
Linux for zSeries

Device Drivers and Installation Commands
(March 4, 2002)
Linux Kernel 2.4

LNUX-1103-07

���

Linux for zSeries

Device Drivers and Installation Commands
(March 4, 2002)
Linux Kernel 2.4

LNUX-1103-07

���

Note
Before using this document, be sure to read the information in “Notices” on page 207.

Eighth Edition – (March 2002)

This edition applies to the Linux for zSeries kernel 2.4 patch (made in September 2001) and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Summary of changes v
Edition 8 changes. v
Edition 7 changes. v
Edition 6 changes vi
Edition 5 changes vi
Edition 4 changes vi
Edition 3 changes vii
Edition 2 changes vii

About this book ix
How this book is organized ix
Who should read this book ix
Assumptions ix

Part 1. Linux for zSeries Device
drivers overview 1

Chapter 1. Common device support. . . 3

Chapter 2. Partitioning DASD 5
Prerequisites 5
Why use partitions? 5
Restrictions 5
The partition table 6
zSeries disk layout (VTOC) 6

Part 2. Linux for zSeries — zSeries
device drivers 9

Chapter 3. Linux for zSeries DASD
device driver 11
DASD overview 11
DASD naming scheme using devfs 11
DASD naming scheme without devfs 12
Partitioned DASD 13
DASD features 14
DASD kernel parameter syntax 15
DASD kernel example (using devfs) 16
DASD module parameter syntax 17
DASD module example 17
DASD dynamic attach/detach 17
DASD – Preparing for use 18
DASD API (ioctl interface) 19
DASD restrictions 21

Chapter 4. Linux for zSeries XPRAM
device driver 23
XPRAM features. 23
Note on reusing XPRAM partitions 23
XPRAM kernel parameter syntax 24
XPRAM module parameter syntax. 25

Chapter 5. Linux for zSeries Console
device drivers. 27
Console features 28
Console kernel parameter syntax 28
Console kernel examples 28
Using the console 28
Console – Use of VInput 30
Console limitations 31

Chapter 6. Channel attached tape
device driver 33
Tape driver features 33
Tape character device front-end. 34
Tape block device front-end 34
Tape driver kernel parameter syntax 35
Tape driver kernel example 35
Tape driver module parameter syntax 36
Tape driver module example 36
Tape device driver API 37
Tape driver examples 37
Tape driver restrictions 38
Tape driver further information. 38

Chapter 7. Generic cryptographic
device driver 39
Overview 39
HMC settings. 40
Installing z90crypt 41
Decryption using z90crypt 43
Other functions of z90crypt 44
z90crypt header file 45
Crypto support for 31-bit emulation 46
Example of use: Apache 46

Part 3. Linux for zSeries Network
device drivers 49

Chapter 8. Linux for zSeries Channel
device layer 51
Description 51
Channel device layer options 52
See also. 60
Files 61

Chapter 9. Linux for zSeries
CTC/ESCON device driver 63
CTC/ESCON features 63
CTC/ESCON with the channel device layer . . . 63
CTC/ESCON without the channel device layer . . 64
CTC/ESCON – Preparing the connection 66
CTC/ESCON – Recovery procedure after a crash . . 69

© Copyright IBM Corp. 2000, 2002 iii

||

Chapter 10. Linux for zSeries IUCV
device driver 71
IUCV features 71
IUCV kernel parameter syntax 71
IUCV kernel parameter example 72
IUCV module parameter syntax 72
IUCV module parameter example 72
IUCV – Preparing the connection 73
IUCV – Further information 75
IUCV restrictions 75
IUCV Application Programming Interface (API) . . 75

Chapter 11. Linux for zSeries LCS
device driver 93
LCS supported functions 93
LCS channel device layer configuration 93
LCS channel device layer configuration example . . 93
LCS kernel parameter syntax 94
LCS warning 95
LCS restrictions 95

Chapter 12. QETH device driver for
OSA-Express (QDIO) and HiperSockets. 97
Naming conventions 97
Introduction 98
Installing the modules 98
QETH supported functions 98
Configuring QETH for OSA-Express and
HiperSockets using the channel device layer . . . 99
QETH parameter syntax 101
OSA-Express feature in QDIO mode channel
device layer configuration example 102
HiperSockets channel device layer configuration
example 102
Examples: OSA-Express feature in QDIO mode . . 103
Examples: HiperSockets 104
OSA-Express feature in QDIO mode and
HiperSockets – Preparing the connection 105
IP address takeover 106
OSA-Express feature in QDIO mode – Virtual IP
address (VIPA) 107
QETH restrictions 108
Priority queuing 108

Part 4. Installation commands and
parameters 111

Chapter 13. Useful Linux commands 113
dasdfmt - Format a DASD 114
dasdview - Display DASD Structure 118
fdasd – DASD partitioning tool 127
snIPL – Remote control of Support Element (SE)
functions 134
zIPL – zSeries initial program loader 138

ifconfig - Configure a network interface 144
insmod - Load a module into the Linux kernel . . 148
modprobe - Load a module with dependencies into
the Linux kernel 150
lsmod - List loaded modules 153
depmod - Create dependency descriptions for
loadable kernel modules. 154
mke2fs - Create a file system on DASD. 156

Chapter 14. VIPA – minimize outage
due to adapter failure 157
Standard VIPA 157

Chapter 15. Kernel parameters 159
ipldelay 160
maxcpus 161
mem 162
noinitrd 163
ramdisk_size 164
ro 165
root 166
vmhalt 167
cio_msg 168

Chapter 16. Overview of the parameter
line file 169
Parameters 170

Appendix A. Reference information 171
LCS parameter syntax 171
LCS module parameter syntax (without the
channel device layer) 171
OSA-Express and HiperSockets parameter syntax 172
OSA-Express and HiperSockets driver command
syntax (without the channel device layer) 172
Linux for zSeries Major/Minor numbers 173

Appendix B. Kernel building 175
Building the kernel 175
Using ’config’ or ’oldconfig’ 179
Using ’menuconfig’ 184
Kernel parameter options 196

Glossary 203

Notices 207
Trademarks 208

International License Agreement for
Non-Warranted Programs 209

Index 215

iv Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

||

|
||

Summary of changes

This revision contains changes to support the Linux for zSeries kernel loadable
module for the Linux kernel version 2.4.

Edition 8 changes
New Information

v snIPL tool
v Setting up XPRAM dynamically
v Reference to Dump Tools manual

Changed Information

v Open-source LCS driver
v Corrected the separator (colon) between multiple guest-machine IDs in the iucv

kernel parameter and insmod command line.
v Added references to VIPA requirement for kernel built with CONFIG_DUMMY

kernel option.

This revision also includes maintenance and editorial changes. Technical changes
or additions to the text and illustrations are indicated by a vertical line to the left
of the change.

Deleted Information

v References to CONFIG_IP_ALIAS kernel option

Edition 7 changes
New Information

v Option u added to fdasd. The option re-creates VTOC labels and keeps the
partitions.

v VIPA (virtual IP addressing) chapter
v Installation instructions for qdio and qeth modules
v z90crypt cryptographic device driver

Changed Information

This revision also includes maintenance and editorial changes. Technical changes
or additions to the text and illustrations are indicated by a vertical line to the left
of the change.

Deleted Information

v Parameter buffer_count (replaced by mem_in_k) in QETH

© Copyright IBM Corp. 2000, 2002 v

|

|

|

|

|

|

|

|
|

|
|

|
|
|

|

|

Edition 6 changes
New Information

v DASDview
v Hipersockets

Changed Information

This revision also includes maintenance and editorial changes. Technical changes
or additions to the text and illustrations are indicated by a vertical line to the left
of the change.
v OSA-Express – Clarifying editorial changes
v fdasd – r and s options added
v zIPL – Use of quotes

Edition 5 changes
New Information

v VIPA
v IP address takeover
v Hipersockets

Changed Information

This revision also includes maintenance and editorial changes. Technical changes
or additions to the text and illustrations are indicated by a vertical line to the left
of the change.
v OSA-Express – Updates for new cards
v IUCV – New API
v Kernel building restrictions.

Edition 4 changes
New Information

v Channel device layer
v Device file system
v Tape driver
v zIPL utility
v modprobe, lsmod, depmod summarized

Changed Information

This revision also includes maintenance and editorial changes. Technical changes
or additions to the text and illustrations are indicated by a vertical line to the left
of the change.
v DASD – Add commands for creating device nodes and more details of naming

scheme and channel device layer description added
v XPRAM – note on reusing partitions
v CTC channel device layer description added
v Gigabit Ethernet section expanded for all OSA-Express devices and channel

device layer description added

vi Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

v Console section expanded

Edition 3 changes
New Information

v Gigabit Ethernet driver restriction

This revision also includes maintenance and editorial changes. Technical changes
or additions to the text and illustrations are indicated by a vertical line to the left
of the change.

Edition 2 changes
New Information

v CTC/ESCON VM channel subset selection for TCP/IP

Changed Information

v CTC/ESCON module parameter syntax
v VM Minidisk driver revisions
v ’mem’ parameter additional option
v Console parameter change for P/390

Summary of changes vii

viii Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

About this book

This book describes the drivers available to Linux for the control of zSeries devices
and attachments. It also provides information on commands and parameters
relevant to the installation process.

The drivers described herein have been developed with version 2.4.7 of the Linux
kernel. If you are using a later version of the kernel, the kernel parameters may be
different from those described in this document.

For more specific information about the device driver structure, see the documents
in the kernel source tree at ...linux/Documentation/s390.

When you have installed Linux including the kernel sources this path will be on
your machine. Typically: /usr/src/linux/Documentation/s390.

Note: For tools related to taking and analyzing system dumps, see the manual
Linux for zSeries Using the Dump Tools, LNUX-1108.

How this book is organized
The first part of this book contains general information relevant to all Linux for
zSeries device drivers.

Parts two and three consist of chapters specific to individual device drivers. (Part
two describes the drivers for zSeries hardware; part three describes the network
device drivers.)

Part four contains information on the Linux and zSeries commands and parameters
used in installing.

These chapters are followed by a reference section containing summaries of the
command syntax of the drivers, a glossary and an index.

Who should read this book
This book is intended for :
v System administrators who wish to configure a Linux for zSeries system

Assumptions
The following general assumptions are made about your background knowledge:
v You have an understanding of Linux and zSeries terminology.
v You are familiar with Linux device driver software.
v You have an understanding of basic computer architecture, operating systems,

and programs.
v You are familiar with the zSeries devices attached to your system. (zSeries

knowledge should not be required, as the code specific to the zSeries hardware
is provided by IBM.)

© Copyright IBM Corp. 2000, 2002 ix

|
|
|

|
|

x Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Part 1. Linux for zSeries Device drivers overview

This section describes principles common to different device drivers.

© Copyright IBM Corp. 2000, 2002 1

2 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Chapter 1. Common device support

Before Linux for zSeries can use a device the associated device driver must be
available to the Linux kernel. This can be achieved either by configuring the Linux
kernel to use the channel device layer, compiling the device driver into the kernel
or by invoking the driver as a module. The options for each driver are shown in
the following table:

Device driver Able to use Channel device
layer

Kernel Module

DASD no yes yes

XPRAM no yes yes

Hardware console no yes no

3215 console no yes no

Tape no yes yes

CTC/ESCON yes yes yes

IUCV no yes no

LCS yes yes yes

OSA-Express yes no yes

Crypto no no yes

A description of how to build the kernel including device drivers is given in
Appendix B, “Kernel building” on page 175.

The parameters for the kernel resident device drivers are held in the parameter line
file which is created during the installation of Linux .
v If you are using an LPAR or native installation this is parameter -p in the zipl

parameter file.
v For a VM installation, include the parameter in the PARM LINE A file.

For the format of this file see Chapter 16, “Overview of the parameter line file” on
page 169.

Drivers which are not kernel resident are loaded into Linux with their parameters
by means of the insmod or modprobe command. See “insmod - Load a module into
the Linux kernel” on page 148 or “modprobe - Load a module with dependencies
into the Linux kernel” on page 150 for the syntax.

Because the zSeries architecture differs from that used by the Intel PC and other
machines the I/O concepts used by zSeries device drivers are also different.

Linux was originally designed for the Intel PC architecture which uses two
cascaded 8259 programmable interrupt controllers (PIC) that allow a maximum of
15 different interrupt lines. All devices attached to that type of system share those
15 interrupt levels (or IRQs). In addition, the bus systems (ISA, MCA, EISA, PCI,
etc.) might allow shared interrupts, different polling methods or DMA processing.

© Copyright IBM Corp. 2000, 2002 3

||||

||||

Unlike other hardware architectures, zSeries implements a channel subsystem that
provides a unified view of the devices attached to the system. Although a large
variety of peripheral attachments are defined for the zSeries architecture, they are
all accessed in the same manner using I/O interrupts. Each device attached to the
system is uniquely identified by a subchannel, and the zSeries architecture allows
up to 64,000 devices to be attached.

To avoid the introduction of a new I/O concept to the common Linux code, Linux
for zSeries preserves the IRQ concept and systematically maps the zSeries
subchannels to Linux as IRQs. This allows Linux for zSeries to support up to
64,000 different IRQs, each representing a unique device.

The unified I/O access method incorporated in Linux for zSeries allows the
operating system to implement all of the hardware I/O attachment functionality
that each device driver would otherwise have to provide itself. A common I/O
device driver is provided which uses a functional layer to provide a generic access
method to the hardware. The driver comprises a set of I/O support routines, some
of which are common Linux interfaces, while others are Linux for zSeries specific:

get_dev_info()
Allows a device driver to find out what devices are attached (visible) to
the system, and to determine their current status.

request_irq()
Assigns the ownership of a specific device to a device driver.

free_irq()
Releases the ownership of a specific device.

disable_irq()
Prevents a specific device from presenting interrupts to the device driver.

enable_irq()
Allows a device to present I/O interrupts to the device driver.

do_IO()
Initiates an I/O request.

halt_IO()
Terminates the I/O request that is currently being processed by the device.

do_IRQ()
This is an interrupt pre-processing routine that is called by the interrupt
entry routine whenever an I/O interrupt is presented to the system. The
do_IRQ() routine determines the interrupt status and calls the device
specific interrupt handler according to the rules (flags) defined by do_IO().

More information on these commands can be found in the Linux source directory,
.../usr/share/doc/kernel-doc-2.4.7/s390/cds.txt

4 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Chapter 2. Partitioning DASD

Partitioning is a means of dividing a single DASD into several logical disks. A
partition is a contiguous set of blocks on a DASD which is treated by Linux as an
independent disk. The partition table defines the extents of partitions on a DASD.

Prerequisites
To set up and use DASD partitions you must take these steps:
1. Use dasdfmt tool (see “dasdfmt - Format a DASD” on page 114) with the

(default) ’-d cdl’ option to format the DASD with the IBM compatible disk
layout.

2. Use the fdasd tool (see “fdasd – DASD partitioning tool” on page 127) to create
or add partitions. After this your partitions should appear in the device file
system in the /dev/dasd/... directory.

3. Use the Linux mke2fs tool (see “mke2fs - Create a file system on DASD” on
page 156) to create a file system on the partition or the mkswap tool to use the
partition as swap space. If you use mke2fs you must ensure that the blocksize
specified matches that which was defined with dasdfmt.

4. If you have created a file system you may mount the partition to the mount
point of your choice in Linux .

If a DASD is formatted in the normal Linux disk layout (dasdfmt option -d ldl) it
is not possible to create partitions on it and the whole DASD must be accessed as a
single partition.

Why use partitions?
There are several reasons why you may want to partition your data. The most
common of these are:
v Encapsulate your data. As corruption of the file system is likely to be local to a

single partition, data in other partitions should survive.
v Increase disk space efficiency. You can have different partitions with different

block sizes to optimize your usage. To improve performance a large blocksize is
better, but this can be wasteful of space. In general wastage amounts to half a
block for each file, which becomes significant for small files. For these reasons it
is usually better to store small files in a partition with a small blocksize and
large files in one with a larger blocksize.

v Limit data growth. Runaway processes or undisciplined users can consume so
much disk space that the operating system no longer has room on the hard
drive for its bookkeeping operations. This will lead to disaster. By segregating
space you ensure that processes other than the operating system die when the
disk space allocated to them is exhausted.

Restrictions
There are some limitations to the current implementation and some precautions
you should take in using it. These are:
v You can only partition ECKD disks formatted with the new disk layout (dasdfmt

option -d cdl).

© Copyright IBM Corp. 2000, 2002 5

v No more than three partitions can be created on any one physical volume. This
restriction is a result of the scheme of allocating Linux major and minor
numbers to the partitions. (Increasing the number of partitions per DASD would
drastically reduce the number of DASD that could be mounted in a system).

v You are advised to use fdasd to create or alter partitions as it checks for errors.
If you use another partition editor it is your responsibility to ensure that
partitions do not overlap. If they do, data corruption will occur.

v To avoid wasting disk space you should leave no gaps between adjacent
partitions. Gaps are not reported as errors, but a gap can only be reclaimed by
deleting and recreating one or other of the surrounding partitions and rebuilding
the file system on it.

v A disk need not be partitioned completely. You may begin by creating only one
or two partitions at the start of your disk and convert the remaining space to a
partition later (perhaps when performance measurements have given you a
better value for the blocksize).

v There is no facility for moving, enlarging or reducing partitions as fdasd has no
control over the file system on the partition. You only can delete and recreate
them. If you change your partition table you will lose the data in all altered
partitions. It is up to you to preserve the data by copying it to another medium.

The partition table
The partition table is an index of all the partitions on a DASD. In Linux for zSeries
we do not use the normal Linux partition table, but as in other zSeries operating
systems we use a VTOC (Volume Table Of Contents) to store this index
information.

In the zSeries a VTOC is used to access data on any DASD. It is an index in a
special format which contains pointers to the location of every data set on the
volume. In Linux for zSeries these data sets form our Linux partitions.

zSeries disk layout (VTOC)
Operating systems on a mainframe (z/OS, OS/390, VM/ESA and VSE/ESA)
expect a standard DASD format. In particular the format of the first two tracks of a
DASD is defined by this standard. In order to share data with other operating
systems Linux for zSeries can use DASD in the common format. The first two
tracks are then unavailable to Linux (they have non-Linux -standard variable
blocksizes for example) but this is transparent to the user (apart from a slight loss
in disk capacity).

Volume label
The third block of the first track of the DASD (cylinder 0, track 0, block 2) contains
the volume label. This block has a four byte key and an eighty byte data area. The
contents are:
1. Key

This identifies the block as a volume label. It must contain the four EBCDIC1

characters ’VOL1’.
2. VOLSER (volume serial number)

This identifies by serial number the volume on which the partition resides or
will reside. A volume serial number is one to six alphanumeric, national ($, #,

1. The conversion to EBCDIC will be carried out by the fdasd tool.

DASD device driver

6 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

@) or special characters in the EBCDIC1 code. If it contains special characters
other than hyphens it must be enclosed in apostrophes. If the VOLSER is shorter
than six characters it is padded with trailing blanks (converted to EBCDIC code
0x40). Do not code a volume serial number as SCRTCH, PRIVAT, MIGRAT or Lnnnnn
(L with five digits) as these are reserved labels in other zSeries operating
systems.

3. VTOC address

This is a five byte field containing the address of a standard IBM format 4 data
set control block (DSCB). The format is: cylinder (2 bytes) track (2 bytes) block (1
byte).

All other fields of the volume label will contain EBCDIC space characters (code
0x40).

VTOC
The VTOC is located in the second track (cylinder 0, track 1). It contains a number
of 144 byte labels which consist of a 44 byte key and a 96 byte data area.

The first label is a format 4 DSCB describing the VTOC itself. The second label is a
format 5 DSCB containing free space information. (If the volume has more than
65536 tracks the format 5 DSCB will contain binary zeroes and will be followed by
a format 7 DSCB containing the free space information.) After these follow format
1 DSCBs for each of the partitions. Each label is written in a separate block.

The key of the format 1 DSCB contains the data set name, which identifies the
partition to z/OS, OS/390, VM/ESA or VSE/ESA.

The VTOC can be displayed with standard zSeries tools such as VM/DITTO. A
Linux DASD with physical device number 0x’0193’, volume label ’LNX001’, and
three partitions might be displayed like this:

VM/DITTO DISPLAY VTOC LINE 1 OF 5
===> SCROLL ===> PAGE

CUU,193 ,VOLSER,LNX001 3390, WITH 100 CYLS, 15 TRKS/CYL, 58786 BYTES/TRK

--- FILE NAME --- (SORTED BY =,NAME ,) ---- EXT BEGIN-END RELTRK,
1...5...10...15...20...25...30...35...40.... SQ CYL-HD CYL-HD NUMTRKS
*** VTOC EXTENT *** 0 0 1 0 1 1,1
LINUX.VLNX001.PART0001.NATIVE 0 0 2 46 11 2,700
LINUX.VLNX001.PART0002.NATIVE 0 46 12 66 11 702,300
LINUX.VLNX001.PART0003.NATIVE 0 66 12 99 14 1002,498
*** THIS VOLUME IS CURRENTLY 100 PER CENT FULL WITH 0 TRACKS AVAILABLE

PF 1=HELP 2=TOP 3=END 4=BROWSE 5=BOTTOM 6=LOCATE
PF 7=UP 8=DOWN 9=PRINT 10=RGT/LEFT 11=UPDATE 12=RETRIEVE

In Linux (using the device file system) this DASD might appear so:

[root@host /root]# ls -l /dev/dasd/0193/
total 0
brw------- 1 root root 94, 12 Jun 1 2001 device
brw------- 1 root root 94, 12 Jun 1 2001 disc
brw------- 1 root root 94, 13 Jun 1 2001 part1
brw------- 1 root root 94, 14 Jun 1 2001 part2
brw------- 1 root root 94, 15 Jun 1 2001 part3

where the disc file and the device file represent the whole dasd and the part# files
represent the individual partitions.

DASD device driver

Chapter 2. Partitioning DASD 7

8 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Part 2. Linux for zSeries — zSeries device drivers

The zSeries device drivers are:
v Chapter 3, “Linux for zSeries DASD device driver” on page 11
v Chapter 4, “Linux for zSeries XPRAM device driver” on page 23
v Chapter 5, “Linux for zSeries Console device drivers” on page 27
v Chapter 6, “Channel attached tape device driver” on page 33
v Chapter 7, “Generic cryptographic device driver” on page 39

© Copyright IBM Corp. 2000, 2002 9

|

10 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Chapter 3. Linux for zSeries DASD device driver

DASD overview
The DASD device driver in Linux for zSeries takes care of all real or emulated
DASD (Direct Access Storage Device) that can be attached to a zSeries system. The
class of devices named DASD includes a variety of physical media, on which data
is organized in blocks and/or records which can be accessed (read or written) in
random order.

Traditionally these devices are attached to a control unit connected to a zSeries I/O
channel. In modern systems these have been largely replaced by emulated DASD,
such as the internal disks of the Multiprise family, the volumes of the RAMAC
virtual array, or the volumes of the Enterprise Storage Server. These are completely
virtual representations of DASD in which the identity of the physical device is
hidden.

Each device protocol supported by the DASD device driver is supplied as a
separate module, which can be added and removed at run-time. The DASD core
module is named dasd_mod and the device format modules are named
dasd_eckd_mod, dasd_fba_mod and dasd_diag_mod. All modules are loaded by
issuing the command ’modprobe module_name’. As well as the parameter ’dasd=’
which specifies the volumes to be operated by the DASD device driver, the core
module has an additional parameter ’dasd_disciplines=mod_names’ which enables
a selection of device protocols to be auto-loaded during initialization of the core
module.

The DASD device driver is capable of accessing an arbitrary number of devices.
The default major number for DASD (94) can only address 64 DASD (see below for
details), so additional major numbers (typically descending from 254) are allocated
dynamically at initialization or run time. The only practical limit to the number of
DASD accessible is the range of major numbers available in the dynamic allocation
pool.

Each DASD configured to the system uses 4 minor numbers.
v The first minor number always represents the entire device, including IPL,

VTOC and label records.
v The remaining three minor numbers represent partitions of the device as defined

in the partition table.

DASD naming scheme using devfs
We recommend that you use the device filesystem (devfs) to have a comfortable
and easy-to-use naming scheme for DASD. (The older naming scheme is described
in “DASD naming scheme without devfs” on page 12.) DASD nodes generated by
devfs have the general format ’/dev/dasd/<devno>/<type>’, where ’devno’ is the
unit address of the device and ’type’ is a name denoting either a partition on that
device or the entire device. devno must be four hexadecimal digits, padded with
leading zeroes if necessary.

For example /dev/dasd/01a1/disc refers to the whole of the disk with device
address 0x01a1 and /dev/dasd/01a1/part1 refers to the first partition on that disk.

© Copyright IBM Corp. 2000, 2002 11

The entire physical device can also be referred to as node
’/dev/dasd/<devno>/device’ which is equivalent to ’.../disc’; the difference being
that the /device node is always available whereas the /disc node is only available
after the device has been formatted. (The /part<x> nodes are only available after
the device has been formatted and partitioned.)

For example a device with address 0x0150 and 2 partitions will have these device
node entries:

94 0 /dev/dasd/0150/device - for the entire device (before formatting)
94 0 /dev/dasd/0150/disc - for the entire device (after formatting)
94 1 /dev/dasd/0150/part1 - for the first partition
94 2 /dev/dasd/0150/part2 - for the second partition

DASD naming scheme without devfs
A Linux 2.2 or 2.4 system is restricted to 256 major device numbers, each holding
64 blocks of 4 minor numbers, giving a maximum of 16,384 DASD even if no
numbers are used for other types of device. Every major number used for other
devices reduces the maximum number of DASD by 64. If the device file system
(devfs) is not activated the DASD device driver has a built in naming scheme for
DASD according to Table 1. (You can override the built in scheme by creating
customized nodes in the Linux /dev/ subdirectory.) These names are sufficient to
access the maximum number of DASD accessible.

Table 1. DASD naming convention

Names Number Major/minor numbers (assuming dynamic
allocation from 254)

dasda – dasdz 26 94:0 — 94:100

dasdaa – dasdbl 38 94:104 — 94:252

dasdbm – dasdzz 638 254:0 — 245:244

dasdaaa – dasdzzz 17576 245:248 — 131:148

Sum: 18278

General DASD nodes have the format dasd<x>, or dasd<x><p>, where <x> is a
letter identifying the device and <p> is a number denoting the partition on that
device. The first form, dasd<x>, is used to address the entire disk. The second,
dasd<x><p>, is used to address the partitions on this device.

For example /dev/dasda refers to the whole of the first disk in the system and
/dev/dasda1 to the first partition on that disk.

They are typically created by:

mknod -m 660 /dev/dasda b 94 0
mknod -m 660 /dev/dasda1 b 94 1
mknod -m 660 /dev/dasda2 b 94 2
mknod -m 660 /dev/dasda3 b 94 3
mknod -m 660 /dev/dasdb b 94 4
mknod -m 660 /dev/dasdb1 b 94 5
....

If you have a large number of DASD you may wish to use a script to create them.
An example of this for bash is:

12 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

`cat /proc/dasd/devices |
sed ’s/^.*[(]\([0-9]*\)[:]\([0-9]*\)[)].*\(dasd[a-z]*\)[:].*$/\1 \2 \3/g’ |
awk ’ $1 {
printf "mknod /dev/%s b %d %d; mknod /dev/%s1 b %d %d;",$3,$1,$2,$3,$1,$2+1;
}’`

A similar script may be written for csh or ksh.

Partitioned DASD
The DASD device driver is embedded into the Linux generic support for
partitioned disks. This implies that you can have any kind of partition table known
to Linux on your DASD, such as the MSDOS or Amiga partition scheme. However
none of the partition schemes built in to Linux to support platforms other than
zSeries will preserve zSeries IPL, VTOC and label records.

’IBM label’ partition scheme:

To ensure compatibility with other zSeries operating systems the IBM-label
partition scheme has been added to Linux . This scheme currently supports VOL1
(zSeries), LNX (Linux) and CMS (VM/ESA) labeled disks, as well as unlabeled
disks which are treated equivalently to LNX-labeled disks. The disk layout of the
different types is shown in Figure 1.

The first of these examples shows a DASD with compatible disk layout. The
second shows a disk in an LPAR or native mode, or a full pack minidisk
(dedicated DASD) in VM. The third and fourth examples are VM specific.

VOL1 labeled disk:

Figure 1. Partition scheme for VOL1, LNX and CMS labeled disks

Chapter 3. Linux for zSeries DASD device driver 13

This disk layout (also known as the compatible disk layout, or CDL) is compliant
with IBM guidelines for volume labeling of ECKD volumes. This enables
non-Linux operating systems to access Linux volumes online, for example for
backup and restore.

Partitioning support for such disks means that the VTOC contains data in the IBM
standard, namely one ’format 4’ label describing the VTOC, one ’format 5’ label2

and one to three ’format 1’ labels3 describing the extents of the volume (partitions
to Linux). The partitions are created and modified by the fdasd tool (see “fdasd –
DASD partitioning tool” on page 127).

LNX1 labeled disk or non-labeled volume:

These disks are implicitly reserved for use by Linux . The disk layout reserves the
IPL and label records for access through the ’entire disk’ device. All remaining
records are grouped into the first (and only) partition.

CMS1 labeled disk:

Handling of these disks depends on the content of the CMS filesystem. If the
volume contains a CMS filesystem it will be treated equivalently to a LNX labeled
volume. If the volume is a CMS reserved volume 4 the CMS reserved file is
represented by the first and only partition. IPL and label records as well as the
metadata of the CMS filesystem are reserved for access through the ’entire disk’
device.

See Chapter 2, “Partitioning DASD” on page 5 for more information.

DASD features
The DASD device driver can access devices according to Table 2 by its built in
CCW interface.

Table 2. Supported devices. ’*’ signifies any digit.

Device format Control unit type/model Device type/model

ECKD (Extended Count
Key Data)

3990(2105)/** 3380/**

3990(2105)/** 3390/**

9343/** 9345/**

FBA (Fixed Block
Access)

6310/?? 9336/??

3880/** 3370/**

The DASD device driver is also known to work with these devices:
v Multiprise internal disks
v RAMAC
v RAMAC RVA
v Enterprise Storage Server (Seascape) virtual ECKD-type disks

2. The ’format 5’ label is required by other operating systems but is unused by Linux and set to zeroes by fdasd.

3. Other operating systems may create up to seven ’format 1’ labels.

4. CMS reserved volume means a volume that has been reserved by a ’CMS RESERVE fn ft fm’ command.

14 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

|

Linux for zSeries implements a maximum of three partitions per volume. The
available disk space for partitions is the whole volume, skipping the first blocks
according to the scheme outlined in Figure 1 on page 13.

DASD kernel parameter syntax
The DASD driver is configured by a kernel parameter added to the parameter line:

DASD kernel parameter syntax

WW dasd =
device-list autodetect probeonly

WY

device-list:

Z

,

from - to (ro)
devno

where:

autodetect
causes the driver to consider any device operational at the time of IPL as a
potential DASD and allocate a device number for it. Nevertheless the
devices which are not DASD, or do not respond to the access methods
known to the kernel, will not be accessible as DASD. Any ’open’ request
on such a device will return ENODEV. In /proc/dasd/devices these devices
will be flagged ’unknown’.

probeonly
causes the DASD device driver to reject any ’open’ syscall with EPERM.

autodetect,probeonly
behaves in the same way as above, but additionally all devices which are
accessible as DASD will refuse to be opened, returning EPERM. This setting
is the default if no ’dasd=...’ parameter is given in the command line or in
the module parameter.

from-to defines the first and last DASD in a range. All DASD devices with
addresses in the range are selected. It is not necessary for the from and to
addresses to correspond to actual DASD.

devno defines a single DASD address.

(ro) specifies that the given device or range is to be accessed in read-only
mode.

The DASD addresses must be given in hexadecimal notation with or without a
leading 0x, for example 0191 or 5a10.

Chapter 3. Linux for zSeries DASD device driver 15

If you supply one or more kernel parameters dasd=device-list1
dasd=device-list2 ... the devices are processed in order of appearance in the
parameter line. Devices are ignored if they are unknown to the machine,
non-operational, or set off-line.5

If autodetection is turned on a DASD device is allocated in Linux for every device
operational at the time of initialization of the driver, in order of ascending
subchannel numbers.

Note that the autodetection option may cause confusing results if you change your
I/O configuration between two IPLs, or if you are running as a guest operating
system in VM/ESA, because the devices might appear with different major/minor
combinations in the new IPL .

DASD kernel example (using devfs)
dasd=192-194,5a10(ro)

This reserves major/minor numbers and nodes as follows:
94 0 /dev/dasd/0192/device - for the entire device 192
94 0 /dev/dasd/0192/disc - for the entire device 192 (formatted)
94 1 /dev/dasd/0192/part1 - first partition on 192
94 2 /dev/dasd/0192/part2 - second partition on 192 (if used)
94 3 /dev/dasd/0192/part3 - third partition on 192 (if used)

94 4 /dev/dasd/0193/device - for the entire device 193
94 4 /dev/dasd/0193/disc - for the entire device 193 (formatted)
94 5 /dev/dasd/0193/part1 - first partition on 193
94 6 /dev/dasd/0193/part2 - second partition on 193 (if used)
94 7 /dev/dasd/0193/part3 - third partition on 193 (if used)

94 8 /dev/dasd/0194/device - for the entire device 194
94 8 /dev/dasd/0194/disc - for the entire device 194 (formatted)
94 9 /dev/dasd/0194/part1 - first partition on 194
94 10 /dev/dasd/0194/part2 - second partition on 194 (if used)
94 11 /dev/dasd/0194/part3 - third partition on 194 (if used)

94 12 /dev/dasd/5a10/device - for the entire device 5a10 (read only)
94 12 /dev/dasd/5a10/disc - for the entire device 5a10 (formatted,read only)
94 13 /dev/dasd/5a10/part1 - first partition on 5a10 (read only)
94 14 /dev/dasd/5a10/part2 - second partition on 5a10 (if used,read only)
94 15 /dev/dasd/5a10/part3 - third partition on 5a10 (if used,read only)

The ’/device’ node is registered by the DASD device driver during initialization
and is always available.

All other nodes are generated by the device filesystem support and are only
available after formatting (/disc) and partitioning (/part1 to /part3).

5. Currently there is no check for duplicate occurrences of the same device number.

16 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

DASD module parameter syntax
The following are the DASD driver module parameters:

DASD module parameter syntax

WW insmod dasd_mod dasd =
device-list probeonly

W

W
autodetect

WY

device-list:

Z

,

from - to (ro)
devno

where:

dasd_mod
is the name of the device driver module

dasd is the start of the parameters

and all other parameters are the same as the DASD kernel parameters described in
“DASD kernel parameter syntax” on page 15.

DASD module example
insmod dasd_mod dasd=192-194,5a10(ro)

The details are the same as “DASD kernel example (using devfs)” on page 16.

DASD dynamic attach/detach
Dynamic device attach/detach enables Linux for zSeries to deal with DASD
devices which are dynamically attached to or detached from a running system. In
addition it allows the operator to dynamically enable or disable devices.

The system will take appropriate action automatically when a dynamic attach or
detach occurs. When a device is attached the system will try to initialize it
according to the configuration of the DASD device driver. When a device is
detached the system will stop any activity on this device. The device will stay in a
’fenced’ state until it is re-attached or disabled manually.

Chapter 3. Linux for zSeries DASD device driver 17

Note
Detachment of a device still open or mounted may trigger a restriction in the
Linux kernel 2.4 common code which causes the system to hang or crash.

The /proc filesystem node /proc/dasd/devices provides an interface which can be
used to dynamically configure the DASD device driver’s settings. This interface
provides some elementary support and does not provide a base for full DASD
management. For example, there is the capability to add a device range by using
the add directive, but there is no corresponding remove directive. Therefore, the
following commands should be used with care, as some configuration errors can
not be corrected without a reboot of the system.
v To add a range to the list of known devices:

echo "add device range=devno-range" >> /proc/dasd/devices

This updates the currently running system. It does not update any persistent
information on the volumes.

v To disable devices manually:

echo "set device range=devno-range off" >> /proc/dasd/devices

This resets the state of the devices as if they had never been defined as DASD.
All buffers referring to the devices are flushed unconditionally or terminated
with an error.

v To enable devices manually. :

echo "set device range=devno-range on" >> /proc/dasd/devices

This tries to initialize devices as if they had just been added to the system.

DASD – Preparing for use

1) Low level format
Before using an ECKD type DASD as a Linux for zSeries disk the device must be
formatted. This should be done from Linux for zSeries by issuing an ioctl called
BIODASDFMT on the file descriptor of the opened volume
/dev/dasd/<devno>/<device>. The utility dasdfmt is provided as an interface to this
ioctl with additional checking.

Caution: Using dasdfmt or the raw ioctl can potentially destroy your running
Linux for zSeries system, forcing you to reinstall from scratch.

See the help given by dasdfmt -help and “dasdfmt - Format a DASD” on page 114
for further information. The dasdfmt utility calls several processes sequentially.
Take care to allow sufficient time for each process to end before attempting to enter
an additional command.

18 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

We recommend you set blksize to 1024 or higher (ideally 4096) because the ext2fs
file system uses 1KB blocks and 50% of capacity will be unusable if the DASD
blocksize is 512 bytes.

The formatting process can take a long time (hours) for large DASD.

2) Create partitions
After formatting the device with the common disk layout (CDL), (this is the
default option for dasdfmt), the partitions have to be created. This is done by the
fdasd tool which writes some labels to the device (see “Partitioned DASD” on
page 13) and calls the device driver to re-read the partition table. fdasd is a
user-space program with a command-line interface. See “fdasd – DASD
partitioning tool” on page 127 for more information. The restriction of four minor
numbers per DASD in the current implementation means that no more than three
partitions can be created on a single DASD.

Note: If you do not use the common disk layout you are not able to partition the
device. In this case only one partition per DASD is supported.

3) Make a file system
Before using a DASD as a Linux for zSeries data disk, you must create a file
system on it. (A DASD for use as a swap device or paging space only needs to be
defined as such.) Using mkxxfs (replacing xx with the appropriate identifier for the
file system – for example use mke2fs for an ext2 file system) you can create the file
system of your choice on that volume or partition .

It is recommended that you build your file system on the partitions of the DASD
(/dev/dasd/<devno>/<part>, and so on), rather than the whole volume.

Note that the blocksize of the file system must be larger than or equal to the
blocksize given to the dasdfmt command. It is recommended that the two
blocksize values are equal.

You must enable CONFIG_DASD, CONFIG_DASD_ECKD and CONFIG_DASD_FBA in the
configuration of your current kernel to access IBM DASD.

DASD API (ioctl interface)
The ioctl interface of the DASD device driver follows the common format:
int ioctl (int fd, int command, xxx)

The argument ’fd’ is a descriptor of an open file. ’command’ is the action requested
and the third argument ’xxx’ is a pointer to a data structure specific to the request.

The ioctl commands specific to the DASD device driver are:

DASDAPIVER
returns the version of the DASD device driver API.

BIODASDDISABLE
disables the device.

BIODASDENABLE
enables the device

BIODASDFMT
formats the device with a specified blocksize.

Chapter 3. Linux for zSeries DASD device driver 19

BIODASDPRRST
resets profiling information.

BIODASDPRRD
reads profiling information.

BIODASDRSRV
requests reserve of a device.

BIODASDRLSE
requests release of a reserved device.

BIODASDINFO
returns status information for the device.

In addition the DASD device driver shares a number of common ioctl commands
with most other block device drivers:

HDIO_GETGEO
get the device geometry.

BLKGETSIZE
get the device size in blocks.

BLKRRPART
re-read the partition table.

BLKSSZGET
get the sector size of the device.

BLKROSET
set or change the read-only flag of the device.

BLKROGET
get the current setting of the read-only flag of the device.

BLKRASET
set or change the number of read-ahead buffers of the device.

BLKRAGET
get the current number of read-ahead buffers of the device

BLKFLSBUF
flush the buffers.

BLKPG
handle the partition table and disk geometry.

BLKELVGET
get elevator.

BLKELVSET
set elevator.

If you need more ioctl functionality for your applications you may register your
own ioctl commands to the DASD device driver. This is done using the function:
dasd_ioctl_no_register (struct module *owner,

int no,
dasd_ioctl_fn_t handler)

A previously added ioctl command can be deleted using:
dasd_ioctl_no_unregister (struct module *owner,

int no,
dasd_ioctl_fn_t handler)

20 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

These dynamically added ioctls are scanned if none of the statically defined
commands fulfils the requested command. If no related command is found in the
static or in the dynamic list the driver returns ’ENOTTY’.

For more information about ioctl see the ioctl man page or the public Linux
documentation.

Examples of the implementation of the DASD ioctl interface can be found in the
sections about DASD tools, in particular dasdfmt (“dasdfmt - Format a DASD” on
page 114) and fdasd (“fdasd – DASD partitioning tool” on page 127).

DASD restrictions
v Note that the dasdfmt utility can only format volumes containing a standard

record zero on all tracks. If your disk does not fulfill this requirement (for
example if you re-use an old volume, or access a brand new disk or one having
an unknown history), you should additionally use a device support facility such
as ICKDSF (in z/OS, OS/390, VM/ESA, VSE/ESA or stand-alone) before doing
the dasdfmt for the low-level format.

v The size of any swap device or file may not exceed 2 GB. Similarly, the limit for
the main memory that can be defined is slightly less than 2 GB.

