
CSiBE Benchmark: One Year Perspective and Plans

Árpád Beszédes, Rudolf Ferenc, Tamás Gergely,
Tibor Gyimóthy, Gábor Lóki, and László Vidács

Department of Software Engineering
University of Szeged, Hungary

{beszedes,ferenc,gertom,gyimi,loki,lac}@inf.u-szeged.hu

Abstract

In this paper we summarize our experiences in
designing and running CSiBE, the new code
size benchmark for GCC. Since its introduc-
tion in 2003, it has been widely used by GCC
developers in their daily work to help them
keep the size of the generated code as small
as possible. We have been making continu-
ous observations on the latest results and in-
forming GCC developers of any problem when
necessary. We overview some concrete “suc-
cess stories” of where GCC benefited from
the benchmark. This paper overviews the
measurement methodology, providing some in-
formation about the test bed, the measuring
method, and the hardware/software infrastruc-
ture. The new version of CSiBE, launched in
May 2004, has been extended with new fea-
tures such as code performance measurements
and a test bed—four times larger—with even
more versatile programs.

1 Introduction

Maintaining a compact code size is important
from several aspects, such as reducing the net-
work traffic and the ability to produce software
for embedded systems that require little mem-
ory space and are energy-efficient. The size of
the program code in its executable binary for-
mat highly depends on the compiler’s ability

to produce compact code. Compilers are gen-
erally able to optimize for code speed or code
size. However, performance has been more ex-
tensively investigated and little effort has been
made on optimizing for code size. This is true
for GCC as well; the majority of the compiler’s
developers are interested in the performance of
the generated code, not its size. Therefore op-
timizations for space and the (side) effects of
modifications regarding code size are often ne-
glected.

At the first GCC summit in 2003, we presented
our work related to the measurement of the
code size generated by GCC [1]. We compared
the size of the generated code to two non-free
compilers for the ARM architecture and found
that GCC was not too much behind a high-
performance ARM compiler, which generated
code about 16% smaller than GCC 3.3. How-
ever, at the same time we were able to docu-
ment several problems related to code size as
well, and more importantly we have demon-
strated examples where incautious modifica-
tions to the code base produced code size
penalties. At that time we had the idea of cre-
ating an automatic benchmark for code size.

To maintain a continuous quality of GCC gen-
erated code, several benchmarks have been
used for a long time that measure the per-
formance of the generated code on a daily
basis [4]. However this new benchmark for

8 • GCC Developers’ Summit

code size (called CSiBE for GCCCode Size
BEnchmark) was launched only in 2003 [2].
This benchmark has been developed by and is
maintained at the Department of Software En-
gineering at the University of Szeged in Hun-
gary [3]. Since its original introduction CSiBE
has been used by GCC developers in their daily
work to help keep the size of the generated
code as small as possible. We have been mak-
ing continuous observations on the latest re-
sults and informing GCC developers of any
problems when necessary.

The new version of CSiBE, launched in May
2004, has been extended with new features
such as code performance measurements and
a test bed—four times larger—with even more
versatile programs. The benchmark consists of
a test bed of several typical C applications, a
database which stores daily results and an easy-
to-use web interface with sophisticated query
mechanisms. GCC source code is automati-
cally checked out daily from the central source
code repository, the compiler is built and mea-
surements are performed on the test bed. The
results are stored in the database (the data goes
back to May 2003), which is accessible via the
CSiBE website using several kinds of queries.
Code size, compilation time, and performance
data are available via raw data tables or using
appropriate diagrams generated on demand.

Thanks to the existence of this benchmark, the
compiler has been improved a number of times
to generate smaller code, either by reverting
some fixes with side effects or by using it to
fine tune some algorithms. In the period be-
tween May 2003 and 2004 an overall improve-
ment of 3.3% in code size of actual GCC main-
line snapshots was measured (ARM target with
-Os) which, we believe, CSiBE also has con-
tributed to.

