
ANL/MCS-TM-249

Scalable Log Files for Parallel Program Trace Data
DRAFT

by

Anthony Chan, William Gropp, and Ewing Lusk
Mathematics and Computer Science Division

A

� R

� G

� O

� N

� N

� E

�     
N

�
A

� T
	

I


O

�
N� A


L�     L� A� B� O� R� A�

T� O�

R�

Y�

U�

N�

I� V� E� R� S� I T! Y"     O# F
$

    C
% H

& I
' C

( A

) G

* O

+•                                         
     

    
    

   
   

•

MATHEMATICS AND
COMPUTER SCIENCE

DIVISION



1 Introduction

A powerful technique for understanding the behavior and performance of parallel programs is the visualiza-
tion of trace files (also called log files) collected during the execution of the program. A trace file contains
several basic elements. Typically, these are generated during the execution of a program by very short code
sequences (so as to minimize the perturbation of the execution caused by the tracing [?]), and are either writ-
ten to disk (buffered, of course) or to memory as they are generated. Tracefiles typically contain sequences
of events; an event has a timestamp and some data. A collection of events for a single process, thread, or
processor is sometimes called atimeline.

Suchpost mortemanalysis based on trace files has been an important tool [?, 4, 5, ?, ?, ?, 3, ?, ?, 6, 7,
2, 1] for performance analysis. Many of these tools display a trace file as a GANTT chart, with thex-axis
representing time and they-axis process or thread number. However, as parallel programs use increasing
numbers of processes or threads and run for longer times, the amount of data that is collected into a trace
file can become extremely large, exceeding hundreds of megabytes.

One reaction to the problem of displaying this amount of data has been to summarize the data; for
example, displaying total event counts and distributions of times within each state. Unfortunately, it is
sometimes necessary to examine the detailed behavior of a program to understand it. Indeed, over the years,
we have continued to find most useful the ability to examine small time intervals in considerable detail.
The GANNT chart approach, in which the “state” of a process is represented by a colored bar extending
over a time interval and can be compared visually with the states of other processes at the same time, has
proven effective. Many tools (see [7], for example) augment this view with further detail such as arrows
to show messages and popup windows to display detail data on process states or messages. However, the
basic problem ofscalability arises even when the simplest form of GANNT chart is being displayed, and
the issues discussed in this paper can be thought of in this context.

Therefore we state the general problem we address as follows. We assume that a parallel program
produces as it runs a large volume of data on program behavior, including states of processes varying over
time. We make no assumptions about the lengths (in time) of those states. We wish to design a system that
will support the graphical display of this data in a scalable way. Scalable display means that the CPU time
and memory requirements for display of some time interval about a particular time depend on the number
of graphical objects to be displayed and not on the total amount of program data nor on the particular time
chosen.

Parallel
Program

Intermediate
system

Display
Program

Figure 1:High-level view

In this paper we describe an architecture for the “intermediate system” that links the parallel program
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producing the data with the graphical display program (See Figure1). By defining the appropriate API’s, we
will keep the architecture independent of either the mechanism for collecting data or the display program.
We do anticipate being able to link specific systems, however. On the trace data production side, we expect
to be able to utilize the MPI profiling interface or the UTE files produced by IBM’s AIX-based system. On
the display side, we expect to support a system like Jumpshot [7]. A rough approximation of its appearance
(minus the colors) is shown in Figure2.

Visible Window

Figure 2:Example of a log file display. Only the data within the dashed box is displayed; the visualization
program must render all data as if the entire data is displayed, clipped to the dashed box. This includes the
rectangles that enter and exit the dashed box, and the lines connecting the rectangles. Note that in practice,
the time interval shown by the visible window may be only 1% or less of the entire trace file.

Jumpshot works by providing an end user first with aPreview interface. This is a mechanism for
displaying data from the entire run in a way that trades away details of display for the ability to examine the
entire run and select a time (instant) of interest. Once the user selects a time, jumpshot chooses an interval
of time containing that time and provides a detailed view of that interval. Scalability is achieved by allowing
jumpshot to choose the width of the time interval and thus the number of graphical objects to be displayed.
We describe Jumpshot here only to make concrete the requirements of the intermediate system. In particular,
the system needs a way to manage summary data that will be used in the Preview. More importantly, it needs
to be able to rapidly provide (without reading large amounts of the file) to the Display Program the graphical
objects in a given time interval. When the objects extend beyond the interval being displayed, that portion
of them that intersects the interval must be displayed. The main idea of this paper (the “bounding box”
approach) is our solution to this problem.

One possible architecture for the intermediate system would be afile with a specified format for
supporting both the necessary indexing scheme for directly accessing a contiguous section of the file based
on time and some mechanism for accessing objects that extend over long periods of time. We originally took
this approach, calling the file format SLOG (for scalable log file), now called SLOG-1. The specification of
API’s for reading and writing this file is a better approach, since it frees the file format itself for independent
optimization (such as compression). This approach was used in the later stages of SLOG-1 (see Figure3.
Different data sources were accomodated by having completely independent programs that wrote SLOG-1
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files.
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Figure 3:SLOG-1

In SLOG-2 we define also an input API for the program (the “SLOG Program”) that writes the SLOG
file (if it exists), and we allow more flexibility between the SLOG Program and the Display Program. In
particular we will describe how, instead of single complete SLOG file, the SLOG program could write
instead an SLOG Annotation File, which can be used in conjunction with the original data to provide the
necessary scalability functionality to the Display Program. The use of annotations allows this approach
to be retrofitted onto any existing trace-file collection system, and allows the different annotations to be
generated (emphasizing different features) for a single collection of trace files. For example, one set of
annotations might organize the display around processes and another, quite different one, may use threads
or even user-tasks. In addition, by using annotations, it is easy to provide a way for the user to add and record
annotations about a particular run. The key ideas of this paper apply to both complete SLOG files and SLOG
Annotation files. We focus on the API’s used to access data, rather than file formats. The complete model is
given in Section2. Section3 describes the scalable implementation of the annotations, including a one-pass
algorithm for their creation. A one-pass algorithm is essential since we assume that the size of the trace files
is extremely large.

Section4 describes some enhancements that further improve the SLOG file, along with an analysis of
the design choices. Finally, Section5 shows the results of some experiments with our implementation of
SLOG.

2 Terms

A system whose end result is the graphical display of performance data may consist of a number of
different files and programs. In addition, well-defined interfaces between various components allow different
configuration of files and programs to produce the same end result. In Figure4 we show our view of these
components. It is important to realize that not all these components need be present in a given instantiation
of this very general architecture.

The central component is theSLOG Program, whose function it is to contribute scalability to the
system. It is written in terms of two API’s. Its input comes from theDrawable Object API. The
fundamental function in this API is theget next drawable object function. It can be implemented
in a variety of ways:

• There may be a pre-existing file whose records consists of drawable objects. We call this the
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Figure 4:Components of an SLOG-based system

Drawable Object File, or DOF. In this case, theget next drawable object function just
returns the next record.

• There may be no Drawable Object File, but rather a more primitive file of timestamped events, which
we will call an Event File. In this case theget next drawable object function may read a
record from the event file and if it completes a drawable object, return that drawable object, otherwise
stack the event and read the next event, continuing until it has assembled a complete drawable object.

• The get next drawable object function may alternatively be reading from a stream that is
being written by another program. That program may be writing either drawable objects or events or
both onto its end of the stream. In the case of events that do not comprise drawable objects, again a
stacking and matching algorithm comes into play.

Drawable objects are objects destined to be represented as (virtual) single graphical objects in the final
display. Examples would be program states to be drawn as rectangles, message transmissions to be drawn as
arrows, or collective operations to be drawn as polygons. The important property that they all share is that
they have some bounded extent in time. The word “virtual” is used because the display may be only able
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to show part of one of these objects at a time. One of the central problems of scalable display is to be able
to cope with objects that have a comparatively long extent in time, longer than the time interval that can be
viewed at once in the display.

In all three of the above cases, an important feature is that the matching of event records to form drawable
objects (e.g., the matching of astart send event with anend send event to form a drawableMPI Send
state), which requires a stack of events, isnot done in theSLOG Program but rather in one of the several
possible implementations of the SLOG Input API.

The output of theSLOG Program can be either acomplete SLOG file, containing all the data needed
by the display program, or it can be anSLOG annotation file, which is designed to be used in conjunction
with a drawable object file to produce the display.

Finally theDisplay Program, using an API for reading the data necessary to graphically represent a
particular time interval, reads and renders subsets of the drawable objects around a time selected by the user.
We term the whole systemscalableif the time and memory requirements necessary to display some time
interval (whose duration is chosen by the display program, not the user) around a given time is approximately
independent of the total number of events or graphical objects that are produced by the original sources. In
a scalable system, the time and memory requirements for display of a time interval is proportional to the
number of visible drawable objects whose duration overlaps that time interval, and is independent of the
total number of drawable objects or the location of the time interval within the total time interval of the run.
Scalability is achieved by letting the user pick the time (instant in time) but not the duration of the time
interval around it.

In order to display the drawable objects, the Display Program needs to consider several types of
information:

• The information specific to each object, consisting of the start and end time of the object (used by the
SLOG program to provide scalable access to the data), along with the other graphical coordinates
needed to draw the object. In addition, a drawable object may have a byte string that contains
information needed to provide other (usually non-graphical) information about the object, such as
the location in the source code where the object was added to the trace file or the parameters of a
routine call. Since many different drawables will be rendered in the same way, a drawable specifies
whichcategoryit belongs to.

• Information common to all objects of the same category, such as the shape, color, label, the format of
the object-specific data, and a specification of how to display the object-specific data. (E.g., aprintf
string). This information will be used for the Legend and the Popups in the Display Program. To allow
the user to invoke a variety of actions when a particular drawable object is selected, each category can
specify a collection ofmethods.

• Methods simply describe the action to take with the byte string attached to a drawable. The simplest
method displays the byte string as text. More sophisticated methods may display the parameters to
a routine, complete with labels, popup a source code browser highlighting the location in the source
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code that added the drawable to the trace file, or even produce an alternative format for the graphical
display (e.g., the bebit problem). Default methods are supplied for the simple cases.

• The graphical coordinates themselves come in two types. The first is the time value, of which the start
and end time are two examples. Since the typical display of a trace file is two-dimensional, with the
time axis going left to right across the display, we will call the other coordinate type they coordinate.
Further, the y coordinate is discrete; a typical display may have only 16 to 64 distinct y values. In
addition, the y value may be a small positive integer, such as the number of the process, starting from
zero, or it may be a more complex value, such as a tuple that includes the node id, cpu id, process
id, and thread id (still specified as an integer). In order to handle this more complex case, we allow a
level of indirection in the y coordinate values. Each drawable object specifies y coordinates as integer
values and in addition specifies how to map these values to a small positive integer. A trace file may
define several such maps, such as one for MPI process rank, one for node number, and one for each
thread. This is accomplished with acoordinate map. If no coordinate map is provided, the obvious
identity map is used (this is appropriate for trace files that use MPI process rank as the y coordinate).

