
THE DEFINITIVE GUIDES TO THE
X WINDOW SYSTEM

VOLUME SIX B

Motif Reference Manual

for Motif 2.1

Open Source Edition

Antony Fountain and Paula Ferguson

Motif Reference Manual, Open Source Edition

by Antony Fountain and Paula Ferguson

December 2001

Copyright 1993, 2000, 2001 O’Reilly & Associates, Inc. and Antony Fountain. This

material may be distributed only subject to the terms and conditions set forth in the

Open Publication License, v1.0 or later (the latest version is presently available at

http://www.opencontent.org/openpub/).

This is a modified version of the Motif Reference Manual, Second Edition, published

by O’Reilly & Associates in February 2000. The source files for the Second Edition can

be found at http://www.oreilly.com/openbook/motif/. A description of the

modifications is contained in the Preface to the Open Source Edition.

Many of the designations used by manufacturers and sellers to distinguish their

products are claimed as trademarks. Where those designations appear in this book,

and O’Reilly & Associates, Inc. was aware of a trademark claim, the designations have

been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher

assumes no responsibility for errors or omissions, or for damages resulting from the

use of the information contained herein.

Published by:

Imperial Software Technology Limited
Kings Court

185 Kings Road

Reading

Berkshire RG1 4EX

Tel: +44 118 958 7055

Fax: +44 118 958 9005

email: sales@ist.co.uk

URL: http://www.ist.co.uk

Contents

Preface . v

Section 1 - Motif Functions and Macros . 1

Section 2 - Motif and Xt Widget Classes . 557

Section 3 - Mrm Functions . 961

Section 4 - Mrm Clients . 999

Section 5 - UIL File Format . 1033

Section 6 - UIL Data Types . 1053

Section 7 - UIL Functions .1113

Appendix A - Function Summaries . 1125

Appendix B - Data Types . 1159

Appendix C - Table of Motif Resources . 1199

Appendix D Table of UIL Objects . 1225

Appendix E - New Features in Motif 2.0 and 2.1 1233
Motif Reference Manual iii

Contents
Motif Reference Manual iv

DF
Preface

Preface to the Open Source Edition

Many thanks to all at O’Reilly and Associates for releasing this, Volume 6B, and the

companion Volume 6A, the Motif Programming Manual, in open source. Both have

been extensively revised for Motif 2.1; this, the Motif Reference Manual, has had

several alterations to the 2nd edition as printed:

• all the function prototypes and examples have been converted to strict ANSI format
• the UIL sections have been restored
• the Xt Session Shell is documented
• many bug patches have been folded in
• new examples have been added to Motif 2.1 procedure sections
• the book sources have been converted from the original troff into FrameMaker and P

formats

Removing the UIL portions from the original printed second edition was a hard

decision; the Motif 2.1 toolkit was a much expanded library since previous versions of

the book, and something had to give - the book was over a thousand pages as it was.

However, an electronic copy does not have the same space restrictions as the printed

tome, and so these materials, originally in the Motif 1.2 version of the manual, have

been restored. They also have been reworked for Motif 2.1.

Antony J. Fountain

Preface to the Second Edition

What to put in, and what to leave out, of this update to the Motif Reference Manual

was the hardest decision of all. The guiding principle has been to consider for whom

this material is intended. This is a Programmer’s Reference, and not a Widget Author’s

handbook. Accordingly, those aspects of the new Trait mechanisms which an

application programmer needs to know have been included, but the Xme utilities have

not. Specifying a Trait as a well-defined piece of behaviour which a widget supports,

it is enough to know which traits a Widget Class supports, and how this affects objects

in the widget instance hierarchy. How a Trait is implemented, and which methods are

associated with the given Trait, are generally the domain of the widget author. Hence

it is recorded that the VendorShell holds the XmQTspecifyRenderTableTrait, and that

this means that widget classes further down the widget instance hierarchy inherit

default Render Table information from the VendorShell. This is all that the Application

Programmer needs to know: the rest is silence.
Motif Reference Manual v

Preface

ntire
cting
Conversely, the Motif Input Method utilities have been included. Although mostly

defined originally in the Motif 1.2 release, and although the Motif widget classes

generally handle connections to an Input Method when and where this is required, there

is an important exception. The Motif Drawing Area does not register itself with an Input

Method automatically, and hence anyone who needs to directly implement

internationalized input for this widget class most certainly would need to know about

the XmIm functions. The World does not all speak English: for these reasons, the XmIm

functions are included in the Manual.

A brief note concerning the status of Motif as the premier Unix toolkit. A number of

alternative toolkits have arisen, particularly in the Linux domain, which offer an X-based

windowing system for the Unix, and other, platforms. I refer principally to the likes of

Qt, and GTK+. These on the whole dispense with the Xt layer, in order to provide small,

lightweight GUI components which are, from the application programmer’s perspective,

relatively easy to port to non-Unix domains. Although admirable in many ways, these

suffer from one crucial drawback, precisely because Xt has been excluded: there is no

object component model associated with any of the objects which can be created in an

interface1. Compare and contrast with something like JavaBeans, where a GUI builder

can be designed which can dynamically load and query objects from whatever source,

and from thence inspect the attributes of the object, construct resource panels, and

generate code for the components, all without any external configuration. Based on Xt,

Motif also has this important property: I can in principle dynamically load into my GUI

builder any third party component, construct an internal attribute list, present resource

panels for object configuration to the user, and from there generate source code. Just by

interrogating the widget class. All the commercial GUI builders available for Motif

support this.

The newer alternative Linux toolkits do not have this introspective quality. Writing GUI

builders happens to be what I do for a living: sad to say, I cannot write one for these

toolkits precisely because these is no component model at the object level. Not

surprisingly, no third party component market exists for the toolkits either: there is no

GUI builder into which these components can be dynamically slotted. Each needs the

other, but there is nothing which allows them to talk. In the absence of either a

commercial component market, or a dynamic GUI builder, there remains serious

question marks concerning the scalability of the alternative toolkits, whatever merits

they hold. The only alternatives are to write all the code by hand, or pass control of the

1.True at the moment of writing. It is still true that all the information required to dynamically introspect an object’s e
resource set, particularly if user-defined and not built-in to the basic set, is not completely forthcoming. Introspe
third party components remains troublesome for a dynamic GUI builder.
vi Motif Reference Manual

Preface

or the
scale
application to a private piece of hobbyware which masquerades as a support

environment. Ironically, the advent of Java has cemented Motif: the JDK relies on Motif

for the native implementation on the Unix platform. Until such time as a native toolkit

surfaces which has this important introspective property, Motif remains what it has

long been, the only native toolkit for Unix which supports large scale internationalized

applications.1

About the Motif Toolkit

The Motif toolkit, from the Open Software Foundation (OSF), is based on the X Toolkit

Intrinsics (Xt), which is the standard mechanism on which many of the toolkits written

for the X Window System are based. Xt provides a library of user-interface objects

called widgets and gadgets, which provide a convenient interface for creating and

manipulating X windows, colormaps, events, and other cosmetic attributes of the

display. In short, widgets can be thought of as building blocks that the programmer

uses to construct a complete application.

However, the widgets that Xt provides are generic in nature and impose no user-

interface policy whatsoever. Providing the look and feel of an interface is the job of a

user-interface toolkit such as Motif. Motif provides a complete set of widgets that are

designed to implement the application look and feel specified in the Motif Style Guide
and the Motif Application Environment Specification. The Motif toolkit also includes a

library of functions for creating and manipulating the widgets and other aspects of the

user interface.

The Motif toolkit has other components in addition to the widget set and related

functions. Motif provides a User Interface Language (UIL) for describing the initial

state of a user interface. UIL is designed to permit rapid prototyping of the user

interface for an application. The Motif Resource Manager (Mrm) functions provide the

interface between C language application code and UIL. Motif also provides the Motif

Window Manager (mwm). The appearance and behavior of this window manager is

designed to be compatible with the appearance and behavior of the Motif widget set.

About This Manual

This manual contains reference material on the Motif toolkit. This edition is based on

Motif 2.1, which is the latest major release of the Motif toolkit. Motif 1.2 is based on

1.The contents of this paragraph were true at the moment of writing. There is now a commercial GUI builder f
Linux toolkits; whether it survives in a free software environment remains to be seen. It is still true that the large
commercial concerns continue to use Motif for their native Unix toolkit.
Motif Reference Manual vii

Preface
Release 6 of the Xlib and Xt specifications (X11R6). This release of Motif provides many

new features, including new widget classes and several new functions. In order to cover

all of the material, it became necessary to split Volume Six into two separate manuals, a

programming manual and a reference manual. Volume Six A is the Motif Programming
Manual and Volume Six B is the Motif Reference Manual.

This manual is part of the sixth volume in the O’Reilly & Associates X Window System

Series. It includes reference pages for each of the Motif functions and macros, for the

Motif and Xt Intrinsics widget classes, for the Mrm functions, for the Motif clients, and

for the UIL file format, data types, and functions. A permuted index and numerous quick

reference appendices are also provided.

Volume Six B includes reference pages for all of the new functions and widgets in Motif

2.0 and 2.1. When the functionality of an existing routine or widget has changed in Motif

2.0 or 2.1, the reference page explains the differences between the two versions. Volume

Six B also provides a complete set of reference material for UIL and Mrm, which was not

covered in the previous edition.

Volumes Six A and B are designed to be used together. Volume Six A provides a

complete programmer’s guide to the Motif toolkit. Each chapter of the book covers a

particular component of the Motif toolkit. Each chapter includes basic tutorial material

about creating and manipulating the component, intermediate-level information about

the configurable aspects of the component, and any advanced programming topics that

are relevant. The chapters also provide numerous programming examples.

To get the most out of the examples in Volume Six A, you will need the exact calling

sequences of each function from Volume Six B. To understand fully how to use each of

the routines described in Volume Six B, all but the most experienced Motif programmers

will need the explanations and examples in Volume Six A.

While the Motif toolkit is based on Xt, the focus of this manual is on Motif itself, not on

the X Toolkit Intrinsics. Reference pages for the Xt widget classes are included here to

provide a complete picture of the widget class hierarchy. Many reference pages mention

related Xt routines, but the functionality of these routines is not described. Detailed

information about Xt is provided by Volume 4, X Toolkit Intrinsics Programming Manual,
Motif Edition, and Volume 5, X Toolkit Intrinsics Reference Manual.

How This Manual is Organized

Volume Six B is designed to make it easy and fast to look up virtually any fact about the

Motif toolkit. It contains reference pages and numerous helpful appendices.
viii Motif Reference Manual

Preface

ol-

-

ter-

or-

-

n-

h

,
otif

es

r

The book is organized as follows:

Preface Describes the organization of the book and the conventions it f
lows.

Section 1 Motif Functions and Macros, contains reference pages for all of
Motif functions and macros.

Section 2 Motif and Xt Widget Classes, contains reference pages for the
widget classes defined by the Motif toolkit and the X Toolkit Intrin
sics.

Section 3 Mrm Functions, contains reference pages for the Motif Resource
Manager functions that are used in conjuctions with the User In
face Language.

Section 4 Motif Clients, contains reference pages for the Motif clients:mwm,
uil, andxmbind.

Section 5 UIL File Format, contains reference pages that describe the file f
mat of a User Interface Language module.

