Channel Connections, SG24-5303.

13.3 CTC

The channel-to-channel function simulates an S/390 I/O device that can be
used by a system control program to communicate with another system
control program. It provides the data path and synchronization for data
transfer between two channels. When the CTC option is used to connect two
channels that are associated with different systems, a loosely coupled
multiprocessing system is established. The CTC connection, as viewed by
either of the channels it connects, has the appearance of an unshared I/O
device.

13.3.1 CTC support
The CTC is selected and responds in the same manner as any I/O device. It
differs from other I/O devices in that it uses commands to open a path
between the two channels it connects and then synchronizes the operations
performed between the two channels.

Channel-to-channel (CTC) support exists for:

 • Parallel channels via 3088 Multisystem Channel Communication Unit
(MCCU)

 • ESCON channels

 • FICON channels via ESCON Director with the FICON Bridge Feature

In the Parallel channel environment, CTC connection is available via the 3088
MCCU device.

The Parallel channel can operate in either basic mode or extended mode. In
basic mode, the channel provides basic communication functions. In
extended mode, the channel provides communication functions in addition to
those of basic mode and provides sense information to clarify errors and
other unusual conditions.
264 Linux for S/390

The ESCON CTC is an IOCP configuration option of an ESCON-capable
processor. The CTC option is specified in the IOCP configuration, which
results in the CTC microcode being loaded into the ESCON channel
hardware at power-on-reset (POR). ESCON channels that operate in CTC
mode (also called Serial CTC or SCTC) support both extended mode and
basic mode operations.

FICON channels allow faster and more efficient data transfer, while at the
same time allowing customers to use their currently installed single-mode and
multimode fiber optic cable. FICON provides all the strengths of ESCON
while increasing the link rate from 20 MB/sec up to 100 MB/sec. The FICON
implementation enables full duplex data transfer, so data travels in both
directions simultaneously, rather than as with ESCON half-duplex data
transfer. The FICON channel on a S/390 Generation 5 and 6 connects to an
ESCON Director 9032 Model 5 containing a FICON bridge card. This card
enables existing ESCON control units, without changes, to exploit the new
FICON channel.

For further information on CTC, see S/390 I/O Connectivity Handbook,
SG24-5444.
Chapter 13. Hardware connectivity 265

266 Linux for S/390

Chapter 14. Linux TCP/IP connectivity

This chapter covers some of the aspects of Linux connectivity using TCP/IP.
We begin with a short explanation of the most common TCP/IP protocols
used in Linux and continue with a discussion of IP addressing. We move on
with short descriptions of the diverse configuration files, scripts, and
daemons. These are followed by a description of a few of the troubleshooting
tools that are available to you on your Linux machine. Finally, we close with
how you can connect to your data and applications.

14.1 Assumptions

We assume that you are running the Marist Linux for S/390 big file system.
Further, you should have the following files on your Linux for S/390 system:

 • /etc/hosts

 • /etc/services

 • /etc/protocols

 • /etc/HOSTNAME

 • /etc/inetd.conf

 • /etc/rc.d/init.d/network

We also assume that your network is up and running with such programs as
ping, netstat, ifconfig, route, telnet, and ftp available for your use.

We will be giving you a guided tour through some of the more important
corners of your Linux networking environment. A detailed discussion of the
TCP/IP protocol itself is beyond the scope of this chapter. For coverage of this
subject we refer you to G.3, “Other resources” on page 506.

14.1.1 Skills
You will need to be able to edit a text file and download from the Internet, and
have a sense of adventure. We also assume that you know how to navigate
through the Linux for S/390 file system.

14.2 TCP/IP protocols

We give you a list and brief description of the standard protocols used in IP
networking. These protocols are from the Transport Layer, which rests on top
of the Network Layer in which IP operates. IP is a connectionless and
© Copyright IBM Corp. 2000 267

unreliable protocol that just sends the datagrams it is given over the net. The
Transport Layer protocol adds reliability to the Network Layer (IP). To give you
a reference point as to where we are in the OSI Networking Model, we show
the lower four layers in Table 26. Note that we give just a few examples of
what belongs in which layer.

Table 26. OSI model

14.2.1 Transmission Control Protocol (TCP)
Transmission Control Protocol was developed on top of IP to provide the
reliability mechanism that is absent from IP. It manages the disassembly of a
mass of data into a stream of datagrams and passes these to the Network
Layer, which uses IP to send them to the receiving machine. On the receiving
machine TCP receives the datagrams from the Network Layer and
reassembles them into a stream of data. This is a connection-oriented
protocol that uses acknowledgments to ensure that each of the sent
datagrams has arrived. If a datagram is missing from the delivered stream,
TCP ensures that it is resent.

14.2.2 User Datagram Protocol (UDP)
User Datagram Protocol uses a single datagram to send a message from one
machine to another. This protocol is usually used for networking
housekeeping tasks. It is a connectionless protocol that sends its datagrams
out onto the net and does not check whether they are delivered to the given
address.

14.2.3 Internet Control Message Protocol (ICMP)
The Internet Control Message Protocol is used to carry control messages
across the Internet. Internet hosts communicate with each via these
messages. In most cases, applications do not use this protocol. Examples of
applications that use ICMP are ping and traceroute, which are discussed
later in this chapter.

OSI Model

4. Transport Layer (TCP, UDP, ICMP)

3. Network Layer (IP)

2. Datalink Layer (Token Ring, Ethernet)

1. Physical Layer (Twisted Pair, Coax)
268 Linux for S/390

14.3 IP address types

There are two ways of getting a machine connected to the network using IP
addresses: with a static address or with a dynamic one.

14.3.1 Static IP addresses
Static IP addressing is done by your network administrator assigning TCP/IP
addresses to identify the clients in your network. These static TCP/IP
addresses were defined as part of the installation of your Linux system. See
Chapter 5, “Native S/390 installation and operation of Linux” on page 45 and
Chapter 6, “VM installation and operation of Linux for S/390” on page 85. You
have a permanent address that will only change if your network administrator
assigns your Linux for S/390 machine a new one. This should not happen
very often.

14.3.2 Dynamic IP addresses
Dynamic IP addressing differs from static IP addressing in that your
addresses are obtained from a Dynamic Host Control Protocol (DHCP)
server, which is responsible for answering any DHCP requests from clients
who want an address on the network.

A DHCP client would request an IP address (at boot time, for example) from a
DHCP server, which returns an IP address. If the server name is not known
beforehand, then the client broadcasts its request out onto the net. The
address comes with a lease, which basically gives the client a limited period
during which the address is valid. When a client using DHCP logs on again, it
first checks its DHCP lease database. If the client has a valid lease, the client
tries to access the network with the IP address that is associated with that
lease. If it fails, then the DHCP server is asked once again to provide a new
IP address, which in turn will have a new lease. If the lease database no
longer contains a lease that is valid, then the client just asks the DHCP server
for another IP address and the process starts at the beginning.

14.4 Configuration files

The files we describe here hold information that networking programs use as
they run. They can all be found in the /etc/ directory.

14.4.1 The hosts file
The hosts file holds a text database consisting of the host names and IP
addresses of the hosts your Linux for S/390 system will need before being
Chapter 14. Linux TCP/IP connectivity 269

able to contact its Domain Name Server (DNS). For more on DNS see
Chapter 18, “Domain Name Service (DNS)” on page 349. The database is
read to resolve these host names into their IP addresses. The lines have the
following syntax, with one line for each host entry:

numerical.IP.address internet.hostname [nickname]

For example, the entry in hosts for the mailhost machine on the example
network could be:

9.9.9.9 mailhost.example.com mailhost

Note that it is possible to give a host more than one nickname. This form of
host resolving is not very scalable and will only remain useful for small
intranets, because with more than four or five hosts in a network the
administration overhead gets out of hand. The solution to this is to move to
DNS.

14.4.2 The services file
The services file names the networking services that your Linux for S/390
machine provides to other hosts on the network, identifying the port and
host-to-host protocol that the service uses. The entries in this file have the
following syntax, with one entry for each service offered:

service_name IP_port / udp | tcp

For example, the entry in services for the telnet service could be:

telnet 23/tcp
telnet 23/udp

This shows that telnet uses port 23 and can use either TCP or UDP as the
transport protocol.

14.4.3 The protocols file
The protocols file names the TCP/IP protocols that your Linux for S/390
system recognizes and assigns a number to each. You will most likely never
need to edit this file. An example of what we found on our version of the
Marist Linux for S/390 big file system follows:

/etc/protocols:
$Id: protocols,v 1.1 1995/02/24 01:09:41 imurdock Exp $
#
Internet (IP) protocols
#
from: @(#)protocols5.1 (Berkeley) 4/17/89
#

270 Linux for S/390

Updated for NetBSD based on RFC 1340, Assigned Numbers (July 1992).

ip 0 IP # internet protocol, pseudo protocol number
icmp 1 ICMP # internet control message protocol
igmp 2 IGMP # Internet Group Management
ggp 3 GGP # gateway-gateway protocol
ipencap 4 IP-ENCAP # IP encapsulated in IP (officially ``IP'')
st 5 ST # ST datagram mode
tcp 6 TCP # transmission control protocol
egp 8 EGP # exterior gateway protocol
pup 12 PUP # PARC universal packet protocol
udp 17 UDP # user datagram protocol
hmp 20 HMP # host monitoring protocol
xns-idp 22 XNS-IDP # Xerox NS IDP
rdp 27 RDP # "reliable datagram" protocol
iso-tp4 29 ISO-TP4 # ISO Transport Protocol class 4
xtp 36 XTP # Xpress Tranfer Protocol
ddp 37 DDP # Datagram Delivery Protocol
idpr-cmtp 39 IDPR-CMTP # IDPR Control Message Transport
rspf 73 RSPF #Radio Shortest Path First.
vmtp 81 VMTP # Versatile Message Transport
ospf 89 OSPFIGP # Open Shortest Path First IGP
ipip 94 IPIP # Yet Another IP encapsulation
encap 98 ENCAP # Yet Another IP encapsulation

14.4.4 The HOSTNAME file
This file holds your Linux for S/390 machine’s name. For example, if you
named your machine heaven.linux.com, then the contents of your
HOSTNAME will read:

heaven

You will have done this during the installation of your Linux for S/390
machine, and if you ever want to rename your Linux for S/390 machine, then
you would have to, among other things, edit this file. This can be done by
hand or with the hostname command. Refer to its man page for further details.

14.4.5 The inetd.conf file
This configuration file is read by inetd, the TCP/IP super server, which is
covered in 14.6.1, “Overview of inetd” on page 272.

Each line in this file describes how inetd handles one service. The syntax is
as follows, with the entry fields separated by a tab or space:

service name
Chapter 14. Linux TCP/IP connectivity 271

socket type
protocol
wait/nowait[.max]
user[.group]
server program
server program arguments

Simply, each line gives inetd the ports to which it should listen and the server
that it should activate to handle traffic on a given port.

For example, to specify the standard telnet service, the entry could look like
the following line taken from our Linux for S/390 machine:

telnet stream tcp nowait root /usr/bin/tcpd in.telnetd

This tells inetd that when a connection request occurs on the telnet port, it
should activate the telnetd daemon by running /usr/bin/tcpd with the
argument in.telnetd. For more information, see the inetd.conf and tcpd man
pages.

14.5 The network script

This script is found in the /etc/rc.d/init.d/ directory and is called from the main
system boot script, rc.sysinit. The network script ensures that commands
are executed to activate your TCP/IP networking resources, which include
connections, interfaces, and daemons.

The location of this script will vary from distribution to distribution. We
describe only the Marist Linux big file system networking script here. For
more detailed information, see the documentation that should come with your
distribution.

14.6 Network daemons

This section discusses several daemons that are related to networking.

14.6.1 Overview of inetd
Often the design of servers in a client/server environment is the same: a
process daemon listens on a well-known TCP/IP or UDP/IP port and when a
request for a service comes in, another process daemon is started, or forked,
to communicate with the client. Rather than having the same code duplicated
many times in many servers, a generic listener or super-server named
InterNET services daemon (inetd) is used. It is a server designed to listen
on many well-known ports for incoming connection requests. When a
272 Linux for S/390

connection request is received, the socket is accepted and then inetd forks
and executes the appropriate server. Using a generic listener reduces system
load by only running applications when they are needed.

Linux for S/390 uses inetd to start the following services and invoke the
corresponding servers:

Service Server command invoked
ftp /usr/sbin/tcpd in.ftpd -l -a
telnet /usr/sbin/tcpd in.telnetd
shell /usr/sbin/tcpd in.rshd
login /usr/sbin/tcpd in.rlogind
talk /usr/sbin/tcpd in.talkd
ntalk /usr/sbin/tcpd in.ntalkd
finger /usr/sbin/tcpd in.fingerd
auth /usr/sbin/in.identd in.identd -l -e -o

Refer to 24.7, “Use a tcp wrapper (tcpd)” on page 438 for more information
about the tcpd program. These servers are specified in the configuration file
/etc/inetd.conf, which we discussed in 14.4.5, “The inetd.conf file” on page
271. The ports that inetd knows are specified in the file /etc/services and the
ports listened to are specified in inetd.conf.

Because the service name is the link between the two files, the grep
command can be used to determine the well-known port numbers and which
server is started. For example, the following grep command shows that the ftp
well-known ports are 20 and 21, and that in.ftpd is started by inetd:

[mikem@itsolinux1 mikem]$ grep ^ftp /etc/inetd.conf /etc/services
/etc/inetd.conf:ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd -l -a
/etc/services:ftp-data 20/tcp
/etc/services:ftp 21/tcp

14.6.2 Telnetd
Telnetd is the server daemon that handles telnet connections. It is activated
by inetd whenever a datagram arrives at the telnet port 23 and if the service is
activated in inetd.conf. Telnetd then negotiates the parameters of the
connection between the sender to the port and the receiver (itself). When it
finishes with the connection, it returns control of the port to inetd.

Telnetd operates by allocating a pseudo-terminal for a client, then creating a
login process that runs the slave side of the pseudo-terminal. Telnetd
manipulates the master side of the pseudo-terminal and when it starts up, it
sends options to the client for setup. Refer to the telnetd man page for a full
listing of the options.
Chapter 14. Linux TCP/IP connectivity 273

14.6.3 Ftpd
The File Transfer Protocol daemon, ftpd, is covered in 17.6.2, “The FTP
daemon” on page 338 and mentioned in 24.6, “Use scp instead of FTP” on
page 437.

14.6.4 Syslogd
It is worth mentioning here that you can have the logging done by syslogd to
trace and track any problems you might be having in your Linux network. The
messages that are generated and logged by this daemon are described in
9.9, “System logs” on page 203. The configuration file syslog.conf is also
covered in that section.

14.7 Troubleshooting

In this section we discuss some helpful tools to track down problems you may
have with your network connections. Some are reporting tools to track the
status of your network. Others can be used to manipulate networking
definitions that are related to your networking environment.

14.7.1 The ping command
The ping command is used to send out an echo request to determine if a host
is accessible. This command is useful for troubleshooting problems in your
network and for determining which resources are available. The command
syntax is as follows:

ping [options] host

For a complete listing and description of the options, see the ping man page.
The host option may be either an IP address or the Internet domain name.
The following is an example from a ping command using, first, www.ibm.com:

$ PING www.ibm.com (198.133.16.99): 56 data bytes
64 bytes from 198.133.16.99: icmp_seq=0 ttl=255 time=0.0 ms
64 bytes from 198.133.16.99: icmp_seq=1 ttl=255 time=0.0 ms
64 bytes from 198.133.16.99: icmp_seq=2 ttl=255 time=0.0 ms

and then using an IP address:

$ PING 9.12.9.180 (9.12.9.180): 56 data bytes
64 bytes from 9.12.9.180: icmp_seq=0 ttl=255 time=0.0 ms
64 bytes from 9.12.9.180: icmp_seq=1 ttl=255 time=0.0 ms
64 bytes from 9.12.9.180: icmp_seq=2 ttl=255 time=0.0 ms
274 Linux for S/390

This tool is also very handy for determining the quality and speed of your
network connections as you can see by the output.

14.7.2 The netstat command
The netstat command displays the status of the network. Information shown
consists of TCP/IP connections, gateways, network clients, and routing
information. The command syntax is as follows:

netstat [options]

One of the most common options is -r, which shows your kernel routing table.
The following is a sample output (with addresses changed to protect the
innocent):

$ netstat -r
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
9.9.9.13 * 255.255.255.255 UH 0 0 0 ctc0
9.9.9.14 * 255.255.255.0 U 0 0 0 ctc0
127.0.0.0 * 255.0.0.0 U 0 0 0 lo
default 9.9.9.13 0.0.0.0 UG 0 0 0 ctc0

For a complete listing and description of the options, see the netstat man
page.

14.7.3 The ifconfig command
This command is used to activate or shut down an interface. You can use it for
such interfaces as channel-to-channel, Inter User Communication Vehicle,
Token Ring, Ethernet, PPP and loopback devices.

The command syntax has two options:

 • ifconfig [interface]

 • ifconfig interface [aftype] options | address ...

The first line is a syntax example for using ifconfig as a reporting tool. If you
leave the interface option blank, you get a complete listing of the active
interfaces on your Linux for S/390 machine. For example, when ifconfig is
executed on our Linux for S/390 under VM/ESA machine, the following output
is generated:

$ /sbin/ifconfig
ctc0 Link encap:Serial Line IP
 inet addr:9.12.9.180 P-t-P:9.12.9.174 Mask:255.255.255.255
 UP POINTOPOINT RUNNING NOARP MTU:1500 Metric:1
 RX packets:3092 errors:0 dropped:0 overruns:0 frame:0
Chapter 14. Linux TCP/IP connectivity 275

 TX packets:2120 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:3924 Metric:1
 RX packets:168 errors:0 dropped:0 overruns:0 frame:0
 TX packets:168 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0

Note that the command is executed from the /sbin directory. This is only to
show how a non-root user on your system can also execute this command.

In the output you see that there are two interfaces defined, a
channel-to-channel device and a loopback device. For more information, see
the ifconfig man page.

The second line of the syntax shows you the options for actually setting up an
interface. The elements of the syntax are as follows:

interface - this names the actual interface (tr0, eth0, ctc0...).

aftype (address families) - the name of a supported address family.

options - see man page for more details.

address - the IP address to be assigned to this interface.

We would like to caution you about attempting to set up an interface before
you are comfortable with this command. For more information, we refer you to
the ifconfig man page.

14.7.4 The route command
The route command—or, to be more precise, the root user using the route
command—is used to manipulate the Linux kernel’s routing table. The kernel
uses its routing table to determine which interface has access to which hosts.
This process is managed by the router daemon; we refer you to the man page
for more information.

Because this command manipulates the network routing table of the Linux
kernel, it should only be used when you know what you are doing. We
suggest that you use the netstat -rn command instead for reporting. For
more, consult your network administrator, and if that is you, we suggest some
serious research into this subject before attempting to manipulate the kernel’s
routing tables with route. You have been warned!
276 Linux for S/390

14.8 Access to data and applications

In this section we describe a few applications that give you various ways to
connect to your Linux for S/390 data and applications. We describe both
secure and not-as-secure connection methods.

14.8.1 The telnet command
The telnet program allows you to connect to a remote machine and log on
just as if it were your local machine.

telnet can also be used to connect to remote machines and use programs
like ftp. For example, from your own Linux3 machine you access a remote
machine called Linux1 with telnet and then connect to another machine,
Linux2, with the ftp program. You are now connected from your own Linux 3
machine to the Linux1 machine via telnet, which is then connected to Linux2
via the ftp program, and you are remotely copying data from Linux2 to
Linux1. The possibilities are endless!

Telnet supports both full-screen and line-mode emulation using the ASCII
character set. The telnet program can be invoked with either an IP address
or the name of the host you are trying to connect to. Following is an example
of the telnet command accessing a host by IP address:

$ telnet 192.145.122.11

After entering this command, you will then be asked to log onto the machine
as if you were sitting in front of it.

14.8.1.1 The X-Windows system
We offer a short overview of the X-Windows system and show you a nice way
to get around the fact that at this point in time, the X-Windows server is not
available on your Linux for S/390 machine.

X-Windows uses the concept of a client and a server, but not as you might
think. The server in this model drives the hardware to actually draw the
graphical image (i.e., window) on the screen. The client is a program that
requests a service from the X-Window server, namely that the server provide
the actual drawing on the display to which the X-Window server is attached.
When using this system over a network, the X-Window server resides on the
machine where the graphics card and monitor are attached. The client is the
program that can be running anywhere and only makes use of the X-Windows
server to display its graphical interface.
Chapter 14. Linux TCP/IP connectivity 277

We now provide an example of these techniques by running a program on
your Linux for S/390 machine and using the X-Windows server on your local
Linux machine (PC). This is an often-used trick to get around the fact that
telnet has no X-Windows capabilities. We will be accessing our remote
Linux1, which is a Linux for S/390 under VM/ESA machine, using telnet from
our Linux desktop PC and exporting the display to our local X-Windows
server on our Linux desktop PC. The steps are as follows (in our example the
Linux desktop PC is called Home and the remote Linux for S/390 is called
Linux1):

1. On Home you allow remote machines access to your X-server by issuing
the following command (you can also name the remote host by using its IP
address). This is nothing more than adding a host to the X-servers access
control list.

[root@Home]$ xhost +Linux1

2. Next you log into the remote machine:

[PCuser@Home]$ telnet Linux1
Trying 9.9.9.9...
Connected to Linux1.
Escape character is ‘^]’

Linux 2.2.14 (linux1) (ttyp0)
linux1 login:

3. You then log on as the user you want to be, using the user’s password.
Next you would need to export Linux1’s display to the Home machine:

[user@linux1 linux]$ export DISPLAY=HOME:0.0

Note that you must enter the IP address of your own machine instead of
HOME.

4. Next you may try out the command xclock:

[user@linux1 linux1]$ xclock &

This should give you a nice clock on your local machine’s display, but it is
running on the Linux1 machine! (The “&” character allows you to get the
command line back, if you do not do this then as long as xclock is running
you will not have access to the command line of Linux1.) Check out what
time it is on the remote host!

There are other nice X-programs, such as xload, xbill, xman and many more!
278 Linux for S/390

14.8.2 ftp
The File Transport Protocol is covered in Chapter 17, “File Transfer Protocol
(FTP)” on page 335.

14.8.3 rlogin, rsh and rcp
These commands are mentioned here to let you know that they exist and to
warn you about using them. It is generally accepted that they are too much of
a security risk to be used on modern day systems. They are:

rlogin - log in to a remote host

rsh - execute a shell command on a remote host

rcp - copy a file to or from a remote host

The problem with these commands is that a host can declare that another
host is equivalent to itself, thus bypassing the password security. Another
problem is that the data being sent back and forth, including any user
identification and passwords, is unencrypted. This is the main reason why
you are advised to use either telnet (ensuring that you know who is logging
on) or openssh, which is described in 14.8.4, “ssh” on page 279.

If you still want to configure these commands we refer you to the man pages.

14.8.4 ssh
To prevent any sort of security leaks, such as the sending of clear text
passwords that you get in the r* commands described above, we recommend
that you set up an ssh (Secure SHell) environment.

Today this is called openssh due to the fact that the original ssh program was
being released with increasingly restrictive licensing. Some very nice people
then took an older (less restricted) version of ssh and developed an Open
Source version called openssh. For more information, see
http://www.openssh.com/history.html.

The packages you will need can be downloaded from the S/390 rpm database
(see Appendix G.4, “Referenced Web sites” on page 507):

openssh-1.2.2-2.s390.rpm
openssh-clients-1.2.2-2.s390.rpm
openssh-server-1.2.2-2.s390.rpm

Install with the following command (enter the correct ssh filename in place of
[filename.s390.rpm]):

rpm -ivh [filename.s390.rpm]
Chapter 14. Linux TCP/IP connectivity 279

For the setup and configuration of your ssh, refer to the following books:

 • Computer Networks

 • The Linux Network

The command syntax is:

ssh [options] host

The most used option would be -l user, which means log in as this user
name. The host should be replaced with the name or IP address of the
remote machine you are connecting to. Note that this form of syntax has been
reserved for remote shell compatibility.

A second, more user-friendly, command syntax is:

ssh USER@HOST

Enter your user name in place of USER and the machine name or IP address
in place of HOST, to start the connection process.

What basically happens when you set up a connection using ssh to a remote
machine is as follows (assuming you have installed the necessary ssh
software packages):

You log into the remote host with the following command (insert a valid user
name for the remote machine, which we refer to here as Linux1):

$ ssh -l user Linux1

You will be prompted to enter the given user’s password to complete the login:

user@Linux1’s password:

The session will be authenticated between your machine and the remote host
using encryption. Once this is done you will have your own encrypted
transport between you and the remote host, meaning that everything you
send over that connection will be encrypted from end to end.

Also worth mentioning is that the ssh provides compression of all data that is
encrypted. This means that you’re not only getting confidentiality on your data
transfers, but much faster transportation of your data due to the compression.

By using ssh to connect to a remote machine and running programs that need
X-Windows (see 14.8.1.1, “The X-Windows system” on page 277), you also
have another benefit: You not only get the above mentioned encryption and
compression, you can open the programs locally on your local display. We
saw earlier that you needed to export your display (export
280 Linux for S/390

DISPLAY=IP_ADDRESS:0.0), but with an ssh connection this is often done
automatically. You just start the remote program and it is displayed on your
local machine!
Chapter 14. Linux TCP/IP connectivity 281

282 Linux for S/390

Chapter 15. Linux for S/390 connectivity to VM, OS/390, VSE

This chapter describes the possible options and configurations for connecting
a Linux for S/390 system to existing VM/ESA, OS/390, and VSE/ESA.

We cover TCP/IP connectivity and access to data from a Linux for S/390
system to VM/ESA, OS/390 and VSE/ESA, and vice versa.

15.1 Configuring the network

There are several ways to connect a Linux for S/390 virtual machine to a
physical network or to other Linux for S/390 virtual machines.

For a description of the communications hardware that you can use with
Linux for S/390, refer to Chapter 13, “Hardware connectivity” on page 259.

Three network drivers are provided with Linux for S/390:

 • LAN Channel Station (LCS)
 • Channel-to-channel (CTC)
 • Inter-User Communications Vehicle (IUCV)

The first two drivers can be used to drive a physical network connection. The
CTC driver can also be used to communicate through a gateway IP host such
as a VM TCP/IP service machine. The IUCV driver can be used in a similar
fashion. It makes connections between memory buffers in the VM/ESA
Control Program to act as a high-speed communications pipe between virtual
machines. Table 27 summarizes the options.

Table 27. Linux for S/390 network driver choices

Linux
network
driver

Physical
network
interface

Virtual
network
interface

Network
routing via
VM TCP/IP
stacka

a. Or another guest operating system TCP/IP stack

Connection to
another Linux for
S/390 LPAR or
virtual machine

LCS 	 LPAR

CTC 	 	 	 	

IUCV 	 	 Virtual machine
© Copyright IBM Corp. 2000 283

A fundamental decision must be made about ownership of physical network
interfaces. The following can be the owners:

 • Linux for S/390 running in either an LPAR or a virtual machine

 • The VM TCP/IP stack

 • Another operating system on the same S/390 processor

If Linux for S/390 is running in a virtual machine and the VM TCP/IP stack
owns the network interface, then point-to-point links must be established from
each Linux for S/390 virtual machine to the VM TCP/IP stack in order to
access the physical network.

If Linux for S/390 owns the network interface, a point-to-point link must be
established from the TCP/IP stack in OS/390, VM/ESA or VSE/ESA so that
users of those operating systems can access the physical network.

If the TCP/IP stack of a VSE/ESA or OS/390 guest of VM owns the physical
network interface, Linux for S/390 virtual machines can access the network
through point-to-point links to the VSE/ESA or OS/390 guest’s TCP/IP stack.

Figure 82 on page 285 shows the IP addressing and network environment we
used for this project.
284 Linux for S/390

Figure 82. IP network topology

15.2 Logical partition

For a Linux for S/390 system running on an LPAR, the following options to
connect to a TCP/IP-based network are available:

 • Via a CTC connection to another TCP/IP running on an LPAR or under
VM/ESA

 • Via an Open Systems Adapter (OSA) directly connected to the network

 • Via an (old) 3172 network adapter (which behaves like an OSA adapter)

We only describe the use of an OSA adapter as we did not use the other options.

VM LPAR

9.12.14.155

9.12.9.174

Linux LPAR

VM/ESA Control Program (CP)

L
I
N
U
X
1

L
I
N
U
X
5

T
C
P
/
I
P

for
VM

OSA

 virtual CTC
connections

CMS

9.12.9
subnet

9.12.14 subnet

9.12.2 subnet

DNS server
9.12.2.7

9.12.9.180 9.12.9.184

9.12.9.178

9.12.14.75
router

9.12.2.75

OSA9.12.14.196

21C0/21C1 22C0/22C1

LINUX
for

S/390
Chapter 15. Linux for S/390 connectivity to VM, OS/390, VSE 285

15.2.1 OSA-2 in LPAR
Our LPAR running Linux for S/390 was connected to the network using an
OSA-2 adapter as shown in Figure 82 on page 285.

The address of the OSA adapter was entered during the very first netsetup
script. In our case this was 21C0. The setup and the following actions, mainly
copying the definitions and removing symbolic links, are described in 5.7.5,
“Customizing Linux for S/390 configuration files” on page 75. To get the OSA
adapter activated from Linux for S/390, you have to enter the OSA device
address. The settings are in /etc/conf.modules:

[root@linuxx /etc]# cat conf.modules
alias block-major-35 xpram
alias tr0 lcs
options lcs devno_portno_pairs=0x21C0,0
[root@linuxx /etc]#

This address should be reported by Linux for S/390 during boot. You can find
the address information in /var/log/dmesg:

[root@linuxx log]# grep -i 21c0 dmesg
SenseID : device 21C0 reports: Dev Type/Mod = 3088/60
[root@linuxx log]#

The settings that reflect your hardware can be checked using the ifconfig
command. As we are interested in the settings for the Token Ring interface
only, we restrict the listing to the tr0 settings.

[root@linuxx /root]# ifconfig tr0
tr0 Link encap:16/4 Mbps TR HWaddr 40:00:09:FF:71:C0 �
 inet addr:9.12.14.196 Bcast:255.255.255.0 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:2000 Metric:1
 RX packets:429653 errors:0 dropped:0 overruns:0 frame:0
 TX packets:513 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100

HWaddr � gives the universally administered address of the OSA card. If you
see this address, it means the OSA card was successfully initialized by Linux
for S/390.

15.3 Linux for S/390 running in a virtual machine

The following sections describe the networking options and definitions when
running Linux for S/390 in a virtual machine.
286 Linux for S/390

For detailed information on network definitions for the VM TCP/IP stack, refer
to VM/ESA V2R4.0: TCP/IP Function Level 320 Planning and Customization,
SC24-5847. Another good reference is TCP/IP Solutions for VM/ESA,
SG24-5459.

15.3.1 Networking definitions
If you are using VM TCP/IP as a network gateway, Figure 83 shows where to
match up the Linux for S/390 network prompts with the network definitions for
the VM TCP/IP stack. Besides the prompts generated by the netsetup script,
Linux for S/390 network definitions can also be entered using Linux for S/390
commands.

When using the VM TCP/IP stack to connect to the physical network, you
need to match the responses to the initial Linux for S/390 network prompts
with the relevant entries in the TCP/IP configuration file.

Figure 83. Where to enter network definitions in Linux for S/390 and VM TCP/IP

� The HOSTS LOCAL file is optional if the VM TCP/IP stack is using an
external Domain Name Server (DNS).

� For both Linux for S/390 and VM TCP/IP, a subnet mask and subnet value
are coded when you are using a network router. For a point-to-point link you
enter the parameter HOST in place of subnet mask and subnet value on the
GATEWAY statement in the TCP/IP configuration file.

3

2

2

1

Linux TCP/IP definitions

Type of network device

Host name

IP address

Net mask

Network IP address

Gateway IP address

 or Peer IP address

DNS server address

DNS search domain

HOSTS LOCAL fileHOST

TCPIP DATA file
NSINTERADDR

DOMAINORIGIN

TCP/IP
 configuration

file

GATEWAY DEFAULTNET parameter

GATEWAY subnet_value parameter

GATEWAY subnet_mask parameter
HOME

DEVICE and LINK

VM TCP/IP definitions
Chapter 15. Linux for S/390 connectivity to VM, OS/390, VSE 287

� If defining a CTC link, the Linux for S/390 kernel will prompt for a peer IP
address instead of a gateway IP address.

15.3.2 LAN Channel Station (LCS)
The LCS driver can be used to drive an Open Systems Adapter-2 (OSA-2)
and a number of other communications devices, such as 3172, 2216 and LAN
adapter cards installed in a P/390 or R/390. It is designed to manage any
device that behaves as an LCS.

Figure 84 illustrates how Linux for S/390 virtual machines can drive an OSA-2
network interface.

Figure 84. OSA-2 connections for Linux for S/390 running in a virtual machine

For a Linux for S/390 virtual machine to use an OSA-2, a pair of real device
numbers associated with the OSA-2 must be dedicated to it. Normally this is
done through DEDICATE statements in the CP directory entry for the virtual
machine.

For example, if the real OSA-2 device number pair is 21C0/21C1 and you use
the same virtual device numbers, the control statements would be:

DEDICATE 21C0 21C0
DEDICATE 21C1 21C1

VM/ESA Control Program (CP)

L

I

N

U

X

1

L

I

N

U

X

2

T

C

P

/

I

P

for

VM

T

C

P

/

I

P

for

VSE

T

C

P

/

I

P

for

OS/390

OSA OSA OSA OSA

CMS VSE/ESA OS/390

OSA
288 Linux for S/390

Linux for S/390 definitions for an OSA-2 network link managed by a Linux for
S/390 virtual machine are the same as for an LPAR. See 15.2.1, “OSA-2 in
LPAR” on page 286.

For the VM TCP/IP stack to use an OSA-2, a pair of OSA-2 device numbers
must be dedicated to the TCP/IP service machine. Here is an example of
coding OSA-2 definitions in the VM TCP/IP configuration file:

DEVICE VMTOSA LCS 21C0 �

LINK WTSCVMT IBMTR 0 VMTOSA �

HOME

...

9.12.14.155 WTSCVMT �

GATEWAY

...

9 = WTSCVMT 2000 0.255.255.0 0.12.14.0 �

where:

� The even device number of the OSA-2 device number pair is 21C0. The
network device name is VMTOSA. The OSA-2 is driven as an LCS by TCP/IP.

� Network link WTSCVMT is associated with network device VMTOSA. The
OSA-2 LAN interface is a Token Ring adapter.

�The IP address of this network link is 9.12.14.155.

� All traffic for the 9.0.0.0 network that is not otherwise routed is sent on the
WTSCVMT link.

The subnet to which the OSA-2 interface is connected is 9.12.14. The subnet
mask is 255.255.255.0. The convention for coding these values in the
GATEWAY statement may seem curious to a Linux networking specialist.

You should enter zero for each octet of the IP address that represents the
class of the IP network. Our example shows a class A IP network.

15.3.2.1 CTC
The CTC driver can be used over a virtual channel-to-channel link to connect
to the TCP/IP stack on VM, the TCP/IP stack of another S/390 operating
system running as guest of VM/ESA, or other Linux for S/390 virtual
machines.
Chapter 15. Linux for S/390 connectivity to VM, OS/390, VSE 289

For virtual channel-to-channel connections, a pair of devices must be defined
both for the Linux for S/390 virtual machine and the target virtual machine.

The CTC driver can also drive a real channel-to-channel link directly. In this
case, a real CTC device number pair must be dedicated to the Linux for S/390
virtual machine that will manage the physical CTC interface.

To dedicate a pair of device numbers to a virtual machine, use DEDICATE
statements in the CP directory entry for that machine.

For example, if the real CTC device number pair is 808/809 and you use the
same virtual device numbers, the control statements would be:

DEDICATE 808 808
DEDICATE 809 809

CP couple commands are used to connect the CTC device number pairs.
Care must be taken to connect the sending device number to the receiving
device number and vice versa. See Figure 10 on page 103.

Linux for S/390 definitions for a CTC network link managed by a Linux for
S/390 virtual machine are the same as for an LPAR.

Possible CTC connections are illustrated in Figure 85.

Figure 85. CTC connections for Linux for S/390 running in a virtual machine

VM/ESA Control Program (CP)

L

I

N

U

X

1

L

I

N

U

X

2

T

C

P

/

I

P

for

VM

T

C

P

/

I

P

for

VSE

T

C

P

/

I

P

for

OS/390

CTC CTC CTC CTC

 virtual CTCs

CMS VSE/ESA OS/390
9.12.9.180 9.12.9.181
290 Linux for S/390

CTC connections between Linux for S/390 virtual machines are shown with
dotted lines. This indicates that point-to-point connections between pairs of
Linux for S/390 virtual machines are not essential if routing to the physical
network is through the VM TCP/IP stack.

Here is an example of the VM TCP/IP configuration file definitions needed:

DEVICE LINUX5 CTC 808 �

LINK LINUX5VM CTC 0 LINUX5 �

HOME

...

9.12.9.178 LINUX5VM �

GATEWAY

...

9.12.9.184 = LINUX5VM 1500 HOST �

where:

� The even device number of the CTC device pair is 808. The network
device name is LINUX5.

� Network link LINUX5VM is associated with network device LINUX5.

� The IP address of this network link is 9.12.9.178.

� Traffic destined for IP address 9.12.9.184, the Linux for S/390 CTC
network interface, is sent over the LINUX5VM link.

15.3.3 IUCV
The IUCV driver does not manage a physical network interface, but instead
provides a high-speed pipe for communications between Linux for S/390
virtual machines and the VM TCP/IP stack.

IUCV connections can also be established between pairs of Linux for S/390
virtual machines on the same VM system, or even on different VM systems.
IUCV connections yield highest bandwidth and shortest latency between two
Linux for S/390 virtual machines.

To use the IUCV driver for communications, a virtual machine must be
authorized. The IUCV control statement in the CP user directory permits a
virtual machine to create an IUCV communication path with another virtual
machine.
Chapter 15. Linux for S/390 connectivity to VM, OS/390, VSE 291

The ALLOW parameter specifies that any other virtual machine can
establish a communication path with this virtual machine. No further
authorization is required in the virtual machine that initiates the
communication.

The ANY parameter is a general authorization indicating that a
communications path can be established with any other virtual machine.

The following control statement in the CP directory entry for the TCP/IP
service machine would be sufficient to allow an IUCV link to be established by
Linux for S/390 to VM TCP/IP:

IUCV ALLOW

For completeness the appropriate directory entry for the Linux for S/390
userid to connect to any userid (including TCP/IP service machine):

IUCV ANY

There is an IUCV driver in the VM/ESA TCP/IP stack. This enables TCP/IP
communications to be established between Linux for S/390 virtual machines
and VM/ESA TCP/IP stacks using high-speed IUCV links.

Figure 86 on page 293 shows how IUCV connections can be used by Linux
for S/390 virtual machines to communicate with one another or with a VM
TCP/IP service machine.

IUCV connections between Linux for S/390 virtual machines are shown with
dotted lines. This indicates that point-to-point connections between pairs of
Linux for S/390 virtual machines are not essential if routing to the physical
network is through the VM TCP/IP stack.
292 Linux for S/390

Figure 86. IUCV connections for Linux for S/390 running in a virtual machine

When you define an IUCV link, either in Linux for S/390 or the VM TCP/IP
service machine, one IUCV connection is created for reading and writing.

IUCV connections from a Linux for S/390 virtual machine cannot be defined
through the network prompts when the Linux for S/390 kernel boots.1

The boot parameter file must contain an IUCV parameter specifying the user
IDs of other virtual machines with which you wish to communicate. The
syntax of that parameter is:

iucv=userid1,userid2,...

One of these user IDs could be the TCP/IP service machine.

Linux for S/390 always uses the same method to name devices. This means
the IUCV device names are of the form iucv0, iucv1, and so on. If the IUCV
statement in the kernel parameter file looked like this:

iucv=tcpip,linux4

1 The Linux for S/390 netsetup script is being enhanced to prompt for IUCV network links.

VM/ESA Control Program (CP)

L

I

N

U

X

1

L

I

N

U

X

2

T

C

P

/

I

P

for

VM

 IUCV connections

CMS

VM/ESA Control Program (CP)

L

I

N

U

X

3

L

I

N

U

X

4

T

C

P

/

I

P

for

VM

 IUCV connections

CMS

Channel-to-Channel connection

System A System B

9.12.9.180 9.12.9.181 9.12.9.182 9.12.9.183
Chapter 15. Linux for S/390 connectivity to VM, OS/390, VSE 293

then the IUCV connection to the tcpip virtual machine would be on device
iucv0 and the IUCV connection to the linux4 virtual machine would be on
device iucv1.

Once the kernel has finished booting, an IUCV link can be established with
another virtual machine by entering the following Linux for S/390 command:

ifconfig iucvn your_IP_address pointopoint target_IP_address

The first IP address is associated uniquely with the Linux for S/390 IUCV
network device. In accordance with the way Linux for S/390 identifies devices,
you need to increment n for each successive connection you define. The first
IUCV network device created by Linux for S/390 will be device iucv0.

When connecting to the VM TCP/IP stack, appropriate definitions for IUCV
links will also need to be made for the TCP/IP service machine. Here is an
example of the VM TCP/IP configuration file definitions needed:

DEVICE VMTTCP IUCV 0 0 LINUX5 A �

LINK VMT1 IUCV 0 VMTTCP �

HOME

...

9.12.9.173 VMT1 �

GATEWAY

...

9.12.9.186 = VMT1 1500 HOST �

where:

� The network interface device type is IUCV. Its name is VMTTCP.

� Network link VMT1 is associated with network device VMTTCP.

� The IP address associated with this network link is 9.12.14.173.

� Traffic destined for IP address 9.12.9.186, the Linux for S/390 IUCV
network interface, is sent over the VMT1 link.

The MTU size specified here is 1500, which was probably chosen to match
the MTU size on the physical LAN interface, thereby avoiding the potential for
IP packet disassembly and reassembly. The default MTU size used by Linux
for S/390 for an IUCV link is 4092. You can override this by specifying a
different MTU size as an option on the ifconfig command.
294 Linux for S/390

For example, we could have used the following statement in the VM TCP/IP
configuration file

9.12.9.186 = VMT1 8192 HOST

and matched it with this Linux for S/390 ifconfig command:

ifconfig iucv0 9.12.9.186 pointopoint 9.12.9.173 mtu 8192

If the VM TCP/IP stack is used to route IP traffic from Linux for S/390 to the
physical network, then you need to use a Linux for S/390 route command to
define a default route:

route add -net default iucvn

where n is the sequence number for the particular network device.

Here is an example from our project of starting an IUCV link from Linux for
S/390:

ifconfig iucv0 9.12.9.186 pointopoint 9.12.9.173 �
ifconfig
ctc0 Link encap:Serial Line IP
 inet addr:9.12.9.184 P-t-P:9.12.9.178 Mask:255.255.255.255
 UP POINTOPOINT RUNNING NOARP MTU:1500 Metric:1
 RX packets:1 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
iucv0 Link encap:Serial Line IP �
 inet addr:9.12.9.186 P-t-P:9.12.9.173 Mask:255.255.255.255
 UP POINTOPOINT RUNNING NOARP MTU:4092 Metric:1 Outfill:4092
Keepalive:4092
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:3924 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
route add default gw 9.12.9.173 �

where:

� This Linux for S/390 command establishes a point-to-point connection
between the Linux for S/390 IUCV network interface (9.12.9.186) and the VM
TCP/IP stack’s IUCV network interface (9.12.9.173).
Chapter 15. Linux for S/390 connectivity to VM, OS/390, VSE 295

� Details of all Linux for S/390 network connections are displayed with the
Linux for S/390 ifconfig command. 4092 is the default message size coded
in the IUCV driver. It can be changed by specifying the MTU option on the
ifconfig command.

� The Linux for S/390 route command forces TCP/IP traffic to be routed over
the IUCV network interface by default.

15.3.3.1 Making IUCV definition permanent
If Linux for S/390 is using IUCV as a communications transport, you may wish
to make these network definitions permanent. This eliminates the need to
enter ifconfig and route commands after booting Linux for S/390.

This can be achieved by treating the IUCV link as a CTC link in the netsetup
prompts and then copying and editing the resulting Linux network definition
files.

For example, the netsetup script creates the file
/etc/sysconfig/network-scripts/ifcfg-ctc0.

Copy this file as /etc/sysconfig/network-scripts/ifcfg-iucv0. Edit the file
etc/sysconfig/network-scripts/ifcfg-iucv0 and change DEVICE=ctc0 to
DEVICE=iucv0. Also edit the file /etc/sysconfig/network to change
GATEWAYDEV=ctc0 to GATEWAYDEV=iucv0.

Remember to add the appropriate iucv= statement to the kernel parameter
file that you are using.

15.3.3.2 Distributed IUCV
IUCV communications can even span VM/ESA system images transparently.

In Figure 84 on page 288, we show two VM/ESA images connected physically
by a CTC link. These two systems form a Communications Services (CS)
collection using the Inter-System Facility for Communications (ISFC)
component of the VM/ESA Control Program (CP).

When a virtual machine attempts to make an IUCV connection to another
virtual machine, the CP on the local system first tries to locate the target user
ID locally. If it fails to find it there, it tries to locate the target user ID on
another VM system in the CS collection. When the target user ID is found, an
IUCV connection is established to it. The cross-system communications are
transparent to the application.
296 Linux for S/390

By exploiting distributed IUCV, it becomes possible to extend the scope of a
VM-based Linux for S/390 virtual server farm to multiple system images.

To implement distributed IUCV communications, you must first enable this
capability in the VM system configuration file (SYSTEM CONFIG) on each
system participating in the CS collection. Add the following statements:

SYSTEM ID model cpuid system_id domain_name
DISTRIBUTE IUCV YES

Although the same system identifier can be specified for multiple VM
systems, the domain name must be unique for each system in the CS
collection. For further information on the VM system configuration file, consult
VM/ESA V2R4.0 Planning and Administration, SC24-5750.

When both VM systems are initialized, the CS collection is established by
entering this CP command on each system:

ACTIVATE ISLINK rdev

The device number is the CTC device number. With just one CTC device
number, you will get only half-duplex communications. For full-duplex
communications, you need an even/odd pair of device numbers. However,
only one of the device numbers needs to be specified on the CP ACTIVATE
ISLINK command.

Unique user IDs should be enforced on each system in the CS collection to
avoid confusion or ambiguity.

We experimented with establishing an IUCV link from a Linux for S/390 virtual
machine to a Linux for S/390 virtual machine on another system. We did not
succeed, but that may have been due to problems in the IUCV device driver
itself rather than with IUCV or the CS collection.

15.3.4 CTC or IUCV
Linux for S/390 in a virtual machine can use either the CTC or IUCV device
driver for communications with other virtual machines.