For scalability, it is important that the Display Program have apreviewfunction that aids the user in
picking a time (not a time interval) to look at. The data (for example, statistics on the distribution of objects
in the file) necessary to provide the preview are in the Complete SLOG File or the SLOG Annotation File.

2.1 Examples

We have experience with two approximate instantiations of the architecture described here, although neither
one is a perfect match. Each of them uses Jumpshot [7] as its display program. We refer to the version of
April, 2000 as SLOG-1.

2.1.1 SLOG-1 with UTE Files

We have published an interface for writing complete SLOG-1 files that are read by Jumpshot. IBM has
written a program that uses this interface, although it is not currently architected like the SLOG Program
described above. It contains the stacking algorithm to read UTE files, whose records are not the graphical
objects to be displayed by Jumpshot. The event files that are processed into UTE files are produced by the
AIX trace mechanism.

2.1.2 SLOG-1 with CLOG

We have also written a profiling library that uses the MPI profiling interface to implement dynamic logging
of events that occur in MPI programs. At the time ofMPI Finalize , logs located on various processes are
merged into a stream, and records are written out to an SLOG File using the SLOG-1 API. Thus code inside
the profiling version ofMPI Finalize plays the role of the SLOG Program, although it does not yet use
aget next drawable object interface, but rather does the stacking and matching itself in open code.
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2.2 Term Definitions

At some risk of redundancy, we list here the components described narratively above. Terms in bold face
refer to other items in this glossary.

Display Program The end result on the screen. We expect it to support at least:

• A Preview representing the whole run, which the user can use to help choose a time value of
interest.

• A Timeline View or GANNT Chart display of the graphical objects or portions of them that
fall within a time interval containing the chosen time. The overarching goal of the project is to
make this display scalable in the sense defined above.

• A Legendthat labels graphical objects in the Display.

• An optional set ofPopups, containing text data about the object.

• A display ofDrawable Objects, each of which is a single graphical object. It has an extent in
time given by its start time and end time It may also have attached to it a byte sting representing
data associated with this instance of the object. It has an object category that connects it
to the Category Description Data and specifies what type of graphical object it is to be
rendered as, along with sufficient data to render the object. It has at least one y-coordinate
that is used to place the drawable object on the correct timeline(s) (the name y-coordinate
is used because it matches the usual display (Figure1). The SLOG Input API will enable
get next drawable object and related routines to access all information in the Drawable
Object and interpret it. Its is important to realize that the Drawable Object is a virtual object
defined by theSLOG Input API and there may or may not be aDrawable Object File.

The most common drawable object is astate, defined as a duration (or interval) in time. States are
usually drawn as rectangles. A more complex object might be a sequence of separate rectangles
on a single timeline representing periods where a thread is running during a state.

Thedisplay program uses theSLOG Input API to read from the SLOG file.

SLOG Program A program whose function is to add scalability to the system. It uses a well-defined API
to obtain a set of drawable objects and another to write out either acomplete SLOG Fileor anSLOG
Annotation File.

Complete SLOG File A single file containing all information necessary as input for theDisplay
Program.

SLOG Annotation File A file containing just the “scalability” part of theDrawable Object data.
In this configuration, the data is left in either aDrawable Object File or theEvent File. The
Display Program accesses the data through theSLOG Input API .

The SLOG Program uses two APIs to read and write data:
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DO Input API (Drawable Object Input API) The programming interface for deliveringDrawable
Objects to theSLOG Program.

SLOG Output API The programming interface for storing drawable objects and other data into an
SLOG File or into anSLOG Annotation File.

SLOG Program input consists of drawable objects and related information. Depending on the implemen-
tation of theSLOG Input API , the sources may be

Drawable Object File A file whose records are drawable objects. Its existence is optional.

Event File A file (optional) of lower level data (not assembled intoDrawable Objects) that may
be used directly by theSLOG Input API or may be processed by a separate program into a
Drawable Object File.

Dynamic Drawable Object Source A program that emits a stream ofDrawable Objects that is
consumed by theSLOG Program. It may obviate the need for any input files to exist for
theSLOG Program.

In the typical case, the drawable objects belong to a relatively small number of categories, such as
write , MPI Send, or User-routine . These are described by

Category Description Data This is another optional file. Precisely how this data is delivered to the
SLOG Program is defined by theSLOG Input API . The data is that common to all drawable
objects of the same category, such as shape, color, label, data format of instance-specific data,
and a specifier for how that data is to be displayed.

2.3 SLOG-2 Plans

An important part of SLOG-2 is a precise description of the all the various APIs; see Appendix A, B, and
C. These APIs will encourage multiple instantiations of this architecture. Besides defining the architecture
more clearly, there will be two completely new features:

• The structure of an SLOG File will be completely different from that of SLOG-1. In order to deal
with graphical objects that span “long” periods of time, we will use what we call a “bounding box”
approach, described later in this paper. Pseudo records, the mechanism used for this purpose in
SLOG-1, will be eliminated. Associations will be replaced by a more general notion of drawable
object.

• We will explore the idea of having the SLOG Program emit an SLOG Annotation File to be used
in conjunction with an original Event File or Drawable Object File, thus saving both time and disk
space. The fundamental idea of bounding boxes is independent of whether the SLOG Program writes
a complete SLOG file or an SLOG Annotation File. We hope to be able thus to add scalability to
existing Drawable Object Files such as those produced by other tools such as Vampir or PICL, as well
as unprocessed UTE files.
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There will be several advantages to converting to SLOG-2:

• The architecture of the system will be cleaner, with the SLOG program’s role simplified to adding
scalability, while the assembly of drawable objects will be moved to the other side of the SLOG Input
API, which in turn can have multiple implementations.

• The elimination of pseudo records saves space, complexity, and time.

• Only one pass through the Drawable Objects will be necessary, saving time when the SLOG File is
created. It will be easy to do this if the SLOG Input API has a routine to get the total run time, but we
describe later how it will be possible even if the SLOG file is being created during the run.

• SLOG Annotation Files will allow one to use SLOG and Jumpshot with existing file formats, such as
UTE, without copying their data into a Complete SLOG File.

Note: In SLOG-2, responsibility for determining which graphical objects will be displayed is moved out
of the SLOG Program and into the implementation of the SLOG Input API. How to render them is moved
into the Display Program. This is different from the SLOG-1 viewpoint that assembly of drawable objects
is done jointly by the SLOG Program and the Display Program. This clarifies and simplifies the SLOG
Program and provides more flexibility in the interfaces, but may require changes to the ways we currently
do things in the IBM collaboration.

An illustrative example is given by “bebit” processing. Where are little intervals combined into big
intervals? Do the various types of fragments (different bebit values) belong to different categories or the
same category? They should because they have the same color and label; they shouldn’t because they
contain different data. In the SLOG-2 approach, there are two alternatives:

• If we want both big intervals and fragments as drawable objects, then they are of different categories,
and both go into the SLOG File. Jumpshot displays either the big ones or all the types of little ones or
both.

• We define a new single drawable object, consisting of lots of rectangles. (So the geometric data is
variable and large.) Jumpshot knows two different ways to render this object.

We need four API’s altogether:

• One to read a tracefile. Implementations will be specialized for reading various tracefiles (UTE,
CLOG, ALOG, etc.)

• One to write an SLOG2 file. This API contains the routines necessary to implement the SLOG
algorithm.

• One to read an SLOG2 file, implemented in C. This is useful both for testing and for the creation of
analysis tools for SLOG files.

9



• Another one to read an SLOG2 file, implemented in Java, for Jumpshot.

The DO (or TRACE) API, described in AppendixB, is designed tonot impose a particular structure
for the drawable objects on the user. Instead, each drawable object is described by some text (stored
at text base + text pos ), coordinates (stored atcoord base + coord pos ), a category, and
a time range. The API makes it easy to read these into either a single struct representing a drawable or into
separate arrays for coordinate and character data. The routineTRACEPeek next drawable makes it
possible to preallocate space for the next drawable.

The SLOG Output API is described in AppendixC and the SLOG Input API is described in AppendixD.
Records are viewed as graphical objects. The object types are rectangle, line, arrow, and polygon. In

addition, there is a special object type called “bebit rectangle” that describes a collection of rectangles that
can be displayed either as a single rectangle or as individual rectangles. Each record may have additional
data that can be displayed by calling the routine to create a text description of the record.

Typically, a visualization program such as Jumpshot [7] will access a range of records, so any imple-
mentation of these methods should assume that most read operations access successive records.

SLOG-1 had the concept of related records. While this helps describe some relationships, managing
record relationships adds significant complexity to the system. In SLOG-2, there are no related records;
instead, there are complex drawable objects. In other words, what in SLOG-1 was several related drawable
objects is in SLOG-2 a single but more complex drawable object. This provides a cleaner, more modular
interface.

2.4 Coordinates

Only the “time” coordinates are used in organizing an SLOG-2 file. The “y” coordinates (such as a process
number or MPI rank) are needed only by the display program when deciding where to display a particular
timeline and how to label that timeline. However, the display program may wish to provide several different
views of the data, arranging the data along timelines depending on some user choice. For example, the
y coordinate (choice of time-line position) may be based on the process id, node id, thread id, MPI rank,
or some combination (in Jumpshot for SLOG 1, these included the process, processor, and thread views).
To support these multiple views, and to provide a smooth way to extend this approach, SLOG 2 defines
coordinate maps . The y coordinate values are given by a single (32-bit) integer value. The coordinate
map explains how to interpret this value. There are three cases:

No coordinate map The y coordinates are small integers and directly label particular timelines. For
example, they may give the rank inMPI COMMWORLDof a process.

Bit range map The y coordinate is the concatenation of small bit fields (up to 32 bits) that can be
interpreted by the display program. Routines are provided to communication the size of each
field and a text label describing the field. This form is adequate for providing a coordinate from
which separate nodes, processes, threads, and processors can be identified. See the description of
TRACEGet coord map bitranges for more details.
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General map The y coordinate is an index into a map that contains an arbitrary number of integer fields.
This allows the display program to discover, for example, the full process, thread, and node id, given
the y coordinate. In other words, the y coordinates returned as part of a drawable in this case are
indexes into a larger table of values. This type of coordinate map is not supported in the initial
release.

2.5 Popup Methods

The popup methods describe how the drawing program should interpret the byte string of data that each
drawable object may have. In the simplest case, the byte string contains printable characters and the method
pops up a simple text box containing this data. A more complex method may know how to format the data
with labels or access a source code browser. For the initial phase, the default methods will be used. These
are specified by returning zero for the number of defined methods inTRACEPeek next category .