Section 6 UIL Data Types, contains reference pages for the data types sup
ported by the User Interface Language.

Section 7 UIL Functions, contains reference pages for the User Interface La
guage functions.

Appendix A Function Summaries, provides quick reference tables that list eac
Motif function alphabetically and also by functional groups.

Appendix B Data Types, lists and explains in alphabetical order the structures
enumerated types, and other typedefs used for arguments to M
and Mrm functions.

Appendix C Table of Motif Resources, lists all of the resources provided by
Motif and Xt widget classes, along with their types and the class
that define them.

Appendix D Table of UIL Objects, lists all of the objects supported by the Use
Interface Language, along with their corresponding Motif widget
classes.

Appendix E New Features in Motif 1.2, lists the new functions, widget classes,
and widget resources in Motif 1.2.

Index Should help you to find what you need to know.
Motif Reference Manual ix

Preface
Assumptions

This book assumes that the reader is familiar with the C programming language and

the concepts and architecture of the X Toolkit, which are presented in Volume 4, X
Toolkit Intrinsics Programming Manual, Motif Edition, and Volume 5, X Toolkit Intrinsics
Reference Manual. A basic understanding of the X Window System is also useful. For

some advanced topics, the reader may need to consult Volume 1, Xlib Programming
Manual, and Volume 2, Xlib Reference Manual.

Related Documents

The following books on the X Window System are available from O’Reilly &

Associates, Inc.:

Volume Zero X Protocol Reference Manual

Volume One Xlib Programming Manual

Volume Two Xlib Reference Manual

Volume Three X Window System User’s Guide, Motif Edition

Volume Four X Toolkit Intrinsics Programming Manual, Motif
Edition

Volume Five X Toolkit Intrinsics Reference Manual

Volume Six A Motif Programming Manual

Volume Seven XView Programming Manual with accompany-
ing reference volume.

Volume Eight X Window System Administrator’s Guide

PHIGS Programming Manual

PHIGS Reference Manual

PEXlib Programming Manual

PEXlib Reference Manual

Quick Reference The X Window System in a Nutshell

Programming Supplement for Release 6 of the X Window System

Conventions Used in This Book

Italic is used for:
Motif Reference Manual x

Preface

er

and

tions,
ge.
• UNIX pathnames, filenames, program names, user command names, options for us
commands, and variable expressions in syntax sections.

• New terms where they are defined.

Constant Width Font is used for:

• Anything that would be typed verbatim into code, such as examples of source code
text on the screen.

• Variables, data structures (and fields), symbols (defined constants and bit flags), func
macros, and a general assortment of anything relating to the C programming langua

• All functions relating to Motif, Xt, and Xlib.
• Names of subroutines in example programs.

Constant Width Italic Font is used for:

• Arguments to functions, since they could be typed in code as shown but are arbitrary
names that could be changed.

Helvetica Italic is used for:

• Titles of examples, figures, and tables.

Boldface is used for:

• Chapter headings, section headings, and the names of buttons and menus.

We’d Like to Hear From You

We have tested and verified all of the information in this book to the best of our ability,

but you may find that features have changed (or even that we have made mistakes!).

Please let us know about any errors you find, as well as your suggestions for future

editions, by writing:

O’Reilly & Associates, Inc.

103 Morris Street, Suite A

Sebastopol, CA 95472

1-800-998-9938 (in the US or Canada)

1-707-829-0515 (international/local)

1-707-829-0104 (FAX)
Motif Reference Manual xi

Preface
Acknowledgements

This book developed out of the realization that it would be impossible to update the

first edition of Volume Six to cover Motif 1.2 without dividing the original book into

two books. Dan Heller, David Flanagan, Adrian Nye, and Tim O’Reilly all provided

valuable suggestions on how best to expand the original reference appendices into a

full-fledged reference manual.

The Motif reference pages in this book are based on the reference appendices from the

first edition, which were developed by Daniel Gilly. His work meant that I didn’t have

to start from scratch, and thus saved many hours of toil. The OSF/Motif reference

material also provided a helpful foundation from which to explore the complexities of

the Motif toolkit. Many of the Motif examples in the book were borrowed from the first

edition of Volume Six. These example were written by Dan Heller, although they have

been updated for Motif 1.2

Dave Brennan, of HaL Computer Systems, took on the unenviable task of learning

everything there is to know about UIL and Mrm, so that he could write the UIL

reference material. He did a great job.

Adrian Nye deserves special recognition for freeing me to work on this project, when

I’m sure that he had other projects he would have liked to send my way. I don’t think

either one of us had any idea how involved this update project would become. The

other inhabitants of the "writer’s block" at O’Reilly & Associates, Valerie Quercia,

Linda Mui, and Ellie Cutler, provided support that kept me sane while I was working

on the book. Extra gratitude goes to Linda Mui for her work on the cross references and

the reference tables; her knowledge of various tools prevented me from doing things

the hard way. Tim O’Reilly also provided editorial support that improved the quality

of the reference material.

Special thanks go to the people who worked on the production of this book. The final

form of this book is the work of the staff at O’Reilly & Associates. The authors would

like to thank Chris Reilly for the figures, Ellie Cutler for indexing, Lenny Muellner for

tools support, Eileen Kramer for copy editing and production of the final copy, and

Clairemarie Fisher O’Leary for final proofing and printing. Thanks also to Donna

Woonteiler for her patience in answering my questions and helping me to understand

the production process.

Despite the efforts of all of these people, the authors alone are responsible for any

errors or omissions that remain.

Paula M. Ferguson
Motif Reference Manual xii

Preface
Acknowledgements to the Motif 2.1 Edition

Many thanks to all at IST who gave me the time and opportunity to perform this work.

I would like to thank all those who reviewed the material, which in a Reference Manual

of this type is a tedious but necessary task: a very big "Thank You" to Andy Bartlett

who took the trouble of sitting down with the Motif sources whilst pouring over every

technical detail, and to Tricia Lovell who reviewed the format at particularly short

notice.

A special thanks also to Richard Offer and Doug Rand from Silicon Graphics, and

Mark Riches for casting expert and independent eyes over the materials. I would also

like to thank Andy Lovell and Derek Lambert for allowing and freeing me up to

perform the task. To the rest of the company, who have had to wait whilst yet another

batch of print jobs ran to completion, all I can say is "Sorry".

A very big “Thank You” indeed to all at O’Reilly for allowing me to undertake this

important task, and especially to Paula Ferguson, my editor: I could not have done this

without you.

But to my wife Emma, who put up with some seriously late nights over a long period,

goes the biggest "Thank You" of all. This would not have happened without any of you,

and I am extremely grateful.

Antony J. Fountain

Acknowledgements to the Open Source Edition

Again, many thanks to all at IST who helped me convert the original troff to Frame and

PDF formats. A special thank you to Denise Huxtable who enlightened me on the

mysteries of Reference Pages, Indexes, and Tables of Contents. Denise also performed

much of the cross-referencing in the manual. Thank you also to Ruth Lambert, who

showed me how to mark up the document sources.

Again, a very big “Thank You” to all at O’Reilly, and Paula Fergusson in particular, for

helping this open source edition come about.

And again, to my wife Emma: a big kiss, and I’ll be home real soon now.

Antony J. Fountain
Motif Reference Manual xiii

tion 1,

argu-

on to

turn
pe,
varia-
-

this
of

e

also

d

ut
Section 1 - Motif Functions and Macros

This page describes the format and contents of each reference page in Sec
which covers the Motif functions and macros.

Name
Function – a brief description of the function.

Synopsis

This section shows the signature of the function: the names and types of the
ments, and the type of the return value. If header file other than<Xm/Xm.h> is
needed to declare the function, it is shown in this section as well.

Inputs
This subsection describes each of the function arguments that pass informati
the function.

Outputs
This subsection describes any of the function arguments that are used to re
information from the function. These arguments are always of some pointer ty
so you should use the C address-of operator (&) to pass the address of the
ble in which the function will store the return value. The names of these argu
ments are sometimes suffixed with_return to indicate that values are returned in
them. Some arguments both supply and return a value; they will be listed in
section and in the "Inputs" section above. Finally, note that because the list
function arguments is broken into "Input" and "Output" sections, they do not
always appear in the same order that they are passed to the function. See th
function signature for the actual calling order.

Returns
This subsection explains the return value of the function, if any.

Availability
This section appears for functions that were added in Motif 2.0 and later, and
for functions that are now superseded by other, preferred, functions.

Description
This section explains what the function does and describes its arguments an
return value. If you’ve used the function before and are just looking for a
refresher, this section and the synopsis above should be all you need.

Usage
This section appears for most functions and provides less formal information
about the function: when and how you might want to use it, things to watch o
for, and related functions that you might want to consider.
Motif Reference Manual 1

Motif Functions and Macros

nd

efs,

tion.

um-
k in
Example
This section appears for some of the most commonly used Motif functions, a
provides an example of their use.

Structures
This section shows the definition of any structures, enumerated types, typed
or symbolic constants used by the function.

Procedures
This section shows the syntax of any prototype procedures used by the func

See Also
This section refers you to related functions, widget classes, and clients. The n
bers in parentheses following each reference refer to the sections of this boo
which they are found.
2 Motif Reference Manual

Motif Functions and Macros XmActivateProtocol

-
d

the

sim-
on.
e
, the
Name
XmActivateProtocol – activate a protocol.

Synopsis

#include <Xm/Protocols.h>

void XmActivateProtocol (Widgetshell, Atomproperty, Atomprotocol)

Inputs
shell - Specifies the widget associated with the protocol property.
property - Specifies the property that holds the protocol data.
protocol - Specifies the protocol atom.

Description
XmActivateProtocol () activates the specified protocol. If the shell is real
ized,XmActivateProtocol () updates its protocol handlers and the specifie
property. If the protocol is active, the protocol atom is stored in property; if
protocol is inactive, the protocol atom is not stored in property.

Usage
A protocol is a communication channel between applications. Protocols are
ply atoms, stored in a property on the top-level shell window for the applicati
XmActivateProtocol () makes the shell able to respond to ClientMessag
events that contain the specified protocol. Before you can activate a protocol
protocol must be added to the shell withXmAddProtocols (). Protocols are
automatically activated when they are added. The inverse routine isXmDeacti-
vateProtocol ().

See Also
XmActivateWMProtocol (1), XmAddProtocols (1) XmDeactivate-
Protocol (1), XmInternAtom (1), VendorShell (2).
Motif Reference Manual 3

XmActivateWMProtocol Motif Functions and Macros

-
the

d.
Name
XmActivateWMProtocol – activate the XA_WM_PROTOCOLS protocol.

Synopsis

#include <Xm/Protocols.h>

void XmActivateWMProtocol (Widgetshell, Atomprotocol)

Inputs
shell - Specifies the widget associated with the protocol property.
protocol - Specifies the protocol atom.

Description
XmActivateWMProtocol () is a convenience routine that callsXmActi-
vateProtocol () with property set to XA_WM_PROTOCOL, the window
manager protocol property.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com
munication between clients and window managers. Before you can activate
protocols, they must be added to the shell withXmAddProtocols () or XmAd-
dWMProtocols (). Protocols are automatically activated when they are adde
The inverse routine isXmDeactivateWMProtocol ().

