john-devkit: specialized compiler for hash
cracking

Aleksey Cherepanov
lyosha@openwall.com

May 26, 2015

—_ il
p"‘d ‘l‘\\OpeanII



General

/
{openwall
X



john-devkit

> is an experiment
> not yet embraced by John the Ripper developer community

> is a code generator

» on input: algo written in special language and a list of
optimizations to apply

» on output: C file for John the Ripper

—_— il
p';‘d \I‘\.Opeanll



John the Ripper (JtR)

the famous hash cracker

v

> primary purpose is to detect weak Unix passwords

v

supports 200+ hash formats (types)

v

supports several kinds of compute devices:
» CPU, Xeon Phi

> scalar
» SIMD: SSE2+/AVX/XOP, AVX2, MIC/AVX-512, AltiVec,
NEON

» GPU
» OpenCL, CUDA
» FPGA, Epiphany
> currently for becrypt only

p"‘d ‘QOpeanll



Problems of JtR development

» scalability of programmers is low due to 200+ formats:
sometimes it is hard to apply even 1 optimization to all
formats:

» important formats get the optimization first
» each additional format to optimize eats more time

» support for each device needs a separate implementation

» readability degrades when various cases are handled by
preprocessor

—_ il
p"‘d ‘QOpeanll



Aims of john-devkit

osi

ive

to separate crypto algorithms, optimizations, and output code
for various devices

to include optimizations specific for hash cracking and John
the Ripper

to provide better syntax

to retain or improve performance

to provide precise control over optimizations

to support various devices: CPU, GPU, FPGA

to give great output for great input (not for any input)
to be simple

/
{openwall
X



Early results

osi

ive

john-devkit is not mature

7 formats were implemented separating crypto primitives,
optimizations, and device specific code
good speeds (over default implementation in JtR):
» raw-sha256 4-22%
> raw-sha224 +20%
» raw-shab12 +6%
» raw-sha384 +5%
bad speeds (but expose interesting features of john-devkit):
» raw-shal -1%
» raw-md4 -11%
» raw-md5 -15%

optimizations implemented: interleave, vectorization, unroll of
loops, early reject, additional batching (loop around algo)

all formats got all optimizations without effort ((‘opean"



Optimizations

/
{openwall
X



Cracking process

> we are in attacker’s position

» we have a lot of candidates to try
> high parallelism
> high level algo:
> load hashes (once)
> generate some candidates
» compute hashes (or only parts)
> reject most of wrong candidates
» check probable passwords precisely (rare case)
> generate next batch of candidates and repeat

» formats are integrated into this process using OOP-like calls
over function pointers

—_— il
p':"d \I‘\.Opeanll



Optimizations

» some optimizations do not affect internals of crypto
algorithms in any way and may be added to any algorithm
» additional loop around algo to process more candidates in 1 call
» OpenMP support
» other optimizations affect crypto algorithms
» vectorization (SIMD)
» precomputation
> e.g. first few steps in MD*/SHA¥* for partially changed input
> reversal of operations
> e.g. last few steps in MD*/SHA*, DES final permutation
loop unrolling
interleaving
bitslicing
and others

—_— il
p':"d \l‘\.OpeanII

vV vy vy



Bitslice

osi

ive

splits numbers into bits and computes everything through
bitwise operations
optimization focuses on minimization of Boolean formula (or
circuit)
Roman Rusakov generated current formulas for S-boxes of
DES used in John the Ripper with custom generator

> it took 3 months
Billy Bob Brumley demonstrated application of simulated
annealing algorithm to scheduling of DES S-box instructions
so code generation is not new for John the Ripper (not even
speaking about C preprocessor)

/
{openwall
X



Other solutions

/
{openwall
X



OpenCL

v

is the first thing | hear when | say about output for both CPU
and GPU

has quite heavy syntax (based on C)

v

v

knows nothing about John the Ripper

v

does not have automatic bitslicing

—_ i
p"‘d \l‘\.OpeanII



Dynamic formats in John the Ripper

> were implemented by Jim Fougeron
> separate crypto primitives from formats

» so md5($p) and md5(md5($p)) have one code base
» work at runtime

> john-devkit aims to be able to do similar thing but at compile
time and with ability to optimize better

» so md5(md5($p)) would get more optimizations (at price of
separate code)

p"‘d ‘QOpeanll



C Macros

» allow to do things, but are not smart
> an example of loop unroll in Keccak defining all useful

variants:
[...]
#elif (Unrolling == 3)
#define rounds \
prepareTheta \
for(i=0; i<24; i+=3) { \
thetaRhoPiChilotaPrepareTheta(i , A, E) \
thetaRhoPiChilotaPrepareTheta(i+l, E, A) \
thetaRhoPiChilotaPrepareTheta(i+2, A, E) \
copyStateVariables(4, E) \
I\
copyToState(state, A)
#elif (Unrolling == 2)
#define rounds \
prepareTheta \
for(i=0; i<24; i+=2) { \
thetaRhoPiChilotaPrepareTheta(i ,
thetaRhoPiChiIotaPrepareTheta(i+1,

E) \ /
M\ (I(Openwall
X

M o=

I\
copyToState(state, A)



X-Macro

> is a tricky way to use macros, most likely with a separate file
to be included multiple times:

» the file has code with variable parts
> these parts are defined before #include

> so F#include provides a "template engine”
» example from NetBSD's libcrypt:

[...]