3 SLOG Annotations

The goal in SLOG is to enable the display of graphical objects described by one or more trace files. One
way to look at this is that we wish to display a small region of a much larger picture, as shown in Figure2.

A common way to organize data of this kind for graphical display is to define bounding boxes. This
approach provides a simple and efficient way to access only the data necessary to draw the region that
overlaps the bounding boxes. This approach is shown schematically in Figure5.

Perhaps the best way to describe the SLOG annotation for the trace data is to describe the algorithm for
computing the tree shown in Figure5. For simplicity, we will assume that the trace records cover a time
interval [0, T ] and that the data in the original trace file consists of rectangles sorted by end time. That is,
each rectangle is described by a thread number (y coordinate in the visualization) and a time interval[ts, te]
(x coordinate in the visualization). The rectangles are sorted by end time,te.

The SLOG annotations simply form a binary tree, defined recursively as follows. The root node
represents the time interval[0, T ]. For any node, representing the time interval[t1, t2], there are two children
representing the time intervals[t1, 1

2(t1 + t2)] and[12(t1 + t2), t2]. A node is a leaf of the tree if the size of
the time interval is less than or equal to∆Tmin. (We describe a number of generalizations to this definition
in Section4.) Records (rectangles) are placed into the smallest (in time interval) containing node.

To display any graphical objects around any chosen time, only a subset of the nodes of the tree must be
read. Specifically, to display a timet, only the nodes of the tree whose time intervals intersect with this time
must be read and displayed (ift is near either end of an interval, we may choose to read the adjacent interval
in order to provide a more informative display).

Under the assumption that records are uniformly distributed throughout the trace file, the value of∆Tmin

can be computed as follows. Assume that, for efficient display, the data read should be limited tonmax.
Further, assume that the size of the file isnf , the display will show only a single time interval at any time.
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Level 3

Level 2

Level 1

Level 0

Figure 5:Bounding boxes for the log file in Figure2. The figure shows the intervals defined as bounding
boxes as horizontal brackets, along with the hierarchy of bounding boxes. Colors indicate the assignement
of graphical objects to bounding box levels.

Then

∆Tmin = 1
2T2

⌊
ln

nf
nmax
ln 2

⌋

.

(The extra factor of two allows the display program to read two leaf nodes, since any time interval of duration
∆Tmin will intersect with at most 2 leaf nodes.)

In the annotation model, the leaves of the tree are desribed by a start and end position within a trace file;
there may be at most one file for each timeline (this requirement can be relaxed by defining a virtual file;
after all, the only access to the trace “file” is through the API). In this case, the SLOG file contains only the
non-leaf nodes of the tree. As we show in Section4.5, the resulting SLOG file can be quite small.
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3.1 Single Pass Creation of SLOG File

Assume that we have a trace file containing records, sorted by end-time. Recall that a record represents a
single drawable object of with a known start and end time; the simplest such object is a state, often drawn as
a rectangle. We wish to create an SLOG annotation for this file in a single pass. We will further assume that
most records will fit in the leaves (i.e., their duration is less than∆Tmin). Our algorithm creates a postorder
representation of the tree; that is, when moving sequentially through the SLOG annotation, the tree nodes
are visited in postorder (children before parents).

Let the root of the tree have level 0 and define the level of the children of a node a one greater than the
level of that node. The tree has levels0 throughL. For each level̀, let there be a list of recordsR`, initially
empty. In addition, for each level`, there is a time interval∆T` that specifies the time interval for the current
tree node on level̀. Finally, we keep track of the location of the data in each node of the tree within the file
in a directory; this directory has2L − 1 entries, and is relatively small. The directory should be in preorder
to simplify searches. In order to simplify the description, each node on level` is covers a time interval of
length2−`T . Section4, point5 discusses an alternative that limits the amount of memory used by each leaf
node.

The algorithm to write an SLOG file is shown in Figure6.
We could also write the directory at the beginning of the file, since we know how long it is, but for

reasons discussed below, we put it at the end. Normally, the listsR` can be maintained in memory, with the
execption ofRL. Note, however, that elements added toRL can instead be written directly to the output file.
Since the number of elements added to the other lists is likely to be small, those lists can be maintained in
memory. If for some reason the listsR` cannot be maintained in memory, separate temporary files may be
used for them. In this case, some elements may need to be written to disk twice.

Reading all of the tree nodes for a given interval in an SLOG file consists of these steps:

1. Position at the end of the file.

2. Read the value ofL.

3. Move backwards2L − 1 (fixed-sized) records and read the directory.

4. For each node whose time interval intersects with the desired time interval, read the corresponding
node.

The preceeding discussion has assumed that the trace file already contains the necessary records describ-
ing rectangles and other graphical objects. In practice, a trace file contains only events, along with enough
information to generate the states, periods, and associations that we wish to display. We note that the process
to convert events into displayable objects can be merged with the code to access the next record (exploiting
the sequential access to the trace file needed by the algorithm in Figure6), preserving the one-pass nature
of this algorithm.

The above algorithm subdivides the data along the single dimension of time. Subdivisions in more
dimensions are possible. For example, a 2-D (quad tree) decomposition that uses the vertical axis (process
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for ` = 0, 1, . . . , L do{
SetR` to empty

Set∆T` to [0, 2−`T ]

}
Open trace file

while not done{
read the next recordr.

accumulate any statistics or coordinate mapping data onr

for ` = L,L− 1, . . . , 0 do{
if the end time ofr exceeds the end time of∆T`, then{

Write R` out. Record the location ofR` in the file in directoryD. SetR` to empty.
Set∆T` to the next time interval (add2−`T to the interval).

}
if the time extent ofr is contained within∆T`, then{

Add r to R`

break from for loop
}

}
}
for ` = L, L− 1, . . . , 0 do{

Write out listR`. Record the location ofR` in the file in directoryD.

}
Write out any gathered statistics or other summary data

Write out the directoryD.

Write out the offset (from the end of the file) to summary data

Write 2L − 1 (the number of directory entries) as an integer

Figure 6:One-pass algorithm to create an SLOG file from a trace file
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or thread) as the second dimension simplifies vertical scrolling and scalability in the number of separate
threads. A 3-D (oct-tree) decomposition could use thread in process as the third coordinate (with process
the second) or it could use record category as the third coordinate. The annotation model makes it easy to
experiment with many different graphical representations of the same data.

4 Refinements

The SLOG API and algorithm can be enhanced in a number of ways. These are described here to indicate
some of the long-term directions that we may take, and to illustrate the flexibility of this approach. None of
these refinements are planned for the initial version of SLOG2.

4.1 Computing Data to Improve Display

During the pass over the original data that creates the SLOG annotations, additional data can be computed
that can improve the quality and the performance (i.e., speed at which objects are drawn) of the display.
Because the file of trace data may be large, it is important to perform these operations in a single pass.

1. Data for the preview can be collected during the execution of the SLOG algorithm. For example,
the number of objects on each vertical line for each time interval (possibly using more intervals than
leaves in the SLOG tree). Alternatives that weight by the area are possible. The point is that this data
can easily be accumulated while reading the drawable objects. Combining objects by categories (e.g.,
communication or computation) for the preview may provide a more managable figure.

2. Since drawable objects may be nested (common with rectangles), having the “stack level” of an object
is very helpful in the display. Since this is easily computed by the implementation of the SLOG input
API, this information should be carried through to the display program. Of course, a stack level of
“none” (not nested) or (perhaps?) unknown may be provided. An alternative value could be “depth”
(commonly used by 2-d drawing programs to decide what object is drawn on top of other, overlapping
(but not necessarily nested) objects). (Nesting level is more precisely what the SLOG Input API is
computing. “Depth” is more likely to be something the Display Program might want to manipulate
for itself. - RL)

3. In some cases, drawable objects, even states, will overlap without nesting. In this case, the objects
can be laid out by computing a vertical offset that separates the objects in the y coordinate. This is
particularly appropriate for rectangles (states).

Question: what to do about arrows in this case? How are they attached to the “correct” state?

4. For very complex displays, a level-of-detail (LOD) feature may be important. For example, in cases
where a large number of states crowd into a small interval of time could be represented by a single
stippled rectangle rather than drawing a large number of (white-bordered in upshot/nupshot/jumpshot)
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rectangles. Zooming into this would eventually replace the stippled rectangle with the individual
states. Note that LOD information is another type of annotation and can be computed at the same
time as the other annotations by keeping track of adjacent states per vertical coordinate.

A simple LOD algorithm would compare the location/extent of each drawable object to a virtual
bitmap and render its bounding box on that bitmap. If the bounding box is less then 3 pixels in extent
and there is already an object in that location on the virtual bitmap, then the object would be marked
as undisplayable at that resolution, and the virtual bitmap would be marked as having a small object
at the appropriate location.

Objects are then sorted by LOD before being written out; that is, objects that are undisplayable at
a particular level of detail are written after objects that are displayable at each level of detail. This
allows a visualization program to read only the displayable objects, along with a way to represent
“multiple objects here” (through the virtual bitmap).

Question: Is there anyway to exploit this in the annotation form? That is, since we can’t re-order the
data, is there any way to exploit it?

An alternative form of LOD permits continuous zooming of the image by adding “shadow object”
information to each level in the tree, not just to the leaf nodes. One complication is that, since the
shadow objects are more closely related to the drawable, there may need to be one set of shadow
objects for each coordinate map (i.e., for each assignment of objects to timelines). For this reason,
the shadow object data will probably be stored in a separate file (a graphical annotation to the SLOG2
file).

5. We can accumulate records until we reach a limit (based on memory size). We then end that leaf and
begin a new leaf. Note that the duration of a leaf in this model is not constant; we might want to try
to encourage leaves to have the same duration. Note that in this model, wedoget a (nearly) balanced
tree because we simply group leave by twos, then group those nodes by twos, and so on. If instead
leaves do have a duration that is of the formT/2k for somek, then different leaves may represent
different values ofk. Which should we do?

4.2 Enhanced Data Representations

This section has some thoughts and questions about enhancing the capabilities of the display program by
providing more information about objects and their relationships to one another.

1. Categories of categories can be added. This allows the display program to quickly select “all OS
records” or “all point-to-point communication records.” By defining a category as containing either a
single drawable object or a list of categories, we can add this without changing the API used for the
SLOG algorithm. That is each drawable object needs only specify the category that describes how it
is rendered.

2. Category descriptions should include transparency as part of the color value.
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3. The “rectangles” for states are really a “line with height” where the height may be assigned by the
drawing program (possibly using the stack level information). Question: What about arrows, where
the width of the arrow (or color?) is chosen to reflect the communication volume or other metric?
Does this apply to single categories as well? For example, turn off all but one category, then assign a
color to those states based on some value associated with each instance.