See Also
XmActivateProtocol (1), XmAddProtocols (1),
XmAddWMProtocols (1), XmDeactivateWMProtocol (1),
XmInternAtom (1), VendorShell (2).
4 Motif Reference Manual

Motif Functions and Macros XmAddProtocolCallback

ri-

so

sim-
on.
tain-
sso-
Name
XmAddProtocolCallback – add client callbacks to a protocol.

Synopsis

#include <Xm/Protocols.h>

void XmAddProtocolCallback (Widget shell,
Atom property,
Atom protocol,
XtCallbackProc callback,
XtPointer closure)

Inputs
shell - Specifies the widget associated with the protocol property.
property - Specifies the property that holds the protocol data.
protocol - Specifies the protocol atom.
callback - Specifies the procedure to invoke when the protocol message

 is received.
closure - Specifies any client data that is passed to the callback.

Description
XmAddProtocolCallback() adds client callbacks to a protocol. The routine ve
fies that the protocol is registered, and if it is not, it calls XmAddProtocols().
XmAddProtocolCallback() adds the callback to the internal list of callbacks,
that it is called when the corresponding client message is received.

Usage
A protocol is a communication channel between applications. Protocols are
ply atoms, stored in a property on the top-level shell window for the applicati
To communicate using a protocol, a client sends a ClientMessage event con
ing a property and protocol, and the receiving client responds by calling the a
ciated protocol callback routine. XmAddProtocolCallback() allows you to
register these callback routines.

See Also
XmAddProtocols (1), XmAddWMProtocolCallback (1),
XmInternAtom (1), VendorShell (2).
Motif Reference Manual 5

XmAddProtocols Motif Functions and Macros

pro-
col.

sim-
n.

rop-

eci-
Name
XmAddProtocols – add protocols to the protocol manager.

Synopsis

#include <Xm/Protocols.h>

void XmAddProtocols (Widgetshell, Atom property, Atom *protocols, Cardinal
num_protocols)

Inputs
shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocols Specifies a list of protocol atoms.
num_protocols Specifies the number of atoms in protocols.

Description
XmAddProtocols () registers a list of protocols to be stored in the specified
property of the specified shell widget. The routine adds the protocols to the
tocol manager and allocates the internal tables that are needed for the proto

Usage
A protocol is a communication channel between applications. Protocols are
ply atoms, stored in a property on the top-level shell window for the applicatio
XmAddProtocols () allows you to add protocols that can be understood by
your application. The inverse routine isXmRemoveProtocols (). To commu-
nicate using a protocol, a client sends a ClientMessage event containing a p
erty and protocol, and the receiving client responds by calling the associated
protocol callback routine. UseXmAddProtocolCallback () to add a call-
back function to be executed when a client message event containing the sp
fied protocol atom is received.

See Also
XmAddProtocolCallback (1), XmAddWMProtocols (1),
XmInternAtom (1), XmRemoveProtocols (1), VendorShell (2).
6 Motif Reference Manual

Motif Functions and Macros XmAddTabGroup

g

ou-
er

e
n-

ther
by

sing
are
s). If

oll-

e is
Name
XmAddTabGroup – add a widget to a list of tab groups.

Synopsis

void XmAddTabGroup (Widgettab_group)

Inputs
tab_group Specifies the widget to be added.

Availability
In Motif 1.1, XmAddTabGroup() is obsolete. It has been superceded by settin
XmNnavigationType to XmEXCLUSIVE_TAB_GROUP.

Description
XmAddTabGroup() makes the specified widget a separate tab group. This r
tine is retained for compatibility with Motif 1.0 and should not be used in new
applications. If traversal behavior needs to be changed, this should be don
directly by setting the XmNnavigationType resource, which is defined by Ma
ager and Primitive.

Usage
A tab group is a group of widgets that can be traversed using the keyboard ra
than the mouse. Users move from widget to widget within a single tab group
pressing the arrow keys. Users move between different tab groups by pres
the Tab or Shift-Tab keys. If the tab_group widget is a manager, its children
all members of the tab group (unless they are made into separate tab group
the widget is a primitive, it is its own tab group. Certain widgets must not be
included with other widgets within a tab group. For example, each List, Scr
bar, OptionMenu, or multi-line Text widget must be placed in a tab group by
itself, since these widgets define special behavior for the arrow or Tab keys,
which prevents the use of these keys for widget traversal. The inverse routin
XmRemoveTabGroup().

See Also
XmGetTabGroup (1), XmRemoveTabGroup(1),
XmManager(2), XmPrimitive (2).
Motif Reference Manual 7

XmAddToPostFromList Motif Functions and Macros

e
each

 a
d. If

n-

et in

ut-

oce-
Name
XmAddToPostFromList – make a menu accessible from a widget.

Synopsis

#include <Xm/RowColumn.h>

void XmAddToPostFromList (Widgetmenu, Widgetwidget)

Inputs
menu Specifies a menu widget
widget Specifies the widget from which to make menu accessible

Availability
In Motif 2.0 and later, the function prototype is removed from RowColumn.h,
although there is otherwise no indication that the procedure is obsolete.

Description
XmAddToPostFromList () is a convenience function which makes menu
accessible from widget. There is no limit to how many widgets may share th
same menu. The event sequence required to popup the menu is the same in
widget context.

Usage
Rather than creating a new and identical hierarchy for each context in which
pulldown or popup menu is required, a single menu can be created and share
the type of the menu is XmMENU_PULLDOWN, the value of the XmNsubMe
uId resource of widget is set to menu. If the type of the menu is
XmMENU_POPUP, button and key press event handlers are added to widg
order to post the menu.

There are implicit assumptions that widget is a CascadeButton or CascadeB
tonGadget when menu is XmMENU_PULLDOWN, and that widget is not a
Gadget when menu is XmMENU_POPUP. These are not checked by the pr
dure.

See Also
XmGetPostedFromWidget (1), XmRemoveFromPostFromList (1),
XmCascadeButton (2), XmCascadeButtonGadget (2), XmGadget(2),
XmPopupMenu(2), XmPulldownMenu (2), XmRowColumn(2).
8 Motif Reference Manual

Motif Functions and Macros XmAddWMProtocolCallback

-
 pro-

col,
 rou-
Name
XmAddWMProtocolCallback – add client callbacks to an
XA_WM_PROTOCOLS protocol.

Synopsis

#include <Xm/Protocols.h>

void XmAddWMProtocolCallback (Widget shell,
Atom protocol,
XtCallbackProc callback,
XtPointer closure)

Inputs
shell Specifies the widget associated with the protocol property.
protocol Specifies the protocol atom.
callback Specifies the procedure to invoke when the protocol message

 is received.
closure Specifies any client data that is passed to the callback.

Description
XmAddWMProtocolCallback () is a convenience routine that callsXmAd-
dProtocolCallback () with property set to XA_WM_PROTOCOL, the win-
dow manager protocol property.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com
munication between clients and window managers. To communicate using a
tocol, a client sends a ClientMessage event containing a property and proto
and the receiving client responds by calling the associated protocol callback
tine. XmAddWMProtocolCallback () allows you to register these callback
routines with the window manager protocol property. The inverse routine is
XmRemoveWMProtocolCallback ().

Example
The following code fragment shows the use ofXmAddWMProtocolCall-
back () to save the state of an application using the WM_SAVE_YOURSELF
protocol:

Atom wm_save_yourself;

wm_save_yourself = XInternAtom 1 (XtDisplay
(toplevel),

1.From Motif 2.0, XmInternAtom() is marked for deprecation.
Motif Reference Manual 9

XmAddWMProtocolCallback Motif Functions and Macros
"WM_SAVE_YOURSELF
", False);

XmAddWMProtocols (toplevel, &wm_save_yourself, 1);

XmAddWMProtocolCallback (toplevel,
wm_save_yourself,
save_state, toplevel);

save_state is a callback routine that saves the state of the application.

See Also
XmAddProtocolCallback (1), XmInternAtom (1),
XmRemoveWMProtocolCallback (1), VendorShell (2).
10 Motif Reference Manual

Motif Functions and Macros XmAddWMProtocols

o-

p-

-

on.

oto-
ack

atom

g the
Name
XmAddWMProtocols – add the XA_WM_PROTOCOLS protocols to the prot
col manager.

Synopsis

#include <Xm/Protocols.h>

void XmAddWMProtocols (Widgetshell, Atom *protocols, Cardinal
num_protocols)

Inputs
shell Specifies the widget associated with the protocol property.
protocols Specifies a list of protocol atoms.
num_protocols Specifies the number of atoms in protocols.

Description
XmAddWMProtocols() is a convenience routine that calls XmAddProtocols()
with property set to XA_WM_PROTOCOL, the window manager protocol pro
erty.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com
munication between clients and window managers.XmAddWMProtocols ()
allows you to add this protocol so that it can be understood by your applicati
The inverse routine isXmRemoveWMProtocols (). To communicate using a
protocol, a client sends a ClientMessage event containing a property and pr
col, and the receiving client responds by calling the associated protocol callb
routine. UseXmAddWMProtocolCallback () to add a callback function to
be executed when a client message event containing the specified protocol
is received.

Example

The following code fragment shows the use ofXmAddWMProtocols () to add the
window manager protocols, so that the state of an application can be saved usin
WM_SAVE_YOURSELF protocol:

Atom wm_save_yourself;

wm_save_yourself = XmInternAtom (XtDisplay
(toplevel),
"WM_SAVE_YOURSELF
", False);

XmAddWMProtocols (toplevel, &wm_save_yourself, 1);
Motif Reference Manual 11

XmAddWMProtocols Motif Functions and Macros
XmAddWMProtocolCallback (toplevel,
wm_save_yourself,
save_state, toplevel);

save_state is a callback routine that saves the state of the application.

See Also
XmAddProtocols (1), XmAddWMProtocolCallback (1),
XmInternAtom (1), XmRemoveWMProtocols (1), VendorShell (2).
12 Motif Reference Manual

Motif Functions and Macros XmCascadeButtonHighlight

gh-

e-

igh-
Name
XmCascadeButtonHighlight, XmCascadeButtonGadgetHighlight – set the hi
light state of a CascadeButton.

Synopsis

#include <Xm/CascadeB.h>

void XmCascadeButtonHighlight (WidgetcascadeButton, Booleanhighlight)

#include <Xm/CascadeBG.h>

void XmCascadeButtonGadgetHighlight (WidgetcascadeButton, Booleanhigh-
light)

Inputs
cascadeButton Specifies the CascadeButton or CascadeButtonGadget.
highlight Specifies the highlight state.

Description
XmCascadeButtonHighlight () sets the state of the shadow highlight
around the specifiedcascadeButton, which can be a CascadeButton or a Cascad
ButtonGadget.

XmCascadeButtonGadgetHighlight () sets the highlight state of the
specifiedcascadeButton, which must be a CascadeButtonGadget.

Both routines draw the shadow ifhighlight is True and erase the shadow ifhigh-
light is False.

Usage
CascadeButtons do not normally display a shadow like other buttons, so the h
light shadow is often used to show that the button is armed.XmCascadeBut-
tonHighlight () andXmCascadeButtonGadgetHighlight () provide a
way for you to cause the shadow to be displayed.

See Also
XmCascadeButton (2), XmCascadeButtonGadget (2).
Motif Reference Manual 13

XmChangeColor Motif Functions and Macros

on

a
uld

re

-

fer-
Name
XmChangeColor – update the colors for a widget.