Both drivers provide high-speed communications. Your choice should take the
following characteristics of each driver into account:

 • The CTC driver can be used with both virtual and real CTC devices. The
netsetup script prompts for CTC networking definitions.

 • IUCV is even faster than CTC and works between VM system images. It
does not need virtual devices to be defined. However, it does require
Chapter 15. Linux for S/390 connectivity to VM, OS/390, VSE 297

definition in the kernel parameter file. The Linux for S/390 ifconfig and
route commands are needed to establish TCP/IP connections over an
IUCV link.

In selecting IP addresses for Linux to use in your network, bear in mind that
VM TCP/IP does not support proxy Address Resolution Protocol (ARP).
Therefore, a point-to-point link connected to VM TCP/IP cannot use an IP
address in a subnetwork LAN connected to the same VM TCP/IP. Assigning
IP addresses can become unnecessarily difficult and can lead to
configuration errors that are difficult to explain. Proxy ARP support will be
developed for VM TCP/IP to facilitate using virtual point-to-point links to
connect other VM guest virtual machines such as Linux for S/390 to VM
TCP/IP. This support will be delivered through APAR PQ37902.

15.3.5 Linux for S/390 configuration files
Linux for S/390 network definitions are stored in more than one file. General
definitions can be found in /etc/sysconfig/network and device-specific
definitions can be found in
/etc/sysconfig/network-scripts/ifcfg-<network device name>.

For example, here are the contents of the files created by the network
prompts when we installed Linux for S/390 in a virtual machine:

[root@linux5 /]# cat /etc/sysconfig/network
NETWORKING=yes
FORWARD_IPV4=no
HOSTNAME=linux5
GATEWAYDEV=ctc0
GATEWAY=9.12.9.178
[root@linux5 /]# cat /etc/sysconfig/network-scripts/ifcfg-ctc0
DEVICE=ctc0
USERCTL=no
ONBOOT=yes
BOOTPROTO=none
REMIP=9.12.9.178
NETWORK=9.12.9.0
NETMASK=255.255.255.0
IPADDR=9.12.9.184

15.3.6 VM TCP/IP configuration files
This chapter assumes that the reader has some background in the installation
and configuration of TCP/IP for VM. A detailed discussion of this topic is
beyond the scope of this book.
298 Linux for S/390

If you need an introduction to TCP/IP for VM, refer to VM/ESA V2R4.0:
TCP/IP Function Level 320 Planning and Customization, SC24-5847, and
TCP/IP Solutions for VM/ESA, SG24-5459.

Specific VM TCP/IP definitions required for connecting to a Linux for S/390
guest are described elsewhere in this chapter and in Chapter 6.3.3,
“Networking definitions” on page 103.

Here are the Linux-related extracts from the VM TCP/IP configuration file that
we used on this project.

OSA-2 network interface:

DEVICE VMTOSA LCS 21C0
LINK WTSCVMT IBMTR 0 VMTOSA

CTC connection from WTSCVMT to LINUX1:

DEVICE LINUX1 CTC 800
LINK LINUX1V CTC 0 LINUX1

CTC connection from WTSCVMT to LINUX2:

DEVICE LINUX2 CTC 802
LINK LINUX2V CTC 0 LINUX2

CTC connection from WTSCVMT to LINUX3:

DEVICE LINUX3 CTC 804
LINK LINUX3V CTC 0 LINUX3

CTC connection from WTSCVMT to LINUX4:

DEVICE LINUX4 CTC 806
LINK LINUX4V CTC 0 LINUX4

CTC connection from WTSCVMT to LINUX5:

DEVICE LINUX5 CTC 808
LINK LINUX5V CTC 0 LINUX5

IUCV connection from WTSCVMT to LINUX5:

DEVICE VMTTCP IUCV 0 0 LINUX5 A
LINK VMT1 IUCV 0 VMTTCP

IP addresses for each network link:

HOME
 9.12.14.155 WTSCVMT
 9.12.9.174 LINUX1V
Chapter 15. Linux for S/390 connectivity to VM, OS/390, VSE 299

 9.12.9.175 LINUX2V
 9.12.9.176 LINUX3V
 9.12.9.177 LINUX4V
 9.12.9.178 LINUX5V
 9.12.9.173 VMT1

Gateway statements:

GATEWAY
9 = WTSCVMT 2000 0.255.255.0 0.12.14.0
9.12.9.186 = VMT1 1500 HOST
9.12.9.180 = LINUX1V 1500 HOST
9.12.9.181 = LINUX2V 1500 HOST
9.12.9.182 = LINUX3V 1500 HOST
9.12.9.183 = LINUX4V 1500 HOST
9.12.9.184 = LINUX5V 1500 HOST
DEFAULTNET 9.12.14.75 WTSCVMT 2000 0

Start each network interface:

START VMTOSA
START LINUX1
START LINUX2
START LINUX3
START LINUX4
START LINUX5
START VMTTCP

For this project we used only static routing in VM TCP/IP. For dynamic routing
you would need to implement the route daemon (routed service virtual
machine) and code BSDROUTINGPARMS statements in the TCP/IP
configuration file.

15.4 TCP/IP for OS/390 connectivity

The TCP/IP stack for OS/390 begins with Version 2.5, it is part of the
Communication Server for OS/390. Both now share various service routines
such as buffer management, line driver, etc. Though TCP/IP still lives in the
OS/390 environment -- for example, it is started as a started task (STC) -- it
serves both the conventional and the Unix System Services environment.
This may have certain impacts on the configuration that we discuss here
briefly.

TCP/IP on OS/390 can be started more than once! That is, you can use
completely isolated IP stacks with different IP addresses. The primary
application for such a multistack environment is to provide the same or similar
300 Linux for S/390

TCP/IP functionality on their well-known port. Telnet is such an example. With
the availability of UNIX System Services there were two ways to telnet into
OS/390: via the long-existing Telnet for 3270 (tn3270), and to telnet into the
UNIX System Services environment, which is a character-oriented dialog.
Both use port 23. With two stacks you can easily keep the port number for
both types of Telnet the same. In other words, starting more than one TCP/IP
stack on OS/390 gives the impression of connecting to different hosts.

Our system had two stacks, one with address 9.12.2.17 (WTSC52OE), the
other with address 9.12.14.208 (WTCS52); see Figure 87.

Figure 87. Two-TC/IP-stack configuration for OS/390

The parameters for this configuration are stored in the PROFILE data set.
The statements that define the basic IP parameters are the DEVICE, LINK, HOME,
and GATEWAY statements:

; Hardware definitions: OS/390 TCP/IP stack
; WTSC52
;
;
 DEVICE OSA2100 LCS 2100
 LINK OSAL2100 IBMTR 0 OSA2100
;
; HOME internet (IP) addresses of each link in the host.
;
; NOTE:

OS/390 System SC52

9.12.2 9.12.14

OSA 2160

9.12.2.17
WTSC52OE

TCP/IP

ftp, telnet, nfs,...

OSA 2100

9.12.14.208
WTSC52

TCP/IP

ftp, telnet, (nfs),...
Chapter 15. Linux for S/390 connectivity to VM, OS/390, VSE 301

;
; The IP addresses for the links of an Offload box are specified in
; the LINK statements themselves, and should not be in the HOME list.
;
HOME
 9.12.14.208 OSAL2100
;
GATEWAY
;
; Direct Routes - Routes that are directly connected to my interfaces.
;
; Network First Hop Link Name Packet Size Subnet Mask Subnet Value
9 = OSAL2100 4096 0.255.255.0 0.12.14.0

; Hardware definitions: USS TCP/IP stack
; WTSC52OE
;
;
 DEVICE OSA2160 LCS 2160
 LINK OSAL2160 IBMTR 0 OSA2160
;
; HOME internet (IP) addresses of each link in the host.
;
; NOTE:
;
; The IP addresses for the links of an Offload box are specified in
; the LINK statements themselves, and should not be in the HOME list.
;
HOME
 9.12.2.17 OSAL2160
;
GATEWAY
;
; Direct Routes - Routes that are directly connected to my interfaces.
;
; Network First Hop Link Name Packet Size Subnet Mask Subnet Value
9 = OSAL2160 4096 0.255.255.0 0.12.2.0

15.4.1 Where to find daemons or services
The major question with this kind of configuration is: where do I find important
TCP/IP services like FTP, NFS, etc.? There are two places to look, either the
port statements and startup procedures, or scripts of the corresponding
service. The port statements in the TCP/IP profile data set define to which
side of OS/390 the ports belong:
302 Linux for S/390

PORT
 20 TCP OMVS ; OE FTP Server
 DELAYACKS ; Delay transmission acknowledgements
 21 TCP OMVS ; OE FTPD control port
 23 TCP INTCLIEN ; MVS Telnet Server
 80 TCP OMVS ; OE Web Server
 111 TCP PORTMAP ; Portmap Server
 111 UDP PORTMAP ; Portmap Server
 135 UDP LLBD ; NCS Location Broker

Here port 23 (Telnet) belongs to the OS/390 side. This is the definition for the
tn3270 client. Port 80 belongs to OMVS (the acronym for UNIX System
Services), which indicates that the Web server is running on the UNIX part of
OS/390.

Consequently, you will recognize all settings for the IP stack that serves the
UNIX System Services side of OS/390:

PORT
 20 TCP OMVS ; OE FTP Server
 DELAYACKS ; Delay transmission acknowledgements
 21 TCP OMVS ; OE FTPD control port
 23 TCP OMVS ; OE Telnet Server
 80 TCP OMVS ; OE Web Server
 111 UDP OMVS ; OE Portmapper Server
 111 TCP OMVS ; OE Portmapper Server
 443 TCP OMVS ; OE Web Server SSL Port
 512 TCP OMVS ; OE Remote Execution Server
 513 TCP OMVS ; OE Rlogin Server
 514 TCP OMVS ; OE Remote Shell Server
 514 UDP OMVS ; OE SyslogD Server
 515 TCP OMVS ;
; 623 TCP INTCLIEN ; Telnet Server

All ports are assigned to the USS side. The line that is commented out shows
that on this stack tn3270 was assigned to use port 623 instead of the
well-known port 23.

The second parameter you may have to look for is the environment variable
_BPXK_SETIBMOPT_TRANSPORT. This variable makes it possible to
control to which stack an application binds in case more than one stack is
active. Normally, TCP/IP applications use an unspecific bind() request, which
connects to a default stack. The following example shows the startup JCL for
the FTP server using the OS/390 stack TCPIPMVS:

//FTPDMVS PROC MODULE='FTPD',PARMS='',
// P1='ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIPMVS")'
Chapter 15. Linux for S/390 connectivity to VM, OS/390, VSE 303

//FTPDMVS EXEC PGM=&MODULE,REGION=0K,TIME=NOLIMIT,
// PARM='POSIX(ON) ALL31(ON) &P1/&PARMS'
//*STEPLIB DD DSN=TCPIP.SEZALINK,DISP=SHR
//* DD DSN=CEE.SCEERUN,DISP=SHR
//CEEDUMP DD SYSOUT=*
//SYSFTPD DD DISP=SHR,DSN=TCPIPMVS.&SYSNAME..FTP.DATA
//SYSTCPD DD DISP=SHR,DSN=TCPIPMVS.&SYSNAME..TCPIP.DATA
//SYSFTSX DD DISP=SHR,DSN=TCPIPMVS.STANDARD.TCPXLBIN
//TCPXLBIN DD DISP=SHR,DSN=TCPIPMVS.STANDARD.TCPXLBIN

The FTP startup procedure shown in the next example connects to the
TCP/IP stack serving the USS environment:

//FTPDOE PROC MODULE='FTPD',PARMS='',
// P1='ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIPOE")'
//FTPDOE EXEC PGM=&MODULE,REGION=0K,TIME=NOLIMIT,
// PARM='POSIX(ON) ALL31(ON) &P1/&PARMS'
//*STEPLIB DD DSN=TCPIP.SEZALINK,DISP=SHR
//* DD DSN=CEE.SCEERUN,DISP=SHR
//CEEDUMP DD SYSOUT=*
//SYSFTPD DD DISP=SHR,DSN=TCPIPOE.&SYSNAME..FTP.DATA
//SYSTCPD DD DISP=SHR,DSN=TCPIPOE.&SYSNAME..TCPIP.DATA
//*YSFTSX DD DISP=SHR,DSN=TCPIP.STANDARD.TCPXLBIN

And, yes, you can start these services in OS/390!

For more detailed information, refer to Accessing OpenEdition MVS from the
Internet 2, SG24-4721.

15.4.2 Troubleshooting OS/390 TCP/IP to Linux for S/390
We assume that the OS/390 system you are going to access already provides
TCP/IP-based services at a production level.

Confusion can be caused by the fact that your OS/390 server has two TCP/IP
stacks running. This is normally the case to preserve well-known ports. That is,
Telnet runs on port 23, but there are two Telnets available: Telnet 3270 (tn3270)
to emulate a 3270 session, and character mode Telnet to interact with Unix
System Services on OS/390. Both use port 23. To preserve their well-known
ports, a second TCP/IP instance may run on OS/390. Both instances will run with
their own parameter sets.

The following brief summary will help you locate the IP address or port
number a service uses.

2 OpenEdition was the former name of OS/390 UNIX System Services, MVS was the predecessor of OS/390. This
redbook contains information that is still valid and helpful.
304 Linux for S/390

Telnet If your OS/390 system has a two-stack implementation, you have to
ask which IP address serves the OS/390 tn3270 and which serves the
UNIX System Services. In case there is only one stack started, ask for
the port number the service in question uses. You will typically use a
port number other than 23 because this is already in use for tn3270.
For a Telnet client this implies that you can change the default port
number 23 to the one required by your target system.

FTP Primarily ask for the IP address. The FTP server on OS/390 can serve
both types of file systems.

NFS NFS can only be started once. Ask for the IP stack and the address to
which NFS is bound.

As in other systems, the most helpful service in the OS/390 environment is
ping (1). We suggest that you use it from the Unix System Services shell,
because you will try to access services there. The following shows an
example:

HDM § :/u/hdm/xedit::>ping
EZZ3112I Host name or address not entered.
HDM § :/u/hdm/xedit::>ping linuxx (1)
CS V2R8: Pinging host linuxx (9.12.14.196)
Ping #1 response took 0.036 seconds.
HDM § :/u/hdm/xedit::>nslookup (2)
Default Server: itsodns.itso.ibm.com
Address: 9.12.2.7

> linuxx
Server: itsodns.itso.ibm.com
Address: 9.12.2.7

Name: linuxx.itso.ibm.com
Address: 9.12.14.196

>exit
HDM § :/u/hdm/xedit::>host linuxx (3)
EZZ8321I linuxx.itso.ibm.com has addresses 9.12.14.196

Another service that may help to resolve problems when connecting both
systems is nslookup (2). Using this you can check whether your Linux for
S/390 system can be named and addressed using the DNS of your domain.

Finally, the host (3) command can be of help, too. Its output is very similar to
that of nslookup. In case host or nslookup cannot be found:

HDM § :/u/hdm/xedit::>host
host: FSUM7351 not found
Chapter 15. Linux for S/390 connectivity to VM, OS/390, VSE 305

Check whether the symbolic links have been set correctly:

HDM § :/u/hdm/xedit::>ls -al /bin/host
lrwxrwxrwx 1 AAAAAAA OMVSGRP 25 Sep 17 1999 /bin/host ->
../usr/lpp/tcpip/bin/host
HDM § :/u/hdm/xedit::>ls -al /bin/nslookup
lrwxrwxrwx 1 AAAAAAA OMVSGRP 30 Sep 17 1999 /bin/nslookup ->
../usr/lpp/tcpip/bin/onslookup

15.4.3 Inetd daemon in OS/390
With UNIX System Services there is an explicit inetd available. It will be
started at IPL time when USS is initialized. It is customized very much like
any inetd daemon running on UNIX or Linux. The following is a configuration
file from our OS/390 test system:

###
SCCSID(@(#)inetd.conf1.24.1.6AIX)/* Modified: 19:38:52 9/23/91 */
Internet server configuration database
#
(C) COPYRIGHT International Business Machines Corp. 1985, 1989
All Rights Reserved
Licensed Materials - Property of IBM
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
/etc/inetd.conf
#
Internet server configuration database
#
Services can be added and deleted by deleting or inserting a
comment character (ie. #) at the beginning of a line
#
#==
service | socket | protocol | wait/ | user | server | server program
name | type | | nowait| | program | arguments
#==
#
otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -l -D all
-m -t
shell stream tcp nowait OMVSKERN /usr/sbin/orshd orshd -LV
login stream tcp nowait OMVSKERN /usr/sbin/rlogind rlogind -m
exec stream tcp nowait OMVSKERN /usr/sbin/orexecd orexecd -LV
#finger stream tcp nowait OMVSKERN /usr/sbin/fingerd fingerd

Let inetd listen for #incoming smtp(sendmail) connections. We do
not need to run sendmail as a daemon (-bd) if this line is uncommented.
306 Linux for S/390

#smtp stream tcp nowait OMVSKERN /usr/lib/sendmail sendmail -bn
#talk dgram udp wait OMVSKERN /usr/sbin/talkd talkd

#
Time, discard, chargen, echo services
#
echo stream tcp nowait STC internal
discard stream tcp nowait STC internal
chargen stream tcp nowait STC internal
daytime stream tcp nowait STC internal
time stream tcp nowait STC internal
echo dgram udp nowait STC internal
discard dgram udp nowait STC internal
chargen dgram udp nowait STC internal
daytime dgram udp nowait STC internal
time dgram udp nowait STC internal

15.5 Access to data and applications

If you are already running OS/390, VM/ESA, or VSE/ESA, or any combination
of these three systems, you may want to access data and applications on
these platforms from Linux for S/390, or vice versa.

15.5.1 OS/390
Regarding data exchange between Linux for S/390 and OS/390, you have to
consider that OS/390, like VM/ESA and VSE/ESA, stores text-oriented data
predominantly in EBCDIC, whereas Linux for S/390 stores all such data in
ASCII. Further, you may observe the use of different EBCDIC code pages.
This is mainly due to the need to support diacritical characters. For example,
in Germany you will find text and program sources stored typically in EBCDIC
code page 273. In the UNIX System Services environment you find a further
code page used, IBM-1047. When you are going to exchange data between
these systems in either direction, proper conversion tables must be used. But,
to avoid confusion, there is no restriction on storing data in other code pages.
You have to apply the proper translation when you access the data.

When accessing data on OS/390, you have to consider where this data is
stored: in the conventional file system of OS/390 or the hierarchical file
system of UNIX System Services. The latter behaves like every UNIX file
system regarding the structure in which data is stored: It uses directories,
there is a current working directory, file names can have long names and are
case sensitive, etc.
Chapter 15. Linux for S/390 connectivity to VM, OS/390, VSE 307

The conventional file system of OS/390 has several properties that need to be
discussed in more detail. Files in this file system are called data sets.

 • Data sets have names that are a maximum of 44 characters in length.

 • The naming structure uses qualifiers, each 8 bytes maximum in length,
separated by a “.” (period). Not all characters can be used in the name.
The first character of a qualifier must always be an alpha character, or one
of $, #, or @.

 • The high-level qualifier typically indicates the owner, the lowest level
qualifier represents the data type: JCL or CNTL for Job Control Language
data, PL1 for source code written in the PL/1 programming language.

 • There are two types of data sets, sequential and partitioned. The first type
can be compared with flat files on a UNIX system, while the latter looks
like a flat file, too, but has an internal directory that makes it possible to
store different members separately. A partitioned data set can be
compared with an archive file (.a). When accessing a partitioned data set
through NFS or FTP, it behaves like a directory on a UNIX or DOS-like
system. Each member behaves like a sequential data set.

 • Unlike files on other operating systems, data sets on OS/390 have an
external structure that consists of a record format, a record length, and a
block size. For text data you should set the new line delimiter, which is
carriage return line feed (crlf) by default.

 • A data set on OS/390 has to be allocated before it can be used. Allocation
is done in space units, which can be tracks, cylinders, or size (in bytes).
Allocation is split into two parts, primary and secondary allocation. The
first gives the size a data set initially has, the latter defines the amount of
space by which the size may increase dynamically.

Regarding binary data representation, you should be aware of the following:
S/390 is a big endian system. That means the high-value byte is at the lower
address. Intel-based platforms are called little endian systems. When you
exchange data with such a system, the application that will use the data must
act accordingly to make sure that the data will be in a useful format.

Exchange between S/390 systems and RISC-based systems should work
immediately. Care has to be taken with floating-point data. With 9672
generations 5 and 6, S/390 supports IEEE hardware floating-point arithmetic
in addition to hexadecimal floating point. Linux for S/390 supports only IEEE
floating-point data. So data conversion has to take place when exchanging
hexadecimal data with OS/390 and Linux for S/390.
308 Linux for S/390

The following methods can be used from Linux for S/390 to access data and
applications on OS/390.

15.5.1.1 Network File System (NFS)
The Marist Linux for S/390 distribution contains a compiled NFS client. This
can be used to mount the following kinds of OS/390 data:

 – Sequential files
 – VSAM files
 – USS Hierachical File System (HFS) files
 – Partitioned Data Sets (PDS and PDSE)

The NFS server function in OS/390 is delivered through the OS/390 NFS
component. There is also an NFS client in OS/390 that allows you to mount
all or part of a Linux for S/390 file system from OS/390.

For information on setting up an NFS server on OS/390, refer to OS/390
V2R6.0 NFS Customization and Operation, SC26-7253.

15.5.1.2 Telnet
Telnet is a interactive access to another system (OS/390, Linux, UNIX,
VM/ESA, VSE/ESA). For OS/390, Telnet comes in two flavors, one to access
UNIX System Services, another to access traditional 3270-based
applications. As both normally work on port 23, special care has to be taken
to separate these two access functions. This is described in 15.4, “TCP/IP for
OS/390 connectivity” on page 300.

15.5.1.3 File Transfer Program (FTP)
FTP provides a means to import and export data between Linux for S/390 and
OS/390. Data can be transferred either from OS/390 to Linux for S/390 or
vice versa. In addition to this base functionality, FTP on OS/390 makes it
possible to access data stored in the DB2 Database (for more information see
Accessing OpenEdition from the Internet, SG24-4721). Furthermore, you can
use FTP to submit (start) OS/390 jobs in the background. As an example, it is
possible to store the jobs described in Figure 10 on page 52 or Figure 11 on
page 53 on your Linux for S/390 system and start them through this FTP
function. Certainly you need an OS/390 userid with the appropriate
authorization rights.

FTP is capable of serving both types of files (conventional and HFS) on
OS/390 in the same session. The differentiation is done with the change
directory (cd) command. A / as the first character indicates files in the HFS,
whereas a qualifier type cd routes to the conventional file system, which is
shown in the following sequence:
Chapter 15. Linux for S/390 connectivity to VM, OS/390, VSE 309

[root@linuxx /root]# ftp wtsc52
Connected to wtsc52.itso.ibm.com.
220-FTPDMVS1 IBM FTP CS V2R8 at wtsc52oe.itso.ibm.com, 22:37:25 on
2000-05-28.
220 Connection will close if idle for more than 5 minutes.
Name (wtsc52:root): hdm
331 Send password please.
Password:
230 HDM is logged on. Working directory is "HDM.". (1)
Remote system type is MVS.
ftp> cd main (2)
250 "HDM.MAIN." is the working directory name prefix.
ftp> ls
200 Port request OK.
125 List started OK
Volume Unit Referred Ext Used Recfm Lrecl BlkSz Dsorg Dsname
TOTTS7 3390 1999/10/07 1 30 FB 80 27920 PO C
TOTTS3 3390 2000/05/24 1 30 FB 80 27920 PO CNTL
.
.
TOTTSO 3390 2000/05/08 4 5 FB 80 3120 PS SCRXMT
TOTTS2 3390 2000/05/03 1 30 FB 80 6160 PO SOURCE
250 List completed successfully.
ftp> cd /u/hdm (3)
250 HFS directory /u/hdm is the current working directory
ftp> ls
200 Port request OK.
125 List started OK
total 39480
-rw-r--r-- 1 AAAAAAA SYS1 821 Dec 20 1997 README.bin.os390
-rwx------ 1 AAAAAAA SYS1 111 Dec 10 1998 Vsmregn.c

The default setting for this server points to the conventional file system (1).
Using the cd (2) command we navigate within this file system and display
some entries there. At (3) we switch into the hierarchical file system of USS.
The file system initially selected is defined through the start parameter
Startdir of ftp.data. This configuration file can be a data set of a file in the
HFS in /etc.

To get a status of the current settings from the FTP configuration data set
(ftp.data), issue the command rstatus. For more information on using the
FTP server on OS/390, see OS/390 TCP/IP OpenEdition User’s Guide,
GC31-8305.
310 Linux for S/390

15.5.1.4 Remote Execution (REXEC) and Remote Shell (RSH) access
The Linux for S/390 rexec and rsh commands can be used to execute a
command on OS/390 and receive the results back. To use rsh or rexec, you
must have a REXEC daemon running on OS/390.

The RSH client passes the local user name, remote user name, and
command to the RSH daemon. The remote user name may be in the form
user/password when the RSH daemon is an OS/390 host. The daemon
provides automatic logon and user authentication, depending on the
parameters that you set.

The REXEC client passes the user name, password, and command to the
REXEC daemon. The daemon provides automatic logon and user
authentication, depending on the parameters that you set.

There are also a Unix System Services orexec client and orexec daemon
available for OS/390.

If you want to execute UNIX commands on Unix System Services of OS/390
via rexec and rsh, the following settings must be set:

 • Port numbers 512 and 514 must be assigned to OMVS in the appropriate
profile data set of TCP/IP:

Port
512 TCP OMVS
514 TCP OMVS

In case you have two TCP/IP stacks running on OS/390, this must be done
for the one working for the Unix System Services.

 • The inetd.conf file must contain appropriate statements to handle the rsh
and rexec commands. An example is given in 15.4.3, “Inetd daemon in
OS/390” on page 306.

RSH and REXEC can be used to submit OS/390 batch jobs as well as TSO or
Unix System Services commands.

Due to a potential security exposure, use of these TCP/IP applications should
be very closely controlled. In a Linux for S/390 environment we would expect
them to be used only over a point-to-point connection to a trusted OS/390
host running in another LPAR or virtual machine on the same system.

15.5.1.5 TCP/IP sockets
You can write your own unique sockets applications to connect Linux for
S/390 applications to OS/390 applications and data. OS/390 provides both
Open Network Computing remote procedure call (ONC/RPC) interfaces and
Chapter 15. Linux for S/390 connectivity to VM, OS/390, VSE 311

Distributed Computing Environment (DCE) RPCs. Your application can be
built on these interfaces.

15.5.1.6 Special purpose middleware
To date, IBM has announced that it will provide the following middleware that
will run on Linux for S/390:

 • DB2 Universal Database for Linux for S/390

 • WebSphere advanced edition with Java JDK

Connectors for:

 • DB2

 • MQSeries

 • CICS

 • IMS

Also, a Tivoli TSM Client statement of intent.

These middleware solutions will make it much easier to connect from Linux
for S/390 to OS/390 applications and data.

15.5.2 VM/ESA
The following methods can be used from Linux for S/390 to access data and
applications residing on VM.

15.5.2.1 Telnet
You can use the telnet command from Linux for S/390 to log on to a VM
system in line mode. Generally, this has little value but might make some
sense when using the VM/ESA OpenEdition shell.

Brief experimentation showed that you are likely to run into codepage
translation problems.

From a CMS session you can also Telnet to Linux for S/390:

telnet linux5.itso.ibm.com
VM TCP/IP Telnet Level 310
Connecting to LINUX5.ITSO.IBM.COM 9.12.9.184, port TELNET (23)

Using Line Mode...

Notes on using Telnet when in Line Mode:
- To hide Password, Hit PF3 or PF15
312 Linux for S/390

- To enter Telnet Command, Hit PF4-12, or PF16-24
Linux 2.2.15 (linux5.itso.ibm.com) (ttyp0)

linux5 login: root
Password:
Last login: Tue May 30 00:00:29 from 9.12.9.178
root@linux5 /rootâ# ls /boot
System.map image ipldump.boot ipleckd.boot iplfba.boot kernel.h
parmline
root@linux5 /rootâ#

Note that there are some minor codepage issues to be dealt with.

15.5.2.2 Network File System (NFS)
The Marist College Linux for S/390 distribution contains a compiled NFS
client. It can be used to mount the following kinds of VM/ESA data:

 – CMS minidisk files
 – Shared File System (SFS) files
 – OpenEdition Byte File System (BFS) files

The NFS server function in VM/ESA is currently delivered through the NFS
feature of VM/ESA.

For information on setting up an NFS server on VM/ESA, refer to VM/ESA
V2R4.0: TCP/IP Function Level 320 Planning and Customization,
SC24-5847. Another useful reference is the ITSO redbook TCP/IP Solutions
for VM/ESA, SG24-5459.

There is further detailed discussion of NFS in Chapter 19, “Network File
System (NFS)” on page 367.

15.5.2.3 File Transfer Program (FTP)
FTP provides a means to import and export data between Linux for S/390 and
the VM/ESA Conversational Monitor System (CMS). Data can be transferred
either from CMS to Linux for S/390 or vice versa.

FTP is discussed further in Chapter 17, “File Transfer Protocol (FTP)” on
page 335.

15.5.2.4 Remote Execution Protocol (REXEC) and Remote Shell
Protocol (RSH)

The Linux for S/390 rexec and rsh commands can be used to execute a
command on VM/ESA and receive the results back.
Chapter 15. Linux for S/390 connectivity to VM, OS/390, VSE 313

To use rsh or rexec, you must have a REXEC daemon running on VM/ESA.
The REXECD virtual machine implements the REXEC and RSH daemons.

RSH and REXEC can be used to submit VM/ESA batch jobs as well as CMS
commands.

Use of these TCP/IP applications should be very closely controlled as there
are potential security exposures.

15.5.2.5 TCP/IP sockets
You can write your own unique sockets applications to connect Linux for
S/390 applications to CMS applications and data.

15.5.2.6 Special purpose middleware
IBM has announced DB2 Connect, which runs on Linux for S/390. This
middleware solution makes it much easier to connect from Linux for S/390 to
DB2 databases on VM/ESA.

These middleware solutions will also make it much easier to connect from
Linux for S/390 to VM/ESA applications and data. See 15.5.1.6, “Special
purpose middleware” on page 312 for a complete list of announced
middleware.

15.5.3 VSE/ESA
The following methods can be used from Linux for S/390 to access data and
applications residing on VSE/ESA running in another LPAR or as a guest of
VM.

15.5.3.1 Network File System (NFS)
The Marist College Linux for S/390 distribution contains a compiled NFS
client. This can be used to mount the following kinds of VSE/ESA data

 – VSAM ESDS files
 – VSE library members
 – VSE/POWER queue entries

The NFS server function in VSE/ESA is currently delivered through the NFS
Feature of IBM program product TCP/IP for VSE/ESA, 5686-A04.

There are some limitations for VSE NFS servers. Because NFS was primarily
designed to link UNIX systems, it is dependent on having a UNIX file system
available on the server. Therefore, the NFS feature of TCP/IP for VSE/ESA
cannot process files that do not have an emulated directory structure.
314 Linux for S/390

These include ICCF, sequential (flat) files, and VSAM files defined individually
in the file system.

VSAM ESDS and KSDS file types are supported for retrieval when accessed
using a VSAM catalog entry in the file system. ESDS is the only VSAM file
type that NFS supports for output on the VSE system. You can also access
VSE libraries and the POWER RDR, PUN, and LST queues.

For information on setting up an NFS server on VSE/ESA, refer to the TCP/IP
for VSE/ESA User's Guide, SC33-660. Another mine of excellent information
is the redbook Getting Started with TCP/IP for VSE/ESA 1.4, SG24-5626.

15.5.3.2 File Transfer Program (FTP)
FTP provides a means to import and export data between Linux for S/390 and
the VSE/ESA operating system. Data can be transferred either from
VSE/ESA to Linux for S/390 or vice versa.

15.5.3.3 TCP/IP sockets
You can write your own unique sockets applications to connect Linux for
S/390 applications to VSE/ESA applications and data.

15.5.3.4 Special purpose middleware
IBM has announced DB2 Connect, MQ Series, and CICS connectors that will
run on Linux for S/390.

These middleware solutions will make it much easier to connect from Linux
for S/390 to VSE/ESA applications and data. See 15.5.1.6, “Special purpose
middleware” on page 312 for a complete list of announced middleware.
Chapter 15. Linux for S/390 connectivity to VM, OS/390, VSE 315

316 Linux for S/390

Chapter 16. Development tools

Here we describe some of the most important tools to compile and possibly
debug software from source code. We assume, of course, that Linux is
installed, configured and running. Porting issues are not treated in this
chapter. There is plenty of software, both commercial and free, for these
purposes. You might want to check the list at:

http://sal.kachinatech.com/

16.1 Archiving and compression tools

Most source code packages come in some kind of archive that has to be
unpacked before compiling. In case you are already familiar with gzip, bzip,
tar, and similar programs, you can skip this section.

16.1.1 The gzip command
gzip is used for file compression. The command:

gzip myfile.txt

compresses the file myfile.txt into myfile.txt.gz. The operation is in-place, i.e.,
the original file is removed after compression. The compressed file can be
uncompressed (again in-place) by:

gzip -d myfile.txt.gz

The sanity of the same archive can be checked by:

gzip -t myfile.txt.gz

There is no output if the archive is ok; an error message is given if it is not.
The content of a gzip archive can be listed by:

gzip -l myfile.txt.gz

The most interesting piece of information in the printed output is perhaps the
size that the file will have when uncompressed. Another option that is
sometimes useful is -9, which chooses maximum compression.

16.1.2 The bzip2 command
The command bzip2 is analogous to gzip, except that for some mysterious
reason the -l option is not implemented. The compression rates achieved with
bzip2 are generally superior to gzip. Files compressed with bzip2 usually have
the name extension .bz2.
© Copyright IBM Corp. 2000 317

16.1.3 The compress command
compress is the dinosaur among UNIX compression tools. The name extension
indicating an archive created by compress is .Z. These files are
uncompressed with the uncompress command. The compression rate is lower
than that of gzip or bzip2.

16.1.4 The tar command
tar is used to store multiple files into one archive file. For example, the
command:

tar -cvf data.tar mydir/

creates a file that contains all files (including subdirectories) under the
directory mydir/. The archived files are not removed. In the last example the
option -v causes tar to operate verbosely—that is, to list all of the files being
archived. The contents of the archive can be listed with:

tar -tvf data.tar

and restored with:

tar -xvf data.tar

So the three important flags to remember are -c for Create, -x for eXtract, and
-t for lisT.

It is common to compress archives generated by tar to save space. The
compressed archive (named data.tar.gz) obtained from the above by:

gzip data.tar

can be generated directly using the -z switch:

tar -cvzf data.tar.gz mydir/

Decompression while untarring an archive is also accomplished by the -z
option. Compatibility between gzip-compressed files, compress-compressed
archives can be handled transparently: use the -Z (capital z) option for that
purpose. The double file extension .tar.gz is sometimes replaced by just .tgz.
bzip2 compression can be invoked by using -I (capital i) instead of -z:

tar -cvIf data.tar.bz2 mydir/

To unpack the archive in one step, use:

tar -xvIf data.tar.bz2
318 Linux for S/390

Occasionally, the option -p is needed, which tells tar to set the modes of the
extracted files as recorded in the archive without having the umask setting.

Note that most, if not all, distributions of Linux allow gzip and bzip2
compression in conjunction with the tar command. However, other UNIXes,
such as AIX, do not recognize the tar -z flag. Also, other UNIXes have moved
to the pax command, but Linux has stayed with the traditional tar.

16.1.5 The zip command
The zip command (and its counterpart unzip) is an archiving tool that comes
from the DOS world. Listing the contents of a zip archive is done by:

unzip -l data.zip

and unpacking by:

unzip -La data.zip

It is not common to find zip files on Linux systems.

16.1.6 Other archiving tools
Plenty of other archive formats exist, among them arj, arc, cpio, rar, lha, and
zoo. Free software to create/unpack these formats is included in Linux
distributions or can easily be obtained from the Web. However, archives of
these types are rarely encountered.

16.2 Compilers

Compilers (or interpreters) for virtually every programming language are
available for Linux. Here we restrict our attention to the C/C++ compiler, gcc,
and perl.

16.2.1 The gcc and g++ compilers
The GNU C compiler, gcc, compiles and links C source code. The GNU C++
compiler g++ compiles and links both C and C++ input.

gcc -Wall hello.c -o hello

compiles the file hello.c into the binary executable hello. Without the -o
option, the binary name defaults to a.out. The switch -Wall activates a
reasonable set of warnings. Always use -Wall with gcc.
Chapter 16. Development tools 319

The command:

gcc --help

lists the available options for gcc. More detailed documentation is given in the
man page for gcc. Extensive information can be found in the info pages. If you
are familiar with emacs, it will be convenient to read info pages from within
emacs. Start emacs and use ctrl-h i to invoke the reader for info pages.

As most source packages come with makefiles, however, it is sufficient to just
say (often only after ./configure has been executed):

make

after unpacking the respective archive and changing to the newly created
directory.

16.2.2 Perl
Perl stands for Practical Extraction and Report Language.

From the Perl man page:

Perl is a language optimized for scanning arbitrary text files,
extracting information from those text files, and printing reports
based on that information. It's also a good language for many system
management tasks. The language is intended to be practical (easy to
use, efficient, complete) rather than beautiful (tiny, elegant, minimal).

Perl script files typically have the extension .pl. Execute a Perl script by:

perl -w myscript.pl

Most perl scripts are executables using the same mechanism that makes
shell scripts executable. Apart from having the executable bit in the file
permission set the first line of the file reads:

#!/usr/bin/perl -w

The -w option causes Perl to report important warnings about possible errors
in the script. Always use -w. The fact that Perl can be invoked without -w is
considered a bug in the Perl man page. Perl scripts that do not have the -w
option are likely to be quick hacks.

Almost everything about Perl can be found at:

http://www.perl.com/
320 Linux for S/390

16.2.3 Regina
This is REXX for UNIX systems. It is an attractive interpreter to anyone
familiar with the REXX language. REXX was originally implemented on
VM/ESA, but its popularity has spread and it is available today on a multitude
of other architectures and platforms.

16.3 Editing Linux files

There have been innumerable flame wars on the subject of “the best UNIX
editor”. There is no such animal. Choose whatever you are familiar with in the
environment you are working in. I would not recommend becoming dependent
on an editor that only works in X, because there will be times when X is not
available. There will be times when you will need to know how to edit files
without even having an editor available (for example, if your system comes up
after a crash and won’t mount /usr/bin).

Your distribution will have chosen a few editors for you. Get to know some of
them before you go out and start rolling your own.

There are probably more editors available for Linux than for most other
platforms. A quick overview of some of the more common ones can be found
at:

http://www.linuxstart.com/applications/texteditorsreaders.html

People coming from the S/390 environment will often look for a “prefix” type of
editor similar to XEDIT or the TSO editors. The closest equivalent would be
THE Hessling Editor, available from:

http://www.lightlink.com/hessling/THE/index.html

THE is intended to be similar to the VM/CMS System Product Editor, XEDIT,
and to KEDIT from Mansfield Software.

16.3.1 The vi editor
The vi editor is ubiquitous. It will run on almost any kind of terminal worthy of
that name. (This does not include the 3215, which is trying to emulate a WTX
Teletype, not a terminal). vi does not need cursor keys, although it can use
them if the environment is set up correctly. vi comes in various flavors, from
plain vanilla up through elvis, vile and vim.

The vi editor is primitive. There are very few moving parts; it only has two
gears, Text or Command. You cannot use it to surf the Web, or read your
Chapter 16. Development tools 321

news and mail. It is just a Visual Interface to whatever texts you will need to
see, and possibly modify in UNIX. It’s simple and it works, so give it a try.

The vi that ships with most Linux distributions is actually vim, which stands for
vi improved. See:

http://www.linuxdoc.org/HOWTO/Vim-HOWTO.html.

16.3.2 emacs
emacs stands for either Escape+Meta+Alt+Control+Shift or Eight Megabytes
Always Constantly Swapping.

emacs is not an editor, it is a way of life. Once you are through the basic
navigation stage, and know how to use the help system, emacs can become
your “character-driven front end” to the rest of the (UNIX) world and beyond.
See:

http://www.cs.cornell.edu/Info/People/raman/emacspeak/emacspeak.html

For the purpose of this redbook it is sufficient to know that emacs is possibly
the most productive environment for people that do enormous amounts of
text-based work, including correspondence, coding and documentation.

emacs has a built-in tutorial that is started with ctrl-h t.

If you know emacs, you should install it. If you do not, install it later.

16.3.3 joe, jove, pico
joe, or Joe’s Own Editor, is quite often used by those whose background
includes CP/M or Wordstar. Ctrl+k Ctrl+h gets you to the help screen, if you
do not use it often.

jove (Jonathan's Own Version of emacs) is a text editor based mainly on the
original emacs editor written by Richard Stallman at M.I.T. Although jove is
mostly emacs-compatible, there are several differences. For example, jove
offers automatic indentation, multiple views of more than one file, and
shorthands in the form of keys, words, lines and paragraphs.

pico is the editor used by the pine e-mail system, which is familiar to many
North American students.
322 Linux for S/390

16.3.4 The sed editor
The name sed stands for Stream EDitor. sed is a non-interactive editor. It is
useful if it is not possible to open an interactive editor. Its main use is
replacing a piece of text in a file.

For example:

sed ’s/foo/bar/g’ myfile.txt > newfile.txt

will create the file newfile.txt with the same contents as myfile.txt with all
occurrences of the text foo replaced by bar.

16.3.5 The pfe editor
The Programmers File Editor, pfe, from:

http://www.lancs.ac.uk/people/cpaap/pfe/

is not a Linux editor, but is included here because you will find it invaluable if
you also have to work with W9x, NT, W2K or OS/2, and need an editor that
respects the CR/LF/EOF or Newline conventions of both worlds. If you have a
pfe icon on your desktop, you can just drag and drop text files from the
Windows file manager onto it. This is particularly useful in conjunction with a
Samba share of your Linux home directory, or your ~/public_html.

16.3.6 The THE editor
THE stands for The Hessling Editor. It will probably be the preferred editor for
Linux users who are familiar with the XEDIT editor of the VM/ESA
Conversational Monitor System (CMS).

16.4 Make tools

Make tools are used to automatically build software.

16.4.1 Make
The make man page summarizes make as follows:

The purpose of the make utility is to determine automatically which
pieces of a large program need to be recompiled, and issue the
commands to recompile them.

In order to do anything sensible with make, one must have a makefile (usually
named Makefile) in the current directory. The makefile does not contain any
kind of program but rather consists of rule sets. These consist of entries that
roughly look like this:
Chapter 16. Development tools 323

target1: dep1 dep2
do_this dep1 dep2 > tmp.txt
do_that tmp.txt -o target1

The first line says that target1 depends on dep1 and dep2 (which might be
built by another rule). Lines 2 and 3 are commands to be executed in order to
build target1.

Both line 2 and line 3 must start with a tab character. If not, make will produce
an error message. As an example, suppose the tab is missing in line 361; this
results in the following error message:

makefile:361: *** missing separator. Stop.

This is not mentioned in the man page for make.

The info pages for (GNU-)make produce a pretty exhaustive reference for
most aspects of this utility.

16.4.2 automake
The role of automake is to produce at least an autoconf[1]-compatible
Makefile template for completion by autoconf. Typically, the person creating
an automake/autoconf package will create an automake “template” file
(usually called Makefile.am) that identifies which end products are to be built
and/or installed.

16.4.3 autoconf
The role of autoconf is to create a configure shell script, which is capable of
determining many facets of the machine/system configuration on which it
runs, then propagate such settings into other files—typically one or more
Makefiles or config.h C/C++ headers.

Figure 88 on page 325 shows the relationship between autoconf, the
configure script, make, and the compiler.
324 Linux for S/390

Figure 88. Package build process

16.5 Source code control tools

The following description of source code control systems is taken from:

http://metalab.unc.edu/mdw/HOWTO/CVS-RCS-HOWTO-1.html

Source code control system is a must to manage the changes
occurring to a software project during development. Developer
needs a complete history of changes to backtrack to previous
versions in case of any problems. Since source code is the most
vital component of any software project and software development
takes a huge amount of time and money, it is very important to
spend some time in safeguarding the source code by using the
source code control systems like CVS and RCS.

16.5.1 RCS and CVS
Revision Control System (RCS) and Concurrent Version System (CVS) are
version control systems. CVS is built on top of RCS and offers extended
functionality like distributed development, often operated as Internet CVS
repository. An important feature of these tools is the ability to create an old

autoconfconfigure.in configure
script

makefile C or C++
compiler and

linker

executable
files

make

.C
files

.h files

libraries

optional

optional
config.h
Chapter 16. Development tools 325

version of the source code, which often helps immensely to locate at which
point a bug entered into the source tree.

For a nice introduction, see the info pages of CVS or visit:

http://metalab.unc.edu/mdw/HOWTO/CVS-RCS-HOWTO.html

16.5.2 Kdevelop
Kdevelop is an integrated development environment (IDE) running under X11.
It offers a documentation browser, a source code editor with syntax
highlighting, and a graphical user interface (GUI) for the compiler. Especially
if you plan to write programs for X11, the Qt-lib, or KDE, you should consider
using it.

Kdevelop comes with detailed documentation. Its Web site is:

http://www.kdevelop.org/

16.6 Code analyzers

This section addresses source code analysis tools.

16.6.1 LCLint
The following description of LCLint is taken from:

http://lclint.cs.virginia.edu/index.html

LCLint is a tool for statically checking C programs. With minimal
effort, LCLint can be used as a better lint. If additional effort is
invested adding annotations to programs, LCLint can perform
stronger checks than can be done by any standard lint.

Note that LCLint does not work with C++ code. The tool comes without a man
page or info page. For more usage information, use the command:

lclint -h

or visit the LCLint site at:

http://lclint.cs.virginia.edu/

16.6.2 Compiler code analyzer features
Always, always, always use the abilities of the compiler to analyze your code.
For gcc the most interesting single switch is -Wall, which does not really
enable all possible warnings but a reasonable subset. Study the section of
326 Linux for S/390

the man page about “warning options” to choose which warning options not
included in -Wall you will enable.

In some cases it can be instructive to compile C as C++ just to see which
additional warnings are issued by the compiler. To do this, use the g++
command.

Perl has the -w switch; you should never use Perl without it.

16.7 Debugging facilities

SIMPLE is an acronym for Sheer Idiot's Monopurpose
Programming Language Environment. This language, developed
at the Hanover College for Technological Misfits, was designed to
make it impossible to write code with errors in it. The statements
are, therefore, confined to BEGIN, END and STOP. No matter how
you arrange the statements, you can't make a syntax error.
Programs written in SIMPLE do nothing useful. Thus they achieve
the results of programs written in other languages without the
tedious, frustrating process of testing and debugging.

