XORP BGP Routing Daemon
Version 1.1

XORP Project
International Computer Science Institute
Berkeley, CA 94704, USA
http://www.xorp.org/
feedback@xorp.org

April 13, 2005

1 Introduction

This document provides an overview of the XORP BGP Routingrden. Itis intended to provide a starting
point for software developers wishing to modify this softe.a

A router running BGP takes routes from peer routers, filteest, decides which of the alternative routes
is the best, and passes the winner on to the other peershlyagsplying filters before passing the route on.

Our chosen architecture for our BGP implementation empbkasxtensibility and the separable testing
of subsystems, rather than high performance or minimal nerio@tprint. However we believe that the
performance and memory usage will be acceptable, even ébbae router implementations.

We implement BGP as a connected pipeline of “routing tablegith performing a specialized task.
Figure 1 gives the general overview of classes involved éndbre of the BGP process, but excludes the
classes involved in handling peerings with peers. Routmdtion flows from left to right in this figure.
Typically an Update or Withdraw message arrives from a BGd, pe split up into separatedd_r out e or
del et e_r out e commands by the PeerHandler, and then the update flows thtbedgables towards the
DecisionTable. If the route is better than the best alteraathen it passes through the DecisionTable, and
is then fanned out to all the output branches except the caeived un. The outgoing PeerHandler then
sends the route on to the corresponding BGP peer.

There is one input branch and one corresponding output brfan@ach BGP peer, plus one branch that
handles routes sent to BGP from the XORP RIB, and sends BGEsrtmithe XORP RIB and hence on to
the forwarding engine. The general structure of the RIB thas identical to that of a peer-related branch,
but a special version of the PeerHandler is used.

2 Major BGP Classes

In this section we discuss each of the classes from Figureurin before discussing how each BGP peer
is handled. Most of these classes are implemented using @wplates for the address family, so they are
capable of handling IPv4 and IPv6 in an identical manner.

i BGP Plumbing

Peer $ Ribin Filter Cache | NhLookup Filter Cache Ribout | | | Peer
Handler [+ Table ™ Table ™ Table ™Table Table [™] Table [™| Table [T Handler
Peer | i | Ribin Filter Cache| NhLookup|| YDecision Fanout Filter Cache RibOut | i | Peer
Handler [+ Table ™ Table ™ Table ™Table Table [™| Table Table [] Table [Table [] Handler
IpcRib | & | RibIn Filter Cache| NhLookup Filter Cache RibOut | i | IpcRib
Handler [7] Table ™ Table ™ Table ~™rable Table [™| Table [™] Table [™ Handler
XRtho E NextHop XRI_:$ to
RIB process: Resolver ! RIB process

XRLs to

RIB process

Figure 1: Overview of BGP process

2.1 PeerHandler Class

The PeerHandler acts as the interface between the BGP RBesgi(aihich handles BGP peering connections)

and all the RouteTables that comprise the BGP plumbing. AlsiPeerHandler instance receives BGP

Update messages coming from the BGP peer and constructs GBWBdate messages to send to that peer.
A BGP Update Message consists of three parts:

e A list of withdrawn route subnets (route prefixes).
e Path Attribute information for announced routes.

e A list of subnets (route prefixes) that are being announcée. Hath Attribute information applies to
all these subnets.

The PeerHandler splits an incoming update message up, arsirwcts a series of messages (Inter-
nalMessage class) to send to the plumbing.

Each of the withdrawn route subnets is passed to the plumisimy a separateéel et e_r out e call.

Each of the announced route subnets is passed to the pluodimga separai@dd_r out e call, which
includes all the Path Attribute information.

On the output side, the PeerHandler receives a seriadafr out e, del et er out e, or
repl ace_r out e calls. Each batch of calls is for routes that share the sartegtiibute list. The Peer-
Handler then constructs an Update Message from each battipasses it on to the classes that handle the
peering for transmission to the relevant BGP peer router.

In some cases the PeerHandler can receive routes from B@&P laan the connection to the relevant
peer can handle them. The PeerHandler can communicatentbisnation back upstream to regulate the
flow of changes to a rate that can be accommodated. The acataalng then happens upstream in the
FanoutTable.

Because of the way BGP encodes IPv6 routes, the PeerHamatsr landles 1Pv4 and IPv6 routing
information differently.