Synopsis

void XmChangeColor (Widget widget, Pixel background)

Inputs
widget Specifies the widget whose colors are to be changed.
background Specifies the background color.

Description
XmChangeColor () changes all of the colors for the specified widget based
the new background color. The routine recalculates the foreground color, the
select color, the arm color, the trough color, and the top and bottom shadow
colors and updates the corresponding resources for the widget.

Usage
XmChangeColor () is a convenience routine for changing all of the colors for
widget, based on the background color. Without the routine, an application wo
have to callXmGetColors () to get the new colors and then set the XmNfore-
ground, XmNtopShadowColor, XmNbottomShadowColor, XmNtroughColor,
XmNarmColor, XmNselectColor resources for the widget withXtSetVal-
ues (). The XmNhighlightColor is set to the value of the XmNforeground.

XmChangeColor () callsXmGetColors () internally to allocate the required
pixels. In Motif 1.2 and earlier, this uses the default color calculation procedu
unless a customized color calculation procedure has been set withXmSet-
ColorCalculation (). In Motif 2.0 and later, color calculation can be speci
fied on a per-screen basis, and any specified XmNcolorCalculationProc
procedure of the XmScreen object associated with the widget is used in pre
ence.

See Also
XmGetColorCalculation(1), XmGetColors(1),
XmSetColorCalculation(1), XmScreen(2).
14 Motif Reference Manual

Motif Functions and Macros XmClipboardBeginCopy

-

t has

by

a

Name
XmClipboardBeginCopy – set up storage for a clipboard copy operation.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardBeginCopy (Display *display,
Window window,
XmString clip_label,
Widget widget,
VoidProc callback,
long *item_id)

Inputs
display Specifies a connection to an X server; returned from XOpenDis

play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
clip_label Specifies a label that is associated with the data item.
widget Specifies the widget that receives messages requesting data tha

been passed by name.
callback Specifies the callback function that is called when the clipboard

needs data that has been passed by name.

Outputs
item_id Returns the ID assigned to the data item.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked
another application.

Description
XmClipboardBeginCopy () is a convenience routine that callsXmClip-
boardStartCopy () with identical arguments and with a timestamp of Cur-
rentTime.

Usage
XmClipboardBeginCopy () can be used to start a normal copy operation or
copy-by-name operation. In order to pass data by name, thewidget andcallback
arguments toXmClipboardBeginCopy () must be specified.

Procedures
The VoidProc has the following format:

typedef void (*VoidProc) (Widgetwidget, int *data_id, int *private_id, int
* reason)
Motif Reference Manual 15

XmClipboardBeginCopy Motif Functions and Macros

,

nters
The VoidProc takes four arguments. The first argument,widget, is the widget
passed to the callback routine, which is the same widget as passed toXmClip-
boardBeginCopy (). Thedata_id argument is the ID of the data item that is
returned byXmClipboardCopy () andprivate_id is the private data passed to
XmClipboardCopy().

Thereason argument takes the value XmCR_CLIPBOARD_DATA_REQUEST
which indicates that the data must be copied to the clipboard, or
XmCR_CLIPBOARD_DATA_DELETE, which indicates that the client can
delete the data from the clipboard. Although the last three parameters are poi
to integers, the values are read-only and changing them has no effect.

See Also
XmClipboardCancelCopy (1), XmClipboardCopy (1),
XmClipboardCopyByName (1), XmClipboardEndCopy (1),
XmClipboardStartCopy (1).
16 Motif Reference Manual

Motif Functions and Macros XmClipboardCancelCopy

-

 func-

ave
Name
XmClipboardCancelCopy – cancel a copy operation to the clipboard.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardCancelCopy (Display *display, Windowwindow, long item_id)

Inputs
display Specifies a connection to an X server; returned from XOpenDis
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
item_id Specifies the ID of the data item.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardFail on failure.

Description
XmClipboardCancelCopy () cancels the copy operation that is in progress
and frees temporary storage that has been allocated for the operation. The
tion returns ClipboardFail ifXmClipboardStartCopy () has not been called
or if the data item has too many formats.

Usage
A call toXmClipboardCancelCopy () is valid only between calls to
XmClipboardStartCopy () andXmClipboardEndCopy (). XmClip-
boardCancelCopy () can be called instead ofXmClipboardEndCopy ()
when you need to terminate a copying operation before it completes. If you h
previously locked the clipboard,XmClipboardCancelCopy () unlocks it, so
you should not callXmClipboardUnlock ().

See Also
XmClipboardBeginCopy (1), XmClipboardCopy (1),
XmClipboardEndCopy (1), XmClipboardStartCopy (1).
Motif Reference Manual 17

XmClipboardCopy Motif Functions and Macros

 to

D-

d.
rd.
Name
XmClipboardCopy – copy a data item to temporary storage for later copying
the clipboard.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardCopy (Display *display,
Window window,
long item_id,
char *format_name,
XtPointer buffer,
unsigned long length,
long private_id,
long *data_id)

Inputs
display Specifies a connection to an X server; returned from XOpen
isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
item_id Specifies the ID of the data item.
format_name Specifies the name of the format of the data item.
buffer Specifies the buffer from which data is copied to the clipboar
length Specifies the length of the data being copied to the clipboa
private_id Specifies the private data that is stored with the data item.

Outputs
data_id Returns an ID for a data item that is passed by name.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardFail on failure.

Description
XmClipboardCopy () copies the data item specified by buffer to temporary
storage. The data item is moved to the clipboard data structure whenXmClip-
boardEndCopy () is called. Theitem_id is the ID of the data item returned by
XmClipboardStartCopy () andformat_name is a string that describes the
type of the data.
18 Motif Reference Manual

Motif Functions and Macros XmClipboardCopy

nc-

-

ot
by

id
 data
ent to

by
t the

he
Since the data item is not actually stored in the clipboard untilXmClip-
boardEndCopy () is called, multiple calls to XmClipboardCopy() add data item
formats to the same data item or will append data to an existing format. The fu
tion returns ClipboardFail ifXmClipboardStartCopy () has not been called
or if the data item has too many formats.

Usage
XmClipboardCopy () is called between calls toXmClipboardStart-
Copy() andXmClipboardEndCopy (). If you need to make multiple calls to
XmClipboardCopy () to copy a large amount of data, you should call
XmClipboardLock () to lock the clipboard for the duration of the copy opera
tion.

When there is a large amount of clipboard data and the data is unlikely to be
retrieved, it can be copied to the clipboard by name. Since the data itself is n
copied to the clipboard until it is requested with a retrieval operation, copying
name can improve performance. To pass data by name, callXmClipboard-
Copy() with buffer specified as NULL. A unique number is returned in data_
that identifies the data item for later use. When another application requests
that has been passed by name, a callback requesting the actual data will be s
the application that owns the data and the owner must then callXmClipboard-
CopyByName() to transfer the data to the clipboard. Once data that is passed
name has been deleted from the clipboard, a callback notifies the owner tha
data is no longer needed.

Example
The following callback shows the sequence of calls needed to copy data to t
clipboard:

void to_clipbd (Widget widget,

XtPointer client_data,

XtPointer call_data)

{

long item_id = 0;

int status;

XmString clip_label;

char buffer[32];

Display *dpy = XtDisplayOfObject (widget);

Window window = XtWindowOfObject (widget);
Motif Reference Manual 19

XmClipboardCopy Motif Functions and Macros
char *data = (char *) client_data;

(void) sprintf (buffer, "%s", data);

clip_label = XmStringCreateLocalized ("Data");

/* start a copy; retry until unlocked */

do

status = XmClipboardStartCopy (dpy, window,
clip_label,

CurrentTime,
NULL, NULL,
&item_id);

while (status == ClipboardLocked);

XmStringFree (clip_label);

/* copy the data; retry until unlocked */

do {

status = XmClipboardCopy (dpy, window,
item_id, "STRING",
(XtPointer) buffer,

(unsigned long) strlen
(buffer) + 1,

(long) 0, (long *) 0);

} while (status == ClipboardLocked);

/* end the copy; retry until unlocked */

do

status = XmClipboardEndCopy (dpy, window,
item_id);

while (status == ClipboardLocked);

}

See Also
XmClipboardBeginCopy (1), XmClipboardCancelCopy (1),
XmClipboardCopyByName (1), XmClipboardEndCopy (1),
XmClipboardStartCopy (1).
20 Motif Reference Manual

Motif Functions and Macros XmClipboardCopyByName

is-

d.
-

.
.

by

ta
cified

p-
itself
ata

ered
Name
XmClipboardCopyByName – copy a data item passed by name.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardCopyByName (Display *display,
 Window window,
long data_id,
XtPointer buffer,
unsigned long length,
long private_id)

Inputs
display Specifies a connection to an X server; returned from XOpenD
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboar
data_id Specifies the ID number assigned to the data item by XmClip
boardCopy().
buffer Specifies the buffer from which data is copied to the clipboard
length Specifies the length of the data being copied to the clipboard
private_id Specifies the private data that is stored with the data item.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked
another application.

Description
XmClipboardCopyByName () copies the actual data to the clipboard for a da
item that has been previously passed by name. The data that is copied is spe
by buffer. Thedata_id is the ID assigned to the data item byXmClipboard-
Copy().

Usage
XmClipboardCopyByName () is typically used for incremental copying; new
data is appended to existing data with each call toXmClipboardCopyBy-
Name(). If you need to make multiple calls toXmClipboardCopyByName ()
to copy a large amount of data, you should callXmClipboardLock () to lock
the clipboard for the duration of the copy operation.

Copying by name improves performance when there is a large amount of cli
board data and when this data is likely never to be retrieved, since the data
is not copied to the clipboard until it is requested with a retrieval operation. D
is passed by name whenXmClipboardCopy () is called with abuffer value of
NULL. When a client requests the data passed by name, the callback regist
Motif Reference Manual 21

XmClipboardCopyByName Motif Functions and Macros

lls

by XmClipboardStartCopy () is invoked. SeeXmClipboardStart-
Copy() for more information about the format of the callback. This callback ca
XmClipboardCopyByName () to copy the actual data to the clipboard.

Example
The following XmCutPasteProc callback shows the use ofXmClipboard-
CopyByName() to copy data passed by name:

void copy_by_name (Widget widget,
long *data_id,
long *private_id;
int *reason)

{
Display *dpy = XtDisplay (toplevel);
Window window = XtWindow (toplevel);
int status;
char buffer[32];

if (*reason == XmCR_CLIPBOARD_DATA_REQUEST) {
(void) sprintf (buffer, "stuff");

do
status = XmClipboardCopyByName (dpy, win-

dow, *data_id,
(XtPointer) buffer,
(unsigned long)
strlen (buffer)+1,
*private_id);

while (status != ClipboardSuccess);
}

See Also
XmClipboardBeginCopy (1), XmClipboardCopy (1),
XmClipboardEndCopy (1), XmClipboardStartCopy (1).
22 Motif Reference Manual

Motif Functions and Macros XmClipboardEndCopy

-

cu-

he
Name

XmClipboardEndCopy – end a copy operation to the clipboard.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardEndCopy (Display *display, Windowwindow, long item_id)

Inputs
display Specifies a connection to an X server; returned from XOpenDis
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
item_id Specifies the ID of the data item.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardFail on failure.