In this paper we summarize our experiences
in designing and running CSiBE. Section 2

overviews the system architecture while in
Section 3 we give some examples of our ob-
servations and other people’s benefits using
CSiBE. Finally, we give some ideas for future
development in Section 4.

2 The CSiBE system

In this section we overview the measurement
methodology. We provide some details about
the test bed, the measuring method, and the
hardware/software infrastructure. Although
the CSiBE benchmark is primarily for measur-
ing code size, it provides two additional mea-
surements: compilation speed, and code speed
(for a limited part of the test bed). GCC source
code is checked out daily from the CVS, the
compilers are built for the supported targets
(arm/thumb, x86, m68k, mips, and ppc) and
measurements are performed on the CSiBE test
bed. The results are stored in a database, which
is accessible via the CSiBE website using sev-
eral kinds of queries. The test bed and the basic
measurement scripts are available for down-
load as well.

2.1 System architecture

In Figure 1 the overall architecture of the
CSiBE system is shown.

CSiBE is composed of two subsystems. The
Front end serversare used to download daily
GCC snapshots and use them for producing the
raw measurement data. TheBack end server
acts as a data server by filling a relational
database with the measurement data, and it is
also responsible for presenting the data to the
user through its web interface. The back end
server together with the web client represents a
typical three-tier client/server system. It serves
as a data server (Postgres), implements various
query logics and supplies the HTML presenta-
tion. All the servers run Linux.

GCC Developers’ Summit 2004 • 9

Front end servers Back end server Web browserGCC source
repository

ARM execution
device

Compaq iPAQ
with Linux

/cvsroot/gcc
CVS checkout, GCC
build, measurement

Relational database,
web server

WWW client

File: D:\Other_Work\MyPublications - Conferences\GCC2004\beszedes\src\csibe-logical.mdl 16:31:23 2004. május 6. Deployment Diagram Page 1

Figure 1: The CSiBE architecture

2.2 Front end servers

The core of CSiBE is theoffline CSiBE bench-
mark, which consists of the test bed and re-
quired measurement scripts. This package is
downloadable from the website, so it can also
be used independently of the online system.
The front end servers utilize this offline pack-
age as well.

The online system is controlled by a so-called
master phaseon the front end servers, which
is responsible for the timely CVS checkout,
compiler build, measurements using the offline
CSiBE, and uploading the data to the relational
database.

Hardware and software

The actual setup of the front end servers is flex-
ible. At present, it is composed of three Linux
machines, one used for CVS checkout that is
shared with other university projects, and two
dedicated PCs for the other front end phases.
These two PCs are really siblings, having the

same hardware and software parameters that
are summarized below:

• Asus A7N8x Deluxe

• AMD AthlonXP 2500+
333FSB @ 1.8GHz

• 2x 512MB DDR (200MHz)

• 2x Seagate 120GB 7200rpm HDD

• Linux kernel version 2.4.26,
Debian Linux (woody) 3.0

These two servers are capable of sharing the
measurement tasks (like separating them by
branches) and, in this way, we also have a
backup possibility in case of some unexpected
server failure. These two servers are also used
for measuring the performance of code gener-
ated for the x86 architecture. We are working
on adding performance measurements for the
ARM architecture as well, which will be made
on a Compaq iPAQ device with the following
main parameters:

10 • GCC Developers’ Summit

• iPAQ H 3630 with StrongARM-1110
rev 8 (v4l) core

• 16M FLASH, 32M RAM

• Familiar Linux,
kernel version 2.4.19-rmk6-pxa1-hh30

Compilers and binaries measured

We measure daily snapshots of the GCCmain-
line development branch (previously thetree-
ssatoo) along with several release versions that
serve as baselines for the diagrams. These are
the following GCC versions:2.95.2.1, 3.2.3,
3.3.1, and3.4.

The compilers are configured as cross-
compilers for the supported targets. We em-
ploy standalone targets for use with thenewlib
runtime library for code size and compilation
time measurements, and Linux targets with
glibc for execution time. At present,binu-
tils v2.14, newlib v1.12.0, andglibc v2.3.2are
used.