Chapter 3. Linux for zSeries DASD device driver 21

22 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Chapter 4. Linux for zSeries XPRAM device driver

The zSeries architecture in 31 bit mode supports the access of only 2 GB
(gigabytes) of main memory. To overcome this limitation additional memory can be
declared and accessed as expanded memory. For compatibility reasons this
expanded memory can also be declared in the 64-bit mode of zSeries. The zSeries
architecture allows applications to access up to 18 EB (exabytes) of expanded
storage (although the current hardware can be equipped with at most 64 GB of real
memory). The memory in the expanded storage range can be swapped in or out of
the main memory in 4 KB blocks.

An IPL (boot) of Linux for zSeries does not reset expanded storage, so it is
persistent through IPLs and could be used, for example, to store diagnostic
information. The expanded storage is reset by an IML (power off/on).

The XPRAM device driver is a block device driver that enables Linux for zSeries to
access the expanded storage. Thus XPRAM can be used as a basis for fast swap
devices and/or fast file systems.

XPRAM features
v Automatic detection of expanded storage.

(If expanded storage is not available, XPRAM fails with a log message reporting
the lack of expanded storage.)

v Storage can be subdivided into up to 32 partitions.
v Device driver major number: 35.
v Partition minor numbers: 0 through 31.
v Hard sector size: 4096 bytes.
v The device file system (devfs) is supported. If devfs is switched on during

kernel build XPRAM automatically generates the device nodes /dev/slram/0
through /dev/slram/31.

Note on reusing XPRAM partitions
It is possible to reuse the filesystem or swap device on an XPRAM device or
partition if the XPRAM kernel or module parameters for the new device or
partition match the parameters of the previous use of XPRAM. If you change the
XPRAM parameters for a new use of XPRAM you must make a new filesystem
(for example with mke2fs) or a new swap device for all partitions that have
changed. A device or partition has changed if its size has changed. All partitions
following one which has changed are treated as changed as well (even if their sizes
have not been changed).

© Copyright IBM Corp. 2000, 2002 23

XPRAM kernel parameter syntax
The kernel parameter is optional. If omitted the default is to define the whole
expanded storage as one partition. The syntax is:

XPRAM kernel parameter

WW Z

,

xpram_parts = number_of_partitions partition_size WY

where number_of_partitions defines how many partitions the expanded storage is
split into. The i-th partition_size defines the size of the i-th partition. Blank
entries are inserted if necessary to fill number_of_partitions values. Each size may be
blank, specified as a decimal value, or a hexadecimal value preceded by 0x, and
may be qualified by a magnitude:
v k or K for kilo (1024) is the default
v m or M for Mega (1024*1024)
v g or G for Giga (1024*1024*1024)

The size value multiplied by the magnitude defines the partition size in bytes. The
default size is 0.

Any partition defined with a non-zero size is allocated the amount of memory
specified by its size parameter.

Any remaining memory is divided as equally as possible among any partitions
with a zero or blank size parameter, subject to the two constraints that blocks must
be allocated in multiples of 4K and addressing constraints may leave un-allocated
areas of memory between partitions.

XPRAM kernel example
xpram_parts=4,0x800M,0,0,0x1000M

This allocates the extended storage into four partitions. Partition 1 has 2 GB (hex
800M), partition 4 has 4 GB, and partitions 2 and 3 use equal parts of the
remaining storage. If the total amount of extended storage was 16 GB, then
partitions 3 and 4 would each have approximately 5 GB.

24 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

XPRAM module parameter syntax
If it is not included in the kernel XPRAM may be loaded as a module. The syntax
of the module parameters passed to insmod or modprobe differs from the kernel
parameter syntax:

XPRAM module call

WW insmod xpram devs = number_of_partitions W

W
Z

,

sizes = partition_size
partition_size

WY

where:
v partition_size is a non-negative integer that defines the size of the partition in

KB. Only decimal values are allowed and no magnitudes are accepted.

XPRAM module example
insmod xpram devs=4 sizes=2097152,8388608,4194304,2097152

This allocates a total of 16 GB of extended storage into four partitions, of
(respectively) size 2 GB, 8 GB, 4 GB, and 2 GB.

Support for loading XPRAM dynamically
In order to load the xpram module dynamically either using the modprobe
command or by mounting an xpram partition for the first time, an entry in
/etc/modules.conf (formerly also /etc/conf.modules) is required.

The following is an example of an xpram entry in /etc/modules.conf:
alias block-major-35 xpram
options xpram devs=4 sizes=4096,0,2048

With the above entry, four xpram partitions will be created. The first partition
(minor 0) will have a size of 4096 KB, the third partition (minor 2) will have a size
of 2048 KB, and partitions 2 and 4 (minors 1 and 3) will each use half the size of
the remaining expanded storage.

Chapter 4. Linux for zSeries XPRAM device driver 25

|

|
|
|

|

|
|

|
|
|
|

26 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Chapter 5. Linux for zSeries Console device drivers

The zSeries hardware requires a line-mode terminal (the hardware console) for
overall system control. The Linux for zSeries console device drivers enable Linux
to use this console for basic Linux control as well.

You can use a 3215 or a 3270 console instead of the hardware console if Linux is
running under VM/ESA. You can use a 3215 console if Linux is running on a
P/390.

The zSeries system console is the device which gives the zSeries operator access to
the SE (Service Element) which is in overall control of the zSeries system. This can
be a real device physically attached to the zSeries, or it can be emulated in
software, for example by running an HMC (Hardware Management Console) in a
Web browser window.

A zSeries terminal is any device which gives a zSeries user access to applications
running on the zSeries system. This could be a real device such as a 3270 linked to
the zSeries through a controller, or again it can be a terminal emulator on a
networked device.

Note that both ’terminal’ and ’console’ have special meanings in Linux which
should not be confused with the zSeries usage. The Linux console and the Linux
terminals are different applications which both run on zSeries terminals.

The drivers for the 3215, 3270 and hardware consoles can be compiled into the
Linux kernel. If more than one console is present the default console driver will be
chosen at run time according to the environment:
v In an LPAR or native environment, the hardware console will be made the

default.
v In VM/ESA either the 3215 or the 3270 console driver will be made the default,

depending on the guest’s console settings (the ″CONMODE″ field in the output of
″#CP QUERY TERMINAL″).

v On a P/390 the 3215 console will be made the default.

The default driver can be overridden with the ″conmode=″ kernel parameter (see
“Console kernel parameter syntax” on page 28).

The intended use of the console device drivers is solely to launch Linux . When
Linux is running, the user should access Linux for zSeries via a terminal emulation
such as Telnet or ssh, because the console is a line-mode terminal and is unable to
support applications such as vi. Therefore it is strongly recommended that you
assign dumb to the TERM environment variable so that at least applications like less
give appropriate output.

Note that there are different options that must be selected during kernel
configuration to enable the Linux terminal on the hardware console or to enable
the Linux console on the 3215 or 3270 console.

© Copyright IBM Corp. 2000, 2002 27

|
|

Console features
v Provides a line mode typewriter terminal.
v Console output on the first terminal.

Console kernel parameter syntax
The hardware console device driver does not require any parameters.

The 3215 console device driver does not require any parameters if it is used under
VM/ESA. If it is used with a P/390 system, you have to specify the condev kernel
parameter. This supplies the device driver with the subchannel number of the 3215
device. The reason that this parameter is needed is that there is no guaranteed
method of recognizing a 3215 device attached to a P/390.

The kernel parameter syntax is:

3125 device driver syntax

WW condev = cuu WY

where cuu is the device ’Control Unit and Unit’ address, and may be expressed in
hexadecimal form (preceded by 0x) or in decimal form.

Note: Early releases of the driver will not accept this parameter in hexadecimal
form.

Console kernel examples
condev=0x001f

or
condev=31

Both of these formats tell the device driver to use device number hex 1F for the
3215 terminal.

Using the console
The console is a line mode terminal. The user enters a complete line and presses
enter to let the system know that a line has been completed. The device driver
then issues a read to get the completed line, adds a new line and hands over the
input to the generic TTY routines.

Console special characters
The console does not have a control key. That makes it impossible to enter control
characters directly. To be able to enter at least some of the more important control
characters, the character ’^’ has a special meaning in the following cases:
v The two character input line ^c is interpreted as a Ctrl+C. This is used to cancel

the process that is currently running in the foreground of the terminal.

28 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

v The two character input line ^d is interpreted as a Ctrl+D. This is used to
generate an end of file (EOF) indication.

v The two character input line ^z is interpreted as a Ctrl+Z. This is used to stop a
process.

v The two characters ^n at the end of an input line suppresses the automatic
generation of a new line. This makes it possible to enter single characters, for
example those characters that are needed for yes/no answers in the ext2 file
system utilities.

v The two characters ’^-’ followed by a third character invoke the so called ″magic
sysrequest″ function. Various debugging and emergency functions are performed
specified by the third character. This feature can be switched on or off during
runtime by echoing ’1’ or ’0’ to /proc/sys/kernel/sysrq. The third character can
be:
– ’b’ – re-IPL immediately,
– ’s’ – emergency sync all filesystems,
– ’u’ – emergency remount all mounted filesystems readonly,
– ’t’ – show task info,
– ’m’ – show memory,
– ’0’ to ’9’ – set console log level,
– ’e’ – terminate all tasks,
– ’i’ – kill all tasks except init,
– ’l’ – kill all tasks including init.

If you are running under VM without a 3215 console you will have to use the CP
VINPUT command to simulate the ENTER and SPACE keys.

The ENTER key is simulated by entering:
#CP VInput VMSG \n

The SPACE key is simulated by entering:
#CP VInput VMSG \n (two blanks followed by \n).

If the special characters do not appear to work, make sure you have the correct
codepage in your terminal emulator. One known to work is codepage 037 (United
States).

VM console line edit characters
When running under VM, the control program (CP) defines five characters as line
editing symbols. Use the CP QUERY TERMINAL command to see the current settings.
The defaults for these depend on the terminal emulator you are using, and can be
reassigned by the CP system operator or by yourself using the CP TERMINAL
command to change the setting of LINEND, TABCHAR, CHARDEL, LINEDEL or ESCAPE.
The most common values are:

LINEND #
The end of line character (this allows you to enter several logical lines at
once).

TABCHAR |
The logical tab character.

CHARDEL @
The character delete symbol (this deletes the preceding character).

Chapter 5. Linux for zSeries Console device drivers 29

LINEDEL [(ASCII terminals) or ¢ (EBCDIC terminals)
The line delete symbol (this deletes everything back to and including the
previous LINEND symbol or the start of the input).

ESCAPE ″
The escape character (this allows you to enter a line edit symbol as a
normal character).

To enter the line edit symbols # | @ [" (or # | @ ¢ ") you need to type the
character pairs "# "| "@ "["" (or "# "| "@ "¢ ""). Note in particular that to enter
the quote character (″) you must type it twice (″″).

Example:

If you should type in the character string:
#CP HALT#CP ZIPL 190[#CP IPL 1@290 PARM VMHALT=""MSG OP REBOOT"#IPL 290""

the actual commands received by CP will be:
CP HALT
CP IPL 290 PARM VMHALT="MSG OP REBOOT#IPL 290"

Console 3270 emulation
If you are accessing the VM console using the x3270 emulator, then you should
add the following settings to the .XDefaults file in order to get the correct code
translation:

! X3270 keymap and charset settings for Linux
x3270.charset: us-intl
x3270.keymap: circumfix
x3270.keymap.circumfix: :<key>asciicircum: Key("^")\n

Console – Use of VInput

Note: ’VInput’ is a VM CP command. It may be abbreviated to ’VI’ but should not
be confused with the Linux command ’vi’.

If you use the hardware console driver running under VM it is important to
consider how the input is handled. Instead of writing into the suitable field within
the graphical user interface at the service element or HMC you have to use the
VInput command provided by VM. The following examples are written at the
input line of a 3270 terminal or terminal emulator (for example, x3270).

Note that, in the examples, capitals within VInput and its parameters processed by
VM/CP indicate the characters you have to type. The lower case letters are
optional and are shown for readability. These examples assume that you enter the
CP READ mode first. If you are not in this mode you must prefix all of the examples
with the command #CP.

VInput VMSG LS -L

(the bash will call ls -l after this command was sent via VInput to the hardware
console as a non-priority command - VMSG).

VInput PVMSG ECHO *

30 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

(the bash will execute echo * after this command was sent via VInput to the
hardware console as a priority command - PVMSG).

The hardware console driver is capable to accept both if supported by the
hardware console within the specific machine or virtual machine. Please inspect
your boot messages to check the hardware console’s capability of coping with
non-priority or priority commands respectively on your specific machine.
Remember that the hardware console is unable to make its own messages available
via dmesg.

Features of VInput.
1. Use ’″″’ to output a single ’″’.

VInput example: VInput PVMSG echo ""Hello world, here is ""$0

(on other systems: echo "Hello world, here is "$0)
2. Do not use # within VInput commands.

This character is interpreted as an end of line character by VM CP, and
terminates the VInput command. If you need the # character it must be
preceded by the escape character (″#).

3. All characters in lower case are converted by VM to upper case.
If you type VInput VMSG echo $PATH, the driver will get ECHO $PATH and will
convert it into echo $path. Linux and the bash are case sensitive and cannot
execute such a command. To resolve this problem, the hardware console uses
an escape character (%) under VM to distinguish between upper and lower
case characters. This behavior and the escape character (%) are adjustable at
build-time by editing the driver sources, or at run time by use of the ioctl
interface. Some examples:
v input: VInput VMSG ECHO $PATH

output: echo $path

v input: VInput vmsg echo $%PATH%

output: echo $PATH

v input: VInput pvmsg echo ""1/11/02ello, here is ""$0 #name of this
process

output: VINPUT PVMSG ECHO "1/11/02ELLO, HERE IS "$0

NAME OF THIS PROCESS

HCPCMD001E Unknown CP command: NAME

echo "Hello, here is "$0

Hello, here is -bash

Console limitations
v The 3215 driver only works in combination with VM/ESA. In a single image or

in LPAR mode the 3215 terminal device driver initialization function just exits
without registering the driver.

v Due to a problem with the translation of code pages (500, 037) on the host, the
pipe command character (|) cannot be intercepted by the console. If you need
to use this command execute it from a Telnet session.

v Displaying large files might cause some missing sections within the output
because of the latency of the hardware interface employed by the device.

v In native or LPAR environments, you occasionally have to use the Delete button
of the GUI on the Service Element or Hardware Management Console to enable
further output. This is relevant to:

Chapter 5. Linux for zSeries Console device drivers 31

– SE version 1.6.1 or older on G5, G6, and Multiprise 3000.
– SE version 1.5.2 or older on G3, G4, and Multiprise 2000.

v Messages concerning the hardware console operation generated by the hardware
console driver cannot be provided to the syslog and are therefore unavailable
with dmesg.

v Output from the head/top is deleted if the amount exceeds approximately 30
kilobytes per LPAR (or image) on SE or HMC.

v Applications such as vi are not supported because of the console’s line-mode
nature.

32 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Chapter 6. Channel attached tape device driver

The Linux for zSeries tape device driver manages channel attached tape drives
which are compatible with IBM 3480 or 3490 magnetic tape subsystems. Various
models of these devices are handled (for example the 3490E).

Tape driver features
The device driver supports a maximum of 128 tape devices.

No official Linux device major number is assigned to the zSeries tape device. The
driver allocates major numbers dynamically and lists them on initialization.
Typically major number 254 will be allocated. (This will be used for both the
character device front-end and the block device front-end.) Minor numbers will be
allocated in pairs from zero.

The driver may search for all tape devices attached to the Linux machine, or it
may be given a list of device addresses to use.

If it is not given a list the numbers allocated are volatile – the number allocated to
any particular physical device may change if the system is rebooted or the device
driver is reloaded. In particular a device brought online during a Linux session
will be allocated the next available number at the time it comes online, but at the
next reboot it will be given a number according to the sequence of device
addresses.

If a ″tape=″ parameter is present at system startup or module load, all tape devices
in the ranges of the specified parameter list will be used. The devices are then
numbered (sequentially from zero) according to the order in which their
subchannel numbers appear in the list.

In both cases the associations between subchannel numbers and device numbers
are listed in the file /proc/tapedevices.

If the Device File System (devfs) is used the user need not be concerned about the
major and minor numbers used since each device will be assigned a node name
based on the channel address of the device automatically. When the driver is
initialized in autodetect mode without parameters (at system startup or module
load) all supported tape devices attached will be detected.

© Copyright IBM Corp. 2000, 2002 33

Tape character device front-end
You will usually read or write to the tape device using the character device
front-end of the driver. In fact two front-ends are provided for each physical
device. One of these is used in multi-step procedures to leave the tape in position
for the subsequent step at the close of each step. The other is used in single-step
procedures, or in the last step of multi-step procedures, to automatically rewind
the tape at the end of the step.

If devfs is not used, the node names for these devices should be constructed from
the standard label tibm, with a prefix indicating the close function r (rewind) or n
(non-rewind), and a suffix from the device number (starting at zero). Thus the
names given to the first two devices are /dev/rtibm0,

rtibm0 -> r rewind
tibm label
0 device number

/dev/ntibm0, /dev/rtibm1 and /dev/ntibm1.

If devfs is used, the node names for these devices are constructed from the
standard label tape, the device number, and rewinding or nonrewinding. Thus the
names given to the first two devices are /dev/tape/0181/char/rewinding,
/dev/tape/0181/char/nonrewinding, /dev/tape/0182/char/rewinding and
/dev/tape/0182/char/nonrewinding

You can use the character device front-end in the same way as any other Linux
tape device. You can write to it and read from it using normal Linux facilities such
as GNU tar. You can perform control operations (such as rewinding the tape or
skipping a file) with the standard tool mt.

Most Linux tape software should work with both the rewinding and
non-rewinding devices.

Tape block device front-end
You can also use the tape driver as a block device, but this is restricted to
read-only mode.

This device could be used for the installation of software in the same way as tapes
are used under other operation systems on the zSeries platform. (This is similar to
the way most Linux software distributions are shipped on compact disk using the
ISO9660 filesystem).

One block device node is allocated to each physical device. They follow a similar
naming convention to the character devices. Without devfs the prefix b is used –
/dev/btibm0 for the first device, /dev/btibm1 for the second and so on. With devfs
a device type of /block/disc is used – /dev/tape/0181/block/disc for the first
device, /dev/tape/0182/block/disc for the second and so on.

It is advisable to use only the ISO9660 filesystem on Linux for zSeries tapes, since
this filesystem is optimized for CD-ROM devices, which – just like 3480, 3490, or
3590 tape devices – cannot perform fast seeks.

34 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Tape driver kernel parameter syntax
You do not need to give the tape device driver any kernel parameters if you want
to use tape auto-detection. You should not give it parameters if you are using
devfs. If you want to specify the physical tape devices to be used you must
configure the tape driver by adding a parameter to the kernel parameter line:

Tape driver kernel parameter syntax

WW tape = Z

,

from - to
devno

WY

where:

from-to defines the first and last tape device in a range. All valid tape devices with
addresses in this range are selected. It is not necessary for the from and to
addresses to correspond to actual devices.

devno defines a single tape device.

The tape addresses must be given in hexadecimal notation (without a leading 0x),
for example 0181 or 5a01.

If you supply one or more kernel parameters, for example tape=from-
to,tape=devno,..., the devices are processed in the order in which they appear in
the parameter line. Devices are ignored if they are unknown to the device driver,
non-operational, or set offline. You should specify no more than 128 devices in the
parameter line as this is the maximum number of devices manageable by the
driver.6

Note that the auto-detection option may cause confusing results if you change
your I/O configuration between two IPLs, or if you are running as a guest
operating system in VM/ESA, because the devices might appear with different
names (major/minor combinations) in the new IPL if you are not using devfs.

Tape driver kernel example
If devfs is not used the kernel parameter could be:

tape=181-184,19f

This reserves devices as follows:
0181 will be /dev/ntibm0 /dev/rtibm0 /dev/btibm0
0182 will be /dev/ntibm1 /dev/rtibm1 /dev/btibm1
0183 will be /dev/ntibm2 /dev/rtibm2 /dev/btibm2
0184 will be /dev/ntibm3 /dev/rtibm3 /dev/btibm3
019f will be /dev/ntibm4 /dev/rtibm4 /dev/btibm4

If devfs is used the device names will be:

6. Currently there is no check for duplicate occurrences of the same device number.

Chapter 6. Channel attached tape device driver 35

0181 will be /dev/tape/0181/char/rewinding
/dev/tape/0181/char/nonrewinding
/dev/tape/0181/block/disc

0182 will be .../0182/...
0183 will be .../0183/...
0184 will be .../0184/...
019f will be .../019f/...

Tape driver module parameter syntax
The syntax of the module call to load the tape device driver is:

Tape module parameter syntax

WW modprobe tape390
insmod

Z

,

tape = from - to
devno

WY

where:

tape390
is the name of the device driver module

and the rest of the parameters are the same as those of the tape driver kernel
syntax.

Tape driver module example
modprobe tape390 tape=181-184,19f

The details are the same as “Tape driver kernel example” on page 35.

36 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Tape device driver API
The tape device driver uses the POSIX-compliant tape interface similar to the
Linux SCSI tape device driver.

Some differences in the MTIO interface do exist due to the different hardware:
v MTSETDENSITY has no effect as the recording density is automatically detected.
v MTSETDRVBUFFER has no effect as the drive automatically switches to unbuffered

mode if buffering is unavailable.
v MTLOCK and MTUNLOCK have no effect as the tape device hardware does not

support media locking.
v MTLOAD waits until a tape is inserted rather than loading a tape automatically.
v MTUNLOAD. The drives do not support an unload command, but if MTUNLOAD is

used the next tape in the stacker will be inserted automatically.
v MTCOMPRESSION controls the IDRC (Improved Data Recording Capability). This is

activated if the COUNT argument is non-zero or deactivated if it is zero. On
system startup the IDRC is activated by default.

v MTSETPART and MTMKPART have no effect as the devices do not support
partitioning.

v The contents of the structure returned by MTIOCGET are incomplete as some SCSI
specific data is not applicable.

Tape driver examples
The following examples illustrate the operation of the tape driver on the basis of
the mt utility.

Example 1 – Creating a single-volume tape (without devfs)
In this example a tape with an ISO9660 filesystem is created using the first tape
device. For this the ISO9660 filesystem support must be built into your system
kernel.

Use the mt command to issue tape commands, and the mkisofs command to create
an ISO9660 filesystem:
v Create a Linux directory (somedir) and fill it with the contents of the filesystem

mkdir somedir
cp contents somedir

v Insert a tape
v Ensure the tape is positioned at the beginning

mt -f /dev/ntibm0 rewind

v Set the blocksize of the character driver. (The blocksize 2048 bytes is commonly
used on ISO9660 CD-roms.)

mt -f /dev/ntibm0 setblk 2048

v Write the filesystem to the character device driver
mkisofs -o /dev/ntibm0 somedir

v Rewind the tape again
mt -f /dev/ntibm0 rewind

v Now you can mount your new filesystem as a block device:
mount -t iso9660 -o ro,block=2048 /dev/btibm0 /mnt

Chapter 6. Channel attached tape device driver 37

|
|

|
|

Example 2 – Creating a multivolume tape (with devfs)
In this example files are backed up onto a multivolume tape using the Linux
facility tar.
v Insert a tape medium in the device (here: /dev/tape/019f/char/nonrewinding).
v If necessary, rewind and erase the tape:

mt -f /dev/tape/019f/char/nonrewinding rewind
mt -f /dev/tape/019f/char/nonrewinding erase
mt -f /dev/tape/019f/char/nonrewinding rewind

v Open a new Telnet session to trace the content of /var/log/messages
tail -f /var/log/messages &

v In the first Telnet session backup the files to tape using the tar command with
the option -M (multi-volume), for example:
tar -cvMf /dev/tape/019f/char/nonrewinding /file_specs

v If more tape volumes are required you will be prompted to prepare the next
medium. Go to a third Telnet session and enter the command:
mt -f /dev/tape/019f/char/nonrewinding offl

v Insert a new tape manually (if not using a tape unit magazine with autoload).
v Wait for a message of the form:

Apr 30 16:27:53 boeaet22 kernel: T34xx:A medium was inserted into the tape drive.

in /var/log/messages (see 38). When you see this message hit the return key in
the tar session.

v Repeat the last four steps with further tapes until the backup is complete.

Tape driver restrictions
The driver is unable to detect manual operations on the tape device, in particular
manual tape unloads, and these operations will lead to errors in reading and
writing. The driver provides ioctl functions to control the device and these must
be used, either through the API or by using the Linux mt utility.

Tape driver further information
Basic Linux tape control is handled by the mt utility, which is described in the mt
man page. Note that the sections on SCSI tape devices are inapplicable to zSeries
devices.

38 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Chapter 7. Generic cryptographic device driver

Note on license
This driver is subject to license conditions as reflected in “International
License Agreement for Non-Warranted Programs” on page 209.

This Linux driver (z90crypt) is a generic character device driver for a
cryptographic device. This virtual device will route work to any physical devices
(for example, PCI Cryptographic Coprocessor, PCICC, or PCI Cryptographic
Accelerator, PCICA) installed on the system.

Overview
This driver controls the PCICC or PCICA in a Linux environment. Its current
function is RSA-PKCS 1.2 decryption using a private key. The owner of the key can
decrypt messages that were encrypted using the corresponding public key. This
function is however confined to ″insecure cryptography″ – the private key is not
itself encrypted.

For RSA–PKCS 1.2 see http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/. The
context consists of four steps:
v Encoding – also termed ″padding″ – which adds material to a plain-text message
v Encryption, with a public or private key, by arithmetic operations involving very

large numbers
v Decryption, closely related to encryption, with the counterpart of the key used

for encryption
v Decoding, which for PKCS 1.2 means stripping the padding from the message.

z90crypt performs the last two operations using the private member of a key-pair.

When using a PCICC and invoking z90crypt directly (not via libica), the generation
of public/private key pairs, encryption, signing and signature verification, and
even decryption using a public key are not supported by Linux for zSeries at
present. When using libica, this library supplies these functions via software, with
a speed tradeoff. The PCICA, on the other hand, performs these functions in
hardware.

The following figure illustrates the software relationships:

© Copyright IBM Corp. 2000, 2002 39

HMC settings
On the HMC you can determine what your current settings for cryptographic
cards are, and specify settings for a new card.

Checking your current crypto hardware settings on the HMC
To check that you have the correct settings:
1. Go into single object operation mode with your machine.
2. Right click on the LPAR icon. It must show three parts (chipids, cps and pci

crypto).
3. Click on crypto. This shows the crypto processors. They must be ’online’.

Alternatively:
1. Go into single object operation mode with your machine.
2. Select the LPAR icon.
3. Click customize/delete activation profiles icon on the right.
4. Double click on active profile.
5. Click on the crypto tab (at the bottom). If you do not see this use the small

right arrow in the upper right corner.
You can see the currently set ’control domain index’ and ’usage domain index’
(highlighted number). If the enable modify authority check box is marked then
you have the rights to change settings.

6. Click the pci crypto tab.

Figure 2. z90crypt device driver interfaces

40 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

You see the current coprocessor number in the ’pci cryptographic coprocessor
candidate list’ and ’pci cryptographic coprocessor online list’.

Defining a crypto device to an LPAR
The cryptographic device must be defined to the LPAR. To define the device to the
LPAR, on the HMC, do the following:
1. With the PCICC card installed, bring up the PR/SM™ Panel for your Linux

LPAR. On this panel there is an initial Processor tab. This offers a choice of two
built-in S/390 Cryptographic Co-processor Features (CCF’s). One or both must
be chosen for the PCICC card to operate, but the built-in feature does not
operate under Linux. You must click on one or both, but it makes no difference
which you choose.

2. Select a unique ″cryptographic domain″:
When the CCF(s) are selected, two further tabs appear to the right. They are:
v A ″crypto″ tab. On this tab, select a ″cryptographic domain″ for the LPAR.

This is a number between 0 and 15. The cyptographic domain must be
unique to the LPAR — different from the cryptographic domain for any
other LPAR. The choice, however, has no visible effect.

v The PCI card tab. This offers a choice of PCICCs and/or PCICAs. Be aware,
however, that z90crypt uses only PCICAs when both types of adapters are
installed.

3. If you are using a zSeries z900 (Freeway) GA2 machine: On the PR/SM panel
where you choose which architecture your LPAR will support, choose ESA390.
Do not choose ’Linux only’. If you choose Linux only, no crypto devices will be
available to your LPAR.

Installing z90crypt

Prerequisites
To use the crypto device driver, you will need the driver module and the libica
library. The library is the interface between the application and the z90crypt driver
module. The module and the library can be obtained from the DeveloperWorks
Web site:
v The crypto module:

http://www.ibm.com/developerworks/oss/linux390/download_obj.html
v The libica library:

http://www-124.ibm.com/developerworks/projects/libica
The 390 (31-bit) binary is in ’libica-1.1-2.s390.rpm’. Source code is also available
here in tar form.

v pkcs#11:
http://www-124.ibm.com/developerworks/projects/openCryptoki
The 390 (31-bit) binary is in ’openCryptoki-1.3-2B.s390.rpm’. Source code is also
available here in tar form.

z90crypt is distributed as a package with a name of the form ″z90crypttar.gz″.

Contents of the tar file
The tar file contains:
v The object module devica.o, which can be loaded into the Linux kernel.
v The script z90crypt_install, which copies the object module into a suitable

directory.

Chapter 7. Generic cryptographic device driver 41

v The script z90crypt_load, which loads it.
v The script z90crypt_unload, which unloads it.
v A text README file (if there is any new information augmenting the description

in this chapter).
v The header file z90crypt.h. Structures in this header are essential to interface

your program with z90crypt.

Installing and loading
To install and load the z90crypt driver, follow these steps.

Note: For certain actions, you will need root authority, which is indicated by the
shell prompt character ’#’.

1. You will need to gunzip the driver file (name in the format
″z90crypttar.gz″) and then perform:
$ tar -xvf z90crypttar

to obtain its constituents.
2. Make the shell scripts executable:

$ chmod 744 z90crypt_install
$ chmod 744 z90crypt_load
$ chmod 744 z90crypt_unload

3. Run the install script for z90crypt:
./z90crypt_install

4. Run the script to load z90crypt:
./z90crypt_load

5. (Optional) Check whether z90crypt is in the kernel list of modules:
$ /sbin/lsmod

This should result in output like the following:
Module Size Used by
z90crypt 34160 0 (unused)

If the correct choices have not been made in the PR/SM panel, the module will
not load.

6. Test the hardware response of the driver-module.
$ cat /proc/driver/z90crypt

You should have an output similar to the following:
bash-2.04$ cat /proc/driver/z90crypt

Cryptographic domain: 14
Total device count: 2
PCICA count: 0
PCICC count: 2
requestq count: 0
pendingq count: 0
total open handles: 0

Mask of online devices: 01 means PCICA, 02 means PCICC
0202000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

42 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Mask of waiting work element counts
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

7. Unload the driver.

Note: Always load the driver before using it and always unload it after use.
./z90crypt_unload

8. Unpack the libica library
9. Compile and install the libica library

make -f Makefile.linux

You may choose to program, as outlined below, between the 2nd and 3rd steps.

VM Requirements
APAR VM62905 for VM 4.2 is required in order to use the crypto function in
Linux guests. The Linux guest must also have the following entry defined in
the User Directory Table:

CRYPTO APVIRT

Decryption using z90crypt
How to perform decryption using z90crypt:

Outline of decryption program
These steps are required:
1. Get a device handle, say ″dh″ for z90crypt:

dh= open("/dev/z90crypt", 0_RDWR)

2. Create and load a structure of the type ica_rsa_modexpo_t or
ica_rsa_modexpo_crt_t as described below. You will define the private key to be
used and set the input buffer pointer to the message you want decrypted.

3. Invoke ioctl to activate z90crypt:
rc= ioctl(dh, <function code>, <structure name>)

where:
v <function code> is ICARSAMODEXPO or ICARSACRT
v <structure name> is the name of the structure you created, of the type

ica_rsa_modexpo_t or ica_rsa_modexpo_crt_t
v rc is your name for the return code

For example:
rc= ioctl(dh, ICARSAMODEXPO, mycryptmex)

where:
v rc is your name for the ioctl return code
v dh is your name for the z90crypt device handle

4. Obtain the decrypted and decoded message from the output buffer in the
structure. The original message must have been PKCS 1.2 encoded – that is, the
decrypted message must have correct padding. If so, z90crypt strips the
padding, but if not it gives an error message.

.

Chapter 7. Generic cryptographic device driver 43

The ica_rsa_modexpo_t structure
The ica_rsa_modexpo_t structure is shown in “z90crypt header file” on page 45,
along with the other structures for use with z90crypt. The (private) key consists of
the exponent in *b_key and the modulus in *n_modulus. Both of these are
hexadecimal representations of large numbers. The length L of *n_modulus must
be in the range 64 – 256.

The input data and the exponent b_key must both be of length L. The output data
must be of length L or greater. In all these cases, padding on the left with zeroes is
allowed.

There are mathematical rules for the construction of public/private key-pairs,
constraining the modulus and exponent in each member of a pair, but we omit
these, as z90crypt will not generate key-pairs anyway. See
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/ for a summary of the
mathematics.

The ica_rsa_modexpo_crt_t structure
The only formal difference between this structure and the previous one is in the
definition of the key. This is defined so that the Chinese Remainder Theorem can
be used in decryption/encryption. z90crypt decrypts about 4 times faster if the
CRT definition is used. The key-definition fields are all in hexadecimal
representation. They have these meanings and limitations:
v *bp_key, *bq_key: Prime factors of the modulus. In z90crypt the modulus is

(*bp_key) * (*bq_key). The resulting length L of the modulus, in hexadecimal
representation, must be found before these fields are defined.

v *np_prime, *nq_prime: Exponents used for *bp_key and *bq_key respectively.
v *u_mult_inv: A coefficient used in the z90crypt implementation of decryption by

CRT.
v *bp_key, *np_prime, *u_mult_inv must all be of length 8 + L/2
v *bq_key, *nq_prime must both be of length L/2

The input data length must be L, and the output data length must be at least L, as
in ica_rsa_modexpo_t.

Other functions of z90crypt

Checking hardware status
There is an ioctl interface for checking on underlying hardware in z90crypt. The
function code is ICAZ90STATUS, and you supply a struct ica_z90_status_t (see
“z90crypt header file” on page 45 for the definition) as the argument. When control
returns you will have the number of cards installed and a mask showing which
cards are installed.

Example:
rc= ioctl(dh, ICAZ90STATUS, my_z90crypt_status);

where:

rc is your name for the ioctl return code

dh is your name for the z90crypt device handle

44 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

my_z90crypt_status
is your name for your structure of type ica_z90_status, in which
the status data is to be written.

Quiescing
You need root authority to do this. You can ’quiesce’ z90crypt by executing an ioctl
with function code ICAZ90QUIESCE. This lets the driver finish any outstanding
work, but prevents any new work from being submitted. After 30 seconds, either
all outstanding requests will be completed or else the requesting process will be
notified that its work will not be completed. The only way to ’un-quiesce’ z90crypt
is to unload it and then re-load it.

Example:
rc = ioctl(dh, ICAZ90QUIESCE);

Random number generation
If you do a read from z90crypt, you will get back a string of more-or-less random
bytes. For read, you cannot specify a buffer length of more than 256 bytes.

Example:
rc = read (dh, my_buffer, number_of_bytes);

where:

rc is your name for the ioctl return code

dh is your name for the z90crypt device handle

my_buffer is your name for the byte-array where the random bytes will be
loaded in reponse to the read

Returns from read and ioctl
0 means everything went well and the result is in your output buffer. Return codes
greater than 0 have the following meanings:
v 8 -- invalid operand
v 16 -- device not available.
v 17 -- error in pkcs 1.2 padding (no room for required padding)
v 24 -- error copying to or from user space

A return code of ’-1’ means that errno is one of the following:
v 13 -- permission denied (attempted quiesce but not root)
v 22 -- invalid operand
v 132 -- device is quiescing; no new work being accepted.
v 134 -- unknown error (this usually means a transient error in a crypto device; a

retry may succeed).

For any other error code, look in /usr/include/asm/errno.h

z90crypt header file
Refer to file ’z90crypt.h’ for other important information.

Chapter 7. Generic cryptographic device driver 45

Crypto support for 31-bit emulation
31-bit applications can access the 64-bit z90crypt driver by using the 31-bit
emulation feature.

The best way to build a 31-bit emulation support for hardware cryptography is to
install a 31-bit Linux system and a second with a 64-bit Linux system and the
necessary emulation layer.
1. Compile all necessary programs (like libica, pkcs11, openssl and apache) under

the 31 bit system.
2. Copy the 31-bit versions of the following files to the directory for 31-bit

emulation in your distribution. You can find both files on your 31-bit system in
the /usr/lib directory. The files are:
libica.so
libcrypto.so

3. Copy the rest of your applications (like openssl, apache, ...) on your target 64
bit system (including the 31 bit emulation layer).

4. Now you should be able to run the test programs from OpenSSL, such as:
openssl speed rsa -engine ibmca

Example of use: Apache
This section details the installation of the Apache Web server with SSL and
crypto-card support.

Prerequisites
Table 3. Requirements

Software

Item Source

Operating system: Linux for
S/390, version: kernel 2.4.7

The DeveloperWorks Web site:
http://www.ibm.com/developerworks/oss/linux390/
alpha_src.html

Patches:

v Configure-390.patch

v ibmca.patch Install the ibmca
patch with patch -p5.

The OpenSSL Web site:
http://www-124.ibm.com/developerworks/
projects/libica
Select the Files tab. There is a link to download the
OpenSSL patches. Download Patchset1. All files are
source.

Apache Web server version
1.3.20

Download the Apache Web server. The Web site is:
http://www.apache.com/

Modssl version 2.8.4 Download from the ModSSL Web site:
http://www.modssl.org/

OpenSSL (engine) version 0.9.6b Download from the OpenSSL Web site:
http://www.openssl.org/

pkcs#11 Download from:
http://www-124.ibm.com/developerworks/
projects/openCryptoki
The 390 (31-bit) binary is in openCryptoki-1.3-
2B.s390.rpm. Source code is also available here in tar
form.

46 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Table 3. Requirements (continued)

Software

Item Source

Hardware

Customized crypto card, for example, PCICC or PCICA

Installing the Apache Web server
1. Create the directory my_web_server

2. Change into the directory my_web_server

3. Download the Apache Web server and copy it into the directory
my_web_server:
wget http://httpd.apache.org/dist/httpd/apache_1.3.20.tar.gz

4. Download the Openssl [engine] library and copy it into the directory
my_web_server
wget http://www.openssl.org/source/openssl-0.9.6b-engine.tar.gz

5. Download the Modssl module and copy it into the directory my_web_server
wget http://www.modssl.org/source/mod_ssl-2.8.4-1.3.20.tar.gz

6. Unpack the Apache Web server.
7. Unpack the Openssl [engine] library.
8. Unpack the Modssl module.
9. Now you should have the following directory tree:

10. Change to the Openssl [engine] directory
11. Configure, compile, test and install Openssl.

Prerequisites: Two patches are needed:
v Configure-390.patch
v ibmca.patch Install the ibmca patch with patch -p5.

Makefiles: You may need to edit some makefiles and include some extra libs
with -ldl.
$./config
$ make
$ make test
make install

12. Change to the Modssl module directory
13. Configure the Modssl module:

$./configure --with-apache=../apache-<VERSION> \
--with-ssl=../openssl-engine-<VERSION> \
--enable-module=ssl \
--enable-rule=SSL_EXPERIMENTAL \

14. Change to the Apache directory
15. Configure, compile, create self-sign certificate and install Apache:

Chapter 7. Generic cryptographic device driver 47

$./configure --prefix=/usr/local/apache \
--enable-module=ssl

$ make
$ make certificate TYPE=custom # Here you can type in

the self-sign certificate data
$ make install

16. Define the crypto device in the httpd.conf file:
<IfModule mod_ssl.c>
SSLCryptoDevice ibmca
...
something else
...
</IfModule>

This will activate the hardware.

To check your set-up:
1. Start Apache
2. With your favorite Web browser, try to establish a secure connection (an https

connection)

If Apache comes up on your browser, the connection and encryption are OK.

48 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Part 3. Linux for zSeries Network device drivers

These chapters describe the channel device layer and the device drivers available
to connect zSeries systems to your network.

The drivers described are:
v Chapter 9, “Linux for zSeries CTC/ESCON device driver” on page 63
v Chapter 10, “Linux for zSeries IUCV device driver” on page 71
v Chapter 11, “Linux for zSeries LCS device driver” on page 93
v Chapter 12, “QETH device driver for OSA-Express (QDIO) and HiperSockets” on

page 97

License conditions
Some of these drivers are subject to license conditions as reflected in:
“International License Agreement for Non-Warranted Programs” on page 209.

© Copyright IBM Corp. 2000, 2002 49

50 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Chapter 8. Linux for zSeries Channel device layer

The channel device layer provides a common interface to Linux for zSeries channel
devices. You can use this interface to configure the devices and to handle machine
checks (devices appearing and disappearing).

The drivers using the channel device layer at the time of writing are:
1. LCS – supports OSA-2 Ethernet Token Ring, and OSA-Express Fast Ethernet in

non-QDIO mode.
2. CTC/ESCON – high speed serial link
3. QETH – supports OSA-Express feature in QDIO mode and HiperSockets.