This quote is from an unknown source, to be found at:

http://www.dcs.port.ac.uk/~lesterc/humour/G-newpls.html

Unless you are programming in SIMPLE, you will have to debug your code to
achieve the desired results.

16.7.1 The gdb debugger
gdb, the GNU debugger, allows you to examine executables (compiled from C
or C++ source) in two ways: “post mortem” or “in action”. Assume that the
program myprog was aborted (probably by a segfault) and the core dump
went into a file named core. The situation can then be analyzed with:

gdb myprog core

An interactive debugging session is started. Among the different gdb
commands, the one most likely to be used in this situation is bt (backtrace),
which returns a calling trace to the point of the fault.

Observing a program while running is possible after starting a gdb session
with:

gdb myprog
Chapter 16. Development tools 327

After possibly setting breakpoints (break func_name) the program is started
with run (plus possible arguments). After the program has stopped at a
breakpoint, one can list the current piece of code (list), examine the value of
variables (print <varname>) or move up (up) or down (down) in the stack frame.

Detailed information about gdb and its usage is given in the gdb info pages.

16.7.2 The Data Display Debugger, ddd
ddd, the Data Display Debugger, is a graphical front end for gdb. When X11 is
available, it offers an intuitive interface to gdb. Additional functionality of ddd,
such as the graphic display of data structures, makes debugging very
comfortable. The homepage of ddd is at:

http://www.gnu.org/software/ddd/

16.7.3 The MALLOC_CHECK_ environment variable
The following is from the information page Libc - Memory Allocation -
Unconstrained Allocation - Heap Consistency Checking:

Another possibility to check for and guard against bugs in the use
of` malloc', `realloc' and `free' is to set the environment variable
`MALLOC_CHECK_'. When `MALLOC_CHECK_' is set, a special
implementation is used which is designed to be tolerant against
simple errors, such as double calls of `free' with the same
argument, or overruns of a single byte (off-by-one bugs). Not all
such errors can be protected against, however, and memory leaks
can result. If `MALLOC_CHECK_' is set to `0', any detected heap
corruption is silently ignored; if set to `1', a diagnostic is printed on
`stderr'; if set to `2', `abort' is called immediately. This can be useful
because otherwise a crash may happen much later, and the true
cause for the problem is then very hard to track down.

Using the MALLOC_CHECK_ on programs that come binary-only can be
quite interesting and helpful for arguments with the respective software
vendor.

16.7.4 nana
Among the various utilities we only mention nana, a library for “improved
support for assertion checking and logging in C and C++.” Consult the
pertinent page for detailed information about its concepts and usage.
328 Linux for S/390

16.8 The strace and ltrace tools

strace and ltrace are tools to trace the system and library calls, respectively.
In order to trace the actions of a command just enter it with all options, but
preceded by the trace statement.

ltrace test -d /usr

results in the following output showing all library calls invoked:

__libc_start_main(0x0804aee0, 3, 0xbffff3e4, 0x08048754, 0x0804b38c <unfinished ...>
__register_frame_info(0x0804d268, 0x0804d3b0, 0xbffff388, 0x4003a098, 0x400f6618) = 0x400f71c0
setlocale(6, "") = NULL
bindtextdomain("sh-utils", "/usr/share/locale") = "/usr/share/locale"
textdomain("sh-utils") = "sh-utils"
strchr("abcdefgkLhprsStuwxOGnz", 'd') = "defgkLhprsStuwxOGnz"
__xstat64(3, 0xbffff589, 0xbffff2cc, 0x0ab39b0e, 0xbffff2e4) = 0
exit(0) = <void>
__deregister_frame_info(0x0804d268, 4096, 0, 4096, 8) = 0x0804d3b0
+++ exited (status 0) +++

The command:

strace test -d /usr

lists the system calls; that is, those functions called that require kernel action:

execve("/usr/bin/test", ["test", "-d", "/usr"], [/* 61 vars */]) = 0
brk(0) = 0x804d508
open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=15947, ...}) = 0
mmap(NULL, 15947, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40014000
close(3) = 0
open("/lib/libc.so.6", O_RDONLY) = 3
fstat(3, {st_mode=S_IFREG|0755, st_size=4061504, ...}) = 0
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\340\213"..., 4096) = 4096
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40018000
mmap(NULL, 924892, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) = 0x40019000
mprotect(0x400f3000, 31964, PROT_NONE) = 0
mmap(0x400f3000, 20480, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED, 3, 0xd9000) = 0x400f3000
mmap(0x400f8000, 11484, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) =
0x400f8000
close(3) = 0
munmap(0x40014000, 15947) = 0
personality(PER_LINUX) = 0
getpid() = 2261
brk(0) = 0x804d508
brk(0x804d540) = 0x804d540
brk(0x804e000) = 0x804e000
open("/usr/share/locale/locale.alias", O_RDONLY) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=2265, ...}) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40014000
read(3, "# Locale name alias data base.\n#"..., 4096) = 2265
read(3, "", 4096) = 0
close(3) = 0
munmap(0x40014000, 4096) = 0
open("/usr/share/i18n/locale.alias", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/usr/share/locale/english/LC_MESSAGES", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/usr/share/i18n/english/LC_MESSAGES", O_RDONLY) = -1 ENOENT (No such file or directory)
Chapter 16. Development tools 329

stat("/usr", {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0
_exit(0) = ?

Besides being hugely helpful for debugging purposes, the output of the trace
commands gives lists of library and system calls whose man pages you will
want to study before doing your own UNIX programming.

16.9 bash’s -v and -x option

If you are unlucky enough to have to debug a bash script, you will find the
options -v and -x pretty handy (cite from the man page):

-v Print shell commands as they are read.
-x Print shell commands and their arguments as they are executed.

Try the following on the command line:

alias ll=’ls -l’
set -v
set -x
ll *

These commands should create the following output:

ll * 1
+ ls -l file1.txt file2.tar 2
-rw-r--r-- 1 root root 1276 May 4 1996 file1.txt
-rw-r--r-- 1 root root 87210 May 4 1996 file2.tar

where:

1 - The effect of the bash -v flag

2 - The effect of the bash -x flag; a + is put in front

Both switches can be reset with the shell command:

set -

Placed in strategic positions in shell scripts, set -v and set -x can be quite a
help in debugging.

16.10 Performance analysis with gprof

gprof, the GNU profiler, is a tool for the performance analysis of a program. It
generates a call graph that shows how often and from where each function
was called in the program run. Moreover, the individual and cumulative times
spent inside the routines are obtained. In order to profile an executable, it
330 Linux for S/390

must be compiled with the option that causes profiling output to be generated
during the program run. With gcc that option is -pg:

gcc -Wall -pg -O myprog.c -o myprog

The -O switch invokes compiler optimizations for speed. During a program
run, the file gmon.out, which contains the collected profiling data, is created.

The command:

gprof myprog gmon.out > mytiming.txt

creates a table of human-readable profiling data; the first few lines of a
real-world example are:

Flat profile:
Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls us/call us/call name
 58.06 0.18 0.18 206 873.79 873.79 fht(double *, long)
 32.26 0.28 0.10 323 309.60 309.60 fht0(double *, long)
 6.45 0.30 0.02 206 97.09 97.09 carry_thru(double *, long, int)
 3.23 0.31 0.01 117 85.47 85.47 fht_convolution(double *, double *, long)
 0.00 0.31 0.00 1596 0.00 0.00 hfloat::normalized(void) const
 0.00 0.31 0.00 208 0.00 0.00 fxtmult::max_dfxtlen(void)
 0.00 0.31 0.00 206 0.00 97.09 carry(double *, long, int)
 0.00 0.31 0.00 206 0.00 0.00 void scramble<double>(double *, long)
 0.00 0.31 0.00 206 0.00 873.79 dit_fht(double *, long)
...

This is followed by many more lines and the call graph, one of whose entries
is:

hfdata::radix(int, char *, int) [8]
0.01 0.01 756/9171 get_radix_format(int) [35]
0.05 0.02 2863/9171 hfdata::dump(char *, unsigned long) const [11]
0.10 0.05 5552/9171 fmod(hfloat const &, hfloat const &, hfloat &) [14]
0.16 0.08 9171+366 hfdata::radix(int, char *, int) [8]
0.0 6 0.00 4024/9411 void diff<double>(double *, unsigned long, unsigned long) [17]

Though not entirely obvious, gprof is useful as a debugging aid, too. In some
situations one has a certain expectation about how often a function should be
called. The callgraph produced by gprof supplies a convenient way to check
that. Excessively long or short times spent in parts of a program also often
give good hints about where something might be wrong.

16.11 lex and yacc

GNU’s lex is flex (fast lexical analyzer generator). Its man page says:

flex is a tool for generating scanners: programs which recognized
lexical patterns in text. flex reads the given input files, or its
standard input if no file names are given, for a description of a
Chapter 16. Development tools 331

scanner to generate. The description is in the form of pairs of
regular expressions and C code, called rules. flex generates as
output a C source file, lex.yy.c, which defines a routine yylex().
This file is compiled and linked with the -lfl library to produce an
executable. When the executable is run, it analyzes its input for
occurrences of the regular expressions. Whenever it finds one, it
executes the corresponding C code.

GNU’s yacc (Yet Another Compiler Compiler) is bison. The man page of yacc
explains:

Yacc reads the grammar specification in the file filename and
generates an LR(1) parser for it. The parsers consist of a set of
LALR(1) parsing tables and a driver routine written in the C
programming language. Yacc normally writes the parse tables and
the driver routine to the file y.tab.c.

... and bison claims to be compatible:

Bison is a parser generator in the style of yacc(1). It should be
upwardly compatible with input files designed for yacc.

If you do not know what all this is about you probably do not plan to write your
own compiler within the next few weeks. If you do, check out the “Compiler
Construction Kits “ for pointers to Eli, and others, at:

http://www.first.gmd.de/cogent/catalog/kits.html

16.12 A simple example

As a demonstration for the usage of make and gdb we compile and debug a
small C program. With our favorite editor we create the file hello.c, which
contains the following lines:

#include <stdio.h>
void hello()
{
 char h[] = "hello world!";
 printf("%s\n", h);
}

int main()
{
 hello();
 return 0;
}

332 Linux for S/390

In order to automate compilation, a Makefile, which is input to the make
command, is used:

BIN=hello

all:
gcc -Wall -O -g hello.c -o $(BIN)
./$(BIN)

clean:
rm -f $(BIN)

Note that the name of the binary (hello) is put into a variable, so that a
change of that name only requires a change in one place in the makefile.

The first job (called all) compiles and runs the program. The job named clean
deletes files that are created at compile time: in real-world situations these
are likely a bunch of object files. In our case, it’s simply the binary. In order to
launch the first job, we enter the command:

make

We get:

gcc -Wall -O -g hello.c -o hello
./hello
hello world!

The program compiled and ran successfully, and a binary executable named
hello can be found in the current directory.

Now, let’s try the debugger:

gdb hello

We get copyright information and some information on the started debugger,
and a prompt where commands can be entered:

GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you
are welcome to change it and/or distribute copies of it under certain
conditions. Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for
details.
This GDB was configured as "s390-suse-linux"...
(gdb)

We set a breakpoint at the beginning of the function hello():
Chapter 16. Development tools 333

(gdb) br hello
Breakpoint 1 at 0x8048425: file hello.c, line 7.

We could instead also enter the line number where the program should be
stopped. By entering run, we start the program. At the breakpoint, the
debugger stops the execution.

(gdb) run
Starting program: /home/jj/t/hello

Breakpoint 1, hello () at hello.c:7
7 printf("%s\n", h);

With bt (for BackTrace), the stack frame can be examined. The value of an
initialized variable can be checked with the print command. In more complex
situations with a deeper stack frame, one could move up and down in the
stack frame by using the commands up and down.

(gdb) bt
#0 hello () at hello.c:7
#1 0x804844b in main () at hello.c:12
(gdb) print h
$1 = "hello world!"

We continue the execution and observe that the program works as expected:

(gdb) cont
Continuing.
hello world!

Program exited normally.

A final command ends the debugger session and brings us back to the shell
prompt:

(gdb) quit
334 Linux for S/390

Chapter 17. File Transfer Protocol (FTP)

This chapter addresses FTP, anonymous FTP, and briefly discusses TFTP.

17.1 Overview of FTP

FTP is a client/server application that uses TCP/IP to transfer files between
computers. After http, it is probably the most commonly used Internet
protocol.

The client command is normally named ftp, which the user invokes to open
an interactive session with a server on another host. Initially, the user’s
identity is authenticated by the remote server and then files can either be sent
(put) or received (get). See 17.7, “Client notes” on page 344 for a list of
commonly used ftp client subcommands.

17.2 TFTP

There are actually two flavors of FTP. Besides the conventional FTP protocol,
there is the Trivial FTP protocol (TFTP), which uses the less reliable but faster
UDP/IP network layer. It is often used for booting network devices.

On S/390 Linux, the TFTP service is commented out in the inetd.conf file with
the following recommendation:

Tftp service is provided primarily for booting. Most sites
run this only on machines acting as "boot servers." Do not uncomment
this unless you *need* it.
#
#tftp dgram udp wait root /usr/sbin/tcpd in.tftpd

Therefore, TFTP is available on Linux for S/390, but is not started by default.

17.3 Anonymous FTP

The FTP server can be configured to be an anonymous FTP server on Linux
for S/390. This allows anyone to access files in the anonymous FTP directory
by logging in with a user ID of anonymous and a password of (by convention)
the e-mail address.

On some Linux distributions, an anonymous FTP server is a standard feature
of the install. With Linux for S/390, anonymous FTP is partially set up, but it
must be configured after the install.
© Copyright IBM Corp. 2000 335

To do this, the following is suggested:

1. If you are using the large file system from Marist, the FTP user ID should
exist. You can verify this by checking the /etc/passwd file. If it does not
exist, it can be added with the command:

$ /usr/sbin/adduser -c "FTP User" -s "" -u 14 ftp

Then edit the /etc/passwd file and replace the password “!!” with “x”. The
password is the second colon-delimited field. The value “x” means the FTP
user ID cannot log on interactively.

2. Get the anonftp-2.8-2.s390.rpm from the Thinking Objects download site:

http://linux.s390.org/download/ftp/RPMS/s390/

This rpm contains the files that have to exist in the /home/ftp directory.
Install the rpm as root with the following command:

[root@linux390 rpm]# rpm --install anonftp-2.8-2.s390.rpm

You should now be able to use anonymous FTP. The files that will be
accessible to anonymous FTP users are in /home/ftp. Typically the /pub (for
public) directory is used to make files available to anyone with network
connectivity to the server.

17.4 Controlling access

Access to the Linux for S/390 FTP server can be controlled using either the
traditional or anonymous FTP security models. Often, both conventional and
anonymous FTP servers are used in tandem through the administration of a
single ftpd server process.

17.4.1 Traditional FTP security
The traditional FTP server forces the user to authenticate himself with a valid
user ID/password pair. As such, each person accessing the FTP server must
have a valid login name and password defined in the /etc/passwd file.

17.4.2 Anonymous FTP security
Properly securing an anonymous FTP server is very important as it is often a
means to gain control of the system by those with malicious intent. Using the
anonymous FTP files described in 17.3, “Anonymous FTP” on page 335 may
have most of the proper securities in place, but to thoroughly secure your
anonymous FTP server, it is suggested you read the respective Computer
Emergency Response Team (CERT) reports.
336 Linux for S/390

They are on the Internet at:

ftp://ftp.cert.org/pub/tech_tips/anonymous_ftp_config

and:

ftp://ftp.cert.org/pub/tech_tips/anonymous_ftp_abuses

17.5 Converting files

As with other Linux systems, text on Linux for S/390 is in ASCII. Therefore,
there is no need to be concerned with conversion to EBCDIC when
communicating with other ASCII-based systems. As usual, you must first
issue the binary subcommand before moving files that do not contain text.

When FTPing to other S/390 operating systems such as OS/390 or VM, data
conversion follows the same rules as when communicating with any other
ASCII system.

17.6 Administrative tools

There are some commands and configuration files associated with the FTP
server. The commands are:

in.ftpd The FTP server
ftpwho Show current process information for each FTP user
ftpcount Show the current number of FTP users
ftpshut Close down the FTP servers at a given time

There are five initialization files in the /etc/ directory associated with FTP
server administration:

ftpaccess Configure the operation of in.ftpd
ftpusers The list of users who cannot use FTP to this server
ftpgroup The list of groups who cannot use FTP to this server
ftphosts The individual user host access file
ftpconversions The FTP conversions database

Each command and configuration file is documented in the following sections.

17.6.1 The tcpd command
The FTP server process, in.ftpd, is typically invoked via inetd (see 14.6.1,
“Overview of inetd” on page 272).
Chapter 17. File Transfer Protocol (FTP) 337

On Linux for S/390, this can be verified by grepping through the inetd.conf
file:

[root@linmike mndd]# grep ^ftp /etc/inetd.conf
ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd -l -a

Here we see that the executable that is spawned to service incoming FTP
requests is actually tcpd. This is an access control facility for Internet
services. Think of it as a front door for Internet servers. The head of the tcpd
man page describes it as follows:

The tcpd program can be set up to monitor incoming requests for telnet,
finger, ftp, exec, rsh, rlogin, tftp, talk, comsat and other services
that have a one-to-one mapping onto executable files.

The program supports both 4.3BSD-style sockets and System V.4-style
TLI. Functionality may be limited when the protocol underneath TLI is
not an internet protocol.

Operation is as follows: whenever a request for service arrives, the
inetd daemon is tricked into running the tcpd program instead of the
desired server. tcpd logs the request and does some additional checks.
When all is well, tcpd runs the appropriate server program and goes
away.

Optional features are: pattern-based access control, client username
lookups with the RFC 931 etc. protocol, protection against hosts that
pretend to have someone elses host name, and protection against hosts
that pretend to have someone elses network address.

17.6.2 The FTP daemon
The FTP daemon is invoked, as needed, by inetd. For a brief description of
inetd, see 14.6.1, “Overview of inetd” on page 272.

The flags with which the FTP daemon is invoked can be modified by the
system administrator. By default, in.ftpd is invoked with the -a and -l flags
from settings in the inetd.conf file. The -l option specifies that each FTP
session is logged in the syslog. Following is an example of a logged FTP
session, in this case from the file /var/log/messages:

May 22 17:41:30 linux390 ftpd[616]: ANONYMOUS FTP LOGIN FROM 9.12.0.115
[9.12.0.115], mike@foo.com

The -d or -v options specify that debugging information is written to syslog. If
the -i option is specified, files received by in.ftpd will be logged to the xferlog.
If the -o option is specified, files sent by ftpd will be logged to the xferlog. The
FTP server will timeout an inactive session after 15 minutes. If the -t option is
338 Linux for S/390

specified, the inactivity timeout period will be set to timeout seconds. A client
may also request a different timeout period; the maximum period allowed may
be set to timeout seconds with the -T option. The default limit is 2 hours.

Authentication of users is performed by ftpd as follows (from the ftpd man
page):

1. The user name must be in the password data base, /etc/passwd, or
whatever is appropriate for the operating system, and the password
must not be null. In this case a password must be provided by the
client before any file operations may be performed.

2. The user name must not appear in the file /etc/ftpusers.

3. The user must have a standard shell returned by getusershell(3).

4. If the user name is ``anonymous'' or ``ftp'', an anonymous ftp
account must be present in the password file (user ``ftp''). In this
case the user is allowed to log in by specifying any password (by
convention this is given as the client host's name).

17.6.3 The ftpaccess file
The ftpaccess file is the main configuration file of the FTP daemon; for more
information, you can refer to the ftpaccess man page (which is quite lengthy).
Apparently, this file is somewhat complex and at times limited in how the ftp
daemon can be configured. One append to a news group on this topic
suggested using ProFTPd, because its ftpaccess file is much more similar to
the Apache Web server’s configuration file. See 17.8, “A different FTP server
- ProFTPD” on page 345.

The default ftpaccess file shipped with S/390 Linux is as follows:

[root@itsolinux1 /etc]# cat ftpaccess
class all real,guest,anonymous *

email root@localhost

loginfails 5

readme README* login
readme README* cwd=*

message /welcome.msg login
message .message cwd=*

compress yes all
tar yes all
chmod no guest,anonymous
delete no guest,anonymous
Chapter 17. File Transfer Protocol (FTP) 339

overwrite no guest,anonymous
rename no guest,anonymous

log transfers anonymous,real inbound,outbound

shutdown /etc/shutmsg

passwd-check rfc822 warn

To test this file, it was modified in order to change the message file from the
root directory to the /etc directory with a more useful file name. The line:

message /welcome.msg login

was replaced with:

message /etc/ftp.msg login

After this change, two files were created: /etc/ftp.msg and
/home/ftp/etc/ftp.msg, to which appropriate messages were added. Pointing a
Web browser to this FTP server then shows the greeting shown in Figure 89.

Figure 89. Browser’s view of Anonymous FTP server
340 Linux for S/390

17.6.4 The ftpusers file
The users listed in the file /etc/ftpusers cannot be authenticated to the FTP
server. By default, the following users are included in the S/390 Linux ftpusers
file, and therefore excluded from logging in to the ftp server.

[root@linmike /etc]# cat ftpusers
bin
daemon
adm
lp
sync
shutdown
halt
mail
news
uucp
operator
games
nobody

17.6.5 The ftpgroups file
When accessing the ftp server from a client, the user can issue the site group
and site gpass subcommands. Doing so will specify an enhanced access
group and associated password. If the credentials are valid, the user
becomes a member of the group specified in the group access file
/etc/ftpgroups. The format of the group access file is as follows:

access_group_name:encrypted_password:real_group_name

where access_group_name is a string, encrypted_password is the password
encrypted via the crypt command (exactly like in /etc/passwd), and
real_group_name is the name of a valid group listed in /etc/group.

17.6.6 The ftphosts file
The ftphosts file is used to allow or deny access to certain accounts for
various users or from various hosts. The description in the man page is as
follows:

Access Capabilities
allow <username> <addrglob> [<addrglob> ...]

Only allow host(s) matching <addrglob> to log in as <username>.
deny <username> <addrglob> [<addrglob> ...]

Always deny host(s) matching <addrglob> to log in as <username>.
A username of anonymous or ftp specifies the anonymous user.
Chapter 17. File Transfer Protocol (FTP) 341

The <addrglob> may be also be specified as address/cidr or
address:netmask.
For example: 10.0.0.0/8 or 10.0.0.0:255.0.0.0

As an example, you may want to deny the user mikem to log in. If you add the
following line to the ftphosts :

deny 9.12.0.115

Then, when any user from the machine with an IP address of 9.12.0.115 tries
to login, he simply gets denied with no clear error message issued.

Connected to linux390.itso.ibm.com.
220 linux390.itso.ibm.com FTP server (Version wu-2.4.2-VR17(1) Thu May
18 03:18:
13 EDT 2000) ready.
User (linux390.itso.ibm.com:(none)): mikem
331 Password required for mikem.
Password:
530 Login incorrect.
Login failed.

17.6.7 The ftpconversions file
The ftpconversions file describes how the ftp server should process files; it is
used in conjunction with the ftpaccess file. Usually it describes how to
decompress files.

The following is taken from the ftpconversions man page:

The conversions known by ftpd(8) and their attributes are stored in an
ASCII file that is structured as below. Each line in the file provides
a description for a single conversion. Fields are separated by colons
(:).
%s:%s:%s:%s:%s:%s:%s:%s
1 2 3 4 5 6 7 8
Field Description
1 strip prefix
2 strip postfix
3 addon prefix
4 addon postfix
5 external command
6 types
7 options
8 description
342 Linux for S/390

Though the default ftpconversions file shipped with the large file system is
similar, one appender to a news group suggests using the following
ftpconversions file:

:.Z: : :/bin/compress -d -c %s:T_REG|T_ASCII:O_UNCOMPRESS:UNCOMPRESS
:-z: : :/bin/compress -d -c %s:T_REG|T_ASCII:O_UNCOMPRESS:UNCOMPRESS
:.gz: : :/bin/gzip -cd %s:T_REG|T_ASCII:O_UNCOMPRESS:GZIP
:.z: : :/bin/gzip -cd %s:T_REG|T_ASCII:O_UNCOMPRESS:GZIP
: : :-lst:/bin/ZIP-LST %s:T_REG|T_ASCII:O_UNCOMPRESS:UNCOMPRESS
: : :.Z:/bin/compress -c %s:T_REG:O_COMPRESS:COMPRESS
: : :.gz:/bin/gzip -c %s:T_REG:O_COMPRESS:GZIP
: : :.z:/bin/gzip -c %s:T_REG:O_COMPRESS:GZIP
: : :.tar:/bin/tar -c -f - %s:T_REG|T_DIR:O_TAR:TAR
: : :.tar.Z:/bin/tar -c -Z -f

- %s:T_REG|T_DIR:O_COMPRESS|O_TAR:TAR+COMPRESS
: : :.tar.z:/bin/tar -c -z -f - %s:T_REG|T_DIR:O_COMPRESS|O_TAR:TAR+GZIP
: : :.tar.gz:/bin/tar -c -z -f

- %s:T_REG|T_DIR:O_COMPRESS|O_TAR:TAR+GZIP
: : :.zoo:/bin/ZOO %s:T_REG|T_DIR:O_COMPRESS|O_TAR:ZOO
: : :.zip:/bin/ZIP %s:T_REG|T_DIR:O_COMPRESS|O_TAR:ZIP

17.6.8 The ftpcount command
The ftpcount command shows the current number of FTP users. Following is
the man page synopsis:

Syntax
ftpcount

Description
The command shows the current number of users (and the limit) for
each class defined in the ftpaccess file.

The following example shows that two users are currently connected and that
there is no maximum number of users.

[root@linux390 /etc]# ftpcount
Service class all - 2 users (no maximum)

17.6.9 The ftpshut command
The ftpshut command is used to close down the FTP server at a given time.
Following is the man page synopsis:

Syntax
ftpshut [-l min] [-d min] time [warning-message ...]

Description
The ftpshut command provides an automated shutdown procedure that
a superuser can use to notify ftp users when the ftp server is
shutting down.
Chapter 17. File Transfer Protocol (FTP) 343

Following is an example:

[root@linux390 /]# ftpshut now

If clients are connected to the FTP server when it is shut down, they will just
see the following message the next time they try to perform any operation:

221-System shutdown at Wed May 24 15:41:00 2000
221 Server shutting down. Goodbye.

Therefore, you may want to check if any users are connected first via the
ftpcount command.

Once this command is run, the file /etc/shutmsg is created (file name is set in
the file /etc/ftpaccess on the line beginning with ‘shutdown’). The file
/etc/shutdown is queried by the FTP server to see if it is shut down; if found, it
will continue to refuse connections until this file is removed. When the FTP
server is shut down and you try to connect from an FTP client, you will see
the error:

500 linux390.itso.ibm.com FTP server shut down -- please try again later.

When you remove the file, FTP clients can connect as usual.

17.6.10 The ftpwho command
The ftpwho command shows current process information for each FTP user.
Following is an example:

[root@linux390 /]# ftpwho
Service class all:
 1 ? S 0:00 init [3]
 1 ? S 0:00 init [3]
 - 2 users (no maximum)

17.7 Client notes

Traditionally, the FTP client uses a command line interface. On Windows
desktops, there are now many GUI-based clients that give a graphical view of
the files on the FTP server. We will focus on the traditional command line
client. Once you are in an FTP session, there are many subcommands that
can be issued. The more common commands are as follows:

open/user Subcommands for establishing and authenticating
FTP sessions

cd The subcommand for traversing file systems
mkdir/rmdir/rename/del Subcommands for manipulating the file system
344 Linux for S/390

bin/ascii Subcommands for toggling between text and binary
transfer type

get/put Subcommands for moving a single file
mget/mput/prompt Subcommands for moving sets of files
site The subcommand to send a specific instruction to

the server
hash/tick/beep Subcommands for giving more feedback of transfer

status
bye/quit Subcommands for ending FTP session

The FTP client does extra processing if a file named .netrc exists in the user’s
home directory. The .netrc file contains login and initialization information
used by the auto-login process. The following tokens are recognized:

machine name Identify a remote machine name.

default This is the same as machine name except that default
matches any name. There can be only one default token,
and it must be after all machine tokens.

login name Identify a user on the remote machine.

password string Supply a password. If this token is present, the auto-login
process will supply the specified string if the remote server
requires a password as part of the login process.

Following is an example of a short .netrc file that is useful if the systems to
which you FTP share the same user IDs and passwords. When this file exists
in your home directory, the FTP client automatically sends the user ID and
password.

[mikem@itsolinux1 mikem]$ cat .netrc
default login mikem password nunyab1z

17.8 A different FTP server - ProFTPD

The FTP server included with the big file system is wu-ftpd (wu for Winconsin
University). There is a feeling among some Linux users that ProFTPD is a
better choice. If you plan to seriously use a Linux for S/390 anonymous FTP
server, using the ProFTPD code might be worth the extra effort.

A description of this FTP server can be found on the ProFTPD home page at:

http://www.proftpd.net/
Chapter 17. File Transfer Protocol (FTP) 345

17.8.1 Obtaining ProFTPD
The latest ProFTPD release at the time of writing was 1.2.0 pre 10. It can be
found on the Web starting at:

http://www.proftpd.net/download.html

However, it is easier to get rpms than to build packages from scratch. One
was found in the file proftpd-1.2.0pre10-2.s390.rpm on the Thinking Object’s
Web site at:

http://linux.s390.org/download/ftp/RPMS/s390/

Also, a free user’s guide by Mark Lowes was found on the Web at:

http://hamster.wibble.org/proftpd/proftpd_userguide.html

To install ProFTPd, the current FTP server should be stopped via the ftpshut
command. Then the existing FTP daemon must be deleted via the rpm
--erase command. Finally the proftpd rpm can be installed; for example:

[root@linux390 ProFTPd]# /usr/sbin/ftpshut now
[root@linux390 ProFTPd]# rpm --erase anonftp-2.8-2
[root@linux390 ProFTPd]# rpm --erase wu-ftpd
[root@linux390 ProFTPd]# rpm --install proftpd-1_2_0pre10-2_s390.rpm
error reading information on service proftpd: No such file or directory
/var/tmp/rpm-tmp.33909: /etc/rc.d/init.d/proftpd: No such file or directory
execution of script failed

This install script did not run perfectly, however, the binaries and configuration
file (/etc/proftpd.conf) were created. Therefore, we were able to proceed.
Also, the in.ftpd line in /etc/inetd.conf was successfully commented out by the
install.

While the wu-ftp daemon is typically started via inetd, the ProFTPd daemon is
typically run standalone. That means the ftp daemon is always running and
waiting for incoming connections on port 21. Perhaps the only important error
is due to the lack of a start script which varies among distributions. For the
purpose of installing ProFTPd, we modified an existing script, and created the
file /etc/rc.d/init.d/proftpd as follows:

#! /bin/sh
#
chkconfig: - 55 55
description: The proftpd daemon gets started here - it does NOT start
from inetd

Source function library.
. /etc/rc.d/init.d/functions
346 Linux for S/390

Get config.
. /etc/sysconfig/network

Check that networking is up.
if [${NETWORKING} = "no"]
then
 exit 0
fi

See how we were called.
case "$1" in
 start)
 echo -n "Starting proftpd"
 case $SILENT in true|yes) silent=-q ;; *) silent= ;; esac
 daemon proftpd $silent
 ;;
 stop)
 echo -n "Stopping proftpd services: "
 killproc proftpd
 ;;
 status)
 status proftpd
;;
 restart|reload)
 $0 stop
 $0 start
 ;;
 *)
 echo "Usage: proftpd {start|stop|status|restart|reload}"
 exit 1
esac

exit 0

We then made symbolic links from /etc/rc.d/rc3.d/K55proftpd and S55proftpd
to /etc/rc.d/init.d/proftpd so the daemon will be started and stopped at run
level 3. ProFTPd successfully came up on the next reboot, and anonymous
FTP services were also available.
Chapter 17. File Transfer Protocol (FTP) 347

348 Linux for S/390

Chapter 18. Domain Name Service (DNS)

Domain Name Service (DNS) is a service that you can use to translate
domain names into IP addresses within the network.

18.1 Introduction to DNS

We will begin with a discussion of DNS solutions on S/390. We will then
provide a very basic description about how DNS works and describe the
configuration files involved. We will conclude with a guided tour through a
simple caching of DNS.

We would like to note here that DNS concepts are complicated, and the exact
implementation is beyond the scope of this chapter. We intend only to get you
started; therefore we will be covering only the simple concepts involved and
trying to provide you with a working knowledge of DNS. For complete
coverage of DNS we refer you to the book DNS and BIND and to the Linux
man pages.

18.1.1 Assumptions
We are assuming that you have successfully installed the Marist Linux big file
system, either on an LPAR or in a Virtual Machine. We also assume that your
Linux is configured so that you can telnet to and from your machine and that
you can connect to the internet (i.e. routing is set up correctly).

Further, you should have the following files on your Linux machine:

 • /etc/nsswitch.conf

 • /etc/host.conf

 • /etc/resolv.conf

 • /etc/hosts

Finally, we assume that you are able to issue telnet 127.0.0.1 from your
Linux console to log into your own machine.

18.1.2 Skills
You will need to be able to edit a text file, use telnet, and have a basic
understanding of how to navigate through the Linux file system.
© Copyright IBM Corp. 2000 349

18.2 How it works, in theory

The domain name system is a global network of servers that can translate
host names like www.marist.edu into their numerical IP (Internet Protocol)
addresses, in this case 148.100.1.21. This system is a distributed database,
providing data for name to IP address resolution at different levels within the
name space and providing access to the data across the entire network
through a client-server scheme. Performance is achieved through replication
and caching at various levels in the domain name space.

Name servers contain information about their domains and about where other
name servers can be located. They make this information available to their
clients, called resolvers. A resolver can be almost any application or machine
that needs to access a name on the net, therefore it will be trying to resolve a
domain name to an IP address. There are three possible solutions you can
use when implementing DNS:

1. You implement a local name server that acts as a primary name server.

A primary name server maintains all data locally. This name server has
authority over the name data belonging to the zone for which it is acting.
Secondary name servers in the network request transfers from the primary
name server.

2. You configure a local name server that acts as a secondary name server.

This configuration performs well for all queries. A secondary name server
requests a transfer of all name data from a remote name server during
initialization and stores the data in its local database. Then it responds to
local queries. Once a secondary name server receives the zone data, it
has authority for that zone.

At regular intervals, it will request a new transfer, refreshing the local copy
of the remote name server data based on the value defined in the Start of
Authority (SOA) record for the zone.

3. You configure a local name server that acts as a caching-only name
server. This configuration performs well for frequently used queries. A
caching-only name server maintains a local cache with the most recent
responses to queries. If the name server is able to serve a query from the
cache, it will do so. If not, the name server will forward the query to
another name server and cache the response on return.

The first thing you need to understand is the domain name space. This is the
structure of the DNS databases just discussed and it is how the different
domains on the Internet are represented. It is partially illustrated in Figure 90
on page 351.
350 Linux for S/390

Figure 90. Internet domain name space (partial representation)

The organization of the DNS database is represented by an inverted tree,
with the root at the top. This root is only a theoretical domain level and does
not represent a physical machine or location. In DNS, the root’s name is the
null label and is written as a single dot “.” in text. If you wanted to represent
the root node in a domain name then you would have a name such as
www.ibm.com. with the root as the final dot. It is customary to leave the root out
of domain names. Each node in the database represents a partition, or a
domain in the domain name system. Everything below a node falls into that
domain such that one domain can be part of another domain. For example,
the machine .redbooks is part of the .ibm domain as well as the .com domain.

18.2.1 In action
A DNS server is a computer running DNS software. As most servers are
UNIX or UNIX variants, the most popular program is BIND (Berkeley Internet
Name Domain). Linux for S/390 has this available in the form of two packages
that can be downloaded from the S/390 rpm database, (see Appendix G.4,
“Referenced Web sites” on page 507). We used these on our Linux for S/390
under VM/ESA and they were installed as described in 18.4, “Hardware and
software setup” on page 353.

When you enter a fully-qualified domain name such as www.vu.nl, your client
machine sends a request to a known name server. This is, in most cases, the
name server that was entered into the configuration file during the Linux
network setup.

. (root)

com

ibm

redbooks

www

(www.redbooks.ibm.com)

edu

marist

www

(www.marist.edu)

org net nl

vu

www

(www.vu.nl)

- Subdomain

- root (theory only)

- top level domain

- domain

- machine
Chapter 18. Domain Name Service (DNS) 351

If the queried name server has ever fielded such a request (within a set time
limit, to prevent a server from passing old information) for this host name, it
will find that information in its cache and return it to the requesting client.
When a name server can answer a query without asking another name
server, it’s known as an authoritative server.

If the name server cannot resolve the domain name itself, then it will attempt
to solve the problem by using one of several methods. A description of these
methods is outside the scope of this chapter and we refer you to the book
DNS and BIND.

Once the information is located, it’s passed back to the requesting client
machine and you can continue on your way. This usually occurs very quickly,
but occasionally it can take much longer and your client machine will time-out,
saying that the domain name does not exist (but you know that it does!). This
can be caused by heavy network traffic somewhere and the name servers
may still be busy trying to get an answer back to your client machine. In such
a case, if you try again it will most likely work because the information will
then have had enough time to get back to your requesting client machine.

18.3 DNS solutions on S/390

Linux for S/390 provides an alternative environment for a DNS server on
S/390. If you implement a primary or secondary DNS server on OS/390 or
VM/ESA, the data repository is a DB2 database. On Linux for S/390, it is a flat
file.

18.3.1 Using OS/390
With OS/390 you may use the Domain Name System in one of four different
ways (these are covered in more detail in the next section):

1. You implement a local name server that acts as a primary name server,
which stores the zone data in DB2 tables.

2. You configure a local name server that acts as a secondary name server,
which also stores the zone data in DB2 tables.

3. You configure a local name server that acts as a caching-only name
server.

4. You do not configure a name server on your MVS system, but point to
another host in the network that runs a name server. This is done by
placing an NSINTERADDR statement in the hlq.TCPIP.DATA data set, with
an IP address of the remote host running the name server.
352 Linux for S/390

18.3.1.1 Using VM/ESA
With VM/ESA, you have a similar set of options. The TCP/IP domain name
server can be configured to run as a primary, secondary, or caching-only
server. Both primary and secondary name servers store the zone data in DB2
tables. The caching-only name server uses a CMS file to define the host
names and internet addresses for the remote name servers.

18.3.1.2 Using VSE/ESA
VSE/ESA does not support a domain name server.

18.4 Hardware and software setup

We ran the Marist Linux big file system installed on S/390 under VM. We
accessed Linux through a telnet session from a SuSE 6.4 distribution running
on a desktop PC.

18.4.1 Software not included
The bind8 (Berkeley Internet Name Domain version 8) packages are not a
part of the Marist Linux big file system and need to be downloaded from the
S/390 rpm database (see Appendix G.4, “Referenced Web sites” on page
507). The first step is to obtain the two packages and place them together in
one directory. We did this while logged in as root by typing the following
commands:

$ cd
$ mkdir bind8

This creates a directory in the root directory called bind8, into which we
placed the two downloaded packages:

bind-8.2.2_P3-1.s390.rpm
bind-utils-8.2.2_P3-1.s390.rpm

We typed the following commands to install the bind8 packages:

$ rpm -ivh bind-8.2.2_P3-1.s390.rpm
$ rpm -ivh bind-utils-8.2.2_P3-1.s390.rpm
Chapter 18. Domain Name Service (DNS) 353

This command installs the bind8 components and documentation as listed in
Table 28.

Table 28. Executables and documentation installed with bind8

We removed the two Bind rpms by typing the following command:

$ rmdir -rf ~/bind8

Now we were ready to begin the configuration of our caching name server.

18.5 Caching-only name server

We begin by working with a caching-only name server, which will find the
answers to name queries and then remember the answers. This means that
the next time they are needed, the response time will be significantly better
since the DNS caching server you set up will not have to send the request out
onto the network.

The first thing we will explain is the concept of using forwarding to allow
domain name lookups from within a protected network (i.e. from behind a
firewall). We demonstrate this since it is the first step on your way into the

Directory File

/usr/sbin/ dnskeygen

irpd

named

named-bootconf

named-xfer

ndc

/usr/bin dig

dnsquery

host

mkservdb

nslookup

nsupdate

/usr/doc/bind-8.2.2_P3 documentation
354 Linux for S/390

complex world of DNS servers. We will also show you the various
configuration files that you need and give you a basic idea of how they work.

Before expanding on this caching-only name server, we recommend that you
become thoroughly familiar with DNS as it is complex and extremely
important to the domains it supports.

18.5.1 Forwarding out of a protected network
The first thing that you will encounter is the problem of not being connected
directly to the network, as most companies employ some sort of firewall
concept. This means you will be unable to query the DNS servers outside
your protected network directly: you will have to forward your requests
through a DNS server that is speaking to the outside world for you.

If you are connecting directly to the network (for example, if you are setting up
your DNS server to be just outside of the protected network) then you should
use a hints file, which is explained in the following section. When the query
cannot be resolved locally, this provides the name daemon with a starting
point by listing the addresses of the root-level domain name servers. How and
where to get the most up-to-date hints file, in case you want to do this sort of
setup, is also explained later on.

18.5.2 Configuration files
We start with the creation of a few configuration files so that named, which is
BIND’s daemon program, knows what it should do and in which directories it
can find things. Unless stated otherwise, all mentioned configuration files can
be located in the /etc/ directory.

18.5.2.1 Named.conf
The first file is named.conf, which you need to create in the directory /etc. You
do this by opening your favorite Linux editor and creating a file that looks like
“” on page 356.
Chapter 18. Domain Name Service (DNS) 355

Figure 91. The named.conf file

These are the basics you need to start your name daemon. The line directory
tells named where to look for files. For example, when the named.root file is
mentioned, named will look for it in /var/named/named.root directory. It does
not matter where you put this directory, as long as you have enough space.

The commented lines explain the forward option that is listed under it (you fill
in the IP address or addresses of DNS servers you use from within your
protected network; fake addresses are listed in this example). The only option
you will need right now is forward, so that you can point to a DNS server or
servers that are outside of you firewall. You can add many more options as
you become more familiar with the DNS concepts, but these fall outside of the
scope of this chapter.

Root.hints
The root.hints file is a configuration file containing the locations of all top-level
domain servers. It has to be obtained from the ftp server at

// Config file for caching only name server Linux on
S/390!

options {
directory "/var/named";
// This is a forwarding option to allow for the

fact
// that you are behind a firewall, thus needing

to
// get your lookup done by the DNS server that

deals
// with the outside world for your network.

forward first;
forwarders {

9.9.9.8; // This is a fake address.
9.9.9.9; // Backup (secondary) fake address.

};
};

zone "." {
type hint;
file "root.hints";

};
356 Linux for S/390

RS.INTERNIC.NET, the maintainers of this information. As mentioned earlier,
this will only be important to you if you are not using the forward option, and
therefore are connecting to the network directly.

The procedure for this is as follows:

1. Obtain the wget package (wget-1.5.3-5.s390.rpm at this time) from a
S/390 rpm database. This is a file retrieval utility that allows you to obtain
the named.root file from an ftp server using your Linux for S/390 machine.

2. Install it as user root with rpm -ivh wget-1.5.3-5.s390.rpm

3. Enter the following (with your proxy machine’s address in place of
proxy.company.tld):

export ftp_proxy=http://proxy.company.tld:8080/
wget ftp://rs.internic.net/domain/named.root

This will get you the named.root file, which describes the root name servers in
the world, in the directory where you executed the above commands. Move
this to the /var/named/ directory and rename it to root.hints with the
command:

mv named.root /var/named/root.hints

Now we are ready to move on to the next configuration file.

18.5.2.2 Zone file for 127.0.0
The last section of our named.conf file contains a zone file for
0.0.127.in-addr.arpa, which defines our zone (the one for which we are the
cached name server). It says that we are the master server for it and that it is
stored in a file called /var/named/db/127.0.0.

You will also create this file in the following steps:

cd /var/named/
mkdir db

Now, in you favorite Linux for S/390 editor, create a file containing the data
shown in Figure 92 on page 358.

This file contains three Resource Records: a Start of Authority (SOA), a
Name Server (NS), and a Pointer (PTR). The SOA line starts with an @,
which is the short notation of the origin, which in this case is the domain
column for the file 127.0.0.in-addr.arpa.

The SOA record is the preamble to all zone files, and there should be exactly
one in each zone file. It describes the zone and where it comes from (a
Chapter 18. Domain Name Service (DNS) 357

machine called localhost). Next it describes who is responsible for its
contents in the form of an e-mail address with a . in place of @, in this case
root@localhost (you could place your system administrator’s e-mail address
here). Finally, it describes what version of the zone file this is. In this example
we chose the form YYYYMMDD##, giving you up to 100 versions per day. For the
rest of the fields (refresh, retry, expire, minimum), refer to the man page.

In the second line there is no @, since it is implicit from the first line. This line
tells DNS which machine is the name server of the domain
0.0.127.in-addr.arpa, in this case the localhost.

Finally, the PRT record says that the host at address 1 in the subnet
0.0.127.in-addr.arpa (aka 127.0.0.1) is named localhost.

Figure 92. The 127.0.0 file

18.5.2.3 Resolv.conf
The next configuration you need is the file resolv.conf, which should already
exist since it was a part of the standard installation. You should see at least
two lines, for example:

search subdomain.your-domain.com your-domain.com
nameserver 127.0.0.1

(Replace subdomain and your-domain with your own real domain names.)

The search line specifies what domains should be searched for any host
names you want to connect to (for example, should you be in the Netherlands,
then you would have subdomain.your-domain.nl your-domain.nl). The
nameserver line specifies the address of your nameserver, in this case your
own machine since that is where your named runs. Should you want to list
other name servers, add a nameserver line for each one. Note that named
never reads this file; only the resolver that uses named reads it.

@ SOA localhost. root.localhost. (
2000051501 ; serial
3H ; refresh
15M ; retry
1W ; expire
1D) ; minimum

NS localhost.
1 PTR localhost.
358 Linux for S/390

The next step depends on your libc version, which determines whether you
will be adjusting nsswitch.conf or host.conf. To avoid complications we will
just do both.

18.5.2.4 Nsswitch.conf
The nsswitch.conf file is a long one, and you just need to be sure that there is
a line containing the following:

hosts: files dns

It might include other things on the same line, but it must have files and dns
mixed in there somewhere. This line says that programs should first look in
the hosts file, then check DNS according to the resolv.conf.

18.5.2.5 Host.conf
The host.conf file must have the following line:

order hosts,bind

If this line is missing, you should add it. This line tells the host name resolving
routines to first look in hosts, and then ask the name server (which in
resolv.conf you said is at 127.0.0.1).