4. Should there be a way to establish a relationship between instances of drawable objects? For example,
the objects representing a particular send, receive, and the arrow between them (e.g., given a receive,
find and blink the matching send). (The notion of “association” has proven thorny. Even if systems
are truely likely to collect such data, it is not clear that it has to be more than just optional data. - RL)

5. We should consider separating the rendering from the sorting, allowing completely arbitrary rendering
of displayed objects. This follows the approach of XML of separating all content description from
presentation information. We do have to blur this a little because we use geometric information to sort
the drawable objects, but properties like the color should be considered separate. In fact, the rendering
method could be dynamically loaded by the viewer.

6. We’ve discussed the display of drawable objects. But these are usually organized by process, thread, or
some other “container.” How should the container be labeled and rendered? For example, should the
“main thread” be rendered differently from other threads? User-generated versus system-generated
threads?

7. More general methods for rendering both the drawable and the data stored in the byte array attached
to the drawable can be provided. One approach is to define an API that a drawing program supports;
the methods can then be defined by Java code (or through an indirection to a URL containing Java
code) that can perform the rendering needed by the display program. To support this generalization,
the SLOG2 format provides placeholders for such methods, even though they are not supported in the
initial version.

4.3 Real-time File Generation

If the length of timeT is not known, the algorithm in Figure6 can still be used with a few changes.
Specifically, the total number of levels is not set in advance; instead, as a “leaf” node listRL fills up
(reaches a maximum memory limit), a new time interval is created, possibly incrementing the number of
levels. In other words, one starts with a single level (L = 0) and add levels as needed. The resulting tree
will not necessarily be full. This is the reason for placing the directory at the end of the file, since in this
case, the number of levels is not known a priori.

4.4 File Representation

Even though we have defined SLOG2 in terms of the APIs used to read and write the files, it is useful to
discuss one possible representation of an SLOG2 file, such as that in Figure7. Other representations are
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Treenode Treenode Treenode Treenode
Slog File
Structure Header ...

Global
Category
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Definitions

Tree
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Coord Map

Treenode
Structure Header

Local
Category Info

Local
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Drawables

Other Coords
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Popup Data
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Figure 7: Block diagram of a complete SLOG2 file. Note that SLOG2 does not define a file format; this
block diagram shows one possible organization to illustrate both the contents of the file and a structure that
allows the creation of an SLOG2 file in a single pass.

possible; the API describes the objects, not the way data is stored in a file.
The file format described here exploits the post mortum nature of the SLOG files. This allows us to

collect data into logical groups, rather than forming it as a stream of records.

header The file header, containing information on the version of SLOG, name of the program and the user,
and other data about the file.

treenode Block of data corresponding toRj
` .

global category info Information on the category definitions used in one or more treenode.

global coord map Information on the y coordinate mapping for coordinates in one or more treenode.

method definition Information on the methods that should be invoked for the popup data. This is intended
for future enhancements to the SLOG interface; methods (or more precisely, methods other than the
default methods) are not defined in this version of the APIs.

tree directory Block of offsets to the beginning of each treenode, along with the start and end times of each
tree node. The offsets are 8-byte integers, in bytes, relative to the beginning of the file.

annotations Block of text that records the viewing history and user-provided annotations about the SLOG2
file. This block is at the end of the file (except for the postamble) so that annotations can be added to
large files without rewriting the file.
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postamble Contains five 4 byte integers indicating the location (relative to the end of the file) of the global-
category-info, global-coord-map, method-definition, treedirectory and the annotation blocks. Four-
byte integers are sufficient here because these objects are relatively small and are near the postamble.
However, we could use 8-byte integers for consistency with treedirectory offsets.

The ordering of the blocks is chosen to make it easy to write an SLOG file with a single pass. With
the exception of the treenode, each of these blocks is relatively small. It may be appropriate to use XML
to describe each of these blocks, allowing XML-parsers and XML tools to look at the structure of SLOG2
files. An alternate form that stores the treenode data in a separate (binary) file could use XML for all of the
other elements; this version would not require the postamble block.

The treenode is a special case. Because a treenode represents the smallest sensible unit of data, it makes
sense to divide the data within a treenode into groups:

header This contains information on the location of the other parts of this treenode (e.g., the offsets of
the starts of each block and sizes in terms of the number of records) along with information on the
compression method (see below). The number of records, rather than the number of bytes, is provided
so that the reading program can preallocate the correct number of objects.

simple drawables The most basic information on the drawables. This is an array of fixed-length structures
containing only the start and end times, category id, y coordinate, and offsets into the next two blocks.
This allows rapid drawing of drawables that are simple states (rectangles).

other coords block This block contains all of the other coordinate values, both time and y, that are needed
to describe more complex drawables.

popup data block This block contains all of the data that is used by the popup methods, includeing the
default methods.

The choice of a small number of blocks each containing all entries of the various data elements simplifies
the task of reading the data into the data structures within a display program. That is, a program can read
the header (fixed length); allocate storage for the records based on information in the header, and read all of
the data in a single operation.

There are two other items that are provided for future enhancements. These are

local category info Category definitions for drawable objects in this treenode only. In many cases, this
block will be empty.

local coord map Coordinate mapping information for this treenode only. In many cases, this block will
be empty. One example where it will not be empty is when individual threads are being created and
destroyed, and some threads exist only for the duration of this treenode.

In the initial release, these will be empty. These provide a place to store data the both is needed only over
a shorter span of time (such as a description of transient threads) and that may have no unique global value
(again, transient threads whose thread id is reused by the system).
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Trace file formats, particularly for large amounts of data, often choose to define each data field with as
few bits as possible in order to reduce file size. Because the SLOG file is (often) generated after the run
of a program, we can use a different approach based on applying data compression to each treenode as a
block. The treenode header indicates which type of compression has been used on the rest of the treenode.
Among the possibilities are no compression, predefined static compression (in other words, the conventional
trace-file approach based on defining the number of bits for each field), and dynamic compression, using for
example the algorithms used in thegzip program (see, for example, [?, Section 9.1.2] for a description of
the gzip algorithm). Dynamic compression allows us to eliminate the compromises of field lengths that static
compression schemes must make. An additional advantage of dynamic compression, particularly when the
file is accessed over a slow network, is that it can reduce the time to read the data, even when the time to
decompress the file is included.

An SLOG Annotation file is almost the same. The only differences are (a) the block of treenodes contains
only non-leaves of the tree, (b) the treedirectory describes the location of the treenodes that are leaves of the
tree in terms of a location in another file, and (c) the treedirectory specifies the method used to access the
treenodes. Note that if we use an XML representation of the SLOG file that placesall of the treenodes into
a separate file, the same format can be used for both complete SLOG files and SLOG annotation files.

4.5 Quantifying Data Motion

tδ∆ T

Level L

Level L-1

Level L-2

Figure 8: Any record whose time-center falls within the grey area is assigned to the corresponding node.
Note that most of the records are assigned to leaf nodes.

One feature of the simple approach described in Section3 is that some objects, even though they have
very short duration, will be forced into lower (closer to the root) levels of the tree because they have the bad
luck to cross the joint between two leaf boxes. For example, any drawable object that starts beforeT/2 and
ends afterT/2 will be forced into the root node, no matter how short its duration. In principle, this could
create problems for the SLOG2 format by moving too many drawable objects out of the leaf nodes of the
tree. Fortunately, we can show that in many cases this is not a problem; further, a small change to the format
allows SLOG2 to handle all but very pathalogical cases.

Note that if there is a limit on the number of objects (boxes, arrows, etc.) that can cross any point in
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time, then the number of objects in the lower-level (non-leaf) bounding boxes can be bounded. If only states
or periods are included, this can be often be effectively bounded. However, if drawable objects include
connections between send and receive events or non-blocking I/O operations, the number of objects that can
cross a particular time line can be very large.

We can estimate the number of records in each node for some simple situations. Consider the case where
all records have the same durationδt and are uniformly distributed throughout the trace file. Consider first
the algorithm in Figure6, where the time intervals for each node on a level are disjoint (non-overlapping).
Let the levels be0, . . . , L, so that there are2L leaves. For each leaf interval of width∆Tmin, any record
whose center starts12δt past the beginning of the leaf’s time interval and before1

2δt before the end of the
leaf’s time interval will be placed within that interval. Thus, if there areN records, all butNδt/∆Tmin will
be placed in the leaf nodes. Of the remaining records,Nδt/2∆Tmin will be placed in the nodes at the next
level,Nδt/4∆Tmin in the next, down to level 0. This is illustrated in Figure8.

The number of records read to display any time can be calculated as follows. Since the display of any
time requires reading all time intervals that intersect that time, one interval on each level is read. The amount
of data (not counting the leaf node) is simply

L−1∑

k=0

Nδt

2L∆Tmin
= L

Nδt

2L∆Tmin
= L

N

T
δt.

However, many of these records are unneeded. Consider the timet = 0. Only the first leaf must be read
to provide all of the necessary data; these additional records are required only because they crossed the
artificial boundaries that were defined between leaves. In the worst case, only

2
Nδt

2L∆Tmin
= 2

N

T
δt.

records must be read; these correspond to the intervals at the left and right end of a leaf node. Thus, the
number of unnecessary records that must be read is

(L− 2)
N

T
δt.

In many cases, this will be a small number. For example, consider the case where the drawable objects do
not overlap. ThenNδt ≤ T , and this expression is bounded byL − 2. SinceL = log2(T/∆Tmin), this
number will rarely be large. If the degree of overlap isp, for example, there arep processes or threads, the
number scales linearly with the degree of overlap. Further, the number of drawable objects at any time must
be smaller that the number of available pixels (in the vertical dimension) for the graphical representation to
be meaningful. This also provides a bound on the number of overlapping objects in ausefulSLOG2 file.

However, if too many drawable objects of short duration cross the boundaries between tree nodes, the
amount of unnecessary data that must be read could become large. To handle this case, we can generalize
the bounding box notion to include overlapping bounding boxes. For example, if the bounding boxes at the
leaves of the tree overlap byδt, then any drawable object of duration no more thanδt can be placed in some
leaf node. More complex distributions of duration can be analyzed and used to guide the amount of overlap
at each level. This handles the pathalogical case mentioned above.
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5 Experiments

Show some results, with file size and access times. Emphasize scalability.

A APIs

All of these APIs have some sense of “current” record. The simplicity of this outweighs possible problems
with multi-threaded applications, particular since it is unlikely that application would use multiple threads
to access or modify any of the trace files. Applications that need to use threads can use conventional thread
synchronization techniques to guarantee correct behavior.

All routines and major data structures are listed alphabetically.
The only API that must be implemented by producers of trace files is the Drawable Object (DO) Input

API (routines starting withTRACE).
These APIs are designed to allow the tracefile producers and the tracefile consumers (such as display

programs likeJumpshot or an analysis program) to pass data to each other that can be ignored by the
SLOG2 format. This data is stored in the SLOG2 file as a byte array (typechar ). The implementation of
the Input API (TRACE) and the display program must agree on the interpretation of this data. In the initial
(2.0) version, the following interpretation is supported: The data associated with a drawable (stored in the
byte xxx parameters) contains binary data that is interpreted by the label data provided by the category
associated with that particular drawable. The label data is a restricted form ofsprintf string that may
contain only:

Printing characters Including whitespace and newlines but not ASCII control characters or nulls.