Description
XmClipboardEndCopy () locks the clipboard, places data that has been ac
mulated by callingXmClipboardCopy () into the clipboard data structure, and
then unlocks the clipboard. Theitem_id is the ID of the data item returned by
XmClipboardStartCopy(). The function returns ClipboardFail ifXmClip-
boardStartCopy () has not been called previously.

Usage
XmClipboardEndCopy () frees temporary storage that was allocated by
XmClipboardStartCopy (). XmClipboardStartCopy () must be called
beforeXmClipboardEndCopy (), which does not need to be called if
XmClipboardCancelCopy () has already been called.

Example
The following callback shows the sequence of calls needed to copy data to t
clipboard:

static void to_clipbd (Widget widget,
XtPointer client_data,
XtPointer call_data)

{
long item_id = 0;
int status;
XmString clip_label;
char buffer[32];
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);
Motif Reference Manual 23

XmClipboardEndCopy Motif Functions and Macros
char *data = (char *) client_data;

(void) sprintf (buffer, "%s", data);
clip_label = XmStringCreateLocalized ("Data");

/* start a copy; retry until unlocked */
do

status = XmClipboardStartCopy (dpy, window,
clip_label,

CurrentTime,
NULL, NULL,
&item_id);

while (status == ClipboardLocked);
XmStringFree (clip_label);

/* copy the data; retry until unlocked */
do

status = XmClipboardCopy (dpy, window,
item_id, "STRING",

(XtPointer) buffer,
(unsigned
long)strlen(buffer)+1,
0, NULL);

while (status == ClipboardLocked);

/* end the copy; retry until unlocked */
do

status = XmClipboardEndCopy (dpy, window,
item_id);

while (status == ClipboardLocked);
}

See Also
XmClipboardBeginCopy (1), XmClipboardCancelCopy (1),
XmClipboardCopy (1), XmClipboardCopyByName (1),
XmClipboardStartCopy (1).
24 Motif Reference Manual

Motif Functions and Macros XmClipboardEndRetrieve

-

by

ip-

 an
ved:
Name
XmClipboardEndRetrieve – end a copy operation from the clipboard.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardEndRetrieve (Display *display, Windowwindow)

Inputs
display Specifies a connection to an X server; returned from XOpenDis
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked
another application.

Description
XmClipboardEndRetrieve() ends the incremental copying of data from the cl
board.

Usage
A call toXmClipboardEndRetrieve () is preceded by a call toXmClip-
boardStartRetrieve (), which begins the incremental copy, and calls to
XmClipboardRetrieve (), which incrementally retrieve the data items from
clipboard storage.XmClipboardStartRetrieve () locks the clipboard and
it remains locked untilXmClipboardEndRetrieve () is called.

Example
The following code fragment shows the sequence of calls needed to perform
incremental retrieve. Note that this code does not store the data as it is retrie

int status;
unsigned long received;
char buffer[32];
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

do
status = XmClipboardStartRetrieve (dpy, window,
CurrentTime);

while (status == ClipboardLocked);

do {
/* retrieve data from clipboard */
status = XmClipboardRetrieve (dpy, window,
Motif Reference Manual 25

XmClipboardEndRetrieve Motif Functions and Macros
"STRING",
(XtPointer) buffer,
(unsigned long)
sizeof (buffer),
&received,
(long *) 0);

} while (status == ClipboardTruncate);

status = XmClipboardEndRetrieve (dpy, window);

See Also
XmClipboardRetrieve (1), XmClipboardStartRetrieve (1).
26 Motif Reference Manual

Motif Functions and Macros XmClipboardInquireCount

n

is-

d.

on

e
he

s

Name
XmClipboardInquireCount – get the number of data item formats available o
the clipboard.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardInquireCount (Display *display,
Window window,
int *count,
unsigned long *max_length)

Inputs
display Specifies a connection to an X server; returned from XOpenD
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboar

Outputs
count Returns the number of data item formats available for the data
the clipboard.
max_length Returns the maximum length of data item format names.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardNoData if there is no data on the clipboard.

Description
XmClipboardInquireCount () returns the number of data formats availabl
for the current clipboard data item and the length of its longest format name. T
count includes the formats that were passed by name. If there are no format
available, count is 0 (zero).

Usage
To inquire about the formats of the data on the clipboard, you useXmClip-
boardInquireCount () andXmClipboardInquireFormat () in con-
junction.XmClipboardInquireCount () returns the number of formats for
the data item andXmClipboardInquireFormat () allows you to iterate
through all of the formats.

See Also
XmClipboardInquireFormat (1).
Motif Reference Manual 27

XmClipboardInquireFormat Motif Functions and Macros

D-

gh
ard.

a
 1
m,

o
t in
Name
XmClipboardInquireFormat – get the specified clipboard data format name.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardInquireFormat (Display *display,
Window window,
int index,
XtPointer format_name_buf,
unsigned long buffer_len,
unsigned long *copied_len)

Inputs
display Specifies a connection to an X server; returned from XOpen
isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
index Specifies the index of the format name to retrieve.
buffer_len Specifies the length of format_name_buf in bytes.

Outputs
format_name_buf Returns the format name.
copied_len Returns the length (in bytes) of the string copied to
format_name_buf.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, ClipboardTruncate if format_name_buf is not long enou
to hold the returned data, or ClipboardNoData if there is no data on the clipbo

Description
XmClipboardInquireFormat () returns a format name for the current dat
item in the clipboard. The format name returned is specified by index, where
refers to the first format. If index exceeds the number of formats for the data ite
thenXmClipboardInquireFormat () returns a value of 0 (zero) in the
copied_len argument.XmClipboardInquireFormat () returns the format
name in the format_name_buf argument. This argument is a buffer of a fixed
length that is allocated by the programmer. If the buffer is not large enough t
hold the format name, the routine copies as much of the format name as will fi
the buffer and returns ClipboardTruncate.
28 Motif Reference Manual

Motif Functions and Macros XmClipboardInquireFormat
Usage
To inquire about the formats of the data on the clipboard, you useXmClip-
boardInquireCount () andXmClipboardInquireFormat () in con-
junction.XmClipboardInquireCount () returns the number of formats for
the data item andXmClipboardInquireFormat () allows you to iterate
through all of the formats.

See Also
XmClipboardInquireCount (1).
Motif Reference Manual 29

XmClipboardInquireLength Motif Functions and Macros

.

D-

for

r

the

rge
Name
XmClipboardInquireLength – get the length of the data item on the clipboard

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardInquireLength (Display *display,
Window window,
char *format_name,
unsigned long *length)

Inputs
display Specifies a connection to an X server; returned from XOpen
isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
format_name Specifies the format name for the data.

Outputs
length Returns the length of the data item for the specified format.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardNoData if there is no data on the clipboard
the requested format.

Description
XmClipboardInquireLength () returns the length of the data stored unde
the specifiedformat_namefor the current clipboard data item. If no data is found
corresponding toformat_name or if there is no item on the clipboard,XmClip-
boardInquireLength () returns a length of 0 (zero). When a data item is
passed by name, the length of the data is assumed to be passed in a call to
XmClipboardCopy (), even though the data has not yet been transferred to
clipboard.

Usage
XmClipboardInquireLength () provides a way for an application to find
out how much data is on the clipboard, so that it can allocate a buffer that is la
enough to retrieve the data with one call toXmClipboardRetrieve ().

Example
The following code fragment demonstrates how to useXmClipboardIn-
quireLength () to retrieve all of the data on the clipboard:

int status;
unsigned long recvd, length;
30 Motif Reference Manual

Motif Functions and Macros XmClipboardInquireLength
char *data;
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

do
status = XmClipboardInquireLength (dpy, window,

"STRING",
&length);

while (status == ClipboardLocked);

if (length != 0) {
data = XtMalloc ((unsigned) (length+1) * sizeof
(char));

do
status = XmClipboardRetrieve (dpy, window,

"STRING",
(XtPointer)
data,
(unsigned long)
length+1,
&recvd, (long *)
0);

while (status == ClipboardLocked);

if (status != ClipboardSuccess || recvd !=
length) {

XtWarning ("Failed to receive all clipboard
data");

}
}

See Also
XmClipboardRetrieve (1).
Motif Reference Manual 31

XmClipboardInquirePendingItems Motif Functions and Macros

is-

d.

for-

by

-
se

me,
leted

ing

to
 the
Name
XmClipboardInquirePendingItems – get a list of pending data ID/private ID
pairs.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardInquirePendingItems (Display *display,
Window window,
char

* format_name,
XmClipboardPendingList *item_list,
unsigned long *count)

Inputs
display Specifies a connection to an X server; returned from XOpenD
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboar
format_name Specifies the format name for the data.

Outputs
item_list Returns an array of data_id/private_id pairs for the specified
mat.
count Returns the number of items in the item_list array.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked
another application.

Description
XmClipboardInquirePendingItems () returns for the specified
format_name a list of pending data items, represented bydata_id/private_id
pairs. Thedata_id andprivate_id arguments are specified in the clipboard func
tions for copying and retrieving. A data item is considered pending under the
conditions: the application that owns the data item originally passed it by na
the application has not yet copied the data, and the data item has not been de
from the clipboard. If there are no pending items for the specifiedformat_name,
the routine returns a count of 0 (zero). The application is responsible for free
the memory that is allocated byXmClipboardInquirePendingItems () to
store the list. Use XtFree() to free the memory.

Usage
An application should call XmClipboardInquirePendingItems() before exiting,
determine whether data that has been passed by name should be copied to
clipboard.
32 Motif Reference Manual

Motif Functions and Macros XmClipboardInquirePendingItems
Structures
The XmClipboardPendingList is defined as follows:

typedef struct {
long DataId;
long PrivateId;

} XmClipboardPendingRec, *XmClipboardPendingList;

See Also
XmClipboardStartCopy (1).
Motif Reference Manual 33

XmClipboardLock Motif Functions and Macros

-

by

ed.

n

Name

XmClipboardLock – lock the clipboard.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardLock (Display *display, Windowwindow)

Inputs
display Specifies a connection to an X server; returned from XOpenDis
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked
another application.

Description
XmClipboardLock () locks the clipboard on behalf of an application, which
prevents access to the clipboard by other applications. If the clipboard has
already been locked by another application, the routine returns ClipboardLock
If the same application has already locked the clipboard, the lock level is
increased.

Usage
An application usesXmClipboardLock () to ensure that clipboard data is not
changed by calls to clipboard functions by other applications. An applicatio
does not need to lock the clipboard between calls toXmClipboardStar-
tRetrieve () andXmClipboardEndRetrieve (), because the clipboard is
locked automatically between these calls.XmClipboardUnlock () allows
other applications to access the clipboard again.

See Also
XmClipboardEndCopy (1), XmClipboardEndRetrieve (1),
XmClipboardStartCopy (1), XmClipboardStartRetrieve (1),
XmClipboardUnlock (1).
34 Motif Reference Manual

Motif Functions and Macros XmClipboardRegisterFormat

.

D-

erly
or

gth

p-

rs
red.

e an
Name
XmClipboardRegisterFormat – register a new format for clipboard data items

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardRegisterFormat (Display *display, char *format_name, int
format_length)

Inputs
display Specifies a connection to an X server; returned from XOpen
isplay() or XtDisplay().
format_name Specifies the string name for the format.
format_length Specifies the length of the format in bits (0, 8, 16, or 32).