18.5.3 Starting named
Now that everything is configured, the first step is to stop the name daemon if
it is running and then restart it; otherwise, you just start it. To reset the name
daemon, which will put the changes you made into effect, type the following
command:

$ /usr/sbin/ndc stop

This gives you the following output:

Shutdown initiated.

Otherwise it was not running and will give you an error message. The next
step is to start it up again with the following:

$ ndc start

This gives you a message telling you the new process ID number (pid). You
will be able to verify that all has gone well by checking the system message
log with the following command and output:

$ tail -30 /var/log/messages

In the output look for the following line:
Chapter 18. Domain Name Service (DNS) 359

May 19 00:33:50 linux1 named[1213]: Ready to answer queries.

It verifies that your are now ready to give your caching name server a try!

18.5.4 Testing with nslookup
To see if this all works we use a tool called nslookup, which gives a fairly clear
view with its answers to your queries. We will do this using the tool’s
interactive mode, which means we will enter each command by hand, one at
a time. To start with, we will start nslookup and examine our work:

$ nslookup
Default Server: localhost
Address: 127.0.0.1

>

This is what you get if it is working correctly—if not, go back and check
everything we covered up to this point (no typos?). Remember that each time
you change named.conf you will have to restart named using the command:

$ ndc restart

If all went well, we need to try out a query such as the IBM Web site:

> www.ibm.com
Server: localhost
Address: 127.0.0.1

Name: www.ibm.com
Address: 198.133.16.99

nslookup asked your named to look for the machine called www.ibm.com,
then used a machine from your root.hints file and asked for www.ibm.com
from that machine. If things take a while, it could mean, for example, that it
may have to search through all the domains you listed in your resolv.conf
before finding www.ibm.com.

Something worth noting is that if you ask for the same lookup again,
www.ibm.com, you will get a somewhat different answer:

> www.ibm.com
Server: localhost
Address: 127.0.0.1

Non-authoritative answer:
Name: www.ibm.com
Address: 198.133.16.99
360 Linux for S/390

If you see the answer is non-authoritative, this means that the answer is
coming from your own cache! It did not go out onto the network to find the
answer, but retrieved it from its own cache. This change to non-authoritative
is meant only to serve as a warning that you are dealing with a cached
answer and that there is a (very slight) possibility that the answer is stale (not
up-to-date).

When nslookup gives this answer, you know that your DNS caching-only name
server is working. You can exit nslookup by typing the command exit.
Congratulations and take a break, you deserve it!

18.6 Tools

The various tools that were installed with your BIND packages are explained
here. This will only be a brief overview; we refer you to previously mentioned
literature for a more detailed discussion, (see Appendix G, “Related
publications” on page 505).

The installed tools are:

 • dig
 • dnsquery
 • host
 • nslookup
 • nsupdate

18.6.1 dig
Domain Information Groper, or dig for short, is a flexible command-line tool
that can be used to gather information from Domain Name System servers. It
has two modes: simple interactive mode for a single query, and batch mode to
execute a list of several query lines. The dig tool will send domain name
query packets to name servers. The most commonly used command syntax
is:

dig [@server] domain

The @server option is used when you are behind the firewall, referring to the
DNS server that queries the network for you. The domain is the address you
want to look up. For a sample use of dig to query the IBM Web site address
(where names and addresses have been changed), see Figure 93 on page
362.
Chapter 18. Domain Name Service (DNS) 361

Figure 93. A dig sample

For an overview of the output see the dig HOWTO. For a complete listing of
options see the dig man page.

18.6.2 The dnsquery program
The dnsquery program is a general interface to name servers via BIND
resolver library calls. This program is intended to be an alternative to
programs like nstest, nsquery and nslookup. It should be noted here that
nstest and nsquery are not available on the Marist Linux big file system.

dnsquery [-n nameserver] host

All arguments except for host and nameserver are treated without
case-sensitivity. See Figure 94 on page 363 for an example of a query to an
IBM Web site address.

[root@linux1 /root]# dig @9.9.9.9 www.ibm.com

; <<>> DiG 8.2 <<>> @9.9.9.9 www.ibm.com
; (1 server found)
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 2, ADDITIONAL: 2
;; QUERY SECTION:
;; www.ibm.com, type = A, class = IN

;; ANSWER SECTION:
www.ibm.com. 27m54s IN A 9.9.9.10
www.ibm.com. 27m54s IN A 9.9.9.11
www.ibm.com. 27m54s IN A 9.9.9.12
www.ibm.com. 27m54s IN A 9.9.9.13

;; AUTHORITY SECTION:
www.ibm.com. 11h42m50s IN NS some.where.ibm.com
www.ibm.com. 11h42m50s IN NS some.where2.ibm.com.

;; ADDITIONAL SECTION:
some.where.ibm.com. 11h42m50s IN A 9.9.9.14
some.where2.ibm.com.. 11h42m50s IN A 9.9.9.15

;; Total query time: 10 msec
;; FROM: linux1 to SERVER: 9.9.9.9
;; WHEN: Thu May 18 21:34:31 2000
;; MSG SIZE sent: 29 rcvd: 171
362 Linux for S/390

Figure 94. A dnsquery sample

For an overview of the output, see the dnsquery HOWTO. For a complete
listing of options, see the dnsquery man page.

18.6.3 The host program
The host program is used to look up host names using a DNS server. By
default, it simply converts between host names and IP addresses.

host [-t querytype] [-a] host [server]

The complete set of options can be found in the host man page, but we
explain a few here:

-a is equivalent to verbose, and reports all types of information available.

-t querytype looks for a specific type of information.

The host entered in your command line should be the Internet address of the
machine you are trying to translate into an IP address. The server parameter
is optional, but if you are behind a firewall it will be necessary to fill this in with
the address of your DNS server that can talk to the outside network for you.

See Figure 95 on page 364 for an example of a query to an IBM Web site
address.

[root@linux1 /root]# dnsquery -n 9.9.9.9 www.ibm.com

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 14770
;; flags: qr rd ra; QUERY: 1, ANSWER: 6, AUTHORITY: 2, ADDITIONAL: 2
;; www.ibm.com, type = ANY, class = IN
www.ibm.com. 10h45m28s IN NS some.where.ibm.com.
www.ibm.com. 10h45m28s IN NS some.where2.ibm.com.
www.ibm.com. 14m54s IN A 9.9.9.10
www.ibm.com. 14m54s IN A 9.9.9.11
www.ibm.com. 14m54s IN A 9.9.9.12
www.ibm.com. 14m54s IN A 9.9.9.13
www.ibm.com. 10h45m28s IN NS some.where.ibm.com.
www.ibm.com. 10h45m28s IN NS some.where2..ibm.com.
some.where.ibm.com. 11h19m27s IN A 9.9.9.14
some.where2.ibm.com. 11h19m27s IN A 9.9.9.15
Chapter 18. Domain Name Service (DNS) 363

host example

Figure 95. A host example

We suggest trying the above command with your company’s own Internet
address and DNS server, but by using the -a option you will see a bit more
information. Once again, for a more detailed analysis we refer you to the host
man page.

18.6.4 The nslookup tool
This tool was already mentioned when we described testing your caching
name server using the interactive mode. It is a tool to query Internet domain
name servers and has a non-interactive mode of operation. Non-interactive
mode is used to print just the name and requested information for a host or
domain. The command syntax is as follows:

nslookup [-option ...] [host-to-find | name server]

As seen earlier, interactive mode is entered in the following cases:

 • When no arguments are given, the default name server will be used.

 • When the first argument is a hyphen (-) and the second argument is the
host name or Internet address of a name server.

Non-interactive mode is used when the name or Internet address of the host
to be looked up is given as the first argument. The optional second argument
specifies the host name or address of a name server.

Once again, for a more complete discussion of the options and uses of
nslookup, refer to the man page.

18.6.5 The nsupdate command
The nsupdate command is used to update Internet domain name servers
interactively. It uses the DNS resolver library to pass messages to a DNS
server requesting the addition or deletion of DNS resource records. This tool

[root@linux1 /root]# host www.ibm.com 9.9.9.9

Using domain server 9.9.9.9:
www.ibm.com has address 9.9.9.10
www.ibm.com has address 9.9.9.11
www.ibm.com has address 9.9.9.12
www.ibm.com has address 9.9.9.13
364 Linux for S/390

is not used when keeping a caching-only name server. Therefore, we refer
you to the documentation and man page for more information.

18.7 Summary

Domain Name Service (DNS) is a service that you can use to translate
domain names into IP addresses within the network. We began with a
discussion of DNS solutions on S/390, followed by how DNS works in theory.
We then explained a very simple example of DNS at work and want to remind
you that we left out a lot of detail on purpose. Next we guided you through
installing the necessary packages and listed the parts that would be installed.

Then we took you through a setup to make your own caching name server,
which we want to remind you is not a Primary or Secondary DNS server. A
Primary or Secondary DNS server setup should only be attempted after you
are completely knowledgeable about DNS theory. Finally, we discussed a few
of the tools that are available to help you with setting up, using and
maintaining your caching-only domain name server.

There is documentation in HTML format in directory
/usr/doc/bind-8.2.2_P3/html/ which gives excellent tips and help.
Chapter 18. Domain Name Service (DNS) 365

366 Linux for S/390

Chapter 19. Network File System (NFS)

Network File System (NFS) is a means of accessing file systems that reside
on remote computers over the net. The program that makes the files on the
remote machine available is called the NFS server. The program that
accesses files over NFS is referred to as an NFS client. The necessary steps
before accessing files via NFS are the installation (and configuration) of an
NFS server and on the client side mounting the respective file system across
the network. Once this is done the files are accessed just is if they were
mounted locally.

19.1 Installation of the server

If you are not using a Linux distribution that supplies the server software
including start and stop scripts for the required processes, then you should
consult the NFS-HOWTO.

The NFS server consists of several different processes that have to run as
daemons (background processes):

portmap A process that converts RPC program numbers into DARPA
protocol numbers.

rpc.kmountd The process that handles the export of NFS filesystems.

nfsd The user-level part of the actual NFS server, which delivers
data to the clients. Multiple instances of nfsd may be running.

rpc.kstatd: Implementation of the Network Status Monitor (NSM) RPC
protocol. Used to implement lock recovery when the NFS
server machine crashes and restarts.

To check that all of these processes are running, use:

ps auxw | grep portmap

On the client side the kernel must support NFS, either compiled in or using a
kernel module. This functionality is probably already included in the kernel
that you are using. If not, configure and compile a kernel that supports NFS.

19.2 Customizing

Linux can act both as an NFS Server and as an NFS Client. We describe the
necessary steps to get it running as such. We describe in detail the various
scenarios.
© Copyright IBM Corp. 2000 367

19.2.1 NFS Server
Access control for NFS is configured in the file /etc/exports. This file consists
of lines of the form:

/some/dir clientname(option1,option2,...)

and comment lines that start with a #. Client name may be an IP address
(195.27.208.189), or a hostname fully qualified with the domain, or just the
hostname itself. Groups of clients can be given as address/netmask pairs or
with wildcard characters (? or *) in hostnames. Among the available options,
the most important are:

ro Only permit read-only access

rw Permit read and write access

root_squash Accesses from the client’s root are mapped to the anonymous
user (nobody by default) on the server

Some examples of valid lines for /etc/exports follow.

/usr/doc host23(ro)

The directory /usr/doc can be mounted read-only by host23. Multiple clients,
each with their own set of options, can be named in one line:

/work *.mydomain.com(ro) 195.27.208.189(rw)

This makes the directory /work accessible read-only for hosts in the domain
mydomain.com (not including hosts in subdomains like
host.sub.mydomain.com) and grants read/write access to the host with IP
address 195.27.208.189.

/usr/man *doc.mydom.com(ro)

This line grants read-only access for hosts with names like doc.mydom.com,
aadoc.mydom.com, and xyzdoc.mydom.com, but not for
abc.aadoc.mydom.com.

See man pages man exports for further details.

19.2.2 NFS Client
The options available for mounting an NFS file system are explained in the
man page nfs(5). The most important are rsize, wsize and intr. The following
definitions are from the man page:

rsize=n The number of bytes NFS uses when reading files from an NFS
server. The default value is dependent on the kernel, currently
368 Linux for S/390

1024 bytes. (However, throughput is improved greatly by asking
for rsize=8192.)

wsize=n The number of bytes NFS uses when writing files to an NFS
server. The default value is dependent on the kernel, currently
1024 bytes. (However, throughput is improved greatly by asking
for wsize=8192.)

intr If an NFS file operation has a major timeout and it is hard
mounted, then allow signals to interupt the file operation and
cause it to return EINTR to the calling program. The default is to
not allow file operations to be interrupted.

A typical statement for an NFS mount might look like:

mount -t nfs srvname:/expdir/ /mnt/nfs -o intr,rsize=8192,wsize=8192

The corresponding line in /etc/fstab would be:

srvname:/expdir/ /mnt/nfs nfs intr,rsize=8192,wsize=8192

19.3 Operation

We used the following sequence to export directories from Linux for S/390 so
they could be accessed from NFS clients on other platforms.

First we define a configuration file /etc/exports.

[root@linux6 /etc]# cat exports
/etc tot62(rw)
/etc 10.112.34.208(rw)
/home/httpd wtsc52oe.itso.ibm.com(rw)
/home/httpd hdmtp(rw)
/etc wtsc47(rw)
/etc erprisc1(rw)
[root@linux6 /etc]#

We then used exportfs -a to activate these exports.

[root@linux6 /etc]# exportfs -av
exporting hdmtp:/home/httpd
exporting wtsc52oe.itso.ibm.com:/home/httpd
exporting hdmtp:/etc
exporting erprisc1:/etc
exporting wtsc47.itso.ibm.com:/etc
exporting 10.112.34.208:/etc
exporting tot62:/etc
Chapter 19. Network File System (NFS) 369

These are the settings we used for scenarios where Linux for S/390 runs the
NFS server.

19.3.1 As a server for AIX
Our first attempt to access files on Linux for S/390 from AIX was based on the
following exports list:

[root@linux6 /etc]# cat exports
/etc tot62(rw)
/etc 10.112.34.208(rw)
/home/httpd wtsc52oe.itso.ibm.com(rw)
/home/httpd hdmtp(rw)
/etc wtsc47(rw)
/etc erprisc1(rw)
[root@linux6 /etc]#

On the AIX system we used smit to mount the remote file system on Linux.
The first attempt failed with the following messages:

May 18 17:21:25 linux6 mountd[367]: authenticated mount request from
erprisc1:723 for /etc (/etc)
May 18 17:21:25 linux6 kernel: nfsd: request from insecure port
(090c0049:45161) !

The reason for this is that AIX used a port below 1024 and Linux assumes
this is insecure because all ports below 1024 are well known and cannot be
reused for other IP services.

Therefore, we changed the exports file as follows:

[root@linux6 /etc]# cat exports
/etc tot62(rw)
/etc 10.112.34.208(rw)
/home/httpd wtsc52oe.itso.ibm.com(rw)
/home/httpd hdmtp(rw)
/etc wtsc47(rw)
/etc erprisc1(rw,insecure)

With this change we could mount the /etc directory succesfully.

19.3.2 As a server to OS/2
Although OS/2 does not have the kind of client security required for a secure
network, we implemented OS/2 as an NFS client of Linux for S/390.
Therefore, we needed to have either the old NFS Client from the TCP/IP
package or the Hummingbird NFS client.
370 Linux for S/390

The description here refers to an OS/2 installation based on OS/2 Warp
version 4.0 with the TCP/IP Extended Networking Kit installed.

Aside from local NFS support, you do not need any of the support functions
(mvslogin, mvslogut, showattr) provided with OS/390.

The details are shown in 19.3.4, “As a client to OS/390” on page 374. At � in
Figure 96 we used the command showexp, which gives an overview of what is
exported by our NFS server on LINUX6.

Figure 96. Mounting file system on Linux for S/390 from OS/2 client

With step � we issue the mount command. It requests a uid and gid. The
directory command at � then displays several files located in the/etc
directory on LINUX6.

[F:\]showexp linux6 �
export list for linux6:
/etc erprisc1 wtsc47.itso.ibm.com hdmtp 9.12.14.208 tot62
/home/httpd wtsc52oe.itso.ibm.com

[F:\]mount z: linux6:/etc �
mount: linux6:/etc
UID: 0
GID: 0

NFS Drive 'z:' was attached successfully.

[F:\]dir z:h* �

The volume label in drive Z is NFS.
The Volume Serial Number is 0000:0030.
Directory of Z:\

12.07.94 20.28 26 0 host.conf.rpmorig
29.07.95 1.26 347 0 hosts.deny.rpmorig
29.07.95 1.26 161 0 hosts.allow.rpmorig
12.07.94 20.28 26 0 host.conf
29.07.95 1.26 161 0 hosts.allow
29.07.95 1.26 347 0 hosts.deny
20.02.00 17.00 <DIR> 0 httpd
17.05.00 19.22 7 0 HOSTNAME
16.05.00 23.29 70 0 hosts
 9 file(s) 5241 bytes used

 505970688 bytes free
Chapter 19. Network File System (NFS) 371

19.3.3 As a server for OS/390
Linux as an NFS server for OS/390 can have several interesting uses. Since
NFS-mounted file systems on a remote server can be accessed from
programs running on the client side, data access can be achieved without
copying it. On OS/390 it is even possible to access these files from traditional
programs written in COBOL or PL/1. This requires that the remote data can
be structured with a so-called dummy dcb.

Another application could be to use the ADSM client running on OS/390 UNIX
System Services to back up data from the Linux server.

Note: this is a circumvention only as long as there is no ADSM client
available for Linux for S/390.

The setup on Linux is pretty much the same as in the case for the AIX client.
The exports file has to have an entry for an insecure client:

root@linux6 /etc]# cat exports
/etc tot62(rw)
/etc 9.12.14.208(rw)
/home/httpd wtsc59oe.itso.ibm.com(rw,insecure)
/home/httpd wtsc52oe.itso.ibm.com(rw,insecure)
/home/httpd hdmtp(rw)
/etc wtsc47(rw)
/etc erprisc1(rw,insecure)

These definitions are activated using the export -a command. On the OS/390
side we used a 2.9 release, which provides a mount command within the shell.
The option -v gives some further information about the mount command’s
progress.

The steps to connect, use and unmount a file system are shown in Figure 97
on page 373. First the mount has to be done �. You then can use the remote
file system on Linux �.
372 Linux for S/390

Figure 97. Mount/unmount scenario Linux as a NFS Server for OS/390

Steps �, �, and � show the status using showmount and an unmount of the
remote file system.

The following should be considered if you have problems getting the mount
done:

 • The active NFS client log data set may contain further information. You
have to flush the in-storage buffers first using the command nfsstat -d f
from the OS/390 UNIX System Services shell.

 • Further, to use mount you need either superuser authority or READ access
to the profile SUPERUSER.FILESYS.MOUNT resource found in the
UNIXPRIV.

Now, since we had the files on Linux6 mounted, we tried to do an incremental
backup. The backup is initiated with a current working directory of
/mnt/linux6/html/manual . The command we issued was inc -subdir=yes *.*
The excerpt from the log is shown in Figure 98 on page 374.

HDM@SC59 /u/hdm:>mount -v -t nfs -o "LINUX6:/home/httpd" -f LINUX6
/mnt/linux6 �

FOMF0501I Async mount proceeding for LINUX6
HDM@SC59 /u/hdm:>ls -al /mnt/linux6 �
total 272
drwxr-xr-x 5 STC SYS1 4096 Feb 20 17:00 .
drwxr-xr-x 3 STC OMVSGRP 8192 Mai 19 16:12 ..
drwxr-xr-x 2 STC SYS1 4096 Feb 20 08:31 cgi-bin
drwxr-xr-x 3 STC SYS1 4096 Feb 20 17:00 html
drwxr-xr-x 3 STC SYS1 4096 Feb 20 17:00 icons
HDM@SC59 /u/hdm:>showmount linux6 �
wtsc52oe.itso.ibm.com
wtsc59oe.itso.ibm.com
9.12.0.73
HDM@SC59 /u/hdm:>unmount -o immediate /mnt/linux6 �
HDM@SC59 /u/hdm:>showmount linux6 �
wtsc52oe.itso.ibm.com
9.12.0.73
HDM@SC59 /u/hdm:>
Chapter 19. Network File System (NFS) 373

Figure 98. Incremental backup of files on Linux from OS/390

This may be a way to back up files on Linux as long as there is no native
ADSM client available.

19.3.4 As a client to OS/390
Since OS/390 provides two kinds of file systems (see 15.5, “Access to data
and applications” on page 307), the NFS server has to be told which one is to
be mounted. This is done through a prefix on the mount command.

mount -t nfs wtsc52:/hfs/etc /mnt/wtsc52

Normal File--> 2,649
/mnt/linux6/html/manual/vhosts/index.html
[Sent]
Normal File--> 5,877
/mnt/linux6/html/manual/vhosts/ip-based.html
[Sent]
Normal File--> 14,831
/mnt/linux6/html/manual/vhosts/mass.html
[Sent]
Normal File--> 6,706
/mnt/linux6/html/manual/vhosts/name-based.html
[Sent]
Normal File--> 16,087
/mnt/linux6/html/manual/vhosts/vhosts-in-depth.
html [Sent]
Normal File-> 8,271 /mnt/linux6/html/manual/vhosts/virtual-host.html
[Sent]
Successful incremental backup of '*.*'

Total number of objects inspected: 135
Total number of objects backed up: 134
Total number of objects updated: 0
Total number of objects rebound: 0
Total number of objects deleted: 0
Total number of objects failed: 0
Total number of bytes transferred: 1.29 MB
Data transfer time: 0.47 sec
Network data transfer rate: 2,754.18 KB/sec
Aggregate data transfer rate: 14.60 KB/sec
Objects compressed by: 0%
Elapsed processing time: 00:01:30
dsmc>
 ===>
374 Linux for S/390

This mounts the /etc directory on host WTSC52, whereas the following
command mounts the conventional file system with a mount point at a high
level qualifier of HDM:

mount -t nfs wtsc52:HDM /mnt/wtsc52

It is the /hfs prefix that selects the UNIX file system on OS/390.

It may be that your installation has chosen to use a different prefix. You can
either ask your system programmer or use the showattr command, which is
also provided in the package. The following shows the output for our test
system WTSC52:

[root@linux6 nfs-mvs]# showattr wtsc52

OS/390 Network File System Server Data Set Creation Attributes:

lrecl(80) recfm(fb) blksize(0)
space(100,10) blks dsorg(ps)
dir(25) unit() volume()
recordsize(512,4K) keys(64,0) nonspanned
shareoptions(3,3)
mgmtclas() dsntype(pds) norlse
dataclas() storclas()

OS/390 Network File System Server Processing Attributes:

text crlf blankstrip
nofastfilesize retrieve maplower
mapleaddot executebitoff setownerroot
attrtimeout(120) readtimeout(90) writetimeout(30)
sync nofileextmap xlat(oemvs311)
sidefile(os390nfs.sc52mvs.nfs.mapping)

OS/390 Network File System Server Site Attributes (not modifiable):

mintimeout(1) nomaxtimeout logout(604800)
nfstasks(8,16,8) restimeout(48,0) hfs(/hfs)
bufhigh(32M) readaheadmax(16K) cachewindow(112)
percentsteal(20) maxrdforszleft(32) logicalcache(16M)
smf(none) pcnfsd security(saf,saf,saf)
leadswitch sfmax(20K) nochecklist
fn_delimiter(,) readdirtimeout(30)
public()

If you are going to access the root directory, don’t forget the /:

[root@linux6 2]# mount -t nfs wtsc52:/hfs /mnt/wtsc52
Chapter 19. Network File System (NFS) 375

mount: wtsc52:/hfs failed, reason given by server: No such file or
directory
[root@linux6 2]# mount -t nfs wtsc52:/hfs/ /mnt/wtsc52
[root@linux6 2]#

The root directory is really a directory whose name is /.

19.3.5 As a client to VM/ESA
From Linux for S/390 you can mount files from any of the three types of CMS
file systems. These are the minidisk file system, the Shared File System, and
the Byte File System.

[root@linux5 /]# mkdir /mnt/nfs
[root@linux5 /]# mount
wtscvmt:linux5.191,userid=linux5,password=pengu1n,trans=yes,lines=nl
/mnt/nfs
[root@linux5 /]# ls -l
total 3107
-r-xr-xr-x 1 root daemon 31 Apr 3 19:56 $$nt$$.userdata
-r-xr-xr-x 1 root daemon 256 May 5 19:21 charlot.exec
-r-xr-xr-x 1 root bin 108768 May 17 02:51 cons1.drv113
-r-xr-xr-x 1 root daemon 180 May 17 22:51 cpsend.exec
-r-xr-xr-x 1 root daemon 54960 May 9 00:16 ctc.c
...
[root@linux5 /]# cat /mnt/nfs/marist.exec
/* REXX EXEC to boot Linux for S/390 from VM reader */
/* using RAM disk as the intial root file system */
'CP CLOSE RDR'
'CP PURGE RDR CLASS L'
'CP SPOOL PUN * RDR CLASS L'
'PUNCH READER MARIST A (NOH' /* Kernel image */
'PUNCH PARM MARIST A (NOH' /* Parameter file */
'PUNCH INITRD MARIST A (NOH' /* RAM disk root file system */
'CP SPOOL PUN * RDR CLASS A'
'CP SPOOL RDR KEEP CLASS L'
'CP IPL 00C CLEAR'
[root@linux5 /]# umount /mnt/nfs

In this example we have specified that EBCDIC-ASCII translation should
occur and that new line characters are to be inserted at CMS record
boundaries. Several of these options can be specified in the setup of the VM
NFS server daemon so that they don’t need to be entered on the mount
command. For example, the treatment of a file as binary or needing codepage
translation can be based on the CMS filetype of the file. This is specified with
VMFILETYPE statements in the VMNFS configuration file.
376 Linux for S/390

Consult VMESA V2R4.0: TCP/IP Function Level 320 Planning and
Customization, SC24-5847 and VM/ESA V2R4.0 TCP/IP FL320 User's
Guide, SC24-5848 for further information.

19.3.6 As a client to VSE/ESA
We did not have the opportunity to test the mounting of VSE files from Linux
for S/390. Details of the VSE/ESA NFS server cpabilities can be studied in
Getting Started with TCP/IP for VSE/ESA 1.4, SG24-5626.

19.3.7 Data representation considerations
Linux for S/390 is an ASCII-based implementation whereas OS/390,
VM/ESA, and VSE/ESA store data predominantly in EBCDIC. This is true for
both conventional file systems and the UNIX file system. You have to
remember this specifically in the case where you have both types of data
within the same directory. In the OS/390 case, you may need two mounts for
the same directory, as shown in Figure 99.

Figure 99. Mount OS/390 data with a binary view

We will use these two subdirectories to differentiate between the binary and
text views.

Figure 100. Mountings for text and binary view of data

[root@linux6 2]# mkdir /mnt/wtsc52/binary
[root@linux6 2]# mkdir /mnt/wtsc52/text
[root@linux6 2]# mount -t nfs wtsc52:/hfs/ /mnt/wtsc52/text
[root@linux6 2]# mount -t nfs wtsc52:"/hfs/,binary" /mnt/wtsc52/binary

[root@linux6 2]# ls /mnt/wtsc52/binary
bin etc lib notesdata samples tmp usr was
dev krb5 mnt opt test-mdh u var web
[root@linux6 2]# ls /mnt/wtsc52/binary/test-mdh
hello.c helloa.c
[root@linux6 2]# cat /mnt/wtsc52/binary/test-mdh/helloa.c
#include <stdio.h>

int main (int arbc, char ** argv)
{
 printf ("\n Hello Ascii world \n") ;
}
[root@linux6 2]#
Chapter 19. Network File System (NFS) 377

The source file helloa.c, which we stored on OS/390 earlier, is encoded using
an ASCII code page. So under the binary view, we can see it perfectly on
Linux for S/390!

With the steps described here we have both a binary and a text view of the
same data.

19.3.8 OS/390 access security
One major difference between UNIX-based systems like Linux and OS/390 is
the way a user ID is defined. On UNIX systems there is a login name
associated with a number, the uid. It is the uid that is the primary key to
authorization on UNIX systems.

On OS/390, the character user ID is the key to authorization. Compared with
UNIX, it is more like the login name.

The problem starts when a user, who is identified on a UNIX system, needs to
have access to OS/390 resources such as data sets. UNIX propagates the
uid, which is a number, but OS/390 needs a name. These cannot be matched
directly. In this section we describe the security options and what tools are
available to support them.

The NFS server on OS/390 supports the following security options when
exporting data sets or HFS files:

SAF This stands for Security Access Feature. It allows the NFS server,
in cooperation with RACF, to fully control the access to files and
data sets. For data sets this means we use profiles as they are
defined to RACF. For UNIX files stored in the HFS, the uid/gid of
the current OS/390 user ID is used.

Export This creates a list of exported files and directories. The allowed
access (ro, rw) to each of these is also defined.

SAFEXP This a mixture of both of the above.

To use SAF an OS/390 user ID must be assigned to a mount connection. This
is achieved through a small program provided by OS/390-NFS, mvslogin.
There is also a logout service available, mvslogout. Both are provided in
source. A third function is provided, showattr, to display the current setting of
the NFS server on OS/390.

You can download these as a tarball from prefix.NFSTARB, which is available
when the NFS Server on OS/390 is installed. The member gfsawaix contains
the source as a tarball. We downloaded this package from our test system
378 Linux for S/390

WTSC52, as described in OS/390 V2R6.0 NFS Customization and Operation,
SC26-7253. The package was installed using:

[root@linux6 2]#tar xvf gfsawaix.tar

You will see all the source files and a makefile exploded:

[root@linux6 3]# tar xvf ../gfsawaix.tar
./gfsawaxd.c
./gfsawclt.c
./gfsawlin.c
./gfsawlou.c
./gfsawmcl.c
./gfsawmou.c
./gfsawsha.c
./gfsawmnt.h
./gfsawsho.h
./makefile
tar: Only read 6160 bytes from archive ../gfsawaix.tar
tar: Error is not recoverable: exiting now
[root@linux6 3]#

Note: We ignored the error messages.

A makefile is provided so the executables can be generated. The first thing
we had to change was the setting of the cc compiler command. Our Linux had
no cc command.

[root@linux6 2]# make
cc -c -I. gfsawsha.c
make: cc: Command not found
make: *** [gfsawsha.o] Error 127
[root@linux6 2]#

We decided to put a symbolic link on gcc:

[root@linux6 bin]# ln -s gcc cc
[root@linux6 bin]# cc
cc: No input files

Since the cc command is also used to link, this is a very convenient way to
proceed.

This makefile allows generation for several platforms. As a first test we used
just make, which generates Sun executables according to the documentation
OS/390 V2R6.0 NFS Customization and Operation, SC26-7253. There were
several warnings issued, like the following:
Chapter 19. Network File System (NFS) 379

.

.
cc -c -I. gfsawaxd.c
gfsawaxd.c: In function `xdr_rtnattr':
gfsawaxd.c:231: warning: passing arg 4 of `xdr_pointer' from
incompatible pointer type
.
.
.

There were no error messages, and we accepted these warnings for our first
tests and tried the compiled commands. The results were promising:

[root@linux6 2]# showattr
GFSA972I usage: showattr [-t] [host] [/mountpoint]
[root@linux6 2]# mvslogin
GFSA956I usage: mvslogin [-pn] [-P password] [-g group] [-a account]
host [mvs_username]
[root@linux6 2]# mvslogout
GFSA959I usage: mvslogout host
[root@linux6 2]#

Logging in with a user ID on OS/390 which has a uid that does not match the
one on Linux for S/390 produced the following:

[root@linux6 nfs-mvs]# mvslogin wtsc52 mdh
Password required
GFSA973A Enter MVS password:
GFSA978I MDH logged in ok.
 Mismatch in uid/gid: OpenEdition uid is 99, gid is 0,
 client uid is 0, gid is 0.
[root@linux6 nfs-mvs]#

In this case, user MDH was identified and authorized to access data sets and
UNIX files. We show a mount of UNIX files in Figure 101 on page 381.
380 Linux for S/390

Figure 101. Directory listing of hfs as seen from Linux

A detailed view of the /bin directory of wtsc52 is shown in Figure 102 on
page 382.

[root@linux6 2]# mount -t nfs wtsc52:/hfs/ /mnt/wtsc52
[root@linux6 2]# ls /mnt/wtsc52
bin etc lib notesdata samples u var web
dev krb5 mnt opt tmp usr was
[root@linux6 2]# ls -al /mnt/wtsc52
total 36868
drwxr-xr-x 17 root bin 8192 May 6 14:13 .
drwxr-xr-x 5 root root 4096 May 9 11:31 ..
dr-xr-xr-x 2 root bin 8192 Jun 22 1999 ...
-rw------- 1 root bin 2758 May 6 14:19 h_history
drwxr-xr-x 4 root bin 49152 Mar 18 11:59 bin
drwxr-xr-x 2 root bin 8192 May 5 16:45 dev
drwxr-xr-x 2 root root 8192 Jul 30 1999 etc
lrwxrwxrwx 1 root bin 16 Jul 30 1999 krb5 ->
etc/dce/var/krb5

drwxr-xr-x 2 root bin 8192 Sep 17 1999 lib
drwxr-xr-x 2 root bin 8192 Mar 22 04:28 mnt
drwxr-xr-x 2 root bin 8192 Mar 20 16:56 notesdata
drwxr-xr-x 2 root bin 8192 Jun 22 1999 opt
drwxr-xr-x 4 root bin 8192 Feb 4 11:23 samples
drwxrwxrwt 2 root bin 8192 Apr 19 08:20 tmp
drwxr-xr-x 2 root bin 8192 Apr 19 08:23 u
drwxr-xr-x 10 root bin 8192 Jun 22 1999 usr
drwxrwxrwx 2 root bin 8192 Jun 22 1999 var
drwxr-xr-x 3 root bin 8192 Mar 20 16:56 was
drwxr-xr-x 3 root bin 8192 Mar 20 16:56 web
[root@linux6 2]#
Chapter 19. Network File System (NFS) 381

Figure 102. Directory listing of /bin on hfs as seen from Linux

You may want to access files that are in a different UNIX file system. Typically
for OS/390 UNIX System Services, this is the case for directories related to
individual users. They have their own home directory in /u, (i.e. /u/mdh). Most
installations use the auto-mount feature to manage mounting of individual file
systems. Your mount on the client has to span this mountpoint as well.

[root@linux6 /root]# mount -t nfs wtsc52:/hfs/u/hdm /mnt/wtsc52/u/hdm
[root@linux6 /root]# mount -t nfs wtsc52:/hfs/u/mdh /mnt/wtsc52/u/mdh

With these commands we were able to mount OS/390 directories (/u/hdm,
/u/mdh) that were in file systems other than the root (/) file system.

[root@linux6 2]# ls -al /mnt/wtsc52/bin
total 649216
drwxr-xr-x 4 root bin 49152 Mar 18 11:59 .
drwxr-xr-x 17 root bin 8192 May 6 14:13 ..
lrwxrwxrwx 1 root bin 27 Jul 30 1999 EUVASRVR ->
../usr/lpp/dc
e/bin/EUVASRVR
drwxr-xr-x 2 root bin 20480 Mar 18 11:59 IBM
drwxr-xr-x 2 root bin 8192 Sep 17 1999 X11
lrwxrwxrwx 1 root bin 27 Jul 30 1999 acl_edit ->
../usr/lpp/dc
e/bin/acl_edit
-rwxr-xr-x 17 root bin 69632 Jul 12 1999 alias
-rwxr-xr-x 2 root bin 163840 Jul 12 1999 ar
-rwxr-xr-x 2 root bin 77824 Jul 12 1999 asa
-rwsr-xr-x 3 root bin 176128 Mar 18 11:59 at
-rwxr-xr-x 2 root bin 368640 Mar 11 17:21 awk
.
.
.
-rwxr-sr-x 2 root 111 122880 Jul 12 1999 write
-rwxr-xr-x 2 root bin 167936 Dec 29 11:40 xargs
-rwxr-xr-x 2 root bin 364544 Jul 12 1999 yacc
-rwxr-xr-x 3 root bin 155648 Jul 12 1999 zcat
[root@linux6 2]#
382 Linux for S/390

Figure 103. Contents of /u/hdm directory on OS/390

Figure 104. Creating test data from the client

With the last command in Figure 104, we had some test data that could be
seen immediately on OS/390, as the following output shows:

HDM @ :/u/mdh::>ls -al
total 72
drwxr-xr-x 2 MDH SYS1 8192 May 10 23:27 .
drwxr-xr-x 36 AAAAAAA SYS1 8192 May 4 19:02 ..
-rwxr-xr-x 1 AAAAAAA SYS1 24 May 5 20:26 .profile
-rwxrwxrwx 1 MDH SYS1 20 May 5 20:16 .setup
-rw------- 1 MDH SYS1 98 May 5 20:27 .sh_history
-rw------- 1 MDH SYS1 1444 May 10 21:48 mdh
-rw-r--r-- 1 MDH SYS1 577 May 10 23:27 test_from_linux
HDM @ :/u/mdh::>cat test_from_linux6

[root@linux6 /root]# ls /mnt/wtsc52/u/hdm
README.bin.os390 hello make-3_76_1_os390_bin_tar.Z xcalc
Vsmregn.c hello.C misc xcalc.tar
amadeus hello.o netprog xcalc_tar.Z
apache host.c new xclock
apache_136 host.o nfstarb xedit
bin hostname.c precomp xntp
bpx1gps hostname.o sendmail xterm
cvs info stevens zeta
flex-2.5.3 itools test
fsinuse lh-able unix
gzip-1_2_4.tar lh-able.tar wtsc52oe

[root@linux6 /root]# ls -al
total 32
drwxr-x--- 4 root root 4096 May 9 16:33 .
drwxr-xr-x 18 root root 4096 May 4 17:07 ..
-rw------- 1 root root 15286 May 11 09:11 .bash_history
-rw-r--r-- 1 root root 0 May 3 13:35 bootsect
-rw-r--r-- 1 root root 0 May 3 13:35 image
-rw-r--r-- 1 root root 0 May 3 13:35 ipldevice
drwxr-xr-x 4 root root 4096 May 10 15:10 nfs-mvs
drwxr-xr-x 2 root root 4096 May 9 15:51 nfs-test?[D
-rw-r--r-- 1 root root 0 May 3 13:35 parmfile
[root@linux6 /root]# ls -al > /mnt/wtsc52/u/mdh/test_from_linux6
[root@linux6 /root]#
Chapter 19. Network File System (NFS) 383

total 32
drwxr-x--- 4 root root 4096 May 9 16:33 .
drwxr-xr-x 18 root root 4096 May 4 17:07 ..
-rw------- 1 root root 15286 May 11 09:11 .bash_history
-rw-r--r-- 1 root root 0 May 3 13:35 bootsect
-rw-r--r-- 1 root root 0 May 3 13:35 image
-rw-r--r-- 1 root root 0 May 3 13:35 ipldevice
drwxr-xr-x 4 root root 4096 May 10 15:10 nfs-mvs
drwxr-xr-x 2 root root 4096 May 9 15:51 nfs-test-[D
-rw-r--r-- 1 root root 0 May 3 13:35 parmfile
HDM @ :/u/mdh::>

It may be necessary to access the conventional file system also. After
identifying yourself to OS/390 using mvslogin, mounting from the conventional
file system is then very similar, as shown in Figure 105.

Figure 105. Mounting an OS/390 data set on Linux for S/390

We selected cat commnd00 as an example; this is shown in Figure 106 on
page 385.

[root@linux6 2]# mvslogin wtsc52 mdh
Password required
GFSA973A Enter MVS password:
GFSA978I MDH logged in ok.
 Mismatch in uid/gid: OpenEdition uid is 99, gid is 0,
 client uid is 0, gid is 0.
[root@linux6 2]# mount wtsc52:'sys1.parmlib' /mnt/wtsc52
[root@linux6 2]# ls /mnt/wtsc52
adyset00 commnd43 dfhipcsp ieaics54 igdsmsbj jes3inmf prog1z progrn
adyset01 commnd47 dfm00 ieaics61 igdsmshg jes3inpr prog54 progs0
adyset02 commnd48 diag00 ieaics71 igdsmsmt jes3inr4 prog55 progs1
.
.

384 Linux for S/390

Figure 106. Display of a mounted OS/390 data set

19.4 VM/ESA access security

The MOUNT command can pose a security problem, because NFS client
systems often store this command's argument values to respond to a later
query asking for information about the mounts that are currently in effect. A
password supplied in an argument to a MOUNT command could then be
revealed in the query response to someone other than the user who executed
the MOUNT command.

This exposure is evident in Linux. After mounting the LINUX5 virtual
machine’s 191 minidisk, the response to a Linux mount command was:

[root@linux6 2]# cat /mnt/wtsc52/commnd00
COM='START VLF,SUB=MSTR,NN=01'
COM='D T'
COM='CD SET,SDUMP=(CSA,GRSQ,LPA,LSQA,ALLNUC,ALLPSA,RGN,SQA,SWA),ADD'

COM='CD SET,SDUMP=(SUM,TRT,COUPLE,XESDATA),ADD'
COM='CD SET,SDUMP,TYPE=XMEME,MAXSPACE=1536M,Q=YES'
COM='CD SET,SYSMDUMP=(ALL,ALLNUC),ADD'
COM='S RMF,,,(MEMBER(&RMFMON01))'
COM='S IRRDPTAB'
COM='DD NAME=DUMP.D&MON.&DAY..H&HR..&SYSNAME..&JOBNAME..S&SEQ.'
.
.
.
.
COM='SET EXS=00'
COM='MN JOBNAMES,T'
COM='K M,AMRF=Y'
[root@linux6 2]#

We followed the guidance given in the chapter “Porting the mvslogin,
mvslogout, and showattr Commands” in OS/390 V2R6.0 NFS
Customization and Operation, SC26-7253 and we did not observe any
problems in our tests. However, we recommend being very careful when
following these examples.

Attention
Chapter 19. Network File System (NFS) 385

[root@linux5 /root]# mount
/dev/dasda1 on / type ext2 (rw,errors=remount-ro)
none on /proc type proc (rw)
wtscvmt:linux5.191,userid=linux5,password=pengu1n on /mnt/nfs type nfs
(rw,addr=
9.12.14.155)
[root@linux5 /root]#

The MOUNTPW command provides an alternative path for sending
passwords, account, and user ID information to the VM NFS server. This
information can then be omitted from the subsequent related MOUNT
command, and therefore is not present in a display of currently mounted file
systems.

A MOUNTPW command precedes the related MOUNT command, which must
follow within 5 minutes. After 5 minutes, the VM NFS server discards the
information it received in a MOUNTPW command. If a second MOUNTPW
command is issued for the same CMS disk or directory before a MOUNT
command for that object, the data from the first MOUNTPW command is
discarded.

The MOUNTPW C source file is supplied on the VM NFS feature tape, as well
as executable modules built for the IBM AIX and OS/2 environments. To use
MOUNTPW with Linux for S/390 the MOUNTPW C file must be copied to
Linux and compiled into an executable program.

Compile the MOUNTPW program using the Linux C compiler. The location of
header files (.h) in the MOUNTPW source program will need to be changed to
reflect their place in the Linux file system structure.

We did not attempt to compile MOUNTPW on Linux for S/390.

Another common technique is to use a PCNFS daemon to handle client user
ID and password authentication prior to issuing the NFS mount request. The
VM/ESA NFS feature has PCNFS daemon capability.

Once verified, the UID and GID by which that user is known at the host are
returned to the client.

In VM, the POSIXINFO and POSIXGLIST CP directory entry statements
define the UID and GIDs associated with a user ID.

When PCNFSD is used, there is no need to send user ID and logon password
in the MOUNT or MOUNTPW. If user ID or password are not provided by
MOUNTPW or MOUNT, the PCNFSD values are used by the NFS server, as
386 Linux for S/390

long as the MOUNT request is received by the NFS server immediately
following the PCNFSD request.

If an NFS client is configured to call PCNFSD user ID authentication services
and PCNFSD is available on your VM NFS server, using MOUNTPW is not
necessary because user ID and password information are passed on
PCNFSD requests. This applies to mounts for SFS directories, BFS
directories, and minidisks protected by ESMs. A minidisk protected by link
passwords must still provide the password on the MOUNT or MOUNTPW
command.

We could find no evidence of the existence of a PCNFS client for Linux.
Currently MOUNTPW appears to be the best way to avoid exposure of VM
user IDs and passwords.
Chapter 19. Network File System (NFS) 387

388 Linux for S/390

Chapter 20. Samba

Samba is an open source software package that enables a UNIX machine to
become a Windows file and print server. This is a simple matter from an end
user’s point of view. With Samba up and file and print shares defined, a
desktop that has SMB support (Windows, OS/2, others) can easily get access
to the defined resources. No additional software needs to be installed on the
desktop, unlike with NFS, for example.

The Samba package allows you to marry the many SMB clients in the world
with reliable Linux/UNIX servers.

20.1 Installation

Samba is not included with the large file system from Marist. It can be
installed on Linux for S/390 in the following ways:

 • From an RPM binary
 • From an RPM source
 • From the source in the original package

20.1.1 Installing from an RPM binary or source
Samba RPMs can be obtained from the Thinking Objects Linux for S/390 Web
site at:

http://www.linux.s390.org/download/

The following RPMs are available:

 • samba-2.0.5a-12.s390.rpm
 • samba-client-2.0.5a-12.s390.rpm
 • samba-common-2.0.5a-12.s390.rpm

We installed the Samba server binaries via the following commands:

[root@linux390 samba]# rpm --install samba-common-2_0_5a-12_s390.rpm
[root@linux390 samba]# rpm --install samba-2_0_5a-12_s390.rpm

These commands put the Samba executables in the directory /usr/sbin and
the smb.conf file in the /etc directory.

20.1.2 Installing from source in the original package
An overview diagram of installing packages from source is shown in Figure
107 on page 390.
© Copyright IBM Corp. 2000 389

Figure 107. Building open source software packages

The Samba package can be obtained on the Web from:

http://www.samba.org

This Web site is where the owning organization makes Samba available to the
world. We obtained samba-2.0.7.tar.gz (4276392 bytes) which, at the time,
was the same file as samba-current.tar.gz.

The package was moved to Linux for S/390 in binary via FTP. It was unwound
with tar (note that the z flag on tar avoids the need to use gzip) 1 so as to
leave the tarball compressed and thus save a little disk space. Then for
convenience, a symbolic link was established from samba to samba-2.0.7 2.