The channel device layer draws together the configuration of the drivers and
resolves conflicts. These could, for example, result in the LCS and CTC drivers in
contention for 3088/08 and 3088/1F devices (which could be either 2216/3172 LCS
compatible devices or ESCON/CTC). To resolve the clashing without the channel
device layer, each of these device drivers had to be configured separately, with a
check for conflicts performed visually.

The channel device layer is used on a per-driver basis, not on a system basis. For
example a CTC driver which is not configured to use the channel device layer can
be used in conjunction with an LCS driver which is configured to use it.

Description
The current configuration of the channel device layer is held (in human readable
form) in the file /proc/chandev.

You can pass arguments to the channel device layer in three ways:
1. Piping them to /proc/chandev, for example:

echo reprobe >/proc/chandev

will cause un-initialized channel devices to be probed.
2. Editing them into /etc/chandev.conf – this will only take effect after a reboot

of after executing the sequence of commands mentioned in “Read
configuration” on page 60. You can also add comments to the configuration file.
Comment lines must be prefixed with a ’#’ character.

3. Using the ’chandev=’ keyword on the Linux boot command line, for example:
chandev=noauto,0x0,0x480d;noauto,0x4810,0xffff

will exclude all devices from auto-detection except for subchannels 0x480e and
0x480f.

Multiple options can be passed, separated by commas, but no spaces are allowed
between parameters.

To be consistent with other hot-pluggable architectures, the script pointed to by
/proc/sys/kernel/hotplug (this will normally be /sbin/hotplug) will be called
automatically on startup or on a device machine check as follows:.

© Copyright IBM Corp. 2000, 2002 51

|
|

/sbin/hotplug chandev <start starting_devnames>
<machine_check (devname last/pre_recovery_status)

(current/post_recovery_status)>.

The channel device layer does not open stdin, stdout, or stderr so it is advisable
that you open them at the start of your script, as in this sample which starts
devices as they become available:
#!/bin/bash
exec >/dev/console 2>&1 0>&1
Remove the comment symbol from the line below for debugging purposes.
echo $*
if ["$1" = "chandev"] && ["$2" = "start"]
then

shift 2
while ["$1" != ""] && ["$1" != "machine_check"]
do

isup=’ifconfig $1 2>/dev/null | grep UP’
if ["$isup" = ""]
then

ifup $1
fi
shift

done
fi

For example if devices tr0 and ctc0 become active at a time when eth0 and eth1
are subject to a gone machine check and eth2 is subject to a revalidate machine
check (which is normally fully recoverable), the parameters passed to hotplug
would be:
/sbin/hotplug chandev start tr0 ctc0

machine_check eth0 gone gone eth1 gone gone
eth2 revalidate good

This script can be used, for example, to call /etc/rc.d/init.d/network start when
a device appears. (This makes the ipldelay kernel boot parameter obsolete when
Linux is running native.) It may also be used to recover from bad machine checks
if the default machine check handling is inadequate. The machine checks that can
be presented as parameters to the channel device layer are good, not_operational,
no_path, revalidate and device_gone.

The channel device layer will wait a few seconds after machine checks before
running /sbin/hotplug because a machine check on one device is often followed
by checks on others. It is better to handle multiple devices with a single script,
rather than with individual scripts for each device, which could compete for
resources.

Channel device layer options

Terminology
devno a 16 bit unsigned number (usually expressed as hexadecimal) which

uniquely identifies a subchannel connected to a device.

force list
a term (specific to channel device layer) describing a range of devno which
are to be configured specifically (as opposed to configuration by
auto-detection).

auto machine check recovery bitfield

52 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

The bits in this field signify:

not_operational
0x1

no_path
0x2

revalidate
0x4

gone 0x8

chan_type bitfield

The bits in this field signify:

ctc 0x01

escon 0x02

lcs 0x04

osad 0x08 – reserved, not used in this release

qeth 0x10

A single device driver may handle more than one type of device. In this
case the values corresponding to each device handled are summed to
create the parameter

Device identification (CTC/ESCON and LCS)
This section describes how to use the channel device layer to control CTC, ESCON
and LCS devices.

The CTC/ESCON and LCS drivers are configured (for a single device) with the
command:

CTC, ESCON, LCS device identification

WW
(1)

ctc devif_num , read_devno , write_devno
escon -1
lcs

W

W
0

,
memory_usage_in_k 0

,
port_no 0
protocol_no ,

checksum_received_ip_pkts 0
,

use_hw_stats

WY

Notes:

1 devif_num is concatenated to the device type, for example ctc1, escon7
or lcs2.

Where:

ctc | escon | lcs
specifies the channel device type

Chapter 8. Linux for zSeries Channel device layer 53

devif_num
is the device interface number.

This can be 0 to 255 for a specific number, or ’-1’ to indicate you do not
care which device interface number is chosen.

read_devno
is the read device address.

write_devno
is the write device address.

memory_usage_in_k
is the memory to be allocated for buffers. The default (zero) means ’let the
driver decide’.

port_no
is the relative adapter number for LCS.

protocol_no
is the protocol number for CTC or ESCON. This can take the values:
v 0 for compatibility mode (the default; used with non-Linux peers other

than OS/390 and z/OS)
v 1 for extended mode,
v 2 meaning ″CTC-based tty″ (this is only supported on Linux -Linux

connections),
v 3 for compatibility mode with OS/390 and z/OS.

checksum_received_ip_pkts
is a flag: ’1’ = true; ’0’ (default) = false.

use_hw_stats
is a flag: ’1’ = true; ’0’ (default) = false.

For examples of device identification see:
v CTC, ESCON: “Configuration examples” on page 63
v LCS: “LCS channel device layer configuration example” on page 93

The CTC/ESCON and LCS drivers are configured for a range of devices with the
command:

CTC, ESCON, LCS device range

WW ctc , start_devno , end_devno
escon
lcs

W

W
0

,
memory_usage_in_k 0

,
port_no 0
protocol_no ,

checksum_received_ip_pkts 0
,

use_hw_stats

WY

Where:

start_devno
is the start address of a range.

54 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

end_devno
is the end address of a range.

The rest of the parameters are as above. All addresses within the specified range
will be scanned and any devices found which match the device type specified will
be assigned.

For examples of device range identification see:
v CTC, ESCON: “Configuration examples” on page 63
v LCS: “LCS channel device layer configuration example” on page 93

Device identification (QDIO)
For the syntax of the QETH device driver for the OSA-Express feature or
HiperSockets with the channel device layer see “Configuring QETH for
OSA-Express and HiperSockets using the channel device layer” on page 99.

Commonly used options
These options are used to set up the system.

add parameters

WW
all devnos

add_parms , chan_type , string
, lo_devno , high_devno

WY

chan_type is defined in chan_type bitfield in the terminology on page 53.

This is for device driver specific options which are passed as a string to the driver
and are not dealt with by the channel device layer. This string cannot contain
spaces. lo_devno and high_devno are optional parameters to specify a range.

The string is interpreted by the driver (see the particular driver chapter for details).

delete parameters

WW
all

del_parms
, chan_type

, exact_match
, lo_devno

WY

chan_type is defined in the terminology on page 53.

This deletes some or all device driver specific options. If chan_type is not specified
all the strings will be deleted. If exact_match is set to ’1’ the driver parameters will
only be removed where chan_type is exactly equal. If exact_match is set to ’0’ the

Chapter 8. Linux for zSeries Channel device layer 55

parameters are to be removed where any bit matches chan_type. lo_devno is an
optional parameter to specify that the delete is only to happen if this parameter
matches a lo_devno in a defined range.

no auto-detection

WW
all

noauto
, lo_devno , high_devno

WY

This stops auto-detection of channel devices in the given range of device numbers.
noauto without a device range will stop auto-detection of all channel devices.

use device names

WW use_devno_names WY

This instructs the channel device layer to assign device names based on the cuu
number of the read channel. For example a Token Ring read channel with cuu
number 0x7c00 would be assigned an interface name of tr0x7c00. This may be
used to avoid device name conflicts. The default is to generate device names in
sequence, so the default name for the channel above might be tr2.

Power user options
These options are used for maintenance or fine-tuning.

delete no-auto ranges

WW
all

del_noauto
, devno

WY

Delete the range containing devno, or all noauto ranges if devno is not given.

delete forced device

WW del_force , read_devno WY

Remove a forced channel device from the force list.

56 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

do not use device names

WW dont_use_devno_names WY

Cancel a use_devno_names command.

add a device

WW add_model , chan_type , cu_type , cu_model , dev_type , dev_model , W

W max_port_no , automatic_machine_check_handling WY

Probe for the device specified. ’-1’ may be used as a wildcard for any of the
parameters except chan_type or automatic_machine_check_handling. Set
max_port_no to zero (’0’) for non LCS devices.

chan_type and automatic_machine_check_handling are defined in the terminology
on page 52.

delete a device

WW del_model , cu_type , cu_model , dev_type , dev_model WY

Remove the device specified. ’-1’ may be used as a wildcard for any of the
parameters.

delete all devices

WW del_all_models WY

Remove all devices.

auto-detect any devices

WW non_cautious_auto_detect WY

Chapter 8. Linux for zSeries Channel device layer 57

Attempt to auto-detect devices even if their type/model pairs do not
unambiguously identify the device. For example 3088/1F’s can either be CTC/ESCON
or 3172 LCS compatible devices. If the wrong device driver attempts to probe these
channels there may be long delays on startup or even a kernel lockup, so use this
option with caution.

auto-detect known devices

WW cautious_auto_detect WY

Do not attempt to auto-detect devices unless their type/model pairs
unambiguously identify the device. (This is the default behavior.)

machine check recovery

WW
all devnos

auto_msck , auto_msck_recovery
, lo_devno , high_devno

WY

Specify the kind of machine check recovery to be performed over a range of
devices. auto_msck_recovery is defined in the terminology on page 52.

delete machine check recovery

WW
all

del_auto_msck
, devno

WY

Delete machine check recovery for the range of devices including devno, or all
machine check recovery if devno is not specified.

null model information

WW reset_clean WY

Reset all model information, forced devices and noauto lists to null.

58 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

default model information

WW reset_conf WY

Reset all model information, forced devices and noauto lists to default settings.

empty model information

WW reset_conf_clean WY

Reset all model information, forced devices and noauto lists to empty.

shutdown device

WW
all

shutdown
device_name
read_devno

WY

Shut down the particular device identified by device_name or read_devno,
de-register it and release its interrupts. If no parameter is given all devices are shut
down.

reprobe

WW reprobe WY

Call probe method for channels whose interrupts are not owned.

unregister general probe

WW
all

unregister_probe
probefunc_addr

WY

Unregister a probe function, or unregister all probe functions if no address given.

Chapter 8. Linux for zSeries Channel device layer 59

unregister specific probe

WW unregister_probe_by_chan_type chan_type WY

Unregister all probe functions which match the chan_type bitfield exactly. This is
useful if you want a configuration to survive a kernel upgrade.

read configuration

WW read_conf WY

Read instructions from /etc/chandev.conf.

This is used to make the channel device layer read from /etc/chandev.conf on
boot, or to cause the channel device layer to re-read its configuration during
operation.

do not read configuration

WW dont_read_conf WY

Do not read instructions from /etc/chandev.conf on boot.

For example the following sequence of commands piped to /proc/chandev should
have the same effect as rebooting for channel devices:
v shutdown

v reset_conf

v read_conf

v reprobe

See also
If you wish to write a driver which is compatible with the channel device layer
see:
v /linux/include/asm-s390/chandev.h – for the API (which is commented), and
v /linux/drivers/s390/misc/chandev.c – for the code.

60 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Files
/proc/chandev

This holds the current configuration. Use
cat /proc/chandev

to see the configuration, and
echo command >/proc/chandev

to enter a new command.

/etc/chandev.conf
This file can be used to configure the channel device layer kernel
parameters.

/sbin/hotplug
This is a user script or executable which is run whenever devices come
online or go offline (’appear’ or ’disappear’).

Chapter 8. Linux for zSeries Channel device layer 61

62 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Chapter 9. Linux for zSeries CTC/ESCON device driver

A CTC connection or an ESCON connection is the typical high speed connection
between mainframes. The data packages and the protocol of both connections are
the same. The difference between them is the physical channel used to transfer the
data.

Both types of connection may be used to connect a mainframe, an LPAR, or a VM
guest to another mainframe, LPAR or VM guest, where the peer LPAR or VM
guest may reside on the same or on a different system.

A third type of connection is virtual CTC which is a software connection between
two VM guests on the same VM system and which is faster then a physical
connection.

The Linux for zSeries CTC device driver supports all three types of connection and
can be used to establish a point-to-point TCP/IP connection between two Linux for
zSeries systems or between a Linux for zSeries system and another operating
system such as VM/ESA, VSE/ESA, Linux for S/390, OS/390 or z/OS.

CTC/ESCON features
v Any number of CTC and/or ESCON connections available.
v Autosense mode available (the driver will pick all available channels starting

with the lowest device numbers).
v If built monolithically (not as a module) the parameters can be used to describe

a maximum of 16 devices. If more channels are available and ’noauto’ is not
specified the additional channels are auto-sensed and used in ascending order.

CTC/ESCON with the channel device layer

Channel device layer configuration
The default for this driver is to select channels in order (automatic channel
selection). If you need to use the channels in a different order, or do not want to
use automatic channel selection, you can specify alternatives using the ctc= kernel
parameter.

For the syntax of the CTC/ESCON channel device layer configuration see “Device
identification (CTC/ESCON and LCS)” on page 53.

Configuration examples
For one network device (CTC):

ctc0,0x7c00,0x7c01,200,0,0,0

This tells the channel device layer to force ctc0 (if detected) to use device
addresses 7c00 and 7c01. 200 kilobytes are to be allocated for buffers. The usual
protocol id (0) will be used, checksumming is not to be done on received ip
packets and hardware statistics are not to be used. (For devices such as ctc which
do not have hardware statistics this parameter is ignored.)

Or for two network devices (CTC + ESCON):

© Copyright IBM Corp. 2000, 2002 63

ctc0,0x601,0x600
escon3,0x605,0x608

This forces ctc0 to use device addresses 601 and 600 and escon3 to use 605 and
608. All other parameters are defaulted.

To scan a range of devices:
ctc,0x700,0x7ff,100

will scan the range 0x700 to 0x7ff for all CTC devices and allocate a buffer of 100
kilobytes for every device found. A device name will be generated for each device.

CTC/ESCON without the channel device layer

Kernel parameter syntax
The default for this driver is to select channels in order (automatic channel
selection). If you need to use the channels in a different order, or do not want to
use automatic channel selection, you can specify alternatives using the ctc= kernel
parameter.

CTC kernel parameter

WW Z

:

ctc = devicename : read_channel
: write_channel

: protocol-id
noauto

WY

Note: The entire parameter is repeated (separated by spaces) for each CTC/ESCON
device.

Where:

devicename
is ctc or escon concatenated with the channel number, for example ctc1 or
escon99.

read_channel
is the read channel address (in hexadecimal preceded by 0x).

write_channel
is the write channel address (in hexadecimal preceded by 0x). If omitted
the default is the read channel address plus 1.

protocol-id
is the protocol number for CTC or ESCON. This can take the values:
v 0 for compatibility mode (the default; used with non-Linux peers other

than OS/390 and z/OS)
v 1 for extended mode,
v 2 meaning ″CTC-based tty″ (this is only supported on Linux -Linux

connections),
v 3 for compatibility mode with OS/390 and z/OS.

64 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Using noauto as the device name disables automatic channel selection. If the only
parameter given is noauto the CTC driver is disabled. This might be necessary, for
example, if your installation uses 3271 devices or other such devices that use the
CTC device type and model, but operate with a different protocol.

Kernel example
For one network device (CTC):

ctc=ctc0:0x600

Or for two network devices (CTC + ESCON):
ctc=ctc0:0x601:0x600:escon3:0x605:0x608,

Module parameter syntax
These parameters can be passed to the CTC/ESCON driver module by insmod, or
can be specified in the parameter file "/etc/modules.conf" or "/etc/conf.modules"
(the file name depends on the Linux distribution).

CTC module options

WW
(1) (2)

insmod modulename
modprobe
options

ctc = Z

:

kernel-parameter WY

Notes:

1 insmod or modprobe on the command line or options in the parameter
file.

2 When using insmod, modulename includes the path to the module’s
object file (for example /lib/modules/.../ctc.o). When using
modprobe, modulename is the module name without the path (ctc).

Where:

kernel-parameter
is as defined above in “Kernel parameter syntax” on page 64

Note: If the parameter line file is used, the CTC driver may be loaded by typing
modprobe ctc on the command line.

Figure 3. Connection of two systems via CTC

Chapter 9. Linux for zSeries CTC/ESCON device driver 65

|||||||||||||||||||||||||||||||||||

|

|

||
|

||
|
||

Module example
For one network device (CTC):

Command line example:
insmod ctc ctc=ctc0:0x0600:0x0601

or
insmod /lib/modules/ctc.o ctc=ctc0:0x0600

Parameter file example:
options ctc ctc=ctc0:0x0600

Or for two network devices (CTC + ESCON):

Command line example:
insmod /lib/modules/ctc.o ctc=ctc0:0x0601:0x0600:escon3:0x0605:0x0608

or

Parameter file example:
options ctc ctc=ctc0:0x0601:0x0600:escon3:0x0605:0x0608

CTC/ESCON – Preparing the connection
1. Connection

Prior to activation a channel connection is required. This can be a real or virtual
connection :
v Real Channels

Connect the systems with a pair of channels to the remote system. Verify that
the read channel of one is connected to the write channel of the other.

v LPAR to LPAR Channels
Select a pair of channels on each system. Verify that the read channel of one
is connected to the write channel of the other and vice-versa.

v VM Channels
a. Obtain a subnet from your TCP/IP communications staff. It is important

that the subnet used by your Linux guests is not the same as that used by
VM/ESA on the LAN. The Linux system is a separate network and
should be treated as such.

b. Take one address from that subnet and assign it to VM.
c. Define two virtual channels to your user ID. The channels may be

defined in the VM User Directory using directory control SPECIAL
statements, for example:

Figure 4. Connection of two systems via CTC

66 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

special 0c04 ctca
special 0c05 ctca

or by using the CP commands:
define ctca as 0c04
define ctca as 0c05

from the console of the running CMS machine (preceded by #CP if
necessary), or from an EXEC file (such as PROFILE EXEC A).

d. Add the necessary VM TCP/IP routing statements (BsdRoutingParms or
Gateway). Use an MTU size of 9216 and a point-to-point host route
(subnet mask 255.255.255.255). If you use dynamic routing, but do not
wish to run routed or gated on Linux , update the VM ETC GATEWAYS file
to include ″permanent″ host entries for each Linux guest.

e. Bring these updates online by using OBEYFILE or by recycling TCPIP
and/or ROUTED as needed.

Connect the virtual channels to the channels of the VM TCP/IP target user
ID. You must couple the Linux read channel to the VM TCP/IP write
channel and vice versa. The coupling can be done with the following CP
commands (following the previous example)

couple 0c04 to tcpip 0c05
couple 0c05 to tcpip 0c04

The VM TCP/IP channel numbers depend on the customisation on the
remote side. In this example, the CTC read channel 0c04 is connected to the
VM TCP/IP write channel 0c05. Similarly, CTC write (0c05) is connected to
VM TCP/IP read (0c04).

You can write the define and couple commands into the CMS PROFILE EXEC
A script. The Linux for zSeries virtual machine must always be IPLed as CMS
before IPLing as Linux in order for these commands to take effect.

Instead of connecting to the VM TCP/IP user ID, you can connect to any
other virtual machine in which a Linux for zSeries, z/OS, OS/390, or VSE
system is running.

2. Definitions on the remote side
Set up the TCP/IP on the remote side, as described in the reference manuals.
This will vary depending on which operating system is used on the remote
side.

Note: It is important that you have IOBUFFERSIZE 32678 defined because the
Linux for zSeries CTC driver works with 32k internally. This is
configurable for each device by writing the value to the buffersize file for
that device (/proc/net/ctc/<devicename>/buffersize), for example

echo 32768 > /proc/net/ctc/ctc0/buffersize

3. Activation on the remote side
Activate the channels on the remote side. This again will vary depending on
the operating system used on the remote side.

4. Activation on the Linux for zSeries side
The network devices are activated with the ifconfig command. It is necessary
to define the right MTU size for the channel device, otherwise it will not work
properly. Please use the same MTU size (default 1500) that is defined on the
remote side:

Chapter 9. Linux for zSeries CTC/ESCON device driver 67

The syntax of this command is:

CTC ifconfig command

WW ifconfig device_id ip_address pointopoint to_address W

W
mtu 32760

mtu max_transfer_unit up
down

WY

Where:

device_id
identifies the device. (ctc0 to ctcn or escon0 to esconn)7

ip_address
is the IP address of the local side.

to_address
is the IP address of the remote side.

max_transfer_unit
is the size of the largest IP packet which may be transmitted

up activates the interface

down deactivates the interface

An example of the use of ifconfig is:
ifconfig ctc0 10.0.51.3 pointopoint 10.0.50.1 mtu 32760

If you are using a CTC-based tty connection you must create a device node
with major number 43 in the Linux /dev directory:

mknod /dev/ttyZ0 c 43 0
mknod /dev/ttyZ1 c 43 1

and so on

No network device setup is needed in this case. The CTC-based tty emulates a
standard serial port including the usual handshake lines
(RTS/CTS/DTR/DSR/CD). To establish a connection, simply open the
previously created device (/dev/ttyZx) on both peers using a standard terminal
emulator or activate a standard getty on it.

Notes

Device major number 43 is reserved on PC architecture for /dev/isdn. This
number has been allocated to CTC/ESCON on Linux for zSeries because on
zSeries there is no ISDN support. The connection is established when the tty
device is opened. Following closure of the tty device, shutdown of the
connection is delayed for about ten seconds. This delay has been implemented

7. When using the channel device layer only, all CTC network devices are named ctcn, regardless of whether they are virtually
defined or a real ESCON.

68 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

to avoid unnecessary initialization sequences if programs quickly open and
close the device . For this reason, if the driver is loaded as a module, it can
only be unloaded after first closing all CTC-based ttys and then waiting for this
delay to expire.

CTC/ESCON – Recovery procedure after a crash
In a native Linux for zSeries system if one side of a CTC connection crashes it is
not possible to simply reconnect to the other side after a reboot. The correct
procedure is:
1. Stop the CTC connection on the Linux for zSeries side using (for instance):

ifconfig escon0 down

2. Activate the channels on the remote side.
3. Activate the channels on the Linux for zSeries side, for example:

ifconfig escon0 10.0.0.1 pointopoint 10.0.50.1 mtu 32760

Chapter 9. Linux for zSeries CTC/ESCON device driver 69

70 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Chapter 10. Linux for zSeries IUCV device driver

The Inter-User Communication Vehicle (IUCV) is a VM/ESA communication
facility that enables a program running in one virtual machine to communicate
with another virtual machine, or with a control program, or even with itself. The
communication takes place over a predefined linkage called a path.

The Linux for zSeries IUCV device driver is a network device, which uses IUCV to
connect Linux kernels running on different VM user IDs, or to connect a Linux
kernel to another VM guest such as a TCP/IP service machine.

IUCV features
The following features are supported:
v Multiple output paths from a Linux guest
v Multiple input paths to a Linux guest
v Simultaneous transmission and reception of multiple messages on the same or

different paths
v Network connections via a TCP/IP service machine gateway

IUCV kernel parameter syntax
The driver must be loaded with the IDs of the guest machines you want to connect
to:

IUCV kernel parameter

WW iucv = Z

:

userid WY

Parameter:

userid Name of the target VM guest machine (in capital letters)

© Copyright IBM Corp. 2000, 2002 71

|||||||||||||||||||

||

IUCV kernel parameter example
The following diagram shows the possible connection of two Linux for zSeries
machines:

The command
iucv=VMTCPID:LINUX2

connects the LINUX1 system to the TCP service machine and the other Linux
system.

IUCV module parameter syntax
The driver must be loaded with the IDs of the guest machines you want to connect
to:

IUCV module parameter

WW insmod netiucv iucv = Z

:

userid WY

Parameter:

userid Name of the target VM guest machine (in capital letters)

IUCV module parameter example
The example of “IUCV kernel parameter example” could be set up by starting the
IUCV module with:

insmod netiucv iucv=VMTCPID:LINUX2

Figure 5. Connection of two systems using IUCV

72 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

|

|||||||||||||||||||||||

||

|

IUCV – Preparing the connection
This is an additional task that you must perform before you can use the IUCV
network link. If Linux is being used as a network hub instead of VM TCP/IP, the
concepts discussed remain the same, though the syntax will be different.

The following steps must be undertaken in VM:
1. Obtain a subnet from your TCP/IP communications staff. It is important that

the subnet used by your Linux guests not be the same as that used by VM on
the LAN. It is a separate network and should be treated as such.

2. Take one address from that subnet and assign it to VM. Update your PROFILE
TCPIP file with a home entry, device, link, and start statements for each guest,
for example:

Home
vm_ip_address link_name1
vm_ip_address link_name2

Device device_name1 IUCV 0 0 linux_virtual_machine1 A
Link link_name1 IUCV 0 device_name1

Device device_name2 IUCV 0 0 linux_virtual_machine2 A
Link link_name2 IUCV 0 device_name2

Start device_name1
Start device_name2

3. Add the necessary VM TCP/IP routing statements (BsdRoutingParms or
Gateway). Use an MTU size of 9216 and a point-to-point host route (subnet
mask 255.255.255.255). If you use dynamic routing, but do not wish to run
routed or gated on Linux , update the VM ETC GATEWAYS file to include
″permanent″ host entries for each Linux guest.

4. Bring these updates online by using OBEYFILE or by recycling TCPIP and/or
ROUTED as needed.

5. Add the statement
IUCV ALLOW
IUCV ANY

to your VM user directory entry.

The Linux commands needed to start communications through a TCP/IP service
machine are:

Chapter 10. Linux for zSeries IUCV device driver 73

TCP/IP ifconfig command

WW ifconfig iucv iucv_number W

W your_address pointopoint service_address
options

WY

options:

mtu 9216

mtu n
netmask mask_value

Parameters:

iucv_number
Path number (for example 0)

your_address
TCP/IP address of your machine

pointopoint
required to establish a point-to-point connection to a service machine

service_address
Address of the TCP/IP service machine to connect to

n maximum transfer unit size. The default is 9216, which is suitable for use
with the zSeries Virtual Image Facility for Linux (VIF). The maximum
value is 32764.

mask_value
Mask to identify addresses served by this connection

route command

WW route add -net default iucv iucv_number WY

Parameters:

iucv_number
Path number defined above

74 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

inetd command

WW
(1)

inetd WY

Notes:

1 Not required if the IUCV driver is started during boot.

The commands needed to start direct communications to another guest are:

user-to-user ifconfig command

WW ifconfig iucv iucv_number W

W guest_0_address pointopoint guest_1_address WY

Parameters:

iucv_number
Path number (for example 0)

guest_0_address
TCP/IP address of your machine

guest_1_address
TCP/IP address of target machine

IUCV – Further information
The standard definitions in the VM TCP/IP configuration files apply.

For more information of the VM TCP/IP configuration see: VM/ESA TCP/IP
Planning and Customization , SC24-5847-01.

IUCV restrictions
v This device driver is only available to Linux for zSeries systems running as

guests under VM/ESA or z/VM.

IUCV Application Programming Interface (API)
Linux IUCV is a full duplex, event driven facility which transfers whole records at
a time. To exploit any of the IUCV functions one must first register with IUCV
using the function iucv_register_program(). For more information on all IUCV
functionality refer to the CP Programming Services book, available on the Web as
manual number SC24-5760 at http://www.ibm.com/s390/vm/pubs .

Chapter 10. Linux for zSeries IUCV device driver 75

IUCV API
In this description of the API parameters which are pointers do not necessarily
require a value. A ’NULL’ pointer will be ignored by the functions. If a parameter is
not a pointer a value must be provided. All addresses passed to IUCV must be real
addresses in the VM guest machine.

iucv_register_program

Purpose: To register an application with IUCV.

Note: pgmmask
v When pgmname, userid and pgmmask are provided the mask is used as is.
v When pgmname and userid are provided and pgmmask is not provided the default

mask is all 0xff
v When pgmname and pgmmask are provided and userid is not provided the first 8

bytes of the mask are 0x00 and the last 16 bytes are copied from the last 16 bytes
of pgmmask.

v When pgmname is provided and userid and pgmmask are not provided the first 8
bytes of the mask are 0x00 and the last 16 bytes are 0xff.

API Descriptor:

Name Type Input/Output Description

pgmname uchar [16] input User identification

userid uchar[8] input Machine
Identification

pgmmask uchar[24] input Indicates which bits
in the userid and
pgmname combined
will be used to
determine who is
given control

ops iucv_interrupt_ops_t input Address of vector of
interrupt handlers

pgm_data * void input Application data
passed to interrupt
handlers. (token)

Return value: type iucv_handle_t

This is a token used as input value for iucv_connect, iucv_accept and
iucv_unregister

A value of zero (0) indicates that an error occurred in registration. Check syslog
for details. The reasons for the error could be:
v Machine size is greater than 2 GB
v new_handler kmalloc failed
v pgmname was not provided
v ops is not defined
v pathid_table kmalloc failed
v An application with this pgmname, userid and pgmmask is already registered
v iucv_declare_buffer failed

76 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

iucv_unregister_program

Purpose: Unregister application with IUCV

API Descriptor:

Name Type Input/Output Description

handle iucv_handle_t input Token which was
returned during
registration to
identify application
to be unregistered

Return value: type int

This should be zero (0) to indicate a normal return.

iucv_accept

Purpose: After the user has received a Connection Pending external interrupt this
function is issued to complete the IUCV communication path

API Descriptor:

Name Type Input/Output Description

pathid u16 input path identification
number

msglim_reqstd u16 input the number of
outstanding messages
requested

user_data uchar[16] input 16-bytes of user data

flags1 int input Contains options for
the path:

IPPRTY 0X20 input specifies that you
want to send a
priority message

IPRMDATA 0X80 input specifies that your
program can handle
a message in the
parameter list

IPQUSCE 0X40 input specifies that you
want to quiesce the
path being
established

handle iucv_handle_t input address of token

pgm_data * void input application data
passed to interrupt
handlers

flags1_out * int output 0x20 byte ON,
indicates you may
send a priority
message

msglim * u16 outVput number of
outstanding messages

Chapter 10. Linux for zSeries IUCV device driver 77

Return value: type int

A zero (0) or positive value is the return code from CP IUCV.

A return code of -EINVAL means the handle given was NULL.

iucv_connect

Purpose: This function establishes an IUCV path. Although the connect may have
completed successfully you are not able to use the path until you receive an IUCV
″Connection Complete″ external interrupt.

API Descriptor:

Name Type Input/Output Description

pathid u16 output path identification
number

msglim_reqstd u16 input the number of
outstanding messages
requested

user_data uchar[16] input 16-bytes of user data

userid uchar[8] input User identification

system_name uchar[8] input 8-bytes identifying
the system

flags1 int input Contains options for
the path:

IPPRTY 0X20 input specifies that you
want to send a
priority message

IPRMDATA 0X80 input specifies that your
program can handle
a message in the
parameter list

IPQUSCE 0X40 input specifies that you
want to quiesce the
path being
established

IPLOCAL 0X01 input allows an application
to force the partner
to be on the local
system. If IPLOCAL is
specified then target
class cannot be
specified.

flags1_out * int output 0x20 byte ON
indicates you may
send a priority
message

msglim * u16 outVput number of
outstanding messages

handle iucv_handle_t input address of handler

78 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

pgm_data void * input application data
passed to interrupt
handlers

Return value: type int

A zero (0) or positive value is the return code from CP IUCV or the internal function
add_pathid.

A return code of -EINVAL means an invalid handle passed by application or the
pathid address is NULL.

iucv_purge

Purpose: This function cancels a message that you have sent

API Descriptor:

Name Type Input/Output Description

pathid u16 input path identification
number

msgid u32 input specifies the ID of the
message to be
purged. If msgid is
specified then pathid
and srccls must also
be specified.

srccls u32 input specifies the source
message class

audit uchar[3] output contains information
about any
asynchronous error
that may have
affected the normal
completion of this
message.

Return value: type int

This is the return code from CP IUCV.

iucv_query_bufsize

Purpose: This function determines how large an external interrupt buffer IUCV
will require to store information.

API Descriptor: Void

Return value: type ulong

This is the required size of the external interrupt buffer.

Chapter 10. Linux for zSeries IUCV device driver 79

iucv_query_maxconn

Purpose: This function determines the maximum number of connections that may
be established by the virtual machine.

API Descriptor: Void

Return value: type ulong

Maximum number of connections.

iucv_quiesce

Purpose: This function temporarily suspends incoming messages on an IUCV
path. You can later reactivate the path by invoking the iucv_resume function.

API Descriptor:

Name Type Input/Output Description

pathid u16 input path identification
number

user_data uchar[16] input 16-bytes of user data

Return value: type int

This is the return code from CP IUCV.

iucv_receive

Purpose: This function receives messages that are being sent to you over
established paths. To receive data buflen must be 8-bytes or greater.

API Descriptor:

Name Type Input/Output Description

pathid u16 input path identification
number

msgid u32 input specifies the message
ID. If msgid is
specified then pathid
and srccls must also
be specified

trgcls u32 input specifies target class

buffer * void input address of buffer to
receive

buflen ulong input length of buffer to
receive

flags1_out * int output Contains information
about the path:

IPNORPY 0x10 specifies that a reply
is required

IPPRTY 0x20 specifies that you
want to send a
priority message

80 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

IPRMDATA 0x80 specifies the data is
contained in the
parameter list

residual_buffer * void output address of buffer
updated by the
number of bytes you
have received

residual_length * ulong *output Contains one of the
following values
depending on
whether the receive
buffer is:

v The same length as
the message – this
field is zero.

v Longer than the
message – this
field contains the
number of bytes
remaining in the
buffer.

v Shorter than the
message, this field
contains the
residual count
(that is, the
number of bytes
remaining in the
message that does
not fit into the
buffer. In this case
return code is 5.

Return value: type int

A zero (0) or positive value is the return code from CP IUCV.

A return code of -EINVAL means the buffer address is pointing to NULL.

iucv_receive_array

Purpose: This function receives messages that are being sent to you over
established paths. To receive data the first entry in the array must be 8-bytes or
greater.

API Descriptor:

Name Type Input/Output Description

pathid u16 input path identification
number

msgid u32 input specifies the message
ID. If msgid is
specified then pathid
and srccls must also
be specified

trgcls u32 input specifies target class

Chapter 10. Linux for zSeries IUCV device driver 81

buffer * iucv_array_t input address of array of
buffers

buflen ulong input total length of buffers

flags1_out * int output Contains information
about the path:

IPNORPY 0x10 specifies that a reply
is required

IPPRTY 0x20 specifies that you
want to send a
priority message

IPRMDATA 0x80 specifies the data is
contained in the
parameter list

residual_buffer * void output address points to the
current list entry
IUCV is working on

residual_length * ulong *output Contains one of the
following values
depending on
whether the receive
buffer is:

v The same length as
the message – this
field is zero.

v Longer than the
message – this
field contains the
number of bytes
remaining in the
buffer.

v Shorter than the
message, this field
contains the
residual count
(that is, the
number of bytes
remaining in the
message that does
not fit into the
buffer. In this case
return code is 5.

Return value: type int

A zero (0) or positive value is the return code from CP IUCV.

A return code of -EINVAL means the buffer address is pointing to NULL.

iucv_reply

Purpose: This function is used to respond to a two-way message that you have
received. You must specify completely the message to which you wish to reply
(pathid, msgid and trgcls). The msgid and trgcls are the values returned by the
previous IUCV receive.

82 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

API Descriptor:

Name Type Input/Output Description

pathid u16 input path identification
number

msgid u32 input specifies the message
ID.

trgcls u32 input specifies the target
class

flags1 int input Contains options for
the path:

IPPRTY 0x20 specifies that you
want to send a
priority message

buffer * void input address of reply
buffer

buflen * ulong input length of reply buffer

residual_buffer * ulong output Address of buffer
updated by the
number of bytes you
have moved

residual_length * ulong output Contains one of the
following values
depending on
whether the receive
buffer is:

v The same length as
the message – this
field is zero.

v Longer than the
reply – this field
contains the
number of bytes
remaining in the
buffer.

v Shorter than the
message, this field
contains the
residual count
(that is, the
number of bytes
remaining in the
reply which do not
fit into the buffer.
In this case
b2f0_result = 5.

Return value: type int

A zero (0) or positive value is the return code from CP IUCV.

A return code of -EINVAL means the buffer address is pointing to NULL.

Chapter 10. Linux for zSeries IUCV device driver 83

iucv_reply_array

Purpose: This function is used to respond to a two-way message array that you
have received. You must specify completely the array to which you wish to reply
(pathid, msgid and trgcls). The msgid and trgcls are the values returned by the
previous iucv_receive_array.

The array contains a list of discontiguous buffer addresses and their lengths. These
buffers contain the reply data.

API Descriptor:

Name Type Input/Output Description

pathid u16 input path identification
number

msgid u32 input specifies the message
ID.

trgcls u32 input specifies the target
class

flags int input Contains options for
the path:

IPPRTY 0x20 specifies that you
want to send a
priority message

buffer * iucv_array_t input address of array of
reply buffers

buflen ulong input total length of reply
buffers

residual_address * ulong output Address of buffer
which IUCV is
currently working on

84 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

residual_length * ulong output Contains one of the
following values
depending on
whether the answer
buffer is:

v The same length as
the reply – this
field is zero.

v Longer than the
reply – this field
contains the
number of bytes
remaining in the
buffer.

v Shorter than the
message, this field
contains the
residual count
(that is, the
number of bytes
remaining in the
reply which do not
fit into the buffer.
In this case
b2f0_result = 5.

Return value: type int

A zero (0) or positive value is the return code from CP IUCV.

A return code of -EINVAL means the buffer address is pointing to NULL.

iucv_reply_prmmsg

Purpose: This function is used to respond to a two-way message that you have
received. You must specify completely the message to which you wish to reply
(pathid, msgid and trgcls).prmmsg signifies the data has been moved into the
parameter list.

API Descriptor:

Name Type Input/Output Description

pathid u16 input path identification
number

msgid u32 input specifies the message
ID.

trgcls u32 input specifies the target
class

flags1 int input Contains options for
the path:

IPPRTY 0x20 specifies that you
want to send a
priority message

Chapter 10. Linux for zSeries IUCV device driver 85

prmmsg uchar[8] input 8-bytes of data to be
placed into the
parameter list.

Return value: type int

This is the return code from CP IUCV.

iucv_resume

Purpose: This function restores communications over a quiesced path.

API Descriptor:

Name Type Input/Output Description

pathid u16 input path identification
number

user_data uchar[16] input 16-bytes of user data

Return value: type int

This is the return code from CP IUCV.

iucv_send

Purpose: This function transmits data from a buffer to another application. This is
a one-way process – the receiver will not reply to the message.

API Descriptor:

Name Type Input/Output Description

pathid u16 input path identification
number

msgid * u32 output specifies the message
ID.

trgcls u32 input specifies the target
class

srccls u32 input specifies the source
message class

msgtag u32 input specifies a tag to be
associated with the
message

flags1 int input Contains options for
the path:

IPPRTY 0x20 specifies that you
want to send a
priority message

buffer * void input address of send
buffer

buflen ulong input length of send buffer

Return value: type int

86 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

A zero (0) or positive value is the return code from CP IUCV.

A return code of -EINVAL means the buffer address is NULL.

iucv_send_array

Purpose: This function transmits data to another application. The array holds the
addresses and lengths of discontiguous buffers which hold the message text. This
is a one-way process – the receiver will not reply to the message.

API Descriptor:

Name Type Input/Output Description

pathid u16 input path identification
number

msgid * u32 output specifies the message
ID.

trgcls u32 input specifies the target
class

srccls u32 input specifies the source
message class

msgtag u32 input specifies a tag to be
associated with the
message

flags1 int input Contains options for
the path:

IPPRTY 0x20 specifies that you
want to send a
priority message

buffer * iucv_array_t input address of array of
send buffers

buflen ulong input total length of send
buffers

Return value: type int

A zero (0) or positive value is the return code from CP IUCV.

A return code of -EINVAL means the buffer address is NULL.

iucv_send_prmmsg

Purpose: This function transmits data to another application. prmmsg signifies the
8 bytes of data are to be moved into the parameter list. This is a one-way message
– the receiver will not reply to this message.

API Descriptor:

Name Type Input/Output Description

pathid u16 input path identification
number

msgid * u32 output specifies the message
ID.

Chapter 10. Linux for zSeries IUCV device driver 87

trgcls u32 input specifies the target
class

srccls u32 input specifies the source
message class

msgtag u32 input specifies a tag to be
associated with the
message

flags1 int input Contains options for
the path:

IPPRTY 0x20 specifies that you
want to send a
priority message

prmmsg uchar[8] input 8-bytes of data to be
placed into the
parameter list.

Return value: type int

This is the return code from CP IUCV.

iucv_send2way

Purpose: This function transmits data to another application. The data to be
transmitted is in a buffer. The receiver of the message is expected to reply, and a
buffer is provided into which IUCV will move the reply.

API Descriptor:

Name Type Input/Output Description

pathid u16 input path identification
number

msgid * u32 output specifies the message
ID.

trgcls u32 input specifies the target
class

srccls u32 input specifies the source
message class

msgtag u32 input specifies a tag to be
associated with the
message

flags1 int input Contains options for
the path:

IPPRTY 0x20 specifies that you
want to send a
priority message

buffer * void input address of send
buffer

buflen ulong input length of send buffer

ansbuf * void input address of reply
buffer

anslen ulong input length of reply buffer

88 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Return value: type int

A zero (0) or positive value is the return code from CP IUCV.