Returns
ClipboardSuccess on success, ClipboardBadFormat if the format is not prop
specified, ClipboardLocked if the clipboard is locked by another application,
ClipboardFail on failure.

Description
XmClipboardRegisterFormat () registers a new format having the speci-
fied format_name andformat_length. XmClipboardRegisterFormat ()
returns ClipboardFail if the format is already registered with the specified len
or ClipboardBadFormat ifformat_name is NULL or format_length is not 0, 8,
16, or 32 bits.

Usage
XmClipboardRegisterFormat () is used by applications that support cut-
ting and pasting of arbitrary data types. Every format that is stored on the cli
board needs to have a length associated with it, so that clipboard operations
between applications that run on platforms with different byte-swapping orde
function properly. Format types that are defined by the ICCCM are preregiste
If format_length is 0,XmClipboardRegisterFormat () searches through
the preregistered format types, and returns ClipboardSuccess ifformat_name is
found, ClipboardFail otherwise.

If you are registering your own data structure as a format, you should choos
appropriate name, and use 32 as the format size.

See Also
XmClipboardStartCopy (1).
Motif Reference Manual 35

XmClipboardRetrieve Motif Functions and Macros

is-

d.

e

ata
s cop-
es

in

s

Name
XmClipboardRetrieve – retrieve a data item from the clipboard.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardRetrieve (Display *display,
Window window,
char *format_name,
XtPointer buffer,
unsigned long length,
unsigned long *num_bytes,
long *private_id)

Inputs
display Specifies a connection to an X server; returned from XOpenD
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboar
format_name Specifies the format name for the data.
buffer Specifies the buffer to which the clipboard data is copied.
length Specifies the length of buffer.

Outputs
num_bytes Returns the number of bytes of data copied into buffer.
private_id Returns the private data that was stored with the data item.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, ClipboardTruncate if buffer is not long enough to hold th
returned data, or ClipboardNoData if there is no data on the clipboard for the
requested format.

Description
XmClipboardRetrieve () fetches the current data item from the clipboard
and copies it to the specified buffer. The format_name specifies the type of d
being retrieved. The num_bytes parameter returns the amount of data that i
ied into buffer. The routine returns ClipboardTruncate when all of the data do
not fit in the buffer, to indicate that more data remains to be copied.

Usage
XmClipboardRetrieve () can be used to retrieve data in one large piece or
multiple smaller pieces. To retrieve data in one chunk, callXmClipboardIn-
quireLength () to determine the size of the data on the clipboard. Multiple
calls toXmClipboardRetrieve () with the same format_name, between call
to XmClipboardStartRetrieve () andXmClipboardEndRetrieve (),
36 Motif Reference Manual

Motif Functions and Macros XmClipboardRetrieve

 an
ved:
copy data incrementally. Since the clipboard is locked by a call toXmClip-
boardStartRetrieve (), it is suggested that your application call any clip-
board inquiry routines between this call and the first call to

XmClipboardRetrieve ()1.

Example
The following code fragment shows the sequence of calls needed to perform
incremental retrieve. Note that this code does not store the data as it is retrie

int status;
unsigned long received;
char buffer[32];
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

do
status = XmClipboardStartRetrieve (dpy, window,
CurrentTime);

while (status == ClipboardLocked);

do {
/* retrieve data from clipboard */
status = XmClipboardRetrieve (dpy, window,
"STRING",

(XtPointer) buffer,
(unsigned long)
sizeof (buffer),
&received,
(long *) 0);

} while (status == ClipboardTruncate);

status = XmClipboardEndRetrieve (dpy, window);

See Also
XmClipboardEndRetrieve (1), XmClipboardInquireLength (1),
XmClipboardLock (1), XmClipboardStartRetrieve (1),
XmClipboardUnlock (1).

1.Erroneously given as ClipboardRetrieve() in 1st and 2nd editions.
Motif Reference Manual 37

XmClipboardStartCopy Motif Functions and Macros

D-

a-

ta

by

is

n
-

Name
XmClipboardStartCopy – set up storage for a clipboard copy operation.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardStartCopy (Display *display,
 Window window,
XmString clip_label,
Time timestamp,
Widget widget,
XmCutPasteProc callback,
long *item_id)

Inputs
display Specifies a connection to an X server; returned from XOpen

isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-

board.
clip_label Specifies a label that is associated with the data item.
timestamp Specifies the time of the event that triggered the copy oper

tion.
widget Specifies the widget that receives messages requesting da

that has been passed by name.
callback Specifies the callback function that is called when the clip-

board needs data that has been passed by name.

Outputs
item_id Returns the ID assigned to the data item.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked
another application.

Description
XmClipboardStartCopy () creates the storage and data structures that
receive clipboard data. During a cut or copy operation, an application calls th
function to initiate the operation. The data that is copied to the structures
becomes the next clipboard data item.

Several arguments toXmClipboardStartCopy () provide identifying infor-
mation. Thewindowargument specifies the window that identifies the applicatio
to the clipboard; an application should pass the same window ID to each clip
board routine that it calls.clip_label assigns a text string to the data item that
could be used as the label for a clipboard viewing window. Thetimestamppassed
38 Motif Reference Manual

Motif Functions and Macros XmClipboardStartCopy

ata

it is
-

ip-
data

o

age
ed.

data
oard.

me.
 the
to the routine must be a valid timestamp. Theitem_idargument returns a number
that identifies the data item. An application uses this number to specify the d
item in other clipboard calls.

Usage
Since copying a large piece of data to the clipboard can take a long time and
possible that the data will never be requested by another application, the clip
board copy routines provide a mechanism to copy data by name. When a cl
board data item is passed by name, the application does not need to copy the
to the clipboard until it has been requested by another application. In order t
pass data by name, the widget and callback arguments toXmClipboard-
StartCopy () must be specified.widget specifies the ID of the widget that
receives messages requesting that data be passed by name. All of the mess
handling is done by the clipboard operations, so any valid widget ID can be us
callbackspecifies the procedure that is invoked when the clipboard needs the
that was passed by name and when the data item is removed from the clipb
Thecallback function copies the actual data to the clipboard usingXmClip-
boardCopyByName ().

Example
The following routines show the sequence of calls needed to copy data by na
The to_clipbd callback shows the copying of data and copy_by_name shows
callback that actually copies the data:

void copy_by_name (Widget widget,
long *data_id,
long *private_id,
int *reason)

{
Display *dpy = XtDisplay (toplevel);
Window window = XtWindow (toplevel);
int status;
char buffer[32];

if (*reason == XmCR_CLIPBOARD_DATA_REQUEST) {
(void) sprintf (buffer, "stuff");

do
status = XmClipboardCopyByName (dpy, win-
dow, *data_id,

(XtPointer) buffer,
(unsigned long)
strlen (buffer)+1,
*private_id);
Motif Reference Manual 39

XmClipboardStartCopy Motif Functions and Macros
while (status != ClipboardSuccess);
}

}

void to_clipbd (Widget widget,
XtPointer client_data,
XtPointer call_data)

{
unsigned long item_id = 0;
int status;
XmString clip_label;
Display *dpy = XtDisplayOfObject
(widget);
Window window = XtWindowOfObject
(widget);
unsigned long size = DATA_SIZE;
char *data = (char *) client_data;

clip_label = XmStringCreateLocalized ("Data");

/* start a copy; retry until unlocked */
do

status = XmClipboardStartCopy (dpy, window,
clip_label,

CurrentTime,
widget,
copy_by_name,
&item_id);

while (status == ClipboardLocked);
XmStringFree (clip_label);

/* copy the data; retry until unlocked */
do

status = XmClipboardCopy (dpy, window,
item_id,

"STRING", NULL,
size, 0, NULL);

while (status == ClipboardLocked);

/* end the copy; retry until unlocked */
do

status = XmClipboardEndCopy (dpy, window,
item_id);

while (status == ClipboardLocked);
}

40 Motif Reference Manual

Motif Functions and Macros XmClipboardStartCopy

o

,

nters
Procedures
The XmCutPasteProc has the following format:

typedef void (*XmCutPasteProc) (Widgetwidget, long *data_id, long
*private_id, int *reason)

An XmCutPasteProc takes four arguments. The first argument,widget, is the
widget passed to the callback routine, which is the same widget as passed t
XmClipboardBeginCopy (). Thedata_idargument is the ID of the data item
that is returned byXmClipboardCopy () andprivate_id is the private data
passed toXmClipboardCopy ().

Thereason argument takes the value XmCR_CLIPBOARD_DATA_REQUEST
which indicates that the data must be copied to the clipboard, or
XmCR_CLIPBOARD_DATA_DELETE, which indicates that the client can
delete the data from the clipboard. Although the last three parameters are poi
to integers, the values are read-only and changing them has no effect.

See Also
XmClipboardBeginCopy (1), XmClipboardCancelCopy (1),
XmClipboardCopy(1) , XmClipboardCopyByName (1),
XmClipboardEndCopy (1), XmClipboardLock (1),
XmClipboardRegisterFormat (1), XmClipboardUndoCopy (1),
XmClipboardUnlock (1), XmClipboardWithdrawFormat (1).
Motif Reference Manual 41

XmClipboardStartRetrieve Motif Functions and Macros

is-

d.
ra-

by

e

ass

 an
ved:
Name
XmClipboardStartRetrieve – start a clipboard retrieval operation.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardStartRetrieve (Display *display, Windowwindow, Timetimes-
tamp)

Inputs
display Specifies a connection to an X server; returned from XOpenD
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboar
timestamp Specifies the time of the event that triggered the retrieval ope
tion.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked
another application.

Description
XmClipboardStartRetrieve () starts a clipboard retrieval operation by
telling the clipboard that an application is ready to start copying data from th
clipboard.XmClipboardStartRetrieve () locks the clipboard until
XmClipboardEndRetrieve () is called. Thewindow argument specifies the
window that identifies the application to the clipboard; an application should p
the same window ID to each clipboard routine that it calls. Thetimestamppassed
to the routine must be a valid timestamp.

Usage
Multiple calls toXmClipboardRetrieve () with the sameformat_name,
between calls toXmClipboardStartRetrieve () andXmClipboardEn-
dRetrieve (), copy data incrementally.

Example
The following code fragment shows the sequence of calls needed to perform
incremental retrieve. Note that this code does not store the data as it is retrie

int status;
unsigned long received;
char buffer[32];
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

do
42 Motif Reference Manual

Motif Functions and Macros XmClipboardStartRetrieve
status = XmClipboardStartRetrieve (dpy, window,
CurrentTime);

while (status == ClipboardLocked);

do {
/* retrieve data from clipboard */
status = XmClipboardRetrieve (dpy, window,
"STRING",

(XtPointer) buffer,
(unsigned long)
sizeof (buffer),
&received,
(long *) 0);

} while (status == ClipboardTruncate);

status = XmClipboardEndRetrieve (dpy, window);

See Also
XmClipboardEndRetrieve (1), XmClipboardInquireCount (1),
XmClipboardInquireFormat (1), XmClipboardInquireLength (1),
XmClipboardInquirePendingItems (1), XmClipboardLock (1),
XmClipboardRetrieve (1), XmClipboardUnlock (1).
Motif Reference Manual 43

XmClipboardUndoCopy Motif Functions and Macros

-

by

-
ing
he
call

e by
Name
XmClipboardUndoCopy – remove the last item copied to the clipboard.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardUndoCopy (Display *display, Windowwindow)

Inputs
display Specifies a connection to an X server; returned from XOpenDis
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked
another application.