2.2 RibInTable Class

The RibInTable class is responsible for receiving routemfthe PeerHandler and storing them. These are
the raw routes, unfiltered and unmodified except for syrdactirectness, as received and decoded from the
BGP Peering session.

Because BGP does not indicate in an Update message whetbeteais new or merely replaces an
existing route, all routes are checked to see if they aradyrstored in the RibIn. If so, theedd_r out e is
propagated downstream as @pl ace_r out e, otherwise it is propagated as add _r out e.

The Ribln serves several additional purposes:

e |t can answef ookup_r out e requests from downstream.

e When a new peer comes up, a route dump is initiated so thattheeer learns all the feasible routes
that we know. The RibIn can perform this dump as part of a baxkyl task, so as to allow further
updates while the dump is taking place.

e When the peer associated with the Ribln goes down, a prozeetdte all the routes learned from this
peer is started. This is done by transferring the RibIn’gemouting table to a new RouteTable called
a DeletionTable that is plumbed in directly after the Riblie DeletionTable handles the deletion of
the routes as a background task, leaving the RibIn readype tomediately if the peer comes back
up again.

e When the routing information in the XORP RIB changes, thengesof IGP metric can change which
routes should win the decision process. The Ribin can behalcthe routing information associated
with the indirect nexthop in a BGP route has changed, andhitirtiiate a background task that re-
sends all the relevant routes downstream @pl ace_r out e messages, so that the DecisionTable
can make its choice again.

The RibIn does not do significant sanity checking on its isput is the responsibility of the receive
code in the Peer classes to check that received update reessa&gsyntactically and semantically valid.

The current (April 2005) version of XORP stores all routeshi@ Riblin, irrespective of whether or not
they will fail to pass a downstream filter. However, the Rilbi@s enough information (from the values
returned by theadd_r out e, del et e_rout e andr epl ace_r out e calls it makes downstream) to be
able to store only those routes that will not be filtered.

2.3 FilterTableClass

The FilterTable class has one parent (upstream) RouteBalaleone child (downstream) RouteTable. It
acts as a general purpose filter-bank, passing, modifyindrapping routing information that travels from
parent to child.

A FilterTable can hold many filters. Current filters include:

e SimpleASFilter: Drops routes that contain the configured AS in their AS Path.

e ASPrependFilter: Prepends the configured AS number to the AS Path of all robgggpass through
the filter.

e NexthopRewriteFilter: Changes the NextHop attribute of all routes that pass thrthugfilter to the
specified value.

e IBGPL oopFilter: Drops all routes that we heard through IBGP. This is prirgargeful as an out-
bound filter to an IBGP peer.

e LocalPreflnsertionFilter: Inserts the configured value as the BGP Local Preferendbuaérin all
routes that pass through the filter. Typically used on inpuinfan EBGP peer, before route-specific
filters.

e LocalPrefRemovalFilter: Removes the BGP Local Preference attribute from all rouias pass
through the filter. Typically used on output to an EBGP peer.

e MEDInsertionFilter: Adds a Multi-exit Descriminator attribute based on the esutGP metric to
each route that passes through the filter. Typically usedutpub to an EBGP peer. Note that the
MED to be inserted will have been added to the route by thedimcrable, so MEDInsertionFilter
cannot be used as an input-branch filter.

¢ MEDRemovalFilter: Removes the Multi-exit Descriminator attribute from allites that pass through
the filter. Typically used just before a MEDInsertionFilterremove the MED received from the pre-
vious AS.

Note that filters are not just for operator configured filtgrithey comprise part of the basic BGP processing
mechanism.

Typically a FilterTable will receive an InternalMessagerr its parent containing a subnet route. All
the configured filters will be applied in order to the route.e@f three things may happen:

e The route may be dropped by a filter.
e The route may pass through all filters unchanged.
e One or more filters may modify the route. This is done by cnggéi new copy of the route.

In the last case, the modified route will have the Changed #agefore it is propagated downstream. This
flag indicates that no-one upstream is storing a persistgy of this route, so the downstream tables are
responsible for either storing the route or freeing the mgmiases.

Filter implementors should be careful to note that if theteoteceived as input to a filter is already
modified, and their filter then drops the route or creates aifieddcopy of the route, then the old route
MUST be freed because no-one else can do so. If the input ot modified, the filter MUST NOT free
the route because it is stored elsewhere.