A return code of -EINVAL means the buffer address is NULL.

iucv_send2way_array

Purpose: This function transmits data to another application. The array holds the
addresses and lengths of discontiguous buffers which hold the message text. The
receiver of the message is expected to reply, and a buffer is provided into which
IUCV will move the reply.

API Descriptor:

Name Type Input/Output Description

pathid u16 input path identification
number

msgid * u32 output specifies the message
ID.

trgcls u32 input specifies the target
class

srccls u32 input specifies the source
message class

msgtag u32 input specifies a tag to be
associated with the
message

flags1 int input Contains options for
the path:

IPPRTY 0x20 specifies that you
want to send a
priority message

buffer * iucv_array_t input address of array of
send buffers

buflen ulong input total length of send
buffer

ansbuf * iucv_array_t input address of array of
reply buffers

anslen ulong input total length of reply
buffers

Return value: type int

A zero (0) or positive value is the return code from CP IUCV.

A return code of -EINVAL means the buffer address is NULL.

iucv_send2way_prmmsg

Purpose: This function transmits data to another application. prmmsg specifies that
the 8-bytes of data are to be moved into the parameter list. The receiver of the
message is expected to reply, and a buffer is provided into which IUCV will move
the reply.

Chapter 10. Linux for zSeries IUCV device driver 89

API Descriptor:

Name Type Input/Output Description

pathid u16 input path identification
number

msgid * u32 output specifies the message
ID.

trgcls u32 input specifies the target
class

srccls u32 input specifies the source
message class

msgtag u32 input specifies a tag to be
associated with the
message

flags1 int input Contains options for
the path:

IPPRTY 0x20 specifies that you
want to send a
priority message

prmmsg uchar[8] input 8-bytes of data to be
placed into
parameter list

ansbuf * void input address of reply
buffer

anslen ulong input length of reply buffer

Return value: type int

A zero (0) or positive value is the return code from CP IUCV.

A return code of -EINVAL means the buffer address is NULL.

iucv_send2way_prmmsg_array

Purpose: This function transmits data to another application. prmmsg specifies that
the 8-bytes of data are to be moved into the parameter list. The receiver of the
message is expected to reply, and an array of addresses and lengths of
discontiguous buffers is provided into which IUCV will move the reply.

API Descriptor:

Name Type Input/Output Description

pathid u16 input path identification
number

msgid * u32 output specifies the message
ID.

trgcls u32 input specifies the target
class

srccls u32 input specifies the source
message class

90 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

msgtag u32 input specifies a tag to be
associated with the
message

flags1 int input Contains options for
the path:

IPPRTY 0x20 specifies that you
want to send a
priority message

prmmsg uchar[8] input 8-bytes of data to be
placed into
parameter list

ansbuf * iucv_array_t input address of array of
reply buffers

anslen ulong input total length of reply
buffers

Return value: type int

A zero (0) or positive value is the return code from CP IUCV.

A return code of -EINVAL means the buffer address is NULL.

iucv_setmask

Purpose: This function enables or disables message interrupts and reply
interrupts (priority or non-priority). A zero value disables the interrupts; any
non-zero value enables them.

API Descriptor:

Name Type Input/Output Description

SetMaskFlag int input Flag for setting
interrupt types.

Nonpriority_
MessagePending
InterruptsFlag

0x40

Priority_
MessagePending
InterruptsFlag

0x80

Nonpriority_
MessageCompletion
InterruptsFlag

0x20

Priority_
MessageCompletion
InterruptsFlag

0x10

Return value: type int

This is the return code from CP IUCV.

iucv_sever

Purpose: This function terminates an IUCV path.

Chapter 10. Linux for zSeries IUCV device driver 91

API Descriptor:

Name Type Input/Output Description

pathid u16 input path identification
number

user_data uchar[16] input 16-bytes of user data

Return value: type int

This is the return code from CP IUCV.

IUCV Interrupt Handler API
The following are declarations of IUCV interrupts. To ignore an interrupt, declare it
as NULL.

Input parameters:

eib pointer to an external interrupt buffer

pgm_data
pointer to token that was passed by the application.

Output and Return: void
typedef struct {

void (*ConnectionPending) (iucv_ConnectionPending * eib,
void* pgm_data);

void (*ConnectionComplete) (iucv_ConnectionComplete * eib,
void* pgm_data);

void (*ConnectionSevered) (iucv_ConnectionSevered * eib,
void* pgm_data);

void (*ConnectionQuiesced) (iucv_ConnectionQuiesced * eib,
void* pgm_data);

void (*ConnectionResumed) (iucv_ConnectionResumed * eib,
void* pgm_data);

void (*MessagePending) (iucv_MessagePending * eib,
void* pgm_data);

void (*MessageComplete) (iucv_MessageComplete * eib,
void* pgm_data);

} iucv_interrupt_ops_t;

92 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Chapter 11. Linux for zSeries LCS device driver

Note
The LCS driver is now provided in source-code form.

This Linux network driver supports OSA–2 Ethernet Token Ring, and OSA-Express
Fast Ethernet in non-QDIO mode.

To configure this device driver, use the channel device layer. For details on how to
use the channel device layer, see Chapter 8, “Linux for zSeries Channel device
layer” on page 51.

The LAN Channel Station (LCS) network interface has two channels, one read
channel and one write channel. This is very similar to the zSeries CTC interface (see
Chapter 9, “Linux for zSeries CTC/ESCON device driver” on page 63). The read
channel must have model type 0x3088 and an even cua number. The write channel
also has a model type of 0x3088 and has a cua number one greater than the read
cua number. Only certain cua types are supported so as not to clash with a CTC
control unit type.

The driver always has a read outstanding on the read subchannel. This is used to
receive command replies and network packets (these are differentiated by checking
the type field in the LCS header structure). Any network packets that arrive during
the startup and shutdown sequence have to be discarded. During normal network
I/O, the driver will intermittently retry reads in order to permanently keep a read
outstanding on the read channel. (This is in case an -EBUSY or the like occurs, in
which case the driver would stop receiving network packets.)

The default configuration is to use software statistics, with IP checksumming off
(this improves performance) and to have network hardware checking using a
CRC32 check which should guarantee integrity for normal use. However, financial
institutions or the like might want the additional security of IP checksumming.

Additional cua model types can be added later so that new LCS compatible cards
will be supported even if not available when the driver was developed.

LCS supported functions
v Supports Ethernet and Token Ring
v Auto detects whether card is connected to Token Ring or Ethernet

LCS channel device layer configuration
For the syntax of LCS configuration with the channel device layer see “Device
identification (CTC/ESCON and LCS)” on page 53.

LCS channel device layer configuration example
chandev=noauto,lcs0,0x7c00,0x7c01,1,1,1

© Copyright IBM Corp. 2000, 2002 93

|

This will make LCS device 0 use addresses 7c00 and 7c01 for input and output, use
relative adapter 1, set IP checksumming on and collect network statistics from the
hardware.

LCS kernel parameter syntax
If the channel device layer is not used and the LCS driver is compiled directly into
the kernel the LCS boot parameters are as follows:

lcs kernel parameter

WW lcs = hw_stats , ip_checksumming W

W

Z

,

model_no,max_adapter_no

WY

lcs devno kernel parameter

WW Z

,

lcs_devno = model_no,rel_adapter_no WY

lcs noauto kernel parameter

WW lcs_noauto WY

The meanings of these parameters are:

hw_stats
If set to 1 it is equivalent to the use_hw_stats keyword for the module call.
If set to 0 it is ignored.

ip_checksumming
If set to 1 it is equivalent to the do_sw_ip_checksumming keyword for the
module call. If set to 0 it is ignored.

model_no,max_adapter_no
is identical to the additional_model_info keyword described for modules.

model_no,rel_adapter_no
is identical to the devno_portno_pairs keyword described for modules.
The keyword lcs_devno is short because of limitations in the allowable
length of kernel parameter names.

94 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

|

|
|
|

|

|||||||||||||
|

|
||||||||||||||||||

||||
|

|

||||||||||||||||||

||||
|

|

|||||||

||||

|

|
|
|

|
|
|

|
|

|
|
|
|

lcs_noauto
Put this parameter in the kernel parameter line if you want to set
auto-detection off.

It is important that the parameters are entered in pairs (2, 4, 6 or 8 parameters) as
the cu model and max rel adapter no must go together.

LCS warning
Under some circumstances, LCS initialization can generate a message such as:
"failed to add multicast address"

This message is for information purposes only and can be ignored. The driver and
card continue to operate normally.

LCS restrictions
v To use OSA devices when running Linux for zSeries on a basic mode machine

(no LPARs) you may need to specify an ipldelay=xyz boot parameter. We
recommend a value between 2m and 5m for xyz for the OSA card to initialize
fully after IPL.

Chapter 11. Linux for zSeries LCS device driver 95

|
|
|

|
|

96 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Chapter 12. QETH device driver for OSA-Express (QDIO) and
HiperSockets

This driver is subject to license conditions as reflected in: “International License
Agreement for Non-Warranted Programs” on page 209.

The QETH Linux network driver supports HiperSockets virtual devices as well as
the OSA-Express Fast Ethernet, Gigabit Ethernet, zSeries 900 High Speed Token
Ring, and ATM (running Ethernet LAN emulation) features in QDIO mode.
HiperSockets enable the zSeries to connect to virtual networks on a shared zSeries.

A HiperSockets device is controlled by the same device driver as the OSA-Express
feature in QDIO mode. Most of the device driver parameters are common to the
two devices.

The OSA-Express feature in QDIO mode is described in detail in OSA-Express
Customer’s Guide and Reference, SA22-7476.

This driver has been developed for the zSeries 64-bit architecture and 31-bit
architecture with version 2.4 of the Linux kernel.

Naming conventions
Different cards used will generate different interface base names:
v Ethernet cards will generate an interface name starting with ″eth″

v HiperSockets devices will generate an interface name starting with ″hsi″
v Token Ring cards will generate an interface name starting with ″tr″

The ’eth’ interface name is used for the OSA-Express ATM feature when emulating
Ethernet in QDIO mode. ATM cards in Token Ring LAN emulation use ’tr’.

Numbers will be appended to the base names according to the following rules:
v If a device interface number, devif_num, is specified during device configuration,

that number will be used. For example, a device configuration like:
qeth7, <read_devno>, <write_devno>, <data_devno>

will cause the interface name to be eth7 for an Ethernet card, hsi7 for
HiperSockets, and tr7 for a Token Ring card.

If the devif number is -1, the next available number will be used. See
“Configuring QETH for OSA-Express and HiperSockets using the channel device
layer” on page 99 for the description of devif_num.

v If chandev is instructed to use device number names (use_devno_names), the
interface number will be the cuu number of the read channel. For example, if the
read channel has the cuu 0xfd0c, the interface name would be eth0xfd0c for an
Ethernet card, hsi0xfd0c for a HiperSockets device, and tr0xfd0c for a Token
Ring card. See “Commonly used options” on page 55 for the description of
use_devno_names.

© Copyright IBM Corp. 2000, 2002 97

Introduction
You need two modules to configure HiperSockets as well as the OSA-Express
feature in QDIO mode:
v The QDIO protocol governs the interface between the zSeries and the

OSA-Express card. You need only load the QDIO module; no configuration is
necessary.

v The QETH module controls the card itself. Configuring the QETH module is
described in this chapter.

For HiperSockets and the OSA-Express feature in QDIO mode three I/O
subchannels must be available to the driver. One subchannel is for control reads,
one for control writes, and the third is for data.

Installing the modules
To install the qdio and qeth modules, follow these steps:
1. Check if the QDIO OSA or IQDIO devices are online in Linux (check if they

appear in /proc/subchannels). If not, attach them to the Linux guest or bring
them online to the Linux LPAR.

2. Make sure the devices are correctly defined in the chandev.conf file. If they are
not, define them and then reset chandev by issuing:
echo reset_conf;read_conf > /proc/chandev

3. Issue the insmod command for the qdio.o module:
insmod qdio

4. Issue the insmod command for the qeth.o module:
insmod qeth

5. Issue the ifup command or the ifconfig command with the desired parameters
for any QDIO OSA or IQDIO interfaces.

Now the interfaces to the devices are set up.

QETH supported functions
The following functions are supported:
v Auto-detection of devices
v Primary and secondary routers
v Priority queueing (does not apply to HiperSockets)
v Individual device configuration. It is possible to configure different triples of

channels on the same CHPID differently. For example, if you have CHPID fc,
then you can configure 0xfc00,0xfc01,0xfc02 differently from 0xfc04,0xfc05,0xfc06,
for example, with different mem_usage_in_k values.

Figure 6. I/O subchannel interface

98 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

|

|
|

v IP address takeover
v Virtual IP addresses (VIPA) (does not apply to HiperSockets)
v HiperSockets

Configuring QETH for OSA-Express and HiperSockets using the
channel device layer

This section describes how to configure QETH for the OSA-Express feature in
QDIO mode and HiperSockets with the channel device layer. Only the most
common options are given here to illustrate the syntax; see Chapter 8, “Linux for
zSeries Channel device layer” on page 51 for full details of all channel device
options.

The driver will normally use auto-detection to find all QDIO OSA-Express features
and HiperSockets devices in the system. (The noauto option can be used to exclude
address ranges from auto-detection.) In some circumstances it may be necessary to
configure the driver explicitly for a device. This is done with the qeth command.

OSA-Express and HiperSockets device identification

WW qeth devif_num , read_devno , write_devno , data_devno
-1

W

W
0

,
memory_usage_in_k 0

,
port_no 0

,
checksum_received_ip_pkts

WY

Note: All characters must be entered in lower case as shown, except for
hexadecimal numbers, where either case may be used.

Chapter 12. QETH device driver for OSA-Express (QDIO) and HiperSockets 99

Where:

devif_num
is the device interface number. This is concatenated with qeth, for example
qeth1.

A value of -1 indicates that the next available number is to be allocated
automatically.

read_devno
is the read channel address (in hexadecimal preceded by 0x)

This address must be an even number.

write_devno
is the write channel address (in hexadecimal preceded by 0x)

This address must be one greater than the read channel address.

data_devno
is the data channel address (in hexadecimal preceded by 0x)

memory_usage_in_k
is the number of kilobytes to be allocated for read and write buffers. (The
allocation between read and write is determined by the driver.)

port_no
is the relative port number of the device. The OSA-Express feature in
QDIO mode and HiperSockets use only port 0, the default port. (The
OSA-Express ATM feature in QDIO mode set up for Ethernet LAN
emulation allows configuration of two emulated ports.)

checksum_received_ip_pkts
is 1 to perform software checksumming or 0 to suppress it.

Port identification
Each OSA-Express feature in QDIO mode must be associated with a port name. To
do this, use the channel device layer add_parms command as shown below.
(HiperSockets devices do not require a port name.)

OSA-Express feature in QDIO mode port identification

WW
all

add_parms , 0x10 , portname : PORT_NAME
, lo_devno , hi_devno , qeth_parms

WY

Where:

add_parms
Used to pass additional parameters to the driver.

0x10 Identifies the device as an OSA-Express feature in QDIO mode.

lo_devno,hi_devno
Specifies the address range containing the device.

port_name
Required. Identifies the port for sharing by other OS images. port_name can
be 1 to 8 characters long and must be uppercase. All operating systems
sharing the port must use the same port_name. Example: NETWORK1.

100 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

qeth_parms
are additional QETH parameters that can be added by using the chandev
add_parms command as described in “QETH parameter syntax”.

QETH parameter syntax

QETH parameters

WW
(1) no_router ,no_checksumming

primary_router , sw_checksumming
secondary_router

W

W
,no_prio_queueing

, prio_queueing_tos
, prio_queueing_prec
, no_prio_queueing : number

W

W
none

, sparebufs :
spare_buffers

W

W
500

, polltime :
poll_time

,dont_fake_broadcast

, fake_broadcast
W

W
,enable_takeover

, disable_takeover
WY

Notes:

1 All options except the first used must be preceded by a comma.
All characters must be entered in lower case as shown, except for
hexadecimal numbers where either case may be used.

The meanings of the parameters of this command are as follows:

primary_router | secondary_router | no_router
For HiperSockets: This parameter is ignored.

For OSA-Express feature in QDIO mode: Specifies whether the device is
used to interconnect networks. A ″primary router″ is the principal
connection between two networks; a ″secondary router″ is used as backup
in case of problems with the primary. Both of these options require the
Linux system to be configured as a router. The default for this parameter is
″No router″ – the OSA-Express card will only be used to connect the Linux
for zSeries system to a single network.

Chapter 12. QETH device driver for OSA-Express (QDIO) and HiperSockets 101

It is possible to add routing status dynamically. This is done with the
command:

echo primary_router ifname > /proc/qeth

or

echo secondary_router ifname > /proc/qeth

ifname is the name of the interface in Linux , for example eth0.

It is not possible to reset routing status with the current hardware.

sw_checksumming | no_checksumming
Specifies whether error detection is to be performed by the driver, or is not
required.

prio_queueing_tos | prio_queueing_prec | no_prio_queueing |
no_prio_queueing: number

For HiperSockets: This parameter is ignored.

Specifies the type of priority queuing to be used. See “Priority queuing” on
page 108 for details. no_prio_queueing is equivalent to no_prio_queueing:
2 (the default queue).

spare_buffers
Specifies the number of spare buffers to reserve. The default is none. These
buffers are pre-allocated and can be used as a safety valve if excessive load
fills the normal buffer pool.

poll_time
Specifies the maximum duration of background polling (in microseconds)
used by QDIO. The default is 500.

dont_fake_broadcast | fake_broadcast
fake_broadcast sets the ’broadcast capable’ device flag. This is necessary
for the gated routing daemon.

enable_takeover | disable_takeover
allow/do not allow IP address takeover.

OSA-Express feature in QDIO mode channel device layer configuration
example

add_parms,0x10,0x7c00,0x7c02,portname:NETWORK1
qeth1,0x7c00,0x7c01,0x7c02,4096,-1

This tells the channel device layer to force qeth1 (if detected) to use device
addresses 7c00, 7c01 and 7c02, allocate four megabytes of buffer space, name the
connection ’NETWORK1’, and use the default port.

HiperSockets channel device layer configuration example
qeth1,0x7c00,0x7c01,0x7c02,4096,-1

This tells the channel device layer to force qeth1 (if detected) to use device
addresses 7c00, 7c01 and 7c02, allocate four megabytes of buffer space, and use the
default port.

102 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Examples: OSA-Express feature in QDIO mode

1: Basic configuration
In this example a single OSA-Express CHPID is being used to connect a Linux for
zSeries system to a network.

Hardware configuration – OSA-Express connecting Linux for zSeries to a
network

Software configuration – OSA-Express connecting Linux for zSeries to a network

With the channel device layer the load commands for this configuration are:
add_parms,0x10,0xAA00,0xAA02,portname:NETWORK
qeth-1,0xAA00,0xAA01,0xAA02

2: Router configuration
This example shows how Linux systems running on different LPARs in a zSeries
may use OSA-Express to communicate with a network or to act as a router
between networks.

Hardware configuration – OSA-Express and Linux for zSeries as a router

In this example it is assumed that Linux is configured as a router in both LPARs.

Software configuration – OSA-Express and Linux for zSeries as a router

LPAR 1 – This LPAR is configured to be the primary routing LPAR:

Chapter 12. QETH device driver for OSA-Express (QDIO) and HiperSockets 103

add_parms,0x10,0x400,0x402,primary_router,portname:OSACARD1
qeth-1,0x400,0x401,0x402
add_parms,0x10,0x200,0x202,primary_router,portname:OSACARD2
qeth-1,0x200,0x201,0x202

LPAR 2 – This LPAR is configured to be the secondary routing LPAR:
add_parms,0x10,0x404,0x406,secondary_router,portname:OSACARD1
qeth-1,0x404,0x405,0x406
add_parms,0x10,0x204,0x206,secondary_router,portname:OSACARD2
qeth-1,0x204,0x205,0x206

Examples: HiperSockets

1: Basic configuration
In this example a single HiperSockets is being used to connect a Linux for zSeries
system to a network.

Hardware configuration – HiperSockets connecting Linux for zSeries to a
network

Software configuration – HiperSockets connecting Linux for zSeries to a
network

With the channel device layer the load commands for this configuration are:
qeth-1,0xAA00,0xAA01,0xAA02

2: Router configuration
This example shows how Linux systems running on different LPARs in a zSeries
may use HiperSockets to communicate with a network or to act as a router
between networks.

104 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Hardware configuration – HiperSockets and Linux for zSeries as a router

In this example it is assumed that Linux is configured as a router in both LPARs.

Software configuration – HiperSockets, an OSA-Express feature, and Linux for
zSeries as a router

LPAR 1 – uses subchannels 200 - 202 for connecting to HiperSockets and 400 - 402
to connect to the OSA-Express feature. There it is able to route packets in and out.

add_parms,0x10,0x400,0x402,primary_router
qeth-1,0x400,0x401,0x402
qeth-1,0x200,0x201,0x202

LPAR 2 – uses subchannels 204 - 206 as a network client:
qeth-1,0x204,0x205,0x206

OSA-Express feature in QDIO mode and HiperSockets – Preparing the
connection

Activating the OSA-Express feature in QDIO mode and HiperSockets
connection:

The network devices can be activated with the ifconfig command. It is necessary
to define the right MTU size for the channel device, otherwise it will not work
properly. You must use the same MTU size as that which is defined on the remote
side.

For HiperSockets, the right MTU size is selected automatically based on the
HiperSockets maximum frame size. The HiperSockets maximum frame size is a
hardware definition parameter for HiperSockets CHPID definition.

For details of the ifconfig command, see the ifconfig man page.

An example of the use of ifconfig for HiperSockets is:

Chapter 12. QETH device driver for OSA-Express (QDIO) and HiperSockets 105

ifconfig hsi0 192.168.100.11 netmask 255.255.255.0

An example of the use of ifconfig for an OSA-Express feature in QDIO mode is:

ifconfig eth0 192.168.100.11 netmask 255.255.255.0
broadcast 192.168.100.255 mtu 1492 up

or, more simply:

ifconfig eth0 192.168.100.11

IP address takeover
It is possible to add and remove ranges of IP addresses for the OSA-Express
feature in QDIO mode or HiperSockets by writing to the /proc/qeth_ipa_takeover
file. When a command is written to this file the driver calls on the OSA ″Address
Takeover″ mechanism. This overrides any previous allocation of the specified
address to another LPAR or card. If another LPAR on the same card has already
registered for that IP address this association will be removed.

Note: Using HiperSockets, only IP addresses of another Linux operating system in
the same CEC (Central Electronics Complex) can be taken over, not IP
addresses of other zSeries operating systems. IP takeover must be enabled
both on the image taking over the address, and on the image that gives up
its address.

The registered addresses are held in this file in plain text and can be read to see
the current associations.

Only one command at a time can be written to the file. Subsequent commands in
the same write action are ignored.

The following commands are available:
v add4 <addr>/<mask_bits>[:<interface>]

v inv4

v del4 <addr>/<mask_bits>[:<interface>]

add4 adds an address range. del4 deletes an address range. <addr> is an 8
character hexadecimal IP address. <mask_bits> specifies the number of bits which
are set in the network mask. <interface> is optional and specifies the interface name
to which the address range is bound.

For example

echo add4 c0a80a00/24 > /proc/qeth_ipa_takeover

activates all addresses in the 192.168.10 subnet for address takeover.

inv4 inverts the selection of address ranges done with add4. . Issue inv4 once to set
all addresses which have been specified with add4 not to use the takeover
mechanism; all other IPv4 addresses will be set to use it.

106 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Note: The address is not actually taken over until a corresponding ifconfig
command is executed.

Example: OSA-Express feature in QDIO mode
Assuming all addresses in subnet 192.168.10 are activated for address takeover,
issue an ifconfig command to take over a specific address, for example:

ifconfig eth0 192.168.10.5

This sets the IP address 192.168.10.5 on the card eth0, and removes it from other
LPARs if necessary.

The IP address must be different to that previously set on the device or no action
will be taken. To take over a device at the same address ifconfig must be called
twice; the first time with a dummy address (for example 0.0.0.0) to notify the
device of the takeover and the second time with the original address to reset it. To
re-capture the eth0 device with the IP address in the previous example you could
use:

ifconfig eth0 0.0.0.0
ifconfig eth0 192.168.10.5

The second line alone will not take over the device from another LPAR if the IP
address is the same as that set by the other LPAR.

Example: HiperSockets
Assuming all addresses in subnet 192.168.10 are activated for address takeover,
issue an ifconfig command to take over a specific address, for example:

ifconfig hsi0 192.168.10.5

The IP address must be different to that previously set on the device or no action
will be taken. To take over a device at the same address ifconfig must be called
twice; the first time with a dummy address (for example 0.0.0.0) to notify the
device of the takeover and the second time with the original address to reset it. To
re-capture the hsi0 device with the IP address in the previous example you could
use:

ifconfig hsi0 0.0.0.0
ifconfig hsi0 192.168.10.5

The second line alone will not take over the device from another LPAR if the IP
address is the same as that set by the other LPAR.

OSA-Express feature in QDIO mode – Virtual IP address (VIPA)

Note: This does not apply to HiperSockets.

Chapter 12. QETH device driver for OSA-Express (QDIO) and HiperSockets 107

zSeries and S/390 use virtual IP addresses to protect against certain types of
hardware connection failure. These virtual IP addresses (VIPAs) can be built under
Linux using ″dummy″ devices (for example dummy0 or dummy1) or loopback aliases
(lo:0 or lo:1). (To enable these virtual devices the kernel must be compiled with
the special option CONFIG_DUMMY.)

In order to make the OSA-Express card accept packets for the VIPAs on the system
the qeth driver must be informed about the VIPAs using the /proc interface.

The virtual devices are configured with the following commands:
v add_vipa4 <addr>:<interface>

v del_vipa4 <addr>:<interface>

These commands must be piped to /proc/qeth_ipa_takeover, for example:

echo add_vipa4 c0a80a00 > /proc/qeth_ipa_takeover

add_vipa4 adds an address range. del_vipa4 deletes an address range. <addr> is an
8 character hexadecimal IP address. <interface> is optional and specifies the
interface name to which the address range is bound.

For an example of how to use VIPA, see Chapter 14, “VIPA – minimize outage due
to adapter failure” on page 157.

QETH restrictions
v The MTU range is 576 – 18000. For HiperSockets the MTU range is extended to

57344. This may be restricted by the framesize announced by the microcode. For
HiperSockets, the maximum MTU size depends on the HiperSockets maximum
frame size defined during HiperSockets CHPID definition.

v There is a restriction in Linux that the packet size of a multicast packet cannot
be greater than the MTU size of the interface used.

Priority queuing

Note: This does not apply to HiperSockets.

The OSA-Express feature in QDIO mode has four output queues (queues 0 to 3) in
central storage. The feature gives these queues different priorities (queue 0 having
the highest priority) which is relevant mainly to high traffic situations. When there
is little traffic queuing has no impact on processing.

The device driver can put data on one or more of the queues. By default it uses
queue 2 for all data. However, the driver can look at outgoing IP packets and
select a queue for the data according to the IP type of service (if
prio_queueing_tos is specified in the options) or IP precedence (if
prio_queueing_prec is specified in the options) fields. These fields are part of the
IP datagram header and can be set with a setsockopt call.

Some applications use these fields to tag data. The mapping the driver performs
between IP type of service is as follows:

IP type of service queue used when IP TOS queueing is switched on

not important 3

108 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

|
|

IP type of service queue used when IP TOS queueing is switched on

low latency 0

high throughput 1

high reliability 2

default 2

(The default queue may be changed by a kernel option.)

When IP precedence is selected as the queueing type, the two most significant bits
of each IP header precedence field are used to determine the queue for this packet.

Chapter 12. QETH device driver for OSA-Express (QDIO) and HiperSockets 109

110 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Part 4. Installation commands and parameters

This section describes configuration parameters for Linux for zSeries and the tools
available for configuration.

These are described in the chapters:
v Useful Linux commands:

– dasdfmt - Format a DASD
– dasdview - Display DASD characteristics
– fdasd - Partition a DASD
– snIPL - Remote control of Support Element (SE) functions
– zipl - Make DASD bootable
– ifconfig - Configure a network interface
– insmod - Load a module into the Linux kernel
– modprobe - Load a module with dependencies into the Linux kernel
– lsmod - List loaded modules
– depmod - Create dependency descriptions for loadable kernel modules
– mke2fs - Create a file system

v VIPA (Virtual IP Address) implementation, to minimize outage due to adapter
failure.

v Kernel parameters:
– ipldelay
– maxcpus
– mem
– noinitrd
– ramdisk_size
– ro
– root
– vmhalt
– cio_msg

v Overview of the parameter line file.

Note: For tools related to taking and analyzing system dumps, see the manual
Linux for zSeries Using the Dump Tools, LNUX-1108.

© Copyright IBM Corp. 2000, 2002 111

|

|
|

112 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Chapter 13. Useful Linux commands

This chapter describes commands which have been created to install and configure
Linux for zSeries:
v dasdfmt
v dasdview
v fdasd
v snIPL
v zipl

It also summarizes standard Linux commands used during the installation,
configuration and initial startup of Linux for zSeries. These are:
v ifconfig
v insmod
v modprobe
v lsmod
v depmod
v mke2fs

Note: For tools related to taking and analyzing system dumps, see the manual
Linux for zSeries Using the Dump Tools, LNUX-1108.

© Copyright IBM Corp. 2000, 2002 113

|

|
|

dasdfmt - Format a DASD

Purpose
This tool is used to give a low-level format to direct access storage devices
(DASD). Note that this is a software format. To give a hardware format to raw
DASD you must use another zSeries device support facility such as ICKDSF, either
in stand-alone mode or through another operating system.

dasdfmt uses an ioctl call to the DASD driver to format tracks. A start and end
track for formatting can be specified, as well as a blocksize (hard sector size).
Remember that the formatting process can take quite a long time.

See Chapter 2, “Partitioning DASD” on page 5 for further information about
partitioning DASD.

Usage
Prerequisites:

(see Chapter 2, “Partitioning DASD” on page 5 for terminology and further
information)
v You must have installed the library libvtoc.so in the Linux /lib directory, and
v You must have root permissions.

Format

dasdfmt syntax

WW dasdfmt
-t
-v
-y
-V
-F

-f diskspec
-n devno

-d cdl

-d ldl -L
-l volid

W

W
-s 0

-s start_track

-e -1

-e end_track

-b 4096

-b blocksize
W

W
-p
-m hashstep

WY

or

WW dasdfmt -h WY

The parameters are:

114 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

-f diskspec or --device=diskspec
Specifies the device to be formatted. diskspec takes the form:
/dev/dasd/xxxx/device where xxxx is the four-character hexadecimal
device address of the DASD.

-n devno
Specifies the four-character hexadecimal device address of the disk to
format, for example -n 01a3.

The following parameters are necessary, however if you do not specify their values
you are prompted for them. You can use the default values by pressing the <enter>
key:

-b block_size or --blocksize=block_size
Specifies the blocksize. The minimum blocksize is 512 bytes and increases
in powers of 2 (512, 1024, 2048, 4096 and so on). The default blocksize is
4096.

The following parameters are optional:

-d disklayout or --disk_layout=disklayout
Formats the device with compatible disk layout (cdl) or Linux disk layout
(ldl).

-h Prints out an overview of the syntax. Any other parameters will be
ignored.

-l volid or --label=volid
Specifies the volume identifier (see 2 on page 6) to be written to the disk.

-m hashstep or --hashmarks=hashstep
prints a hash mark (#) after every hashstep cylinders are formatted. hashstep
must be in the range 1 to 1000. The default is 10.

This may be used if the progress bar cannot be displayed, for example on a
3270 console

-p or --progressbar
prints a progress bar. Do not use this option if you are using a 3270
console.

-t or --test
(test mode) Analyses parameters and prints out what would happen, but
does not modify the disk.

-v Prints out extra information messages.

-y Starts formatting immediately without prompting for confirmation.

-F Formats the device without checking if it is mounted or in use as swap
space.

-L or --no_label
Valid for -d ldl only, where it suppresses the default LNX1 label.

-V Prints the version number of dasdfmt and exits.

Restrictions
During the format process the DASD is placed in a temporary ’accepted’ state. If it
is left in this state (for example if DASDFMT is interrupted) the DASD cannot be
accessed. You can check the state of a DASD by entering:

cat /proc/dasd/devices

Chapter 13. Useful Linux commands 115

If you see ″accepted″ in the output the corresponding DASD is disabled and not
available for usage. You can re-enable the DASD with the command:

echo ’set <devno> on’ > /proc/dasd/devices

where <devno> is the device number of the DASD you want to enable.

Example:
cat /proc/dasd/devices
0700(ECKD) at (94: 0) is dasda:active at blocksize: 4096, 601020 blocks, 2347 MB
0800(ECKD) at (94: 4) is dasdb:active at blocksize: 4096, 601020 blocks, 2347 MB
0900(ECKD) at (94: 8) is dasdc:accepted

Disk 900 is in accepted state and it is not possible to format it with the dasdfmt
command.

echo ’set 900 on’ > /proc/dasd/devices

enables the disk and changes its state to ″active, not formatted″.
cat /proc/dasd/devices
0700(ECKD) at (94: 0) is dasda:active at blocksize: 4096, 601020 blocks, 2347 MB
0800(ECKD) at (94: 4) is dasdb:active at blocksize: 4096, 601020 blocks, 2347 MB
0900(ECKD) at (94: 8) is dasdc:active n/f
#

Now you are able to format the DASD.

Examples
Example 1

To format a 100 cylinder VM minidisk with the standard linux disk layout and a
4kB blocksize at address 0193:

[root@host /root]# dasdfmt -b 4096 -d ldl -n 193
Drive Geometry: 100 Cylinders * 15 Heads = 1500 Tracks
I am going to format the device 193 in the following way:
Device number of device : 0x193
Major number of device : 94
Minor number of device : 12
Labeling device : yes
Disk label : LNX1
Disk identifier : 0X0193
Extent start (trk no) : 0
Extent end (trk no) : 1499
Compatible Disk Layout : no
Blocksize : 4096
--->> ATTENTION! <<---
All data in the specified range of that device will be lost.
Type "yes" to continue, no will leave the disk untouched: yes
Formatting the device. This may take a while (get yourself a coffee).
Finished formatting the device.
Rereading the partition table... done.
[root@host /root]#

Example 2

To format the same disk with the compatible disk layout (using the default value
of the -d option). The device is specified by device node.

116 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

[root@host /root]# dasdfmt -b 4096 -f /dev/dasd/0193/device
Drive Geometry: 100 Cylinders * 15 Heads = 1500 Tracks
I am going to format the device /dev/dasd/0193/device in the following way:
Device number of device : 0x193
Major number of device : 94
Minor number of device : 12
labeling device : yes
Disk label : VOL1
Disk identifier : 0X0193
Extent start (trk no) : 0
Extent end (trk no) : 1499
Compatible Disk Layout : yes
Blocksize : 4096
--->> ATTENTION! <<---
All data in the specified range of that device will be lost.
Type "yes" to continue, no will leave the disk untouched: yes
Formatting the device. This may take a while (get yourself a coffee).
Finished formatting the device.
Rereading the partition table... done.
[root@host /root]#

Chapter 13. Useful Linux commands 117

dasdview - Display DASD Structure

Purpose
This tool is used to send DASD and VTOC information to the system console. Such
information might be the volume label, VTOC entries, or disk geometry details.

If you specify a start point and size, you can also display the contents of a disk
dump.

Usage
Prerequisites:

(See Chapter 2, “Partitioning DASD” on page 5 for terminology and further
information.)

You must have:
v Installed the library libvtoc.so in the Linux /lib directory.
v Root permissions.

dasdview displays this DASD information:
v The volume label.
v VTOC details (general information, and FMT1, FMT4, FMT5 and FMT7 labels).
v The content of the DASD, by specifying:

– Starting point
– Size

You can display these values in hexadecimal, EBCDIC, and ASCII format.

Format

dasdview syntax (1)

WW dasdview
-h
-?
-v

WY

118 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

dasdview syntax (2)

WW dasdview W

W
0 128 -1

-n devno
-b begin -s size -2 -f node

-i
-x
-l
-t spec

WY

The parameters are:

-h or --help
Display short usage text on console, to see manpage enter man dasdview.

-? or --help
Display short usage text on console, to see manpage enter man dasdview.

-v or --version
Display version number on console, and exit.

-b begin or --begin=begin
Display disk content on the console, starting from begin. The content of the
disk are displayed as hexadecimal numbers, ASCII text and EBCDIC text.
If size is not specified (see below), dasdview will take the default size (128
bytes). You can specify the variable begin as:
begin[k|m|b|t|c]

The default for begin is 0.

dasdview displays a disk dump on the console using the DASD driver.
The DASD driver might suppress parts of the disk, or add information that
is not relevant. This might occur, for example, when displaying the first
two tracks of a disk that has been formatted as cdl. In this situation, the
DASD driver will pad shorter blocks with zeros, in order to maintain a
constant blocksize. All Linux applications (including dasdview) will
process according to this rule.

Here are some examples of how this option can be used:
-b 32 (start printing at Byte 32)
-b 32k (start printing at kByte 32)
-b 32m (start printing at MByte 32)
-b 32b (start printing at block 32)
-b 32t (start printing at track 32)
-b 32c (start printing at cylinder 32)

-s size or --size=size
Display a disk dump on the console, starting at begin, and continuing for
size = size). The content of the dump are displayed as hexadecimal
numbers, ASCII text, and EBCDIC text. If a start value (begin) is not
specified, dasdview will take the default. You can specify the variable size
as:

Chapter 13. Useful Linux commands 119

size[k|m|b|t|c]

The default for size is 128 bytes.

Here are some examples of how this option can be used:
-s 16 (use a 16 Byte size)
-s 16k (use a 16 kByte size)
-s 16m (use a 16 MByte size)
-s 16b (use a 16 block size)
-s 16t (use a 16 track size)
-s 16c (use a 16 cylinder size)

-1 Display the disk dump using format 1 (as 16 Bytes per line in hexadecimal,
ASCII and EBCDIC). A line number is not displayed. You can only use
option -1 together with -b or -s.

Option -1 is the default.

-2 Display the disk dump using format 2 (as 8 Bytes per line in hexadecimal,
ASCII and EBCDIC). A decimal and hexadecimal byte count are also
displayed. You can only use option -2 together with -b or -s.

-i or --info
Display basic information such as device node, device number, device type,
or geometry data.

-x or --extended
Display the information obtained by using -i option, but also open count,
subchannel identifier, and so on.

-l or --label
Display the volume label.

-t spec or --vtoc=spec
Display the VTOC’s table-of-contents, or a single VTOC entry, on the
console. The variable spec can take these values:
info Display overview information about the VTOC, such as a list of the

dataset names and their sizes.
f1 Display the contents of all format 1 data set control blocks (DSCBs).
f4 Display the contents of all format 4 DSCBs.
f5 Display the contents of all format 5 DSCBs.
f7 Display the contents of all format 7 DSCBs.
all Display the contents of all DSCBs.

-n devno or --devno=devno
Specify the device using the device number devno. You can only use this
option if your system is using the device file system. Here is an example of
the use of this option:
dasdview -i -n 193

-f node or --devnode=node
Specify the device using the device node devnode. If your system is not
using the device file system you must use this option to specify a device..