Description
XmClipboardUndoCopy () deletes the item most recently placed on the clip
board, provided that the application that originally placed the item has match
values for display and window. If the values do not match, no action is taken. T
routine also restores any data item that was deleted from the clipboard by the
to XmClipboardCopy ().

Usage
Motif maintains a two-deep stack of items that have been placed on the clip-
board. Once an item has been copied to the clipboard, the copy can be undon
callingXmClipboardUndoCopy (). Calling this routine twice undoes the last
undo operation.

See Also
XmClipboardBeginCopy (1), XmClipboardCopy (1),
XmClipboardCopyByName (1), XmClipboardEndCopy (1),
XmClipboardStartCopy (1).
44 Motif Reference Manual

Motif Functions and Macros XmClipboardUnlock

-

r if

 If it
Name
XmClipboardUnlock – unlock the clipboard.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardUnlock (Display *display, Windowwindow, Boolean
remove_all_locks)

Inputs
display Specifies a connection to an X server; returned from

XOpenDisplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip

board.
remove_all_locks Specifies whether nested locks should be removed.

Returns
ClipboardSuccess on success or ClipboardFail if the clipboard is not locked o
it is locked by another application.

Description
XmClipboardUnlock () unlocks the clipboard, which allows other applica-
tions to access it. If remove_all_locks is True, all nested locks are removed.
is False, only one level of lock is removed.

Usage
Multiple calls toXmClipboardLock () can increase the lock level, and nor-
mally, eachXmClipboardLock () call requires a corresponding call to
XmClipboardUnlock (). However, by setting remove_all_locks to True,
nested locks can be removed with a single call.

See Also
XmClipboardBeginCopy (1), XmClipboardCancelCopy (1),
XmClipboardEndCopy (1), XmClipboardEndRetrieve \(1)
XmClipboardLock (1), XmClipboardStartCopy (1),
XmClipboardStartRetrieve (1).
Motif Reference Manual 45

XmClipboardWithdrawFormat Motif Functions and Macros

-

by

h a
Name
XmClipboardWithdrawFormat – indicate that an application does not want to
supply a data item any longer.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardWithdrawFormat (Display *display, Windowwindow, long
data_id)

Inputs
display Specifies a connection to an X server; returned from XOpenDis
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
data_id Specifies the ID for the passed-by-name data item.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked
another application.

Description
XmClipboardWithdrawFormat () withdraws a data item that has been
passed by name from the clipboard. Thedata_id is the ID that was assigned to
the item when it was passed byXmClipboardCopy ().

Usage
Despite its name,XmClipboardWithdrawFormat () does not remove a for-
mat specification from the clipboard. The routine provides an application wit
way to withdraw data of a particular format from the clipboard.

See Also
XmClipboardBeginCopy (1), XmClipboardCopy (1),
XmClipboardCopyByName (1), XmClipboardStartCopy (1).
46 Motif Reference Manual

Motif Functions and Macros XmComboBoxAddItem

list.

t. If

in

 The

e()
Name
XmComboBoxAddItem – add a compound string to the ComboBox list.

Synopsis

#include <Xm/ComboBox.h>

void XmComboBoxAddItem (Widgetwidget, XmStringitem, int position,
Booleanunique)

Inputs
widget Specifies the ComboBox widget.
item Specifies the compound string that is added to the ComboBox
position Specifies the position at which to add the new item.
unique Specifies whether the item must be unique in the list.

Availability
Motif 2.1 and later.

Description
XmComboBoxAddItem() is a convenience routine that adds an item into a
ComboBox list.XmComboBoxAddItem() inserts the specifieditem into the list
component of the ComboBoxwidgetat the specifiedposition. A positionvalue of
1 indicates the first location in the list, aposition value of 2 indicates the second
location, and so forth. A value of 0 (zero) specifies the last location in the lis
the value exceeds the current number of items in the list, theitem is silently
appended. Ifuniqueis true, the item is only added if it does not already appear
the list.

Usage
In order to use this routine, a compound string must be created for the item.
routine callsXmListAddItemUnselected () to insert the item into the list
component. The ComboBox list takes a copy of the supplied item. It is the
responsibility of the programmer to reclaim the space by calling XmStringFre
at an appropriate point.

See Also
XmComboBoxSelectItem (1), XmComboBoxSetItem (1),
XmComboBoxDeletePos (1), XmComboBoxUpdate(1), XmComboBox(2).
Motif Reference Manual 47

XmComboBoxDeletePos Motif Functions and Macros

m-

t

d

e

Name
XmComboBoxDeletePos – delete an item at the specified position from a Co
boBox list.

Synopsis

#include <Xm/ComboBox.h>

void XmComboBoxDeletePos (Widgetwidget, int position)

Inputs
widget Specifies the ComboBox widget.
position Specifies the position from which to delete an item.

Availability
Motif 2.1 and later.

Description
XmComboBoxDeletePos () removes the item at the specifiedpositionfrom the
ComboBox list. The first location within the list is at position 1, the second lis
item is at position 2, and so forth. Aposition value of 0 (zero) specifies the last
location in the list. If the ComboBox list does not have an item at the specifie
position, a warning message is displayed.

Usage
XmComboBoxDeletePos () is a convenience routine that allows you to remov
an item from a ComboBox list. The routine callsXmListDeletePos () on the
list component of the ComboBox.

See Also
XmComboBoxAddItem(1), XmComboBoxSelectItem (1),
XmComboBoxSetItem (1), XmComboBoxUpdate(1), XmComboBox(2).
48 Motif Reference Manual

Motif Functions and Macros XmComboBoxSelectItem

t

 a

rch

the
by
Name
XmComboBoxSelectItem – select an item from a ComboBox list.

Synopsis

#include <Xm/ComboBox.h>

void XmComboBoxSelectItem (Widgetwidget, XmStringitem)

Inputs
widget Specifies the ComboBox widget.
item Specifies the item that is to be selected.

Availability
Motif 2.1 and later.

Description
XmComboBoxSelectItem () selects the first occurrence of the specifieditem
in the ComboBox list. If theitemis found within the list, the value is also inserted
into the ComboBox text field. Otherwise, a warning message is displayed.

Usage
XmComboBoxSelectItem () is a convenience routine that allows you to selec
an item in the ComboBox list. In order to use this routine, a compound string
must be created for theitem. No ComboBox selection callbacks are invoked as
result of calling this procedure. The routine internally callsXmListSelect-
Pos() on the list component of the ComboBox, after performing a linear sea
through the XmNitems of the list: theitem parameter is used only for the search
and is not directly used as the newly selected item. It is the responsibility of
programmer to reclaim any allocated memory for the compound string item
callingXmStringFree () at an appropriate time.

See Also
XmComboBoxAddItem(1), XmComboBoxDeletePos (1),
XmComboBoxSetItem (1), XmComboBoxUpdate(1), XmComboBox(2).
Motif Reference Manual 49

XmComboBoxSetItem Motif Functions and Macros

list.

t

n
be
of

h
ot
m-
Name
XmComboBoxSetItem – select and make visible an item from a ComboBox

Synopsis

#include <Xm/ComboBox.h>

void XmComboBoxSetItem (Widgetwidget, XmStringitem)

Inputs
widget Specifies the ComboBox widget.
item Specifies the item that is to be selected.

Availability
Motif 2.1 and later.

Description
XmComboBoxSetItem () selects the first occurrence of the specifieditemin the
ComboBox list, and makes the selection the first visible item in the list. If the
item is found within the list, the value is also inserted into the ComboBox tex
field. Otherwise, a warning message is displayed.

Usage
XmComboBoxSetItem () is a convenience routine that allows you to select a
item in the ComboBox. In order to use this routine, a compound string must
created for theitem. No ComboBox selection callbacks are invoked as a result
calling this procedure. The routine internally callsXmListSelectPos () on
the list component of the ComboBox, after performing a linear search throug
the XmNitems of the list: theitemparameter is used only for the search and is n
directly used as the newly selected item. It is the responsibility of the progra
mer to reclaim any allocated memory for the compound string item by calling
XmStringFree () at an appropriate time.

See Also
XmComboBoxAddItem(1), XmComboBoxDeletePos (1),
XmComboBoxSelectItem (1),XmComboBoxUpdate(1),XmComboBox(2).
50 Motif Reference Manual

Motif Functions and Macros XmComboBoxUpdate

ent

-

han

al
u-

rnal
nt
d

ly
Name
XmComboBoxUpdate – update the ComboBox list after changes to compon
widgets.

Synopsis

#include <Xm/ComboBox.h>

void XmComboBoxUpdate (Widgetwidget)

Inputs
widget Specifies the ComboBox widget.

Availability
Motif 2.0 and later.

Description
XmComboBoxUpdate() updates the ComboBox to reflect the state of compo
nent child widgets. This may be required where the programmer has directly
modified the contents or resources of the ComboBox list component rather t
through resources and functions of the ComboBox itself.

Usage
XmComboBoxUpdate() is a convenience routine that synchronizes the intern
state of the ComboBox with that of the component list and text field. In partic
lar, the value of XmNselectedPosition is reset to the value taken from the inte
list. In addition, if the text field is unchanged, the XmNitems and XmNitemCou
resources of the list are queried and used in conjunction with the recalculate
XmNselectedPosition to reset the ComboBox selected item.

This routine should be called, for example, when the component list is direct
manipulated to change the selected item without notifying the ComboBox
directly.

See Also
XmComboBoxAddItem(1), XmComboBoxSelectItem (1),
XmComboBoxSetItem (1),XmComboBoxDeletePos (1),XmComboBox(2).
Motif Reference Manual 51

XmCommandAppendValue Motif Functions and Macros

et.

e
rou-
Name
XmCommandAppendValue – append a compound string to the command.

Synopsis

#include <Xm/Command.h>

void XmCommandAppendValue (Widgetwidget, XmStringcommand)

Inputs
widget Specifies the Command widget.
command Specifies the string that is appended.

Description
XmCommandAppendValue() appends the specifiedcommandto the end of the
string that is displayed on the command line of the specified Command widg

Usage
XmCommandAppendValue() is a convenience routine that changes the valu
of the XmNcommand resource of the Command widget. In order to use this
tine, a compound string must be created for thecommand. The widget internally
copiescommand, and it is the responsibility of the programmer to reclaim any
allocated memory for the compound string at an appropriate time.

See Also
XmCommandSetValue(1), XmCommand(2).
52 Motif Reference Manual

Motif Functions and Macros XmCommandError

 cre-
Name
XmCommandError – display an error message in a Command widget.

Synopsis

#include <Xm/Command.h>

void XmCommandError (Widgetwidget, XmStringerror)

Inputs
widget Specifies the Command widget.
error Specifies the error message to be displayed.

Description
XmCommandError() displays an error message in the history region of the
specified Commandwidget. Theerror string remains displayed until the next
command takes effect.

Usage
XmCommandError() displays theerror message as one of the items in the
XmNhistoryItems list. When the next command is entered, theerror message is
deleted from the list. In order to use this routine, a compound string must be
ated for theerror item. Thewidget internally copieserror, and it is the responsi-
bility of the programmer to reclaim any allocated memory for the compound
string at an appropriate time.