2.4 CacheTable Class

The CacheTable class has one parent RouteTable and oneRchitd Table. Its purpose is to ensure that
routes changed by preceding filter-banks are actually dteoenewhere. Primarily it is an optimization
to prevent the filters from having to be applied every tineokup_r out e is called, but it also simplifies
memory management because downstream tables no longeorieedoncerned with whether a route needs
to be freed or not.

The CacheTable takes as input InternalMessages from gsppand passes them through downstream
to its child. If the route in the message does not have the @thflag set, then the CacheTable is a no-op.
If the route in the message has the Changed flag set, then tieeTxble will store the route (or delete it

from storage in the case dkl et e_r out e). Thus all InputMessages sent downstream have the Changed
flag cleared.

A CacheTable in the outgoing branch is flushed (all storetemodeleted) when the peering correspond-
ing to the relevant plumbing branch down. This is becausenvthe peering comes back up, the outgoing
branch should restart with no stored state. The incomingdir&acheTable is not explicitly flushed, be-
cause the routes will be removed as the DeletionTable getsirm deleting them. Prematurely flushing the
input branch CacheTables would potentially result in theiflenTable seeing inconsistent inputs.

Note that assertion failures in the CacheTable usuallycatidi that the code upstream is incorrectly
propagating changes (for example either a delete with nptadddeletes, or two adds).

2.5 NhLookupTable Class

The BGP decision process implemented in DecisionTablelatively complex, and takes into account
many possible factors including “IGP distance”. IGP dist&is the IGP routing metric for the route to
reach the BGP NextHop (which is often a number of IP hops awdke case of IBGP). Also of interest
is whether the BGP NextHop is actually reachable accordintpeé IGP protocols. Because of the multi-
process architecture of XORP, BGP does not know the IGPrdistar whether the nexthop is reachable. To
find out this information, BGP must query the RIB, and thisogs& by the NextHopResolver class instance.
If DecisionTable had to perform this lookup, it would becoveey complex because it would have to handle
suspending the decision process while waiting for resutts1fthe RIB. A multi-threaded implementation
would solve this problem, but would cause other issues.

To solve these problems we insert an NhLookupTable upstadahe DecisionTable. NhLookupTable
gueues any updates with NextHop information that the NepR&solver does not know about, pending the
response from the RIB process. Thus by the time an updatees#ite DecisionTable, the NextHopResolver
already has access to the IGP information related to the B&&Hbp.

A complication comes with ookup_r out e:

¢ if the lookup matches aadd _r out e in the NhLookupTable queue, the NhLookupTable must return
“lookup unsuccessful”.

e if the lookup matches mepl ace_r out e entry in the NhLookupTable’s queue, the old answer must
be given.

In general, the behaviour should be as if the queued updatksidt yet been received from the relevant
peer. Note that the time for the RIB to respond should nognialvery small compared to the usual delays
for propagating Update messages between peers.

2.6 DecisonTable Class

The DecisionTable is the core of the BGP process. It takete rooanges from the input branches, and
decides whether those changes are better or worse tharuties rbhas already seen.

When DecisionTable receives ald_r out e from one input branch, it queries the other peers input
branches usingookup_r out e.

¢ If none of the other branches returns an answer, then the is& new one, and can be passed on
downstream so long as the BGP NextHop is resolvable.

¢ If one or more of the other branches returns an answer, onkesttanswers will have been the
previous winner. The new route is compared against the qusvwinner - if it is better then a
r epl ace_r out e message is propagated downstream. If it is worse, then teefuaction is taken.

When DecisionTable receiveslal et e_r out e from one input branch, it queries the other peers’ input
branches in the same way:

¢ If none of the other branches returns an answer, thd¢het e_r out e can be passed on downstream
so long as the BGP NextHop was previously resolvable.

e |f one or more of the other branches returns an answer, orf@sétanswers will be the new winner.
The routes are compared, andepl ace_r out e will be sent downstream.

The processing farepl ace_r out e is similar to that fordel et e_r out e followed byadd_r out e,
except that only a single replace (or delete in the case wheraew nexthop is unreachable and there are
no alternatives) will be sent downstream.

2.7 NextHopResolver Class

Unlike most of the previous classes, NextHopResolver isasn@buteTable sub-class. A BGP implemen-
tation has a single NextHopResolver instance per addrestyfalhe NextHopResolver takes requests to
resolve a BGP NextHop address and attempts to resolve thessdo that of the immediate neighbor router
that would be used to forward packets to the NextHop address.