An example of the use of this option might be as follows. Assume you
wish to display the information about a DASD that has a device node
/dev/dasda or /dev/dasd/0193/device. You could then issue these
commands:
dasdview -i -f /dev/dasda

or

120 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

dasdview -i -f /dev/dasd/0193/device

Examples
To display basic information about a DASD:
bash-2.04# dasdview -i -n 193

This displays:
--- general DASD information --
device node : /dev/dasd/0193/device
device number : hex 193 dec 403
type : ECKD
device type : hex 3390 dec 13200

--- DASD geometry ---
number of cylinders : hex 64 dec 100
tracks per cylinder : hex f dec 15
blocks per track : hex c dec 12
blocksize : hex 1000 dec 4096
bash-2.04#

To include extended information:
bash-2.04# dasdview -x -n 193

This displays:
--- general DASD information --
device node : /dev/dasd/0193/device
device number : hex 193 dec 403
type : ECKD
device type : hex 3390 dec 13200

--- DASD geometry ---
number of cylinders : hex 64 dec 100
tracks per cylinder : hex f dec 15
blocks per track : hex c dec 12
blocksize : hex 1000 dec 4096

--- extended DASD information ---
real device number : hex 452bc08 dec 72530952
subchannel identifier : hex e dec 14
CU type (SenseID) : hex 3990 dec 14736
CU model (SenseID) : hex e9 dec 233
device type (SenseID) : hex 3390 dec 13200
device model (SenseID) : hex a dec 10
open count : hex 1 dec 1
req_queue_len : hex 0 dec 0
chanq_len : hex 0 dec 0
status : hex 5 dec 5
label_block : hex 2 dec 2
FBA_layout : hex 0 dec 0
characteristics_size : hex 40 dec 64
confdata_size : hex 100 dec 256

characteristics : 3990e933 900a5f80 dff72024 0064000f
e000e5a2 05940222 13090674 00000000
00000000 00000000 24241502 dfee0001
0677080f 007f4a00 1b350000 00000000

configuration_data : dc010100 4040f2f1 f0f54040 40c9c2d4
f1f3f0f0 f0f0f0f0 f0c6c3f1 f1f30509
dc000000 4040f2f1 f0f54040 40c9c2d4
f1f3f0f0 f0f0f0f0 f0c6c3f1 f1f30500
d4020000 4040f2f1 f0f5c5f2 f0c9c2d4
f1f3f0f0 f0f0f0f0 f0c6c3f1 f1f3050a

Chapter 13. Useful Linux commands 121

f0000001 4040f2f1 f0f54040 40c9c2d4
f1f3f0f0 f0f0f0f0 f0c6c3f1 f1f30500
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
800000a1 00001e00 51400009 0909a188
0140c009 7cb7efb7 00000000 00000800

bash-2.04#

To display volume label information:
bash-2.04# dasdview -l -n 193

This will display:
--- volume label --
volume label key : ascii ’åÖÖñ’

: ebcdic ’VOL1’
: hex e5d6d3f1

volume label identifier : ascii ’åÖÖñ’
: ebcdic ’VOL1’
: hex e5d6d3f1

volume identifier : ascii ’ðçðñùó’
: ebcdic ’0X0193’
: hex f0e7f0f1f9f3

security byte : hex 40

VTOC pointer : hex 0000000101
(cyl 0, trk 1, blk 1)

reserved : ascii ’@@@@@’
: ebcdic ’ ’
: hex 4040404040

CI size for FBA : ascii ’@@@@’
: ebcdic ’ ’
: hex 40404040

blocks per CI (FBA) : ascii ’@@@@’
: ebcdic ’ ’
: hex 40404040

labels per CI (FBA) : ascii ’@@@@’
: ebcdic ’ ’
: hex 40404040

reserved : ascii ’@@@@’
: ebcdic ’ ’
: hex 40404040

owner code for VTOC : ascii ’@@@@@@@@@@@@@@’
ebcdic ’ ’
hex 40404040 40404040 40404040 4040

reserved : ascii ’@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@’
ebcdic ’ ’
hex 40404040 40404040 40404040 40404040

40404040 40404040 40404040 40
bash-2.04#

122 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

To display partition information:
bash-2.04# dasdview -t info -n 193

This will display:
--- VTOC info ---
The VTOC contains:

3 format 1 label(s)
1 format 4 label(s)
1 format 5 label(s)
0 format 7 label(s)

Other S/390 and zSeries operating systems would see the following data sets:
+--+--------------+--------------+
| data set | start | end |
+--+--------------+--------------+
LINUX.V0X0193.PART0001.NATIVE	trk	trk
data set serial number : ’0X0193’	2	500
system code : ’IBM LINUX ’	cyl/trk	cyl/trk
creation date : year 2001, day 317	0/ 2	33/ 5
+--+--------------+--------------+		
LINUX.V0X0193.PART0002.NATIVE	trk	trk
data set serial number : ’0X0193’	501	900
system code : ’IBM LINUX ’	cyl/trk	cyl/trk
creation date : year 2001, day 317	33/ 6	60/ 0
+--+--------------+--------------+		
LINUX.V0X0193.PART0003.NATIVE	trk	trk
data set serial number : ’0X0193’	901	1499
system code : ’IBM LINUX ’	cyl/trk	cyl/trk
creation date : year 2001, day 317	60/ 1	99/ 14
+--+--------------+--------------+
bash-2.04#

To display VTOC information:
bash-2.04# dasdview -t f4 -n 193

This will display:
--- VTOC format 4 label ---
DS4KEYCD : 04...
DS4IDFMT : dec 244, hex f4
DS4HPCHR : 0000000105 (cyl 0, trk 1, blk 5)
DS4DSREC : dec 7, hex 0007
DS4HCCHH : 00000000 (cyl 0, trk 0)
DS4NOATK : dec 0, hex 0000
DS4VTOCI : dec 0, hex 00
DS4NOEXT : dec 1, hex 01
DS4SMSFG : dec 0, hex 00
DS4DEVAC : dec 0, hex 00
DS4DSCYL : dec 100, hex 0064
DS4DSTRK : dec 15, hex 000f
DS4DEVTK : dec 58786, hex e5a2
DS4DEVI : dec 0, hex 00
DS4DEVL : dec 0, hex 00
DS4DEVK : dec 0, hex 00
DS4DEVFG : dec 48, hex 30
DS4DEVTL : dec 0, hex 0000
DS4DEVDT : dec 12, hex 0c
DS4DEVDB : dec 0, hex 00
DS4AMTIM : hex 0000000000000000
DS4AMCAT : hex 000000
DS4R2TIM : hex 0000000000000000
res1 : hex 0000000000
DS4F6PTR : hex 0000000000
DS4VTOCE : hex 01000000000100000001

typeind : dec 1, hex 01
seqno : dec 0, hex 00

Chapter 13. Useful Linux commands 123

llimit : hex 00000001 (cyl 0, trk 1)
ulimit : hex 00000001 (cyl 0, trk 1)

res2 : hex 00000000000000000000
DS4EFLVL : dec 0, hex 00
DS4EFPTR : hex 0000000000 (cyl 0, trk 0, blk 0)
res3 : hex 000000000000000000
bash-2.04#

124 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

To print the content of a disk to the console starting at block 2 (volume label):
bash-2.04# dasdview -b 2b -s 128 -n 193

This will display:
+--+------------------+------------------+
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
E5D6D3F1 E5D6D3F1 F0E7F0F1 F9F34000	VOL1VOL10X0193?.	??????????????@.
00000101 40404040 40404040 40404040
40404040 40404040 40404040 40404040	????????????????	@@@@@@@@@@@@@@@@
40404040 40404040 40404040 40404040	????????????????	@@@@@@@@@@@@@@@@
40404040 40404040 40404040 40404040	????????????????	@@@@@@@@@@@@@@@@
40404040 88001000 10000000 00808000	????h...........	@@@@?...........
00000000 00000000 00010000 00000200
21000500 00000000 00000000 00000000	?...............	!...............
+--+------------------+------------------+
bash-2.04#

To display the content of a disk on the console starting at block 14 (first FMT1
DSCB) using format 2:
bash-2.04# dasdview -b 14b -s 128 -2 -n 193

This will display:
+---------------+---------------+----------------------+----------+----------+
| BYTE | BYTE | HEXADECIMAL | EBCDIC | ASCII |
| DECIMAL | HEXADECIMAL | 1 2 3 4 5 6 7 8 | 12345678 | 12345678 |
+---------------+---------------+----------------------+----------+----------+
57344	E000	D3C9D5E4 E74BE5F0	LINUX.V0	?????K??
57352	E008	E7F0F1F9 F34BD7C1	X0193.PA	?????K??
57360	E010	D9E3F0F0 F0F14BD5	RT0001.N	??????K?
57368	E018	C1E3C9E5 C5404040	ATIVE???	?????@@@
57376	E020	40404040 40404040	????????	@@@@@@@@
57384	E028	40404040 F1F0E7F0	????10X0	@@@@????
57392	E030	F1F9F300 0165013D	193.????	???.?e?=
57400	E038	63016D01 0000C9C2	??_?..IB	c?m?..??
57408	E040	D440D3C9 D5E4E740	M?LINUX?	?@?????@
57416	E048	40404065 013D0000	??????..	@@@e?=..
57424	E050	00000000 88001000h.?.?.?.
57432	E058	10000000 00808000	?....??.	?....??.
57440	E060	00000000 00000000
57448	E068	00010000 00000200	.?....?.	.?....?.
57456	E070	21000500 00000000	?.?.....	!.?.....
57464	E078	00000000 00000000
+---------------+---------------+----------------------+----------+----------+
bash-2.04#

To see what is at block 1234 (in this example there is nothing there):
bash-2.04# dasdview -b 1234 -s 128 -n 193

This will display:
+--+------------------+------------------+
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

Chapter 13. Useful Linux commands 125

| 00000000 00000000 00000000 00000000 | | |
| 00000000 00000000 00000000 00000000 | | |
+--+------------------+------------------+
bash-2.04#

To try byte 0 instead:
bash-2.04# dasdview -b 0 -s 64 -n 193

This will display:
+--+------------------+------------------+
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
C9D7D3F1 000A0000 0000000F 03000000	IPL1............	????............
00000001 00000000 00000000 40404040
40404040 40404040 40404040 40404040	????????????????	@@@@@@@@@@@@@@@@
40404040 40404040 40404040 40404040	????????????????	@@@@@@@@@@@@@@@@
+--+------------------+------------------+
bash-2.04#

126 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

fdasd – DASD partitioning tool

Purpose
The new disk layout (z/OS compatible disk layout, or ’cdl’) now allows you to
split DASD into several partitions. Use fdasd to manage partitions on a DASD. You
can use this to create, change and delete partitions, and also to change the volume
identifier label.

Usage
Prerequisites:

(see Chapter 2, “Partitioning DASD” on page 5 for terminology and further
information)
v You must have installed the library libvtoc.so in the Linux /lib directory,
v You must have root permissions, and
v The disk must be formatted with dasdfmt with the (default) -d cdl option.

Attention: Incautious use of fdasd can result in loss of data.

fdasd is a menu-driven tool that you call with the command fdasd followed by the
device node of the DASD you want to partition.

Overview of functionality:

1. fdasd checks that the volume has a valid volume label and VTOC. If either is
missing or incorrect, fdasd will recreate it.

2. You are given a menu through which you can display DASD information, add
or remove partitions, or change the volume identifier.

3. Your changes will not be written to disk until you type the ’write’ option on
the menu. You may quit without altering the disk at any time prior to this. The
items written to the disk will be the volume label, the ’format 4’ DSCB , a
’format 5’ DSCB and one to three ’format 1’ DSCBs.

Format

Command line syntax

fdasd command

WW fdasd dasd
-l volid
-a
-c conf_file

-h
-?
-v

WY

Where:

-a or - -auto
Auto-create one partition using the whole disk in non-interactive mode.

Chapter 13. Useful Linux commands 127

-l volid
Is the volume label (see 2 on page 6).

-c conf_file or - - config conf_file
This option enables you to create several partitions, controlled by the plain
text configuration file conf_file. Using this option, fdasd automatically
switches to non-interactive mode and creates all the partitions specified in
conf_file. The configuration file conf_file contains the following line for each
partition you want to create:
[x,y]

where x is the keyword first, for the first possible track on disk, or a track
number. y is either the keyword last, for the last possible track on disk, or
a track number.

The example configuration file below would allow you to create three
partitions:
[first,1000]
[1001,2000]
[2001,last]

dasd Is the device node of the DASD you want to partition. If the device file
system is used this has the form /dev/dasd/xxxx/device, where xxxx is the
device number (devno) of the DASD. If the device file system is not used it
has the form /dev/dasdxxx where xxx is one to three letters. See “DASD
overview” on page 11 for more information.

-h or -?
Displays help on command line arguments.

-v Displays the version of fdasd.

Processing

fdasd menu
When you have called fdasd using the syntax described in “Command line syntax”
on page 127, the following menu will appear:

Command action
m print this menu
p print the partition table
n add a new partition
d delete a partition
v change volume serial
t change partition type
r re-create VTOC and delete all partitions
s show mapping (partition number - data set name)
q quit without saving changes
w write table to disk and exit

Command (m for help):

Menu commands:

m Re-displays the fdasd command menu.

p Displays the following information about the DASD:
v Number of cylinders
v Number of tracks per cylinder
v Number of blocks per track
v Blocksize

128 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

v Volume label
v Volume identifier
v Number of partitions defined

and the following information about each partition (including the free space
area):
v Linux node
v Start track
v End track
v Number of tracks
v Partition id
v Partition type (1 = filesystem, 2 = swap)

n Adds a new partition to the DASD. You will be asked to give the start track
and the length or end track of the new partition.

d Deletes a partition from the DASD. You will be asked which partition to
delete.

v Changes the volume identifier. You will be asked to enter a new volume
identifier. See page 127 for the format.

t Changes the partition type. You will be asked to identify the partition to be
changed. You will then be asked for the new partition type (Linux native or
swap). Note that this type is a guideline; the actual use Linux makes of the
partition depends on how it is defined with the mkswap or mkxxfs tools. The
main function of the partition type is to describe the partition to other
operating systems so that, for example, swap partitions can be skipped by
backup programs.

r Re-creates the VTOC and thereby deletes all partitions.

s Displays the mapping of partition numbers to data set names. For example:
Command (m for help): s

disk : /dev/dasd/0193/device
volume label : VOL1
volume identifier: 0X0193

WARNING: This mapping may be NOT up-to-date,
if you have NOT saved your last changes!

/dev/dasd/0193/part1 - LINUX.V0X0193.PART0001.NATIVE
/dev/dasd/0193/part2 - LINUX.V0X0193.PART0002.NATIVE
/dev/dasd/0193/part3 - LINUX.V0X0193.PART0003.NATIVE

q Quits fdasd without updating the disk. Any changes you have made (in this
session) will be discarded.

w Writes your changes to disk and exits. After the data is written Linux will
re-read the partition table.

Examples

Example using the menu
This section gives an example of how to use fdasd to create two partitions on a
VM minidisk, change the type of one of the partitions, save the changes and check
the results.

Chapter 13. Useful Linux commands 129

In this example we will format a VM minidisk with the compatible disk layout
(cdl) using the device file system. The minidisk has device number 193.
1. Call fdasd, specifying the minidisk:

[root@host /root]# fdasd /dev/dasd/0193/device

fdasd reads the existing data and displays the menu:

reading volume label: VOL1
reading vtoc : ok

Command action
m print this menu
p print the partition table
n add a new partition
d delete a partition
v change volume serial
t change partition type
r re-create VTOC and delete all partitions
u re-create VTOC re-using existing partition sizes
s show mapping (partition number - data set name)
q quit without saving changes
w write table to disk and exit

Command (m for help):

2. Use the p option to verify that no partitions have yet been created on this
DASD:

Command (m for help): p

Disk /dev/dasd/0193/device:
100 cylinders,
15 tracks per cylinder,
12 blocks per track

4096 bytes per block
volume label: VOL1, volume identifier: 0X0193
maximum partition number: 3

-----------tracks----------
Device start end length Id System

2 1499 1498 unused

3. Define two partitions, one by specifying an end track and the other by
specifying a length. (In both cases the default start tracks are used):

Command (m for help): n
First track (1 track = 48 KByte) ([2]-1499):
Using default value 2
Last track or +size[c|k|M] (2-[1499]): 700
You have selected track 700

Command (m for help): n
First track (1 track = 48 KByte) ([701]-1499):
Using default value 701
Last track or +size[c|k|M] (701-[1499]): +400
You have selected track 1100

4. Check the results using the p option:

130 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Command (m for help): p

Disk /dev/dasd/0193/device:
100 cylinders,
15 tracks per cylinder,
12 blocks per track

4096 bytes per block
volume label: VOL1, volume identifier: 0X0193
maximum partition number: 3

-----------tracks----------
Device start end length Id System

/dev/dasd/0193/part1 2 700 699 1 Linux native
/dev/dasd/0193/part2 701 1100 400 2 Linux native

1101 1499 399 unused

5. Change the type of a partition:

Command (m for help): t

Disk /dev/dasd/0193/device:
100 cylinders,
15 tracks per cylinder,
12 blocks per track

4096 bytes per block
volume label: VOL1, volume identifier: 0X0193
maximum partition number: 3

-----------tracks----------
Device start end length Id System

/dev/dasd/0193/part1 2 700 699 1 Linux native
/dev/dasd/0193/part2 701 1100 400 2 Linux native

1101 1499 399 unused

change partition type
partition id (use 0 to exit):

Enter the ID of the partition you want to change; in this example partition 2:

partition id (use 0 to exit): 2

6. Enter the new partition type; in this example type 2 for swap:

current partition type is: Linux native

1 Linux native
2 Linux swap

new partition type: 2

7. Check the result:

Chapter 13. Useful Linux commands 131

Command (m for help): p

Disk /dev/dasd/0193/device:
100 cylinders,
15 tracks per cylinder,
12 blocks per track

4096 bytes per block
volume label: VOL1, volume identifier: 0X0193
maximum partition number: 3

-----------tracks----------
Device start end length Id System

/dev/dasd/0193/part1 2 700 699 1 Linux native
/dev/dasd/0193/part2 701 1100 400 2 Linux swap

1101 1499 399 unused

8. Write the results to disk using the w option:

Command (m for help): w
writing VTOC...
rereading partition table...
[root@host /root]#

Results:

You can check this in Linux by listing the directory /dev/dasd/0193/ (in this case).
After all changes have been written to disk the new device nodes should appear in
the device file system. The first entry represents the whole disk, and the following
entries represent one partition each.

[root@host /root]# ls -l /dev/dasd/0193/
total 0
brw------- 1 root root 94, 12 May 2 2001 device
brw------- 1 root root 94, 12 May 2 2001 disc
brw------- 1 root root 94, 13 May 2 2001 part1
brw------- 1 root root 94, 14 May 2 2001 part2
[root@host /root]#

Example using options
You can partition using the -a or -c option without entering the menu mode. This
is useful for partitioning using scripts, for examlpe if you need to partition several
hundred DASDs.

With the -a parameter you can create one large partition on a DASD:
bash-2.04# fdasd -a /dev/dasd/0193/device
auto-creating one partition for the whole disk...
writing volume label...
writing VTOC...
rereading partition table...
bash-2.04#

This will create a partition as follows:
Device start end length Id System

/dev/dasd/0193/part1 2 1499 1498 1 Linux native

Using a configuration file you can create several partitions. For example, the
configuration file config below will create three partitions:
[first,500]
[501,1100]
[1101,last]

132 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Submitting the command with the -c option creates the partitions:
bash-2.04# fdasd -c config /dev/dasd/0193/device
parsing config file ’config’...
writing volume label...
writing VTOC...
rereading partition table...
bash-2.04#

This will create partitions as follows:
Device start end length Id System

/dev/dasd/0193/part1 2 500 499 1 Linux native
/dev/dasd/0193/part2 501 1100 600 2 Linux native
/dev/dasd/0193/part3 1101 1499 399 3 Linux native

Chapter 13. Useful Linux commands 133

snIPL – Remote control of Support Element (SE) functions

Purpose
snIPL (simple network IPL) is an interactive tool used for remotely controlling
Support Element (SE) functions. It allows you to:
v Boot Linux for zSeries in LPAR mode.
v Send and retrieve operating system messages.
v Deactivate an LPAR for I/O fencing purposes.

Using snIPL, you overcome the limitations of the SE graphical interface when
snIPL is used for I/O fencing from within a clustered environment of Linux
systems that run in LPAR mode.

snIPL uses the network management application programming interface (API)
which:
1. establishes an SNMP network connection.
2. uses the SNMP protocol to send and retrieve data.

For details, refer to zSeries Application Programming Interfaces, SB10-7030, which you
can obtain from this Web site:
http://www.ibm.com/server/resourcelink/

Note!
snIPL currently supports a direct connection to the SE, and does not yet
support direct communication with the Hardware Management Console
(HMC).

Usage
Prerequisites:

You must configure the SE to allow the initiating host system to access the SE API.
For details of how to do so, refer to the Application Programming Interfaces book.

Attention: Careless use of snIPL can result in loss of data.

Overview of functionality:
To communicate with the SE, snIPL uses the application programming interface
provided by the HMC to:
1. establish an SNMP network connection.
2. use the SNMP protocol to send and retrieve data.

Connection Errors and Exit Codes:
If a connection error occurs (such as a timeout or communication failure):
1. snIPL sends to stderr:

v the error code of the management API
v a message

2. The shell exit code is set to 99.

If no error occurs, a shell exit code of 0 is returned after snIPL has completed its
processing.

134 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

|
|

|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|
||||

|

|

|
|

|

|
|
|
|
|

|
|

|
|
|

|

|
|

Format

Command line syntax

snIPL command

WW snipl
-u

-c public

-c community
-n LPARname

-i |OS Msgs dialog|
-d

-t 10000

-t timeout
-p 5000

-p interval

ipaddr WY

Parameters:

-u Display the usage and exit.

-c community
Specify the community (which is the HMC term for password) of the
initiating host system. The default for community is public. The value
entered here must match the entry contained in the SNMP configuration
settings on the SE.

-n LPARname
Specify the name of the target LPAR (also referred to as a CPC image). If
you do not specify the –n option, snIPL displays the LPAR dialog in which
the LPARs it can find are listed. If you again do not enter a value for
LPARname but instead press Ctrl-D, the Command dialog is displayed.

-i Start an Operating System Messages dialog, which you can then use to enter
your own commands (this option is used together with -n). These
commands are read from stdin and then sent to the target LPAR by the
management API. snIPL also initiates a background thread (using pthreads)
which continously retrieves operating system messages as they are
generated. The output of the polling thread is sent to stdout. To terminate
the Operating System Messages dialog, press Ctrl-D. snIPL will then exit.

Note: The Operating System Messages dialog is line-oriented and therefore use
of a screen-based editor is not recommended.

-d Instruct snIPL to issue a deactivate command for the target LPAR, and then
to exit (this option is used together with -n).

-t timeout
Specify the timeout in milliseconds, for management API calls. The default
is 10000.

Chapter 13. Useful Linux commands 135

|

|
|

|

||

||||

|

||

|
|
|
|
|

|
|
|
|
|

||
|
|
|
|
|
|

|
|

||
|

|
|
|

-p interval
Specify the interval in milliseconds, for management API calls that retrieve
operating system messages. The default is 5000.

ipaddr Specify the IP-address of the target Support Element (SE). In order to
successfully establish a connection (using a valid community), you must
configure in the SE’s SNMP configuration task, the:
v IP-address of the initiating system
v community.

In addition, you must activate SNMP support in the SE’s Settings task.

If snIPL repeatedly returns the error code 19 (timeout), the target SE is
probably
v not reachable, or
v incorrectly configured.

Processing

snIPL menu
You call snIPL using the syntax described in “Command line syntax” on page 135.
1. If you specify –n together with a valid value for LPARname, snIPL displays the

Command dialog (shown below).
2. If you specify –n together with an invalid value for LPARname, snIPL re-displays

the LPAR dialog.
3. If you do not specify the –n option and a value for LPARname, snIPL displays

the LPAR dialog.
a. If you then press Ctrl-D, snIPL displays the Command dialog.
b. Otherwise, you can select an LPAR, and press Enter. snIPL then proceeds to

the Command dialog.

n select LPAR image
i operating system messages interaction
l perform a load
d perform a deactivate
m print this menu
x exit

4. Now you can select an option from the Command dialog.

Option Result

n The LPAR dialog is re-displayed, and you can select another
LPAR.

i The Operating System Messages dialog is displayed. To abort the
Operating System Messages dialog, you again press Ctrl-D. The
polling thread then terminates after the last management API
call that was issued has returned. This means that, in the worst
case, the polling thread quits after waiting for the number of
milliseconds contained in interval.

l A Linux for zSeries system is started in the target LPAR. You
are then prompted to enter:
v load address
v load parameters
v clear indicator
v timeout value
v store status indicator

136 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

|
|
|

||
|
|
|
|

|

|
|
|
|

|

|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
||

|

||

||
|

||
|
|
|
|
|

||
|
|
|
|
|
|

These arguments are similar to those which you enter directly
at the SE. If you press Ctrl-D, a previously entered default
value will be re-used.

You are prompted to confirm that the parameters you specified
are correct. Then the respective load command is issued.

d Causes a deactivate command to be issued on the target LPAR.

m The Command dialog is printed to the screen.

x snIPL exits.

Restrictions when using snIPL:

v snIPL does not recover from:
– connection failures
– errors in API call execution.

In both of these situations, you should simply restart snIPL.

However, if the problem persists, a networking failure has probably occurred. In
this situation you should try to increase the timeout values.

v snIPL does acknowledge that a load command has been accepted by the
management API on the SE. However you must also check whether or not the
load command has completed successfully. For example, snIPL cannot determine
if an incorrect load address has been used as input.

v Currently, snIPL only supports direct communication with the SE.

Examples
This section provides a typical sequence of commands for using snIPL, where
entering Ctrl-D, a previously-entered default is used.
1. The user selects option l to perform a load.
2. These parameters are specified:

Load address (as XXXX in HEX): 5119
Load parameter: CTRL-D
Clear indicator (0/1): 1
Timeout: 60
Store status indicator (0/1): CTRL-D

3. The parameters that were selected are now confirmed:
Load address: 5119
Load parameter: <default>
Clear indicator: 1
Timeout: 60s
Store status indicator: <default>

4. The user is then prompted to confirm that a LOAD command should be
performed:
Perform a LOAD command on partition MYLPAR with these
parameters? (y/n) y

5. The LOAD command is processed, and an acknowledgement sent when
completed:
processing.... acknowledged.
Command (m for help):

Chapter 13. Useful Linux commands 137

|
|
|

|
|

||

||

||

|

|
|
|

|

|
|

|
|
|
|

|

|

|
|

|

|

|
|
|
|
|

|

|
|
|
|
|

|
|

|
|
|
|

|
|

|

zIPL – zSeries initial program loader

Purpose
Because of changes in the DASD disk layout for kernel 2.4, the boot utility SILO is
replaced by the zSeries initial program loader (zIPL) for Linux for zSeries.

zIPL can be used to prepare a device for two purposes:
v For booting Linux (as a Linux program loader)
v For dumping.

Usage
Prerequisites:

v The Linux kernel version must be equal to or later than 2.4.3.
v You should have the parsecfg package from your Linux distributor.

For more details see the Readme.zipl document in the kernel source tree at
...linux/Documentation/s390.

zIPL supports devices as shown in Table 4.

Table 4. Supported devices

As a boot loader As a dump tool

ECKD¹ DASDs with fixed block
AIX-compliant layout

ECKD DASDs with fixed block
AIX-compliant layout

ECKD DASDs with z/OS-compliant layout ECKD DASDs with z/OS-compliant layout

Fixed Block Access (FBA) DASDs Magnetic tape subsystems compatible with
IBM3480 or IBM3490 .

VM minidisks using DIAG250
on ECKD hardware

VM minidisks using DIAG250
on FBA hardware

¹Enhanced Count Key Data

zIPL uses configuration data that it retrieves from:
1. The command line. Settings at the command line override settings in the

configuration file.
Exception: Parameter settings in the configuration file override parmfile
settings on the command line.

2. The configuration file if it is accessible. The default configuration file is
/etc/zipl.conf. You can also use an environment variable, ZIPLCONF, to specify
the configuration file.

For every operation a target directory must be specified, either on the command
line or in the configuration file. This directory must contain all zIPL boot-loader
files and must be accessible as read-write. zIPL reads the boot loaders from the
target directory, and might create the boot-map file and temporary device nodes
there.

138 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

You use the image parameter to tell zIPL to install a boot loader. You use the -d (or
--dumpto) parameter to tell zIPL to create a dump device. If none or both of these
options are set (on either the command line or in the configuration file), zIPL will
issue an error message and exit.

Creating a boot loader
Prerequisite: If the boot loader is to be installed on an AIX-compliant ECKD, FBA,
or VM minidisk, the corresponding stage 2 boot loaders eckd2, fba2, or diag2 must
reside on the same device as the target directory. This is normally the case if the
target directory does not contain symbolic links to other devices.

To use zIPL as a boot loader, you must specify the following either on the
command line or in the configuration file:
1. The image parameter.

If you specify an optional address on the image parameter, the kernel image
will be loaded to that address. The default address 0x10000 is used otherwise.
The image, and if specified, the ramdisk and the parmfile, must reside on the
same device, otherwise an error is reported.

2. The target parameter.
This specifies the target directory in which the boot loader will be installed.
This means that you do not need to specify the device on which the boot
loader should be installed. The device on which the target directory resides will
be automatically detected and used.

3. The location of the boot parameters or the parmfile. You can do this in several
ways:
v You can set parameters under the ipl section in the configuration file by

using parameters=. A parmfile will be created in the target directory, and will
be loaded at IPL to the default address 0x1000.

Note: This overrides any parmfile setting both on the command line and in
the configuration file.

v You can specify the name of a parmfile by using parmfile= in the
configuration file, or by using -p or --parmfile= on the command line. If a
parmfile is specified and no parameter setting is present, the parmfile will be
loaded to either the default address 0x1000 or the address specified.

Creating a dump device
Prerequisite: A partition must be available to zIPL. Any existing data on the
partition will be lost.

To create a dump device with zIPL, you must specify the following parameters
either on the command line or in the configuration file:
1. The partition on which the dump device should be created with the dumpto

parameter. The partition is used to automatically define the device. zIPL will
delete all data on this partition and install the zIPL boot loader here.

Notes:

a. If the dump device is a ECKD disk with fixed-block layout (AIX-compliant),
the corresponding stage 2 dump utility must be located on the same device
as the one selected using the dumpto parameter. The dump utility will be
overwritten by the dump, and you must re-install it in order to take another
dump.

b. If the dump device is a disk with z/OS-compliant layout, the corresponding
stage 2 dump utility can reside in a (possibly very small) partition, and the

Chapter 13. Useful Linux commands 139

dump can go into another, larger partition. Here you do not need to
re-install the dump utility after every dump.

2. The target directory that contains the boot loader, for example eckd2dump, with
the target parameter.

Format

Command line syntax

zIPL boot command

WW zipl
0x10000

-i IMAGE
,ADDR

W

W
0x80000

-r RAMDISK
,ADDR

0x1000
-p PARMFILE

,ADDR

W

W
-t DIRECTORY

-c /etc/zipl.conf

-c CONFIG FILE

(1)
[default]

CONFIGURATION
WY

Notes:

1 If no configuration name is given, zIPL will use the
configuration specified in the defaultboot section of the configuration
file.

zIPL dump command

WW zipl
-d PARTITION -t DIRECTORY

W

W
-c /etc/zipl.conf

-c CONFIG FILE

(1)
[default]

CONFIGURATION
WY

Notes:

1 If no configuration name is given zIPL will use the
configuration specified in the defaultboot section of the configuration
file.

Where:

140 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

-c CONFIG FILE or --config=CONFIG FILE
Specifies the name of the configuration file. This overrides the default
/etc/zipl.conf as well as the environment variable ZIPLCONF.

CONFIGURATION
Selects a section from the configuration file to be read.

-i IMAGE[,ADDRESS] or --image=IMAGE[,ADDRESS]
Specifies the location of the Linux system kernel on the file system as well
as in memory after IPL. The default address is 0x10000.

-r RAMDISK[,ADDRESS] or --ramdisk=RAMDISK[,ADDRESS]
Specifies the location of the initial ramdisk image (initrd) on the file system
as well as in memory after IPL. The default address is 0x80000.

-p PARMFILE[,ADDRESS] or --parmfile=PARMFILE[,ADDRESS]
Specifies the location of the parameter file on the file system as well as in
memory after IPL. The default address is 0x1000.

-d PARTITION or --dumpto=PARTITION
Specifies the partition on which the dump will be located after IPL.

-t DIRECTORY or --target=DIRECTORY
Specifies the target directory where zIPL finds boot loaders, for example,
eckd2dump, as well as various other temporary and permanent files. For
example the parmfile will be created in this directory.

-h or --help
Displays help on command line arguments.

Configuration file syntax

Location: By default zIPL retrieves the configuration file from /etc/zipl.conf.
You can set an environment variable, ZIPLCONF, which overrides the default setting.
If the name of the configuration file is given on the command line, this setting
overrides both the default setting and the environment variable.

Configuration file sections:

defaultboot
The configuration file can contain a default boot section. If no configuration is
specified on the command line, the defaultboot section is accessed and the
default configuration section is activated.

Example:
[defaultboot]
default=myconfig

configuration
A section describing a configuration always has the same name as the
configuration name which is specified in the defaultboot section or on the
command line.

Example:
[myconfig]

A section describing a configuration can contain one or more of the following
options:
target=DIRECTORY

Specifies the directory where zIPL finds boot loaders, for example
eckd2dump, as well as various other temporary and permanent files.

Chapter 13. Useful Linux commands 141

image=IMAGE[,ADDRESS]
Specifies the location of the Linux system kernel on the file system as
well as in memory after IPL. The default address is 0x10000

ramdisk=RAMDISK[,ADDRESS]
Specifies the location of the initial ramdisk image (initrd) on file
system as well as in memory after IPL. The default address is 0x80000.

parmfile=PARMFILE[,ADDRESS]
Specifies the location of the parameter file on the file system as well as
in memory after IPL. The default address is 0x1000.

parameters=’PARAMETERS’
Specifies the parameters for the kernel. Surround the parameter list
with either quotation marks or apostrophes. For example, if you need
to use quotation marks within the parameter list, you can surround
the parameter list with apostrophes. Setting this parameter causes a
file called ″parmfile″ containing the given parameters to be created in
the target directory. At IPL that file will be loaded to the default
address 0x1000.

Note: This setting overrides parmfile settings both on the command
line and in the configuration section. Any existing parmfile will
be overwritten if zIPL creates a new parmfile from the
parameter settings.

dumpto=PARTITION
Specifies the partition on which the dump will be located after IPL.

See “Examples” for an example configuration file.

Examples
Example zIPL command: This section shows how to use zIPL from the command
line, equivalently to SILO. The following example shows how to install a boot
loader with an image and a parmfile.

zipl --target=/mnt/boot --image=/mnt/boot/image --parmfile=/mnt/boot/parmfile

The parmfile could look like this:
root=/dasda1 ro dasd=fd00

Results:

1. zIPL will issue a warning ″No configuration file found″. This can be ignored.
2. zIPL will install the boot loader on the device of the target directory.

Example configuration file: This example configuration file has two
configurations. The first one (the default) is called ipl and installs a boot loader.
The second is called dumptape and prepares a tape device, /dev/rtibm0, for
dumping.
[defaultboot]
default=ipl
[ipl]
target=/boot
image=/boot/image
ramdisk=/boot/initrd
parameters=’root=/dev/ram0 ro’
[dumptape]
target=/boot
dumpto=/dev/rtibm0

142 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Example zIPL commands with configuration file: This section shows the effects
some commands would have assuming that the configuration file above is used.
v Calling zIPL to use the default configuration file settings:

zipl

Result: zIPL reads the default option from the defaultboot section and selects
section ipl. Then it installs a boot loader that will load /boot/image,
/boot/initrd and /boot/parmfile. A parmfile will be created with the following
contents:
’root=/dev/ram0 ro’

v Calling zIPL to create a dump tape:

zipl dumptape

Result: zIPL selects section dumptape and prepares a dump tape on /dev/rtibm0.
v Calling zIPL to create a boot loader with another image rather than the one in

the configuration file:

zipl --image=/boot/otherimage

Result: zIPL reads the default option from defaultboot and selects section ipl.
Then it installs a boot loader that will load /boot/otherimage, /boot/initrd and
/boot/parmfile. A parmfile will be created with the following contents:
’root=/dev/ram0 ro’

Chapter 13. Useful Linux commands 143

ifconfig - Configure a network interface

Usage
ifconfig is used to configure the kernel-resident network interfaces. It is used at
startup time to set up interfaces as necessary. After that, it is usually only needed
when debugging or when system tuning is needed.
v If no arguments are given, ifconfig displays the status of the currently active

interfaces.
v If a single interface argument is given, it displays the status of the given

interface only
v Otherwise, it configures an interface. The configurable interfaces for zSeries are:

– iucv

– ctci (i = 0 to 255)
– esconj (j = 0 to 255)

Note: Since kernel release 2.2 there are no explicit interface statistics for alias
interfaces anymore. The statistics printed for the original address are shared
with all alias addresses on the same device. If you want per-address
statistics you should add explicit accounting rules for the address using the
ipchains command.

Format

Display active interface status

WW ifconfig WY

Display status of given interface

WW ifconfig interface WY

144 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Activate or shut down an interface

WW ifconfig OPTIONS
address_family address

WY

OPTIONS:

interface
up

down

(1)
??

metric N

(1)
??

mtu N netmask address
W

W
(2)

multicast

(1)
??

txqueuelen length

Notes:

1 Distribution dependent

2 This should not normally be needed as the drivers set the flag
correctly themselves.

address_family
If the first argument after the interface name is recognized as the name of a
supported address family, that address family is used for decoding and
displaying all protocol addresses.

On zSeries, supported address families include:
v inet

interface
The name of the interface. This is usually a driver name followed by a unit
number, for example eth0 for the first Ethernet interface.

On zSeries the supported interfaces include:
v escon0 - escon255

v ctc0 - ctc255

v iucv0

v lo0 (loopback device)
v eth0

v tr0

up This flag causes the interface to be activated. It is implicitly specified if an
address is assigned to the interface.

down This flag causes the driver for this interface to be shut down.

Chapter 13. Useful Linux commands 145

metric N
This parameter sets the interface metric.8

mtu N This parameter sets the maximum transfer unit (MTU) of an interface.

netmask addr
Set the IP network mask for this interface. This value defaults to the usual class A, B or C
network mask (as derived from the interface IP address), but it can be set to any value.

multicast
Set the multicast flag on the interface. This should not normally be needed as the drivers set
the flag correctly themselves.

address The IP address to be assigned to this interface.

txqueuelen length
Set the length of the transmit queue of the device. It is useful to set this to small values for
slower devices with a high latency (modem links, ISDN) to prevent fast bulk transfers from
disturbing interactive traffic like Telnet too much.

Files:

/proc/net/socket
/proc/net/dev

8.

Metric: Cost of an OSPF interface. The cost is a routing metric that is used in the OSPF link-state calculation. To set the cost of
routes exported into OSPF, configure the appropriate routing policy.

v Range: 1 through 65,535

v Default: 1

All OSPF interfaces have a cost, which is a routing metric that is used in the OSPF link-state calculation. Routes with lower total
path metrics are preferred over those with higher path metrics. When several equal-cost routes to a destination exist, traffic is
distributed equally among them. The cost of a route is described by a single dimensionless metric that is determined using the
following formula:

cost = ref-bandwidth / bandwidth

Where ref-bandwidth is the reference bandwidth. Its default value is 100 Mbps (which you specify as 100000000), which gives a
metric of 1 for any bandwidth that is 100 Mbps or greater.

146 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Examples
To start or modify an ESCON interface in Linux:

ifconfig escon0 x.x.x.x pointopoint y.y.y.y netmask 255.255.255.255 mtu mmmmm

where:

x.x.x.x is the IP address of the Linux side

y.y.y.y is the IP address of the remote partner z/OS

mmmmm
is the MTU size which could be up to 32760 - make sure the other side of
the channel uses the same MTU size

The ESCON CTC device addresses are defined in the kernel parameter file, or
when loading the module:

...... ctc=0,0xddd,0xyyy,escon0

Another example, showing how to set up an ethernet connection:

ifconfig eth0 192.168.100.11 netmask 255.255.255.0 broadcast 192.168.100.255 mtu 1492 up

or, simply:

ifconfig eth0 192.168.100.11

Chapter 13. Useful Linux commands 147

insmod - Load a module into the Linux kernel

Usage
insmod installs a loadable module in the running kernel. It tries to link a module
into the kernel by resolving global symbols in the module with values from the
kernel’s symbol table. If the object file name is given without extension, insmod
will search for the module in common default directories. The environment
variable MODPATH can be used to override this default.

Format

Load a module into the kernel

WW insmod
OPTIONS module_name

object_file W

W Z
(1) (1)

symbol = ’ ″ value ″ ’ WY

OPTIONS:

-f -k -m -p -s -x -X -v

Notes:

1 Both quotes are needed to prevent the shell from stripping the quote
characters from the parameter. This can also be accomplished using the
escape character ’\’.

object_file
Name of module source file. (Name by which module is invoked.)

module_name
Explicit name of module if not derived from the name of the source file.

symbol Name of parameter specific to module.

value Value of parameter to be passed to module.

-f Attempt to load the module even if the version of the running kernel and
the version of the kernel for which the module was compiled do not
match.

-k Set the auto-clean flag on the module. This flag will be used to remove
modules that have not been used in some period of time (usually one
minute).

-m Output a load map, making it easier to debug the module in the event of a
kernel panic.

148 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

-p Probe the module to see if it could be successfully loaded. This includes
locating the object file in the module path, checking version numbers, and
resolving symbols.

-s Output everything to syslog instead of the terminal.

-X Export the external symbols of the module.

-x Do not export the external symbols of the module.

-v Verbose mode.

Examples
DASD module

insmod dasd_mod dasd=192-194,5a10

XPRAM module

insmod xpram devs=4 sizes=2097152,8388608,4194304,2097152

CTC module

insmod ctc setup=\"ctc=0,0x0600,0x0601,ctc0\"

LCS module

insmod lcs additional_model_info=0x70,3,0x71,5
devno_portno_pairs=0x1c00,0,0x1c02,1,0x1d00,-1

QDIO module

insmod qdio

OSA Express module

insmod qeth qeth_options=noauto,0x400,0x401,0x402,0x200,0x201,0x202,secondary_router

Chapter 13. Useful Linux commands 149

modprobe - Load a module with dependencies into the Linux kernel

Usage
modprobe installs a loadable module and all its dependencies in the running kernel.
The dependency information is created by depmod (see “depmod - Create
dependency descriptions for loadable kernel modules” on page 154). It tries to link
a module into the kernel by resolving global symbols in the module with values
from the kernel’s symbol table. If there are still unresolved symbols it will try to
satisfy these by loading further modules. If the object file name is given without
extension, modprobe will search for the module in common default directories. The
environment variable MODPATH can be used to override this default.

Format

Load a module with dependencies into the kernel

WW modprobe
OPTIONS

-C /etc/modules.conf

-C configfile
module_name W

W Z
(1) (1)

symbol = ’ ″ value ″ ’ WY

OPTIONS:

-a -d -k -n -q -s -v

Notes:

1 Both quotes are needed to prevent the shell from stripping the quote
characters from the parameter. This can also be accomplished using the
escape character ’\’.