[mikem@linux390 samba]$ ls -l
total 4192
-rw-rw-r-- 1 mikem mikem 4276392 May 2 13:11 samba-2.0.7.tar.gz
[mikem@linux390 samba]$ tar xzf samba-2.0.7.tar.gz 1
[mikem@linux390 samba]$ ln -s samba-2.0.7 samba 2
[mikem@linux390 samba]$ ls -l
total 4196
lrwxrwxrwx 1 mikem mikem 11 May 2 13:13 samba -> samba-2.0.7/
-rw-rw-r-- 1 mikem mikem 4276392 May 2 13:11 samba-2.0.7.tar.gz

autoconfconfigure.in configure
script

makefile C or C++
compiler and

linker

executable
files

make

.C
files

.h files

libraries

optional

optional
config.h
390 Linux for S/390

drwxr-xr-x 7 mikem mikem 4096 Apr 25 21:40 samba-2.0.7/

Then we changed to the samba directory. A quick inspection of the README
file told us that the install instructions were not in the file INSTALL, but rather
in docs/textdocs/UNIX_INSTALL.txt. That file told us that building Samba
could be accomplished via the common 3-step approach:

./configure
make
make install

Invoking ./configure revealed a shortcoming of Linux for S/390 that was not a
surprise: the system type could not be determined.

[mikem@linux390 source]$./configure --prefix=/usr
creating cache ./config.cache
checking for gcc... gcc
...
checking host system type... configure: error: can not guess host type;
you must specify one

The problem is that the files config.guess and config.sub have not been
updated in the Samba package to include the s390 architecture. These two
files are used by the configure script to determine the architecture of the host
system. Because Linux running on S/390 is a new architecture, most copies
of config.guess and config.sub will not recognize it.

A proper version of these files was found in /usr/lib/rpm. The original pair
were saved and the new pair were copied with the following commands:

[mikem@linux390 source]$ mv config.guess good.config.guess
[mikem@linux390 source]$ mv config.sub good.config.sub
[mikem@linux390 source]$ cp /usr/lib/rpm/config.guess .
[mikem@linux390 source]$ cp /usr/lib/rpm/config.sub .command locate

The configure script now ran successfully, with the difference being that the
host system type could now be determined:

checking host system type... s390-ibm-linux-gnu

Next the command make was invoked to build the executables. It ran
flawlessly! It took about 5 minutes on a 144 BogoMIP machine.

Next the command make install was invoked to install the executables. Here
we got an error:

[mikem@linux390 source]$ make install
...
mkdir: cannot make directory `/usr/local/samba': Permission denied
Chapter 20. Samba 391

This happened because we were running with a UID of 500 1 and the
directory /usr/local is owned by root -- and only the owner has write
permission 2.

[mikem@linux390 source]$ id
uid=500(mikem) gid=500(mikem) groups=500(mikem) 1
[mikem@linux390 source]$ ls -ld /usr/local
drwxr-xr-x 11 root root 4096 Aug 2 1998 /usr/local/ 2

To remedy this, we invoked the command su with no arguments to change our
effective UID to 0 (root). Now the command make install ran quickly and
flawlessly.

Samba should now be installed. The executables are probably in the directory
/usr/local/samba/bin, though it is possible that make install will put them in
/usr/sbin. It should be noted that in most Linux distributions, the Samba
executables are located in the /usr/sbin directory.

You now need a copy of the smb.conf file.

20.1.2.1 Copying a sample smb.conf file
The main configuration file for Samba is named smb.conf. You need a simple
one to get started. There is an example of one in the Samba example
directories. It can be copied to the install lib directory via the following
commands:

[root@linux390 samba]# cd samba/examples/simple
[root@linux390 simple]# cp smb.conf /usr/local/samba/lib

20.1.2.2 Starting Samba
Now you might want to test bringing the Samba daemons up. nmbd provides a
NetBIOS browse list, and smbd is the main provider of SMB shares.

[root@linux390 simple]# cd /usr/local/samba/bin
[root@linux390 bin]# ./nmbd -D
[root@linux390 bin]# ./smbd -D

The ps command piped to grep should show that the two Samba daemons are
up. Logs are written to the file log.nmb and log.smb in the var directory:

[root@linux390 bin]# ps -ef | grep mbd
root 465 1 0 14:13 ? 00:00:00 ./nmbd -D
root 471 1 0 14:13 ? 00:00:00 ./smbd -D
root 473 412 0 14:13 ttyp0 00:00:00 grep mbd
[root@linux390 bin]# ls ../var
locks log.nmb log.smb
392 Linux for S/390

Samba should be ready to go from the server side.

20.2 Customization

This section describes the steps taken to customize Samba on Linux for
S/390.

20.2.1 Starting Samba automatically
For our purposes we stored Samba executables in /usr/bin. The
documentation that comes with this distribution proposes, for BSD-style UNIX
systems, to add code into rc.local, which can be found in the /etc or /etc/rc.d
directories. In our installation of Linux this shell script is in /etc/rc.d. We
modified it to our needs as follows:

added by HDM, 5/4/2000 according to SWAT doc, chapter 2.05
we have smbd/nmbd stored in /usr/bin therefor we kick them
from there
if [-x /usr/bin/smbd]; then
 echo "Starting smbd now..."
 /usr/bin/smbd -D -d4
 echo "Starting nmbd now ..."
 /usr/bin/nmbd -D

With this addition to rc.local, Samba started at the next boot of our Linux.

20.2.2 Starting SWAT automatically
The Samba Web Administration Tool (SWAT) enables you to maintain Samba
via a Web browser. See 20.3.1, “SWAT” on page 399 for more details.

It is common for SWAT to be launched via inetd (see 14.6.1, “Overview of
inetd” on page 272 for a discussion of inetd). To add SWAT to inetd, you need
to edit your /etc/inetd.conf and /etc/services files. The Samba documentation
suggests a port number of 901, since it is not commonly used and is below
1024 (some inetd daemons have a security hole when using ports above
1024).

In the file /etc/services add the line:

swat 901/tcp

In the file /etc/inetd.conf add the line:

swat stream tcp nowait root /usr/bin/swat swat
Chapter 20. Samba 393

Once you have edited /etc/services and /etc/inetd.conf, you need to tell inetd
to reread the configuration file. This is done by sending the process a
SIGHUP signal via the kill command. For example:

[mikem@linux390 /etc]$ ps -ef | grep inetd
root 333 1 0 May02 ? 00:00:00 inetd
[root@linux390 /etc]# kill -SIGHUP 333

20.2.3 Using SWAT to customize Samba
Now that the inet.conf file has been reread by inetd, SWAT should be listening
on TCP/IP port 901. It can be accessed via a browser using the server name
and a “:901” suffix in the URL. For example, we accessed SWAT via the URL:

http://linux390.itso.ibm.com:901/

You will first be prompted for a user ID and password and then shown the
main SWAT screen (Figure 108 on page 395).
394 Linux for S/390

Figure 108. SWAT main window

SWAT can be used to administer all aspects of Samba.

20.2.4 Additional resources
The following are some good books on Samba:

 • Samba: Integrating UNIX and Windows

 • Using Samba

The latter is available online via SWAT! From the main window of SWAT, click
Using Samba, near the bottom of the Web page.
Chapter 20. Samba 395

20.2.5 Client-side operation
Because Samba is a client/server application, both sides must be working
properly in order to share file and print resources. Client-side access to a
Samba server can be tricky. Overall, in order to get a Samba share, there are
two main hurdles to overcome:

 • Finding the server

 • Supplying the proper credentials

If you are using Linux or another UNIX-based system as a client, you will
probably want to use NFS because that is the standard network file system.
However, you can also install the “smb client.”

Because Microsoft Windows is such a common desktop operating system, we
will focus on it as a client. Let us divide the Windows client world: Windows
NT, which now includes Windows 2000, and Windows 9x, which includes
Windows 95 and 98 and will probably include the forthcoming Windows
Millennium.

We will address access from both a command line and a GUI point of view.

20.2.6 Finding a Samba server from Windows
The format of the Universal Naming Convention (UNC) is \\server\share.
Originally, it was only a NetBIOS name that could be included as the server.

Finding a Samba server from NT is easier than from 9x because you can
specify either a DNS name or a dotted decimal address in the server portion
of the UNC. Therefore, if the server’s DNS name is linux390.itso.ibm.com and
its IP address is 9.12.14.158, then from NT you can either specify
\\linux390.itso.ibm.com\share or \\9.12.14.158\share as the UNC. If the client
were set up to resolve properly, you could use either linux390 or
linux390.itso.ibm.com synonymously because the resolver would assume the
domain part for you. The use of IP numbers in a UNC or URL is a giveaway
for sloppy DNS practices, and usually implies a poor DNS configuration.

From Windows 9x, however, you can only use the server’s NetBIOS name.
There are two common ways of resolving the NetBIOS name:

 • Via the NetBIOS browse list (aka Windows Network Neighborhood)

The daemon nmbd announces the NetBIOS name of the Samba server. It
should be propagated to the NetBIOS browse list (this may take some time
initially), added to the NetBIOS name list, and become accessible.
396 Linux for S/390

Another way of finding a NetBIOS machine is via the Find Computer dialog
(Start -> Find -> Computer).

 • Via the LMHOSTS file

This file allows you to specify an IP address to NetBIOS name mapping.
On Windows 9x, a sample LMHOSTS file is shipped in
C:\WINDOWS\LMHOSTS.SAM. It can be copied and edited with the
following commands:

C:WINDOWS\>copy lmhosts.sam lmhosts
C:WINDOWS\>notepad lmhosts

Then, a one-line entry can be added:

9.12.14.158 linux390

When Windows tries to resolve the NetBIOS name, it actually checks this
mapping file first.

20.2.7 Supplying the proper credentials from Windows
Both a user ID and password must be supplied to the Samba server in order
to get a shared resource.

20.2.7.1 Supplying the user ID
Windows NT is again easier than 9x because it allows you to supply the user
ID. From the Map Network Drive dialog, there is an additional text field,
“Connect As.” If the user ID with which you logged onto NT is different from
that on Linux, you can specify your Linux user ID in this field. Similarly, the
DOS net use command allows a /USER:username flag.

On Windows 9x, you cannot supply a user ID different from the one you
logged on with. So we recommend that your Windows networking and Linux
user IDs be the same. If this is not feasible, there is an alternative: Samba
allows the user ID to be “tacked on” to the share name by appending it after a
“%” character delimiter. For example, accessing the share
\\linux390\myShare%mikem will allow the share myShare to be accessed with
the user ID mikem.

20.2.7.2 Supplying the password
To supply the password, you need to know whether the password going over
the network is encrypted. Windows 95 OEM2 and later, and Windows NT,
Service Pack 3 and later all encrypt the password going over the wire. You
can either turn off the encryption via a registry setting, or you can instruct
Samba to create a password file that maintains encrypted passwords.
Chapter 20. Samba 397

A good background discussion and an explanation of the security and other
trade-offs of using password encryption are provided in the file
ENCRYPTION.txt in the Samba directory docs/textdocs.

20.2.7.3 Turning off password encryption on clients
To turn off password encryption on Windows clients, read the files Win95.txt
and WinNT.txt in the docs/textdocs directory for complete details. A brief
description is given here.

For NT or Windows 2000, bring up the registry editor with the command
regedt32. Go to the following NT hive:

HKEY_LOCAL_MACHINE\system\CurrentControlSet\Services\Rdr\Parameters\.

For Windows 2000, go to:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\LanmanWorkStation\Parameters

For Windows 9x, go to:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\VxD\VNETSUP

For any of these operating systems, add the following value:

EnablePlainTextPassword:REG_DWORD=1

Reboot Windows and passwords will no longer be encrypted over the wire.

20.2.7.4 Accepting encrypted passwords
If turning off password encryption is not feasible or possible, you can also
instruct Samba to accept encrypted passwords. To do this, use SWAT.

Bring up SWAT and click Passwords at the top. You should see two sections
labeled “Server password management” and “Client/server password
management.”

20.2.7.5 Using Windows NT to validate the credentials
If you are using “security = server,” the validation of credentials can be done
by an NT server. See one of the Samba manuals previously referenced for a
complete description of this feature.

20.2.8 Accessing a Samba share from a DOS prompt
From DOS, you can use the net use command to access a Samba share.
Type net use /? for the exact syntax, as it differs on various flavors of
Windows.
398 Linux for S/390

20.2.9 Accessing a Samba share from a GUI
Windows NT, Windows 9x and now Windows 2000 all have slightly different
GUI interfaces. From the various types of Explorer interfaces, you can bring
up the Map Network Drive panel. On some systems this is accessed by
clicking Tools and then Map Network Drive. However, on Windows NT, you
can only get to this panel via the toolbar. Click View then Toolbar, then look
for the Map Drive icon.

20.3 Tools

As mentioned, SWAT is the premier tool for administering Samba.

There are several small tools available to administer Samba from the Linux
shell. These are:

 • smbstatus

 • smbpasswd

 • testparm

 • testprns

Also, the client tool smbclient is discussed.

20.3.1 SWAT
We think it is no longer necessary to use smbpasswd, testparm and testprns
because SWAT gives you a very convenient and safe way to manage settings
for Samba. Settings done through SWAT can be assumed to be correct.

There may be an exception from this for smbstatus, which may be suitable for
Samba status over time. If you add smbstatus to the list of processes to be
controlled by cron, you can easily get an ongoing overview of Samba. The
following shows an output from smbstatus. To get this you have to redirect both
stderr and stdout to the same file.

[root@linux6 /home]# smbstatus &> smbst.lst
[root@linux6 /home]# cat smbst.lst
doing parameter log file = /var/log/samba/log.%m
doing parameter max log size = 50
doing parameter socket options = TCP_NODELAY SO_RCVBUF=8192
SO_SNDBUF=8192
doing parameter dns proxy = No
Processing section "[homes]"
doing parameter comment = Home Directories
doing parameter read only = No
Chapter 20. Samba 399

doing parameter browseable = No
Processing section "[printers]"
doing parameter comment = All Printers
doing parameter path = /var/spool/samba
doing parameter print ok = Yes
doing parameter browseable = No
Processing section "[tot62]"
doing parameter comment = Share for tot62
doing parameter path = /home/tot62
doing parameter read only = No
pm_process() returned Yes
Trying sysv shmem open of size 1048576

Samba version 2.0.5a
Service uid gid pid machine
--
tot62 tot62 tot62 9639 tot62 (9.12.2.124) Mon May 16
14:16:57 2000

No locked files

Share mode memory usage (bytes):
 1048464(99%) free + 56(0%) used + 56(0%) overhead = 1048576(100%)
total

All items that need to be administered to run Samba can easily be set using
SWAT. We show this with the following example.

Figure 109 on page 401 shows the SWAT Web page with password window
selected. It is divided into two parts, Server Password Management and
Client/Server Password Management , respectively. The first handles the
password in /etc/smbpasswd, whereas the second allows managing a
password on another SMB server.
400 Linux for S/390

Figure 109. SWAT password management interface

There is a small caveat: You would probably like to synchronize the Samba
password and the UNIX passwords. In that case you have to set the following
manually in /etc/smb.conf:

[global]
unix password sync = yes
Chapter 20. Samba 401

Figure 110. SWAT password management without UNIX synchronization

After we applied this change, SWAT showed this setting (Figure 111):

Figure 111. SWAT with UNIX password sync setting

The same is true for the password change program. We recommend that you
use a Samba configuration file that contains all [global] settings. You will then
be able to modify any setting through SWAT.

20.3.2 smbclient
The tool smbclient is useful. It was originally designed as a testing tool, but
ended up being used interactively to access SMB file shares in a fashion
similar to that of an FTP client. To use the smbclient command, you must
supply the share name as the first parameter. The Universal Naming
Convention (UNC) format for an SMB share is \\server\share. However, the
backslash is the escape character in UNIX, so every backslash has to be
402 Linux for S/390

doubled. An example of accessing an SMB server via the smbclient command
follows:

[root@linux390 bin]# ./smbclient \\\\itsont2\\e$ -U mikem
added interface ip=9.12.14.158 bcast=9.12.14.255 nmask=255.255.255.0
Password:
Domain=[WORKGROUP] OS=[Windows NT 4.0] Server=[NT LAN Manager 4.0]
smb: \> dir
 5600 DA 0 Thu Jan 13 10:02:51 2000
 5609 DA 0 Fri Apr 28 09:18:39 2000
 5665 D 0 Thu Mar 30 12:30:35 2000
 5681 D 0 Wed May 31 19:24:38 2000
...

49131 blocks of size 131072. 13293 blocks available
Chapter 20. Samba 403

404 Linux for S/390

Chapter 21. The Apache Web server

The Apache Web server has proven to be one of the most popular Web
servers on the Internet; some estimates state that more than 50% of the Web
servers in the world are using Apache. The Apache project was started by
people running the original National Center for Super Computing Applications
(NCSA) Web server. When the primary developer for that server left the
NCSA, people using the NCSA server began exchanging patches. Before
long the group realized they needed a forum to manage the patches, and the
Apache project was born. Apache is a full-function Web server that performs
quite well.

The Apache Web server supports:

 • HTTP/1.1 protocol

 • File-based configuration

 • Common Gateway Interface (CGI) support

 • Virtual Host support

 • HTTP (or basic) authentication

 • Integrated Perl (the defacto Apache CGI script language)

 • Operation as a caching proxy server

 • Customizable logging

 • Server Side Includes (SSI)

 • SSL (through a set of patches called Apache-SSL)

 • User session tracking capability

 • FastCGI

 • Java Servlets (through the Jserv module)

The Apache Web server is built in a highly modular fashion. It consists of a
small core of code, and a large number of configurable modules that supply
the majority of function. Using the configuration file and configure script it is
possible to build a custom Apache server that includes only the function you
need. In addition, the Apache Web server supports a server API. This API
makes it possible to create your own modules extending the function of the
server

The Apache Web server runs on a wide variety of hardware platforms. It runs
on most if not all of the various types of UNIX systems, as well as on
© Copyright IBM Corp. 2000 405

Windows 95/98/NT and many other desktop and server-class operating
systems. It was even ported to OpenEdition VM/ESA.

Many people contribute to the project, as well as vendors such as IBM. It
continues to evolve toward meeting today’s e-business needs at a rapid pace.
For more information see:

http://www.apache.org.

21.1 Installation

The Marist large file system comes with the Apache Web server already
installed. In order to use this Web server you must first update the
ServerName statement in the HTTPD CONF file. This file is located in the
/etc/httpd directory. This statement sets the host name of the server. You
should update the statement to include the fully qualified domain name of
your host (not the short name), for example:

ServerName webserver.mycompany.com

21.1.1 Obtaining a later Apache level
The level of Apache installed in the large Marist file system is 1.3.5. However,
more current versions of the server are available from:

http://www.apache.org

We decided to obtain the source for a more recent version of Apache and
install it into the large Marist file system.

The Apache source comes in a UNIX composite file format known as a Tape
ARchive or tar file. In addition, this tar file is compressed, so it will have an
extension of .Z. The level we obtained from http://www.apache.org is 1.3.12.
The name of the tar file we downloaded is apache_1.3.12.tar.Z.

21.1.2 Exploding the Apache tar file
If you use the Apache tar file, download the source file to your Linux for S/390
system. Then you need to extract all of the individual files from the composite
tar file. When you invoke the tar command, it will create a subdirectory within
your current working directory named apache_1.3.12 and place all of the files
and subdirectories include in the tar file in that directory. If you want this
directory created under your root, then you should change directory (cd) to /
before invoking the tar command.
406 Linux for S/390

If you want to place the new directory tree in some other location, then cd to
that location now. Enter the following command:

tar -xzvf apache_1.3.12.tar.Z

If the Apache tar file is not located in the directory from which you are issuing
the tar command, you will need to preface the file name with the appropriate
directory path to locate the apache_1.3.12.tar.Z file. For example, if the tar
file was located in /download, then the command you would issue is:

tar -xzvf /download/apache_1.3.12.tar.Z

21.1.3 Building Apache
Before you begin to build Apache, make sure that you are in the
apache_1.3.12 directory. After you are in that directory, you are ready to
begin building Apache from the source tree. The normal sequence of
commands to follow is:

Configure

Make

Make install

Configure is an open source tool used to build makefiles. This tool takes into
account software and hardware platform dependencies; for more information
on how configure works, see Figure 107 on page 390. However, in order to
build Apache, nothing will need to be modified for S/390.

If you want to build a custom Apache server, you must copy the file
./src/Configuration.tmpl to a file named ./src/Configuration and edit the
Configuration.tmpl file to change the AddModule statements. The defaults
provided in the configuration template are usually sufficient for a typical
installation of Apache. (In our installation, we did not modify this file.)

At this point, you can run the command:

./configure

This command builds the Makefile used to compile and link all of the
components included in the Apache Web server.
Chapter 21. The Apache Web server 407

Note the following sample:

./configure

Configuring for Apache, Version 1.3.12

 + Warning: Configuring Apache with default settings.

 + This is probably not what you really want.

 + Please read the README.configure and INSTALL files

 + first or at least run ‘./configure --help’ for

 + a compact summary of available options. �

 + using installation path layout: Apache (config.layout) �

Creating Makefile

Creating Configuration.apaci in src

Creating Makefile in src

 + configured for Linux platform

 + setting C compiler to gcc

 + setting C pre-processor to gcc -E

 + checking for system header files

 + adding selected modules

 + checking sizeof various data types

 + doing sanity check on compiler and options

Creating Makefile in src/support

Creating Makefile in src/regex

Creating Makefile in src/os/unix

Creating Makefile in src/ap

Creating Makefile in src/main
408 Linux for S/390

Creating Makefile in src/lib/expat-lite

Creating Makefile in src/modules/standard

��This warning is issued because we did not specify a --prefix on the
configure command. The --prefix specifies the path under which
Apache will copy files during the make install operation. The default
location for copying files is /usr/local/apache. This was fine for our
installation and worked quite well since it did not overlay any of the
original Apache installation in the large Marist file system.

��The default layout is being used, since we did not specify a
--with-layout= operand. The default layout is an Apache conforming
subdirectory layout. If you would rather have a GNU conforming layout,
you would specify --with-layout=GNU operand on the configure
command. The subdirectory structure of various layouts can be seen
by using the --show-layout operand on the configure command.

Enter the following command to compile and link Apache:

make

Note: This command will take some time to run. The length of time is
dependent on the type of S/390 processor you are using, and the current
execution load. You should not see any errors during the processing of the
make command. Once this command completes, all of the programs needed
to run the Apache server will have been created. All that is needed now is to
copy all of the runtime components to the destination directory tree. Since we
used the default during configure, a directory tree will be created under
/usr/local/apache.

Enter the following command to create the Apache runtime environment:

make install

While the make install command progresses, messages will be written to the
console indicating the operation being performed, and the files involved.
Chapter 21. The Apache Web server 409

When the command completes, you will receive the following banner:

+--+
| You now have successfully built and installed the |
| Apache 1.3 HTTP server. To verify that Apache actually |
| works correctly you now should first check the |
| (initially created or preserved) configuration files |
| |
| /usr/local/apache/conf/httpd.conf |
| |
| and then you should be able to immediately fire up |
| Apache the first time by running: |
| |
| /usr/local/apache/bin/apachectl start |
| Thanks for using Apache. The Apache Group |
| http://www.apache.org/ |
+--+

The httpd.conf file that was copied to /usr/local/apache during the make
install contains a comment for the ServerName statement. This means that
you will need to remove the comment character (#) from the ServerName
statement before trying to start the Apache server. In addition, remember to
include the fully qualified domain name for your server in the statement.

21.1.4 Customization
Now that your Apache server is installed, you can begin using it. The default
make install process created a directory named /usr/local/apache/htdocs for
you. This directory is named on the DocumentRoot statement in the
httpd.conf file, and it is the directory you should put HTML files into for the
Web server to deliver. By default, the make install process created several
index.html.xx files for various international languages. If you start your Web
server at this point, you will see the following page returned to your browser:
410 Linux for S/390

Figure 112. Apache webserver testpage

This page provides a link for you to view the Apache documentation via your
Web browser.

21.1.5 Server configuration settings
Earlier releases of Apache used three configuration files to tailor the
operation of the Web server. These files were:

httpd.conf

srm.conf

access.conf

These files are still provided with Apache_1.3.12, and are created in the
/usr/local/apache/conf directory. However, the current recommendation is to
consolidate all configuration information into httpd.conf. Consequently, the
sample files created in the configuration file directory are empty.

Based upon the default settings in the httpd.conf file, your Apache server is
currently capable of serving static HTML pages from port 80. In addition, the
server will not restrict any clients from viewing pages in the document root
directory or any subdirectories of the document root. If you would like to
Chapter 21. The Apache Web server 411

change the port that Apache is listening on, you must change the Port
directive in the httpd.conf file. If you would like to add restrictions on who can
visit the site, you can modify the Directory stanzas, or create .htaccess files in
the document directory or subdirectories.

21.1.6 Virtual hosting
Apache is capable of running multiple Web sites from a single server. The
default httpd.conf file only defines a single main site. However, it is possible to
define additional Web sites through statements in the httpd.conf file, with
each site identified by a unique domain name.

In order for clients to access the virtual Web sites, updates must be made to
Domain Name Service (DNS) servers within your network. The DNS servers
need to be updated to include the new DNS names and resolve those names
to the IP address of the Linux for S/390 system.

Virtual sites are defined to the Apache server using the VirtualHost container
in the httpd.conf file. An example of a virtual host definition follows:

<VirtualHost 9.130.31.15>

DocumentRoot /usr/local/apache/newsite/htdocs

ServerName www.newsite.com

</VirtualHost>

In this example, the IP address on the VirtualHost statement is used by
Apache to match an incoming request to this VirtualHost definition. If the IP
interface over which a request is received matches 9.130.31.15, then the
VirtualHost definition is used to process the request. This particular
VirtualHost definition inherits all of the configuration attributes of the main
server with the exception of the DocumentRoot and the ServerName.

The DocumentRoot identified in the VirtualHost statement will be used to
satisfy the client request, and the ServerName from the VirtualHost will be
returned to the client.

21.1.7 Operation
The following sections discuss various aspects of Apache Web server
operation.
412 Linux for S/390

21.1.7.1 Starting and stopping Apache
To initially start Apache and test the server, enter the following commands:

cd /usr/local/apache/bin
./apachectl start

You should see a message indicating that Apache started when the apachectl
command completes.

You can verify that Apache is running by entering the following command:

ps -ef

Check to make sure you have multiple instances of
/usr/local/apache/bin/httpd running.

You can also verify that Apache has a listen socket open by issuing the
command:

netstat -vlp

In the response from this command, look for a line listing httpd. The local
address column will identify the socket that httpd is listening on. Since the
display lists well known sockets by service name rather than number, you will
see *.www if Apache is listening on Port 80. You can verify this is the port
associated with the www service by entering:

grep www /etc/services

To stop the Apache server enter the following commands:

cd /usr/local/apache/bin

./apachectl stop

When the apachectl command completes, you should see a message stating
the httpd stopped.

21.1.7.2 Automating startup and shutdown
Now that you have tested your Apache server, you will want to make sure that
the proper initialization script runs to start this new level of Apache when your
Linux for S/390 system is IPLed. In addition, you will want to make sure that
the proper kill script is executed when you shutdown your Linux for S/390
system.

Enter the following commands to create the proper initialization script:
Chapter 21. The Apache Web server 413

cd /etc/rc.d/init.d �

cp /usr/local/apache/bin/apachectl . �

cd ../rc3.d �

rm S85httpd �

ln -s ../init.d/apachectl S85httpd �

cd ../rc0.d �
rm K15httpd �
ln -s ../init.d/apachectl K15httpd �

�This directory contains the application specific startup scripts called
during boot and shutdown

�Copy the Apache startup and shutdown script to the init.d directory.

�Change to the directory containing scripts executed from run level 3.

�Remove the link to the startup script for the old level of Apache
(../init.d/httpd).

�Create a new link to the apachectl script. (The S85 prefix indicates this
is a startup script, and it should be executed after scripts numbered lower
than 85, and before scripts numbered higher than 85.)

�Change to the directory containing scripts executed from run level 0
(halt).

�Remove the current kill script for the old level of Apache.

�Create a new link to the apachectl script. (The K15 prefix indicates this
is a shutdown or kill script, and it should be executed after scripts
numbered lower than 15, and before scripts numbered higher than 15.)

21.1.7.3 Logging
Apache has an extensive logging facility that provides information about who
is accessing your site. Customizing the logging characteristics of your server
can be accomplished by modifying the appropriate directives in the httpd.conf
file. The default httpd.conf file specifies that an error log be produced in
/usr/local/apache/logs/error_log. In addition, an access logfile file will be
produced in /usr/local/apache/logs/access_log common.

21.1.8 CGI and SSI
The default server configuration includes the support modules necessary to
run Common Gateway Interface (CGI) scripts, and contains httpd.conf entries
414 Linux for S/390

enabling CGI scripts. The following configuration steps were performed to
enable execution of CGI scripts:

 • Tell Apache where your CGI scripts are stored.

 • Set up CGI handlers for specific file extensions.

 • Indicate which file extensions should be considered CGI programs.

It is a good idea to create a directory that is outside of your htdocs directory
tree where you can store CGI scripts. This prevents Web clients from seeing
an index listing of the CGI scripts, and provides as little information as
possible about your CGI scripts.

The make install process creates a directory for you for CGI scripts that is
outside the htdocs directory tree. The directory is /usr/local/apache/cgi-bin. In
addition, two sample CGI scripts are installed in the cgi-bin directory.

21.1.8.1 Telling Apache where CGI scripts are stored
The ScriptAlias directive tells Apache where in the Linux file system to locate
CGI scripts when a particular URL path is specified. The format of the
ScriptAlias directive is:

ScriptAlias url_path “/file/system/path/”

The default ScriptAlias included in the default httpd.conf file is:

ScriptAlias /cgi-bin/ “/usr/local/apache/cgi-bin/”

The following URL would execute a CGI script in this directory:

http://some.com/cgi-bin/aprogrm

The default httpd.conf file also contains a directory statement that allows
access to execute CGI scripts in this directory to any incoming client.

21.1.8.2 Set up CGI handlers for specific file extensions
With the default configuration described in 21.1.8.1, “Telling Apache where
CGI scripts are stored” on page 415, any file referenced in the
/usr/local/apache/cgi-bin directory will be assumed to be executable. If you
would rather restrict executables to certain file extensions, then you should
perform the following configuration steps:

 • Remove ScriptAlias directives from the httpd.conf file.

 • Create Alias directives to associate a URL path with the location of CGI
Scripts:

Alias /cgi-bin/ “/usr/local/apache/cgi-bin/”
Chapter 21. The Apache Web server 415

 • Create a Directory container for the CGI directory:

<Directory /usr/local/apache/cgi-bin>
Options ExecCGI
AllowOverride None
Order allow,deny
Allow from all
AddHandler cgi-script .cgi .pl
</Directory>

21.1.8.3 Define file extensions that are CGI scripts
Mapping a file extension to an executable file is accomplished through
changes to mime.types. The AddType directive allows you to make changes
to mime.types without actually editing that file. For example, to specify that
the extension newcgi is an executable file type, you would add the following
statement to httpd.conf, or to a .htaccess file in a directory with option
ExecCGI:

AddType application/x-httpd-cgi .newcgi

If the statement is added to httpd.conf, then it will apply to every directory that
contains the ExecCGI option. If the statement is added to a directory-specific
.htaccess file, then it will apply only to that directory.

21.1.8.4 Server Side Includes (SSI)
Server Side Includes are HTML pages that include embedded commands for
the Web server. SSI provides a mechanism to create dynamic HTML pages
without the need to write CGI scripts. However, an SSI-enabled Web page
requires that the Web server parse the complete content of the page looking
for the embedded commands. This can introduce performance problems

The default httpd.conf we used is not configured to enable SSI HTML pages.
In order to enable the use of SSI pages you must perform the following
configuration steps:

1. Enter /usr/local/apache/bin/httpd -l. (Look at the resulting list of
modules included in the Apache server to ensure that mod_include is
present.)

2. Add a new handler for SSI/IXSSI HTML pages. (This is typically done in
the context of a Directory container.)

3. Add a new file extension for SSI/IXSSI HTML pages. (This is also typically
done in the context of a Directory container.)

4. Enable SSI parsing for a directory. (This will contain the parsing operation
to a particular portion of the site directory tree.)
416 Linux for S/390

<Directory /usr/local/apache/htdocs/myssi>
AddHandler server-parsed .shtml
AddType text/html .shtml
Options +Include
</Directory>

In this example, the directory myssi has been defined with the Include option
to enable SSI parsing. In addition, the file extension .shtml within this
directory is to be considered of mime type text/html, and processed by the
mod_include module.

21.1.9 SSL
The Apache Web server we used does not have SSL function included. If
you’re interested in transforming your apache_1.3.12 Web server into a
secure Seb server that implements SSL, consult the following Web site:

http://www.apache-ssl.org

This Web site describes Apache-SSL, a secure Web server based upon
Apache and SSLeay/OpenSSL. This code is licensed under a BSD-style
license, and is available without charge.

From this site (or one of the mirrors identified) you can download the required
patches to the Apache 1.3.12 source, as well as SSLeay version 0.5.1b+ and
OpenSSL. Once the patches are applied to Apache source, you will need to
link the object modules with either SSLeay or OpenSSL:

 • SSLeay is an implementation of Netscape’s Secure Socket Layer protocol.
It is available without charge, and provides support for SSL V2, SSL V3,
and TLS V1.

 • OpenSSL is a separate project based upon the SSLeay library previously
described.

Since SSL incorporates cryptographic routines, it is important to understand
all of the legal issues associated with cryptographic routines. These rules
apply to uses of these products outside the United States.

During this project, we did not acquire the patches or SSL implementations to
create an Apache-SSL server.

21.1.10 Web Server security considerations
Once you have your Web server installed and configured, it is useful to spend
some time considering how you can make it secure.
Chapter 21. The Apache Web server 417

Outside access to the content provided by your Web server can be controlled
by the access control statements in httpd.conf. In previous releases of
Apache, these directives were typically placed in a file named access.conf.
However, later versions of Apache have consolidated these statements into
httpd.conf, leaving the access.conf file as a pointer to the moved statements.

The typical security scheme is to begin by defining a very restrictive set of
permissions for the / directory. Following this, additional statements are
provided that allow particular feature and access authorizations. The reader
is directed to the documentation that accompanies Apache for the complete
syntax of the set of statements that authorize access and features.

Within the httpd.conf file, there are several directives that you will need to be
careful with, as described in the following sections.

21.1.10.1 ExecCGI
This option specifies that CGI programs can be executed within the directory
hierarchy associated with this option. Unless the CGI programs are carefully
controlled, it is possible that security holes could be opened due to poor
coding practices. If CGI programs are needed, the best practice is to restrict
CGI programs to a specific directory that is outside the hierarchy of your httpd
root file system. If this directory is access controlled, then only the Web
Master, or another authorized person, may add or change CGI programs. The
ScriptAlias directive is used to define the particular directory you want to use
for CGI programs.

21.1.10.2 FollowSymLinks
Symbolic links are small files within a Linux file system that point to the
location of another file. When a symbolic link is accessed, it behaves as
though the user accessed the real, referenced file. Often a symbolic link is
created as a shorthand reference to a file that includes a long path
specification.

The Apache FollowSymLinks option allows remote users to follow symbolic
links in the directory they are referencing by clicking the associated
hyperlinks. The security exposure here occurs when someone inadvertently
links to an important internal system file. This would allow a remote user to
violate the barrier that separates the Web hierarchy from the system file
hierarchy.

21.1.10.3 The Includes option
Server Side Includes (SSI) allow for the inclusion of dynamic information in
otherwise static HTML documents. This is a convenient method of creating
418 Linux for S/390

dynamic documents without writing CGI programs. Most of the SSI directives
do not introduce any serious security exposures.

However, one in particular should be avoided: the EXEC directive. This
directive allows you to specify system commands within your source HTML
such as:

<!--#exec cmd=” ls -l /”-->

This will produce a directory listing in the HTML output stream.

If the HTML page also has a form that takes user input, an attacker could
download the HTML source, insert malicious exec commands, and then
submit the form. Your server would process the form and unwittingly execute
the commands specified with the exec directive.

To avoid this situation, it is recommended that you not allow the exec cmd
directive, if SSI commands are allowed. Specify the following to accomplish
this:

Options IncludesNOEXEC

21.1.10.4 Directory indexing
We recommend that you do not enable the directory indexing option
because this option causes Apache to send a directory listing (similar to
an ls -l command) if a default HTML page is not found.

Typically the default Web page is defined to be index.html or something
similar. If a non-specific URL is received (that is, a URL that only identifies
a directory path), and Apache cannot find the default HTML page, a
directory listing will be returned instead.

This potentially allows a Web user to browse the list of files in a particular
directory, and navigate between directories. If you have included files in
the directory that are not usually referenced by any HTML page, the
directory listing will expose the files to Web users.
Chapter 21. The Apache Web server 419

420 Linux for S/390

Chapter 22. Firewall configuration

In Chapter 14, “Linux TCP/IP connectivity” on page 267, and Chapter 15,
“Linux for S/390 connectivity to VM, OS/390, VSE” on page 283, various
methods for connecting a Linux for S/390 system to a network were
described. However, if you dedicate a real communication adapter to your
Linux for S/390 system, you’ll need to protect your system if that adapter
attaches to an external network such as the Internet.

Linux for S/390 can function as a packet-filtering firewall. This means that you
will be able to use your Linux for S/390 system to prevent packets from
leaving your system and going to certain destinations, as well as prevent
packets from entering your system from sites on the external network.

A packet-filtering firewall typically operates at the IP network and transport
protocol layers. In addition it is usually implemented within an operating
system, as in the case of Linux. The basic way in which this type of firewall
protects a system is by making routing decisions after filtering packets using
information in the IP packet header. The firewall allows you to either discard a
packet and notify the sender of this action, or simply discard a packet without
notification.

Since a packet-filtering firewall operates at the IP network and transport
layers, it is important to understand the limitations of such a firewall. The
packet-filtering firewall makes decisions based upon the network interface
and host IP address over which a packet was received, the source and
destination IP addresses, the TCP or UDP ports, the TCP connection flags,
the ICMP message types and whether the packet is incoming or outgoing.

However, this type of firewall does not have the ability to verify that the sender
is who they claim to be. The only identifying information is the source IP
address, which can be spoofed. In addition, these layers cannot verify that the
application data is correct. The higher level protocols need to perform these
types of checks. Still, a packet-filtering firewall does provide a high degree of
control over direct port access, and what packets can actually be passed to
higher level protocols on the system. Thus it is a very valuable component in
the overall security scheme you will implement.

The packet-filtering firewall on your Linux for S/390 system is known as
ipchains. This name relates well to how the firewall operates. The firewall
performs input and output filtering by applying lists of rules to individual
packets. The lists of rules are defined as chains because a packet is matched
against each rule in the list until a match is found or the list ends. For a
© Copyright IBM Corp. 2000 421

particular network interface, both an input chain and an output chain are
maintained.

The Linux ipchains package is based upon the Linux IPv4 firewall code, and
represents a rewrite of the older ipfwadm. The minimum kernel version
supported by ipchains is 2.1.102. It was at this point that the firewall code was
integrated into the mainstream Linux kernel.

In addition to the code in the kernel, you also need a tool named ipchains that
communicates with the kernel to define the packet filtering rules (or chains).
This tool can be obtained from the following Web site in rpm format and
installed on a Marist College-based system:

http://linux.s390.org

22.1 Installation

Since the packet filtering code is integrated into a 2.1.102 and above kernel,
you do not need to “install” the firewall code. However, most kernels
(including the Marist Linux for S/390 binary kernel) are not built with the
firewall code activated. You can easily determine if your code has the
ipchains firewall code activated by entering the following command:

ls /proc/net/ip_fwchains

If the response to this command indicates the file exists, then your kernel was
built with the firewall code activated. If this file does not exist, then you will
need to rebuild your kernel, specifying the following three options when you
perform the make config:

CONFIG_FIREWALL=y
CONFIG_IP_FIREWALL=y
CONFIG_IP_ROUTER=y

The third configuration statement listed above is not absolutely necessary for
running the firewall code or ipchains. However, if you are configuring your
Linux for S/390 system to act as a firewall, you will presumably also want it to
function as an IP router. This kernel option adds the high performance router
function.

Rebuild your kernel following the steps outlined in 11.6, “Build and customize
the kernel” on page 238.

Once your kernel has been built with the firewall code active, you also need
the ipchains tool in order to define filtering rules.
422 Linux for S/390

The current version available in source form is 1.3.8. Source can be
downloaded from the following URL:

http://www.adelaide.net.au/~rustcorp/ipfwchains/ipfwchains.html

A Linux for S/390 binary rpm is available from the following URL:

http://linux.s390.org

The level of ipchains available from this site is 1.3.9-3. For this residency, we
obtained the s390 binary from linux.s390.org and installed the rpm package:

rpm -ivh ipchains-1.3.9-3_s390.rpm
ipchains ###
#####
rpm -qlp ipchains-1.3.9-3_s390.rpm
/sbin/ipchains
/sbin/ipchains-restore
/sbin/ipchains-save
/sbin/ipfwadm
/sbin/ipfwadm-wrapper
/usr/doc/ipchains-1.3.9
/usr/doc/ipchains-1.3.9/COPYING
/usr/doc/ipchains-1.3.9/HOWTO-1.html
/usr/doc/ipchains-1.3.9/HOWTO-10.html
/usr/doc/ipchains-1.3.9/HOWTO-2.html
/usr/doc/ipchains-1.3.9/HOWTO-3.html
/usr/doc/ipchains-1.3.9/HOWTO-4.html
/usr/doc/ipchains-1.3.9/HOWTO-5.html
/usr/doc/ipchains-1.3.9/HOWTO-6.html
/usr/doc/ipchains-1.3.9/HOWTO-7.html
/usr/doc/ipchains-1.3.9/HOWTO-8.html
/usr/doc/ipchains-1.3.9/HOWTO-9.html
/usr/doc/ipchains-1.3.9/HOWTO.html
/usr/doc/ipchains-1.3.9/HOWTO.sgml
/usr/doc/ipchains-1.3.9/HOWTO.txt
/usr/doc/ipchains-1.3.9/Makefile
/usr/doc/ipchains-1.3.9/README
/usr/doc/ipchains-1.3.9/ipchains-quickref.ps
/usr/man/man4/ipfw.4
/usr/man/man8/ipchains-restore.8
/usr/man/man8/ipchains-save.8
/usr/man/man8/ipchains.8
/usr/man/man8/ipfwadm-wrapper.8

As you can see from the rpm -qlp command, the binary package consists of
several modules that are placed into the /sbin directory, and a number of
documentation files. The /sbin/ipfwadm, and /sbin/ipfwadm-wrapper programs
Chapter 22. Firewall configuration 423

are provided for compatibility with the old Linux IP Firewall code. The ipchains
tools replace the ipfwadm tool, and thus should be used instead.

The /sbin/ipfwadm-wrapper tool can be used as a quick means of upgrading a
system which was using ipfwadm for firewall rule specification.

Even though you created a new kernel specifying CONFIG_IP_ROUTER, you
must still update the network script to permanently enable IP forwarding. This
can be done by editing the file /etc/sysconfig/network:

Change FORWARD_IPV4=no to FORWARD_IPV4=yes

This change will take effect the next time you boot your system. If you want
the change to take effect immediately, you must also execute the following
command:

echo “1” > /proc/sys/net/ipv4/ip_forward

22.2 Customization

Now that your system is configured to use ipchains, it is time to define the
rules that will be used by the firewall code. There are two basic approaches
that you can take when defining filtering rules:

 • Deny all incoming and outgoing packets, then specifically enable packets
associated with services you want to allow.

 • Allow all incoming and outgoing packets, then specifically deny packets
associated with services and locations you want to restrict.

The first approach is generally considered to be the most effective method for
protecting a system. This method does not leave your system unprotected if
you overlook some service nuance that would allow packets to flow that
should be restricted. Rather, you may encounter the situation where a
particular service does not work that should. You can at this point define the
particular rules that remedy the situation.

The firewall code within the kernel works in the following manner:

 • When a packet is received on a particular interface, the rules in the input
chain will be checked against the information in the IP header of the
packet.

 - If a matching rule is not found, then the default policy for the chain is
applied to the packet. If we choose the “deny all” approach, then the
packet will be silently discarded (in the case of DENY), or discarded
and an ICMP message returned to the sender (in the case of REJECT).
424 Linux for S/390

 - If the packet passes the input check, it is then examined to see if it is
destined for the local machine, or needs to be routed to another
machine.

 • If the packet needs to be routed, then it is compared against the
rules in the forward chain. Again, if the default policy is “deny all”,
then the information in the packet header must match one of the
rules in the forward chain in order to proceed.

 • If a match is found, then the kernel will compare the packet header
information with the rules in the output chain. Packets generated
from the local machine would be compared against the rules in the
forward chain, and the rules in the output chain.

Rules are defined to the kernel using the ipchains utility. These rules are
dynamically defined, and persist only for the life of a kernel boot. In order to
make these rules “permanent”, an initialization script must be created that will
redefine the rule set each time you boot the system. Utility programs are
included in the ipchains package that allow you to save the set of chains
currently in use by the kernel to a file, and restore the saved chains from a file
to the kernel.

By default, the kernel maintains three chains. These chains are named input,
output and forward. It is possible to clear all of the rules from these chains,
but it is not possible to delete these built-in chains. In addition to these built-in
chains, the ipchains utility allows you to create your own chains with names
you choose. These user-defined chains can then be associated with a
particular built-in chain for use by the kernel. In effect this provides a
convenient mechanism for grouping sets of rules, and assigning a name to
them.

When rules are defined for various chains, it is also possible to specify
whether or not to log packets that match the particular rule. While this might
produce an unmanageable amount of output for routine packets, it might be
highly desirable to log packets that match rules designed to catch unusual
attempts to break into your system.

Since the logging is done by the kernel, the output is typically captured by
klogd and transferred to syslogd for writing. The syslogd facility is customized
using the /etc/syslog.conf file. Within this file, stanzas define where and how
to log entries from particular facilities and levels. In the case of ipchains, the
facility involved is the kernel, and the level associated with ipchains is info.

On a standard Marist system, the syslog.conf file specifies that kernel
messages should be logged to the console (/dev/console), and info messages
Chapter 22. Firewall configuration 425

should be logged to /var/log/messages. Thus all ipchains logging would be
displayed both on the Linux console, and in the /var/log/messages file.

The ipchains utility allows you to perform operations on an entire chain, or on
a single rule. Some of the common operations you can perform on an entire
chain are:

 - Create a new chain (-N)
 - Delete an empty chain (-X)
 - Change the default policy for a built-in chain (-P)
 - List the rules in a chain (-L)
 - Flush the rules out of a chain (-F)

For example, you might want to list the rules on your built-in chains before you
begin defining additional rules. To do this, you would enter:

ipchains -L input
ipchains -L output
ipchains -L forward

Since you have not yet defined any rules, the output of this command will
simply list the default policy for the particular chain (which begins as
ACCEPT). Since the default policy is ACCEPT for all chains, this means that
currently your firewall is not blocking any incoming or outgoing packets.