%d 4-byte signed integer in Java (network) byte order.

%h 2-byte signed integer in Java (network) byte order.

%l 8-byte signed integer in Java (network) byte order.

%x 4-byte unsigned byte hex in Java (network) byte order.

%X 8-byte unsigned byte hex in Java (network) byte order.

%e 4-byte float pointing number in Java (network) byte order.

%E 8-byte float pointing number in Java (network) byte order.

%s string with length specified by a 2-byte network byte ordered integer.

%S string with length specified by a 4-byte network byte ordered integer. [Not Implemented Yet]
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The label string must be written with its length (either a 2-byte or 4-byte integer in network byte order)
followed by the character byte array (without the trailing NULL character). The display program may set
limits on the total length of a generated text string.

Most routines return an error code. This code is defined by the implementation of the API, with the
exception of the success (no error) code which, following Unix practice, must be zero. The implementation
of the API must provide a function to convert the error code into an error string suitable for printing.

B Input API for Reading from Foreign Trace Files

The input API for reading trace files assumes only that the file describes drawable objects; these drawable
objects may have to be assembled by the implementation of this API. Category information may or may not
be present in the trace file (e.g., category information is present in clog files but not in UTE files).

To allow aggregate of simple drawables with different categories or texts to be viewed as one single
drawable object. The concept of drawable is categorized into 2, primitive drawable and composite drawable.
Primitive drawable refers to drawable with a well-defined draw() method, a category and a text string.
State, arrow and event are considered primitive drawables. Composite drawable is a collection of primitive
drawables with an optional category and an optional text string.

The time (x-axis for the typical viewer) coordinates are returned asdouble values. The y-axis
coordinates are returnedint values. For many trace files, these y-axis values will be either the rank in
MPI COMMWORLDfor trace files generated by MPI programs or process ids. More complex information,
such as a “node, process, thread” tuple is represented by using the y-coordinate value as an index into a
coordinate map (or table). Thus, the y-coordinates remain simple (and small) but are allowed to express
complex relationships.

The trace file also returns the coordinate map information (see Section2.4) so that this data can be placed
into the SLOG2 file in the appropriate location. It is also needed to implement some of the level of detail
(LOD) enhancements described in Section4.1.

The following illustrates the use of the Trace file Input API to read a trace file.
Note: Since TRACE-API is designed to supoort exporting trace data as well as ”annotated SLOG2” for

efficient access of trace data from the display program, most arrays will be passed by 4 arguments instead
of the expected array size and array pointer. To better illustrate the data flow, all arrays that are passed with
the 4 argument style in the API will be denoted by angle brackets<....[]> in the following sample code.
For more detailed information on the rationale of the 4 argument style in passing an array, see the Rationale
section in the description ofTRACEGet next primitive()

TRACE_file tf;
TRACE_Rec_Kind_t next_kind;

// filespec describes multiple files + file selection criteria
ierr = TRACE_Open( filespec, &tf );
if ( tf == NULL ) {
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fprintf( stdout, "%s\n", TRACE_Get_err_string( ierr ) );
return;

}

ierr = TRACE_Peek_next_kind( tf, &next_kind );
if ( ierr != 0 ) {

fprintf( stderr, "Error: %s\n", TRACE_Get_err_string( ierr ) );
exit( 1 );

}
while ( next_kind != TRACE_EOF ) {

switch (next_kind) {
case TRACE_COMPOSITE_DRAWBLE:

// Get the time range [stime,etime] and the number of drawables
TRACE_Peek_next_composite( tf, &stime, &etime,

&n_primitives, &n_common_info );
if ( n_common_info > 0 ) {

// Allocate the space and get common_info
// char common_info[ n_info ];
TRACE_Get_next_composite( tf, &cmplx_category_idx,

<common_info[]> );
}
for ( idx = 0; idx < n_primitives; idx++ ) {

// Find the space needed
TRACE_Peek_next_primitive( tf, &st, &et, &n_t, &n_y, &n_info );
// Allocate the space, then get the shape
// double tcoords[n_t]; int ycoords[n_y]; char info[n_info];
TRACE_Get_next_primitive( tf, &category_idx,

<tcoords[]>, <ycoords[]>, <info[]> );
}
break;

case TRACE_PRIMITIVE_DRAWABLE:
// Find the space needed
TRACE_Peek_next_primitive( tf, &st, &et, &n_t, &n_y, &n_info );
// Allocate the space, then get the shape
// double tcoords[n_t]; int ycoords[n_y]; char info[n_info];
TRACE_Get_next_primitive( tf, &category_idx,

<tcoords[]>, <ycoords[]>, <info[]> );
break;

case TRACE_CATEGORY:
// Find the amount of space needed
TRACE_Peek_next_category( tf, &n_legend, &n_label, &n_methods );
// Allocate space & get the description of a category of drawables
TRACE_Get_next_category( tf, &category_head,

<legend[]>, <label[]>, <methods[]> );
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break;
case TRACE_YCOORDMAP:

// Get the size of y-axis coordinate map
TRACE_Peek_next ycoordmap( tf, &n_rows, &n_columns,

&max_column_name, &max_title_name,
&n_methods );

// Get information on the coordinate map
TRACE_Get_next_ycoordmap( tf, &map_title, &column_labels,

<map_elems[]>, <methods[]> );
break;

default:
// Print unknown TRACE_Rec_Kind_t
exit( 1 );

}
ierr = TRACE_Peek_next_kind( tf, &next_kind );

}

ierr = TRACE_Close( &tf );

Note that this program does not assume that different trace file records types (i.e., drawables, category
descriptions, or methods) occur in any particular order.

TRACE_Category_head_t — Structure defining the basic information about a category

Synopsis

typedef struct {
int index;
int shape;
int red, green, blue, alpha;
int width;

} TRACE_Category_head_t;

index integer value by which records will identify themselves as belonging to this
category. index is assumed to be non-negative. negative index is reserved for
internal use.

shape Shape of the category. This is an integer defined by the drawing program; the
valueTRACE_SHAPE_EVENT(=0) is reserved for an event ( a marker at one
point on a timeline ), the valueTRACE_SHAPE_STATE(=1) is reserved for a
basic state (a rectangle along a timeline),TRACE_SHAPE_ARROW(=2) is
reserved for an arrow (such as used to describe a message from a send state to a
receive state),
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red, green, blue
Color of the shape; each is in the range [0,255]

alpha Transparency value, in the range of [0,255]. Some display programs may ignore
this value. An alpha value of 255 means that the color is completely opaque and
an alpha value of 0 means that the color is completely transparent. (reference
java.awt.Color)

width the pixel width of the stroke when drawing the shape. Some display programs may
ignore this value.

TRACE_Close— Close a trace file

Synopsis

int TRACE_Close( TRACE_file *fp )

Input/Output Parameter

fp Pointer to a trace file handle

Return Value

ierr Returned integer error status. It will be used as an argument in
TRACE_Get_err_string() for possible error string.

Notes

The pointerfp is set to NULL on a successful close.

TRACE_Get_err_string — Return the error string corresponding to an error code

Synopsis

char *TRACE_Get_err_string( int ierr )
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Input Parameter

ierr Error code returned by a TRACE routine

Return Value

Error message string.

Notes

This routine is responsible for providing internationalized (translated) error strings. Implementors may
want to consider the GNUgettext style functions. To avoid returning messages of the formMessage
catalog not found , the message catalog routines such ascatopen andcatgets should not be
used unless a provision is made to return a message string if no message catalog can be found. The help
message for the TRACE-API implementation should be stored at ierr=0, so the calling program of
TRACE-API knows if it should exit the program normally.

TRACE_Get_next_category— Get the next category description

Synopsis

int TRACE_Get_next_category( const TRACE_file fp,
TRACE_Category_head_t *head,
int *n_legend, char legend_base[],
int *legend_pos, const int legend_max,
int *n_label, char label_base[],
int *label_pos, const int label_max,
int *n_methodIDs, int methodID_base[],
int *methodID_pos, const int methodID_max )

Input Parameter

fp Trace file handle
legend_max Allocated size oflegend_base array
label_max Allocated size oflabel_base array
methodID_max
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Allocated size ofmethodID_base array

Input/Output Parameters

legend_pos On input, the first available position inlegend_base On output, changed to
indicate the new first available position.

label_pos On input, the first available position inlabel_base On output, changed to
indicate the new first available position.

methodID_pos
On input, the first available position inmethodID_base On output, changed to
indicate the new first available position.

Output Parameters

head Contains basic category info (see the description of
TRACE_Category_head_t )

n_legend Size oflegend_base array to be used
legend_base Pointer to storage to hold legend information
n_label Size oflabel_base array to be used
label_base Pointer to storage to hold label information. The order of the % tokens specified

here,label_base , must match the order of operands in the byte array,
byte_base[] , specified inTRACE_Get_next_primitive() and
TRACE_Get_next_composite() .

n_methodIDs number of method IDs associated with this category.
methodID_base

Pointer to storage to hold method IDs.

Return Value

ierr Returned integer error status. It will be used as an argument in
TRACE_Get_err_string() for possible error string.

Notes

The interface to this (and similar routines such asTRACE_Get_next_primitive() ) is designed to
give flexibility in how data is read. SeeSLOG2_Get_next_category() for more details.
The legend string is used to hold a label for a legend desribing the category. A typical visualization
program will use that text to label and draw a sample of a member from that category. For example, a blue
rectangle with the textMPI_Send .
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The label string is used to describe a particular drawable in that category. For example, a label string of

"Tag = %s\nDestination rank = %s\nmessage size = %s"

allows a visualization program to pop up a text box describing any drawable while allowing the drawable
itself to store only the information that is specific to each instance of the drawable (i.e., the three string
values referenced). These string values are provided through thebyte arguments to
TRACE_Get_next_primitive .
The routineTRACE_Peek_next_category may be used to determine the number of characters of
label and legend that are required.

TRACE_Get_next_composite— Get the header information of the next composite drawable

Synopsis

int TRACE_Get_next_composite( const TRACE_file fp,
int *category_index,
int *n_bytes, char byte_base[],
int *byte_pos, const int byte_max )

Input Parameter

fp Trace file handle
byte_max Size ofbyte_base

Input/Output Parameters

byte_pos The same, forbyte_base

Output Parameters

starttime, endtime
time range for drawable

category_index
Index of the category that this drawable belongs to
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byte_base Pointer to storage to hold bytes. The order of operands in the byte array,
byte_base[] , specified here must match the order of the % tokens in the label
string,label_base , in the TRACE_Get_next_category().

Return Value

ierr Returned integer error status. It will be used as an argument in
TRACE_Get_err_string() for possible error string.

