XORP Forwarding Engine Abstraction
Version 1.0

XORP Project
International Computer Science Institute
Berkeley, CA 94704, USA
feedback@xorp.org

July 8, 2004

1 Introduction

The role of the Forwarding Engine Abstraction (FEA) in XORPtd provide a uniform interface to the
underlying forwarding engine. It shields XORP processemfconcerns over variations between platforms.
As a result, XORP processes need not be concerned whethewutiee is comprised of a single machine, or
cluster of machines; or whether the network interfaces ianpls, like a PCI Ethernet adapter, or are smart
and have processing resources, like an Intel IXP cards.

The FEA performs four distinct rolegnterface management, forwarding table management, raw packet
1/0, and TCP/UDP socket 1/0. Those are described briefly in Section 1.1, Section 1.2ti@®ed.3, and
Section 1.4 respectively. Section 2 presents the desigingpiementation of the FEA components. FEA
status summary is in Section 3.

In a standard XORP system, the Multicast Forwarding Engihstraction (MFEA) is part of the FEA.
The MFEA is conceptually distinct from FEA and is used for tiwalst-specific abstraction of the underlying
system. Combining the MFEA with the FEA reduces the load ensystem. For information about the
MFEA architecture, see [1].

1.1 Interface Management

In the normal course of interaction, the RouterManager gseds the principal source of interface con-
figuration requests to the FEA. The RouterManager constihet interface configuration from the router
configuration files and the input it receives at the commamel liThe type of requests the RouterManager
sends to the FEA are to enable interfaces, create virtuatfawes, set interface MTU’s, and so forth. The
FEA interprets and executes these requests in a mannerpaippedor the underlying forwarding plane.

Processes can register with the FEA to be notified of chamgeserface configuration. The registered
processes are notified of changes, and may query the FEA gadbipt of an update notification to deter-
mine the change that occurred. These notifications are plyneod interest to routing protocols since these
need to know what the state of each interface is at a given time

Both of the above interactions are depicted in Figure 1.

RouterManager Routing Process

\ \ \
fi i fi i fi [
Configuratio \| Con |.gurat|o \, Updat Con |.gurat|0 \l
Requests , Queries . Notification| Queries /
/ / /

FEA Interface Manager

Figure 1: FEA Interface Management interaction with oth€@R¥ processes

1.2 Forwarding Table Management

The FEA primarily receives forwarding table configuratioriormation from the RIB process. The RIB
arbitrates between the routes proposed by the differertiingpprocesses, and propagates the results into
the FEA's forwarding table interface. The FEA accepts ratpi& insert and remove routing entries and
propagates the necessary changes into the forwarding. pldmeeFEA also supports queries on the current
contents of the forwarding table. Finally, processes cgister with the FEA to receive update notifications
about changes to the forwarding table.

1.3 Raw Packet |/O

Routing protocols, such as OSPF, need to be able to send egida@ackets on specific interfaces in the
forwarding plane in order to exchange routing informatiod & determine the liveness of connected paths.
Since the forwarding plane may be distributed across meltipachines, these routing protocols delegate
the 1/O operations on these packets to the FEA. The FEA stppending and receiving raw packets on
specific interfaces.

The transmission of raw packets through the FEA is straogieird, the routing process simply hands
the FEA a raw packet and indicates which interface it shoelddnt on. The reception of raw packets is
handled through a register-notify interface where theinguprocess registers which types of packets on
which interfaces it is interested.

1.4 TCP/UDP Socket I/0

Routing protocols, such as BGP or RIP, need to be able to sehceaeive TCP or UDP packets to/from a
specific IP address in order to establish peering conngctwid to exchange routing information. Similar
to the raw packet 1/O delegation, the FEA can be used to delélgja TCP/UDP socket I/O operations.

The handling of TCP or UDP operations is done by simply extendhe UNIX TCP/UDP socket
interface such that all relevant socket operations have ¥&it-end interface.

2 Design and Implementation

21 Oveview

The FEA fulfills four discrete roles: Interface Managemdtaywarding Table Management, Raw Packet
I/0, and TCP/UDP Socket I/O. The Interface Management amai&aling Table Management roles follow
a similar design pattern since both relate to the settinggatithg of configuration state. The Raw Packet
I/O and TCP/UDP Socket I/O have little in common with the ottveo roles.