List matching modules

WW modprobe -l
-C /etc/modules.conf

-C configfile -t type
pattern WY

150 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Show configuration

WW modprobe -c
-C /etc/modules.conf

-C configfile
WY

Remove module (stacks) or do autoclean

WW modprobe -r
OPTIONS

-C /etc/modules.conf

-C configfile
W

W Z module_name WY

OPTIONS:

-d -n -v

The parameters for the modprobe command are:

module_name
Explicit name of module. (Name by which module is invoked.)

symbol Name of parameter specific to module.

value Value of parameter to be passed to module.

pattern Module name pattern, which may include wildcard characters.

-a Load all matching modules (default is to stop after first success).

-d Show debugging information.

-k Set the auto-clean flag on the module. This flag will be used to remove
modules that have not been used in some period of time (usually one
minute).

-n Probe the module to see if it (and its dependencies) could be successfully
loaded, but do not load the module.

-q Suppress error messages.

-s Send the report to syslog instead of stderr.

-t Only consider modules of type <type>.

-v Verbose mode.

Chapter 13. Useful Linux commands 151

Comments
Note that this list is not comprehensive. See man modprobe for information on the
full set of parameters.

Examples
OSA Express module

modprobe qeth

This will attempt to load the qeth network driver. It will find a dependency on
qdio, load the qdio base support automatically, and then load qeth.

152 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

lsmod - List loaded modules

Usage
lsmod lists all loaded modules in the running kernel.

Format

list modules

WW lsmod WY

Examples
lsmod
Module Size Used by
qeth 135680 1 (autoclean)
qdio 22992 1 (autoclean) [qeth]
#

Chapter 13. Useful Linux commands 153

depmod - Create dependency descriptions for loadable kernel modules

Usage
depmod creates a dependency file based on the symbols found in a set of modules.
This information is used by modprobe (qv).

Format

Create dependencies for all files in a directory

WW depmod
OPTIONS

-C /etc/modules.conf

-C configfile
W

W
-F /System.map

-F kernelsyms

-b /lib/modules

-b directory forced-version
WY

OPTIONS:

-a -e -n -q -r -s -v -A -V

Create dependencies for files

WW depmod
OPTIONS

-F /System.map

-F kernelsyms

Z

,

module_name WY

OPTIONS:

-e -n -q -s -v

module_name
Explicit name of module

-a Search for modules in all directories specified in /etc/modules.conf or
<configfile>.

-b Use /lib/modules or <directory> as the starting point for the subtree
containing the modules.

-e Show all the unresolved symbols for each module.

-n Write the dependency file on stdout instead of in the /lib/modules tree.

154 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

-q (quiet) Suppress error messages about missing symbols.

-s Write all error messages via the syslog daemon instead of stderr.

-v Show the name of each module as it is analyzed.

-A Like depmod -a, but compare file timestamps and only update the
dependency file if anything has changed.

-C Use the file <configfile> instead of /etc/modules.conf.

-F Use the symbol information found in <kernelsyms>.

-V Show the release version of depmod.

Examples
depmod -e -n mymodule

displays the unresolved references in mymodule on stdout.

Chapter 13. Useful Linux commands 155

mke2fs - Create a file system on DASD

Usage
This utility creates an ext2 file system on a DASD hard disk. The device must
already have a low-level format.

Format

mke2fs syntax

WW mke2fs
-b 4096

-b blocksize
device WY

-b blocksize
Specifies the blocksize. Default is 4096. The blocksize needs to be a
multiple of the blocksize specified on the dasdfmt command. This allows
you to use block sizes up to the hardware maximum of 4096.

device Specifies the device node.

Examples
mke2fs -b 4096 /dev/dasd/<devno>/part<x>

156 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Chapter 14. VIPA – minimize outage due to adapter failure

This chapter describes how you use VIPA (Virtual IP Address) to assign IP
addresses to a system, instead of to individual adapters. Using VIPA, you can
minimize outage caused by adapter failure.

Note: The VIPA functionality requires a kernel built with the CONFIG_DUMMY
option.

Standard VIPA

Purpose
VIPA is a facility for assigning an IP address to a system, instead of to individual
adapters. It is supported by the Linux kernel.

Usage
These are the main steps you must follow to set up VIPA in Linux :
1. Create a dummy device using the Linux insmod command.
2. Assign a virtual IP address to the dummy device.
3. Ensure that your service (for example, the Apache Web server) listens to the

virtual IP address assigned above.
4. Set up routes to the virtual IP address, on clients or gateways. To do so, you can

use either:
v Static routing (shown in the example of Figure 7 on page 158).
v Dynamic routing. For details of how to configure routes, you must refer to

the documentation delivered with your routing daemon (for example, zebra or
gated).

If outage of an adapter occurs, you must switch adapters.
v To do so under static routing, you should:

1. Delete the route that was set previously.
2. Create an alternative route to the virtual IP address.

v To do so under dynamic routing, you should refer to the documentation
delivered with your routing daemon for details.

Example
This example assumes static routing is being used, and shows you how to:
1. Configure VIPA under static routing.
2. Switch adapters when an adapter outage occurs.

Figure 7 on page 158 shows the network adapter configuration used in the
example.

© Copyright IBM Corp. 2000, 2002 157

|
|

1. Create a dummy device.
insmod dummy

2. Assign a virtual IP address (9.164.100.100) to the dummy device.
ifconfig dummy0 9.164.100.100

3. Ensure that the service listens to the virtual IP address.
4. Set up a route to the virtual IP address (static routing), so that VIPA can be

reached via the gateway with address 10.1.0.2.
route add -host 9.164.100.100 gw 10.1.0.2

Now we assume an adapter outage occurs. We must therefore:
1. Delete the previously-created route.

route delete -host 9.164.100.100

2. Create the alternative route to the virtual IP address.
route add -host 9.164.100.100 gw 10.2.0.2

Figure 7. Example of using Virtual IP Address (VIPA)

158 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

|
|

|

|

Chapter 15. Kernel parameters

There are two different ways of passing parameters to Linux :
v Passing parameters to your kernel at startup time. (The parameter line)
v Configuring your boot loader to always pass those parameters.

The kernel can only handle a parameter line file that is no larger than 896 bytes.

The parameters which affect Linux for zSeries in particular are:
v ipldelay
v maxcpus
v mem
v noinitrd
v ramdisk_size
v ro
v root
v vmhalt
v cio_msg

© Copyright IBM Corp. 2000, 2002 159

ipldelay

Usage
When you do a power on reset (POR), some activation and loading is done. This
can cause Linux not to find the OSA-2 card. If you have problems with your
OSA-2 card after booting, you might want to insert a delay to allow the POR,
microcode load and initialization to take place in the OSA-2 card. The
recommended delay time is two minutes. For example, 30s means a delay of thirty
seconds between the boot and the initialization of the OSA-2 card, 2m means a
delay of two minutes. The value xy must be a number followed by either s or m.

Format

ipldelay syntax

WW ipldelay = xy m
xy s

WY

Examples
This example delays the initialization of the card by 2 minutes:

ipldelay=2m

This example delays the initialization of the card by 30 seconds:
ipldelay=30s

160 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

maxcpus

Usage
Specifies the maximum number of CPUs that Linux can use.

Format

maxcpus syntax

WW maxcpus = number WY

Examples
maxcpus=2

Chapter 15. Kernel parameters 161

mem

Usage
Restricts memory usage to the size specified. This must be used to overcome
initialization problems on a P/390.

Format

mem syntax

WW mem = xx M
yyyyyy K

WY

Examples
mem=64M

Restricts the memory Linux can use to 64MB.
mem=123456K

Restricts the memory Linux can use to 123456KB.

162 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

noinitrd

Usage
The noinitrd statement is required when the kernel was compiled with initial
RAM disk support enabled. This command bypasses using the initial ramdisk.

This can be useful if the kernel was used with a RAM disk for the initial startup,
but the RAM disk is not required when booted from a DASD

Format

noinitrd syntax

WW noinitrd WY

Chapter 15. Kernel parameters 163

ramdisk_size

Usage
Specifies the size of the ramdisk in kilobytes.

Format

ramdisk_size syntax

WW ramdisk_size = size WY

Examples
ramdisk_size=32000

164 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

ro

Usage
Mounts the root file system read-only.

Format

ro syntax

WW ro WY

Chapter 15. Kernel parameters 165

root

Usage
Tells Linux what to use as the root when mounting the root file system.

Format

root syntax

WW root = rootdevice WY

Examples
Without devfs this makes Linux use /dev/dasda1 when mounting the root file
system:

root=/dev/dasda1

With devfs this could be:
root=/dev/dasd/0182/part1

166 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

vmhalt

Usage
Specifies a command to be issued after a shutdown on VM.

Format

vmhalt syntax

WW vmhalt = command WY

Examples
This example specifies that an initial program load of CMS should follow a
shutdown on VM:

vmhalt="i cms"

Chapter 15. Kernel parameters 167

cio_msg

Usage
Specifies whether I/O messages are to be sent to the console on boot-up.

These messages are usually suppressed (cio_msg=no) because on large machines
with many attached devices the I/O layer generates a large number of these
messages which can flood the console for a significant period of time. If you do
need those messages (for example for debugging) you can switch them on
manually using cio_msg=yes.

Format

cio_msg syntax

WW cio_msg = no
yes

WY

Examples
This example switches I/O messages to the console on boot:

cio_msg=yes

168 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Chapter 16. Overview of the parameter line file

The parameter line file contains kernel parameters which are read by Linux during
the boot process. This chapter describes the format of the parameters in this file.

© Copyright IBM Corp. 2000, 2002 169

Parameters

Comments
The parameters allowed in the parameter line are described in Chapter 15, “Kernel
parameters” on page 159 and/or together with the description of the device
drivers.

Usage
The parameter line file contains data to be passed to the kernel for evaluation at
startup time. The location from which the kernel reads this file varies with the IPL
method as shown below:

IPL method Location of parameter line file

DASD Installed into the boot sector using zipl (option –p)

Tape Second file on tape

VM reader Second file in reader

CD-ROM Third entry in the .ins file (with load address 0x00010480)

Format
The kernel parameter file consists of a single line containing at most 896 bytes. The
line may either be encoded in ASCII or in EBCDIC. It contains a list of kernel
options (see kernel parameters, device driver parameters) separated by blanks.

For IPL from a VM reader the kernel parameter file must be broken into fixed
length records of 80 bytes. Note that a record end does not separate two options.
Therefore if an option ends at the end of a record the next record should begin
with a blank character.

Examples
Here is an example of a parameter line file:

dasd=E0C0-E0C2 root=/dev/ram0 ro ipldelay=2m

This defines three DASD, a read-only root file system, and a two-minute delay to
allow network connection.

Note that when loading from tape using an ASCII encoded parameter file (such as
one generated on a UNIX or PC system) you must make sure that your parameter
file does not span more than one line, is not larger than 896 bytes, and contains no
special characters (for example tabs or new lines).

170 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Appendix A. Reference information

LCS parameter syntax 171
LCS module parameter syntax (without the
channel device layer) 171
OSA-Express and HiperSockets parameter syntax 172

OSA-Express and HiperSockets driver command
syntax (without the channel device layer) 172
Linux for zSeries Major/Minor numbers 173

LCS parameter syntax
The LCS channel device layer boot parameters are as follows:

chandev=
lcs
lcsnum Device number.
lcs_read_devno Read channel address.
lcs_write_devno Write channel address.
memory_usage_in_k Total buffer size to allocate.
relative_adapter_no Relative adapter number.
checksum_received_ip_pkts Perform checksum on inbound packets.
use_hw_stats Get network statistics from the LANSTAT LCS

primitive.

LCS module parameter syntax (without the channel device layer)
The following are the LCS device driver module parameters:

use_hw_stats Get network statistics from the LANSTAT LCS
primitive.

do_sw_ip_checksumming Perform checksum on inbound packets.
ignore_sense Boot devices which do not report a valid sense_id
additional_model_info Model/maximum relative adapter number pairs.
devno_portno_pairs Matching pairs of device numbers and port numbers.
noauto noauto=1 disables auto-detection.

For a description of the parameters see “Device identification (CTC/ESCON and
LCS)” on page 53.

© Copyright IBM Corp. 2000, 2002 171

OSA-Express and HiperSockets parameter syntax
This driver is subject to license conditions as reflected in: “International License
Agreement for Non-Warranted Programs” on page 209.

The OSA-Express and HiperSockets channel device layer boot parameters are as
follows:

chandev=
qeth
osanum Device number.
osa_read_devno Read channel address.
osa_write_devno Write channel address.
osa_data_devno Data channel address.
memory_usage_in_k Total buffer size to allocate.
port_no Relative port number.
checksum_received_ip_pkts Perform checksum on inbound packets.

OSA-Express and HiperSockets driver command syntax (without the
channel device layer)

This driver is subject to license conditions as reflected in: “International License
Agreement for Non-Warranted Programs” on page 209.

There is a single keyword parameter for the OSA-Express and HiperSockets driver:
qeth_options

This parameter is used as follows:

(Note that all characters must be in the case shown, except for hexadecimal
numbers where case is irrelevant.)
qeth_options=[<driver options>,][<card options>,[<card options>,...]]

<driver options> is a comma separated list that sets the driver defaults. It can
contain the following keywords:

auto turns on auto-detection
noauto turns off auto-detection
no_router does not prepare the device as a router (default)
primary_router makes the device a primary router
secondary_router makes the device a secondary router
sw_checksumming checksumming is to be performed by the software
hw_checksumming checksumming is to be performed by the hardware
no_checksumming checksumming is not to be used
prio_queueing_tos priority queueing based on the IP type of service

field
prio_queueing_prec priority queueing based on the IP precedence field
no_prio_queueing switch off priority queueing
no_prio_queueing: <number> switch off priority queueing and set the default

queue to <number>

172 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

<card options> are used to override the global options for a particular device.
These are also comma-separated lists and each list consists of three device numbers
(decimal, or hex starting with 0x), an optional device name, and any of the driver
options keywords except auto or noauto.

For a description of the parameters see “QETH parameter syntax” on page 101.

Linux for zSeries Major/Minor numbers
The major and minor numbers currently allocated to zSeries devices are:

Device Major number Minor numbers

DASD 94 + dynamic 0,4,8..252. – Volume, Other
numbers (1...255) – Partitions

XPRAM 35 0–31

Appendix A. Reference information 173

174 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Appendix B. Kernel building

Building the kernel 175
Preliminary steps 176
Configuring the parameters 177
Checking the configuration 177
Checking the dependencies 178
Compiling the kernel 178
Installing the modules 179
Finishing off. 179

Using ’config’ or ’oldconfig’ 179
Sample output listing. 179
Cross-reference to configuration options . . . 183

Using ’menuconfig’ 184
File handling 184
Main menu 185
Code maturity level options 186
Loadable module support 186
Processor type and features. 186
General setup 186
Block device drivers 187
Multi-device support (RAID and LVM) 187
Character device drivers. 188
Network device drivers 188
Networking options 189
Filesystems 191
Native Language Support 193

Kernel hacking 193
Load an alternative configuration file 194
Save configuration to an alternative file . . . 194
Exit ’menuconfig’ 194

Kernel parameter options 196
IEEE FPU emulation 196
Built-in IPL record support 197
IPL method generated into head.S 197
Enable /proc/deviceinfo entries 197
Channel device layer support 197
Support for DASD devices 198
Support for ECKD disks. 198
Support for FBA disks 198
XPRAM device support 199
CTC/ESCON device support 199
IUCV device support 199
OSA-Express and HiperSockets device support 200
Support for 3215 line mode terminal 200
Support for console output on 3215 line mode
terminal 200
Support for 3270 console 201
Support for hardware console 201
Console output on hardware console 201
Tape device support 202

Building the kernel
Before deciding to change the details in the kernel source code, consider whether
installing one of the Linux images provided in the Linux for zSeries kernel patches
will be a more appropriate solution to your requirements.

Your build system must have the following software installed (as a minimum):
v kernel source 2.2.16 with the Linux for zSeries patch
v gcc version 2.95.2 or later supporting Linux for zSeries
v binutils version 2.9.1 or later supporting Linux for zSeries
v glibc 2.1.2 or later supporting Linux for zSeries
v sed
v bash
v make version 3.77 or later.

The following assumptions are made:
v You are confident in your ability to modify the kernel parameters without

severely damaging the system

© Copyright IBM Corp. 2000, 2002 175

v You cannot locate a pre-compiled kernel image that meets your requirements
(that is, a suitable kernel does not already exist)

v You are able to make an emergency IPL tape available (or preferably a complete
backup on tape).

If you decide to modify your Linux for zSeries kernel, you should use the
instructions outlined in the following sections. In this way you will be sure of
completing all of the tasks necessary to ensure the system runs properly when you
have finished. For example, you might have to install and link additional modules
after you have compiled and installed the kernel.
1. “Preliminary steps”
2. “Configuring the parameters” on page 177
3. “Checking the configuration” on page 177
4. “Checking the dependencies” on page 178
5. “Compiling the kernel” on page 178
6. “Installing the modules” on page 179
7. “Finishing off” on page 179

Note: The OCO device drivers supplied by IBM have been compiled with
chandev, multicast, token ring and ethernet support. If you recompile the
kernel without these options some or all of the IBM drivers will not work.

If you switch on Loadable module support -> Set version information on all
module symbols you may also encounter problems, as these OCO modules are
compiled without version information.

Preliminary steps
Before working with the kernel, there are a number of precautions that you should
take:
v Make a backup copy of the current kernel and all modules corresponding to this

kernel. It is important to make a backup even if you are replacing your kernel
with a new version. This is because the new system might not run properly and
you can use the backup to reload the old system

v Decide whether you want to modify the complete kernel, or only change some
modules. If you only change some modules, you might not have to build the
kernel.

If you are upgrading or replacing the kernel, obtain the new kernel or patch and
load it into the directory /usr/src. This will probably create a new directory
usr/src/linux, which will overwrite your last version of the kernel source. You
will need to check the symbolic links to the /usr/include directory to ensure the
following two links are valid:
v ln -sf /usr/src/linux/include/linux /usr/include/linux

v ln -sf /usr/src/linux/include/asm /usr/include/asm

Your first step in modifying the kernel, is to change to the /usr/src/linux
directory and enter the command make distclean. This cleans up the Linux for
zSeries distribution, resetting all options to their default values and removing all
object files from the system. If you enter make clean instead of make distclean,
you will only delete the object files.

176 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Configuring the parameters
To configure the parameters, make sure you are in the /usr/src/linux directory
and enter the command make config.

In make config, you select what you want to include in the resident kernel and
what features you want to have available as dynamically loadable modules. See
“Using ’config’ or ’oldconfig’” on page 179 for an example of a make config listing.
You will generally select the minimal resident set that is needed to boot:
v The type of file system used for your root partition (for example, ext2)
v Normal hard disk drive support (for example, DASD)
v Network support
v TCP/IP support.

The set of modules is constantly increasing, and you will be able to select the
option (M) when responding to the prompts shown in make config for those
features that the current kernel can offer as loadable modules. You can completely
enable or disable the use of your set of modules by using the CONFIG_MODVERSIONS
option during make config.

make config requires bash to allow it work. Bash will be searched for in $BASH,
/bin/bash and /bin/sh (in that order), so it must be located in one of these
directories for it to work. make config must be performed even if you are only
upgrading to the next patch. New configuration options are added in each release,
and odd problems will turn up if the configuration files are not set up as expected.
If you want to upgrade your existing configuration with minimal work, use make
oldconfig, which will keep your old kernel and only ask you questions about new
or modified options.

Alternative configuration commands are:
v make menuconfig — Text based menus, radiolists and windows, see “Using

’menuconfig’” on page 184
v make oldconfig — Same as make config except all questions based on the

contents of your existing ./.config file
v make xconfig — This X windows based configuration tool is currently not

available with Linux for zSeries.

Notes on make config:
v Keeping unnecessary drivers in the Linux for zSeries kernel will make it bigger,

and can cause problems: for example, unnecessary networking options might
confuse some drivers.

v Selecting the kernel hacking option and changing the source code directly
usually result in a bigger or slower Linux for zSeries kernel (or both). Thus you
should probably answer (N) to the questions for development, experimental, or
debugging features.

Checking the configuration
There are a pair of scripts that check the source tree for problems. These scripts do
not have to be run each time you build the kernel, but it is a good idea to check
for these types of errors and discrepancies at regular intervals.

make checkconfig checks the source tree for missing instances of #include <linux>.
This needs to be done occasionally, because the C preprocessor will silently give
bad results if these symbols haven’t been included (it treats undefined symbols in

Appendix B. Kernel building 177

preprocessor directives as defined to 0). Superfluous uses of #include <linux> are
also reported, but you can ignore these, because smart CONFIG_* dependencies
make them harmless. You can run make checkconfig without configuring the
kernel. Also, make checkconfig does not modify any files.

make checkhelp checks the source tree for options that are in Config.in files but
are not documented in scripts/Configure.help. Again, this needs to be done
occasionally. If you have hacked the kernel and changed configuration options or
are adding new ones, it is a good idea to make checkhelp (and add help as
necessary) before you publish your patch. Also, make checkhelp does not modify
any files.

Checking the dependencies
All of the source dependencies must be set each time you configure a new Linux
for zSeries kernel.

Enter make dep to set up all the dependencies correctly. make dep is a synonym for
the long form, make depend. This command performs two tasks:
v It computes dependency information about which .o files depend on which .h

files. It records this information in a top-level file named .hdepend and in one
file per source directory named .depend.

v If you have CONFIG_MODVERSIONS enabled, make dep computes symbol version
information for all of the files that export symbols (note that both resident and
modular files can export symbols). If you do not enable CONFIG_MODVERSIONS,
you only have to run make dep once, right after the first time you configure the
kernel. The .hdepend files and the .depend file are independent of your
configuration. If you do enable CONFIG_MODVERSIONS, you must run make dep
because the symbol version information depends on the configuration.

Compiling the kernel
Enter make image to create a Linux for zSeries kernel image. This compiles the
source code and leaves the kernel image in the current directory (usually
/usr/src/linux/arch/s390/boot).

Note that make zImage and make bzImage are not supported by the Linux for
zSeries kernel.

Compiling for IPL from tape
If you want to make a boot tape, you must transfer a set of files to the IPL tape.
The files, image.tape.bin (renamed as image.txt), parm.line, and initrd.bin
(renamed as initrd.txt) are the ones used during the installation process.

If you want to IPL from tape, ensure that the following configuration settings are
used:
v CONFIG_IPL is set
v CONFIG_IPL_TAPE is set
v CONFIG_BLK_DEV_RAM is set
v CONFIG_BLK_DEV_INITRD is set.

Additionally you should keep the default configuration settings to make sure that
all requirements to get a running Linux for zSeries kernel are met.

178 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Installing the modules
If you configured any of the parts of the Linux for zSeries kernel as modules by
selecting (M) in the kernel parameter option, you will have to create the modules
and then link them to the kernel.

You create the modules by entering the command make modules. This will compile
all of the modules and update the linux/modules directory. This directory will now
contain a set of symbolic links, pointing to the various object files in the kernel
tree.

After you have created all your modules, you must enter make modules_install.
This will copy all of the newly made modules into subdirectories under
/lib/modules/kernel_release/, where kernel_release is 2.4 (the current kernel
version).

As soon as you have rebooted the newly made kernel, you can use the utilities
insmod and rmmod to install and remove modules without recompiling the kernel.
Read the man-pages for insmod and rmmod to find out how to configure and
remove a module.

Finishing off
You should always keep a backup Linux for zSeries kernel available in case
something goes wrong. This backup must also include the modules corresponding
to that kernel. If you are installing a new kernel with the same version number as
your working kernel, make a backup of your modules’ directory before you do a
make modules_install.

In order to boot your new kernel, you’ll need to copy the kernel image (found in
/usr/src/linux/arch/s390/boot/image after compilation) to the place where your
regular bootable kernel is located. This will be on your IPL tape.

To see how to create a tape from which you can perform an IPL, refer to the
installation manual for your Linux for zSeries distribution.

Using ’config’ or ’oldconfig’
Use make config to configure all of the Linux for zSeries kernel options, or use
make oldconfig to keep your current kernel options and change only those options
that are new or have been modified in the latest kernel release.

Use make config or make oldconfig when you only have access to a line based
console. If you can use a screen based console, you might find make menuconfig
gives you a better interface (see “Using ’menuconfig’” on page 184).

The following output listing shows an example of the complete configuration script
that results from a make config. See “Kernel parameter options” on page 196 for
more information about individual options.

Sample output listing

Note:

Appendix B. Kernel building 179

This is for illustration only. The prompts and responses on your system may not
match these. The responses typed are shown in bold type. (The default responses
are shown; the same results would occur if just the ENTER key was pressed each
time.)
[root@host /usr/src/linux# make config
rm -f include/asm
(cd include ; ln -sf asm-s390 asm)
/bin/sh scripts/Configure arch/s390/config.in
#
Using defaults found in .config
#
*
* Code maturity level options
*
Prompt for development and/or incomplete code/drivers (CONFIG_EXPERIMENTAL) [Y/n/?] Y
*
* Loadable module support
*
Enable loadable module support (CONFIG_MODULES) [Y/n/?] Y
Set version information on all module symbols (CONFIG_MODVERSIONS) [Y/n/?] Y
Kernel module loader (CONFIG_KMOD) [Y/n/?] Y
*
* Processor type and features
*
Symmetric multi-processing support (CONFIG_SMP) [Y/n/?] Y
IEEE FPU emulation (CONFIG_MATHEMU) [Y/n/?] Y
*
* General setup
*
Fast IRQ handling (CONFIG_FAST_IRQ) [Y/n/?] Y
Builtin IPL record support (CONFIG_IPL) [Y/n/?] Y
IPL method generated into head.S (tape, vm_reader) [vm_reader] vm_reader
defined CONFIG_IPL_VM
Networking support (CONFIG_NET) [Y/n/?] Y
System V IPC (CONFIG_SYSVIPC) [Y/n/?] Y
BSD Process Accounting (CONFIG_BSD_PROCESS_ACCT) [Y/n/?] Y
Sysctl support (CONFIG_SYSCTL) [Y/n/?] Y
Kernel support for ELF binaries (CONFIG_BINFMT_ELF) [M/n/y/?] M
Kernel support for MISC binaries (CONFIG_BINFMT_MISC) [M/n/y/?] M
Show crashed user process info (CONFIG_PROCESS_DEBUG) [Y/n/?] Y
*
* Block device drivers
*
Loopback device support (CONFIG_BLK_DEV_LOOP) [M/n/y/?] M
Network block device support (CONFIG_BLK_DEV_NBD) [M/n/y/?] M
RAM disk support (CONFIG_BLK_DEV_RAM) [M/n/y/?] M

Default RAM disk size (CONFIG_BLK_DEV_RAM_SIZE) [24576] 24576
XPRAM disk support (CONFIG_BLK_DEV_XPRAM) [M/n/y/?] M
*
* S/390 block device drivers
*
Support for DASD devices (CONFIG_DASD) [M/n/y/?] M

Support for ECKD Disks (CONFIG_DASD_ECKD) [M/n/?] M
Automatic activation of ECKD module (CONFIG_DASD_AUTO_ECKD) [Y/n/?] Y
Support for FBA Disks (CONFIG_DASD_FBA) [M/n/?] M
Automatic activation of FBA module (CONFIG_DASD_AUTO_FBA) [Y/n/?] Y
Support for DIAG access to CMS reserved Disks (CONFIG_DASD_DIAG) [M/n/?] M
Automatic activation of DIAG module (CONFIG_DASD_AUTO_DIAG) [Y/n/?] Y

*
* Multi-device support (RAID and LVM)
*
Multiple devices driver support (RAID and LVM) (CONFIG_MD) [Y/n/?] Y
RAID support (CONFIG_BLK_DEV_MD) [M/n/y/?] M
Linear (append) mode (CONFIG_MD_LINEAR) [M/n/?] M
RAID-0 (striping) mode (CONFIG_MD_RAID0) [M/n/?] M
RAID-1 (mirroring) mode (CONFIG_MD_RAID1) [M/n/?] M
RAID-4/RAID-5 mode (CONFIG_MD_RAID5) [M/n/?] M

Logical volume manager (LVM) support (CONFIG_BLK_DEV_LVM) [M/n/y/?] M
*
* Character device drivers
*
Unix98 PTY support (CONFIG_UNIX98_PTYS) [Y/n/?] Y
Maximum number of Unix98 PTYs in use (0-2048) (CONFIG_UNIX98_PTY_COUNT) [256] 256
*
* S/390 character device drivers
*
Support for locally attached 3270 tubes (CONFIG_TN3270) [M/n/y/?] M
Support for 3215 line mode terminal (CONFIG_TN3215) [Y/n/?] Y
Support for console on 3215 line mode terminal (CONFIG_TN3215_CONSOLE) [Y/n/?] Y
Support for HWC line mode terminal (CONFIG_HWC) [Y/n/?] Y

console on HWC line mode terminal (CONFIG_HWC_CONSOLE) [Y/n/?] Y
S/390 tape device support (CONFIG_S390_TAPE) [M/n/y/?] M
*
* S/390 tape interface support
*

Support for tape character devices (CONFIG_S390_TAPE_CHAR) [Y/n/?] Y
Support for tape block devices (CONFIG_S390_TAPE_BLOCK) [Y/n/?] Y

*
* S/390 tape hardware support
*

Support for 3490 tape hardware (CONFIG_S390_TAPE_3490) [Y/n/?] Y
Support for 3480 tape hardware (CONFIG_S390_TAPE_3480) [Y/n/?] Y

*
* Network device drivers
*
Network device support (CONFIG_NETDEVICES) [Y/n/?] Y

180 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Dummy net driver support (CONFIG_DUMMY) [M/n/y/?] M
Bonding driver support (CONFIG_BONDING) [M/n/y/?] M
EQL (serial line load balancing) support (CONFIG_EQUALIZER) [M/n/y/?] M
Universal TUN/TAP device driver support (CONFIG_TUN) [M/n/y/?] M
Ethernet (10 or 100Mbit) (CONFIG_NET_ETHERNET) [Y/n/?] Y
Token Ring driver support (CONFIG_TR) [Y/n/?] Y
FDDI driver support (CONFIG_FDDI) [Y/n/?] Y
*
* S/390 network device drivers
*
Channel Device Configuration (CONFIG_CHANDEV) [Y/n/?] Y
CTC device support (CONFIG_CTC) [M/n/y/?] M
IUCV device support (VM only) (CONFIG_IUCV) [M/n/y/?] M

*
* Networking options
*
Packet socket (CONFIG_PACKET) [M/n/y/?] M
Packet socket: mmapped IO (CONFIG_PACKET_MMAP) [Y/n/?] Y
Kernel/User netlink socket (CONFIG_NETLINK) [Y/n/?] Y
Routing messages (CONFIG_RTNETLINK) [Y/n/?] Y
Netlink device emulation (CONFIG_NETLINK_DEV) [M/n/y/?] M
Network packet filtering (replaces ipchains) (CONFIG_NETFILTER) [Y/n/?] Y
Network packet filtering debugging (CONFIG_NETFILTER_DEBUG) [Y/n/?] Y
Socket Filtering (CONFIG_FILTER) [Y/n/?] Y
Unix domain sockets (CONFIG_UNIX) [M/n/y/?] M
TCP/IP networking (CONFIG_INET) [Y/n/?] Y
IP: multicasting (CONFIG_IP_MULTICAST) [Y/n/?] Y
IP: advanced router (CONFIG_IP_ADVANCED_ROUTER) [Y/n/?] Y

IP: policy routing (CONFIG_IP_MULTIPLE_TABLES) [Y/n/?] Y
IP: use netfilter MARK value as routing key (CONFIG_IP_ROUTE_FWMARK) [Y/n/?] Y
IP: fast network address translation (CONFIG_IP_ROUTE_NAT) [Y/n/?] Y

IP: equal cost multipath (CONFIG_IP_ROUTE_MULTIPATH) [Y/n/?] Y
IP: use TOS value as routing key (CONFIG_IP_ROUTE_TOS) [Y/n/?] Y
IP: verbose route monitoring (CONFIG_IP_ROUTE_VERBOSE) [Y/n/?] Y
IP: large routing tables (CONFIG_IP_ROUTE_LARGE_TABLES) [Y/n/?] Y

IP: kernel level autoconfiguration (CONFIG_IP_PNP) [Y/n/?] Y
IP: BOOTP support (CONFIG_IP_PNP_BOOTP) [Y/n/?] Y
IP: RARP support (CONFIG_IP_PNP_RARP) [Y/n/?] Y

IP: tunneling (CONFIG_NET_IPIP) [M/n/y/?] M
IP: GRE tunnels over IP (CONFIG_NET_IPGRE) [M/n/y/?] M

IP: broadcast GRE over IP (CONFIG_NET_IPGRE_BROADCAST) [Y/n/?] Y
IP: multicast routing (CONFIG_IP_MROUTE) [Y/n/?] Y

IP: PIM-SM version 1 support (CONFIG_IP_PIMSM_V1) [Y/n/?] Y
IP: PIM-SM version 2 support (CONFIG_IP_PIMSM_V2) [Y/n/?] Y

IP: ARP daemon support (EXPERIMENTAL) (CONFIG_ARPD) [Y/n/?] Y
IP: TCP Explicit Congestion Notification support (CONFIG_INET_ECN) [Y/n/?] Y
IP: TCP syncookie support (disabled per default) (CONFIG_SYN_COOKIES) [Y/n/?] Y
*
* IP: Netfilter Configuration
*
Connection tracking (required for masq/NAT) (CONFIG_IP_NF_CONNTRACK) [M/n/y/?] M
FTP protocol support (CONFIG_IP_NF_FTP) [M/n/?] M
Userspace queueing via NETLINK (EXPERIMENTAL) (CONFIG_IP_NF_QUEUE) [M/n/y/?] M
IP tables support (required for filtering/masq/NAT) (CONFIG_IP_NF_IPTABLES) [M/n/y/?] M
limit match support (CONFIG_IP_NF_MATCH_LIMIT) [M/n/?] M
MAC address match support (CONFIG_IP_NF_MATCH_MAC) [M/n/?] M
netfilter MARK match support (CONFIG_IP_NF_MATCH_MARK) [M/n/?] M
Multiple port match support (CONFIG_IP_NF_MATCH_MULTIPORT) [M/n/?] M
TOS match support (CONFIG_IP_NF_MATCH_TOS) [M/n/?] M
tcpmss match support (CONFIG_IP_NF_MATCH_TCPMSS) [M/n/?] M
Connection state match support (CONFIG_IP_NF_MATCH_STATE) [M/n/?] M
Unclean match support (EXPERIMENTAL) (CONFIG_IP_NF_MATCH_UNCLEAN) [M/n/?] M
Owner match support (EXPERIMENTAL) (CONFIG_IP_NF_MATCH_OWNER) [M/n/?] M
Packet filtering (CONFIG_IP_NF_FILTER) [M/n/?] M

REJECT target support (CONFIG_IP_NF_TARGET_REJECT) [M/n/?] M
MIRROR target support (EXPERIMENTAL) (CONFIG_IP_NF_TARGET_MIRROR) [M/n/?] M

Full NAT (CONFIG_IP_NF_NAT) [M/n/?] M
MASQUERADE target support (CONFIG_IP_NF_TARGET_MASQUERADE) [M/n/?] M
REDIRECT target support (CONFIG_IP_NF_TARGET_REDIRECT) [M/n/?] M

Packet mangling (CONFIG_IP_NF_MANGLE) [M/n/?] M
TOS target support (CONFIG_IP_NF_TARGET_TOS) [M/n/?] M
MARK target support (CONFIG_IP_NF_TARGET_MARK) [M/n/?] M

LOG target support (CONFIG_IP_NF_TARGET_LOG) [M/n/?] M
TCPMSS target support (CONFIG_IP_NF_TARGET_TCPMSS) [M/n/?] M
ipchains (2.2-style) support (CONFIG_IP_NF_COMPAT_IPCHAINS) [M/n/y/?] M
ipfwadm (2.0-style) support (CONFIG_IP_NF_COMPAT_IPFWADM) [M/n/y/?] M
The IPv6 protocol (EXPERIMENTAL) (CONFIG_IPV6) [M/n/y/?] M

IPv6: enable EUI-64 token format (CONFIG_IPV6_EUI64) [Y/n/?] Y
IPv6: disable provider based addresses (CONFIG_IPV6_NO_PB) [Y/n/?] Y

*
* IPv6: Netfilter Configuration
*
IP6 tables support (required for filtering/masq/NAT) (CONFIG_IP6_NF_IPTABLES) [M/n/y/?] M
limit match support (CONFIG_IP6_NF_MATCH_LIMIT) [M/n/?] M
netfilter MARK match support (CONFIG_IP6_NF_MATCH_MARK) [M/n/?] M
Packet filtering (CONFIG_IP6_NF_FILTER) [M/n/?] M
Packet mangling (CONFIG_IP6_NF_MANGLE) [M/n/?] M

MARK target support (CONFIG_IP6_NF_TARGET_MARK) [M/n/?] M
Kernel httpd acceleration (EXPERIMENTAL) (CONFIG_KHTTPD) [M/n/y/?] M
Asynchronous Transfer Mode (ATM) (EXPERIMENTAL) (CONFIG_ATM) [Y/n/?] Y
Classical IP over ATM (CONFIG_ATM_CLIP) [Y/n/?] Y

Do NOT send ICMP if no neighbour (CONFIG_ATM_CLIP_NO_ICMP) [Y/n/?] Y
LAN Emulation (LANE) support (CONFIG_ATM_LANE) [M/n/y/?] M

Multi-Protocol Over ATM (MPOA) support (CONFIG_ATM_MPOA) [M/n/y/?] M
*
*
*
The IPX protocol (CONFIG_IPX) [M/n/y/?] M

Appendix B. Kernel building 181

IPX: Full internal IPX network (CONFIG_IPX_INTERN) [Y/n/?] Y
Appletalk protocol support (CONFIG_ATALK) [M/n/y/?] M
DECnet Support (CONFIG_DECNET) [M/n/y/?] M
DECnet: SIOCGIFCONF support (CONFIG_DECNET_SIOCGIFCONF) [Y/n/?] Y
DECnet: router support (EXPERIMENTAL) (CONFIG_DECNET_ROUTER) [Y/n/?] Y

DECnet: use FWMARK value as routing key (EXPERIMENTAL) (CONFIG_DECNET_ROUTE_FWMARK) [Y/n/?] Y
802.1d Ethernet Bridging (CONFIG_BRIDGE) [M/n/y/?] M
CCITT X.25 Packet Layer (EXPERIMENTAL) (CONFIG_X25) [M/n/y/?] M
LAPB Data Link Driver (EXPERIMENTAL) (CONFIG_LAPB) [M/n/y/?] M
802.2 LLC (EXPERIMENTAL) (CONFIG_LLC) [Y/n/?] Y
Frame Diverter (EXPERIMENTAL) (CONFIG_NET_DIVERT) [Y/n/?] Y
Acorn Econet/AUN protocols (EXPERIMENTAL) (CONFIG_ECONET) [M/n/y/?] M
AUN over UDP (CONFIG_ECONET_AUNUDP) [Y/n/?] Y
Native Econet (CONFIG_ECONET_NATIVE) [Y/n/?] Y
WAN router (CONFIG_WAN_ROUTER) [M/n/y/?] M
Fast switching (read help!) (CONFIG_NET_FASTROUTE) [Y/n/?] Y
Forwarding between high speed interfaces (CONFIG_NET_HW_FLOWCONTROL) [Y/n/?] Y
*
* QoS and/or fair queueing
*
QoS and/or fair queueing (CONFIG_NET_SCHED) [Y/n/?] Y
CBQ packet scheduler (CONFIG_NET_SCH_CBQ) [M/n/y/?] M
CSZ packet scheduler (CONFIG_NET_SCH_CSZ) [M/n/y/?] M
ATM pseudo-scheduler (CONFIG_NET_SCH_ATM) [Y/n/?] Y
The simplest PRIO pseudoscheduler (CONFIG_NET_SCH_PRIO) [M/n/y/?] M
RED queue (CONFIG_NET_SCH_RED) [M/n/y/?] M
SFQ queue (CONFIG_NET_SCH_SFQ) [M/n/y/?] M
TEQL queue (CONFIG_NET_SCH_TEQL) [M/n/y/?] M
TBF queue (CONFIG_NET_SCH_TBF) [M/n/y/?] M
GRED queue (CONFIG_NET_SCH_GRED) [M/n/y/?] M
Diffserv field marker (CONFIG_NET_SCH_DSMARK) [M/n/y/?] M
Ingress Qdisc (CONFIG_NET_SCH_INGRESS) [M/n/y/?] M
QoS support (CONFIG_NET_QOS) [Y/n/?] Y

Rate estimator (CONFIG_NET_ESTIMATOR) [Y/n/?] Y
Packet classifier API (CONFIG_NET_CLS) [Y/n/?] Y

TC index classifier (CONFIG_NET_CLS_TCINDEX) [M/n/y/?] M
Routing table based classifier (CONFIG_NET_CLS_ROUTE4) [M/n/y/?] M
Firewall based classifier (CONFIG_NET_CLS_FW) [M/n/y/?] M
U32 classifier (CONFIG_NET_CLS_U32) [M/n/y/?] M
Special RSVP classifier (CONFIG_NET_CLS_RSVP) [M/n/y/?] M
Special RSVP classifier for IPv6 (CONFIG_NET_CLS_RSVP6) [M/n/y/?] M
Traffic policing (needed for in/egress) (CONFIG_NET_CLS_POLICE) [Y/n/?] Y