You can change the policy for any of these chains by using the -P option of
ipchains. For example, to implement the “deny all” policy for input, you would
enter:

ipchains -P input DENY

At this point, all incoming packets will be silently discarded. Processes trying
to send packets to your machine will simply time out, not receiving any other
error indication. Since presumably you will want to allow some set of packets
into your machine, you will now need to add some additional rules to the input
chain to specify the particular packets you want to accept. The ipchains
command allows you to manipulate the rules associated with a chain in the
following ways:

 - Append a new rule to the chain (at the end of the chain) (-A)
 - Insert a new rule at some position in the chain (-I)
 - Replace a rule at some position in the chain (-R)
 - Delete a rule (either the first one that matches or at a particular position

within the chain) (-D)
426 Linux for S/390

When you delete a rule, you can identify the rule to be deleted by either
specifying its numeric position within the chain (beginning with 1), or by
specifying the entire text of the rule to be matched.

For example, suppose you had appended a rule to the input chain as follows:

ipchains -A input -s 127.0.0.1 -p icmp -j DENY

You could delete the rule by simply changing the -A to a -D. This would cause
a scan of the rules on the input chain for a matching rule. The first one found
would be deleted.

Both the insert and replace commands require that you identify the rule by a
numeric rule number. In the case of insert, the number specifies the number
of the new rule within the list. If you already had a chain of rules and then you
specified ipchains -I input 1 ..., this would cause the new rule to be placed at
the beginning of the list.

It is possible to find the numeric position of a rule within the chain by using
the list command with the --line-numbers option:

ipchains -L input --line-numbers

In a rule specification, you will tell the kernel the set of conditions the packet
must meet, and what to do if the packet meets the specifications. The set of
conditions you specify covers most of the significant fields in an IP packet
header. You can specify:

 - Source and Destination IP addresses (-s or -d)
 - Protocol number (-p)
 - UDP or TCP port numbers
 - ICMP message type and code (-s and -d)
 - Interface name (for input or output) (-i)
 - TCP packets with only the SYN flag set (-y)

Telling the kernel what to do with a packet that matches a rule is done by
specifying a target for the rule. Targets are specified using the -j parameter
(as in jump to the target specification). The following targets can be specified
with the -j parameter:

 - ACCEPT
 - DENY
 - REJECT
 - REDIRECT
 - RETURN
Chapter 22. Firewall configuration 427

We have already discussed the difference between DENY and REJECT.
ACCEPT is specified when you want to allow the packet to continue through
IP processing. REDIRECT is an uncommon target specification that applies
only to packets using the TCP or UDP protocol. REDIRECT instructs the
kernel to send the packet to a local port instead of the destination specified in
the packet. RETURN causes an immediate end to comparison with rules in
the chain, imposing the default policy on the packet.

As an example, the following rules would resume packet flow over the
loopback interface (since we earlier set a default policy of DENY for both
input and output chains):

ipchains -A input -i lo -j ACCEPT
ipchains -A output -i lo -j ACCEPT

You activate logging for a particular rule by include the -l flag in the rule. This
will cause log entries to be generated when a packet matches the particular
rule.

If you create rules that use the -s option to specify a source IP address or
range of addresses, you need to be aware that it is possible to spoof IP
addresses and thus defeat the rules. The Linux kernel offers some protection
against address spoofing through the activation of source address
verification. The following shell script routine will enable source address
verification for all interfaces on the Linux system:

for f in /proc/sys/net/ipv4/conf/*/rp_filter; do
echo 1 > $f

done

Since this chapter is not intended to be a comprehensive work on firewall
design, you are encouraged to look at the many publications that deal with
this subject in depth. Creating the rules for the various chains supported by
the Linux firewall code involves analyzing all of the TCP/IP applications and
services offered on the firewall machine and determining the packet
characteristics associated with each service and application. You also need
to consider the access you want to allow both into and out of your firewall
machine.

One subject which is beyond the scope of this chapter but integral to the
firewall code and ipchains, is the capability of the firewall code and ipchains
to support Network Address Translation or IP-Masquerade. This capability
allows you to utilize local IP addresses in your network behind the firewall
machine, and have a registered IP address used for communication between
hosts on the local network and applications on the Internet.
428 Linux for S/390

In addition to the IP-Masquerade capability, you will also want to investigate
the use of proxy services as an integral part of your firewall strategy.

22.3 Operation

As mentioned earlier, the ipchains command makes dynamic changes to the
chains maintained by the kernel. Since this is the case, you must take steps
to insure that the firewall policy you want to implement is captured in shell
scripts invoked when the system boots, and perhaps when an interface is
started or stopped.

Your shell script should begin by flushing any existing rules, so that it can be
executed at any time:

ipchains -F

Next, you should implement the default policy for each chain:

ipchains -P input DENY
ipchains -P output REJECT
ipchains -P forward REJECT

At this point, all traffic is blocked. You could then proceed to allow unlimited
traffic on the loopback interface (since this is completely local to the firewall
machine). Following this, you should ensure that tcp_syncookies support in
the kernel is enabled:

echo 1 > /proc/sys/net/ipv4/tcp_syncookies

You will also at this point want to enable source address verification for each
interface:

for f in /proc/sys/net/ipv4/conf/*/rp_filter; do
echo 1 > $f

done

You may then proceed to specify rules that allow certain packets to be
ACCEPTED for the services and activities you want to support.

The firewall script you build can be easily integrated into the system boot
process by adding a line at the end of the /etc/rc.d/rc.local file:

sh /etc/rc.d/rc.firewall

This statement presumes that the name of your shell script to define the
ipchains rules is rc.firewall, and that the script resides in /etc/rc.d
Chapter 22. Firewall configuration 429

If you are building your security policy interactively using the ipchains
command. You can easily save the current state of your chains using the
ipchains-save utility. To create a file containing the current rules enter:

ipchains-save > the_firewall

This will create a file named the_firewall in the current working directory
containing ipchains commands to define all of the rules currently defined. If
you flush the chains, or reboot the system, you can easily put these rules
back using the ipchains-restore utility:

ipchains-restore < the_firewall
430 Linux for S/390

Chapter 23. Printing with Linux

In this chapter we describe how to print with Linux for S/390 by sharing a
printer on a different system.

23.1 Devices

As mentioned, with Linux for S/390, our approach to printing was to share a
printer (queue) on a remote system.

We first installed the package lpr-0_48-1_s390.rpm, which provides the main
functions for using printers on Linux for S/390:

lpc A management function to deal with printers and queues.

lpd The line printer daemon; it works on queues and writes to a printer.

lpr The print command to send a file for printing.

We downloaded the package from:

http://www.linux.s390.org

Downloading was done directly into a working directory on our Linux for
S/390 server using Samba, as shown in Figure 113.

Figure 113. Downloading from the Internet onto the Linux server

These services were installed using the rpm package install function. No
source was installed with the binaries.
© Copyright IBM Corp. 2000 431

23.2 Using VM resources

We tested printing from Linux for S/390 to a VM-managed IBM Network
Printer 24.

One test used the lpr command on Linux for S/390 to print a flat file. Printer
output was sent from Linux for S/390 to the TCP/IP LP daemon (LPSERVE)
on VM/ESA, which routed it to an RSCS LPR link. The RSCS LPR driver sent
the output to the LPD daemon inside the Network Printer 24. A second test
used lpr to print a PostScript file to the same printer. In practice one would
never take such a circuitous route, but it serves to demonstrate the flexibility
of using VM as a centralized print server.

Figure 114 illustrates the routing.

Figure 114. Printing from Linux to VM-managed printers

Interoperation between the VM TCP/IP printing services and RSCS printer
drivers and queue managers allows almost any IP printer, SNA printer, AFP
printer, or system printer to be accessed from Linux.

To enable remote printing from Linux for S/390 to printers managed by VM,
we needed to make the following definitions in Linux:

VM/ESA Control Program (CP)

L

I

N

U

X

TCP/IP

for

VM

CMS

VM/ESA Control Program (CP)

TCP/IP

for

VM

OSA

CMS

WTSCVMT WTSCPOK

L

P

S

E

R

V

E

R

S

C

S

OSA

9.12.14.1 9.12.14.155

9.12.2.8

P

S

F

LPD LPRLPR

9.12.14.75

router

9.12.2.75
432 Linux for S/390

In /etc/printcap we made an entry for the Network Printer 24:

np24:rm=wtscpok.itso.ibm.com:rp=poknp24:sd=/var/spool/np24

A label np24 was assigned to the remote printer. The VM system from which
we managed the printer was WTSCPOK. The name of the printer in the VM
TCP/IP LPD definitions was poknp24. The spooled output from the lpr
command was stored under the /var/spool /np24 directory.

We printed the sample files as follows:

lpr -Pnp24 /etc/printcap
lpr -Pnp24 ttosvu.ps

Because the VM LPD and RSCS definitions are complex, we do not show
them here. For information on configuring RSCS and IP printer networks,
refer to VM/RSCS V3R2.0 Planning and Installation, SH24-5219 and VM/ESA
V2R4.0: TCP/IP Function Level 320 Planning and Customization, SC24-5847
and TCP/IP Solutions for VM/ESA, SG24-5459.

We also conducted a successful test of printing a flat file to an IBM 3130
printer via the TCP/IP LP daemon on VM LPSERVE, which routed the data
stream to be printed on the 3130 under the control of Print Services
Facility/VM (PSF/VM).

23.3 Using OS/390 resources

On one of the OS/390 systems (WTSC43OE) we had IPPrintway up and
running. To use the print resources on that host we added a definition to
/etc/printcap:

This file can be edited with the printtool in the control-panel.
printer q poke via wtsc43oe.ibm.com (HDM)
poke:rm=wtsc43oe.itso.ibm.com:rp=poke:sd=/var/spool/poke

The UNIX printer daemon requires a spool directory to be defined according
to the definition in /etc/printcap. We allocate this with a simple mkdir
/var/spool/poke command.

The lpd was not running, so we started it by using lpd start in /etc/rc.d/init.d/.

Following is the print command we used:

lpr -Ppoke services
Chapter 23. Printing with Linux 433

The data was sent immediately to the host. From the messages in the OS/390
syslog you can see the actions taken by the print management software:

AOPD00I BPXAS AOPLPD (JOB32651) spool data for: WTSCPLX9 ROOT
 PS065836 SERVICES from: root@linux6
 IAT7001 JOB ROOT (PS065836) IS ON WRITER PRTWAY(),RECORDS=1
 ANFM700I Data set: WTSCPLX9.ROOT.ROOT.JOB32651.D0000015.SERVICES The
 data set has been acquired by PRTWAY
*IAT7005 WTR (JOB00219), ON PRTWAY (), WAITING FOR WORK.
 IAT7005 WTR (JOB00219), ON PRTWAY (), WS=(CL), WC=J.
 ANFU141I Job=65836 Owner=ROOT Printer=PRTWAY Data=JOB32651.D0
 000015 At=WTSCPLX9 -- Sent for root@linux6
 ANFM601I Data set: WTSCPLX9.ROOT.ROOT.JOB32651.D0000015.SERVICES The
 388
 data set was successfully transmitted to host and
 queue: 9.12.2.4 afccu2
 ANFM604I Data set: WTSCPLX9.ROOT.ROOT.JOB32651.D0000015.SERVICES The
 data set is being released to JES

The file we used for this was a plain ASCII file. A further test with a postscript
file worked immediately with the same printer, as the server detects postscript
files automatically.

23.4 Using Linux as a print data hub

Linux provides many filter services to convert printer data streams, mainly
into postscript. The availability of these filters can make Linux very attractive
in environments where various printer types are used and printer
consolidation is required.

For example, you may have diverse HP, Canon, Epson or Lexmark printers in
your shop. These are useful as personal printers to print small amounts of
data. However, when you’re planning to print a larger number of copies, you
can use Linux filter functions to convert between these data streams and
postscript.
434 Linux for S/390

Chapter 24. Linux security issues

In this chapter we merely scratch the surface of a few security-related issues.
The URLs referenced in other sections of this book point to more complete
security information.

You should be aware that millions of Linux installations exist that are
connected to the Internet, and among its operators there are inevitably some
that have the knowledge and intention to exploit security holes on remote
systems. Therefore, “security by obscurity” is no longer an option.

Some Linux distributions offer a selection of security profiles for certain
situations such as “in trusted environment”, “DMZ” (for DeMilitarized Zone),
or “paranoia setting”. Starting from the most appropriate of those for your
environment, you can reach the required level of security with only a few
additional steps specific for the actual environment.

Note that the Marist distribution offers virtually no security as it is intended to
allow experimentation and exploration of this Linux for S/390 system.

24.1 Consider using remote logging

Important system messages and warnings are usually logged in
/var/log/messages and /var/log/warn, respectively. An attacker who manages
to gain unauthorized access to the system is likely to be able to remove his
traces in these (and other) files.

However, the ability to send the messages to be logged to another machine
helps with this problem. The following man page gives instructions and
examples for the configuration of syslogd for remote logging:

man syslog.conf

24.2 Disable unnecessary services

Flaws in the code of programs that run with root privileges (like several
daemons for networked services) have repeatedly given attackers ways to
gain unauthorized access to UNIX systems. Though the number of such
incidents may decrease, it is certain that such things will happen as long as
computers offer networked services. The system administrator should
therefore follow the online forums that report known software weaknesses
and possible fixes.
© Copyright IBM Corp. 2000 435

The more services are running on a system, the greater the probability that
some program failure will produce a security problem. The simple prescription
is to disable all services that are not necessary for the operation of the
system. Many daemons are started by the “super daemon” inetd: commenting
out the respective entries in /etc/inetd.conf by putting an # in front of the line
and restarting inetd by the following command does it:

killall -HUP inetd

Other daemons are running all the time (listening on their port); so you should
simply not start unnecessary ones.

24.3 Files and file system security

A few minutes of preparation and planning ahead before putting your systems
online can help to protect them and the data stored on them.

World-writable files, particularly system files, can be a security hole if a
cracker gains access to your system and modifies them. Additionally,
world-writable directories are dangerous, since they allow a cracker to add or
delete files as he wishes. To locate all world-writable files on your system,
use the following command:

root# find / -perm -2 ! -type l -ls

Be sure you know why those files are writable. In the normal course of
operation, several files will be world-writable, including some from /dev, and
symbolic links, thus the ! -type l which excludes these from the previous find
command. Unowned files may also be an indication an intruder has accessed
your system. You can locate files on your system that have no owner, or
belong to no group with the command:

root# find / -nouser -o -nogroup -print

Finally, before changing permissions on any system files, make sure you
understand what you are doing. Never change permissions on a file because
it seems like the easy way to get things working. Always determine why the
file has that permission before changing it.

For additional information, see the following articles at the referenced Web
sites:

 • Linux Security Administrator's Guide by Dave Wreski
http://www.nic.com/~dave/SecurityAdminGuide/SecurityAdminGuide.html

 • Linux Administrator's Security Guide by Kurt Seifried
http://www.securityportal.com/lasg/
436 Linux for S/390

24.4 Disable remote login for root

If remote login for root is not allowed, the only way to become the super user
is by logging on with the personal account and then switching to root by using
the “su” command. Even if the root password should become known to some
attacker, he will need to get hold of another account on which he can log in
remotely.

The device names of the ttys from which root can log in are listed in
/etc/securetty.

If an FTP server is running on your system, /etc/ftpusers lists users who are
not allowed to connect via FTP. Root and some other users should definitely
be in this file; to get more information, check out the man pages (man
ftpusers).

If you are running Linux for S/390 in a virtual machine, you may decide to limit
root logons to the Linux console. In other words, only by logging onto the
Linux virtual machine or by being an authorized secondary user could you
attempt to log on to Linux as root.

24.5 Use encrypted connections

If an attacker has access to the physical network segment (e.g., by having a
login account on a computer directly attached to the network) he can access
all information that is transmitted on the segment. By using simple scripts on
top of a “network sniffer” program (like tcpdump), he can filter out
login/password pairs transferred in clear text. The only protection against this
is not to transfer any unencrypted data.

Therefore, you should disable telnet and rlogin (/etc/inetd.conf), and allow
remote login only via ssh. Transfer files only with the scp command.

24.6 Use scp instead of FTP

As data transferred by FTP is not encrypted and implementations of the FTP
service have shown vulnerabilities in the past, one might ask for an
alternative method of file transfer. Luckily there is scp (secure copy), which
allows you to copy files between machines and uses the authentication
mechanism of the secure shell. The data is encrypted during transfer by scp.

scp understands a syntax that is very similar to that of the usual cp command:
Chapter 24. Linux security issues 437

scp myfile.txt joe@host.mydomain.com:somedir/

This means copy myfile.txt into joe’s home directory under the directory
somedir/.

24.7 Use a tcp wrapper (tcpd)

The tcpd wrapper monitors, logs, and controls the startup of daemons
normally started directly by inetd. It does some checks for apparent attempts
to mount an attack (like a host pretending to have the name of another) and if
nothing suspicious is detected, starts the service.

Linux distributions will likely install tcpd by default. If your system doesn’t
have tcpd installed, you should install it.

The configuration of tcpd is nicely explained in man tcpd. Most likely you
should make entries in /etc/hosts.allow and /etc/hosts.deny, where access for
hosts can explicitly be allowed or denied (you can issue the command man 5
hosts_access for additional information).

24.8 Use shadow passwords

The user (and group) passwords are not stored as clear text anywhere in the
system. Instead, the passwords are encrypted and authentication is done by
encrypting the entered passwords and comparing them to the stored
encrypted passwords.

The encrypted passwords used to be stored in /etc/passwd, which is (and has
to be) world-readable. In this situation, any user can obtain the list of all
logins and encrypted passwords on the system. By using certain programs
(like cracklib) that use a dictionary of frequently used passwords (and
variations of the login sometimes used as password by users not aware of the
risks), it is feasible to obtain passwords and thereby unauthorized access.

With the shadow password suite installed, the passwords are stored in a file
(/etc/shadow) readable only by root, thereby eliminating the possibility that
ordinary users could use cracklib or other dictionary attacks.

All Linux distributions today come with the shadow suite.
438 Linux for S/390

24.9 X11 server access control

Working with X11, you should be aware that anyone who is allowed to
connect to the X server can launch attacks that render the server useless
(e.g. by modifying the key map) or start keyboard sniffer programs (that
record all keystrokes on the machine where the server runs).

After logging on to a remote machine, you usually have to set the DISPLAY
variable (on the remote machine) according to the X terminal you work with:

export DISPLAY=myhost.mydomain.com:0

In any case, xhost (host-based access control) is really not the end of the
story: the very readable man page Xsecurity will point you to xauth
(client-based access control); see also man xauth.

24.10 Consult the security-related Internet sites regularly

Formerly unknown security problems are first described on the Internet. Often
an appropriate fix is published at the same time. If you care about security,
then visit the security sites regularly or subscribe to the mailing lists run by
them.

The following list will give you some good starting points:

Suppose you try to start an X application and receive a message like the
following once too often:

Xlib: connection to “myhost.mydomain.com:0” refused by server
Xlib: Client is not authorized to connect to server

You might be tempted to just allow connections from all hosts by entering
this (on the X terminal):

xhost +

instead of typing:

xhost +myhost.mydomain.com

for each individual host that will connect to the X server. However, you
should refrain from doing so unless your X terminal has no connection to
any untrusted host!

Attention
Chapter 24. Linux security issues 439

http://www.securityfocus.com/
http://rootshell.com/
http://www.insecure.org/
http://www.cert.org/
http://lsap.org/

Linux distributors often have Web sites with information specific to the
software packaged for their distribution, as you can see in the following URL:

http://www.suse.de/de/support/security/
440 Linux for S/390

Chapter 25. Sources of help and information

This chapter points you to further sources of information about Linux on
S/390.

25.1 man pages

Manual (known as man) pages are installed on every UNIX (Linux) system.
They are read using the man command; you can enter the following to obtain
information about how to use the man command:

man man

Man pages are divided into the following nine sections:

1. Executable programs or shell commands
2. System calls (functions provided by the kernel)
3. Library calls (functions within system libraries)
4. Special files (usually found in /dev)
5. File formats and conventions eg /etc/passwd
6. Games
7. Macro packages and conventions (e.g. man(7), groff(7)).
8. System administration commands (usually only for root)
9. Kernel routines [Non-standard]

Usually there is only one man page for the name you enter. However, some
names have man pages in two or more sections; for example, the following
command displays all man pages for the keyword “write”:

man -a write

In this case there were two nam pages: one in section 1, and one in section 2.
The following command explicitly selects the man page from section 2:

man 2 write

Reference to a man page in a particular section may look like “see man
write(2)”.

Apart from the classification into nine sections, the collection of man pages is
relatively unorganized. The apropos command searches the manual page
names and descriptions for a keyword.

For example, you might want to search for man pages related to the Samba
daemon smbd as follows:
© Copyright IBM Corp. 2000 441

$ apropos smbd
smbd (8) - server to provide SMB/CIFS services to clients
testprns (1) - check printer name for validity with smbd

The results show that besides smbd, the testrpns man page is related.

25.2 info

The structure of info is different from man in that it has a tree structure
through which you may be able to navigate, depending on which program you
use for browsing the info pages.

GNU textinfo is invoked with:

info

This produces a black-and-white text display. In contrast, the following is an
info reader that adds color and lynx-style navigation (right arrow to follow link,
left arrow to go to upper level), but does not have name completion:

pinfo

However, pinfo is not part of the Marist large file system, nor does it appear to
be available on the Thinking Objects rpm Web site:

ftp://linux.s390.org/pub/ThinkBlue/RPMS/s390/

Emacs is pretty comfortable for reading info pages. If you use emacs, you can
use it as your info browser by typing ctrl-h i inside emacs. If you prefer vi,
you’ll use plain info anyway.You can also read the html versions of the info
pages with your favorite browser.

25.3 help

help is a shell built-in (that is, a command that is part of the shell) and gives
help about the other functions that are shell built-ins. You invoke it by
entering:

help

Among the different shells, only bash offers help; others usually say “help: not
found.”
442 Linux for S/390

25.4 howto

Howtos should reside in the directory /usr/doc/howto. They should exist in
(gzip compressed, plain ASCII) text format and probably also as HTML. To
read the compressed ASCII format, it is not necessary to uncompress them
first because less does it automatically:

less /usr/doc/howto/Highly-Cryptic-And-Powerful-HOWTO.gz

Howtos vary somewhat in style, from collections of pointers to further
information to tutorials, and can be used in the following manner: suppose
you want to set up some service on your system that you never installed
before. If you do not have a package from a Linux distribution that does the
installation and configuration more or less automatically, then you can consult
the appropriate howtos.

Howtos also often provide useful examples.

25.5 RFC

A Request For Comments (RFC) document is also a source of information. If
you do not have the RFCs local on your machine, check the following site:

http://www.rfc-editor.org/

If you installed a complete Linux distribution, you should find in the directory
/usr/doc/rfc/ about 2700 files named rfc*.txt.gz. In this case, the asterisk (*)
stands for a number from 1 to 2792 (as at the time of writing).

The file rfc-index.txt.gz contains an index (by number) of what is covered in
each RFC. The entry 2696 reads as follows:

2696 LDAP Control Extension for Simple Paged Results Manipulation. C.
Weider, A. Herron, A. Anantha, T. Howes. September 1999. (Format:
TXT=12809 bytes) (Status: INFORMATIONAL)

An arbitrarily chosen paragraph therein reads:

If the page size is greater than or equal to the sizeLimit value, the
server should ignore the control as the request can be satisfied in a
single page. If the server does not support this control, the server
MUST return an error of unsupportedCriticalExtension if the client
requested it as critical, otherwise the server SHOULD ignore the
control. The remainder of this section assumes the server does not
ignore the client's pagedResultsControl.
Chapter 25. Sources of help and information 443

This is complex information about a rather specific topic, so less experienced
users may find using RFCs a bit daunting, but they can be useful. For
example, if an RFC exists about a protocol you want to program for, it will
probably give you all the information you need in a well-structured form.

25.6 The Internet

The Internet contains numerous sites that have the kind of information you
are interested in. We recommend you bookmark a few favorites, and also
check for newsgroups and forums in your interest area that will be helpful to
you.

25.7 Books

There are plenty of books about Linux and related subjects, differing widely in
style and quality. Luckily, choosing the right one requires no wizardry: by
reading some online recommendations and reviews (online bookstores
usually have them), you’ll get the picture. As you’re likely to discover, for
certain topics there is usually a particularly authoritative book.

25.8 Finding a file

To get a list of all files (and directories) whose names contain a “blah” you
could use the find command, as follows:

find / -name ‘*blah*’ -print

This will go through your whole file system and find all the files specified:

/usr/X11R6/include/X11/pixmaps/mini.blah.xpm
/usr/X11R6/include/X11/3dpixmaps/normal/blah_3d.xpm
/usr/X11R6/include/X11/3dpixmaps/small/small.blah_3d.xpm

There are, however, two reasons why you do not really want to use find: it
causes a massive system load, and it takes a long time.

Instead, you can set up a database of filenames and use the locate command
to access that database, as follows:

locate blah

The output is the same as above. Updating the database is usually done daily
by a cron job that launches the respective process, updatedb. Note, however,
that files created after the last update will not be found using locate.
444 Linux for S/390

25.9 Determining the type of command

Commands can be of different types: they can be executable files on disk,
shell built-ins, aliases, functions, or keywords. To find out what type a
command is (for example, pwd), you can enter:

$ type pwd

This will return the answer:

pwd is a shell builtin

But wasn’t there an executable named pwd in /bin? If this is the case, then the
following command format will clarify the matter:

$ type -a pwd

This will return the answer:

pwd is a shell builtin
pwd is /bin/pwd

So there are actually two pwds. To execute the binary, use the full path:

/bin/pwd

To determine the type, you enter:

type type

This will return the answer, courtesy of bash:

type is a shell builtin

25.10 DAU

The Documentation Access Utility (DAU) provides a unified interface to all
sorts of documentation. It allows the user to ask Linux a question about some
topic and presents the relevant information in browsable form.

Questions such as the following are understood by DAU:

dau tcpip basics
dau whatis device
dau security books advanced or intermediate
dau C library reference
dau list software firewall
dau howto about framebuffer
dau whereis fractint
dau /etc/securetty examples
Chapter 25. Sources of help and information 445

dau /etc/passwd format

The following question is also understood by DAU:

dau who says “SIOC_ADR: cannot activate abc123”

Almost any sensible question leads to an “answer” constructed from within
Linux documentation or references to other available documents, like online
resources or books. Alas, so far no one has begun to program DAU.
446 Linux for S/390

Chapter 26. Monitoring the system

In this chapter we list and describe some of the most important utilities for
monitoring (and sometimes, changing) the state of a running Linux system.

26.1 Linux facilities and tools

You can use the following facilities and tools to see what is currently going on
in the Linux for S/390 system.

26.1.1 log files
Linux log files are located in /var/log. System messages and warnings are
usually logged into the files messages and warn, respectively. Errors in
programs or the kernel often leave traces in the log files before the process in
trouble dies. That’s why UNIX administrators often issue the following
command to see if something is wrong with the system:

tail -40 /var/log/messages

The boot messages are stored after bootup in /var/log/boot.msg. This file is
especially useful as a reference list of the detected hardware configuration.

26.1.2 The proc file system
Almost every detectable aspect of the state of a Linux system is mapped into
pseudo files under the directory /proc. These “files” appear to have zero byte
size when listed with ls, but reading them produces some output; for example
cat /proc/devices might produce the following:

Character devices:
 1 mem
 2 pty
 3 ttyp
 4 ttyS
 5 console
 10 misc

Block devices:
 1 ramdisk
 7 loop
 94 dasd
 95 mnd
© Copyright IBM Corp. 2000 447

Look around in /proc, cat some files; you’ll love it. Examine
/usr/src/linux/Documentation/proc.txt to see there’s even more.

26.1.3 top
top shows a table of processes which is continually updated. The top CPU
processes appear on the top of the screen. top lets you interactively kill (or
send signals to) individual processes. Its behavior like update intervals and
sorting order can be adjusted interactively or by startup options. To exit top
press “q”.

26.1.4 ps
ps lists the current processes once. The usage of ps is rather obscure: the
same option may be there with and without a dash and may produce different
results. Try:

ps -e

versus:

ps e

to see the difference. However, ps is indeed a very useful tool. To list all
running processes use:

ps r

To list all your processes (in long format, option “u”), enter:

ps ux

while:

ps aux

lists all processes. To find a process named “myproc”, use:

ps aux | grep myproc

You might want to take a look at the man page. You’ll find that ps offers many
nice options that determine what processes are displayed in which order and
format. The man page even contains a few usage examples near the end.

26.1.5 pstree
pstree displays the process list as a tree. pstree may produce output such as
the following:
448 Linux for S/390

init-+-atd
 |-axnet
 |-cardmgr
 |-cron
 |-gpm
 |-httpd---httpd
 |-in.identd---in.identd---2*[in.identd]
 |-inetd
 |-kflushd
 |-khubd
 |-klogd
 |-kpiod
 |-kswapd
 |-kupdate
 |-lockd---rpciod
 |-login---bash---startx---xinit-+-X
 | `-ctwm-+-xclock
 | |-xload
 | `-xosview.bin
 |-lpd
 |-md_thread
 |-5*[mingetty]
 |-4*[nfsd]
 |-nscd---nscd---5*[nscd]
 |-portmap
 |-rpc.kmountd
 |-rpc.kstatd
 |-sshd
 |-syslogd
 |-xterm---bash---pstree
 `-xterm---bash-+-man---sh---less
 `-man---sh---sh---less

An often useful option is -p, which also displays the process IDs (PIDs) of the
listed processes. When given a user name, only the processes of that user
are shown; for example:

pstree -p jj

produced (in reference to the previous example) the following:

bash(260)---startx(14416)---xinit(14425)-+-X(14426)
 `-ctwm(14429)-+-xclock(14437)
 |-xload(14438)
 `-xosview.bin(14439)

bash(14444)---pstree(14627)

bash(14481)-+-man(14541)---sh(14545)---less(14547)
 `-man(14552)---sh(14553)---sh(14555)---less(14556)

This should probably be named a ps-forest.

26.1.6 who and w
The who command lists which users are currently logged on to the system,
from what tty, and how long they have been active. You can use the -H option
to produce column headers and slightly improve the readability of the list.
Chapter 26. Monitoring the system 449

The w command also lists who is logged on, but gives additional information
about the processes the users are currently running.

26.1.7 xosview
xosview is an X application that displays CPU, memory, disk, and network use
as horizontal bars. With xosview running, you can detect immediately that
some program uses lots of CPU cycles or continuously allocates memory.
This application is also useful for learning about system behavior in situations
of normal operation.

26.1.8 xload
xload is an X application that shows a periodically updated histogram of the
system load. The diplayed graphics is useful for a load overview for the last,
minutes, or hours. The visible range is controlled by the horizontal window
size and the parameter following the option -update that gives the time
interval between updates in seconds (the default is 1).

26.1.9 procmeter
procmeter is a runtime-configurable X application that can displays many
aspects of the system load in histogram (or other) form.

26.1.10 uptime
The uptime man page provides the following description:

“uptime gives a one line display of the following information. The current
time, how long the system has been running, how many users are
currently logged on, and the system load averages for the past 1, 5, and
15 minutes.”

Nicely said; the output looks as follows:

11:18pm up 7:38, 2 users, load average: 0.06, 0.02, 0.00

26.1.11 free
free displays the amount of free and used memory in the system.

free

produces the following display:

total used free shared buffers cached
Mem: 62664 53972 8692 26628 20316 12596
-/+ buffers/cache: 21060 41604
Swap: 136040 1864 134176
450 Linux for S/390

The options -k and -m cause the quantities to be listed in units of kilobytes
and megabytes, respectively.

26.1.12 du and df
The df (disk free) command reports file system disk space usage.

df

lists the following:

Filesystem 1k-blocks Used Available Use% Mounted on
/dev/dasdf1 1771660 446768 1234896 27% /
/dev/dasdg1 104596 92280 6920 93% /swap

The -h option is often useful because it causes the numbers be displayed in a
more human-readable form (with suffixes like M for megabyte and G for
gigabyte).

The du command reports the space occupied by the current directory and all
directories within it. An alternative directory may be supplied as an argument.
The -s switch is often useful because it makes du list only utilization
summaries (the default behavior is to report utilization of all subdirectories,
which often causes pretty lengthy output). du also understands the -h option.

26.1.13 fuser
The fuser command identifies processes that use a certain file, directory or
socket:

fuser -v /root

(The -v option produces a much more readable output.)

 USER PID ACCESS COMMAND
/root root 24762 ..c.. su
 root 24763 ..c.. bash

You can even kill all processes that use a specific file, which comes in handy
when a file system cannot be unmounted because some unknown process is
accessing it. See the man page for details.

26.2 VM tools

Apart from native Linux tools, you can monitor the performance of a Linux
virtual machine at the macro level using VM tools and facilities.
Chapter 26. Monitoring the system 451

The CP INDICATE USER command displays performance-related information for
a Linux virtual machine. This command can be issued from the console of a
running Linux virtual machine by prefacing the command with the current
terminal line end character (normally a # character); for example:

#CP INDICATE USER

Make sure that you have CP SET RUN ON for the Linux virtual machine so
that its execution is not halted if it enters a CP READ state.

The INDICATE USER command can also be issued for a Linux virtual
machine by another user with privilege class E.

You can use a performance monitoring product such as the Real Time
Monitor VM/ESA (RTM/ESA), 5798-DWD, to track the real time performance
of a Linux virtual machine.

When monitoring is enabled on a VM/ESA system, CP monitor data will be
written for Linux virtual machines. These records can be analyzed later using
a tool such as the VM Performance Reporting Facility (VMPRF), 5684-073.

You can find further information about the use of this product and RTM/ESA
in the IBM Redbook VM/ESA Performance Tools, GG24-4152.

By using the Secondary Console Interface Facility (SCIF) of VM/ESA you can
receive console output messages from multiple Linux virtual machines on the
console of another virtual machine and respond to those messages. Used in
conjunction with the Programmable Operator facility, you have a single point
of control for the consoles of several Linux virtual machines.

This technique allows you to code a filter that alerts the VM system operator
whenever a Linux virtual machine displays a certain message on its console.
For more information see 6.8.3, “Secondary console interface” on page 126.
452 Linux for S/390

Appendix A. Intel architecture, S/390 architecture

Linux is usually considered a PC operating system. Linux was first developed
for an Intel 80386 and the Intel architecture remains the most common
platform for Linux.

In this appendix, we describe the fundamentals of the Intel architecture and
that of S/390. The Intel symmetric multiprocessor (SMP) architecture is
compared with S/390, with particular attention to reliability, availability and
serviceability. We also give a brief introduction to S/390 virtual machines and
VM/ESA. Using VM/ESA, you can potentially run hundreds or even thousands
of Linux virtual servers on a single S/390 system.

A.1 Architecture description

This section provides a brief introduction to the basic architecture of the Intel
32-bit (IA32) and IBM S/390 processors. For further details refer to the Intel
Architecture Software Developer’s Manual Volume 3, Intel order number
243192, and the ESA/390 Principles of Operation, SA22-7021.

A.1.1 IA32

An IA32 processor offers different modes of operation, but some of them are
provided only for compatibility reasons and today are not used very often.
The so-called “protected mode” is the one used by today’s operating systems.
It allows memory to be divided into different segments, isolated from one
another, and supports paging to obtain a virtual memory larger than the
physical one.

The IA32 processors contain different sets of registers:

 • General purpose registers - these eight registers can be used to maintain
operands and main memory pointers. Some of them are reserved for
particular purposes; for example, the ESP register is used as a pointer to
the stack.

 • Segment registers - these registers are used to hold the descriptors of
segments used while accessing code, data, or the stack.

 • Status registers - these registers are used to encode the processor status
and to specify its mode of operation.

A set of floating point registers is also provided to support floating-point
operations. These registers are organized as a stack and are 80 bits each.
© Copyright IBM Corp. 2000 453

Figure 115. Address translation on IA32 processors

The memory on an IA32 processor operating in protected mode is divided
into segments. Each segment has a maximum size of 4 GB (which has been
increased to 64 GB on the latest Pentium processors). A segment is
accessed by means of a segment selector contained in one of the segment
registers. A segment selector is composed of three parts:

 • A segment descriptor index.
 • A table indicator that allows you to establish if the index is referred to the

global descriptor table (GDT) or the local descriptor table (LDT).
 • A requested privilege level, used for segment protection.
454 Linux for S/390

The LDT is local to each thread and is saved during thread switch. The GDT
is global to the entire system. The GDT and LDT contain the segment
descriptors that are used to maintain information about:

 • The size of the segment.
 • Its base address in virtual storage.
 • The type of the segment and its associated privilege level.

The segment type is used to distinguish between segments containing data
or code and segments containing system structures (such as task-related
information, the LDT and so on).

When accessing memory, a segment register and an offset register are used:
the address of the data in memory is obtained by adding the base address of
the segment referenced by the segment register to the offset contained in the
offset register. This linear address can be equal to the physical address of
data in memory in case paging is not active. Otherwise another translation
step is required to translate the linear address into the physical one (see
Figure 115 on page 454). The pages most commonly used by IA32
processors have a fixed size of 4 KB, but pages as large as 2 MB or 4 MB are
supported.

The information that the processor uses during the page translation process
is contained in the following data structures:

 • The page directory contains up to 1024 32-bit page-directory entries.
Each of them contains the base address of a page table and information
about the status of the page (for example if it is valid, or if it is in main
memory or swapped to secondary storage).

 • The page table - each entry contains the address of a page and some bits
used to maintain information about the state of the page and the privileges
needed to access it.

Figure 115 on page 454 shows the process used to translate a linear address
to a physical one. A control register is used to maintain the base address of
the page table. Because this register is saved during a task switch, each task
can have its own mapping of linear addresses to real addresses.

The protection mechanism of IA32 processors allows for proper isolation of
processes. For example, during a memory access, checks are performed on
the size of the referenced segment to ensure that the reference is within the
segment.

Also, the processor uses segment and page level protection mechanisms.
Four levels of privilege are used: level 0 is the highest one and allows access
Appendix A. Intel architecture, S/390 architecture 455

to each memory region. Also levels 0, 1, and 2 identify processes running in
supervisor mode, while level 3 is usually reserved for applications. Protection
checks are performed on each memory access and when control is
transferred from one procedure to another using particular segments known
as call gates.

On a memory access, the privilege level of the current code (contained in the
segment descriptor of the current code segment) and the privilege level
contained in the segment descriptor used for data access (contained in a
segment register like DS) are checked against the privilege level contained in
the segment descriptor of the segment accessed. Only if the first two
privilege levels are greater than the last one is access granted; otherwise, an
exception is raised. The privilege level is also used to restrict the operations
that a process can perform; in fact, some operations are allowed only when
executing at level 0.

A protection mechanism is used when accessing pages, too. Each entry in
the page table contains a bit indicating whether the page can be accessed in
user mode (privilege level 3), or if the accessing process must be in
supervisor mode; also, another bit is used to indicate if the page is read-only.

A.1.2 S/390

A S/390 system is usually composed of one or more central processing units,
main storage, expanded storage, and a channel subsystem that is connected
to the I/O devices; see A.1.3, “I/O subsystem” on page 459.

Main storage contains code and data used by the CPUs and is divided into
blocks of 4 KB. In contrast, expanded storage cannot be used to hold data
currently used by the CPUs, and it is usually reserved for paging purposes, in
that it allows you to transfer memory blocks faster than mass storage. It is
divided into pages of 4 KB, each addressed by a 32-bit identifier, thus
allowing up to 232 pages. Only complete pages can be transferred to or from
expanded storage to main memory. Expanded storage is a unique feature of
the S/390 architecture; there is nothing similar in IA32.

Each CPU contains a set of registers that can be used by programs. They can
be divided into the following:

 • The program status word is used to maintain information related to the
status of the CPU and to instruction sequencing.

 • The general registers, which are sixteen 32-bit registers used for integer
arithmetic and for addressing.
456 Linux for S/390

 • The floating-point registers - depending on the configuration, 4 or 16
registers are available and can be used both for hexadecimal and binary
floating-point computations.

 • The control registers - 16 registers are available and are used to control
various hardware facilities.

 • The access registers contain segment-table designators used to access
address spaces.

Depending on the mode of operation, the addresses generated by a program
can be interpreted in three different ways:

 • Absolute addresses are addresses given to the main storage locations.
 • Real addresses are translated to absolute addresses by prefixing.
 • Virtual addresses are translated to real addresses by means of dynamic

address translation.

The S/390 absolute address is like the IA32 real address; both are used to
designate a given location in the main storage. The virtual address can be
compared with the IA32 linear address because both are used to support
paging and to provide a virtual address space larger than the real main
memory.

Prefixing is used to allow different CPUs sharing main storage to work
independently. Prefixing remaps the first 4 KB of storage using the value
contained in the prefix register of each CPU: if a memory reference is within
the first 4 KB, the address is added to the prefix to obtain the new address.

For translating a virtual address to a real one, each CPU uses address
translation tables. The translation table used depends on the address space
used. The control program associates, with each address space, a unique
number of 16 bits known as an address-space number (ASN). The ASN is
maintained by the CPU in one of its registers and is used as a key to retrieve
the address space control information through a process known as address
space number translation (ASNT).

The ASNT consists of a two-table lookup process. The first 10 bits of the ASN
are used as a key in the first table to obtain the address of the second table.
Then the remaining 6 bits of the ASN are used as an index in the second
table (refer to Figure 116 on page 458) that contains the address space
control information. This information, among other things, includes the
address of the authority table and the address of the segment table. The
authority table is used to determine if the current process can use the
address space, thus allowing the use of a given address space only by
Appendix A. Intel architecture, S/390 architecture 457

authorized processes; 216 authorization levels are possible, so this table
contains up to 216 entries.

Figure 116. Translation of a virtual address to a real one

The segment table is used for supporting virtual address translation. Each
virtual address is divided into three parts, as shown in Figure 116:

 • The first 12 bits are used as an index in the segment table to obtain the
address of a page table (PTO).

 • The next 8 bits are used as an index in the page table to obtain the page
frame real address (PFRA).

 • The last 12 bits are simply used as an offset in the page.

Each entry in the segment and page table contains additional information that
is related, for example, to the validity of the page and to its modifiability. Also,
to speed up the page look-up process, a translation-lookaside buffer (TLB) is
used to cache the PFRAs of the most-recently-used pages.

Address space number

ASTO

AFX ASX

PTO

STO PFRA

64 84 1 20

1 28 1 26

0 10 15

PFRA BX

BXPXSX

Segment TableASN-First Table

Real Address

Virtual Address

ASN-Second Table Page Table
458 Linux for S/390

This allows each CPU to access memory that is divided into address spaces
of up to 231 bytes each. Depending on the operation mode, each CPU can
access up to 16 address spaces at the same time. Also, each address space
is divided into 4 KB pages to allow paging and to provide a virtual memory
larger than the real one. The paging process can be speeded up by using
extended storage instead of mass storage to swap out unneeded pages.

A.1.3 I/O subsystem

The S/390 I/O subsystem is different from those of other architectures. In fact,
S/390 defines a unified way to access all kind of devices through so-called
channels.

All the I/O activity is managed by the channel subsystem, which is
responsible for controlling the flow of information between the I/O devices and
main storage.

Communication between the channel subsystem and devices happens
through channel paths. Different kinds of channel paths are available, and
each supports different data transfer speeds. A S/390 system can support,
depending on the configuration, up to 256 channel paths.

Channel paths and devices are connected through control units. Control units
are needed to adapt the standard form of control used by the channel
subsystem to the particular needs of each kind of device.

Each I/O device is associated with a subchannel. Subchannels provide
information about the device they are connected to and are the only means by
which the channel subsystem can access the device. Each subchannel has
an associated system-wide unique 16-bit ID that is used when requesting an
I/O operation to indicate the device it is directed to. Given the size of a
subchannel ID, a maximum of 65,536 subchannels (and I/O devices) can be
connected to a channel subsystem.

While the subchannel associated with each device is unique, a device can be
reached through different channel paths. In fact, a device can be connected
to more than one control unit, and a control unit can be connected to more
than one channel path. While communication to a device happens only
through one path, the presence of multiple paths allows for better
performance and higher reliability and availability. Indeed, when starting an
I/O operation, the channel subsystem has the ability to perform path
selection, choosing among all the available paths, and using a different path if
one is busy.
Appendix A. Intel architecture, S/390 architecture 459

Beyond the ability to connect a large number of devices, another advantage
of this I/O architecture is its high efficiency while performing data transfers.
Actually, the CPU is busy only during the first phase of the I/O operation, that
is, passing the needed information and commands to the subchannel. After
that, the CPU can continue its activity while the work of moving data is
performed by the channel subsystem. When the I/O operation has ended, the
CPU receives a notification through an asynchronous interrupt. If interrupts
have been disabled, the pending interrupt is stored with information about its
source; this way the CPU can interrogate the channel subsystem to know if a
given channel ended its activity without being interrupted asynchronously
during its work.

A.2 Symmetric multiprocessing

In a symmetric multiprocessor (SMP), multiple processors share the same
resources such as main memory, the communication buses, the I/O
subsystem and so on, allowing better distribution of the workload and simple
and fast data sharing among processors.

A.2.1 Intel SMP

With the introduction of the Profusion chip set, Intel pushed the limit of its
multiprocessing technology up to 8-way. In fact, the Profusion chip set
supports up to 8 Pentium Xeon processors. The Xeon version is used
because of its large on-chip second-level cache, which is needed to reduce
the memory traffic that may be quite high due to the large number of
processors.

The 8 processors are divided into two groups of four; the processors in each
group share a common bus that connects them to the Profusion chip set (see
Figure 117 on page 461).

The Profusion chip set creates a “fusion” of three Pentium III processor buses
and two main memory subsystems. Two of the three processor buses are
actually used to connect processors, while the other is used to connect I/O
devices.

The Pentium Xeon processors have integrated L1 data and instruction caches
of 16 KB each. The second-level cache is integrated in the same package
and works at the same frequency as the memory.
460 Linux for S/390

Figure 117. The Profusion chip set

The Profusion chip set coordinates the activity of the buses and connects
them with main memory, and also allows for reduced coherency traffic thanks
to the coherency filters. The chip set is divided into two chips (not shown in
the figure): the Memory Access Controller (MAC) and the Data Interface
Buffer (DIB).

The MAC contains the control functions for the system. It manages the
memory contained in the coherency filters and controls coherency
notifications, preventing unneeded coherency traffic from reaching processor
buses. This is accomplished using the coherency filters, each of which
contains information about a superset of the data cached by the processors in
the related bus. Before propagating coherency information in a bus, the MAC
verifies if it is needed by checking the information contained in the coherency
filter.

The DIB contains the data paths needed to connect the buses and the main
memory. It is controlled by the MAC and allows data movement between the
Appendix A. Intel architecture, S/390 architecture 461

processor buses and the system memory. Also, the DIB generates error
correcting codes (ECC) needed to recover from errors.