Notes

The interface to this is designed to allow flexibility in how data is read. See
TRACE_Get_next_primitive for more details.

TRACE_Get_next_primitive — Get the next primitive drawable

Synopsis

int TRACE_Get_next_primitive( const TRACE_file fp,
int *category_index,
int *nt_coords, double tcoord_base[],
int *tcoord_pos, const int tcoord_max,
int *ny_coords, int ycoord_base[],
int *ycoord_pos, const int ycoord_max,
int *n_bytes, char byte_base[],
int *byte_pos, const int byte_max )

Input Parameter

fp Trace file handle
tcoord_max Size oftcoord_base
ycoord_max Size ofycoord_base
byte_max Size ofbyte_base
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Input/Output Parameters

tcoord_pos On input, the first free location intcoord_base . Updated on output to the new
first free location.

ycoord_pos The same, forycoord_base
byte_pos The same, forbyte_base

Output Parameters

starttime, endtime
time range for drawable

category_index
Index of the category that this drawable belongs to

nt_coords Number of time coordinates
tcoord_base Pointer to storage to hold time coordinates
ny_coords Number of y coordinates
ycoord_base Pointer to storage to hold y coordinates
byte_base Pointer to storage to hold bytes. The order of operands in the byte array,

byte_base[] , specified here must match the order of the % tokens in the label
string,label_base , in the TRACE_Get_next_category().

Return Value

ierr Returned integer error status. It will be used as an argument in
TRACE_Get_err_string() for possible error string.

Notes

Theycoord values stored inycoord_base + ycoord_pos represent y-coordinate index values.
These may be simpleint values or they may be indexes into a y-coordinate mapping table. For example, a
simple trace file format that only records the rank inMPI_COMM_WORLDas the y coordinate would return
that rank value directly. A more sophisticated trace file format that wished to return the nodename, process
id, MPI rank, and thread id would instead return an integer index value into a table that contained that data.
The rows of this table (representing the values for a single index value) are provided through aroutine to be
determined. In the latter case, it is better to think of the y coordinate values asthread_id_index
values.
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Rationale

The somewhat complex argument list is intended to provide the maximum flexibility in reading and storing
the data. For example, the calling program can either allocate new data for each call (using information
returned byTRACE_Peek_next_primitive ) or use preallocated stacks (allowing, for example, all
double data to be stored contiguously). An alternative interface could return a C structure or an instance
of a C++ class that contained all of this data. However, that approach imposes a particular representation
on any application that chooses to use the code. If, for example, these routines are being used from another
language, such as Java, a C or C++ style interface may be inefficient. It is expected that this routine will
appear only within a single higher-level routine that reads data into storage organized in a convenient way
for the calling application.
Note that to support the annotated SLOG2 files, a display program will need to call this routine. Since the
display program may be written in a very different language (e.g., Java or TCL), this routine uses a very
simple style for communicating data. In an entirely C environment, a more elegant interface could use a
call back function that would handle transferring data from the trace file to the SLOG data structures.

Example

We need an example that shows a simple implementation of this routine; that will make precise how to use
the arguments. That example should be careful to check the max values for each array.

TRACE_Get_next_ycoordmap— Return the content of a y-axis coordinate map

Synopsis

int TRACE_Get_next_ycoordmap( TRACE_file fp,
char *title_name,
char **column_names,
int *coordmap_sz, int coordmap_base[],
int *coordmap_pos, const int coordmap_max,
int *n_methodIDs, int methodID_base[],
int *methodID_pos, const int methodID_max )
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Output Parameters

Input Parameters

fp Pointer to a trace file handle
coordmap_max

Allocated size ofcoordmap_base array

methodID_max
Allocated size ofmethodID_base array

Input/Output Parameters

coordmap_pos
On input, the first free location incoordmap_base . Updated on output to the
new first free location.

methodID_pos
On input, the first available position inmethodID_base On output, changed to
indicate the new first available position.

Output Parameters

title_name character array of length,max_title_name , is assumed on input, where
max_title_name is defined byTRACE_Peek_next_ycoordmap() . The
title name of this map which is NULL terminated will be stored in this character
array on output.

column_names
an array of character arrays to store the column names. Each character array is of
length ofmax_column_name . There arencolumns-1 character arrays
altogether. wherencolumns andmax_column_name are returned by
TRACE_Peek_next_ycoordmap() . The name for the first column is
assumed to be known, only the lastncolumns-1 columns need to be labeled.

coordmap_sz Total number of integers incoordmap[][] . coordmap_sz = nrows *
ncolumns , otherwise an error will be flagged. Wherenrows andncolumns
are returned byTRACE_Peek_next_ycoordmap()

coordmap_base
Pointer to storage to hold y-axis coordinate map.

n_methodIDs number of method IDs associated with this map.
methodID_base
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Pointer to storage to hold method IDs.

Return Value

ierr Returned integer error status. It will be used as an argument in
TRACE_Get_err_string() for possible error string.

Notes

Each entry in y-axis coordinate map is assumed to be__continuously__ stored incoordmap_base[] ,
i.e. everyncolumns consecutive integers incoordmap_base[] is considered one coordmap entry.

TRACE_Get_position — Return the current position in an trace file

Synopsis

int TRACE_Get_position( TRACE_file fp, TRACE_int64_t *offset )

Input Parameter

fp Trace file handle

Output Parameter

offset Current file offset.

Return Value

ierr Returned integer error status. It will be used as an argument in
TRACE_Get_err_string() for possible error string.

Notes

This routine andTRACE_Set_position are used in the construction of an annotated Slog file. In an
annotated Slog file, the Slog file records the location in the original trace file of the records, rather than
making a copy of the records.

34



If the trace file is actually a collection of files, then that information should be encoded within the position.

TRACE_Open— Open a trace file for input

Synopsis

int TRACE_Open( const char filespec[], TRACE_file *fp )

Input Parameter

filespec Name of file (or files; see below) to open.

Output Parameter

fp Trace file handle (see Notes).

Return Value

ierr Returned integer error status. It will be used as an argument in
TRACE_Get_err_string() for possible error string.

Notes

In order to allow TRACE-API to provide its own help message, i.e-h , in filespec string, when the API
is used in program like TraceToSlog2. Calling program of TRACE_Open() should check if the returned
TRACE_file handlefp is NULL instead of just checking of the returned error status. Iffp is NULL, it
means calling program should call TRACE_Get_err_string() for either error message or possible help
message. The help message should be stored at ierr=0, so the calling program of TRACE_Open() knows if
it should exit the program with error or normally.
The trace file may be a collection of files, however, to the user of the TRACE API, there is a single (virtual)
file. Thefilespec is any string that is accepted by the TRACE API. Since the Slog program will only
pass this string through (e.g., from the command-line to this call), it need not be a file name.
Possible interpretations offilespec include a filename, an indirect file (i.e., a file that contains the
names of other files), a colon separated list of files (i.e.,file1:file2:file3 ), a file pattern (i.e.,
file%d ), any of the above along with other options (for the trace file reader), such as limits on the time
range or node numbers to accept, or even a shell command (i.e.,find . -name ’*.log’ ).
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filespec could contain tracefile selection criteria, e.g.-s [5,6-8] trc.* . The implementation of
the TRACE API must document the acceptablefilespec so that programs that make use of the TRACE
API can provide complete documentation to the user.

TRACE_Peek_next_category— Peek at the next category to determine necessary data sizes

Synopsis

int TRACE_Peek_next_category( const TRACE_file fp,
int *n_legend, int *n_label,
int *n_methodIDs )

Input Parameter

fp Trace file handle

Output Parameters

n_legend Number of characters needed for the legend
n_label Number of characters needed for the label
n_methodIDs Number of methods (Always zero or one in this version)

Return Value

ierr Returned integer error status. It will be used as an argument in
TRACE_Get_err_string() for possible error string.

Notes

The output parameters allow the calling code to allocate space for the variable-length data in a categiry
before callingTRACE_Get_next_category() .

TRACE_Peek_next_composite— Peek at the next composite drawable to determine the number of
primitive drawables in this composite object, time range, and size of pop up data.
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Synopsis

int TRACE_Peek_next_composite( const TRACE_file fp,
double *starttime, double *endtime,
int *n_primitives, int *n_bytes )

Input Parameter

fp Trace file handle

Output Parameters

starttime, endtime
time range for drawable

n_primitives Number of primitive drawables in this composite object.
n_bytes Number of data bytes

Return Value

ierr Returned integer error status. It will be used as an argument in
TRACE_Get_err_string() for possible error string.

Notes

This function really serves two purposes. The time range allows the SLOG2 algorithm to determine which
treenode this drawable should be placed in (which may influence where in memory the data is read by
TRACE_Get_next_composite() ). The number of primitives returned allows the calling program to
invokeTRACE_Get_next_primitives() the same number of times to collect all the primitive
drawables in the composite object. The other return values allow the calling code to allocate space for the
variable-length data in the composite drawable before callingTRACE_Get_next_composite() .

TRACE_Peek_next_kind — Determine the kind of the next record

Synopsis

int TRACE_Peek_next_kind( const TRACE_file fp, TRACE_Rec_Kind_t *next_kind )
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Input Parameter

fp Trace file handle

Output Parameters

next_kind Type of next record. The kindTRACE_EOF, which has the value0, is returned at
end-of-file.

Return Value

ierr Returned integer error status. It will be used as an argument in
TRACE_Get_err_string() for possible error string.

Notes

The structure and ordering of data in a foreign trace file is not defined. This routine allows us to find out the
type of the next record and then use the appropriateTRACE_Peek_xxx routine to discover the size of any
variable-sized fields andTRACE_Get_xxx routine to read it. A high-performance implementation of
these routines will likely use buffered I/O.

TRACE_Peek_next_primitive — Peek at the next primitive drawable to determine necessary data sizes
and time range

Synopsis

int TRACE_Peek_next_primitive( const TRACE_file fp,
double *starttime, double *endtime,
int *nt_coords, int *ny_coords, int *n_bytes )

Input Parameter

fp Trace file handle
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Output Parameters

starttime, endtime
time range for drawable

nt_coords Number of time coordinates
ny_coords Number of y coordinates
n_bytes Number of data bytes

Return Value

ierr Returned integer error status. It will be used as an argument in
TRACE_Get_err_string() for possible error string.

Notes

This function really serves two purposes. The time range allows the SLOG2 algorithm to determine which
treenode a drawable should be placed in (which may influence where in memory the data is read by
TRACE_Get_next_primitive() ). The other return values allow the calling code to allocate space
for the variable-length data in a drawable before callingTRACE_Get_next_primitive .