When it receives an address to resolve, the NextHopResfitgsechecks its own routing table. If the
nexthop address can be resolved there, then the answer catubeed immediately. Alternatively, if its
own routing table indicates that the address definitely aaba resolved, then a negative response can be
given immediately. Otherwise it needs to contact the XORB &ding XRLs to answer the question.

In this way, the NextHopResolver obtains a copy of the relegabset of the RIBs database related to
the NextHops given by BGP. The RIB will also keep track of thbset that it has told BGP about. If this
information changes in any way BGP will be informed by the RéBher directly of the change or that some
information is no longer correct and BGP must query again.

The information held by the NextHopResolver is referenaented so that it can be removed when it is
no longer relevant. If the information contained changeasot#ication of the change will be passed to the
DecisionTable, which will propagate the notification bagistneam to the Ribin tables.

2.8 FanoutTable Class

The principle task of the FanoutTable is to distribute rocit@nges that passed the DecisionTable, and
therefore are real changes not just possible changes. Hafubeipasses a change to all the output branches
except the one where the change originated. In the cagdafr out e or del et e r out e, this is simple

but ar epl ace_r out e may contain an old route and a new route that originate frdfardnt peers, so it
may be propagated as add_r out e to the peer where the old route originated, ateh et e_r out e to

the peer where the new route originated, and ms@ ace_r out e to all the other peers.

The secondary task of the FanoutTable is to serve as a qupaingfor changes when the BGP peers
are not capable of keeping up with updates at the rate we apagating them. The advantage of queuing
updates in the FanoutTable as opposed to in the RibOut oHRedler is that only one copy of the change
needs to be kept, no matter how many peers are not keepinghipisiparticularly important in the case

where the peer from which we heard most of our routes goes dameha large number of deletions occur
in a short period of time. These deletions need to go to altehgining peers, and it is likely that we can
generate them faster than TCP can transfer them to the peer.

Thus there is a single update queue in the FanoutTable, aspbaade pointer into this queue is main-
tained for each outgoing branch (and hence each peer). Hpairanch indicates it is busy, the Fanout-
Table will stop propagating changes to it, and instead quleeiehanges. Only when a change has been
propagated to all the intended peers will it be removed frioenqueue.

2.9 RibOutTable Class

The purpose of the RibOutTable is to communicate changdsetoutgoing PeerHandler and hence on to
the relevant BGP peer. The RibOutTable class accumula@sgels (add, delete or replace) in a queue,
and waits for a flush request. The reason for the queue istteahtoming PeerHandler split up a single
incoming Update message into many changes, each with the Bath Attributes. On output, we want to
accumulate these changes again, so that we can send therawrpters in a single Update message. Thus,
after the incoming PeerHandler has sent the last change Riltn, it sends a flush message through. When
this reaches the RibOut, it is the signal to take all the cbharnlyat have been queued, and build one or more
Update messages from them. Of course the nature of the @legigdcess and filters mean that changes that
arrived together do not always result in outgoing changasdhare the same Path Attributes. Thus multiple
passes over the RibOut queue are required, each accurgutatimges that share the same Path Attributes
so that they can be sent on in the same Update message.

In principle, the RibOut could also store pointers to thetirmyinformation that was passed on to the
peer so that Route Refresh (RFC 2918) could be handled efficidn our current implementation we do
not do this - the RibOut maintains no record of the routesquagsthe peer.

2.10 RiblpcHandler Class

The RiblpcHandler class is a subclass of PeerHandler, waisichlly the same interface as far as communi-
cation with the Ribln and RibOut are concerned. Howevetgirds of communicating with BGP peers, the
RiblpcHandler communicates routes to and from the XORP Ri&utes are received from the RIB if the
RIB has been configured to redistribute routes to BGP. Intiaaidliall routes we pass to other peers are also
communicated to the XORP RIB, and hence on to the forwardigne, so that we can forward packets
based on the routing information.

3 Background Tasks

The XORP BGP implementation, like all XORP processes, iglsithreaded. However, certain simple
events can cause BGP to perform a great deal of work. For dgamp

e When a peering goes down, all the routes in the RibIn assatwith that peer must be deleted,
which either results in Withdraws being sent to all remajreers, or Updates being sent to indicate
an alternative path is now the winner. As there can be manystiwds of routes in a Ribln, this
process can take some time.

e When a new peering comes up, all the winning routes must heteenat peer. This can also take
some time.

e When the IGP information related to a BGP nexthop changktheatoutes that specify this nexthop
must be re-evaluated to see if the change affects the chbiceite. In BGP it is fairly common for a
very large number of routes to share the same BGP nexthobiss@tevaluation can take some time.