When we measure code size and compilation
time, we do not include linking time and code
size of the executable. Furthermore, only those
programs that meet certain requirements are
used for performance measurements. These
are the following:

• The project produces at least one exe-
cutable program

• The source files are not preprocessed

• The execution environment must not con-
tain any special elements

• The execution time is measurable (i. e. it
is not too short and not too long)

CVS checkout

Snapshots of GCC source code are retrieved
from the CVS daily at 12:00:00 (UTC). The
complete code base is retrieved once a week on
Mondays and on the other days only the differ-
ences are downloaded.

Configuration

The Binutils package is configured with no
extra flags, whilenewlib is configured with the
only extra flag that enables the optimization
for space:-enable-target-optspace .
We do not build glibc, rather we use the
stock binaries. Finally, GCC is configured
with the following. The common flags are
-enable-languages=c
-disable-nls -disable-libgcj
-disable-multilib
-disable-checking -with-gnu-as
-with-gnu-ld . Furthermore for compilers
using thenewlib library, the additional flags
are -with-newlib -disable-shared
-disable-threads and forglibc we also
use-enable-shared .

Compilation

A simplemake was used to buildbinutils and
the libraries once only, and the same is used for
each GCC snapshot as well.

Measurement

The code size is measured using the program
size . The final result is the sum of the first
two columns of the output of the command.
This means that only program code and con-
stant and initialized data sizes are incorporated
into the final values.

GCC Developers’ Summit 2004 • 11

Compilation time and code execution speed are
measured three times per object and per test
case, respectively. These times are measured
with the program/bin/time in user mode.
For both compilation and execution times all
queries through the web will provide a time
value that is the median of the three values.
While compilation and execution times are be-
ing measured only vital processes are running
on the machine.

The results of the measurements are stored in
simple files in CSV format (comma separated
values) for further processing. These files are
also the final outputs of the offline CSiBE.

2.3 The test bed

The test bed consists of 18 projects and its
source size is roughly 50 MB. When compiled,
it is about 3.5 MB binary code in total. The test
bed consists of programs of various types such
as media (gsm, mpeg), compiler, compressor,
editor programs, preprocessed units. Some of
the projects are suitable for measuring perfor-
mance and constitute about 40% of the test bed.

In the latest version of the test bed we added
some Linux kernel sources as well. With this
aim in mind, we started with the S390 platform
and turned it into a so-called “testplatform.”
On this platform we replaced all assembly code
with stubs and left only C code for the impor-
tant Linux modules (kernel, devices, file sys-
tems, etc.)

The test bed is composed of two parts, one for
the test programs and measurement scripts, and
the other consisting of the test inputs for the ex-
ecutable projects. This separation was carried
out so the user would be able to add many dif-
ferent test cases. The test cases were selected
to represent one typical execution of the pro-
gram as our goal was not to attain a good cov-
erage of the program. In some cases the same

input is given to a program several times, while
in other cases the same program is executed
with different inputs. The total size of the test
inputs is currently about 60 MB.

In the table in Figure 2 some statistics about
the test projects are given. We listed the num-
ber of source files, size of the source code in
bytes, number of objects, total size of objects
as measured using CSiBE for GCC 3.4, i686
and -O2 , and the number of executable pro-
grams for each project.

2.4 Back end server

User queries through the CSiBE website are
processed using PHP scripts, from which the
necessary SQL queries are composed. The data
retrieved from the database is then presented
on the HTML output in data tables, bar charts,
and timeline diagrams.

The central repository in which the measured
data are stored is a relational database (imple-
mented using Postgres). The database stores
the measurement results along with the time
stamp of the measurement and various entities
such as the compiler and library version, com-
piler flags and measurement type. The version
of the test bed is also associated with each re-
sult, which allows it to store the results of dif-
ferent test beds consistently. If a query is made
that spans different test bed versions this can
be easily displayed on the diagrams.