*
* File systems
*
Quota support (CONFIG_QUOTA) [Y/n/?] Y
Kernel automounter support (CONFIG_AUTOFS_FS) [M/n/y/?] M
Kernel automounter version 4 support (also supports v3) (CONFIG_AUTOFS4_FS) [M/n/y/?] M
Reiserfs support (CONFIG_REISERFS_FS) [M/n/y/?] M
Have reiserfs do extra internal checking (CONFIG_REISERFS_CHECK) [Y/n/?] Y
ADFS file system support (CONFIG_ADFS_FS) [M/n/y/?] M
ADFS write support (DANGEROUS) (CONFIG_ADFS_FS_RW) [Y/n/?] Y
Amiga FFS file system support (EXPERIMENTAL) (CONFIG_AFFS_FS) [M/n/y/?] M
Apple Macintosh file system support (EXPERIMENTAL) (CONFIG_HFS_FS) [M/n/y/?] M
BFS file system support (EXPERIMENTAL) (CONFIG_BFS_FS) [M/n/y/?] M
DOS FAT fs support (CONFIG_FAT_FS) [M/n/y/?] M
MSDOS fs support (CONFIG_MSDOS_FS) [M/n/?] M

UMSDOS: Unix-like file system on top of standard MSDOS fs (CONFIG_UMSDOS_FS) [M/n/?] M
VFAT (Windows-95) fs support (CONFIG_VFAT_FS) [M/n/?] M
EFS file system support (read only) (EXPERIMENTAL) (CONFIG_EFS_FS) [M/n/y/?] M
Journalling Flash File System (JFFS) support (EXPERIMENTAL) (CONFIG_JFFS_FS) [M/n/y/?] M
JFFS debugging verbosity (0 = quiet, 3 = noisy) (CONFIG_JFFS_FS_VERBOSE) [0] 0
Compressed ROM file system support (CONFIG_CRAMFS) [M/n/y/?] M
Virtual memory file system support (former shm fs) (CONFIG_TMPFS) [Y/n/?] Y
Simple RAM-based file system support (CONFIG_RAMFS) [M/n/y/?] M
ISO 9660 CDROM file system support (CONFIG_ISO9660_FS) [M/n/y/?] M
Microsoft Joliet CDROM extensions (CONFIG_JOLIET) [Y/n/?] Y
Minix fs support (CONFIG_MINIX_FS) [M/n/y/?] M
NTFS file system support (read only) (CONFIG_NTFS_FS) [M/n/y/?] M
NTFS write support (DANGEROUS) (CONFIG_NTFS_RW) [Y/n/?] Y
OS/2 HPFS file system support (CONFIG_HPFS_FS) [M/n/y/?] M
/proc file system support (CONFIG_PROC_FS) [Y/n/?] Y
/dev file system support (EXPERIMENTAL) (CONFIG_DEVFS_FS) [Y/n/?] Y
Automatically mount at boot (CONFIG_DEVFS_MOUNT) [Y/n/?] Y
Debug devfs (CONFIG_DEVFS_DEBUG) [Y/n/?] Y
/dev/pts file system for Unix98 PTYs (CONFIG_DEVPTS_FS) [Y/n/?] Y
QNX4 file system support (read only) (EXPERIMENTAL) (CONFIG_QNX4FS_FS) [M/n/y/?] M
QNX4FS write support (DANGEROUS) (CONFIG_QNX4FS_RW) [Y/n/?] Y
ROM file system support (CONFIG_ROMFS_FS) [M/n/y/?] M
Second extended fs support (CONFIG_EXT2_FS) [Y/m/n/?] Y
System V and Coherent file system support (read only) (CONFIG_SYSV_FS) [M/n/y/?] M
SYSV file system write support (DANGEROUS) (CONFIG_SYSV_FS_WRITE) [Y/n/?] Y
UDF file system support (read only) (CONFIG_UDF_FS) [M/n/y/?] M
UDF write support (DANGEROUS) (CONFIG_UDF_RW) [Y/n/?] Y
UFS file system support (read only) (CONFIG_UFS_FS) [M/n/y/?] M
UFS file system write support (DANGEROUS) (CONFIG_UFS_FS_WRITE) [Y/n/?] Y
*
* Network File Systems
*
Coda file system support (advanced network fs) (CONFIG_CODA_FS) [M/n/y/?] M
NFS file system support (CONFIG_NFS_FS) [Y/m/n/?] Y
Provide NFSv3 client support (CONFIG_NFS_V3) [Y/n/?] Y
Root file system on NFS (CONFIG_ROOT_NFS) [Y/n/?] Y
NFS server support (CONFIG_NFSD) [Y/m/n/?] Y
Provide NFSv3 server support (CONFIG_NFSD_V3) [Y/n/?] Y
SMB file system support (to mount Windows shares etc.) (CONFIG_SMB_FS) [M/n/y/?] M

Use a default NLS (CONFIG_SMB_NLS_DEFAULT) [Y/n/?] Y
Default Remote NLS Option (CONFIG_SMB_NLS_REMOTE) [cp437] cp437
NCP file system support (to mount NetWare volumes) (CONFIG_NCP_FS) [M/n/y/?] M

182 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Packet signatures (CONFIG_NCPFS_PACKET_SIGNING) [Y/n/?] Y
Proprietary file locking (CONFIG_NCPFS_IOCTL_LOCKING) [Y/n/?] Y
Clear remove/delete inhibit when needed (CONFIG_NCPFS_STRONG) [Y/n/?] Y
Use NFS namespace if available (CONFIG_NCPFS_NFS_NS) [Y/n/?] Y
Use LONG (OS/2) namespace if available (CONFIG_NCPFS_OS2_NS) [Y/n/?] Y
Lowercase DOS filenames (CONFIG_NCPFS_SMALLDOS) [Y/n/?] Y
Use Native Language Support (CONFIG_NCPFS_NLS) [Y/n/?] Y
Enable symbolic links and execute flags (CONFIG_NCPFS_EXTRAS) [Y/n/?] Y
*
* Partition Types
*
Advanced partition selection (CONFIG_PARTITION_ADVANCED) [Y/n/?] Y
Acorn partition support (CONFIG_ACORN_PARTITION) [Y/n/?] Y

ICS partition support (CONFIG_ACORN_PARTITION_ICS) [Y/n/?] Y
Native filecore partition support (CONFIG_ACORN_PARTITION_ADFS) [Y/n/?] Y
PowerTec partition support (CONFIG_ACORN_PARTITION_POWERTEC) [Y/n/?] Y
RISCiX partition support (CONFIG_ACORN_PARTITION_RISCIX) [Y/n/?] Y

Alpha OSF partition support (CONFIG_OSF_PARTITION) [Y/n/?] Y
Amiga partition table support (CONFIG_AMIGA_PARTITION) [Y/n/?] Y
Atari partition table support (CONFIG_ATARI_PARTITION) [Y/n/?] Y
IBM disk label and partition support (CONFIG_IBM_PARTITION) [Y/n/?] Y
Macintosh partition map support (CONFIG_MAC_PARTITION) [Y/n/?] Y
PC BIOS (MSDOS partition tables) support (CONFIG_MSDOS_PARTITION) [Y/n/?] Y

BSD disklabel (FreeBSD partition tables) support (CONFIG_BSD_DISKLABEL) [Y/n/?] Y
Minix subpartition support (CONFIG_MINIX_SUBPARTITION) [Y/n/?] Y
Solaris (x86) partition table support (CONFIG_SOLARIS_X86_PARTITION) [Y/n/?] Y
Unixware slices support (CONFIG_UNIXWARE_DISKLABEL) [Y/n/?] Y

SGI partition support (CONFIG_SGI_PARTITION) [Y/n/?] Y
Ultrix partition table support (CONFIG_ULTRIX_PARTITION) [Y/n/?] Y
Sun partition tables support (CONFIG_SUN_PARTITION) [Y/n/?] Y
*
* Native Language Support
*
Default NLS Option (CONFIG_NLS_DEFAULT) [iso8859-1] iso8859-1
Codepage 437 (United States, Canada) (CONFIG_NLS_CODEPAGE_437) [M/n/y/?] M
Codepage 737 (Greek) (CONFIG_NLS_CODEPAGE_737) [M/n/y/?] M
Codepage 775 (Baltic Rim) (CONFIG_NLS_CODEPAGE_775) [M/n/y/?] M
Codepage 850 (Europe) (CONFIG_NLS_CODEPAGE_850) [M/n/y/?] M
Codepage 852 (Central/Eastern Europe) (CONFIG_NLS_CODEPAGE_852) [M/n/y/?] M
Codepage 855 (Cyrillic) (CONFIG_NLS_CODEPAGE_855) [M/n/y/?] M
Codepage 857 (Turkish) (CONFIG_NLS_CODEPAGE_857) [M/n/y/?] M
Codepage 860 (Portugese) (CONFIG_NLS_CODEPAGE_860) [M/n/y/?] M
Codepage 861 (Icelandic) (CONFIG_NLS_CODEPAGE_861) [M/n/y/?] M
Codepage 862 (Hebrew) (CONFIG_NLS_CODEPAGE_862) [M/n/y/?] M
Codepage 863 (Canadian French) (CONFIG_NLS_CODEPAGE_863) [M/n/y/?] M
Codepage 864 (Arabic) (CONFIG_NLS_CODEPAGE_864) [M/n/y/?] M
Codepage 865 (Norwegian, Danish) (CONFIG_NLS_CODEPAGE_865) [M/n/y/?] M
Codepage 866 (Cyrillic/Russian) (CONFIG_NLS_CODEPAGE_866) [M/n/y/?] M
Codepage 869 (Greek) (CONFIG_NLS_CODEPAGE_869) [M/n/y/?] M
Simplified Chinese charset (CP936, GB2312) (CONFIG_NLS_CODEPAGE_936) [M/n/y/?] M
Traditional Chinese charset (Big5) (CONFIG_NLS_CODEPAGE_950) [M/n/y/?] M
Japanese charsets (Shift-JIS, EUC-JP) (CONFIG_NLS_CODEPAGE_932) [M/n/y/?] M
Korean charset (CP949, EUC-KR) (CONFIG_NLS_CODEPAGE_949) [M/n/y/?] M
Thai charset (CP874, TIS-620) (CONFIG_NLS_CODEPAGE_874) [M/n/y/?] M
Hebrew charsets (ISO-8859-8, CP1255) (CONFIG_NLS_ISO8859_8) [M/n/y/?] M
Windows CP1251 (Bulgarian, Belarussian) (CONFIG_NLS_CODEPAGE_1251) [M/n/y/?] M
NLS ISO 8859-1 (Latin 1; Western European Languages) (CONFIG_NLS_ISO8859_1) [M/n/y/?] M
NLS ISO 8859-2 (Latin 2; Slavic/Central European Languages) (CONFIG_NLS_ISO8859_2) [M/n/y/?] M
NLS ISO 8859-3 (Latin 3; Esperanto, Galician, Maltese, Turkish) (CONFIG_NLS_ISO8859_3) [M/n/y/?] M
NLS ISO 8859-4 (Latin 4; old Baltic charset) (CONFIG_NLS_ISO8859_4) [M/n/y/?] M
NLS ISO 8859-5 (Cyrillic) (CONFIG_NLS_ISO8859_5) [M/n/y/?] M
NLS ISO 8859-6 (Arabic) (CONFIG_NLS_ISO8859_6) [M/n/y/?] M
NLS ISO 8859-7 (Modern Greek) (CONFIG_NLS_ISO8859_7) [M/n/y/?] M
NLS ISO 8859-9 (Latin 5; Turkish) (CONFIG_NLS_ISO8859_9) [M/n/y/?] M
NLS ISO 8859-13 (Latin 7; Baltic) (CONFIG_NLS_ISO8859_13) [M/n/y/?] M
NLS ISO 8859-14 (Latin 8; Celtic) (CONFIG_NLS_ISO8859_14) [M/n/y/?] M
NLS ISO 8859-15 (Latin 9; Western European Languages with Euro) (CONFIG_NLS_ISO8859_15) [M/n/y/?] M
NLS KOI8-R (Russian) (CONFIG_NLS_KOI8_R) [M/n/y/?] M
NLS KOI8-U (Ukrainian) (CONFIG_NLS_KOI8_U) [M/n/y/?] M
NLS UTF8 (CONFIG_NLS_UTF8) [Y/m/n/?] Y
*
* Kernel hacking
*
Magic SysRq key (CONFIG_MAGIC_SYSRQ) [Y/n/?] Y

*** End of Linux kernel configuration.
*** Check the top-level Makefile for additional configuration.
*** Next, you must run ’make dep’.

Cross-reference to configuration options
The Linux for zSeries specific configuration options shown in the sample output
listing are described in the following sections:
v “IEEE FPU emulation” on page 196
v “Built-in IPL record support” on page 197
v “IPL method generated into head.S” on page 197
v “Channel device layer support” on page 197
v “Support for DASD devices” on page 198
v “Support for ECKD disks” on page 198

Appendix B. Kernel building 183

v “Support for FBA disks” on page 198
v “XPRAM device support” on page 199
v “CTC/ESCON device support” on page 199
v “IUCV device support” on page 199
v “OSA-Express and HiperSockets device support” on page 200
v “Support for 3215 line mode terminal” on page 200
v “Support for console output on 3215 line mode terminal” on page 200
v “Support for 3270 console” on page 201
v “Support for hardware console” on page 201
v “Console output on hardware console” on page 201
v “Tape device support” on page 202

Using ’menuconfig’
You can use make menuconfig to edit individual Linux for zSeries kernel options
out of sequence and you can discard your settings at any time. You need a screen
based console device to use make menuconfig. If you only have access to a line
based console, you must use make config, see “Using ’config’ or ’oldconfig’” on
page 179 for more details.

Some options can be built directly into the kernel. Other options can be made into
dynamically loadable modules. Some options can be completely removed
altogether. There are also certain kernel parameters which are not really selectable
options (Y) or (N), but instead values must be entered for them or selected from a
list (decimal or hexadecimal numbers or possibly text).

The menu items begin with various types of bracket to indicate that the features:
v [*] are configured to be built in to the kernel.
v [] are configured to be removed from the kernel.
v <M> are configured to be modularized.
v < > are module capable features.
v <*> could have been modules, but have been built into the kernel.

Modules are linked to the kernel after booting.

Some menu items contain subordinate options that are displayed only when the
menu item has been selected.

File handling
You can revise your settings up until you save the configuration. You will be given
a last chance to confirm them prior to exiting menuconfig – see “Exit ’menuconfig’”
on page 194.

If menuconfig quits with an error while saving your configuration, you can look in
the file /usr/src/linux/.menuconfig.log for information which can help you
determine the failure cause.

You can also save the current configuration to a file of your choice, or load a
previously saved configuration – see “Save configuration to an alternative file” on
page 194 and “Load an alternative configuration file” on page 194.

184 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

menuconfig supports the use of alternative configuration files for those who, for
various reasons, find it necessary to switch between different kernel configurations.
At the end of the main menu you will find two options. One is for saving the
current configuration to a file of your choosing. The other option is for loading a
previously saved alternative configuration. Even if you don’t use alternative
configuration files, but during a session you decide to restore your previously
saved settings from .config, you can use the Load Alternative... to do so
without restarting menuconfig.

Note:

These examples are for illustration only. The prompts and responses on your
system may not match these. The headers and footers have been removed from all
screens except the first for clarity.

Main menu
The following example shows the different sets of configuration options:
Linux Kernel v2.4.4 Configuration ──
┌─────────────────────────────── Main Menu ───────────────────────────────┐
│ Arrow keys navigate the menu. <Enter> selects submenus --->. │
│ Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, │
│ <M> modularizes features. Press <Esc><Esc> to exit, <?> for Help. │
│ Legend: [*] built-in [] excluded <M> module < > module capable │
│ ┌───┐ │
│ │ Code maturity level options ---> │ │
│ │ Loadable module support ---> │ │
│ │ Processor type and features ---> │ │
│ │ General setup ---> │ │
│ │ Block device drivers ---> │ │
│ │ Multi-device support (RAID and LVM) ---> │ │
│ │ Character device drivers ---> │ │
│ │ Network device drivers ---> │ │
│ │ Networking options ---> │ │
│ │ File systems ---> │ │
│ │ Kernel hacking ---> │ │
│ │ --- │ │
│ │ Load an Alternate Configuration File │ │
│ │ Save Configuration to an Alternate File │ │
│ └───┘ │
├───┤
│ <Select> < Exit > < Help > │
└───┘

The options on this menu are described in detail in the following sections:
v “Code maturity level options” on page 186
v “Loadable module support” on page 186
v “Processor type and features” on page 186
v “General setup” on page 186
v “Block device drivers” on page 187
v “Multi-device support (RAID and LVM)” on page 187
v “Character device drivers” on page 188
v “Network device drivers” on page 188
v “Networking options” on page 189
v “Filesystems” on page 191
v “Native Language Support” on page 193
v “Kernel hacking” on page 193

Appendix B. Kernel building 185

v “Load an alternative configuration file” on page 194
v “Save configuration to an alternative file” on page 194

Code maturity level options
The Code Maturity Level options are intended to reduce the number of options
that are displayed. This can help by not showing the code/drivers that are either
incomplete or still under development:
Linux Kernel v2.4.4 Configuration ──
┌────────────────────── Code maturity level options ──────────────────────┐
│ ┌───┐ │
│ │ [*] Prompt for development and/or incomplete code/drivers │ │
│ └───┘ │
└───┘

Loadable module support
The Loadable Module Support option lets you use dynamically loaded modules
that are linked to your basic kernel.
Linux Kernel v2.4.4 Configuration ──
┌──────────────────────── Loadable module support ────────────────────────┐
│ ┌───┐ │
│ │ [*] Enable loadable module support │ │
│ │ [*] Set version information on all module symbols │ │
│ │ [*] Kernel module loader │ │
│ └───┘ │
└───┘

Processor type and features
The Processor Type and Features options allow you to configure the kernel to
match your zSeries hardware installation.
Linux Kernel v2.4.4 Configuration ──
┌────────────────────── Processor type and features ──────────────────────┐
│ ┌───┐ │
│ │ [*] Symmetric multi-processing support │ │
│ │ [*] IEEE FPU emulation │ │
│ └───┘ │
└───┘

The Linux for zSeries Processor Type and Features menu option is described in the
following section:
v “IEEE FPU emulation” on page 196.

General setup
The General Setup options configure your kernel’s interaction with certain external
programs, this includes:
v kernel networking support
v the synchronization and exchange of information between kernel and program
v instructing the kernel to write process accounting information to a file
v dynamically changing certain kernel parameters and variables on the fly.
Linux Kernel v2.4.4 Configuration ──
┌───────────────────────────── General setup ─────────────────────────────┐
│ ┌───┐ │
│ │ [*] Fast IRQ handling │ │
│ │ [*] Builtin IPL record support │ │
│ │ (vm_reader) IPL method generated into head.S │ │
│ │ [*] Networking support │ │
│ │ [*] System V IPC │ │

186 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

│ │ [*] BSD Process Accounting │ │
│ │ [*] Sysctl support │ │
│ │ <M> Kernel support for ELF binaries │ │
│ │ <M> Kernel support for MISC binaries │ │
│ │ [*] Show crashed user process info │ │
│ └───┘ │
└───┘

The Linux for zSeries General Setup menu options are described in the following
sections:
v “Built-in IPL record support” on page 197
v “IPL method generated into head.S” on page 197.

Block device drivers
The Block Device Drivers options allow the kernel to be set up to use the various
block devices available with your zSeries system.
Linux Kernel v2.4.4 Configuration ──
┌───────────────────────── Block device drivers ──────────────────────────┐
│ ┌───┐ │
│ │ <M> Loopback device support │ │
│ │ <M> Network block device support │ │
│ │ <M> RAM disk support │ │
│ │ (24576) Default RAM disk size │ │
│ │ <M> XPRAM disk support │ │
│ │ --- S/390 block device drivers │ │
│ │ <M> Support for DASD devices │ │
│ │ <M> Support for ECKD Disks │ │
│ │ [*] Automatic activation of ECKD module │ │
│ │ <M> Support for FBA Disks │ │
│ │ [*] Automatic activation of FBA module │ │
│ │ <M> Support for DIAG access to CMS reserved Disks │ │
│ │ [*] Automatic activation of DIAG module │ │
│ └───┘ │
└───┘

Note that the Support for DIAG access to CMS reserved minidisk option is
available only in the 31–bit architecture and when the Support for VM minidisk
option is not selected.

The zSeries Block Device Drivers menu options unique to Linux for zSeries are
described in the following sections:
v “Support for DASD devices” on page 198
v “Support for ECKD disks” on page 198
v “Support for FBA disks” on page 198
v “XPRAM device support” on page 199.

Multi-device support (RAID and LVM)
The Multi-device support options allow the kernel to be set up to use RAID
devices and Linux Logical volume manager with your zSeries system.
Linux Kernel v2.4.4 Configuration ──
┌────────────────── Multi-device support (RAID and LVM) ──────────────────┐
│ ┌───┐ │
│ │ [*] Multiple devices driver support (RAID and LVM) │ │
│ │ <M> RAID support │ │
│ │ <M> Linear (append) mode │ │
│ │ <M> RAID-0 (striping) mode │ │
│ │ <M> RAID-1 (mirroring) mode │ │
│ │ <M> RAID-4/RAID-5 mode │ │

Appendix B. Kernel building 187

│ │ <M> Logical volume manager (LVM) support │ │
│ └───┘ │
└───┘

Character device drivers
The Character device drivers options allow the kernel to be set up to use the
various line mode terminals (or emulators) available with your zSeries system.
Linux Kernel v2.4.4 Configuration ──
┌─────────────────────── Character device drivers ────────────────────────┐
│ ┌───┐ │
│ │ [*] Unix98 PTY support │ │
│ │ (256) Maximum number of Unix98 PTYs in use (0-2048) │ │
│ │ --- S/390 character device drivers │ │
│ │ <M> Support for locally attached 3270 tubes │ │
│ │ [*] Support for 3215 line mode terminal │ │
│ │ [*] Support for console on 3215 line mode terminal │ │
│ │ [*] Support for HWC line mode terminal │ │
│ │ [*] console on HWC line mode terminal │ │
│ │ <M> S/390 tape device support │ │
│ │ --- S/390 tape interface support │ │
│ │ [*] Support for tape character devices │ │
│ │ [*] Support for tape block devices │ │
│ │ --- S/390 tape hardware support │ │
│ │ [*] Support for 3490 tape hardware │ │
│ │ [*] Support for 3480 tape hardware │ │
│ └───┘ │
└───┘

The zSeries character device driver options unique to Linux for zSeries are
described in the following sections:
v “Support for 3215 line mode terminal” on page 200
v “Support for console output on 3215 line mode terminal” on page 200
v “Support for hardware console” on page 201
v “Console output on hardware console” on page 201.

Network device drivers
The Network device drivers options allow the kernel to be set up to use the
various network devices available with your zSeries system.
Linux Kernel v2.4.4 Configuration ──
┌──────────────────────── Network device drivers ─────────────────────────┐
│ ┌───┐ │
│ │ [*] Network device support │ │
│ │ <M> Dummy net driver support │ │
│ │ <M> Bonding driver support │ │
│ │ <M> EQL (serial line load balancing) support │ │
│ │ <M> Universal TUN/TAP device driver support │ │
│ │ [*] Ethernet (10 or 100Mbit) │ │
│ │ [*] Token Ring driver support │ │
│ │ [*] FDDI driver support │ │
│ │ --- S/390 network device drivers │ │
│ │ [*] Channel Device Configuration │ │
│ │ <M> CTC device support │ │
│ │ <M> IUCV device support (VM only) │ │
│ └───┘ │
└───┘

The zSeries network device support menu options unique to Linux for zSeries are
described in the following sections:
v “CTC/ESCON device support” on page 199

188 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

v “OSA-Express and HiperSockets device support” on page 200
v “IUCV device support” on page 199

Networking options
The Networking options allow the kernel to interact with the network devices
attached to your zSeries and also allow you to optimize the performance of
communications within your system and with the outside world.
Linux Kernel v2.4.4 Configuration ──
┌────────────────────────── Networking options ───────────────────────────┐
│ ┌───┐ │
│ │ <M> Packet socket │ │
│ │ [*] Packet socket: mmapped IO │ │
│ │ [*] Kernel/User netlink socket │ │
│ │ [*] Routing messages │ │
│ │ <M> Netlink device emulation │ │
│ │ [*] Network packet filtering (replaces ipchains) │ │
│ │ [*] Network packet filtering debugging │ │
│ │ [*] Socket Filtering │ │
│ │ <M> Unix domain sockets │ │
│ │ [*] TCP/IP networking │ │
│ │ [*] IP: multicasting │ │
│ │ [*] IP: advanced router │ │
│ │ [*] IP: policy routing │ │
│ │ [*] IP: use netfilter MARK value as routing key │ │
│ │ [*] IP: fast network address translation │ │
│ │ [*] IP: equal cost multipath │ │
│ │ [*] IP: use TOS value as routing key │ │
│ │ [*] IP: verbose route monitoring │ │
│ │ [*] IP: large routing tables │ │
│ │ [*] IP: kernel level autoconfiguration │ │
│ │ [*] IP: BOOTP support │ │
│ │ [*] IP: RARP support │ │
│ │ <M> IP: tunneling │ │
│ │ <M> IP: GRE tunnels over IP │ │
│ │ [*] IP: broadcast GRE over IP │ │
│ │ [*] IP: multicast routing │ │
│ │ [*] IP: PIM-SM version 1 support │ │
│ │ [*] IP: PIM-SM version 2 support │ │
│ │ [*] IP: ARP daemon support (EXPERIMENTAL) │ │
│ │ [*] IP: TCP Explicit Congestion Notification support │ │
│ │ [*] IP: TCP syncookie support (disabled per default) │ │
│ │ IP: Netfilter Configuration ---> │ │
│ │ <M> The IPv6 protocol (EXPERIMENTAL) │ │
│ │ [*] IPv6: enable EUI-64 token format │ │
│ │ [*] IPv6: disable provider based addresses │ │
│ │ IPv6: Netfilter Configuration ---> │ │
│ │ <M> Kernel httpd acceleration (EXPERIMENTAL) │ │
│ │ [*] Asynchronous Transfer Mode (ATM) (EXPERIMENTAL) │ │
│ │ [*] Classical IP over ATM │ │
│ │ [*] Do NOT send ICMP if no neighbour │ │
│ │ <M> LAN Emulation (LANE) support │ │
│ │ <M> Multi-Protocol Over ATM (MPOA) support │ │
│ │ --- │ │
│ │ <M> The IPX protocol │ │
│ │ [*] IPX: Full internal IPX network │ │
│ │ <M> Appletalk protocol support │ │
│ │ <M> DECnet Support │ │
│ │ [*] DECnet: SIOCGIFCONF support │ │
│ │ [*] DECnet: router support (EXPERIMENTAL) │ │
│ │ [*] DECnet: use FWMARK value as routing key (EXPERIMENTAL) │ │
│ │ <M> 802.1d Ethernet Bridging │ │
│ │ <M> CCITT X.25 Packet Layer (EXPERIMENTAL) │ │
│ │ <M> LAPB Data Link Driver (EXPERIMENTAL) │ │
│ │ [*] 802.2 LLC (EXPERIMENTAL) │ │
│ │ [*] Frame Diverter (EXPERIMENTAL) │ │

Appendix B. Kernel building 189

│ │ <M> Acorn Econet/AUN protocols (EXPERIMENTAL) │ │
│ │ [*] AUN over UDP │ │
│ │ [*] Native Econet │ │
│ │ <M> WAN router │ │
│ │ [*] Fast switching (read help!) │ │
│ │ [*] Forwarding between high speed interfaces │ │
│ │ QoS and/or fair queueing ---> │ │
│ └───┘ │
└───┘

The options on this menu are described in detail in the following sections:
v “IP: Netfilter Configuration”
v “IPv6: Netfilter Configuration”
v “QoS and/or Fair queueing” on page 191

IP: Netfilter Configuration
The IP: Netfilter Configuration menu will enable network filters to be set up.
Linux Kernel v2.4.4 Configuration ──
┌───────────────────── IP: Netfilter Configuration ─────────────────────┐
│ ┌───┐ │
│ │ <M> Connection tracking (required for masq/NAT) │ │
│ │ <M> FTP protocol support │ │
│ │ <M> Userspace queueing via NETLINK (EXPERIMENTAL) │ │
│ │ <M> IP tables support (required for filtering/masq/NAT) │ │
│ │ <M> limit match support │ │
│ │ <M> MAC address match support │ │
│ │ <M> netfilter MARK match support │ │
│ │ <M> Multiple port match support │ │
│ │ <M> TOS match support │ │
│ │ <M> tcpmss match support │ │
│ │ <M> Connection state match support │ │
│ │ <M> Unclean match support (EXPERIMENTAL) │ │
│ │ <M> Owner match support (EXPERIMENTAL) │ │
│ │ <M> Packet filtering │ │
│ │ <M> REJECT target support │ │
│ │ <M> MIRROR target support (EXPERIMENTAL) │ │
│ │ <M> Full NAT │ │
│ │ <M> MASQUERADE target support │ │
│ │ <M> REDIRECT target support │ │
│ │ <M> Packet mangling │ │
│ │ <M> TOS target support │ │
│ │ <M> MARK target support │ │
│ │ <M> LOG target support │ │
│ │ <M> TCPMSS target support │ │
│ │ <M> ipchains (2.2-style) support │ │
│ │ <M> ipfwadm (2.0-style) support │ │
│ └───┘ │
└───┘

IPv6: Netfilter Configuration
The IPv6: Netfilter Configuration menu will enable will enable network filters for
IP version 6 to be set up.
Linux Kernel v2.4.4 Configuration ──
┌──────────────────── IPv6: Netfilter Configuration ────────────────────┐
│ ┌───┐ │
│ │ <M> IP6 tables support (required for filtering/masq/NAT) │ │
│ │ <M> limit match support │ │
│ │ <M> netfilter MARK match support │ │
│ │ <M> Packet filtering │ │
│ │ <M> Packet mangling │ │
│ │ <M> MARK target support │ │
│ └───┘ │
└───┘

190 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

QoS and/or Fair queueing
The QoS and/or Fair Queueing menu will enable fine tuning of the network
device packet handling algorithms.
Linux Kernel v2.4.4 Configuration ──
┌─────────────────────── QoS and/or fair queueing ────────────────────────┐
│ ┌───┐ │
│ │ [*] QoS and/or fair queueing │ │
│ │ <M> CBQ packet scheduler │ │
│ │ <M> CSZ packet scheduler │ │
│ │ [*] ATM pseudo-scheduler │ │
│ │ <M> The simplest PRIO pseudoscheduler │ │
│ │ <M> RED queue │ │
│ │ <M> SFQ queue │ │
│ │ <M> TEQL queue │ │
│ │ <M> TBF queue │ │
│ │ <M> GRED queue │ │
│ │ <M> Diffserv field marker │ │
│ │ <M> Ingress Qdisc │ │
│ │ [*] QoS support │ │
│ │ [*] Rate estimator │ │
│ │ [*] Packet classifier API │ │
│ │ <M> TC index classifier │ │
│ │ <M> Routing table based classifier │ │
│ │ <M> Firewall based classifier │ │
│ │ <M> U32 classifier │ │
│ │ <M> Special RSVP classifier │ │
│ │ <M> Special RSVP classifier for IPv6 │ │
│ │ [*] Traffic policing (needed for in/egress) │ │
│ └───┘ │
└───┘

Filesystems
The Filesystems options allow you to define the filesystems used to access your
storage devices (hard disk, CDROM etc.).
Linux Kernel v2.4.4 Configuration ──
┌───────────────────────────── File systems ──────────────────────────────┐
│ ┌───┐ │
│ │ [*] Quota support │ │
│ │ <M> Kernel automounter support │ │
│ │ <M> Kernel automounter version 4 support (also supports v3) │ │
│ │ <M> Reiserfs support │ │
│ │ [*] Have reiserfs do extra internal checking │ │
│ │ <M> ADFS file system support │ │
│ │ [*] ADFS write support (DANGEROUS) │ │
│ │ <M> Amiga FFS file system support (EXPERIMENTAL) │ │
│ │ <M> Apple Macintosh file system support (EXPERIMENTAL) │ │
│ │ <M> BFS file system support (EXPERIMENTAL) │ │
│ │ <M> DOS FAT fs support │ │
│ │ <M> MSDOS fs support │ │
│ │ <M> UMSDOS: Unix-like file system on top of standard MSDOS fs │ │
│ │ <M> VFAT (Windows-95) fs support │ │
│ │ <M> EFS file system support (read only) (EXPERIMENTAL) │ │
│ │ <M> Journalling Flash File System (JFFS) support (EXPERIMENTAL) │ │
│ │ (0) JFFS debugging verbosity (0 = quiet, 3 = noisy) │ │
│ │ <M> Compressed ROM file system support │ │
│ │ [*] Virtual memory file system support (former shm fs) │ │
│ │ <M> Simple RAM-based file system support │ │
│ │ <M> ISO 9660 CDROM file system support │ │
│ │ [*] Microsoft Joliet CDROM extensions │ │
│ │ <M> Minix fs support │ │
│ │ <M> NTFS file system support (read only) │ │
│ │ [*] NTFS write support (DANGEROUS) │ │
│ │ <M> OS/2 HPFS file system support │ │
│ │ [*] /proc file system support │ │

Appendix B. Kernel building 191

│ │ [*] /dev file system support (EXPERIMENTAL) │ │
│ │ [*] Automatically mount at boot │ │
│ │ [*] Debug devfs │ │
│ │ [*] /dev/pts file system for Unix98 PTYs │ │
│ │ <M> QNX4 file system support (read only) (EXPERIMENTAL) │ │
│ │ [*] QNX4FS write support (DANGEROUS) │ │
│ │ <M> ROM file system support │ │
│ │ <*> Second extended fs support │ │
│ │ <M> System V and Coherent file system support (read only) │ │
│ │ [*] SYSV file system write support (DANGEROUS) │ │
│ │ <M> UDF file system support (read only) │ │
│ │ [*] UDF write support (DANGEROUS) │ │
│ │ <M> UFS file system support (read only) │ │
│ │ [*] UFS file system write support (DANGEROUS) │ │
│ │ Network File Systems ---> │ │
│ │ Partition Types ---> │ │
│ │ Native Language Support ---> │ │
│ └───┘ │
└───┘

The options on this menu are described in detail in the following sections:
v “Network file systems”
v “Partition types”

Network file systems
The Network File Systems options let you decide which file systems is the most
appropriate for your network.
Linux Kernel v2.4.4 Configuration ──
┌───────────────────────── Network File Systems ──────────────────────────┐
│ ┌───┐ │
│ │ <M> Coda file system support (advanced network fs) │ │
│ │ <*> NFS file system support │ │
│ │ [*] Provide NFSv3 client support │ │
│ │ [*] Root file system on NFS │ │
│ │ <*> NFS server support │ │
│ │ [*] Provide NFSv3 server support │ │
│ │ <M> SMB file system support (to mount Windows shares etc.) │ │
│ │ [*] Use a default NLS │ │
│ │ Default Remote NLS Option: "cp437" │ │
│ │ <M> NCP file system support (to mount NetWare volumes) │ │
│ │ [*] Packet signatures │ │
│ │ [*] Proprietary file locking │ │
│ │ [*] Clear remove/delete inhibit when needed │ │
│ │ [*] Use NFS namespace if available │ │
│ │ [*] Use LONG (OS/2) namespace if available │ │
│ │ [*] Lowercase DOS filenames │ │
│ │ [*] Use Native Language Support │ │
│ │ [*] Enable symbolic links and execute flags │ │
│ └───┘ │
└───┘

Partition types
The Partition Types options let you access the hard disk partitions of other device
types.
Linux Kernel v2.4.4 Configuration ──
┌──────────────────────────── Partition Types ────────────────────────────┐
│ ┌───┐ │
│ │ [*] Advanced partition selection │ │
│ │ [*] Acorn partition support │ │
│ │ [*] ICS partition support │ │
│ │ [*] Native filecore partition support │ │
│ │ [*] PowerTec partition support │ │
│ │ [*] RISCiX partition support │ │
│ │ [*] Alpha OSF partition support │ │

192 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

│ │ [*] Amiga partition table support │ │
│ │ [*] Atari partition table support │ │
│ │ [*] IBM disk label and partition support │ │
│ │ [*] Macintosh partition map support │ │
│ │ [*] PC BIOS (MSDOS partition tables) support │ │
│ │ [*] BSD disklabel (FreeBSD partition tables) support │ │
│ │ [*] Minix subpartition support │ │
│ │ [*] Solaris (x86) partition table support │ │
│ │ [*] Unixware slices support │ │
│ │ [*] SGI partition support │ │
│ │ [*] Ultrix partition table support │ │
│ │ [*] Sun partition tables support │ │
│ └───┘ │
└───┘

Native Language Support
The Native Language Support options allow you to select the code pages available
on the system.
Linux Kernel v2.4.4 Configuration ──
┌──────────────────────── Native Language Support ────────────────────────┐
│ ┌───┐ │
│ │ Default NLS Option: "iso8859-1" │ │
│ │<M> Codepage 437 (United States, Canada) │ │
│ │<M> Codepage 737 (Greek) │ │
│ │<M> Codepage 775 (Baltic Rim) │ │
│ │<M> Codepage 850 (Europe) │ │
│ │<M> Codepage 852 (Central/Eastern Europe) │ │
│ │<M> Codepage 855 (Cyrillic) │ │
│ │<M> Codepage 857 (Turkish) │ │
│ │<M> Codepage 860 (Portugese) │ │
│ │<M> Codepage 861 (Icelandic) │ │
│ │<M> Codepage 862 (Hebrew) │ │
│ │<M> Codepage 863 (Canadian French) │ │
│ │<M> Codepage 864 (Arabic) │ │
│ │<M> Codepage 865 (Norwegian, Danish) │ │
│ │<M> Codepage 866 (Cyrillic/Russian) │ │
│ │<M> Codepage 869 (Greek) │ │
│ │<M> Simplified Chinese charset (CP936, GB2312) │ │
│ │<M> Traditional Chinese charset (Big5) │ │
│ │<M> Japanese charsets (Shift-JIS, EUC-JP) │ │
│ │<M> Korean charset (CP949, EUC-KR) │ │
│ │<M> Thai charset (CP874, TIS-620) │ │
│ │<M> Hebrew charsets (ISO-8859-8, CP1255) │ │
│ │<M> Windows CP1251 (Bulgarian, Belarussian) │ │
│ │<M> NLS ISO 8859-1 (Latin 1; Western European Languages) │ │
│ │<M> NLS ISO 8859-2 (Latin 2; Slavic/Central European Languages) │ │
│ │<M> NLS ISO 8859-3 (Latin 3; Esperanto, Galician, Maltese, Turkish) │ │
│ │<M> NLS ISO 8859-4 (Latin 4; old Baltic charset) │ │
│ │<M> NLS ISO 8859-5 (Cyrillic) │ │
│ │<M> NLS ISO 8859-6 (Arabic) │ │
│ │<M> NLS ISO 8859-7 (Modern Greek) │ │
│ │<M> NLS ISO 8859-9 (Latin 5; Turkish) │ │
│ │<M> NLS ISO 8859-13 (Latin 7; Baltic) │ │
│ │<M> NLS ISO 8859-14 (Latin 8; Celtic) │ │
│ │<M> NLS ISO 8859-15 (Latin 9; Western European Languages with Euro) │ │
│ │<M> NLS KOI8-R (Russian) │ │
│ │<M> NLS KOI8-U (Ukrainian) │ │
│ │<*> NLS UTF8 │ │
│ └───┘ │
└───┘

Kernel hacking
The Kernel Hacking options allow you access and control over the kernel in certain
situations. These options should be used with care!

Appendix B. Kernel building 193

Linux Kernel v2.4.4 Configuration ──
┌──────────────────────────── Kernel hacking ─────────────────────────────┐
│ ┌───┐ │
│ │ [*] Magic SysRq key │ │
│ └───┘ │
└───┘

Load an alternative configuration file
For various reasons, you might want to keep different kernel configurations
available on a single zSeries system. Entering a file name here will allow you to
later retrieve, modify and use the current configuration as an alternative to
whatever configuration options you have selected at that time.
Linux Kernel v2.4.4 Configuration ──

┌───┐
│ Enter the name of the configuration file you wish │
│ to load. Accept the name shown to restore the │
│ configuration you last retrieved. Leave blank to │
│ abort. │
│ ┌───┐ │
│ │.config │ │
│ └───┘ │
├───┤
│ < Ok > < Help > │
└───┘

Save configuration to an alternative file
For various reasons, you might want to keep several different kernel configurations
available on a single zSeries system. If you have saved a previous configuration in
a file other than the default, entering the name of the file here will allow you to
modify that configuration.
Linux Kernel v2.4.4 Configuration ──

┌───┐
│ Enter a filename to which this configuration │
│ should be saved as an alternate. Leave blank to │
│ abort. │
│ ┌───┐ │
│ │ │ │
│ └───┘ │
├───┤
│ < Ok > < Help > │
└───┘

Exit ’menuconfig’
When you have completed your modifications to the kernel, you are asked
whether you want to save the new kernel configuration. Normally, you would
respond by selecting the Yes option, but you might have made modifications that
you do not want to keep. In that case you can exit the configuration process
without saving the changes by selecting the No option.
Linux Kernel v2.4.4 Configuration ──

┌──┐
│ Do you wish to save your new kernel configuration? │
├──┤
│ < Yes > < No > │
└──┘

If you have elected to save your configuration this will be confirmed with the
messages:

194 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Saving your kernel configuration...