The XORP BGP process cannot simply process such events tplemon - in particular it must keep
processing XRL requests from other processes or the IPCanexh may declare a failure. In any event,
it is important that a single slow peer cannot cause routeduding between other peers to stall. Thus we
process the events above as “background tasks”.

In a multithreaded architecture, such tasks might be stptmaeads, but the locking issues soon become
very complex. In our single threaded architecture, theeenarcomplex locking issues, but the background
nature of such tasks needs to be explicitly coded. We do thidivading the background task into small
enough segments. At completion of such a segment we schadel®-second timer to schedule execution
of the next segment, and drop back to the main event loop. Ufirecwill then be restarted after pending
network events and expired timers have been processed bydheevent loop. Care must of course be
taken to ensure that when execution returns, the proces$irgents or other background tasks has not
rendered incorrect the state the background task needesstartt However, as the processing of each
background task segment is naturally atomic in a singleaithed architecture, there are fewer possibilities
for bad interactions. Even so, the state stored by theseghmahkd tasks to enable their correct restart
involves some rather complex algorithms.

3.1 DedetionTable Class

When a peering goes down, the routing table stored in thenRsbhoved to a DeletionTable that is plumbed
in directly after the Ribin, as shown in figure 2. The task @f tieletion table is to delete all the routes that

Normal Input Branch: peering is up.

Peer RibIn Filter Cache NhLookup
Handler ™ Table Table ™ Table ™Table

Peer RibIn Deletion Filter Cache NhLookup
Handler ™ Table ™Table [Table | Table ™Taple

Input Branch after peering has gone down.

Figure 2: Dynamic insertion of Deletion Table on Peerindtai

were previously stored in the RibIn, but to do so as a backgtaask allowing the BGP process to continue
to handle new events.

Deletion is scheduled in series of phases. In a single ph#gtbe routes that share a single set of Path
Attributes are deleted. In this way, if there are alterrativutes in a different RibIn that also share a path
attribute list (a fairly common occurrence), then the cleaoicpreferred route may be batched in such a way
that it might be possible to use a single update message coghiey the change to each neighbor. At the
end of a phase, the DeletionTable schedules execution oietktedeletion phase using a zero-second timer.
This allows all pending timer or network events to be handlefbre deletion resumes.

The DeletionTable must respond lt@okup_r out e requests from downstream just as a RibIn table
would - even though the deletion table knows the routes d$wiill be deleted, it must respond as if they had

8

not yet been deleted until it has had a chance to send tharet®l et e_r out e message downstream. In
this way, the DeletionTable provides a consistent view éodbwnstream tables - if they earlier performed a
| ookup_r out e and got a specific answer, then they will still get the samaananless they have received
adel et erout e orr epl ace_r out e informing them of a change.

When the last route is deleted from the DeletionTable, thie tanplumbs itself from the BGP plumbing,
and deletes itself.

A small complication is added by the possibility that thermpegemight come back up before the Dele-
tionTable has finished deleting all the old routes. Thus & BeletionTable receives aadd._r out e
from upstream for a route that in present in the Deletion§athien this route would be passed on down-
stream as aepl ace_r out e, and the route would then immediately be removed from theti Table.
add_rout e, repl acer out e anddel et e_r out e for routes not present in the DeletionTable are sim-
ply passed from parent to child without modification.

Should the peering come up and go down again before all thegdauthe first DeletionTable have been
deleted, a second deletion table would be inserted beferérit one. By virtue of the normal functioning
of the DeletionTable, if there are two such cascaded Del€ébles, then they will not hold the same route,
so this does not add any additional complication.

3.2 DumpTableClass

When a peering comes up, all the currently winning routemftbe other peers must be sent to the new
peer. This process is managed by an instance of the Dumpdlakke which is inserted between the fanout
table and the first table on the output branch to the peer &méap (see Figure 3).

Normal Outgoing Branch

Filter Cache RibOut Peer
Table [™ Table [™] Table [™] Handler

Dump Filter Cache RibOut Peer
Table [™ Table [™] Table [™] Table [™| Handler

Outgoing Branch of Peer that just came up.