The Interface Management and Forwarding Table Managenoésd use transactions for setting con-
figuration state. The transactions are a collection of gedugperations that are queued until committed or
aborted. Transactions provide atomic updates to the faingplane, which has the virtue of ensuring a
consistent state at any particular instant of time. In dmfditforwarding plane updates may incur per update
costs, and grouping operations may help to reduce theseieQwdé the configuration state happen on the
immediate state, and are independent of any transactiaharhin progress.

The FEA, as with other XORP processes, uses the XRL mechdnismter-process communication
and each role of the FEA is represented by a distinct XRLfater The Interface Management, Raw Packet
I/0 and TCP/UDP Socket I/O roles support the notion of ciehit notified when event occur and client
processes are expected to implement known interfaces. EAeXIRL and FEA XRL client interfaces are
shown in Table 1.

| Role | XRL Interface file | Client XRL Interface \
Interface Management fealfrmgr.xif feaifrgrclient.xif
Forwarding Table Managementr edi st transacti on{4,6}.xif | feafib.xif
Raw Packet I/O fea_rawpkt. xi f fearawpkt client.xif
TCP/UDP Socket I/0 socket {4, 6}. xi f socket {4, 6} user.xif

Table 1: FEA XRL Interfaces (defined 8XORP/ xr | / t arget/fea. t gt)

The XRL handling code is found iBXORP/ f ea/ xr | t arget. {hh, cc}. Each XRL interface is
handled by an XRL-aware helper class. The helper class stateis the semantics of the implementation,
and maps errors and responses to the appropriate XRL forheshédlper classes and their relations to the
interfaces are depicted in Figure 2.

Sasse|d Y34 01 Uone|al Ul Sagepaiul X :Z ainbi4

1

Interface Event =
Observer

—

1

FIB Event =
Observer

-

Raw Packet Event
Observer

TCP/UDP Socket
Observer

XrlI nterfaceManager
fea/xrl_ifmanager.h

- - - —

IfM?rXrI ReplicatorManager

ibfeaclient/ifmgr_xrl_replicator.h

- - - —

XrlFtiTransactionManager

- - - —

fea/xrl_fti.hh

XrIRawSocket4M anager

- — — —

fea/xrl_rawsock4.h

XrlSocketServer

fea/xrl_socket_server.h

- - - —

XrlFeaTarget

fea/xrl_target.h

>

Interface
Managemen

T H F

Forwarding Table
Managemen

T H F

Raw Packet 1/0

| H F

TCP/UDP Socket I/0O

+ H F

2.2 Interface Management

To succinctly explain the interface management classehawcthey interact we first describe the repre-
sentation of interface configuration state. Interface gométion state is held withihf Tr ee class. The

| f Tr ee structure is used and manipulated by all of the the interfna@agement classes. TheTr ee
class is a container of interface state information orgathin a hierarchy:

| f Tr ee contains:

| f Tr eel nt er f ace physical interface representation, contains:

I f TreeVif virtual (logical) interface representation, contains:
| f Tr eeAddr 4 Interface IPv4 address and related attributes.
| f Tr eeAddr 6 Interface IPv6 address and related attributes.

Each item in the IfTree hierarchy is derived frdnfi Treelt em | f Tr eel t emis a base class to
track the state of a configurable item. Items may be in onewfdtatesCREATED, DELETED, CHANGED,
NO_CHANCGE. For example, if an item is added to the tree it will be in@REATEDstate. The IfTreeltem::finalizetate()
method places the item in tiO_CHANGE state and items marked BELETED are actually removed at this
time.

The state labeling associated with Tr eel t emadds a small degree of complexity to theTr ee
classes. However, it allows for one entity to manipulatergéerface configuration tree and pass it to another
entity which can immediately determine the changes fronstate labels.

The interface management functionality of the FEA is repmésd by three interacting classé$:Con-
fig,lnterfaceManager,| nterfaceTransacti onManager. The interaction of these classes is
managed by thr | | nt er f aceManager , which takes external XRL requests and maps them onto the
appropriate operations. The interactions between thessed and related classes are shown in Figure 3.
TheXr | | nt er f aceManager is sufficiently aware of the semantics of the operations &3 jm@ck human
parseable error messages when operations fail.