The last phase in the online CSiBE bench-
mark is the presentation on the website. The
CSiBE pages provide quick and easy access to
the most important measurements like the lat-
est results in a timeline diagram or more elabo-
rate query possibilities. Extensive help is pro-
vided for each function, making CSiBE simple
to use. In Figure 3 the opening page can be
seen.

There are several ways of retrieving the re-

12 • GCC Developers’ Summit

Project # Src. Src. bytes # Obj. Bin. bytes # Exec.

bzip2-1.0.2 11 242,034 9 80,112 2
cg_compiler_opensrc 42 813,343 22 148,838 —
compiler 9 202,938 6 27,928 1
flex-2.5.31 33 658,799 22 240,206 1
jikespg-1.3 29 978,833 17 267,712 1
jpeg-6b 81 1,119,991 66 156,078 3
libmspack 40 319,611 25 76,506 —
libpng-1.2.5 21 859,762 18 128,941 2
linux-2.4.23-pre3-testpl . . . 2,430 34,238,976 271 993,815 —
lwip-0.5.3.preproc 30 928,538 30 86,486 —
mpeg2dec-0.3.1 43 461,047 29 62,873 1
mpgcut-1.1 1 28,889 1 29,845 —
OpenTCP-1.0.4 40 545,358 22 38,221 —
replaypc-0.4.0.preproc 39 1,692,413 39 64,221 —
teem-1.6.0-src 370 2,786,644 293 1,210,365 2
ttt-0.10.1.preproc 6 311,311 6 19,049 —
unrarlib-0.4.0 4 93,894 3 16,339 —
zlib-1.1.4 27 305,136 14 42,422 1

Total 3,256 46,587,517 893 3,689,957 14

Figure 2: CSiBE test bed statistics

sults. One isSummarized queries, which pro-
vides instant access with a click of a button
to all kinds of results (code size, compilation
time, and code performance) for a selected tar-
get architecture. On theLatest resultspages
the last few days or weeks can be observed
in several ways: timeline, normalized timeline
(the various kinds of data are shown as nor-
malized to the last value), a comparison of dif-
ferent targets, and raw number data. TheAd-
vanced queriespages provide the possibility of
retrieving the data in any desired combination;
one can compare any branch and target with
any other combination and timeline diagrams
for arbitrary intervals. Baseline values of ma-
jor GCC releases are also available for most
queries, which can be optionally selected for
the diagrams.

All queries can be performed by a series of
selections from drop-down lists like the se-
lection of targets, branches, and optimization

switches. The results can be displayed in a di-
agram (Figure 4a), in a bar chart (Figure 4b),
or as raw data tables. The resulting latest time-
line diagrams are supplied with two automati-
cally generated links that can be copied for fur-
ther reference. TheStatic URLlink will always
give the same diagram since all query param-
eters are converted to absolute time stamp val-
ues, while theReference URLlink supplies the
actual query parameters at the time of usage,
which gives values relative to the actual time.

3 Experiences

CSiBE has been quickly accepted by the com-
munity. Patches with references to its usage
started to appear only after 2 months. At
present we have 47 hits per day on average
and a total of 193 downloads of the offline
benchmark. A good thing about its introduc-
tion is that more and more GCC developers

GCC Developers’ Summit 2004 • 13

Figure 3: CSiBE website

seem to be using CSiBE in their daily work to
check how their modifications affect the code
size. Some people are developing patches to
decrease code size, and the effect is measured
with CSiBE, while others verify whether other
modifications affect code size or not. Thanks to
CSiBE, in 4 cases a patch was reverted or im-
proved because of its negative effect on code
size. These statistics suggest that the develop-
ers are starting to focus not only on code ef-
ficiency, but its size as well. We have been
following the activity on thegcc-patches

mailing list and found that more and more
people are referring to CSiBE as a reference
benchmark for code size (54 e-mails).