To improve performance, the memory is divided into two interleaved banks,
each of which is connected to the profusion chip set through a dedicated port.
In this way it is possible to double the maximum data transfer speed, to 1.6
GB/sec.

A.2.2 IBM SMP

The G5 and G6 generations of the S/390 multiprocessor are based on a
design different from the one used for the previous generations (G3 and G4),
and it offers higher performance and supports the load of a larger number of
CPUs. The new design is based on the so-called binodal cache (see Figure
118 on page 463); the processors and cache memories are divided into two
nodes connected to one another and to the memory cards.

Each node is composed of up to 6 processors (7 in the G6) with integrated L1
cache, an L2 cache, a system controller (SC), the memory cards, and the
buses needed to connect them.

The L1 cache is unified (it contains both instructions and data) and has a size
of 256 KB. It is of write-through type: if data is written to locations that are not
in cache, that data is not transferred in cache. Instead, the data is
immediately transferred to the L2 cache to be written to memory.

The L2 caches have a size of 4 MB each and operate at half the frequency of
the processors, like all the other chips in the node. They contain all the data
contained in the L1 caches of the node, thus simplifying the management of
coherency. Also, L2 cache is store-in, meaning that if a store is made to a
memory location that is not cached, the content of this memory location is
first transferred to the cache and then updated. This way the next reference to
this location will hit in cache.

The SC maintains information about the L2 cache, manages coherency of
caches, controls the binodal architecture, and provides for communication
with main memory. It is split into two chips to provide more pins and allow for
larger L2 caches; each chip is part of one node.

The SC is responsible for maintaining cache coherence; this is done using a
modified MESI (modified/exclusive/shared/invalid) protocol. The modification
is needed to account for the possibility of sharing inside the node (locally) or
outside between the two nodes (globally). This distinction allows faster
462 Linux for S/390

operations when a processor requires exclusive access to some data and the
data are shared only locally.

Figure 118. The binodal cache

Also, if an access to a node L2 cache misses, the SC tries to search the data
in the L2 cache of the other node. In this way it is possible to improve
performance because retrieving data from the other node cache is faster than
retrieving it from memory.

The memory is organized into 4 cards, each containing 4 banks. This way 16
banks are available and up to 16 fetch and store operations to main memory
can be served simultaneously.

Also, the design of the G5 and G6 has been optimized to efficiently perform
the rich set of data movement operations. A series of hardware devices have
Appendix A. Intel architecture, S/390 architecture 463

been added to allow only minimal processor involvement during the
movement of data. For example, the hardware-assisted move engine allows
you to move blocks of data from one area of main memory to another,
optimizing the process to avoid conflicts with the read and store operations
that are required by the processors.

The design of the S/390 server allows the high efficiency in memory access
and data transfer that is needed to support a large number of processors and
the large amount of data managed by an enterprise server. This requires a
good balance between computational power and I/O capabilities.

A.3 RAS considerations

Important factors in evaluating high-end servers are reliability, availability and
serviceability (RAS).

A.3.1 Intel Profusion chip set RAS considerations

The Intel chip set implements a number of techniques to obtain high RAS.
The system, memory, and I/O buses are all protected by error-correcting
codes (ECC) to allow discovery and correction of transmission errors.

Also, the system is able to continue to work even if some hardware failures
occur:

 • If a processor or processor bus fails, the system continues to work using
only the other bus.

 • If one of the memory ports fails, the system can work using only one port.

 • If any of the coherency filters fails, it is disabled and the system remains
operational, but with lower performance.

 • If an I/O device fails, it is possible to isolate and disable it. Also, I/O
devices are hot-pluggable, meaning that you can change them without
interrupting server activity.

To allow for better serviceability, the chip set is able to perform error logging.
This way it is possible to identify error sources in less time and promptly
correct the system behavior.

A.3.2 S/390 RAS considerations

The S/390 system offers a very rich set of RAS capabilities and it was
designed from the start with RAS in mind.
464 Linux for S/390

The processors contain duplicated instruction units (IU), fixed-point units
(FXU), and floating-point units (FPU). On every operation, the results of the
two copies are compared in order to discover possible errors. The check is
performed by the register unit (RU) before committing the result of each
operation. When the check succeeds, the current state is saved as a
checkpoint to allow restart of the next operation in case of failure.

The RU, like the L1 cache, is not duplicated, but is protected through using
ECC in general and using parity checking when the information is replicated
elsewhere in the processor. This way the processor is able to discover and
eventually recover from a large series of possible faults.

When a processor fails due to some permanent internal fault, it is isolated
and removed from operation, while system operation continues unaffected for
the other processors, thus maintaining a high degree of availability. Also, if a
spare processor is configured, it is automatically activated and the state of
the failing processor is transferred to it, allowing the resumption of normal
activity without user intervention and without any impact on the application or
the operating system. In some cases, depending on the type of fault, it is not
necessary to completely stop the processor; instead, by disabling the faulty
device, operations can continue, although with reduced performance.

The L2 cache and the buses connecting it with main memory and with
processors are protected using ECC. When erroneous data is detected by an
ECC station, data propagation is blocked to avoid its propagation inside the
system. Also, when an L2 cache line is discovered to be invalid, it is purged to
avoid use of the invalid data by any of the processors. The next time the data
is referenced, it will be reloaded from main memory. Because of low failure
rates, the purge of cache lines does not have a negative impact on system
performance.

The L2 cache contains spare cache lines that are automatically used to
substitute failing lines. In this way it is possible to recover from errors in a
cache chip without the need to mark the whole chip as faulty.

Main memory is organized so that each DRAM module contributes only one
bit to a given ECC check box. This way, because ECCs are able to correct
single bit errors, it is possible to recover from all partial module failures and
all complete module failures. Also, to avoid the accumulation of errors that
can result in the inability to correct them, memory is continuously analyzed
and errors are corrected as soon as they are discovered.

When the number of errors discovered (and corrected) on a given memory
module becomes greater than a given threshold, the module is replaced with
Appendix A. Intel architecture, S/390 architecture 465

a spare one. The contents of the failing module are copied into the new one,
while all the intervening stores are propagated to both the modules. This way,
when the copy is finished, the old module is completely replaced by the new
one. The use of spare DRAM memory modules allows substitution of a failing
module without stopping the machine, increasing the total availability of the
S/390.

S/390 provides a large number of mechanisms to produce very high
availability and integrity of data. In many cases, if an error is discovered, the
hardware is able to recover from the error condition, isolating the faulty device
and activating spare ones. Also, only the failing hardware is isolated from the
system, thus allowing the largest possible number of devices to keep working
and resulting in the least possible adverse effect on the performance of the
system.

A.4 Comparing the IA32 and S/390 architectures

Both the IA32 and the S/390 are so-called Complex Instruction Set Computer
(CISC) architectures, meaning that they offer a very rich set of instructions.
From the micro-architectural point of view, the IA32 and the S/390 CPUs are
very different. The IA32 transforms complex instructions into simpler ones
that are executed in parallel and out of order, using a complex scheduling
mechanism. So the IA32 core is optimized to execute simple instructions in
parallel.

On the other hand, the S/390 G5 and G6 CPUs are able to execute only one
operation per cycle, but are optimized to reduce the time needed to complete
the execution of complex, long-running instructions that are often used in
programs. Also, only one integer operation is executed per cycle even if, for
example, two integer pipelines are available, because both of them execute
the same operation to allow checking the result. The reliability of the
processor is preferred to raw speed. In general, the S/390 CPU offers higher
RAS and allows it to discover and recover from a large number of errors,
usually disabling only the faulty devices.

Also, the S/390 instruction set offers a rich set of instructions to move
memory blocks, supported by specialized hardware so as to obtain higher
performance. For example, the move engine can be used to quickly copy
pages from main storage to expanded storage, thus speeding up the paging
process.

Expanded storage is a unique feature of the S/390. It allows access to a large
and fast memory that can be used to swap out unused memory pages faster
466 Linux for S/390

than mass storage. Also, expanded storage can be used as a cache for
minidisks, improving the performance of application I/O.

Both the IA/32 and the S/390 support virtual addressing, but they offer slightly
different mechanisms. The IA32 allows each task to maintain information
about its mapping of virtual addresses versus real ones; usually, each thread
is mapped on a different task and all the threads of a single process share the
same page mapping.

S/390 implements a different page mapping for each address space and
allows access to up to 16 address spaces at the same time. Also, the S/390
uses the concept of a segment to group pages; during the address translation
process, in fact, the first part of the virtual address is used to index the
segment table and obtain the address of a page table.

In contrast, the IA32 uses segments to protect storage areas. There is no
direct relation between pages and segments, but a segment is used to define
the access rights to a given virtual memory region. This way, when accessing
virtual memory, each process can only read or write what is contained in the
segment defined by the descriptor it is using.

From an SMP architecture point of view, the S/390 supports a higher number
of CPUs while maintaining a quite linear performance increase. While the
Intel multiprocessor allows up to 8 CPUs, the G6 supports 12 processors plus
two other processors configured for I/O or as spares.

The availability of spare processors allows the substitution of a faulty
processor “on the fly”, without stopping the system and without intervention
by the operating system or application.

The design of the binodal cache allows the disabling of a single faulty
processor, while, for example, the Intel multiprocessor needs to disable 4
processors if its bus fails.

The use of spare devices is not limited to just processors. For example, the
availability of spare memory modules allows automatic substitution for faulty
ones while continuing to work, thus producing very high availability and
avoiding the need for user intervention.

While the IA32 offers higher computational power with faster processors that
are able to execute more than one simple instruction per clock cycle, the
S/390 offers a higher degree of reliability and a better balance between raw
computational power and I/O bandwidth, supporting a large number of
devices and a very optimized I/O mechanism. The S/390 offers higher RAS,
which is a very important factor when evaluating high-end servers.
Appendix A. Intel architecture, S/390 architecture 467

468 Linux for S/390

Appendix B. VM/ESA virtual machines

In this project we used VM/ESA extensively to provide multiple Linux for
S/390 environments on the same S/390 system.

Figure 119. S/390 system resources

Figure 119 shows a highly simplified and stylized view of a S/390 processor
and its physical components or resources - processor units, memory (real
and expanded storage), channels, control units, and devices. All of these are
managed by an operating system, typically OS/390, VM/ESA, or VSE/ESA.

VM/ESA has special abilities, however. Its two most important components
are the control program (CP) and the Conversational Monitor System (CMS).

CP is able to virtualize hardware resources. It does this either by partitioning
or sharing real hardware resources, or by emulating their behavior
programatically.

CP implements virtual S/390 machines. On a single piece of hardware, you
can run several copies of the same or different operating systems under the
control of CP. We refer to CP as a hypervisor. The users of each virtual S/390
machine are unaware that a hypervisor is providing the S/390 environment in
which their application is running.

S/390 system image

CP0

CP1

CP2

CPn

.

.

.

CU CU CU CU CU CU

central storage

expanded storage

Operating System

channels

control

units

disk
magnetic

tape

card

reader

line

printer
card

punch

console

CU
© Copyright IBM Corp. 2000 469

Each virtual machine has its own virtual memory, virtual devices, virtual
processors, and so on. Within each virtual machine, a S/390 operating
system is IPLed. You can even IPL VM/ESA within a virtual machine.

Each operating system running in its own virtual S/390 environment
communicates with virtual devices. The mapping of virtual to real devices and
resources is handled transparently by CP.

The result is that by running VM on the processor shown in Figure 119 on
page 469, we can replicate the S/390 environment many times over. This is
illustrated in Figure 120.

Figure 120. Virtual machines running under the control of a hypervisor

We shall look briefly at how CP implements certain device types. Because the
S/390 virtual machine concept dates back to the late 1960s and early 1970s,
some of the standard devices such as a card reader and card punch may
seem antiquated, but they are still extremely useful when virtualized.

B.0.1 The CP directory

The definition of a virtual machine is stored in a master directory called the
CP directory. In source form an entry might look like this:

VM/ESA Control Program

VSE/ESA

virtual machine

OS/390

virtual machine

Linux for S/390

virtual machine

CU CU CU CU CU CU

channels

control

units

disk

card

reader

line

printer
card

punch

CP0 CP1 CP2 CPn...
central

storage

expanded

storage

console

CU

S/390 system image

CP0

CP1

CP2

CPn

.

.

.

CU CU CU CU CU CU

central
storage

expanded
storage

Operating System

channels

control

units

disk
magnetic

tape

card

reader

line

printer
card

punch

console

CU

S/390 system image

CP0

CP1

CP2

CPn

.

.

.

CU CU CU CU CU CU

central
storage

expanded
storage

Operating System

channels

control

units

disk
magnetic

tape

card

reader

line

printer
card

punch

console

CU

S/390 system image

CP0

CP1

CP2

CPn

.

.

.

CU CU CU CU CU CU

central
storage

expanded
storage

Operating System

channels

control

units

disk
magnetic

tape

card

reader

line

printer
card

punch

console

CU

magnetic

tape
470 Linux for S/390

USER LINUX5 XXXXXXXX 128M 256M G �
IPL 200 �
MACHINE ESA 4 �
CONSOLE 0009 3215 �
SPOOL 000C 3505 A �
SPOOL 000D 3525 A �
SPOOL 000E 1403 A �
LINK MAINT 0190 0190 RR �
LINK MAINT 019E 019E RR �
LINK MAINT 019F 019F RR �
LINK MAINT 019D 019D RR �
MDISK 0201 3390 0001 1000 LINUX5 MR �
MDISK 0202 3390 1001 1000 LINUX5 MR �
MDISK 0203 3390 2001 200 LINUX5 MR �
MDISK 0200 3390 3221 20 LINUX2 MR �
MDISK 0191 3390 555 50 VMZU1A MR �
SPECIAL 808 CTCA �
SPECIAL 809 CTCA �

Most of the statements in this entry define virtual resources or devices.

� The user ID that identifies this virtual machine is LINUX5. The virtual
machine is defined with a default storage of 128 megabytes, but this can be
redefined up to a maximum of 256 megabytes.

� When you log on to the virtual machine, an IPL will occur from device
number 200.

� This statement describes the processor architecture of the virtual
machine. The maximum number of processors that can be defined for this
virtual machine is four. The default is one.

� The CONSOLE statement defines the operating console for the virtual
machine.

� The next three statements define a reader, punch, and printer for the
virtual machine.

� These are read-only links to minidisks owned by other virtual machines.

� These statements define four minidisks owned by this virtual machine.

Device numbers 201-203 are partitions of a real volume with volume identifier
(volid) LINUX5.
Appendix B. VM/ESA virtual machines 471

They occupy the following cylinder ranges on that device:

201 1-1000
202 1001-2000
203 2001-2200

Device number 200 occupies cylinder range 3221-3240 on the real disk with
volid LINUX2. Device number 191 occupies cylinder range 555-604 on the
real disk with volid VMZU1A.

These are all read/write minidisks.

� These statements define a pair of device numbers for a virtual
channel-to-channel device.

B.0.2 Processors

A virtual machine can have up to 64 virtual processors defined. If the
operating system running in the virtual machine is multi-processor (MP)-
capable, it will dispatch work on its virtual processors as if it were running
without a hypervisor (on the real hardware). CP will handle the dispatching of
virtual processors on the real processors available to that virtual machine. A
real processor can be either dedicated to a virtual machine or shared among
virtual machines. Dedicated processors can only be used by one virtual
machine.

B.0.3 Storage

Each virtual machine has its own defined virtual storage or memory. CP
manages the residency of virtual machines’ pages in real storage with a
sophisticated paging mechanism. Pages that have not been referenced can
be moved out of real storage either into expanded storage or onto a paging
device. When a virtual machine touches a page that is no longer in real
storage, a page fault occurs and CP will bring the missing virtual page back
into real storage.

The memory addresses in a virtual machine are virtual addresses. They have
no meaning outside the virtual machine in which they are generated and
used. Whenever required, these virtual addresses are translated to real
addresses by access register translation (ART) and dynamic address
translation (DAT) for the address space referenced by the user.

Using ART and DAT, CP keeps these address spaces absolutely separate
from one another. It is impossible for one user to access an address space of
another user unless the owner allows the other user to do so.
472 Linux for S/390

A portion of the real storage on a S/390 system can be dedicated to a virtual
machine. In this case the storage of the virtual machine is real and the
operating system running in the virtual machine can perform its own memory
management without intervention by CP. Expanded storage can also be
dedicated to a virtual machine.

CP also has facilities that allow the sharing of virtual pages by a number of
virtual machines. A shared virtual page requires just one page of real storage
no matter how many virtual machines are sharing it, thereby economizing on
real storage requirements.

B.0.4 Minidisks

VM minidisks are virtual disk devices. They are implemented by partitioning a
real S/390 volume into cylinder ranges that appear as separate disk volumes
to the virtual machine. A minidisk can span a whole real disk volume. A real
disk can also be dedicated to a virtual machine.

Minidisks can be shared or non-shared. If authorized, one virtual machine
can link to a minidisk belonging to another virtual machine to access the data
on it. Links can either read-only or read-write. When a minidisk is
write-shared, some software is needed to manage access to the data.

CP is able to cache the contents of minidisks in real or expanded storage to
improve application response times.

B.0.4.1 Temporary minidisks
Temporary minidisks are allocated from a defined pool of real disk storage,
either when the virtual machine is logged on or by explicit definition. They last
for the life of the virtual machine. When the virtual machine is logged off or
the minidisk is detached, the temporary minidisk is destroyed.

B.0.4.2 Virtual minidisks
Virtual minidisks have similarities to temporary minidisks. Instead of being
mapped to cylinders of real disk volumes, they are mapped into real storage
by CP. This means that they avoid the need for disk I/O. The associated
pages are managed by CP as part of its overall real memory management.

B.0.5 Reader, punch, printer

These devices are not associated with real devices, but are implemented
through the CP spooling subsystem. The spool files created or read on these
devices can be transferred between virtual machines very easily. They can
Appendix B. VM/ESA virtual machines 473

also be read from a real card reader, punched on a real card punch, or
printed on a real line printer.

B.0.6 The console

The console is an important device for the virtual machine as it is the primary
user interface. When you log on to a virtual machine from a real 3270
terminal or 3270 emulator, the virtual console becomes associated with the
real 3270. This allows you to enter CP commands and to IPL an operating
system.

When an operating system is IPLed in a virtual machine it will look for a
device to be its system console. This device is often the one defined by the
CONSOLE statement in the CP directory.

Once the operating system is IPLed in a virtual machine, the console device
is sometimes no longer required and it may be disconnected. The virtual
machine can continue to function with a disconnected console.

B.0.7 Channel-to-channel device

A virtual channel-to-channel device is implemented by CP entirely through
software. Virtual I/O instructions are intercepted by CP and the data moved
between memory buffers. This enables very high-speed communications
between virtual machines.

B.0.8 Virtual I/O

An operating system such as OS/390 or VSE/ESA running in a virtual
machine will issue normal S/390 I/O instructions to perform I/O. The
operating system builds a string of Channel Command Words (CCWs) and
issues a Start Subchannel (SSCH) instruction.

If the I/O is to a minidisk device, the virtual device number must be converted
to a real device number and the virtual cylinder number must be converted to
a real cylinder number. Also the address of the data to be read or written
must be converted to a real address.

This process, called CCW Translation, is carried out transparently by CP.

By dedicating real storage and devices to a virtual machine, the
processor-related overhead of CCW translation can be bypassed. A
“preferred guest” can perform disk I/O without any intervention by CP.
474 Linux for S/390

B.0.9 CMS

The Conversational Monitor System (CMS) is a unique S/390 operating
system. It is IPLed in a virtual machine in the normal way, but is often a single
user environment. You can think of it as the original time-sharing PC!

The user interface to CMS is through the virtual machine console described
in “The console” on page 474.

CMS is dependent on CP for some of its functions. For instance, I/O to CMS
formatted minidisks is initiated through a Diagnose X’250’ instruction. This is
only meaningful to CP, which will handle the physical I/O for the real disk
device.

CMS provides a rich application development and execution environment. It
has powerful commands and tools that are extremely useful to developers
and end users alike.

The REXX interpreter makes it easy to write command scripts and even
whole applications. The XEDIT editor is a sophisticated editor with a large
subcommand set. CMS Pipelines extends the concept of UNIX pipes to a new
dimension. Through a wealth of standard filters and stages, complex
applications and utilities can be built in a few lines, whereas using traditional
procedural programming methods, hundreds of lines of code would be
needed.

Besides acting as a single-user system, server applications can also be
written that run on CMS. Many VM/ESA products and tools are implemented
in this way. The TCP/IP service machine and related daemon virtual
machines are a good example.
Appendix B. VM/ESA virtual machines 475

476 Linux for S/390

Appendix C. Linux for S/390 I/O implementation

The following section was copied from the Documentation/390 directory of
the Linux distribution. It was written by Ingo Adlung and is copyright IBM
1999, under the GNU Public License.

The following paragraphs describe the I/O related interface routines that
the Linux for S/390 common device support (CDS) provides to allow for
device specific driver implementations on the IBM S/390 hardware
platform.

These interfaces are intended to provide the functionality required by
every device driver implementation that supports a specific hardware
device on the S/390 platform. Some of the interface routines are specific
to Linux for S/390, and some of them can be found on other Linux
platforms' implementations.

In contrast to other hardware platforms, the ESA/390 architecture does not
define interrupt lines managed by a specific interrupt controller, or bus
systems that may or may not allow for shared interrupts, DMA processing,
and so on.

Instead, the ESA/390 architecture defines a channel subsystem, which
provides a unified view of the devices physically attached to the system.
Though the S/390 hardware platform supports a huge variety of different
peripheral attachments like disk devices (also known as DASD), tapes and
communication controllers, they can all by accessed by a well defined
method and they all present I/O completion a unified way: I/O
interruptions.

Every single device is uniquely identified to the system by a subchannel.
The ESA/390 architecture allows 64k devices to be attached.

Linux, however was first built on the Intel PC architecture, with its two
cascaded 8259 programmable interrupt controllers (PICs), that allow for a
maximum of 15 different interrupt lines. All devices attached to such a
system share those 15 interrupt levels. Devices attached to the ISA bus
system must not share interrupt levels (also known as IRQs), as the ISA
bus operates on edge triggered interrupts.

MCA, EISA, PCI and other bus systems operate on level triggered
interrupts, and thus allow for shared IRQs. However, if multiple devices
present their hardware status using the same (shared) IRQ, the operating
system has to call all device drivers registered on this IRQ in order to
determine which one owns the device that raised the interrupt.
© Copyright IBM Corp. 2000 477

In order not to introduce a new I/O concept to the common Linux code,
Linux for S/390 preserves the IRQ concept and semantically maps the
ESA/390 subchannels to Linux as IRQs. This allows Linux for S/390 to
support up to 64k different IRQs, each representing a unique device.

During its startup the Linux for S/390 kernel checks for peripheral devices.
A subchannel uniquely defines each of those devices to the S/390 channel
subsystem. While the subchannel numbers are system generated, each
subchannel also takes a user-defined attribute, the S/390 device number.
Both the subchannel number and the device number can not exceed
65535.

The init_IRQ() routine gathers the information about control unit type and
device types that imply specific I/O commands (channel command words
or CCWs) are needed to operate the device. Device drivers can retrieve
this set of hardware information during their initialization step to recognize
the devices they support using get_dev_info_by_IRQ() or
get_dev_info_by_devno().

This approach implies that Linux/390 does not need to probe for free (not
armed) interrupt request lines (IRQs) on which to drive its devices. Where
applicable, the device drivers can use the read_dev_chars() routine to
retrieve device characteristics. This can be done without first having to
request device ownership.

When a device driver has recognized a device for which it wants to claim
ownership, it calls request_IRQ() with the device's subchannel id as the
pseudo IRQ line. One of the required parameters is dev_id, defining a
device status block. The CDS layer will use this to notify the device driver's
interrupt handler about interrupt information observed. It is the
responsibility of the device driver to handle those interrupts properly.

To allow for easy I/O initiation, the CDS layer provides a do_IO() interface.
This takes a device-specific channel program (one or more CCWs) as
input, sets up the required architecture-specific control blocks and initiates
an I/O request on behalf of the device driver.

The do_IO() routine allows for both synchronous and asynchronous I/O
methods. It can specify whether it expects the CDS layer to notify the
device driver for every interrupt it observes or for final status only. It also
provides a scheme to allow for overlapped I/O processing.

A device driver must never issue ESA/390 I/O commands itself, but must
use the Linux/390 CDS interfaces instead.

To cancel a long-running I/O request, the CDS layer provides the halt_IO()
function. Some devices must first issue a HALT SUBCHANNEL (HSCH)
478 Linux for S/390

command without having pending I/O requests. This function is also
needed by halt_IO().

When finished with a device, the device driver calls free_IRQ() to release
its ownership of the device. During free_IRQ() processing the CDS layer
also disables the device from presenting further interrupts.

The device driver does not need to take care of this. The device will be
re-enabled for interrupts with the next call to request_IRQ().

The common device support layer comprises the I/O support routines
defined below.

Some of them implement common Linux device driver interfaces, while
others are ESA/390-platform-specific.

get_dev_info_by_IRQ() / get_dev_info_by_devno()

allow a device driver to determine the devices attached (visible) to the
system and their current status.

get_IRQ_by_devno() / get_devno_by_IRQ()

get IRQ (subchannel) from device number and vice versa.

read_dev_chars()

read device characteristics

request_IRQ()

obtain ownership for a specific device.

free_IRQ()

release ownership for a specific device.

disable_IRQ()

disable a device from presenting interrupts.

enable_IRQ()

enable a device, allowing for I/O interrupts.
Appendix C. Linux for S/390 I/O implementation 479

do_IO()

initiate an I/O request.

halt_IO()

terminate the current I/O request processed on the device.

do_IRQ()

generic interrupt routine. This function is called by the interrupt
entry routine whenever an I/O interrupt is presented to the system. The
do_IRQ() routine determines the interrupt status and calls the device
specific interrupt handler according to the rules (flags) defined during
I/O request initiation with do_IO().
480 Linux for S/390

Appendix D. The parameter file

In regard to the parameter file, note the following:

 • Linux for S/390 has a general read routine that reads in chunks of 1024
bytes. This routine detects short blocks. When reading the parmline file,
this will be normally the case.

 • The current kernel 2.2.15 handles parmline data up to only 896 bytes. This
is a hard limit. You cannot exceed it.

 • In case you have a setting that ends exactly in the last column of a “card”,
insert a blank in column one on the following card if you have to continue
with further parameters. This is necessary because all card images are
concatenated and presented as one line of text to the kernel.

D.1 DASD

The DASD driver is configured by the dasd= kernel parameter in the
parameter file

D.1.1 Syntax

The syntax for this parameter is as follows:

dasd=range[,...] | autodetect | probeonly dasd_force_diag=range[,...]

where:

Range is in the form from(device number) - to (device number) or explicitly
specifying each device number separated by commas. From - to and explicit
device number can be specified multiple times and must be specified in hex
without a leading 0x.

If multiple instances are specified, then Linux for S/390 will reserve a minor
number for each DASD device specified, up to 64 devices. These devices are
reserved in the order that they appear and all extraneous device
specifications (past 64) are ignored.

Autodetect determines DASD that is actually registered for use by Linux for
S/390. Autodetect is the default for kernel version 2.2.14. If autodetect is
specified without specifically calling out a DASD range or DASD device
number, then the DASD will be ordered by subchannel path id (chpid) in
ascending order.
© Copyright IBM Corp. 2000 481

Probeonly is the default mode if there is no dasd= keyword in the parameter
file used. The device driver will then only report all the DASDs found, but not
actually register them for use by Linux for S/390.

Dasd_force_diag - tells the DASD driver to use the DIAG 250 instruction to
access devices (minidisks) instead of channel programs.

D.1.2 Example

dasd=9AC,996-998 dasd_force_diag=100

This reserves minor numbers 0,4,8,12 for devices 9AC, 996, 997, and 998
respectively. Device 100 is accessed by means of VM’s DIAG 250 instruction.

D.2 Mdisk

VM minidisks can be reserved for Linux for S/390 use with the mdisk= kernel
parameter in the parameter file. A reserved minidisk must be formatted with a
blocksize of 512 bytes, 1 KB, 2 KB or 4 KB. They can be of any size. It is
possible to reserve a minidisk and create a file the size of the entire disk. This
file can then be written to using the DIAG 250 instruction.

D.2.1 Syntax

The syntax for this parameter is as follows:

mdisk=vdev

where:

vdev is the virtual device number specified in hex without the leading 0x.
Multiple mdisk= statements are allowed. The minor numbers of the device will
be assigned in the order that they appear in the parmline file.

D.2.2 Example

mdisk=193,194

This reserves minor numbers 0 and 4 for device numbers 193 and 194,
respectively.

D.3 Root

This parameter tells Linux where to find the root filesystem.
482 Linux for S/390

D.3.1 Syntax

The syntax for this parameter is as follows:

root=path [ro] [noinitrd]

where:

Path points to the root filesystem.

Ro sets the filesystem to read-only in the event that an error occurs.

Noinitrd does not use the initial RAMdisk.

D.3.2 Example

root=/dev/ram0 ro

This tells Linux where to IPL from. This is a temporary RAMdisk (ram0) used
to get a mini-Linux system running, so that you can perform the rest of the IPL
or repair tasks.

D.4 Xpram

Although Linux addresses only about 2 GB (1919 MB) of memory, you can
also access expanded storage. The xpram driver maps a file system or a
swap space onto expanded storage.

An xpram device has major number 35 and can be partitioned, starting with
minor number 0. You can have up to 32 partitions. The associated device
node is /dev/xpram<letter>.

D.4.1 Syntax

The syntax for this parameter is as follows:

xpram_parts=<number_of_partitions>[,size[,....]]*

Number_of_partitions can contain a number from 1 to 32; the default is 1.

The size specification is divided into three parts: <hex><number><unit>. For
the first part, hex has a value 0x and specifies that the size is in hexadecimal.
If this part is omitted, the size is treated as decimal. For the third part, the unit
can be k or K for kilobytes, m or M for megabytes, and g or G for gigabytes. A
Appendix D. The parameter file 483

size of 0 requests the driver to allocate the rest of expanded storage that is
available.

D.4.2 Example

xpram_parts=1,0x200m

This reserves one partition (/dev/xpram0) of hex 200 megabytes (decimal 512
MB).

xpram_parts=2,200m,1g

In contrast, this reserves two partitions, one with a size of 200 MB
(/dev/xpram0) and a second with a size of 1 GB (/dev/xpram1).

D.5 Ctc/Escon

Normally the CTC driver selects the channels in order (automatic channel
selection). If you need to use the channels in a different order or do not want
to use automatic channel selection with your installation, you can make these
choices using the ctc= parameter in the parameter file.

D.5.1 Syntax

The syntax for this parameter is as follows:

ctc=0,0xrrrr,0xwwww,dddd

where:

 • rrrr is the read channel address

 • wwww is the write channel address

 • dddd is the network device (ctc0 to ctc7 for a parallel channel, escon0 to
escon7 for ESCON channels).

To switch automatic channel selection off, use the ctc= noauto parameter.
This might be necessary if your installation uses 3172 devices or other
devices that use the CTC device type and model, but operate with a different
protocol.

ctc=noauto

D.5.2 Example

For one network device:
484 Linux for S/390

ctc=0,0x600,0x601,ctc0

Or for two network devices:

ctc=0,0x601,0x600,ctc0 ctc=0,0x605,0x608,escon3

D.6 IUCV

The IUCV driver needs to know the user IDs of the target virtual machines
with which it can communicate.

D.6.1 Syntax

The syntax for this parameter is as follows:

iucv=useridx,useridy,...

D.6.2 Example

iucv=tcpip,linux3

In this example the Linux virtual machine can establish IUCV communication
with user ID TCPIP (the VM TCP/IP service machine) on device iucv0, and
with user ID LINUX3 (Linux for S/390 running in another virtual machine) on
device iucv1.

D.7 3215 Line mode terminal

The 3215 terminal device driver makes it possible to use a 3270 terminal in
3215 emulation mode as a line-mode terminal with Linux for S/390. The
intended use of the 3215 terminal device driver is solely to launch Linux.
When Linux is running, the user should access Linux for S/390 via Telnet,
because the terminal is a line-mode terminal and is unable to support
applications such as vi.

D.7.1 Syntax

The syntax for this parameter is as follows:

condev=cuu

where cuu is the unit address/device number in hexadecimal.
Appendix D. The parameter file 485

D.7.2 Example

condev=0x001f

This forces the 3215 device driver to use the device number 0x1f for its 3215
device (the prefix 0x denotes a hexadecimal number).
486 Linux for S/390

Appendix E. Troubleshooting and avoiding pitfalls

This appendix provides troubleshooting tips and describes how to avoid
common pitfalls (also known as gotchas).

E.1 Cannot boot big file system on VM - /etc/fstab not modified

When installing a new Linux system under VM, we first booted from the RAM
disk and answered the network questions successfully. When the network
was up, we ftp'd the large file system to a minidisk (address 301).

It unwound successfully and we tried to boot from it by changing the Linux
parameter file (the new parm line is mdisk=301 root=/dev/mnda ro noinitrd).
However, the system would not boot and we got the following error:

Checking root filesystem
(null):
The superblock could not be read or does not describe a correct ext2
filesystem. If the device is valid and it really contains an ext2
filesystem (and not swap or ufs or something else), then the superblock
is corrupt, and you might try running e2fsck with an alternate
superblock:
 e2fsck -b 8193 <device>

ext2fs_check_if_mount: No such file or directory while determining
whether /dev/dasda1 is mounted.
fsck.ext2: Invalid argument while trying to open /dev/dasda1

The problem was that the /etc/fstab file had to be modified. By default, this file
in the large filesystem contains the following:

/dev/dasda1 / ext2 defaults,errors=remount-ro 0 1
none /proc proc defaults 0 0

It needs to be modified to mount a minidisk, not a DASD:

/dev/mnda / ext2 defaults,errors=remount-ro 0 1
none /proc proc defaults 0 0

E.2 Editing /etc/fstab with vi - be sure the last line has a newline

The file /etc/fstab was edited with vi, and the next reboot of the system
resulted in the minimalistic shell (run level 1).
© Copyright IBM Corp. 2000 487

The following messages were issued:

Warning... fsck.ext2 for device /dev/dasda1 exited with signal 10.
[FAILED]

*** An error occurred during the file system check.
*** Dropping you to a shell; the system will reboot
*** when you leave the shell.
Give root password for maintenance

The problem was that the newline was missing in last line of /etc/fstab. The vi
editor will not insert this automatically. To avoid this problem, add a blank line
at the end of the fstab file.

E.3 Irritating RPM messages/RPM update with RPM

Using the rpm that is present in the Marist big file system displays irritating
messages such as Macro %__:

[root@linux6 rpms]# rpm -i --test THE-3_0-1_s390.rpm
Macro %__cat has empty body
Macro %__chgrp has empty body
Macro %__chmod has empty body
...

To solve this problem, first install the bzip2 package named
bzip2-0_9_5c-1_s390.rpm. Then replace RPM itself with the RPM package
rpm-3_0_3-3_s390.rpm.

Note: Doing this in reverse order will lead to a missing shared library,
resulting in an rpm that will no longer work.

E.4 Native Linux silo command - use the proper flags

You may encounter errors using the silo command to boot Linux for S/390
from DASD.

To avoid this, first make sure that the -b flag points to the ipleckd.boot file in
the boot directory on the Linux boot device. Then be sure the -t2 flag was
included:

[root@linuxx sbin]# silo -f image -d /dev/dasdc -p parmline -b ipleckd.boot
o->image set to image
...
488 Linux for S/390

IPL device is: '/dev/dasdc'
bootsector is: 'ipleckd.boot'...ok...
bootmap is set to: './boot.2jpTy4'...ok...
Kernel image is: 'image'...ok...
original parameterfile is: 'parmline'...ok...final parameterfile is:
'parmline'.
..ok...
WARNING: silo does not modify your volume. Use -t2 to change IPL records
...

E.5 Linux under VM won’t boot - forgot to ftp files in FB80

When first bringing up a Linux system under VM, we got the Linux kernel and
the initial RAMdisk over to VM via FTP. We tried to boot with a small exec
(LINUXIPL) but failed, as follows:

LINUXIPL
0000002 FILES PURGED
Record exceeds allowable maximum
RDR FILE 0185 SENT FROM VMLINUX PUN WAS 0185 RECS 0001 CPY 001 A NOHOLD
NOKEEP
Record exceeds allowable maximum
0000001 FILE CHANGED
 IPL UNIT ERROR; IRB 01004417 00000010 00207E61 00800000
CP entered; disabled wait PSW 000E0000 00000232

The problem was that we remembered to FTP in binary, but forgot to set the
record format to fixed 80 (via the FTP subcommand quote site fix 80).
Without this command, the file gets a record format of V 8192 ,which prevents
Linux from being able to boot.

E.6 Linux under VM won’t boot after improper shutdown

You may get the following message while booting Linux for S/390 under VM:

In swapper task - not syncing
HCPGIR450W CP entered; disabled wait PSW 000A0000 800355F8

It is possible this was the result of Linux not being shut down properly. To
work around this, boot with the command:

ipl clear

Thanks to Dr. Holger Smolinski for his post about this problem to the
LINUX-VM list server.
Appendix E. Troubleshooting and avoiding pitfalls 489

E.7 Use the -c flag with the ping command

From the HMC, you might want to use the ping command after the netsetup
script has been executed, because using the usual ping host command will
cause it to run forever as Ctrl-C cannot be entered. Use ping -c count host
where count is a number of packets to send. Typically this will be 3 or 5.

The same consideration applies using the ping command from the Linux
console when running Linux in a virtual machine, since it is not always easy
to remap the keyboard to produce a ^c key sequence.

E.8 Linux under VM - can’t find the vertical bar on the keyboard

You may need the vertical bar character in order to use it in a CMS
Pipeline. This can be accomplished with the following CMS commands:

SET INPUT | 7C

SET OUTPUT 7C |

If the vertical bar is not present on your keyboard, or you are unable to
map it, then you can set another key to generate the correct hexadecimal
representation.

E.9 Rerun silo after changing the kernel parameter file

If you changed the kernel parameter line and rebooted, you may still come up
with the old kernel parameter file definitions. You must rerun the silo
command in order for these changes to take effect.

E.10 Linux under VM - reserve the minidisk

During a boot of Linux under VM, you may get this message from the VM
minidisk driver:

mnd: device_number is not reserved

To avoid this, reserve the minidisk via the CMS RESERVE command.

E.11 Linux under VM - format the minidisk

During a boot of Linux under VM, you may also get the following messages:

mnd: Cannot read label of device_number - is it formatted?
mndn: register device at major 5F with 0 blocks 512 blksize
490 Linux for S/390

/boot/ipleckd.boot is not on device (94/0) but on (1/0)

To avoid this, format the minidisk via the CMS FORMAT command.

E.12 Linux under VM - IPL hangs

If your IPL of Linux under VM hangs, it may be because the kernel boot
parameter file does not correctly reflect the Linux virtual machine’s disk
configuration. Adding or detaching a disk device or redefining a disk device
number can cause this error.

If you get this symptom, carefully check your kernel parameter file entries
against the VM configuration and work out which device names Linux will
associate with S/390 device numbers.

E.13 Device not registered by the kernel

The following message may appear during boot:

mnd: Cannot acquire I/O irq of virtual_device_number for paranoia
reasons, skipping

If this occurs, check that you have not defined the same device cua to both
the DASD and the minidisk driver at the same time (which can cause either
the cannot acquire message, or a message that the device is producing
unsolicited interrupts, depending on who got what first).

E.14 Cannot mount file system - block sizes not the same

If you are trying to mount a file system, you may get the following error:

root@linux5 /]# mount /dev/dasda1 /mnt/dasda
mount /dev/dasda1 /mnt/dasda
mount: wrong fs type, bad option, bad superblock on /dev/dasda1, or too
many mounted file systems

This may be because the device was low-level formatted at 4096 bytes, but
mke2fs was used with a different block size. The default for mke2fs is to use
1024 byte blocks.

The solution is to use the -b 4096 flag with the mke2fs command.
Appendix E. Troubleshooting and avoiding pitfalls 491

E.15 Disk device ranges in kernel parameter file

Devices managed by the DASD device driver may be specified by device
number range. However, devices managed by the VM minidisk driver must be
itemized individually and separated by commas.

The following example shows the differences in the kernel parameter file:

dasd=200-203 mdisk=300,301,302

E.16 RAM disk full

When you have the kernel booted with the RAM disk as the root file system,
you may find that you can’t create a directory or write a file on the RAM disk.
This is because the RAM disk, as delivered, is very full. You may need to
erase one or two files to make sufficient space to complete the next step of
your install.

To avoid the potential problem, once the tarball is installed and exploded you
can reboot with the kernel parameter changed to use that as the root file
system.

E.17 The Virtual CTC connection does not start

When a CTC link to the VM TCP/IP stack is initialized, it can take a few
seconds to establish the connection.

If the link fails to start, check the following:

 • The CTC pairs are coupled (use the #CP Q V CTC command from the
Linux virtual machine)

 • The coupling order is correct - see Table 10 on page 103.

If for any reason the TCP/IP service machine is bounced, this will break the
CTC coupling to the Linux virtual machine. You will need to enter CP COUPLE
commands prior to restarting the link with a Linux ifconfig command; refer to
the following example:

ifconfig ctc0 down
#CP COUPLE 808 TCPIP 809
#CP COUPLE 809 TCPIP 808
ifconfig ctc0 9.12.9.184 pointopoint 9.12.9.178 netmask 255.255.255.0
mtu 8192
492 Linux for S/390

E.18 Bad superblock

When you boot Linux, you may get the following type of error when it is
mounting file systems:

Checking root filesystem
ext2fs_check_if_mount: No such file or directory while determining
whether /dev/dasdb1 is mounted.
(null):
The superblock could not be read or does not describe a correct ext2
filesystem. If the device is valid and it really contains an ext2
filesystem (and not swap or ufs or something else), then the superblock
is corrupt, and you might try running e2fsck with an alternate
superblock:
 e2fsck -b 8193 <device>

Check if the device or partition specified has had a filesystem created on
it--have you specified the name of a device instead of a partition, or vice
versa?

In this example the ext2 file system was created on /dev/dasdb, not on the
partition /dev/dasdb1.

E.19 Error when running dasdfmt

When running dasdfmt on a small minidisk, you may get this error:

fixpoint divide exception: 0009
CPU: 0
Process dasdfmt (pid: 128, stackpage=020E1000)

User PSW: 0709e000 c00c248e
task: 020e0000 tss: 020e02d8 ksp: 020e1ca0 pt_regs: 020e1f68
User GPRS:
7ffff988 400c248c 00000003 400c4400
7ffffb48 00000000 00400c70 7ffffd68
7ffffc88 7ffffd68 00000000 7ffffa68
c010bb10 80402a80 80402eaa 7ffffa68
User ACRS:
00000000 00000000 00000000 00000000
00000001 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
Kernel BackChain CallChain BackChain CallChain
 020e1ca0 00392600
Segmentation fault
Appendix E. Troubleshooting and avoiding pitfalls 493

The minimum size for a minidisk that can be successfully formatted by
dasdfmt is around twenty (20) 3390 cylinders.

E.20 minidisk.sh

Linux for S/390 does not save the minidisk information with the device nodes
in /proc/dasd/devices. In the bootup messages, this information is given in the
following form:

[root@linux6 /root]# dmesg | grep ": dasd"
 dasda:(nonl)/ : dasda1
 dasdb:(nonl)/ : dasdb1
 dasdc:(CMS1)/Z-DISK: dasdc1(CMS)
 dasdd:(CMS1)/LXX121: dasdd1(CMS)
 dasde:(CMS1)/LIN191: dasde1(CMS)
 dasdf:(nonl)/ : dasdf1
 dasdg:(nonl)/ : dasdg1
 dasdh:(MDSK)/ : dasdh1
 dasdi:(nonl)/ : dasdi1

We wrote a script minidisk.sh that reads this information and combines it with
the information in dmesg. You could, for example, call the script from
/etc/rc.d/rc.local to save the information in /var/log/dasd.devices:

minidisk.sh > /var/log/dasd/devices

Here is the minidisk.sh shell script:

#!/bin/bash
#
 dmesg|grep ": dasd" >/tmp/minidisk.sh.$$
 grep -v "MAJ" /proc/dasd/devices >>/tmp/minidisk.sh.$$

cat /tmp/$0.$$ | sed "s%(% %g" \
 | sed "s%)% %g" \
 | sed "s%/dev/% %g" \
 | sed "s%/% %g" \
 | awk '
 BEGIN {i=0 }
 ### { print "1=",$1 " 2=",$2 " 3=",$3 " 4=",$4 " $5=",$5 "
$6=",$6; }
 $1 ~ /dasd/ { DASD[NR]=substr($1,1,5); TYP[NR]=$2; LAB[NR]=$3;
PART[NR]=$4; }

 $1 !~ /dasd/ { CUA[$4]=$1; MAJ[$4]=$2; MIN[$4]=$3; BLK[$4]=$5; }
494 Linux for S/390

 END { for (i=1; i<=NR/2; i++) {
 print "CUA="CUA[DASD[i]] " DASD="DASD[i] " TYP="TYP[i] "
MAJ="MAJ[DASD[i]] " MIN="MIN[DASD[i]] " PART="PART[i] " BLK="BLK[DASD[i]] "
LAB="LAB[i];
 }
 }
 '

Following is an example of the script’s output:

[root@linux6 /root]# ./minidisk.sh
CUA=0500 DASD=dasda TYP=nonl MAJ=94 MIN=0 PART=dasda1 BLK=4096 LAB=:
CUA=0600 DASD=dasdb TYP=nonl MAJ=94 MIN=4 PART=dasdb1 BLK=4096 LAB=:
CUA=019F DASD=dasdc TYP=CMS1 MAJ=94 MIN=8 PART=dasdc1 BLK=4096 LAB=Z-DISK:
CUA=019D DASD=dasdd TYP=CMS1 MAJ=94 MIN=12 PART=dasdd1 BLK=4096 LAB=HELP!!:
CUA=0191 DASD=dasde TYP=CMS1 MAJ=94 MIN=16 PART=dasde1 BLK=4096 LAB=LIN191:
CUA=0200 DASD=dasdf TYP=nonl MAJ=94 MIN=20 PART=dasdf1 BLK=4096 LAB=:
CUA=0300 DASD=dasdg TYP=nonl MAJ=94 MIN=24 PART=dasdg1 BLK=4096 LAB=:
CUA=0400 DASD=dasdh TYP=MDSK MAJ=94 MIN=28 PART=dasdh1 BLK=4096 LAB=:
CUA=0192 DASD=dasdi TYP=nonl MAJ=94 MIN=32 PART=dasdi1 BLK=4096 LAB=:

E.21 The script with the networking questions is gone

The script netsetup is run at boot time in order to ask the user the basic
questions needed to start the network, and then this script deletes itself.