Thel f Confi g class is an interface configurator, and contains plug-ingd&ch supported forwarding
plane architecture to access, set, or monitor the interfigleded information. The functionality of the
I f Confi g is conceptually simple: it can push-down BhTr ee to the forwarding plane or pull-up the
live configuration state from the forwarding plane ad &fr ee.

Thel nt er f aceManager class contains thef Tr ee representing the live configuration, and a ref-
erence to the f Conf i g that should be used to perform the configuration. Théer f aceTr ansac-

t i onManager class holds and dispatches transactions. Each operatthim\ai transaction operates on
an item within a f Tr ee structure. Each transaction operates on a copy of thé file ee and when the
commit is made, this structure is pushed down intolth€onf i g.

The process of configuration is asynchronous, and two pt&asers can occur whilst a transaction is
being committed and operating on bft r ee (e.g., because of a bad operation within a transaction), and
errors can occur when the configuration is pushed down tootfvearding planedg., the configuration has
an inconsistent number of interfaces). Errors in the firstsghare reported by thent er f aceTr ansac-

t i onManager . Errors in the second phase are reported by th€onf i g through a helper class derived
from| f Confi gErr or Report er Base.

The interface management role of the FEA is expected to repafiguration changes to other XORP
processes. Hence, thé Confi g class uses th¥r | | f Conf i gUpdat eReport er class to report con-
figuration changes.

UGN JI9Y) pue Sasse|d Wwawabeuey adeualul Y34 € ainbig

I nterfaceTransactionManager

Confiiguration
IfTree

I nterfaceManager

Configuration Queryt|

Configuration
Commands

IfConfig::pull_config()

Confiiguration
IfTree IfTree

Configuration Info

IfConfig::push_config()

Confiiguration

IfConfig

XrllfManager

Xrl Requests

Xrl Requests

Error Report

Simplel fConfigError Reporter

Error Report

XrlResponses

XrlFeaTarget

>
Xrl Responses

Update Notification

IfConfigUpdateReporter

Xrl Updaté =
Notification

2.3 Forwarding Table Management

The Forwarding Table Management role propagates routeshiatforwarding plane. The Forwarding Table
Management role does not shadow the forwarding informatidside of the forwarding plane itself; rather,
it relies on the RIB to do this. As a result, it is consideragilypler than the Interface Management role.

The classes interacting to provide the Forward Table Mamage role are: theXr| Fti Tr ansac-
ti onManager class, a class that adapts requests and responses frombet sfXr | FeaTar get
methods that represent the forwarding table managemeetnaliy; theFti Tr ansact i onManager
that builds and executes transactions to configure the fdmgtable; and clagst i that understands how
to program the forwarding plane.

TheFti class provides the interface for accessing the forwardiagep It includes methods for adding
and removing routes, as well as resolving routes in the fating table. Modifications to thét i state
are only permitted during a configuration interval. The agunfation interval is started and stopped using
Fti::start _configurationandFti:end_configuration. The particular access to the for-
warding plane is performed by plug-ins that are specific & fane. For example, to read the forwarding
table currently there are plug-ins that utilize the sy8gtifhechanismég., in case of FreeBSD) or the
netlink mechanismegg., in case of Linux). There are plug-ins to read, set or monherforwarding table
information at the granularity of one entry, or the wholeléab

TheFti Transact i onManager presents a transactional interface for configuringRhé instance.
Command classes exist for each possible modifier operatoth®Ft i instance. The~ti methods
start configurati onandend_confi gurati on are called at the start and end of the transaction.

Note that the XRL interface for adding/deleting routes i st _t ransact i on{4, 6} which is a
generic XRL interface used by the RIB to redistribute rotteimterested parties.

The Forwarding Table Management also provides interfac@racesses to register interest in receiv-
ing updates whenever the Forwarding Information Base dmndhe FEA is observing all FIB changes
within the underlying system (including those triggeredttsy FIB manipulation by the FEA itself). Those
changes are propagated to all instances oFtheCl i ent class (implemented withinthé | Fti Tr ans-
act i onManager class).