*** End of Linux kernel configuration.
*** Check the top-level Makefile for additional configuration.
*** Next, you must run ’make dep’.

Appendix B. Kernel building 195

Kernel parameter options
The Linux for zSeries specific kernel parameter options are described in the
following sections:
v “IEEE FPU emulation”
v “Built-in IPL record support” on page 197
v “IPL method generated into head.S” on page 197
v “Enable /proc/deviceinfo entries” on page 197
v “Channel device layer support” on page 197
v “Support for DASD devices” on page 198
v “Support for ECKD disks” on page 198
v “Support for FBA disks” on page 198
v “XPRAM device support” on page 199
v “CTC/ESCON device support” on page 199
v “IUCV device support” on page 199
v “OSA-Express and HiperSockets device support” on page 200
v “Support for 3215 line mode terminal” on page 200
v “Support for console output on 3215 line mode terminal” on page 200
v “Support for 3270 console” on page 201
v “Support for hardware console” on page 201
v “Console output on hardware console” on page 201
v “Tape device support” on page 202

IEEE FPU emulation
Configuration option

CONFIG_MATHEMU

Capable of being a module? -- (Module Name)
No

Value Required by Linux for zSeries
Dependent on zSeries version, see Description

Description
From S/390 versions G5 and G6 (or later), the zSeries systems are capable
of calculating floating point numbers in IEEE-format.

Linux for zSeries provides an IEEE floating point emulation. This can be
configured on (enter Y) or off (enter N) during kernel compilation time. If
you have IEEE-emulation configured on, floating point arithmetic can be
performed on any zSeries system, however it will be slow on those
systems using the emulation.

On S/390 versions G3, G4 (or older ones) you must run with
IEEE-emulation configured on (Y).

On S/390 versions G5, G6 (or later) you can make use of the hardware
IEEE-arithmetic. VM/ESA has to be enabled to allow it to use and provide
the hardware IEEE-arithmetic. This occurs automatically when you are
running VM 2.4 or VM 2.3 with a PTF applied that enables the
IEEE-arithmetic. If you do not have VM 2.4 or did not apply the PTF to
VM 2.3, then you still can (and have to) rely on the IEEE-emulation as on
the older S/390 systems.

196 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Built-in IPL record support
Configuration option

CONFIG_IPL

Capable of being a module? -- (Module Name)
No

Value Required by Linux for zSeries
Yes

Description
With this option turned on an IPL loader is generated at the start of the
kernel image. That makes it possible to ’boot’ from the kernel image
directly without the need of a separate loader. This makes sense for a
medium that is sequentially read from the start at IPL time like a (VM)
reader or a tape. The type of the loader generated to the head of the kernel
image is chosen by the ’IPL method generated into head.S’ selection.

IPL method generated into head.S
Configuration option

CONFIG_IPL_VM

Capable of being a module? -- (Module Name)
No

Value Required by Linux for zSeries
See Description

Description
There are two loaders available for the generation into the kernel. ’tape’
selects the loader for an IPL from a tape device, ’vm_reader’ selects the
loader for an IPL from a VM virtual reader.

Enable /proc/deviceinfo entries
Configuration option

CIO_PROC_DEVINFO

Capable of being a module? -- (Module Name)
No

Value Required by Linux for zSeries
No

Description
With many devices attached the proc filesystem runs out of inodes.
Creating of the /proc/deviceinfo/ entries is now disabled by default. If it
is required it can be switched on again by setting this parameter to ’yes’.

Channel device layer support
Configuration option

CONFIG_CHANDEV

Capable of being a module? -- (Module Name)
No

Value Required by Linux for zSeries
No

Appendix B. Kernel building 197

Description
This option enables the new Channel Device Layer support. Currently the
devices supported are:
1. LCS

2. CTC/ESCON

3. QETH

4. OSAD

See ’Channel Device Layer’ on page 51 for more information.

Support for DASD devices
Configuration option

CONFIG_DASD

Capable of being a module? -- (Module Name)
dasd_mod.o

Value Required by Linux for zSeries
See Description

Description
This is used mainly in native installations.

Enable this option (Y) to support access to zSeries disks. These are known
as DASD (Direct Access Storage Devices). You must enable this option to
have disk access on a native or LPAR system.

When enabled (Y), this option lets you specify additional options for
DASD access, see “Support for ECKD disks”.

Support for ECKD disks
Configuration option

CONFIG_DASD_ECKD

Capable of being a module? -- (Module Name)
dasd_eckd_mod.o

Value Required by Linux for zSeries
See Description

Description
This is used mainly in native installations.

Enable this option (Y) if you have ECKD-type DASDs such as an IBM 3380
or 3390. ECKD devices are the most commonly used devices in zSeries, so
you should enable this option unless you are very sure you do not have
any ECKD devices.

This option is subordinate to CONFIG_DASD, see “Support for DASD
devices”.

Support for FBA disks
Configuration option

CONFIG_DASD_FBA

Capable of being a module? -- (Module Name)
dasd_fba_mod.o

198 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Value Required by Linux for zSeries
See Description

Description
This is used mainly under VM/ESA for the virtual disk in storage
VFB-512. Enable this option (Y) if you want to access your FBA devices.

This option is subordinate to CONFIG_DASD, see “Support for DASD devices”
on page 198.

XPRAM device support
Configuration option

CONFIG_BLK_DEV_XPRAM

Capable of being a module? -- (Module Name)
xpram.o

Value Required by Linux for zSeries
See Description

Description
This is used to allow more than 2 GB of main storage to be accessed by
Linux for zSeries. Enable this option (Y) to support access to expanded
storage of up to 18 EB (although current hardware currently supports only
64 GB). The expanded storage can be subdivided into partitions.

See “XPRAM kernel parameter syntax” on page 24 for more information.

CTC/ESCON device support
Configuration option

CONFIG_CTC

Capable of being a module? -- (Module Name)
ctc.o

Value Required by Linux for zSeries
No

Description
If you want to use channel connections under Linux , enter (Y) here. This
gives you the opportunity to make TCP/IP connections via virtual, parallel
or ESCON channels between Linux for zSeries and other zSeries operating
systems (Linux for zSeries, z/OS, OS/390, VM/ESA and VSE/ESA).

Read the CTC/ESCON device driver description on page63 for more
information.

IUCV device support
Configuration option

CONFIG_IUCV

Capable of being a module? -- (Module Name)
netiucv.o

Value Required by Linux for zSeries
No

Description
This is a VM/ESA only device driver. Enter (Y) to enable a fast
communication link between VM guests. At boot time the user ID of the

Appendix B. Kernel building 199

guest needs to be passed to the kernel. Using ifconfig a point-to-point
connection can be established to the Linux for zSeries system running on
the other VM guest. Note that both kernels need to be compiled with this
option and both need to be booted with the user ID of the other VM guest.

OSA-Express and HiperSockets device support
Configuration option

CONFIG_NET_ETHERNET

Capable of being a module? -- (Module Name)
qdio.o, qeth.o

Value Required by Linux for zSeries
No

Description
If you want to use OSA-Express or HiperSockets connections under Linux ,
enter (Y) here.

Read OSA-Express and HiperSockets device driver on page 97 for more
information.

Configuration option
CONFIG_DUMMY

Value Required by Linux for zSeries
Required in order to use the VIPA functionality.

Description
To use OSA-Express or HiperSockets dummy connections under Linux ,
enter (Y) here.

Support for 3215 line mode terminal
Configuration option

CONFIG_TN3215

Capable of being a module? -- (Module Name)
No

Value Required by Linux for zSeries
No

Description
The 3215 console driver is used to read and write to a 3215 line mode
console. Real 3215 devices are no longer available in a zSeries environment,
so the 3215 driver can only be used under VM/ESA. On a native zSeries
system the initialization function of the 3215 driver returns without
registering the driver to the system.

Entering (Y) to this option switches on the compilation of parts 1 and 2 of
the 3215 terminal driver. The option makes it possible to use “Support for
console output on 3215 line mode terminal”.

Support for console output on 3215 line mode terminal
Configuration option

CONFIG_TN3215_CONSOLE

Capable of being a module? -- (Module Name)
No

200 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

|
|

Value Required by Linux for zSeries
No

Description
This option is subordinate to “Support for 3215 line mode terminal” on
page 200.

This option enables console output on the first 3215 console in the system.
It prints kernel errors and kernel warnings to the 3215 terminal in addition
to the normal output on the TTY device.

Support for 3270 console
Configuration option

CONFIG_TN3270

Capable of being a module? -- (Module Name)
No

Value Required by Linux for zSeries
No

Description
The 3270 console driver is used to read and write to a 3270 console.

Entering (Y) to this option switches on the compilation of the 3270 terminal
driver.

Support for hardware console
Configuration option

CONFIG_HWC

Capable of being a module? -- (Module Name)
No

Value Required by Linux for zSeries
See Description

Description
The hardware console is an alternative terminal, usually required for a
native Linux for zSeries installation although it is also run under VM/ESA.

You would normally enter (Y) for this option in a native installation if your
hardware configuration includes a hardware console. In a VM/ESA
installation, without a hardware console, you would normally enter (N).

Read the Device driver description Chapter 5, “Linux for zSeries Console
device drivers” on page 27 for more information.

Console output on hardware console
Configuration option

CONFIG_HWC_CONSOLE

Capable of being a module? -- (Module Name)
No

Value Required by Linux for zSeries
No

Description
This option is subordinate to “Support for hardware console”.

Appendix B. Kernel building 201

This option enables console output on the first hardware console in the
system. It prints kernel errors and kernel warnings to the hardware console
in addition to the normal output on the TTY device.

Tape device support
Configuration option

CONFIG_S390_TAPE

Capable of being a module? -- (Module Name)
tape390.o

Value Required by Linux for zSeries
No

Description
If you want to use the tape device driver with Linux enter (m) here.

202 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Glossary

This glossary includes IBM product terminology
as well as selected other terms and definitions.
Additional information can be obtained in:
v The American National Standard Dictionary for

Information Systems , ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies may be
purchased from the American National
Standards Institute, 11 West 42nd Street, New
York, New York 10036.

v The ANSI/EIA Standard–440-A, Fiber Optic
Terminology. Copies may be purchased from
the Electronic Industries Association, 2001
Pennsylvania Avenue, N.W., Washington, DC
20006.

v The Information Technology Vocabulary
developed by Subcommittee 1, Joint Technical
Committee 1, of the International Organization
for Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1).

v The IBM Dictionary of Computing , New York:
McGraw-Hill, 1994.

v Internet Request for Comments: 1208, Glossary
of Networking Terms

v Internet Request for Comments: 1392, Internet
Users’ Glossary

v The Object-Oriented Interface Design: IBM
Common User Access Guidelines , Carmel,
Indiana: Que, 1992.

A
auto-detection. Listing the addresses of devices
attached to a card by issuing a query command to the
card.

C
cdl. compatible disk layout. A disk structure for Linux
for zSeries which allows access from other zSeries
operating systems. This replaces the older ldl.

CEC. (Central Electronics Complex). A synonym for
CPC.

chandev. channel device layer. A unified programming
interface to devices attached to the zSeries via the
channel subsystem.

channel subsystem. The programmable input/output
processors of the zSeries, which operate in parallel with
the cpu.

checksum. An error detection method using a check
byte appended to message data

CHPID. channel path identifier. In a channel
subsystem, a value assigned to each installed channel
path of the system that uniquely identifies that path to
the system.

CPC. (Central Processor Complex). A physical
collection of hardware that includes main storage, one
or more central processors, timers, and channels. Also
referred to as a CEC.

CRC. cyclic redundancy check. A system of error
checking performed at both the sending and receiving
station after a block-check character has been
accumulated.

CSMA/CD. carrier sense multiple access with collision
detection

CTC. channel to channel. A method of connecting two
computing devices.

CUU. control unit and unit address. A form of
addressing for zSeries devices using device numbers.

D
DASD. direct access storage device. A mass storage
medium on which a computer stores data.

© Copyright IBM Corp. 2000, 2002 203

|
|

|
|
|
|

device driver. (1) A file that contains the code needed
to use an attached device. (2) A program that enables a
computer to communicate with a specific peripheral
device; for example, a printer, a videodisc player, or a
CD-ROM drive. (3) A collection of subroutines that
control the interface between I/O device adapters and
the processor.

E
ECKD. extended count-key-data device. A disk
storage device that has a data transfer rate faster than
some processors can utilize and that is connected to the
processor through use of a speed matching buffer. A
specialized channel program is needed to communicate
with such a device.

ESCON. enterprise systems connection. A set of IBM
products and services that provide a dynamically
connected environment within an enterprise.

Ethernet. A 10-Mbps baseband local area network that
allows multiple stations to access the transmission
medium at will without prior coordination, avoids
contention by using carrier sense and deference, and
resolves contention by using collision detection and
delayed retransmission. Ethernet uses CSMA/CD.

F
Fast Ethernet. Ethernet network with a bandwidth of
100-Mbps

FBA. fixed block architecture. A type of DASD on
Multiprise 3000 or P/390 or emulated by VM.

FDDI. fiber distributed data interface. An American
National Standards Institute (ANSI) standard for a
100-Mbps LAN using optical fiber cables.

FTP. file transfer protocol. In the Internet suite of
protocols, an application layer protocol that uses TCP
and Telnet services to transfer bulk-data files between
machines or hosts.

G
Gigabit Ethernet (GbE). An ethernet network with a
bandwidth of 1000-Mbps

G3, G4, G5 and G6. The generation names of the
S/390 CMOS based product family.

H
hardware console. A service-call logical processor that
is the communication feature between the main
processor and the service processor.

HMC. hardware management console. A console used
to monitor and control hardware such as the zSeries
microprocessors.

HFS. hierarchical file system. A system of arranging
files into a tree structure of directories.

I
IOCS. input / output channel subsystem. See channel
subsystem.

IP. internet protocol. In the Internet suite of protocols,
a connectionless protocol that routes data through a
network or interconnected networks and acts as an
intermediary between the higher protocol layers and
the physical network.

IP address.. The unique 32-bit address that specifies
the location of each device or workstation on the
Internet. For example, 9.67.97.103 is an IP address.

IPL. initial program load (or boot). (1) The
initialization procedure that causes an operating system
to commence operation. (2) The process by which a
configuration image is loaded into storage at the
beginning of a work day or after a system malfunction.
(3) The process of loading system programs and
preparing a system to run jobs.

IPv6. IP version 6. The next generation of the Internet
Protocol.

IPX. Internetwork Packet Exchange. (1) The network
protocol used to connect Novell servers, or any
workstation or router that implements IPX, with other
workstations. Although similar to the Internet Protocol
(IP), IPX uses different packet formats and terminology.

IPX address. The 10-byte address, consisting of a
4-byte network number and a 6-byte node address, that
is used to identify nodes in the IPX network. The node
address is usually identical to the medium access
control (MAC) address of the associated LAN adapter.

IUCV. inter-user communication vehicle. A VM facility
for passing data between virtual machines and VM
components.

K
kernel. The part of an operating system that performs
basic functions such as allocating hardware resources.

kernel module. A dynamically loadable part of the
kernel, such as a device driver or a file system.

kernel image. The kernel when loaded into memory.

204 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

|
|

L
LAN. local area network.

LCS. LAN channel station. A protocol used by OSA.

ldl. Linux disk layout. A basic disk structure for Linux
for zSeries. Now replaced by cdl.

LDP. Linux Documentation Project. An attempt to
provide a centralized location containing the source
material for all open source Linux documentation.
Includes user and reference guides, HOW TOs, and
FAQs. The homepage of the Linux Documentation
Project is http://www.linuxdoc.org

Linux . a version of UNIX which runs on a wide
range of machines from wristwatches through personal
and small business machines to enterprise systems.

Linux for zSeries. the port of Linux to the IBM zSeries
architecture.

LPAR. logical partition of a zSeries.

M
MAC. medium access control. In a LAN this is the
sub-layer of the data link control layer that supports
medium-dependent functions and uses the services of
the physical layer to provide services to the logical link
control (LLC) sub-layer. The MAC sub-layer includes
the method of determining when a device has access to
the transmission medium.

Mbps. million bits per second.

MTU. maximum transmission unit. The largest block
which may be transmitted as a single unit.

Multicast. A protocol for the simultaneous distribution
of data to a number of recipients, for example live
video transmissions.

Multiprise. An enterprise server of the S/390 family.

N
NIC. network interface card. The physical interface
between the zSeries and the network.

O
OS. operating system. (1) Software that controls the
execution of programs. An operating system may
provide services such as resource allocation,
scheduling, input/output control, and data
management. (2) A set of programs that control how
the system works. (3) The software that deals with the
most basic operations that a computer performs.

OSA-2. Open Systems Adapter-2. A common zSeries
network interface card.

OSA Express. a zSeries network interface card used
with Gigabit Ethernet and other devices.

OSPF. open shortest path first. A function used in
route optimization in networks.

P
POR. power-on reset

POSIX. Portable Operating System Interface for
Computer Environments. An IEEE operating system
standard closely related to the UNIX system.

R
router. A device or process which allows messages to
pass between different networks.

S
S/390. The predecessor of the zSeries.

SA/SE. stand alone support element. See SE.

SE. support element. (1) An internal control element
of a processor that assists in many of the processor
operational functions. (2) A hardware unit that provides
communications, monitoring, and diagnostic functions
to a central processor complex.

SNA. systems network architecture. The IBM
architecture that defines the logical structure, formats,
protocols, and operational sequences for transmitting
information units through, and controlling the
configuration and operation of, networks. The layered
structure of SNA allows the ultimate origins and
destinations of information (the users) to be
independent of and unaffected by the specific SNA
network services and facilities that are used for
information exchange.

Sysctl. system control programming manual control
(frame). A means of dynamically changing certain
Linux kernel parameters during operation.

T
TCP. transmission control protocol. A communications
protocol used in the Internet and in any network that
follows the Internet Engineering Task Force (IETF)
standards for internetwork protocol. TCP provides a
reliable host-to-host protocol between hosts in
packet-switched communications networks and in
interconnected systems of such networks. It uses the
Internet Protocol (IP) as the underlying protocol.

Glossary 205

|
|
|

TCP/IP. transmission control protocol/internet
protocol. (1) The Transmission Control Protocol and the
Internet Protocol, which together provide reliable
end-to-end connections between applications over
interconnected networks of different types. (2) The suite
of transport and application protocols that run over the
Internet Protocol.

Telnet. A member of the Internet suite of protocols
which provides a remote terminal connection service. It
allows users of one host to log on to a remote host and
interact as if they were using a terminal directly
attached to that host.

Token Ring. (1) According to IEEE 802.5, network
technology that controls media access by passing a
token (special packet or frame) between media-attached
stations. (2) A FDDI or IEEE 802.5 network with a ring
topology that passes tokens from one attaching ring
station (node) to another.

U
UNIX. An operating system developed by Bell
Laboratories that features multiprogramming in a
multiuser environment. The UNIX operating system
was originally developed for use on minicomputers but
has been adapted for mainframes and microcomputers.

V
volume. A data carrier that is usually mounted and
demounted as a unit, for example a tape cartridge or a
disk pack. If a storage unit has no demountable packs
the volume is the portion available to a single
read/write mechanism.

Z
zSeries. The family of IBM enterprise servers that
demonstrate outstanding reliability, availability,
scalability, security, and capacity in today’s network
computing environments.

Numbers
3215. IBM console printer-keyboard.

3270. IBM information display system.

3370, 3380 or 3390. IBM direct access storage device
(disk).

3480 or 3490. IBM magnetic tape subsystem.

9336 or 9345. IBM direct access storage device (disk).

206 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information about the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

© Copyright IBM Corp. 2000, 2002 207

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

Common User Access
ECKD
Enterprise Storage Server
ESCON
IBM
Multiprise
OS/2
OS/390
PR/SM
RAMAC
S/390
Seascape
System/390
VM/ESA
VSE/ESA
z/OS
zSeries

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Linux is a registered trademark of Linus Torvalds and others.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

208 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

International License Agreement for Non-Warranted Programs

Part 1 - General Terms

PLEASE READ THIS AGREEMENT CAREFULLY BEFORE USING THE
PROGRAM. IBM WILL LICENSE THE PROGRAM TO YOU ONLY IF YOU FIRST
ACCEPT THE TERMS OF THIS AGREEMENT. BY USING THE PROGRAM YOU
AGREE TO THESE TERMS. IF YOU DO NOT AGREE TO THE TERMS OF THIS
AGREEMENT, PROMPTLY RETURN THE UNUSED PROGRAM TO THE PARTY
(EITHER IBM OR ITS RESELLER) FROM WHOM YOU ACQUIRED IT TO
RECEIVE A REFUND OF THE AMOUNT YOU PAID.

The Program is owned by International Business Machines Corporation or one of
its subsidiaries (IBM) or an IBM supplier, and is copyrighted and licensed, not
sold.

The term ″Program″ means the original program and all whole or partial copies of
it. A Program consists of machine-readable instructions, its components, data,
audio-visual content (such as images, text, recordings, or pictures), and related
licensed materials.

This Agreement includes Part 1 - General Terms and Part 2 - Country-unique
Terms and is the complete agreement regarding the use of this Program, and
replaces any prior oral or written communications between you and IBM. The
terms of Part 2 may replace or modify those of Part 1.
1. License

Use of the Program
IBM grants you a nonexclusive license to use the Program.
You may 1) use the Program to the extent of authorizations you have acquired
and 2) make and install copies to support the level of use authorized, providing
you reproduce the copyright notice and any other legends of ownership on
each copy, or partial copy, of the Program.
If you acquire this Program as a program upgrade, your authorization to use
the Program from which you upgraded is terminated.
You will ensure that anyone who uses the Program does so only in compliance
with the terms of this Agreement.
You may not 1) use, copy, modify, or distribute the Program except as provided
in this Agreement; 2) reverse assemble, reverse compile, or otherwise translate
the Program except as specifically permitted by law without the possibility of
contractual waiver; or 3) sublicense, rent, or lease the Program.
Transfer of Rights and Obligations
You may transfer all your license rights and obligations under a Proof of
Entitlement for the Program to another party by transferring the Proof of
Entitlement and a copy of this Agreement and all documentation. The transfer
of your license rights and obligations terminates your authorization to use the
Program under the Proof of Entitlement.

2. Proof of Entitlement
The Proof of Entitlement for this Program is evidence of your authorization to
use this Program and of your eligibility for future upgrade program prices (if
announced) and potential special or promotional opportunities.

© Copyright IBM Corp. 2000, 2002 209

3. Charges and Taxes
IBM defines use for the Program for charging purposes and specifies it in the
Proof of Entitlement. Charges are based on extent of use authorized. If you
wish to increase the extent of use, notify IBM or its reseller and pay any
applicable charges. IBM does not give refunds or credits for charges already
due or paid.
If any authority imposes a duty, tax, levy or fee, excluding those based on
IBM’s net income, upon the Program supplied by IBM under this Agreement,
then you agree to pay that amount as IBM specifies or supply exemption
documentation.

4. No Warranty
SUBJECT TO ANY STATUTORY WARRANTIES WHICH CAN NOT BE
EXCLUDED, IBM MAKES NO WARRANTIES OR CONDITIONS EITHER
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, THE
WARRANTY OF NON-INFRINGEMENT AND THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY. IBM
MAKES NO WARRANTY REGARDING THE CAPABILITY OF THE
PROGRAM TO CORRECTLY PROCESS, PROVIDE AND/OR RECEIVE DATE
DATA WITHIN AND BETWEEN THE 20TH AND 21ST CENTURIES.
The exclusion also applies to any of IBM’s subcontractors, suppliers, or
program developers (collectively called ″Suppliers″).
Manufacturers, suppliers, or publishers of non-IBM Programs may provide
their own warranties.

5. Limitation of Liability
NEITHER IBM NOR ITS SUPPLIERS WILL BE LIABLE FOR ANY DIRECT OR
INDIRECT DAMAGES, INCLUDING WITHOUT LIMITATION, LOST
PROFITS, LOST SAVINGS, OR ANY INCIDENTAL, SPECIAL, OR OTHER
ECONOMIC CONSEQUENTIAL DAMAGES, EVEN IF IBM IS INFORMED OF
THEIR POSSIBILITY. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL
DAMAGES, SO THE ABOVE EXCLUSION OR LIMITATION MAY NOT
APPLY TO YOU.

6. General
Nothing in this Agreement affects any statutory rights of consumers that cannot
be waived or limited by contract.
IBM may terminate your license if you fail to comply with the terms of this
Agreement. If IBM does so, you must immediately destroy the Program and all
copies you made of it.
You agree to comply with applicable export laws and regulations.
Neither you nor IBM will bring a legal action under this Agreement more than
two years after the cause of action arose unless otherwise provided by local law
without the possibility of contractual waiver or limitation.
Neither you nor IBM is responsible for failure to fulfill any obligations due to
causes beyond its control.
IBM does not provide program services or technical support, unless IBM
specifies otherwise.
The laws of the country in which you acquire the Program govern this
Agreement, except 1) in Australia, the laws of the State or Territory in which
the transaction is performed govern this Agreement; 2) in Albania, Armenia,
Belarus, Bosnia/Herzegovina, Bulgaria, Croatia, Czech Republic, Georgia,
Hungary, Kazakhstan, Kirghizia, Former Yugoslav Republic of Macedonia

210 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

(FYROM), Moldova, Poland, Romania, Russia, Slovak Republic, Slovenia,
Ukraine, and Federal Republic of Yugoslavia, the laws of Austria govern this
Agreement; 3) in the United Kingdom, all disputes relating to this Agreement
will be governed by English Law and will be submitted to the exclusive
jurisdiction of the English courts; 4) in Canada, the laws in the Province of
Ontario govern this Agreement; and 5) in the United States and Puerto Rico,
and People’s Republic of China, the laws of the State of New York govern this
Agreement.

Part 2 - Country-unique Terms

AUSTRALIA:

No Warranty (Section 4):

The following paragraph is added to this Section:

Although IBM specifies that there are no warranties, you may have certain rights
under the Trade Practices Act 1974 or other legislation and are only limited to the
extent permitted by the applicable legislation.

Limitation of Liability (Section 3):

The following paragraph is added to this Section:

Where IBM is in breach of a condition or warranty implied by the Trade Practices
Act 1974, IBM’s liability is limited to the repair or replacement of the goods, or the
supply of equivalent goods. Where that condition or warranty relates to right to
sell, quiet possession or clear title, or the goods are of a kind ordinarily acquired
for personal, domestic or household use or consumption, then none of the
limitations in this paragraph apply.

GERMANY:

No Warranty (Section 4):

The following paragraphs are added to this Section:

The minimum warranty period for Programs is six months.

In case a Program is delivered without Specifications, we will only warrant that
the Program information correctly describes the Program and that the Program can
be used according to the Program information. You have to check the usability
according to the Program information within the ″money-back guaranty″ period.

Limitation of Liability (Section 5):

The following paragraph is added to this Section:

The limitations and exclusions specified in the Agreement will not apply to
damages caused by IBM with fraud or gross negligence, and for express warranty.

INDIA:

General (Section 6):

International License Agreement for Non-Warranted Programs 211

The following replaces the fourth paragraph of this Section:

If no suit or other legal action is brought, within two years after the cause of action
arose, in respect of any claim that either party may have against the other, the
rights of the concerned party in respect of such claim will be forfeited and the
other party will stand released from its obligations in respect of such claim.

IRELAND:

No Warranty (Section 4):

The following paragraph is added to this Section:

Except as expressly provided in these terms and conditions, all statutory
conditions, including all warranties implied, but without prejudice to the generality
of the foregoing, all warranties implied by the Sale of Goods Act 1893 or the Sale
of Goods and Supply of Services Act 1980 are hereby excluded.

ITALY:

Limitation of Liability (Section 5):

This Section is replaced by the following:

Unless otherwise provided by mandatory law, IBM is not liable for any damages
which might arise.

NEW ZEALAND:

No Warranty (Section 4):

The following paragraph is added to this Section:

Although IBM specifies that there are no warranties, you may have certain rights
under the Consumer Guarantees Act 1993 or other legislation which cannot be
excluded or limited. The Consumer Guarantees Act 1993 will not apply in respect
of any goods or services which IBM provides, if you require the goods and
services for the purposes of a business as defined in that Act.

Limitation of Liability (Section 5):

The following paragraph is added to this Section:

Where Programs are not acquired for the purposes of a business as defined in the
Consumer Guarantees Act 1993, the limitations in this Section are subject to the
limitations in that Act.

PEOPLE’S REPUBLIC OF CHINA:

Charges (Section 3):

The following paragraph is added to the Section:

All banking charges incurred in the People’s Republic of China will be borne by
you and those incurred outside the People’s Republic of China will be borne by
IBM.

212 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

UNITED KINGDOM:

Limitation of Liability (Section 5):

The following paragraph is added to this Section at the end of the first paragraph:

The limitation of liability will not apply to any breach of IBM’s obligations implied
by Section 12 of the Sales of Goods Act 1979 or Section 2 of the Supply of Goods
and Services Act 1982.

International License Agreement for Non-Warranted Programs 213

214 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Index

Numerics
3215 line mode terminal 27
3270 27
3380 14
3390 14
9345 14

A
ATM feature 100
auto-detection 51, 52, 56, 58, 59, 93, 95,

98, 99

B
basic mode 95
block device

tape 34
boot utility 138

C
chandev

See channel device layer
channel device layer 51

CTC 53
ESCON 53
LCS 53
qeth 99

character device
tape 34

checksum 93, 102
cio_msg 168
codepage 29
commands, Linux

dasdfmt 114
dasdview 118
fdasd 127
mke2fs 156
snIPL 134
zIPL 138

configuration
CTC 199
ESCON 199
GbE 200
Gigabit Ethernet 200
OSA-Express 200
tape 202

connections
CTC 66
ESCON 66

console 27
control characters 28
CRC 93
CTC 93

chandev example 63
channel device layer 53
configuration 199
connection 66

CTC (continued)
device driver 63
device support 199
features 63
kernel example 65
kernel parameter 64
module example 66
module options 65
recovery 69
syntax 63, 64, 65

cua 93

D
DASD

partitioning 5
DASD device driver 11
dasdfmt, Linux command 114
dasdview, Linux command 118
device driver 97

CTC 63
DASD 11
ESCON 63
HiperSockets 97
OSA-Express 97
tape 33
XPRAM 23

device major number 33
device support

CTC 199
ESCON 199
GbE 200
Gigabit Ethernet 200
HiperSockets 200
OSA-Express 200
tape 202

dynamic routing, and VIPA 157

E
ECKD 14
edit characters

VM console 29
Enterprise Storage Server 14
ESCON

chandev example 63
channel device layer 53
configuration 199
connection 66
device driver 63
device support 199
features 63
kernel example 65
module example 66
recovery 69
syntax 63, 64, 65

ethernet 93
examples

CTC chandev 63
CTC kernel 65

examples (continued)
CTC module 66
ESCON chandev 63
ESCON kernel 65
ESCON module 66
snIPL 137
tape driver 37
VIPA (Virtual IP address) use 157

F
fast ethernet 93
FBA 14
fdasd, Linux command 127
features

CTC 63
ESCON 63

filesystem
tape 34

G
GbE

configuration 200
device support 200

Gigabit Ethernet
configuration 200
device support 200

H
Hardware console 27
HiperSockets 97

device support 200

I
i/o message suppression 168
insmod 65
IP address

virtual 107
ipldelay 160
ISO9660 filesystem 34
IUCV 71

K
kernel 94
kernel parameter

CTC 64
tape device driver 35

kernel source tree ix, 138

L
LCS

channel device layer 53
device driver 93

© Copyright IBM Corp. 2000, 2002 215

line edit characters
VM console 29

M
maxcpus 161
maximum tape devices 33
mem 162
mke2fs, Linux command 156
modprobe 65
module options

CTC 65
module parameter

tape device driver 36
multicast 95
Multiprise 14

N
noinitrd 163
notices 207

O
options 65
OSA 95
OSA-2 93
OSA-Express 93, 97

configuration 200
device support 200

OSA-Express ATM feature 100

P
P/390 27, 162
parameter file 65
parameter line 170
partitioning DASD 5
PCI Cryptographic Accelerator

(PCICA) 39
PCI Crytographic Coprocessor

(PCICC) 39
PCICA (PCI Cryptographic

Accelerator) 39
PCICC (PCI Cryptographic

Coprocessor) 39

Q
qdio 98
qeth

channel device layer 99
queueing 98

R
RAMAC 14
recovery

CTC 69
ESCON 69

ro 165
root 166
routing 98, 101
RVA 14

S
Seascape 14
SILO 138
snIPL

description 134
example 137
processing 136
restrictions 137
syntax 135

snIPL, Linux command 134
special characters

VM console 29
static routing, and VIPA 157
syntax

CTC 63, 64, 65
ESCON 63, 64, 65
snIPL 135

T
tape

configuration 202
device support 202

tape block device 34
tape character device 34
tape control operations 34
tape device driver 33

kernel parameter 35
module parameter 36

tape driver examples 37
tape filesystem 34
tape restrictions 38
TCP/IP 63, 71
token ring 93
trademarks 208

V
VInput 30
VIPA 107

example 157
static routing 157
usage 157

VIPA (virtual IP address) 157
virtual

IP address 107
VM console

line edit characters 29
vmhalt 167

X
x3270 30
XPRAM

device driver 23

Z
z90crypt driver 39
zIPL 138
zIPL, Linux command 138

216 Linux for zSeries: Device Drivers and Installation Commands (March 4, 2002)

Readers’ Comments — We’d Like to Hear from You

Linux for zSeries
Device Drivers and Installation Commands
(March 4, 2002)
Linux Kernel 2.4

Publication No. LNUX-1103-07

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
LNUX-1103-07

LNUX-1103-07

���
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development
Department 3248
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

���

LNUX-1103-07

	Contents
	Summary of changes
	Edition 8 changes
	Edition 7 changes
	Edition 6 changes
	Edition 5 changes
	Edition 4 changes
	Edition 3 changes
	Edition 2 changes

	About this book
	How this book is organized
	Who should read this book
	Assumptions

	Part 1. Linux for zSeries Device drivers overview
	Chapter 1. Common device support
	Chapter 2. Partitioning DASD
	Prerequisites
	Why use partitions?
	Restrictions
	The partition table
	zSeries disk layout (VTOC)
	Volume label
	VTOC

	Part 2. Linux for zSeries — zSeries device drivers
	Chapter 3. Linux for zSeries DASD device driver
	DASD overview
	DASD naming scheme using devfs
	DASD naming scheme without devfs
	Partitioned DASD
	DASD features
	DASD kernel parameter syntax
	DASD kernel example (using devfs)
	DASD module parameter syntax
	DASD module example
	DASD dynamic attach/detach
	DASD – Preparing for use
	1) Low level format
	2) Create partitions
	3) Make a file system

	DASD API (ioctl interface)
	DASD restrictions

	Chapter 4. Linux for zSeries XPRAM device driver
	XPRAM features
	Note on reusing XPRAM partitions
	XPRAM kernel parameter syntax
	XPRAM kernel example

	XPRAM module parameter syntax
	XPRAM module example
	Support for loading XPRAM dynamically

	Chapter 5. Linux for zSeries Console device drivers
	Console features
	Console kernel parameter syntax
	Console kernel examples
	Using the console
	Console special characters
	VM console line edit characters
	Console 3270 emulation

	Console – Use of VInput
	Console limitations

	Chapter 6. Channel attached tape device driver
	Tape driver features
	Tape character device front-end
	Tape block device front-end
	Tape driver kernel parameter syntax
	Tape driver kernel example
	Tape driver module parameter syntax
	Tape driver module example
	Tape device driver API
	Tape driver examples
	Example 1 – Creating a single-volume tape (without devfs)
	Example 2 – Creating a multivolume tape (with devfs)

	Tape driver restrictions
	Tape driver further information

	Chapter 7. Generic cryptographic device driver
	Overview
	HMC settings
	Checking your current crypto hardware settings on the HMC
	Defining a crypto device to an LPAR

	Installing z90crypt
	Prerequisites
	Contents of the tar file
	Installing and loading

	Decryption using z90crypt
	Outline of decryption program
	The ica_rsa_modexpo_t structure
	The ica_rsa_modexpo_crt_t structure

	Other functions of z90crypt
	Checking hardware status
	Quiescing
	Random number generation
	Returns from read and ioctl

	z90crypt header file
	Crypto support for 31-bit emulation
	Example of use: Apache
	Prerequisites
	Installing the Apache Web server

	Part 3. Linux for zSeries Network device drivers
	Chapter 8. Linux for zSeries Channel device layer
	Description
	Channel device layer options
	Terminology
	Device identification (CTC/ESCON and LCS)
	Device identification (QDIO)
	Commonly used options
	Power user options

	See also
	Files

	Chapter 9. Linux for zSeries CTC/ESCON device driver
	CTC/ESCON features
	CTC/ESCON with the channel device layer
	Channel device layer configuration
	Configuration examples

	CTC/ESCON without the channel device layer
	Kernel parameter syntax
	Kernel example
	Module parameter syntax
	Module example

	CTC/ESCON – Preparing the connection
	CTC/ESCON – Recovery procedure after a crash

	Chapter 10. Linux for zSeries IUCV device driver
	IUCV features
	IUCV kernel parameter syntax
	IUCV kernel parameter example
	IUCV module parameter syntax
	IUCV module parameter example
	IUCV – Preparing the connection
	

	IUCV – Further information
	IUCV restrictions
	IUCV Application Programming Interface (API)
	IUCV API
	IUCV Interrupt Handler API

	Chapter 11. Linux for zSeries LCS device driver
	LCS supported functions
	LCS channel device layer configuration
	LCS channel device layer configuration example
	LCS kernel parameter syntax
	LCS warning
	LCS restrictions

	Chapter 12. QETH device driver for OSA-Express (QDIO) and HiperSockets
	Naming conventions
	Introduction
	Installing the modules
	QETH supported functions
	Configuring QETH for OSA-Express and HiperSockets using the channel device layer
	Port identification

	QETH parameter syntax
	OSA-Express feature in QDIO mode channel device layer configuration example
	HiperSockets channel device layer configuration example
	Examples: OSA-Express feature in QDIO mode
	1: Basic configuration
	2: Router configuration

	Examples: HiperSockets
	1: Basic configuration
	2: Router configuration

	OSA-Express feature in QDIO mode and HiperSockets – Preparing the connection
	IP address takeover
	Example: OSA-Express feature in QDIO mode
	Example: HiperSockets

	OSA-Express feature in QDIO mode – Virtual IP address (VIPA)
	QETH restrictions
	Priority queuing

	Part 4. Installation commands and parameters
	Chapter 13. Useful Linux commands
	dasdfmt - Format a DASD
	dasdview - Display DASD Structure
	fdasd – DASD partitioning tool
	snIPL – Remote control of Support Element (SE) functions
	zIPL – zSeries initial program loader
	ifconfig - Configure a network interface
	insmod - Load a module into the Linux kernel
	modprobe - Load a module with dependencies into the Linux kernel
	lsmod - List loaded modules
	depmod - Create dependency descriptions for loadable kernel modules
	mke2fs - Create a file system on DASD

	Chapter 14. VIPA – minimize outage due to adapter failure
	Standard VIPA
	Purpose
	Usage
	Example

	Chapter 15. Kernel parameters
	ipldelay
	maxcpus
	mem
	noinitrd
	ramdisk_size
	ro
	root
	vmhalt
	cio_msg

	Chapter 16. Overview of the parameter line file
	Parameters

	Appendix A. Reference information
	LCS parameter syntax
	LCS module parameter syntax (without the channel device layer)
	OSA-Express and HiperSockets parameter syntax
	OSA-Express and HiperSockets driver command syntax (without the channel device layer)
	Linux for zSeries Major/Minor numbers

	Appendix B. Kernel building
	Building the kernel
	Preliminary steps
	Configuring the parameters
	Checking the configuration
	Checking the dependencies
	Compiling the kernel
	Installing the modules
	Finishing off

	Using 'config' or 'oldconfig'
	Sample output listing
	Cross-reference to configuration options

	Using 'menuconfig'
	File handling
	Main menu
	Code maturity level options
	Loadable module support
	Processor type and features
	General setup
	Block device drivers
	Multi-device support (RAID and LVM)
	Character device drivers
	Network device drivers
	Networking options
	Filesystems
	Native Language Support
	Kernel hacking
	Load an alternative configuration file
	Save configuration to an alternative file
	Exit 'menuconfig'

	Kernel parameter options
	IEEE FPU emulation
	Built-in IPL record support
	IPL method generated into head.S
	Enable /proc/deviceinfo entries
	Channel device layer support
	Support for DASD devices
	Support for ECKD disks
	Support for FBA disks
	XPRAM device support
	CTC/ESCON device support
	IUCV device support
	OSA-Express and HiperSockets device support
	Support for 3215 line mode terminal
	Support for console output on 3215 line mode terminal
	Support for 3270 console
	Support for hardware console
	Console output on hardware console
	Tape device support

	Glossary
	Notices
	Trademarks

	International License Agreement for Non-Warranted Programs
	Index
	Readers’ Comments — We'd Like to Hear from You