#define HASH_Init SHA1Init
#define HASH Update SHA1lUpdate
#define HASH_Final SHA1Final
#include "hmac.c"

—_— i
p':‘d \l‘\.OpeanII



john-devkit technical details

ll’OpeanII
R



From Python to C in john-devkit

» code in intermediate language (IL) is generated from
algorithm description

» the code is modified by several functions chosen by user

» C code is generated from the modified the code using a
template

— 7
phd {l{(Opeanll



Intermediate Language (IL)

» while algorithms are written in Python with modified
environment, john-devkit uses flat representation of code using
its own instruction language called intermediate language

» some instructions of this language express constructions
specific to hash cracking

» for instance, state variables of hash functions are defined by
special instruction

> intermediate language is very simple

» intermediate language is intended to be rich to express
common constructions natively to simplify optimization

—_— il
p';‘d \l‘\.OpeanII



Example of specific instruction

> separate instruction is used to define state variable, so
john-devkit uses a filter to replace initial state with values for
SHA-224 having code for SHA-256:

def override_state(code, state):
consts = {}
for 1 in code:

if 1[0] == ’new_const’:
consts[1[1]] =1
if 1[0] == ’new_state_var’:

consts[1[2]1][2] = str(state.pop(0))
return code

—_— il
p':"d ‘QOpeanll



Optimizations specific to password cracking

osi

ive

> use knowledge not available to regular compiler:

» code can be moved between some functions of format

» the functions have different probability to be called

>
>

so main computation is always called
check of probable candidates is very rare

> it almost implies a successful guess (for strong hashes),

also hashes are loaded only once while there are millions of
candidates being hashed every second

/
{openwall
X



Specific optimization: early reject

osi

ive

hashes are long

some output values may be computed a bit quicker than
others

a 32-bit or 64-bit one value is usually enough to reject almost
all wrong candidates

so john-devkit drops instructions for computation of other
output values in main working function and places full
implementation into function for precise check of possible
password

main implementation is vectorized while full implementation is
scalar because it checks only 1 candidate

/
{openwall
X



Specific optimization: steps reversal

> some operations can be reversed
» ifr=1i+ C, we know r, and C is a constant, theni =r - C

» John the Ripper learns "r" when it loads hashes
» john-devkit can sometimes reverse operations, replacing
"forward” computation during cracking (applied per candidate

password) with reverse computation at startup (applied per
hash)

—_— il
p':"d ‘QOpeanll



Full Python

> is available to define algorithms

> the environment has some objects with overloaded
instructions to produce code in IL in a global variable instead
of running it right away

» but any Python code can be used

> it is evaluated fully before further steps of code generation
» but to produce good output some additional markup may be

needed

/
{openwall
X



Full Python, example

> a part of MD4 definition adapted right from RFC 1320:

def

make_round(func, code):
res = 7’
func = re.sub(’([abcdks])’, r’{\1}’, func)
parts = re.compile(xr’\[(.) (.) (.) (.)\s+(\d+)\s+(\d+)\]1’
) .findall (code)
for a, b, ¢, d, k, s in parts:
res += func.format (x*vars()) + "\n"
return res

exec make_round(’a = rol((a + F(b, c, d) + X[k]), s)’,

)20

7;7)

[ABCD O 3] [DABC 1 7] [CDAB 2 11] [BCDA 3 19]
[ABCD 4 3] [DABC 5 7] [CDAB 6 11] [BCDA 7 19]
[ABCD 8 3] [DABC 9 7] [CDAB 10 11] [BCDA 11 19]
[ABCD 12 3] [DABC 13 7] [CDAB 14 11] [BCDA 15 19]

/
{openwall
X



Conclusions

» john-devkit demonstrates practical application of code
generation approach

> john-devkit is a real way to automate programmer’s work at
such scale

I !
il
d ‘l‘\.OpeanII



Thank you!

v

Thank you!

v

code: https://github.com/AlekseyCherepanov/john-devkit

v

more technical detail will be on john-dev mailing list

v

my email: lyosha@openwall.com

= 7
phd {l{(Opeanll