2.4 Raw Packet |/O

The Raw Packet I/O role of the FEA provides a means for XOREBgzges to send and receive raw packets
on particular interfaces. This is an essential functiortesim a XORP router the forwarding plane may
reside on a different machine to the routing processes,\itbealistributed across several machines, or may
have custom network interfaces that require special progniag. Currently (July 2004), only the sending
and receiving of raw IPv4 packets is implemented. SuppeortH@6 will be available in future and should
follow a similar design pattern to the raw IPv4 packet hamglli

The raw packet interface is managed by ¥né RawSocket 4Manager class. This manages a single
instance of &i | t er RawSocket 41. TheFi | t er RawSocket 4 encapsulates a raw socket and allows
raw IPv4 packets to be written and filters attached to pansepeckets as they are received. TXKel -
RawSocket 4Manager allows an arbitrary number of filters to be associated withabtive raw socket.
The filters are each notified when a raw packet is received @natit socket. The XrIRawSocket4Manager
allows other XORP processes to receive packets via XRL obdlsés on filter conditions. Currently (July
2004), the only implemented filter is té& | Vi f | nput Fi | t er which allows processes to receive raw
packets on the basis of the receiving VIF. In principle, fdteould be written to match on any field within a
packet and perform an action.

The current implementation only works on single machine XXd&warding planes

2.5 TCP/UDP Socket 1/0

Similar to the Raw Packet I/O (see Section 2.4), the FEA piewia means for XORP processes to perform
TCP or UDP socket operations and to send and receive TCP/@bkefs. This is an essential function

since in a XORP router the forwarding plane may reside onfardiit machine to the routing processes,
it may be distributed across several machines, or may hasterounetwork interfaces that require special
programming.

The TCP/UDP socket interface is managed byXxhé Socket Ser ver class. This manages TCP and
UDP IPv4 and IPv6 sockets The Xr | Socket Ser ver performs the particular TCP/UDP socket opera-
tions on the underlying system (opening and closing a spbkad, send and receive, etc), and provides the
XRL front-end interface. Note that for simplicity some oétiocket XRL interface combines several system
socket operations in one atomic FEA operation. For exantipdssocket 4/ 0. 0/ t cp_.open_bi nd XRL
interface creates a TCP socket that binds it to a specifi¢ émimress.

3 Status

There are two versions of the FEAea andf ea_dumry. Thef ea is a version of the FEA that contains
plug-ins to access the forwarding plane by using the folhganechanisms:

e getifaddrs(3), sysctl(3), ioctl(3), Linux netlink(7) sockets andLinux /proc to obtain interface-specific
information.

e ioctl(3) andLinux netlink(7) sockets to set interface-specific information.

e BSD routing sockets and Linux netlink(7) sockets for observing changes in the interface-specific in-
formation.

e BSD routing sockets andLinux netlink(7) sockets to lookup a single forwarding entry in the forwarding
plane.

e sysctl(3) andLinux netlink(7) sockets to obtain the whole forwarding table from the forwardingrga

e BSD routing sockets andLinux netlink(7) sockets to set a single forwarding entry or the whole table
in the forwarding plane.

e BSD routing sockets andLinux netlink(7) sockets to observe changes in the forwarding table.

In other words, currently (July 2004) tlieea supports FreeBSD, NetBSD, OpenBSD, and Linux (see
file $XORP/ BUI LD.NOTES about the specific OS versions the FEA has been tested on¥. &delumy
is a substitute FEA and may be used for development testingopas. Thd ea_dumry represents an
idealized form of FEA, other FEA's may differ in their resp@s due to architectural differences. Therefore
processes that interact with the FEA should redard _dunmy interactions as indicative, but not definitive.

The FEA's are still a work in progress and no doubt have songs.biény contributions or bug fixes
are welcome. FEA support for Click is yet to be written, andABHor any other architecture would be
welcomed. There is a now defunct Click FEA in tfiXORP/ f ea directory that should be possible to
resurrect.

2The current implementation only works on single machine Xd&warding planes

References

[1] XORP Multicast Forwarding Engine Abstraction. XORPHaical document. http://www.xorp.org/.