TRACE_Peek_next_ycoordmap— Get the size and the description of the y-axis coordinate map

Synopsis

int TRACE_Peek_next_ycoordmap( TRACE_file fp,
int *n_rows, int *n_columns,
int *max_column_name,
int *max_title_name,
int *n_methodIDs )

Input Parameter

fp Pointer to a trace file handle
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Output Parameters

n_rows Number of rows of the y-axis coordinate map
n_columns Number of columns of the Yaxis coordinate map
max_column_name

The maximum length of the column name arrays, i.e. max_column_name=
MAX( { column_name[i]} )

max_title_name
Title string for this map

n_methodIDs Number of Method IDs associated with this map

Return Value

ierr Returned integer error status. It will be used as an argument in
TRACE_Get_err_string() for possible error string.

Notes

Bothmax_column_name andmax_title_name includes the NULL character needed at the end of
thetitle_name andcolumn_names[i] used inTRACE_Get_next_ycoordmap()

TRACE_Rec_Kind _t — Types of records returned by the TRACE API

Synopsis

typedef enum { TRACE_EOF=0,
TRACE_PRIMITIVE_DRAWABLE=1,
TRACE_COMPOSITE_DRAWABLE=2,
TRACE_CATEGORY=3,
TRACE_YCOORDMAP=4 }

TRACE_Rec_Kind_t;

Types

TRACE_EOF End of file. Indicates that no more items are available.
TRACE_PRIMITIVE _DRAWABLE
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Primitive Drawable; for example, an event, state or arrow.

TRACE_COMPOSITE_DRAWABLE
Composite Drawable; a collection of primitive drawables.

TRACE_CATEGORY
Category, describing classes of drawables.

TRACE_YCOORDMAP
Y-axis Coordinate map, describing how to interpret or label the y coordinate values

Notes

These record types represent the type of data that the TRACE API presents to the calling program. The
source file that the TRACE API is reading may or may not contain any of these record types. In fact, most
trace files will not contain any of these record types; instead, the implementation of the TRACE API will
read the source trace file and create these from the raw data in the original source file.

TRACE_Set_position — Set the current position of a trace file

Synopsis

int TRACE_Set_position( TRACE_file fp, TRACE_int64_t offset )

Input Parameters

fp Trace file handle
offset Position to set file at

Return Value

ierr Returned integer error status. It will be used as an argument in
TRACE_Get_err_string() for possible error string.
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Notes

The file refered to here is relative to thefilespec given in aTRACE_Opencall. If that filespec
describes a collection of real files, then this calls sets the position to the correct location in the correct real
file.

C SLOG2 Output API

The SLOG2 Output API is designed to be used by the Slog program to create Slog 2 files. This API is
organized around the concepts defined in Section3, particularly the tree nodes and tree directory.

The SLOG2 Output API doesnot define the order of data in an SLOG2 file. However, the following
structure (see also Figure7) allows for both single-pass creation and relatively easy read access to the
resulting file.

header

cookie type of file, e.g., SLOG annotation file, SLOG complete file

version to ensure compatibility with Display program

textlen length of following description field

description text string describing the file (e.g., “trace of a.out on July 3, 2000, on big blue with
dataset 3”)

filespec file specification string used withTRACEOpen. This field is required for the Slog annota-
tion format and optional otherwise.

tree nodes the slog records. This is the bulk of the data in the file

category information set of category description records

coordinate maps set of coordinate maps; for example, for process, thread, and MPI rank views.

method definitions information about and for the methods used to interpret and/or display the drawable
objects. These are not used in the initial SLOG2 implementation.

tree directory The hierarchy of describing the tree of nodes

annotations Any user-defined annotations added to an SLOG2 file

postamble

category offset offset from end to category information
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tree offset offset from end back to beginning of tree

annote offset offset from the end to the annotations

coord offset offset from the end to the coordinate maps

method offset offset from the end to the method descriptions. This is provided for to support general
drawing methods in future versions of SLOG.

This file can be created in one pass, since the tree information is added at the end of the file, and the
offsets in the postamble allow a program to seek to the tree and display data without reading through the
file. The tree nodes have file offsets in them (see the description ofSLOGTreenode ) so then one can use
them to seek to specific frames in the file.

A category record includes

category id (small int)

category name length

category name (string)

shape (rectangle, polygon, arrow, set-of-rectangles, etc. ) set-of rects is for ”bebit handling”

color (r,g,b,alpha) default, can be changed by display

textlength of following text

text for display (in sprintf format, with

methods to use(methods are the popup methods (e.g., popup args, popup source code, etc.)) These are not
supported in the initial release.

A data record has

category id Identifies the category of this record. The category contains information about how to display
this record

time range Range in time, needed for the SLOG2 algorithm

drawable coordinates Coordinates for the drawable, both in time and relative to they-axis (they values
are combined with a coordinate map to allow the display program to handle multiple views, such as
thread, processor, or node).

instance specific dataThis is combined with thesprintf -style label string provided by the category to
provide a text description of the drawable (such as “Send with tag = 10 and length 356 bytes”).

43



The coordinate class definition allows an SLOG file to define several mappings of y coordinate (the non-
time coordinate) to an integer index (the timeline index), along with a timeline label. This allows unified
process/thread/node ids to be used in the SLOG2 file, and for a single SLOG2 file to provide mappings to
node, process, or thread views, with an arbitrary labeling. If no coordinate class defintion is provided, the
identity mapping is used (coordinates used as defined in the file, with the timeline labels defined by the
character version of the value).

C.1 Method Definitions

The method definition passes to the invocation of each method the following three values:

1. Themethod extra string (every use of that method)

2. The category-specifiedextra data string (every use of that method by drawable objects in that
category)

3. The byte string on the drawable object.

For example, a method that displays the arguments for a method might use a category-specified
extra data string containing, for example,"count = %d\nrank = %d\ntag = %d" . A method
that pops up a source code box might have amethod extra string that contains the name of the executable
file; the category-specified string would be empty, and the byte string of the drawable object would contain
the address in the program where the drawable object was logged.

Methods are invoked in the order they are specified to the category. They return the number of bytes that
they have read from the byte string. The byte string passed to each method always starts at the next unused
byte.

The definition field in a method specification may be used to specify the location of a Java class or DLL
that implements the method, or a URL of a page that describes the behavior of the method.

Methods provide a powerful mechanism for communication information on how to render drawables
between the program that generates trace files and the program that renders them, in a way that is transparent
to the SLOG2 file. However, for the first version of the SLOG2 APIs, general methods of the kind described
here will not be supported. Instead, a few simple, default method will be provided that provide for a basic,
text-oriented display of the data associated with a drawable.

SLOG2_Write _category— Add a category description to an Slog file

Synopsis

int SLOG2_Write_category( const SLOG2_File fp,
const SLOG2_Category_head_t *head,
int category_text_length,
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const char category_text[],
const char methods[][],
const char method_extra[][] )

Input Parameters

fp Slog file handle + head - Contains basic category info (see the description of
SLOG2_Category_head_t )

category_text_length
Number of characters incategory_text

category_text Text describing the category, suitable for use in a legend
methods Null-terminated array of null-terminated strings describing methods used to

process record-specific data.
method_extra Extra data for each method.

Notes

A category_index of -1 may be used to indicate that no more category descriptions will be made.
Once that has been done, it is invalid to callSLOG2_Write_category on that file handle.
Methods provide a way for a category to specify how to process data that each record provides. For
example, with each record generated by a call to a routine, there could be data consisting of the program
counter, following by the arguments to the routine. The category could specify two methods for this; the
first would read the program counter value and pop up a source-code browser; the second method could
pop up a box containing text listing the arguments to the routine (by name). More complex methods, for
example, could pop up graphical displays of array arguments to the routine. This feature is for future
expansion and is not supporting in the initial version of SLOG2.

Module

SLOG2 Output

SLOG2_Write _coord_class— Write out a coordinate class description

Synopsis

int SLOG2_Write_coord_class( const SLOG2_File fp,
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const char class_name[],
int ncoords,
const int in_coord_val[],
int out_coord_val[],
const char coord_label[][] )

Input Parameters

fp Slog file handle
class_name Name of the coordinate class
ncoords Number of coordinates inin_coord_val andout_coord_val
in_coord_val, out_coord_val

Coordinate pairs to match. Forj between0 andncoords-1 , the value of
in_coord_val[j] , specified as ay coordinate in a record, is mapped to the
valueout_coord_val[j] . Note that the values ofin_coord_val are in the
range ofthread_id_index values as defined for
TRACE_Get_next_drawable while the values ofout_coord_val are
(roughly) the y coordinate to be used in displaying a drawable.

coord_label Text describing the coordinate, suitable for use in a legend.

Notes

This routine allows an slog file to define several different views of the data. For example, a record may
contain, for they coordinate, the node, process, and thread id that generated the record. Coordinate classes
allow an slog file to define different ways to map the node/process/thread id into ay coordinate. Using
three calls to this routine, an Slog file could define a node, process, and thread view of the data. The
coord_label allows a display program, such as Jumpshot, to show the user what different coordinate
views are available.
If no coordinate class is defined, a default coordinate class is defined that provides the identity mapping
(the output coordinate values are the same as the input values; e.g., they coordinates in the drawable
objects are used directly).
Note that the code that makes use of the coordinate map needs to provide an efficient way to locate the
in_coord_val so that the correctout_coord_val can be found. For example, a hash function may
be used. As a special case, there may be other predefined maps besides the identity map (e.g., a simple
thread_id to out_coord_val mapping).
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Rationale

One reason for this routine is that the thread-view is difficult for a display program to manage, particularly
if threads are created and destroyed frequently. The program in the best position to create a mapping of
thread ids toy coordinates is the program that creates the Slog2 file, since it must read every record.

Question

This assumes that we can create a single int containing the originaly coordinate. For a node/process/thread
value, we might have a more than an int’s worth of bits. The reason that we leave it at an int it that there
will never be more than an int’s worth ofsignificantbits; that is, there will never be more than 4 billion
distincty values.

Module

SLOG2 Output

SLOG2_Write _dir — Write an entire Slog2 tree directory

Synopsis

int SLOG2_Write_dir( const SLOG2_File fp,
const SLOG2_Treedir_node dir[],
int n_nodes )

Input Parameters

fp slog2 file handle
dir Tree directory
n_nodes Number of nodes indir

Module

SLOG2 Output

SLOG2_Write _drawable_object — Add a drawable object to an slog file
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Synopsis

int SLOG2_Write_drawable_object( const SLOG2_File fp,
double starttime, double endtime,
int category_index,
int nt_coords, const double t_coord[],
int ny_coords, const int y_coord[],
int ntext, const char text[] )

Input Parameters

fp Slog file handle
starttime, endtime

time range for object

category_index
Category that this object belongs to

nt_coords Number of time (x) coordinates. May be0 if starttime andendtime are
sufficient

t_coords Time coordinates
ny_coords Number of y coordinates. Must be at least1.
y_coord Y coordinates
ntext Number of bytes of data for this object. May be0
text Data bytes for this object. This data is input to the methods defined by the

category.