In this section, for your reference, we provide the entire netsetup script:

#! /bin/bash

#
readln reads a line into $ans.
#
function readln () {
 echo -n "$1"
 IFS='@' read ans || exit 1
 ans=`echo $ans | sed -e 's/^ *//'`
}

#
yes_no reads either a yes or a no into $ans
#
function yes_no () {
 while :; do
 readln "$1"
 case "$ans" in
Appendix E. Troubleshooting and avoiding pitfalls 495

 [yY] | [yY]es) ans=yes
 break;;
 [nN] | [nN]o) ans=no
 break;;
 esac
done
}

echo
echo "Welcome to Linux for S/390"

confok=0
while [$confok = 0]; do
 yes_no "Is your machine connected to a network (Yes/No) ? "
 if ["$ans" = "yes"]; then
 while :; do
 echo "Select the type of your network device"
 echo "1) for osa token ring"
 echo "2) for osa ethernet"
 echo "3) for channel to channel"
 echo "4) for escon channel"
 readln "Enter your choice (1-4): "
 case "$ans" in
 1)
 ip_dev=tr0
 echo "Please type in the options for the lcs module, e.g. to
select"
 echo "relative port 1 on device 0xfd00 you should enter: "
 echo "noauto=1 devno_portno_pairs=0xfd00,1"
readln "lcs parameter: "
 lcs_parm=$ans
 break;;
 2)
 ip_dev=eth0
 echo "Please type in the options for the lcs module, e.g. to
select"
 echo "relative port 1 on device 0xfd00 you should enter: "
 echo "noauto=1 devno_portno_pairs=0xfd00,1"
 readln "lcs parameter: "
 lcs_parm=$ans
 break;;
 3)
 ip_dev=ctc0
 break;;
 4)
 ip_dev=escon0
 break;;
496 Linux for S/390

 esac
 done
 readln "Please enter your host name: "
 ip_host=$ans
 readln "Please enter your IP address: "
 ip_addr=$ans
readln "Please enter the net mask: "
 ip_netmask=$ans
 if ["$ip_dev" = "ctc0" -o "$ip_dev" = "escon0"]; then
 readln "Please enter the IP address of your peer: "
 ip_peer=$ans
 ip_gateway=$ans
 else
 readln "Please enter the broadcast address: "
 ip_broadcast=$ans
 readln "Please enter the gateway address: "
 ip_gateway=$ans
 fi
 readln "Please enter the net address: "
 ip_network=$ans
 readln "Please enter the IP address of the DNS server: "
 ip_dns=$ans
 readln "Please enter the DNS search domain: "
 ip_search=$ans
 echo
 echo "Configuration will be:"
 if ["$ip_dev" = "tr0" -o "$ip_dev" = "eth0"]; then
 echo "LCS parameter : $lcs_parm"
 fi
echo "Host name : $ip_host"
 echo "IP address : $ip_addr"
 echo "Net mask : $ip_netmask"
 if ["$ip_dev" = "ctc0" -o "$ip_dev" = "escon0"]; then
 echo "Peer IP address : $ip_peer"
 else
 echo "Broadcast address: $ip_broadcast"
 echo "Gateway address : $ip_gateway"
 fi
 echo "Net address : $ip_network"
 echo "DNS IP address : $ip_dns"
 echo "DNS search domain: $ip_search"
 yes_no "Is this correct (Yes/No) ? "
 if ["$ans" = "yes"]; then
 cat > /etc/sysconfig/network <<EOF
NETWORKING=yes
FORWARD_IPV4=no
HOSTNAME=$ip_host
Appendix E. Troubleshooting and avoiding pitfalls 497

GATEWAYDEV=$ip_dev
GATEWAY=$ip_gateway
EOF
 if ["$ip_dev" = "ctc0" -o "$ip_dev" = "escon0"]; then
 cat > /etc/sysconfig/network-scripts/ifcfg-$ip_dev <<EOF
DEVICE=$ip_dev
USERCTL=no
ONBOOT=yes
BOOTPROTO=none
REMIP=$ip_peer
NETWORK=$ip_network
NETMASK=$ip_netmask
IPADDR=$ip_addr
EOF
 else
 cat > /etc/sysconfig/network-scripts/ifcfg-$ip_dev <<EOF
DEVICE=$ip_dev
USERCTL=no
ONBOOT=yes
BOOTPROTO=none
BROADCAST=$ip_broadcast
NETWORK=$ip_network
NETMASK=$ip_netmask
IPADDR=$ip_addr
EOF
 if ["$lcs_parm" = ""]; then
 cat >> /etc/conf.modules <<EOF
alias $ip_dev lcs
EOF
 else
 cat >> /etc/conf.modules <<EOF
alias $ip_dev lcs
options lcs $lcs_parm
EOF
 fi
 fi
 cat > /etc/resolv.conf <<EOF
search $ip_search
nameserver $ip_dns
EOF
 hostname $ip_host
 confok=1
 fi
 else
 confok=1
 fi
done
498 Linux for S/390

rm /etc/rc.d/init.d/netsetup
rm /etc/rc.d/rc3.d/S00netsetup
exit

E.22 MTU size problems

Depending upon the network driver you are defining (for example LCS, CTC,
IUCV), it is important to check with your network administrator when
configuring these types of links to ensure the maximum transmission unit
(MTU) parameter is set correctly.

Since this parameter specifies the largest packet that can be sent on a given
physical medium, problems can occur in accessing network resources if it is
set incorrectly.
Appendix E. Troubleshooting and avoiding pitfalls 499

500 Linux for S/390

Appendix F. Special notices

This publication is intended to help S/390 systems programmers and systems
administrators to install and manage one or more Linux for S/390 systems.
The information in this publication is not intended as the specification of any
programming interfaces that are provided by Linux for S/390. See the
PUBLICATIONS section of the IBM Programming Announcement for Linux for
S/390 for more information about what publications are considered to be
product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
© Copyright IBM Corp. 2000 501

attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

AFP AIX
APPN AS/400
AT C/MVS
CICS CT
CUA Current
DB2 DB2 Connect
DB2 Universal Database DRDA
ECKD ESCON
FICON Home Director
Hummingbird IBM �
IBM.COM Language Environment
Linux for S/390� MQSeries
Multiprise Netfinity
Network Station Nways
OpenEdition OS/2
OS/390 OS/400
Parallel Sysplex PR/SM
RACF RAMAC
RETAIN RMF
RS/6000 S/370
S/390 SP
System/370 System/390
TCS ThinkPad
VisualAge VM/ESA
VSE/ESA VTAM
WebSphere XT
3090 400
Redbooks
Redbooks Logo
502 Linux for S/390

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix F. Special notices 503

504 Linux for S/390

Appendix G. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

G.1 IBM Redbooks

For information on ordering these publications see “How to get IBM
Redbooks” on page 511.

 • Open Source Software on OS/390, SG24-5944

 • Porting UNIX Applications to OpenEdition for VM/ESA, SG24-5458

 • TCP/IP Solutions for VM/ESA, SG24-5459

 • VM/ESA Performance Tools, GG24-4152

 • S/390 I/O Connectivity Handbook, SG24-5303

 • IBM 2216 and Network Utility Host Channel Connections, SG24-5303

 • Accessing OpenEdition MVS from the Internet, SG24-4721

 • Getting Started with TCP/IP for VSE/ESA 1.4, SG24-5626

G.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177

Networking and Systems Management Redbooks Collection SK2T-6022

Transaction Processing and Data Management Redbooks Collection SK2T-8038

Lotus Redbooks Collection SK2T-8039

Tivoli Redbooks Collection SK2T-8044

AS/400 Redbooks Collection SK2T-2849

Netfinity Hardware and Software Redbooks Collection SK2T-8046

RS/6000 Redbooks Collection (BkMgr) SK2T-8040

RS/6000 Redbooks Collection (PDF Format) SK2T-8043

Application Development Redbooks Collection SK2T-8037

IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2000 505

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

G.3 Other resources

These publications are also relevant as further information sources:

 • DNS and BIND, by P. Albitz and C. Liu, published by O’Reilly, ISBN
1565925122

 • Computer Networks, Third edition, by A. Tanenbaum, published by
Prentice Hall, ISBN 0133499456

 • The Linux Network, by F. Butzen and C. Hilton, published by IDG Books
Worldwide, ISBN 155828589X

 • Unix Backup & Recovery, by W. Curtis Preston, published by O’Reilly,
ISBN 1565926420

 • Samba: Integrating UNIX and Windows, by John D. Blair, published by
SSC, ISBN 1578310067

 • Using Samba, by Robert Eckstein, David Collier-Brown and Peter Kelly,
published by O’Reilly, ISBN 1565924495

 • S/370 and S/390 Optical Media Attach/2 Technical Reference,
SC53-1201

 • S/370 and S/390 Optical Media Attach/2 Users Guide, SC53-1200

 • VM/ESA Planning and Administration, SC24-5750

 • VM/ESA V2R4.0: TCP/IP Function Level 320 Planning and Customization,
SC24-5847

 • VM/ESA V2R4.0 TCP/IP FL320 User's Guide, SC24-5848

 • VM/ESA XEDIT User's Guide, SC24-5779

 • VM/ESA XEDIT Command and Macro Reference, SC24-5780

 • VM/ESA V2R4.0 VMSES/E Introduction and Reference, GC24-5837

 • VM/ESA V2R4.0 CP Command and Utility Reference, SC24-5773

 • VM/ESA V2R4.0 Planning and Administration, SC24-5750

 • VM/ESA V2R4.0 Performance, SC24-5782

 • VM/RSCS V3R2.0 Planning and Installation, SH24-5219

 • OS/390 V2R6.0 NFS Customization and Operation, SC26-7253

 • OS/390 TCP/IP OpenEdition User’s Guide, GC31-8305

 • TCP/IP for VSE/ESA User's Guide, SC33-6601

 • Intel Architecture Software Developer’s Manual Volume 3, Intel order
number 243192
506 Linux for S/390

 • ESA/390 Principles of Operation, SA22-7021

G.4 Referenced Web sites

These Web sites are also relevant as further information sources:

 • http://metalab.unc.edu/mdw/HOWTO/DNS-HOWTO-4.html

 • http://www.s390.ibm.com/linux/installfest/l390fin2.pdf

 • http://www.s390.ibm.com/linux/installfest/l390fpr3.pdf

 • http://linux.s390.org/download/rpm2html/

 • http://www.openssh.com/history.html

 • http://www.nic.com/~dave/SecurityAdminGuide/SecurityAdminGuide.html

 • http://www.securityportal.com/lasg/

 • http://www.kernel.org/pub/linux/kernel/v2.2/

 • http://www.kernel.org/pub/linux/kernel/people/alan/

 • http://www.linux.s390.org

 • http://www.ibm.com/s390/corner

 • http://www.ietf.cnri.reston.va.us

 • http://www.gnu.org/philosophy/free-sw.html

 • http://www.linuxbase.org

 • http://linux390.marist.edu

 • http://linux.s390.org

 • http://www.suse.com/PressReleases/ibmsuse.html

 • http://www.turbolinux.com/news/pr/ibm_s390.html

 • http://www.debian.org/News/weekly/2000/15

 • http://www.linuxfromscratch.org

 • http://www.opensource.org

 • http://www.linux.org

 • http://www.apache.org

 • http://www.apache-ssl.org

 • http://www.kernel.org/pub/linux/kernel/v2.2

 • http://www.kernel.org/pub/linux/kernel/people/alan

 • http://www.solucorp.qc.ca/linuxconf
Appendix G. Related publications 507

 • http://web.mit.edu/tytso/www/linux/ext2intro.htm

 • http://www.backupcentral.com

 • http://www.freshmeat.net

 • http://oss.software.ibm.com

 • http://oss.software.ibm.com/developerworks/opensource/jfs/

 • http://lclint.cs.virginia.edu

 • http://lclint.cs.virginia.edu/index.html

 • http://www.lightlink.com/hessling/THE/index.html

 • http://metalab.unc.edu/mdw/HOWTO/CVS-RCS-HOWTO.html

 • http://metalab.unc.edu/mdw/HOWTO/CVS-RCS-HOWTO-1.html

 • http://www.linuxdoc.org/HOWTO/Vim-HOWTO.html

 • http://www.linuxstart.com/applications/texteditorsreaders.html

 • http://www.cs.cornell.edu/Info/People/raman/emacspeak/emacspeak.html

 • http://www.gnu.org/software/ddd

 • http://www.kdevelop.org

 • http://sal.kachinatech.com

 • http://www.dcs.port.ac.uk/~lesterc/humour/G-newpls.html

 • http://www.lancs.ac.uk/people/cpaap/pfe

 • http://www.first.gmd.de/cogent/catalog/kits.html

 • http://www.perl.com

 • http://www.proftpd.net/

 • http://www.proftpd.net/download.html

 • http://linux.s390.org/download/ftp/RPMS/s390

 • http://linux.s390.org/pub/ThinkBlue/RPMS/s390/

 • http://hamster.wibble.org/proftpd/proftpd_userguide.htm

 • http://www.linux.s390.org/download

 • http://www.samba.org

 • http://rootshell.com

 • http://www.insecure.org

 • http://www.cert.org

 • http://lsap.org
508 Linux for S/390

 • http://www.suse.de/de/support/security

 • http://www.securityfocus.com

 • http://www.rfc-editor.org

 • http://www.snipix.freeserve.co.uk/hercinst.htm

 • http://www.elink.ibmlink.ibm.com/pbl/pbl

 • http://www.ibm.com/privacy/yourprivacy

 • http://www.gnu.org

 • http://www.towergroup.com

 • http://www.opensource.org/halloween/halloween1.html

 • http://www.embedded-linux.org

 • http://www.ibm.com/software/webservers/appserv/download_linux.html

 • http://www.ibm.com/vadd

 • http://www.ibm.com/s390/appsource/

 • http://www.ibm.com/spc

 • http://www.lotus.com/home.nfs/welcome/dominolinux

 • http://www.ibm.com/linux

 • http://www.ibm.com/developerWorks

 • http://www.linuxdoc.org

 • http://www.adelaide.net.au/~rustcorp/ipfwchains/ipfwchains.html

 • http://www.chiark.greenend.org.uk/~sgtatham/putty/

 • ftp://ftp.kernel.org

 • ftp://ftp.cert.org/pub/tech_tips/anonymous_ftp_config

 • ftp://ftp.cert.org/pub/tech_tips/anonymous_ftp_abuses

 • ftp://ftp.suse.com/pub/suse/s390/SuSEbookS390.pdf
Appendix G. Related publications 509

510 Linux for S/390

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

 • Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

 • E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

 • Telephone Orders

 • Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 511

http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
mailto:usib6fpl@ibmmail.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
512 Linux for S/390

Index

Symbols
/etc/fstab 75
/etc/group 200
/etc/passwd 198
/etc/sysconfig/network 76

Numerics
2216

description 262
features 263
protocols 263

LCS (LAN Channel Station) 263
LSA (Link Services Architecture 263
MPC (Multi-Path Channel) 263

A
access 278

control 439
Activation profile 59, 82
alias 445
Apache 405

CGI 414
customization 410
installation 406
logging 414
operation 412
security 417
server configuration settings 411
SSI 414
SSL 417
startup 413
stopping 413
tar file 406
virtual hosting 412

Apache Web server 405
Application Framework 14
Application Service Providers (ASPs) 7
authoritative server 352

B
backup 211

commands 213
cpio 219
strategies 211
© Copyright IBM Corp. 2000
tar 222
using dump 214

Berkeley Internet Name Domain 353
BIND (Berkeley Internet Name Domain) 351
bind8 353

components 354
bison 332
boot device, setup 239
BSD 11
builtin 445
bzip2 317

C
caching-only 350

name server 352, 354
change mode

command 74
Channel-to-channel (CTC)

Description 264
device 276

chmod 202
chmod swap

directory 74
client 277
CMS

FORMAT 88, 102
RESERVE 88

commands
bzip2 317
cat 165, 178
cd 162
chmod 120, 191
chown 202
compress 318
cp 76
cpio 219
crontab 207
dasdfmt 70, 115, 180, 186
dd 74, 177, 190
dump 214, 217
e2fsck 188
export 136
find 200, 221, 224, 444
free 450
ftp 116
fuser 451
gcc 319
513

grep 211
groupadd 200
groupdel 201
groupmod 201
gzip 317
ifconfig 276
info 442
insmod 60, 141, 181
kill 205
ln 121, 167
locate 444
lpr 433
make 244, 320, 323
make clean 246
make dep 248
make image 248
make menuconfig 247
man 202, 435, 441
mkdir 71, 115, 240
mke2fs 71, 115, 194, 240
mknod 68, 183
mkswap 74, 120, 189
modprobe 181
mount 72, 115, 162, 187, 194
mv 120
passwd 198
pinfo 442
ping 63
procmeter 450
ps 448
pstree 448
pwck 200
pwd 445
restore 216, 218
route 276
rpm 227, 231
sed 323
shutdown 80, 175
silo 195, 240, 250
swapoff 189
swapon 74, 120, 189
tar 222, 234, 318
touch 221
uncompress 318
unzip 319
useradd 198
userdel 199
usermod 199
Yacc 332

YAST 142, 208
YAST2 209
zip 319

Common Gateway Interface (CGI) 414
compression 280
configuration files 355
Configure and compile the kernel 246
connection oriented 268
Coordinated Universal Time (UTC) 120
CP directory entry 90
cpio 219
Creating 3490 tape 53
Creating a swap file

chmod swap directory 74
mkswap command 74
swapon command 74

Creating an IPLable tape 48
Creating IPLable 3490 tape using VM 55
Creating mount points

mkdir command 71
CTC 289

3088 264
ESCON 264
FICON 264

CTC connection 93
Customization 410
Customizing the root file system

/etc/fstab 75

D
daemons 272
datagrams 268
DAU 445
DB2 309
dd command 74
ddd 328
debugger 327
define virtual devices 92
df 451
DHCP 269
disk usage 451
DISPLAY 439
distributions

Debian 41
Marist 41
SuSE 41
Turbo-Linux 41

DNS 270, 349
514 Linux for S/390

database 351
server 352

du 451
Dynamic IP 269

E
e-business 6
echo command 77
editors 321
emacs 322
encrypted connections 437
export 368, 378

DISPLAY 278

F
File Transfer Protocol 274
Firewall 421

customization 424
installation 422
operation 429

flex 331
Format DASD as swap space

mkswap command 74
Format dasd as swap space

swapon command 74
forwarding 354
free 450
FTP 309, 335

access control 336
anonymous 335
binaries to host system 52
daemon 338
security 336
tools 337

ftpaccess 339
ftpgroups 341
ftphosts 341
ftpshut 343
ftpusers 341
function 445
fuser 451

G
g++ 319
gateways 275
gcc 319
gdb 327

generic listener 272
GID 198
GNU Public License 12
gprof 330
groupadd 200
groupdel 201
groupmod 201
grpck 202
gzip 317

H
help 442
hints file 355
host.conf 359
hostile 441
HOSTNAME 271

command 271
hosts 269
howtos 443

I
IBM Public License 13
IBM WebSphere Application Server (WAS) 20
ifcfg 75
ifconfig 275
in.ftpd 273
incremental backup 224
inetd 271, 272

inetd.conf 272, 273
info command 442
init process 171
inittab 172
interactive mode 360
Internet Control Message Protocol 268
Internet Protocol 350
Internet Service Providers (ISPs) 7
InterNET services Daemon 272
IPL

from DASD 80
messages 59
record 195

IUCV 291
connection 122
definition permanent 296

IUCV connections 93
 515

J
joe 322
jove 322

K
kernel

patching 243
source URL 225
update 226

kernel initialization 168

L
LAN Channel Station (LCS) 288
LCS driver 288
lease 269
lex 331
lilo 195
Load 58
Load from CDROM 139
localhost 360
logfiles 435, 447
login

remote 437
loopback devices 275
Low level format

dasdfmt command 70
LPAR 285
ltrace 329

M
major number 177
man 441
Marist distribution 41
memory

usage 450
messages 435, 447
minor number 177
mkdir command 71
mke2fs command 71
mkswap command 74
mount

command 72, 194
NFS 369

MTU 294
MTU size 114
Multiprise 3000 139
mvlogout 378

MVS system 352
mvslogin 378

N
Name server 358
Name servers 350
named 355
named.conf 355
Native S/390 Installation 45

Activation profile 82
Creating & activating swap space 73

Format DASD as swap space 74
Recommendations 74

Creating 3490 tape 53
Creating a file system

mke2fs command 71
Creating a new kernel 77
Creating a swap file

chmod swap directory 74
dd command 74
mkswap command 74
swapon command 74

Creating an IPLable tape 48
Parameter line file 49

Creating IPLable 3490 tape using VM 55
Creating mount points

mkdir command 71
Customizing the root file system 75

/etc/fstab 75
Network configuration 75

DASD 68
limitations 68
major number/minor number 66

echo command 77
Format DASD as swap space

mkswap command 74
Format dasd as swap space

swapon command 74
FTP binaries to host system

OS/2 53
Win95/NT 52

Hardware management console (HMC)
Activation profile 59
IPL 57
issue commands 62
Load 58
Operating messages 59
Reset clear 57
516 Linux for S/390

Hardware preparation 46
IPL messages

/var/log/dmesg 65
IPL messages 65

Low level format of DASD 66
Mknod 68
Network configuration 60
Parameter line file

DASD statement 49
DASD statement implications 50
Ipldelay statement 50
Root statement 49

Parmline dataset attributes 55
Uncompress the file system

tar command 72
Upload and customize file system 71
Verifying the IPL 64
Writing IPL info to DASD

Create parameter file 78
noinitrd 78
silo command 78
Write IPL record 78

Writing parmline to 3490 tape 56
ndc

restart 360
start 359
stop 359

netsetup 287
netstat 275
network 275

clients 275
Network configuration

/etc/conf.modules 76
/etc/resolv.conf 76
/etc/sysconfig/network 76
network-scripts

ifcfg 75
network definitions 103
Network Layer 267
network script 272
network scripts

ifcfg 75
networking 269
networking services 270
NFS 367

mount 369
nfsd 367
noinitrd 78
non-authoritative 361

NS (Name Server) 357
nslookup 360
nsswitch.conf 359

O
obscurity 435
open source 2, 11
Open Systems Adapter 2 (OSA-2)

Asynchronous Transfer Mode (ATM) 259
Ethernet 259
Fiber Distributed Data Interface (FDDI) 259
Token Ring 259

openssh 279
Operating messages 59
OS/309

inetd 306
OS/390 300

connectivity 300
daemons 302
FTP 309
NFS 309
REXEC 311
RSH 311
TCP/IP 300
Telnet 309

OSA 286
OSA/SF

graphical user interface (GUI) support 261
windows support 261

OSA-2 286
OSA-2 ATM

feature 260
multimode fiber type 261
single mode fiber type 261

OSA-2 Ethernet/Token Ring (ENTR)
feature 260

OSA-2 Fast Ethernet (FENET)
auto negotiation 261
duplex mode 261
feature 261
LAN speed 261

OSA-2 FDDI
dual ring attachment 260
feature 260
optical bypass switch 260

OSA-2 modes
ATM IP Forwarding 262
HPDT ATM Native Mode - APPN and TCP/IP
 517

262
SNA Mode (non-shared port) 261
SNA Mode (shared port) 261
TCP/IP and SNA Mixed Mode (shared port)
261
TCP/IP and SNA Mixed Mode for OSA-2 ATM
LAN Emulation (ATM LE) 261
TCP/IP Passthru Mode (non-shared port) 261
TCP/IP Passthru Mode (shared port) 261

P
packages 353
Parallel Enterprise Server 139
Parameter file 481

3215 485, 486
CTC/Escon 484
Ctc/Escon

Syntax 484
DASD 481, 482
Mdisk 482, 483
Xpram 483, 484

Parameter line file 49
Parmline dataset attributes 55
passwd 203
patches

URL 225
Perl 320
pico 322
ping 274
portmap 367
ports 272
primary name server 350, 352
Printing 431

using OS/390 resources 433
using VM resources 432

proc filesystem 447
profiling 330
ProFTPD 346
PROP 126
protocols 267, 270
ps 448
pseudo-terminal 273
PTR (Pointer) 357

R
RACF

UNIXPRIV 373
Raw command

dd command 74
rc.sysinit 272
remote login 437
Reset clear 57
resolv.conf 358
resolvers 350
Resource Records 357
restore 216
RFC

Request For Comments 443
root 197, 351
root.hints 356
routing 275, 349
RPM 357

database 227
filenames 226
for S/390, URL 225
install 230
query options 228
update 230

RS.INTERNIC.NET 357
run level 165

S
S/390 rpm database 353
SAF 378
SAFEXP 378
Samba 389

customization 393
Installation 389
startup 392
SWAT 393
tools 399

San Francisco Framework 20
scp 437
secondary name server 350, 352
Secure SHell 279
security 435

Internet sites 439
sed 323
server 277
services 273
services, unnecessary 435
SET CLOCK (SCK) 120
shadow password 438
shell 203

builtin 445
function 445
518 Linux for S/390

keyword 445
showattr 378
shutdown 175
Shutting down Linux 80
silo 195

command 78
Simple Object Access Protocol (SOAP) 9
Skills 45
SNA 261
SOA (Start of Authority) 357
software dependencies

RPM dependencies 229
software update 226
ssh 279
SSL 417
Start of Authority (SOA) 350
Static IP 269
strace 329
super-server 272
superuser 197
SuSE 133

bootup the system 163
FTP 137
loading the DASD driver 141
network connection 136
network parameter 140
NFS 137

SuSE distribution 41
swapon command 74
SWAT 393
sysinit 174
syslogd 274
SYSTEM CONFIG 120

T
tar 222, 318

command 72
installation with tar 233

TCP 261
TCP/IP 267

protocols 270
tcpd 273, 337, 438
telnet 272, 273, 277
Telnetd 273
texinfo 442
TFTP 335
Time of Day (TOD) 120
tools 274

top 448
tr0 75
Transmission Control Program (TCP)

wrapper 438
Transmission Control Protocol (TCP) 268
Transport Layer 267
Turbo-Linux distribution 41
type of command 445

U
UID 197
Uncompress the file system

tar command 72
UNIXPRIV 373
upgrading 253
uptime 450
usage

disk 451
memory 450

User Datagram Protocol 268
useradd 198, 199
Utility Service Provision 7

V
Verifying the IPL 64
vi 321
virtual console 174
VM dedicated DASD 88
VM minidisk driver 88
VM/ESA 85, 353

Booting from tape 98
Booting from the reader 98
COUPLE 103
create a swap file 119
CTC device pair 114
FTP 313
install root file system 115
Installing Linux for S/390 87
Linux network definitions 103
NFS 313
REXEC 313
RSH 313
Telnet 312

VM/ESA overview 469
VSE/ESA 353

FTP 315
NFS 314
 519

W
w (command) 449
warnings 435, 447
wget 357
who 449
Why Linux 17
Write IPL record

silo command 78
Writing parmline to 3490 tape 56
wwwrun 197

X
X11

access control 439
xhost 439
xload 450
xosview 450
xpram driver 250
X-Windows 277, 280

Y
yacc 332
YaST 142

Z
zip 319
zone 350
zone file 357
520 Linux for S/390

© Copyright IBM Corp. 2000 521

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

 • Use the online Contact us review redbook form found at ibm.com/redbooks
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-4987-00
Linux for S/390

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/
http://www.ibm.com/privacy/yourprivacy/

(1.0” spine)
0.875”<->1.5”

460 <-> 788 pages

Linux for S/390

®

SG24-4987-00 ISBN 0738419141

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
IBM's International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Linux
for S/390
How can Linux
exploit the strengths
of S/390?

What different ways
can Linux be
installed on S/390?

Which Linux
applications can run
on S/390?

The strengths of S/390 are well known: rock-solid reliability,
the ability to run multiple diverse workloads, and highly
scalable technology make S/390 an ideal choice for hosting
key e-business applications. Now Linux has joined the S/390
family of operating systems, bringing a wealth of open source
applications, middleware, and trained developers to help you
respond to your business challenges quicker than ever before.

This IBM Redbook will help you install Linux for S/390 in
different environments, and documents basic system
administration tasks that can help you manage your Linux for
S/390 system. It also provides an introduction to a wide range
of services, such as Samba, NFS, and Apache. You will learn
what each service is, what it is capable of, and how to
install it.

The book covers Linux for S/390 Marist distribution (2.2.15).

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Technology and business
	1.1 The open source revolution
	1.2 Technology directions for business innovation
	1.3 Edge of Network devices and services
	1.4 The Utility Service Provision (USP)
	1.5 Complexity impedance

	Chapter 2. Open source
	2.1 The GNU Public License
	2.2 The IBM Public License
	2.3 Flourishing through open standards
	2.4 The Application Framework for e-business
	2.5 Summarizing open, shared standards

	Chapter 3. Why Linux
	3.1 Applications and Linux
	3.2 IBM strategy for Linux
	3.2.1 An introduction to Linux for S/390

	3.3 Running Linux on S/390
	3.4 Communication and connectivity
	3.5 Other device support
	3.6 Linux and S/390 benefits
	3.7 Application scenarios with Linux on S/390
	3.8 Tools and technologies
	3.8.1 DB2 Connect
	3.8.2 CICS
	3.8.3 IMS
	3.8.4 MQ Series
	3.8.5 DB2 Universal Database (UDB)
	3.8.6 Tivoli Framework end-point support
	3.8.7 Tivoli Storage Manager Client
	3.8.8 Summary

	Chapter 4. Linux distributions
	4.1 What a distribution is
	4.1.1 Announced distributions
	4.1.2 Distribution media
	4.1.3 Roll your own

	4.2 Linux documentation

	Chapter 5. Native S/390 installation and operation of Linux
	5.1 Assumptions
	5.2 Skills and resources required
	5.3 Hardware preparation
	5.4 The hardware we used
	5.5 Activating Linux for S/390
	5.5.1 Creating an IPLable tape
	5.5.2 Getting the files to your host system
	5.5.3 JCL to create the tape

	5.6 Using the Hardware Management Console (HMC) to IPL
	5.7 Verifying the IPL from tape
	5.7.1 IPL messages for Linux
	5.7.2 Formatting DASD for Linux
	5.7.3 Upload and customize the new file system
	5.7.4 Creating and activating swap space
	5.7.5 Customizing Linux for S/390 configuration files
	5.7.6 Creating a new kernel
	5.7.7 Write IPL information to DASD
	5.7.8 ReIPL with the customized root file system on DASD

	5.8 Linux for S/390 on a P/390
	5.8.1 Attempting to install on a P/390

	Chapter 6. VM installation and operation of Linux for S/390
	6.1 Linux for S/390 in a virtual machine (as a guest of VM)
	6.2 Installing Linux for S/390
	6.2.1 Installation steps overview
	6.2.2 Decide on the install method
	6.2.3 Prepare the virtual machine to run Linux for S/390
	6.2.4 Prepare the networking environment
	6.2.5 Typical connectivity configuration
	6.2.6 Obtain the binary files
	6.2.7 Copy files to VM and reblock
	6.2.8 Create the initial kernel parameter file
	6.2.9 Boot initial Linux for S/390 kernel
	6.2.10 Install the root file system
	6.2.11 Complete the customization

	6.3 Installing Marist College binaries
	6.3.1 Install method
	6.3.2 Linux for S/390 virtual machine definitions
	6.3.3 Networking definitions
	6.3.4 Downloading the binaries
	6.3.5 Copying Marist files to VM and reblocking
	6.3.6 Creating the kernel parameter file
	6.3.7 Boot the kernel
	6.3.8 Install the root file system
	6.3.9 Complete customization

	6.4 Logging into your Linux for S/390 system
	6.5 3215 driver considerations
	6.6 IUCV connections
	6.7 Linux for S/390 device files and virtual device numbers
	6.8 Operational considerations
	6.8.1 Starting Linux for S/390 virtual machines
	6.8.2 Stopping Linux for S/390 virtual machines
	6.8.3 Secondary console interface
	6.8.4 Taking backups of Linux for S/390 file systems

	6.9 Performance considerations
	6.9.1 Reducing Linux for S/390 swapping
	6.9.2 Virtual machine priority

	Chapter 7. Installing SuSE Linux on S/390
	7.1 Types of installation
	7.2 System requirements
	7.2.1 Required hardware features
	7.2.2 Required APARs and fixes
	7.2.3 Software

	7.3 Connection requirements
	7.3.1 Console
	7.3.2 Network connection
	7.3.3 The telnet client
	7.3.4 NFS or FTP server

	7.4 IPLing the install system
	7.4.1 IPLing from the VM reader
	7.4.2 IPLing from tape
	7.4.3 IPLing from the CD-ROM (emulated tape)
	7.4.4 The Load from CDROM or server task

	7.5 Setting the network parameters in Linux
	7.6 Loading the DASD device driver
	7.7 Installing with YaST
	7.7.1 Finishing the install when using a CTC network device

	7.8 Booting the installed system

	Chapter 8. Linux for S/390 bootup and shutdown
	8.1 Linux run levels
	8.2 Kernel initialization
	8.3 The init process and run level
	8.3.1 System init and inittab
	8.3.2 Basic system initialization

	8.4 Shutdown

	Chapter 9. Linux for S/390 administration
	9.1 Devices
	9.1.1 DASD (direct access storage device)
	9.1.2 VM minidisk
	9.1.3 XPRAM
	9.1.4 Creating a device node with mknod
	9.1.5 Linux for S/390 device node assignment

	9.2 File system types
	9.2.1 Block size relation between device and file system
	9.2.2 The file system table /etc/fstab
	9.2.3 Checking and repairing an ext2 file system: e2fsck

	9.3 Linux swap space
	9.3.1 Creating swap spaces
	9.3.2 Activating and deactivating swap spaces
	9.3.3 Displaying information on swap spaces
	9.3.4 Preparing swap space

	9.4 File systems and devices
	9.4.1 Formatting a block device: dasdfmt
	9.4.2 Creating a file system: mke2fs
	9.4.3 Accessing a file system: mount
	9.4.4 Making a device bootable: silo

	9.5 Users and groups
	9.5.1 Creating a user account: useradd
	9.5.2 Modifying a user account: usermod
	9.5.3 Deleting a user account: userdel
	9.5.4 Verifying the integrity of the passwd file: pwck
	9.5.5 Creating a new group: groupadd
	9.5.6 Modifying a group: groupmod
	9.5.7 Deleting a group: groupdel
	9.5.8 Verifying the integrity of the group file: grpck

	9.6 File ownership and access permissions
	9.7 Changing passwords
	9.8 Shells
	9.9 System logs
	9.10 Cron
	9.11 Pluggable Authentication Module (PAM)
	9.12 Interactive administrative utilities
	9.12.1 Linuxconf
	9.12.2 YAST
	9.12.3 YAST2

	Chapter 10. Backup
	10.1 The general concept
	10.1.1 Backup strategies

	10.2 Native backup commands
	10.2.1 dump/restore
	10.2.2 cpio
	10.2.3 tar

	10.3 Backup programs and tools

	Chapter 11. System maintenance and upgrade
	11.1 Where to obtain software
	11.2 Overview of upgrade strategies
	11.3 Software installation with RPM
	11.3.1 RPM overview
	11.3.2 The RPM database
	11.3.3 Querying package information
	11.3.4 Checking dependencies
	11.3.5 Install and update a package
	11.3.6 Post-installation steps for source RPMs
	11.3.7 Removing a package

	11.4 Software installation with tar
	11.5 Updating libraries
	11.5.1 Upgrading shared libraries
	11.5.2 Resolving incompatibilities

	11.6 Build and customize the kernel
	11.6.1 Preparing a second bootable device
	11.6.2 Get the Linux kernel source
	11.6.3 Recompiling the S/390 tool chain (binutils and gcc)
	11.6.4 Preparing /usr/src/linux
	11.6.5 Configure and compile the kernel
	11.6.6 Install object code only (OCO) modules
	11.6.7 Activate the new kernel
	11.6.8 Post-installation steps

	Chapter 12. Changing your root device
	12.1 Upgrading from Marist-2.2.xx to Marist-2.2.yy
	12.2 Preparing a new volume
	12.3 Summation

	Chapter 13. Hardware connectivity
	13.1 OSA-2
	13.1.1 OSA-2 features
	13.1.2 OSA-2 modes

	13.2 The 2216 hardware interface
	13.2.1 2216 ESCON channel adapter features
	13.2.2 2216 ESCON channel protocols

	13.3 CTC
	13.3.1 CTC support

	Chapter 14. Linux TCP/IP connectivity
	14.1 Assumptions
	14.1.1 Skills

	14.2 TCP/IP protocols
	14.2.1 Transmission Control Protocol (TCP)
	14.2.2 User Datagram Protocol (UDP)
	14.2.3 Internet Control Message Protocol (ICMP)

	14.3 IP address types
	14.3.1 Static IP addresses
	14.3.2 Dynamic IP addresses

	14.4 Configuration files
	14.4.1 The hosts file
	14.4.2 The services file
	14.4.3 The protocols file
	14.4.4 The HOSTNAME file
	14.4.5 The inetd.conf file

	14.5 The network script
	14.6 Network daemons
	14.6.1 Overview of inetd
	14.6.2 Telnetd
	14.6.3 Ftpd
	14.6.4 Syslogd

	14.7 Troubleshooting
	14.7.1 The ping command
	14.7.2 The netstat command
	14.7.3 The ifconfig command
	14.7.4 The route command

	14.8 Access to data and applications
	14.8.1 The telnet command
	14.8.2 ftp
	14.8.3 rlogin, rsh and rcp
	14.8.4 ssh

	Chapter 15. Linux for S/390 connectivity to VM, OS/390, VSE
	15.1 Configuring the network
	15.2 Logical partition
	15.2.1 OSA-2 in LPAR

	15.3 Linux for S/390 running in a virtual machine
	15.3.1 Networking definitions
	15.3.2 LAN Channel Station (LCS)
	15.3.3 IUCV
	15.3.4 CTC or IUCV
	15.3.5 Linux for S/390 configuration files
	15.3.6 VM TCP/IP configuration files

	15.4 TCP/IP for OS/390 connectivity
	15.4.1 Where to find daemons or services
	15.4.2 Troubleshooting OS/390 TCP/IP to Linux for S/390
	15.4.3 Inetd daemon in OS/390

	15.5 Access to data and applications
	15.5.1 OS/390
	15.5.2 VM/ESA
	15.5.3 VSE/ESA

	Chapter 16. Development tools
	16.1 Archiving and compression tools
	16.1.1 The gzip command
	16.1.2 The bzip2 command
	16.1.3 The compress command
	16.1.4 The tar command
	16.1.5 The zip command
	16.1.6 Other archiving tools

	16.2 Compilers
	16.2.1 The gcc and g++ compilers
	16.2.2 Perl
	16.2.3 Regina

	16.3 Editing Linux files
	16.3.1 The vi editor
	16.3.2 emacs
	16.3.3 joe, jove, pico
	16.3.4 The sed editor
	16.3.5 The pfe editor
	16.3.6 The THE editor

	16.4 Make tools
	16.4.1 Make
	16.4.2 automake
	16.4.3 autoconf

	16.5 Source code control tools
	16.5.1 RCS and CVS
	16.5.2 Kdevelop

	16.6 Code analyzers
	16.6.1 LCLint
	16.6.2 Compiler code analyzer features

	16.7 Debugging facilities
	16.7.1 The gdb debugger
	16.7.2 The Data Display Debugger, ddd
	16.7.3 The MALLOC_CHECK_ environment variable
	16.7.4 nana

	16.8 The strace and ltrace tools
	16.9 bash’s -v and -x option
	16.10 Performance analysis with gprof
	16.11 lex and yacc
	16.12 A simple example

	Chapter 17. File Transfer Protocol (FTP)
	17.1 Overview of FTP
	17.2 TFTP
	17.3 Anonymous FTP
	17.4 Controlling access
	17.4.1 Traditional FTP security
	17.4.2 Anonymous FTP security

	17.5 Converting files
	17.6 Administrative tools
	17.6.1 The tcpd command
	17.6.2 The FTP daemon
	17.6.3 The ftpaccess file
	17.6.4 The ftpusers file
	17.6.5 The ftpgroups file
	17.6.6 The ftphosts file
	17.6.7 The ftpconversions file
	17.6.8 The ftpcount command
	17.6.9 The ftpshut command
	17.6.10 The ftpwho command

	17.7 Client notes
	17.8 A different FTP server - ProFTPD
	17.8.1 Obtaining ProFTPD

	Chapter 18. Domain Name Service (DNS)
	18.1 Introduction to DNS
	18.1.1 Assumptions
	18.1.2 Skills

	18.2 How it works, in theory
	18.2.1 In action

	18.3 DNS solutions on S/390
	18.3.1 Using OS/390

	18.4 Hardware and software setup
	18.4.1 Software not included

	18.5 Caching-only name server
	18.5.1 Forwarding out of a protected network
	18.5.2 Configuration files
	18.5.3 Starting named
	18.5.4 Testing with nslookup

	18.6 Tools
	18.6.1 dig
	18.6.2 The dnsquery program
	18.6.3 The host program
	18.6.4 The nslookup tool
	18.6.5 The nsupdate command

	18.7 Summary

	Chapter 19. Network File System (NFS)
	19.1 Installation of the server
	19.2 Customizing
	19.2.1 NFS Server
	19.2.2 NFS Client

	19.3 Operation
	19.3.1 As a server for AIX
	19.3.2 As a server to OS/2
	19.3.3 As a server for OS/390
	19.3.4 As a client to OS/390
	19.3.5 As a client to VM/ESA
	19.3.6 As a client to VSE/ESA
	19.3.7 Data representation considerations
	19.3.8 OS/390 access security

	19.4 VM/ESA access security

	Chapter 20. Samba
	20.1 Installation
	20.1.1 Installing from an RPM binary or source
	20.1.2 Installing from source in the original package

	20.2 Customization
	20.2.1 Starting Samba automatically
	20.2.2 Starting SWAT automatically
	20.2.3 Using SWAT to customize Samba
	20.2.4 Additional resources
	20.2.5 Client-side operation
	20.2.6 Finding a Samba server from Windows
	20.2.7 Supplying the proper credentials from Windows
	20.2.8 Accessing a Samba share from a DOS prompt
	20.2.9 Accessing a Samba share from a GUI

	20.3 Tools
	20.3.1 SWAT
	20.3.2 smbclient

	Chapter 21. The Apache Web server
	21.1 Installation
	21.1.1 Obtaining a later Apache level
	21.1.2 Exploding the Apache tar file
	21.1.3 Building Apache
	21.1.4 Customization
	21.1.5 Server configuration settings
	21.1.6 Virtual hosting
	21.1.7 Operation
	21.1.8 CGI and SSI
	21.1.9 SSL
	21.1.10 Web Server security considerations

	Chapter 22. Firewall configuration
	22.1 Installation
	22.2 Customization
	22.3 Operation

	Chapter 23. Printing with Linux
	23.1 Devices
	23.2 Using VM resources
	23.3 Using OS/390 resources
	23.4 Using Linux as a print data hub

	Chapter 24. Linux security issues
	24.1 Consider using remote logging
	24.2 Disable unnecessary services
	24.3 Files and file system security
	24.4 Disable remote login for root
	24.5 Use encrypted connections
	24.6 Use scp instead of FTP
	24.7 Use a tcp wrapper (tcpd)
	24.8 Use shadow passwords
	24.9 X11 server access control
	24.10 Consult the security-related Internet sites regularly

	Chapter 25. Sources of help and information
	25.1 man pages
	25.2 info
	25.3 help
	25.4 howto
	25.5 RFC
	25.6 The Internet
	25.7 Books
	25.8 Finding a file
	25.9 Determining the type of command
	25.10 DAU

	Chapter 26. Monitoring the system
	26.1 Linux facilities and tools
	26.1.1 log files
	26.1.2 The proc file system
	26.1.3 top
	26.1.4 ps
	26.1.5 pstree
	26.1.6 who and w
	26.1.7 xosview
	26.1.8 xload
	26.1.9 procmeter
	26.1.10 uptime
	26.1.11 free
	26.1.12 du and df
	26.1.13 fuser

	26.2 VM tools

	Appendix A. Intel architecture, S/390 architecture
	A.1 Architecture description
	A.1.1 IA32
	A.1.2 S/390
	A.1.3 I/O subsystem

	A.2 Symmetric multiprocessing
	A.2.1 Intel SMP
	A.2.2 IBM SMP

	A.3 RAS considerations
	A.3.1 Intel Profusion chip set RAS considerations
	A.3.2 S/390 RAS considerations

	A.4 Comparing the IA32 and S/390 architectures

	Appendix B. VM/ESA virtual machines
	B.0.1 The CP directory
	B.0.2 Processors
	B.0.3 Storage
	B.0.4 Minidisks
	B.0.5 Reader, punch, printer
	B.0.6 The console
	B.0.7 Channel-to-channel device
	B.0.8 Virtual I/O
	B.0.9 CMS

	Appendix C. Linux for S/390 I/O implementation
	Appendix D. The parameter file
	D.1 DASD
	D.1.1 Syntax
	D.1.2 Example

	D.2 Mdisk
	D.2.1 Syntax
	D.2.2 Example

	D.3 Root
	D.3.1 Syntax
	D.3.2 Example

	D.4 Xpram
	D.4.1 Syntax
	D.4.2 Example

	D.5 Ctc/Escon
	D.5.1 Syntax
	D.5.2 Example

	D.6 IUCV
	D.6.1 Syntax
	D.6.2 Example

	D.7 3215 Line mode terminal
	D.7.1 Syntax
	D.7.2 Example

	Appendix E. Troubleshooting and avoiding pitfalls
	E.1 Cannot boot big file system on VM - /etc/fstab not modified
	E.2 Editing /etc/fstab with vi - be sure the last line has a newline
	E.3 Irritating RPM messages/RPM update with RPM
	E.4 Native Linux silo command - use the proper flags
	E.5 Linux under VM won’t boot - forgot to ftp files in FB80
	E.6 Linux under VM won’t boot after improper shutdown
	E.7 Use the -c flag with the ping command
	E.8 Linux under VM - can’t find the vertical bar on the keyboard
	E.9 Rerun silo after changing the kernel parameter file
	E.10 Linux under VM - reserve the minidisk
	E.11 Linux under VM - format the minidisk
	E.12 Linux under VM - IPL hangs
	E.13 Device not registered by the kernel
	E.14 Cannot mount file system - block sizes not the same
	E.15 Disk device ranges in kernel parameter file
	E.16 RAM disk full
	E.17 The Virtual CTC connection does not start
	E.18 Bad superblock
	E.19 Error when running dasdfmt
	E.20 minidisk.sh
	E.21 The script with the networking questions is gone
	E.22 MTU size problems

	Appendix F. Special notices
	Appendix G. Related publications
	G.1 IBM Redbooks
	G.2 IBM Redbooks collections
	G.3 Other resources
	G.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Index
	IBM Redbooks review