Figure 3: Dynamic insertion of DumpTable on a peering comipg

A DumpTable is perhaps the most complex part of the BGP machiwhile the dump is taking place,
it must cope with:

e New routing information being propagated.
e Other peers going down and coming back, possibly repeatedly

It must do this without propagating inconsistent inforraatdownstream, such asr&pl ace_r out e or
adel et e r out e without sending aradd_r out e first. It must ensure that all the routes what passed
decision are dumped to the new peer. And it must cope wherotites just before and just after the most
recent route it dumped are deleted, without losing track ledig it is in the dump process.

9

The process is complex enough to merit description heretailde
Each DumpTable contains a Dumplterator instance whichshalldhe state related to the current state
of that particular route dump. The Dumplterator contairesftilowing state:

e A list of the remaining peers to dump, initialized at the stdrthe dump. Peers are removed from
this list when the dump of the routes received from that peeoimplete, or when the peer does down
during the dump. Peers are never added to this list duringuhmp.

e Alist of the peers that went down before we'd finished dumphem. Along with each peer is stored
enough state to know how far we’'d got though the route dumm fiftat peer before it went down.

e The current peer whose routes are being dumped.

e A trie iterator pointing to the next RiblIn trie entry to be dped on the current peer (we call this the
Route Iterator)

e The last subnet dumped from the current peer.
¢ A flag that indicates whether the Route Iterator is currewvdlyd.

e The last GenID seen. The GenlID of the RiblIn is incrementetl 8ate the peering comes up.

At startup the DumpTable initialized the list of remainingeps in the Dumplterator to be the set of peers
that are currently up. Then it iterates through this list gimg all the routes from each Ribin in turn.

The DumpTable calldunp_next _r out e on its parent table, passing the Dumplterator as a parameter
Thedunp_next _r out e request is relayed upstream to the DecisionTable. Dedialae relays the request
to the input branch of the first peer listed in the list of remiag peers, and from there it is relayed back to
the relevant RibIn.

To allow routes in the RibIn to be deleted during the route pumthout the Route Iterator becoming
invalid, we use a special trie and trie iterator in Ribln, wh¢he route in the trie will not actually be
deleted until no trie iterator is pointing at it. This is irephented using reference counts in the Trie nodes
themselves.

dunp_next _r out e in the Ribln checks the Route Iterator to see if it points ®@énd of the Trie. If
the previous call talunp_next _r out e had left the Route Iterator pointing to a node that has sulessgty
been deleted, this comparison transparently causes thiee Retator to move on to the next non-deleted
node, or to the end of the Trie if there are no subsequentadkefeides. This updating of the Route Iterator
is transparent to the user of the iterator.

The route pointed to by the Route Iterator is then propateehdream from the Ribin to the DumpTable
as ar out e_dunp call. The DumpTable turns this into @ald_r out e call which it propagates downstream
to the new peer.

At the end ofdunp_next _r out e, the Ribln increments the Routelterator ready for next time

DumpTable then schedules the next calldonp_next r out e using a zero-second timer to allow
other pending events to be processed.

On returning from the timer, the DumpTable checks to see yf mute changes have been queued
upstream in the FanoutTable due to output flow control. Ifisprocesses all these route changes before
dumping the next route. This is necessary, or the DumpTalll@et be able to tell which changes it needs
to propagate downstream because we've already passedoitedion in the dump process, and which are
unnecessary because we will get round to dumping them ealgntu

In general, a route change needs to be propagated downsfream

10

e It comes from a peer that is not in our remaining peers list.

e It comes from the peer currently being dumped, but its rasiteefore the location of the route in the
Dumplterator.

e Itcomes from a peer that went down, and its subnet is befersihnet we had reached while dumping
that peer’s Ribln when the peer went down.

e It comes from a peer that went down, and the Ribin GenlD l&tan that peers GenID was when it
went down. This would happen because the peering has sinoe leack up, and is now injecting new
routes.

When all the routes in the Ribin of a particular peer have lthenped, that peer is removed from the
remaining peers list in the Dumplterator, and the rdexrp_next _r out e will be sent to the Ribin of the
next peer in the list.

When there are no peers in the remaining peers list, the dearopmplete. The DumpTable then un-
plumbs itself from the plumbing, and deletes itself.

Note that at any time there may be multiple DumpTables inatp®r, each dumping to a different peer.
All the dump state is held in the Dumplterators, so this dagsause any problem.

11