Notes

They values may be simple values between0 and a small integer or they may be more complicated
integers, representing, for example, a node/process/thread id tuple. In the latter case, one or more
coordinate maps should be defined withSLOG2_Write_coord_class .

Module

SLOG2 Output

SLOG2_Write _end_treenode— End writing a tree node
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Synopsis

int SLOG2_Write_end_treenode( const SLOG2_File fp )

Input Parameter

fp Slog file handle

Module

SLOG2 Output

Question

Should this return a position or a length for the directory?

SLOG2_Write _header— Write the Slog2 file header

Synopsis

int SLOG2_Write_header( const SLOG2_File fp, const char description[] )

Input Parameters

fp Slog file handle
description Null terminated description text

Notes

This routine should be called before any other slog2 output routines. This version also writes the cookie
and version number of the library to the file header.

Questions

If we require that this be called first, should we merge it with Open?
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Module

SLOG2 Output

SLOG2_Write _start_treenode— Begin writing a tree node

Synopsis

int SLOG2_Write_start_treenode( const SLOG2_File fp )

Input Parameter

fp Slog file handle

Notes

This routine is called before writing the contents of a single tree node. When the treenode is complete,
SLOG2_Write_end_treenode must be called.

Module

SLOG2 Output

Question

Should this return a position (int64_t ) for the directory?
Currently, there are no routines for writing the local category or coordinate map information (local as in
local to the treenode). Do we need them?

D SLOG2 Input API

The SLOG2 Input API is used to read an Slog file, and is intended for use by programs such as Jumpshot.
This list is incomplete, and does not match all the capabilities of the slog2 output api.

SLOG2_Close— Close an Slog 2 file
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Synopsis

int SLOG2_Close( SLOG2_File *fp )

Input Parameter

fp Pointer to an Slog 2 file handle.

Notes

fp is set to null by this routine.

SLOG2_Get_drawable_text — Get a text string describing a particular drawable object

Synopsis

void SLOG2_Get_drawable_text( SLOG2_File fp,
int category_index,
const char *drawable_text,
char *instance_text, int text_max )

Input Parameters

fp Slog 2 file handle
category_index

Category index of drawable

drawable_text Text from drawable
text_max Maximum size ofinstance_text

Output Parameter

instance_text Text describing this particular drawable, as formatted acording to the rules of the
category.
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Notes

This provides a simple interface for converting the data associated with a drawable into a text string
according to the format provided by thelabel data of the category. This is a special case of the more
general method interface planned for a future enhancement.

SLOG2_Get_header— Read the header of an Slog 2 file

Synopsis

int SLOG2_Get_header( const SLOG2_File fp,
char description[], int maxdesclen,
int *version )

Input Parameters

fp Slog 2 file handle
maxdesclen Length of the arraydescription

Output Parameters

description Character string describing the SLOG file
version Version number of SLOG2 file

Return Value

Zero on success. Ifmaxdesclen is too small to hold the description, the return value is the negative of
the length needed. A positive value is a standard Unixerrno value corresponding to the error.

Question

Do we want a routine that returns values ofmaxdesclen (and the size of the directory tree etc.)?
What error value do we return if the version number in the file doesn’t match the one that the library is
expecting?

SLOG2_Get_next_category— Read the next category description
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Synopsis

int SLOG2_Get_next_category( const SLOG2_File fp,
SLOG_Category_head_t *head,
char *text_base, int *text_pos,
const int max_text,
char *legend_base, int *legend_pos,
const int max_legend )

category_index= -1 means no more categories

Notes

This routine is structured this way to give the maximum flexibility in reading the data. For example, one
approach could define a category structure, such as

typedef struct {
SLOG2_Category_head_t head;
char text[MAX_TEXT];
char legend[MAX_LEGEND];

} Category_t;

and call this routine as

Category_t *p;
int pos = 0, lpos = 0;
p = (Category_t *)malloc( sizeof(Category_t) );
SLOG2_Get_next_category( fp, &p->head

p->text, &pos, MAX_TEXT,
p->legend, &lpos, MAX_LEGEND );

Alternately, the categories can be stored in common storage, particularly for the text and legend. For
example,

typedef struct {
SLOG2_Category_head_t head;
int text_pos, text_len, legend_pos, legend_len }
Category_t;

Category_t p[MAX_CATEGORY];
char text[MAX_TOTAL_TEXT], legend[MAX_LEGEND_TEXT];
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int pos = 0, lpos = 0;
int catnum;
...
p[catnum].text_pos = pos;
p[catnum].legend_pos = lpos;
SLOG2_Get_next_category( fp, &p[catnum].head,

text, &pos, MAX_TOTAL_TEXT,
legend, &lpos, MAX_LEGEND_TEXT );

p[catnum].text_len = pos - p[catnum].text_pos;
p[catnum].legend_len = lpos - p[catnum].legend_pos;
catnum ++;

The reason for this flexibility is to allow fixed-length representations for most of a category and allow the
code reading the slog 2 file to decide where to place the variable-length data.

Rationale

TheSLOG_Category_head_t provides a reasonable comprimise between specifying each element of
the head (e.g., six separate arguments for each of the fields in theSLOG_Category_head_t ) and
defining a single category structure that contains the text and legend fields.

SLOG2_Get_next_drawable — Get the next drawable object

Synopsis

int SLOG2_Get_next_drawable( const SLOG2_File fp,
double *starttime, double *endtime,
int *category_index,
int *ncoords, double *coord_base,
int *coord_pos,
const int coord_max,
char *text_base, int *text_pos,
const int text_max )

Input Parameters

fp Slog 2 file handle

54



coord_base Pointer to storage for coordinates (seecoord_pos )
coord_max Size ofcoord_base
text_base Pointer to storage for text (seetext_base )
text_max Size oftext_base

In/Out Parameters

coord_pos
text_post

Output Parameters

starttime,endtime
Beginning and endtime time of drawable

category_index
Category that this drawable belongs to

ncoords Number of coordinates for this drawable

Notes

SLOG2_Get_position — Return the current position in an Slog2 file

Synopsis

int64_t SLOG2_Get_position( const SLOG2_File fp )

Input Parameter

fp Slog 2 file handle

Return Value

Current position of file.
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Question

The slog2 output api also has this routine. Do they need to be different?

SLOG2_Get_total_time — Return the time range covered by an Slog 2 file

Synopsis

int SLOG2_Get_total_time( const SLOG2_File fp,
double *starttime, double *endtime )

Input Parameter

fp Slog 2 file handle

Output Parameters

starttime Time when log file begins (no event before this time)
endtime Time when log file end (no event after this time)

SLOG2_Open— Open an Slog 2 file

Synopsis

int SLOG2_Open( const char filename[], char mode, SLOG2_File *fp )

Input Parameters

filename Name of the file to read or write
mode ’ r’ for reading and ’w’ for writing

Output Parameter

fp A handle to an SLOG2 file.
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Question

Themode was added since the SLOG2 output API defines the same routine. Do we want to use the same
routine (and make these all part of a single slog2 library) or do we want different routines? If so, we may
want a different prefix, e.g., slog2in and slog2out instead of just slog2.

SLOG2_Peek_next_drawable — Peek at the next drawable

Synopsis

int SLOG2_Peek_next_drawable( const SLOG2_File fp,
double *starttime, double *endtime,
int *nt_coords, int *ny_coords,
int *n_text )

Input Parameter

fp Slog 2 file handle

Output Parameters

starttime, endtime
time limits of drawable

nt_coords number of t coordinates
ny_coords number of y coordinates
n_text number of bytes in text

SLOG2_Read_dir — Read an Slog 2 directory structure

Synopsis

int SLOG2_Read_dir( const SLOG2_File fp, SLOG2_Treenode dir[],
int maxtree, int *n_nodes )
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Input Parameters

fp Slog 2 file handle
maxtree Size of the arraydir

Output Parameters

dir Array describing the Slog 2 directory (see Notes)
n_nodes The number of nodes indir

Notes

An Slog 2 file is described by a tree-structured directory. This call returns the directory in an array
provided by the user. Each node in the tree is a struct of typeSLOG2_Treenode . The root isdir[0] ;
the fieldslchild andrchild give the indices indir of the left and right children respectively. A
parent of-1 indicates the root.

SLOG2_Set_position — Set the current position of an Slog2 file

Synopsis

void SLOG2_Set_position( const SLOG2_File fp, int64_t offset )

Input Parameters

fp Slog 2 file handle
offset Position to set file at

E Jumpshot Plans

While Jumpshot is not part of Slog2, the Jumpshot program is the program that we are planning to use to
display Slog files, and the Slog design includes features designed to make the implementation of Jumpshot
easier.

Some of the features that the next Jumpshot may have include

1. Pluggable modules for most graphical objects:
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(a) Preview module

(b) Display module; specifically, each category type can specify one or more methods that are used
to display the records belonging to that category. We should also consider a canvas module that
manages the display of the timelines.

(c) Analysis modules. This will allow the user to provide a module that can analyze the records and
display information or generate a different graphical interpretation. One example is a module
that causes excessively long (slow) communications to blink.

Of course, Jumpshot will provide default modules for all of these; the point of making them pluggable
is both to allow user customization and easy extension and to enable research into other display
approaches.

2. Smooth scrolling in time, even across tree nodes.

3. Today’s version of Java/Swing (e.g., 1.3?). With any luck, Java and Swing will stop changing in
backward-incompatible ways.

4. Runnable through a web browser.

5. Data structures designed to work efficiently with Java.

F SLOG1 to SLOG2 Transition Plans

In Slog1, there is an API to write an Slog file, directly from a source file such as UTE or clog. None of
the APIs described above fits that model. This is a result of both the desire to create an annoted-only slog
file (e.g., one that containsonly the scalablity information, not a copy of the original data records) and the
reorganization of the Slog file to be more block oriented.

An API to that provides data records to the Slog2 program (i.e., the program that writes the Slog2
file using the Slog2 output API) could also be written; it should probably be similar to the current API
used to write Slog1 files from UTE files. However, we will need to modify that API so that the short-
term comprimises used to deliver a working version are replaced with the more general Slog2 features.
Specifically, the category and method-based processing of byte-strings associated with each drawable object
will allow handling of arbitrary data, including 64-bit addresses and non-integer data (e.g., file names). We
may also want to provide some coordinate map information.

The steps for developing the code for SLOG2 follow:

1. Write a version of the tracefile input API for the MPICH clog format.

2. Write a version of the SLOG2 Output API and implement the SLOG2 program as described in
Section3.
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3. Write a corresponding verison of the SLOG2 Input API and several diagnostic programs (e.g., print
the contents of the SLOG2 file).

4. Develop an all-new version of Jumpshot as described in AppendixE.

5. Develop annotated Slog2 varients of the SLOG2 APIs and make Jumpshot work with them.

Concurrently with these steps, a plan will be developed to interface UTE to SLOG2.
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