Our group has also contributed to the overall
improvement of code optimization for size, be-
cause we are carrying out continuous obser-
vations of the results produced by CSiBE, of
which the important ones are documented on
the website. Where possible we also suggest
a possible cause of any anomalies seen in the
latest diagrams, and take steps to draw the at-
tention of the community to the problem. In

14 • GCC Developers’ Summit

(a) Timeline (b) All targets

Figure 4: Diagram examples

the following we offer some examples of our
observations and successful participations:

• On August 31 in 2003 a patch was ap-
plied to improve the condition for gener-
ating jump tables from switch statements
by including the case when optimizing for
size. This caused a code size reduction on
all targets. The threshold value was deter-
mined based on the CSiBE statistics.

• In September 2003 unit-at-a-time compi-
lation was enabled in mainline, which re-
sulted in major code size improvement for
most targets.

• A patch related to constant folding done
in October 2003 increased the code size
for all targets. Several days later another
patch was used to disable some features
when optimizing for size.

• A significant code size increase was mea-
sured on October 21, 2003 on ARM ar-
chitecture when optimizing for size due to
a patch that allows factorization of con-
stants into addressing instructions when
optimizing for space. One week later the
patch was reverted.

• In January 2004 a patch saved code size

on ARM with -Os but introduced a new
bootstrap failure.

• A patch on April 3, 2004 saved about 1%
of code size for most targets. The patch
inlines very small functions that usually
decrease the code size when optimizing
for size.

4 Conclusion and future plans

In this paper we overviewed GCC’s code size
benchmark, CSiBE. We presented the over-
all architecture, the test bed and the measur-
ing method. Although it primarily serves as a
benchmark for measuring code size, other pa-
rameters such as compilation time and code ex-
ecution performance are also part of the regu-
lar measurements. We offered some examples
of where GCC benefited from using the bench-
mark, and pointed out that, in recent years,
a general interest towards code size has in-
creased among GCC developers. As a result
of this, GCC mainline improved about 3.3%
in terms of generated code size between May
2003 and May 2004 (measured with CSiBE
test bed version 1.1.1 for the ARM target and
-Os).

We plan to continue our work with CSiBE and

GCC Developers’ Summit 2004 • 15

hence we welcome users’ comments and sug-
gestions. Some of the targets were added af-
ter user requests, and the bigger test bed in the
latest CSiBE version is also composed of pro-
grams based on the demands of those who con-
tacted our team. In the future we will try to
follow the real needs of the GCC community,
those of the developers and users.

One of the straightforward enhancements of
CSiBE might be to introduce new targets and
development branches, should there be an in-
terest in it by the community. As long as
the available hardware capacity permits (the
measurement of one day’s data currently takes
about 5 hours), we may extend the test bed with
new programs, should it prove necessary.

Another idea of ours for enhancing the on-
line benchmark is to allow users to upload, via
the web interface, measurement data they pro-
duced offline into the central database. This
would be interesting in cases where a developer
makes use of the offline benchmark to measure
a custom target or examine code performance
with different inputs.

5 Availability

The online CSiBE benchmark can be accessed
at

http://www.inf.u-szeged.hu/CSiBE/

From here the offline version can also be down-
loaded.

Acknowledgements

The CSiBE team would like to thank all those
GCC developers who helped us develop the
benchmark with their useful comments and
constructive criticisms.

References

[1] Árpád Beszédes, Tamás Gergely, Tibor
Gyimóthy, Gábor Lóki, and László
Vidács. Optimizing for space:
Measurements and possibilities for
improvement. InProceedings of the 2003
GCC Developers’ Summit, pages 7–20,
May 2003.

[2] Department of Software Engineering,
University of Szeged. GCC Code-Size
Benchmark Environment (CSiBE).
http:
//www.inf.u-szeged.hu/CSiBE .

[3] Department of Software Engineering,
University of Szeged. Homepage.
http://www.inf.u-szeged.hu/
tanszekek/
szoftverfejlesztes/starten.
xml .

[4] The GNU Compiler Collection. GCC
benchmarks homepage.http:
//gcc.gnu.org/benchmarks .

16 • GCC Developers’ Summit