See Also
XmCommand(2).
Motif Reference Manual 53

XmCommandGetChild Motif Functions and Macros

n-

m-

of
Name
XmCommandGetChild – get the specified child of a Command widget.

Synopsis

#include <Xm/Command.h>

Widget XmCommandGetChild (Widgetwidget, unsigned charchild)

Inputs
widget Specifies the Command widget.
child Specifies a type of child of the Command widget.

Returns
The widget ID of the specified child of the Command widget.

Availability
As of Motif 2.0, the abstract child fetch routines in the toolkit are generally co
sidered deprecated. AlthoughXmCommandGetChild () continues to work, you
should preferXtNameToWidget () to access children of the XmCommand
component.

Description
XmCommandGetChild() returns the widget ID of the specified child of the Co
mand widget.

Usage
Thechild XmDIALOG_COMMAND_TEXT specifies the command text entry
area, XmDIALOG_PROMPT_LABEL specifies the prompt label for the com-
mand line, XmDIALOG_HISTORY_LIST specifies the command history list,
and XmDIALOG_WORK_AREA specifies any work area child that has been
added to the Command widget. For more information on the different children
the Command widget, see the manual page in Section 2,Motif and Xt Widget
Classes.

Structures
The possible values for child are:

XmDIALOG_COMMAND_TEXT XmDIALOG_HISTORY_LIST
XmDIALOG_PROMPT_LABEL XmDIALOG_WORK_AREA
54 Motif Reference Manual

Motif Functions and Macros XmCommandGetChild

ching
Widget Hierarchy
The following names are associated with the Command children:

“Selection” XmDIALOG_PROMPT_LABEL
“Text” XmDIALOG_COMMAND_TEXT

“ItemsList”1 XmDIALOG_HISTORY_LIST

See Also
XmCommand(2).

1.The List is not a direct descendant of the Command widget, but of an intermediary ScrolledList. Therefore if fet
the widget via XtNameToWidget(), you should use the value “*ItemsList”.
Motif Reference Manual 55

XmCommandSetValue Motif Functions and Macros

t

he
, a

ted
Name
XmCommandSetValue – replace the command string.

Synopsis

#include <Xm/Command.h>

void XmCommandSetValue (Widgetwidget, XmStringcommand)

Inputs
widget Specifies the Command widget.
command Specifies the string that is displayed.

Description
XmCommandSetValue() replaces the currently displayed command-line tex
of the specifiedCommandwidget with the string specified bycommand. Specify-
ing a zero-length string clears the command line.

Usage
XmCommandSetValue() is a convenience routine that changes the value of t
XmNcommand resource of the Command widget. In order to use this routine
compound string must be created for thecommand. Thewidgetinternally copies
command, and it is the responsibility of the programmer to reclaim any alloca
memory for the compound string at an appropriate time.

See Also
XmCommandAppendValue(1), XmCommand(2).
56 Motif Reference Manual

Motif Functions and Macros XmContainerCopy

.

se.

o
f

hip

ry
ack
r of
D,
Name
XmContainerCopy – copy the Container primary selection onto the clipboard

Synopsis
#include <Xm/Container.h>

Boolean XmContainerCopy (Widgetcontainer, Timetimestamp)

Inputs
container Specifies a Container widget.
timestamp Specifies the server time at which to modify the selection.

Returns
True if the Container selection is transferable to the clipboard, False otherwi

Availability
Motif 2.0 and later.

Description
XmContainerCopy () copies the primary selection from a Container widget t
the clipboard. The primary selection of a Container widget consists of a set o
selected Container items.

If there are no selected Container items within container, or if the container
widget does not own the primary selection, or if container cannot gain owners
of the clipboard selection, the function returns False.

Usage
XmContainerCopy () is a convenience routine that copies a Container prima
selection to the clipboard. The procedures identified by the XmNconvertCallb
list of the Container are called to transfer the selection: the selection membe
the XmConvertCallbackStruct passed to callbacks has the value CLIPBOAR
and the parm member is set to XmCOPY. SeeXmTransfer (1) for specific
details of the XmConvertCallbackStruct, and of the Uniform Transfer Model
(UTM) in general.

See Also
XmContainerCut (1), XmContainerCopyLink (1),
XmContainerGetItemChildren (1), XmContainerPaste (1),
XmContainerPasteLink (1), XmContainerRelayout (1),
XmContainerReorder (1), XmTransfer (1), XmContainer (2).
Motif Reference Manual 57

XmContainerCopyLink Motif Functions and Macros

he

se.

t

hip

e
e
the

m

Name
XmContainerCopyLink – copy links to the Container primary selection onto t
clipboard.

Synopsis

#include <Xm/Container.h>

Boolean XmContainerCopyLink (Widgetcontainer, Timetimestamp)

Inputs
container Specifies a Container widget.
timestamp Specifies a time stamp at which to modify the selection.

Returns
True if the Container selection is transferable to the clipboard, False otherwi

Availability
Motif 2.0 and later.

Description
XmContainerCopyLink () copies links to the primary selection of a Con-
tainer widget onto the clipboard. The primary selection of a Container widge
consists of a set of selected Container items.

If there are no selected Container items within container, or if the container
widget does not own the primary selection, or if container cannot gain owners
of the clipboard selection, the function returns False.

Usage
XmContainerCopyLink () is a convenience routine that copies links to a
Container primary selection to the clipboard. The procedures identified by th
XmNconvertCallback list of the Container are called, possibly many times: th
selection member of the XmConvertCallbackStruct passed to callbacks has
value CLIPBOARD, and the parm member is set to XmLINK. SeeXmTrans-
fer (1) for specific details of the XmConvertCallbackStruct, and of the Unifor
Transfer Model (UTM) in general.

See Also
XmContainerCut (1), XmContainerCopy (1),
XmContainerGetItemChildren (1), XmContainerPaste (1),
XmContainerPasteLink (1), XmContainerRelayout (1),
XmContainerReorder (1), XmTransfer (1), XmContainer (2).
58 Motif Reference Manual

Motif Functions and Macros XmContainerCut

se.

f

hip

ry
ures
ve
ck-

er is
are
Name
XmContainerCut – cuts the Container primary selection onto the clipboard.

Synopsis

#include <Xm/Container.h>

Boolean XmContainerCut (Widgetcontainer, Timetimestamp)

Inputs
container Specifies a Container widget.
timestamp Specifies the time at which to modify the selection.

Returns
True if the Container selection is transferable to the clipboard, False otherwi

Availability
Motif 2.0 and later.

Description
XmContainerCut () cuts the primary selection from a Container widget onto
the clipboard. The primary selection of a Container widget consists of a set o
selected Container items.

If there are no selected Container items within container, or if the container
widget does not own the primary selection, or if container cannot gain owners
of the clipboard selection, the function returns False.

Usage
XmContainerCut () is a convenience routine that moves a Container prima
selection onto the clipboard, then removes the primary selection. The proced
identified by the XmNconvertCallback list of the Container are invoked to mo
the selection to the clipboard: the selection member of the XmConvertCallba
Struct passed to callbacks has the value CLIPBOARD, and the parm memb
set to XmMOVE. Thereafter, if the data was transferred, the convert callbacks
invoked again to delete the primary selection: the selection member is set to
CLIPBOARD, and the target member is set to DELETE. SeeXmTransfer (1)
for specific details of the XmConvertCallbackStruct, and of the Uniform Transfer
Model (UTM) in general.

See Also
XmContainerCopy (1), XmContainerCopyLink (1),
XmContainerGetItemChildren (1), XmContainerPaste (1),
XmContainerPasteLink (1), XmContainerRelayout (1),
XmContainerReorder (1), XmTransfer (1), XmContainer (2).
Motif Reference Manual 59

XmContainerGetItemChildren Motif Functions and Macros

of

-

Name
XmContainerGetItemChildren – find the children of a Container item.

Synopsis

#include <Xm/Container.h>

int XmContainerGetItemChildren (Widgetcontainer, Widgetitem, WidgetList
* item_children)

Inputs
container Specifies a Container widget.
item A child of the Container which holds the XmQTcontainerItem
trait.

Outputs
item_children The list of logical children associated with theitem.

Returns
The number of logical children within theitem_children list.

Availability
Motif 2.0 and later.

Description
XmContainerGetItemChildren () constructs a list of Container items
which have item as a logical parent.item must hold the XmQTcontainerItem
trait: an IconGadget child of container, for example. A widget is a logical child
item if the value of its constraint resource XmNentryParent is equal to item.con-
tainer is the Container widget which hasitem as a child, and the list of logical
children of item is placed initem_children. The function returns the number of
logical children found.

Usage
XmContainerGetItemChildren () is a convenience routine which allo-
cates a WidgetList to contain the set of all Container children whose XmNen
tryParent resource matches that of a designateditem.

If item is NULL, or if item is not a child ofcontainer, or if item has no logical
children, theitem_children parameter is not set and the function returns 0.

Storage for the returned WidgetList is allocated by the function, and it is the
responsibility of the programmer to free the memory usingXtFree () at an
appropriate point.
60 Motif Reference Manual

Motif Functions and Macros XmContainerGetItemChildren
See Also
XmContainerCut (1), XmContainerCopy (1),
XmContainerCopyLink (1), XmContainerPaste (1),
XmContainerPasteLink (1), XmContainerRelayout (1),
XmContainerReorder (1), XmContainer (2).
Motif Reference Manual 61

XmContainerPaste Motif Functions and Macros

se.

 by
em-
LIP-

d

Name
XmContainerPaste – pastes the clipboard selection into a Container.

Synopsis

#include <Xm/Container.h>

Boolean XmContainerPaste (Widgetcontainer)

Inputs
container Specifies a Container widget.

Returns
True if the clipboard selection is transferable to the Container, False otherwi

Availability
Motif 2.0 and later.

Description
XmContainerPaste () initiates data transfer of the clipboard primary selec-
tion to thecontainer widget.

If data is transferred from the clipboard, the function returns True, otherwise
False.

Usage
XmContainerPaste () is a convenience routine that initiates copying of the
clipboard primary selection to a Container widget. The procedures identified
the XmNdestinationCallback list of the Container are called: the selection m
ber of the XmDestinationCallbackStruct passed to callbacks has the value C
BOARD, and the operation member is set to XmCOPY.
XmContainerPaste () does not transfer data itself: it is the responsibility of
the programmer to supply a destination callback which will copy the clipboar
selection into the Container. SeeXmTransfer (1) for specific details of the
XmDestinationCallbackStruct, and of the Uniform Transfer Model (UTM) in
general.

See Also
XmContainerCut (1), XmContainerCopy (1),
XmContainerCopyLink (1), XmContainerGetItemChildren (1),
XmContainerPasteLink (1), XmContainerRelayout (1),
XmContainerReorder (1), XmTransfer (1), XmContainer (2).
62 Motif Reference Manual

Motif Functions and Macros XmContainerPasteLink

-

se.

-
ed:
ks

il-
-

Name
XmContainerPasteLink – copies links from the clipboard selection into a Con
tainer.

Synopsis

#include <Xm/Container.h>

Boolean XmContainerPasteLink (Widgetcontainer)

Inputs
container Specifies a Container widget.

Returns
True if the clipboard selection is transferable to the Container, False otherwi

Availability
Motif 2.0 and later.

Description
XmContainerPasteLink () initiates data transfer of the clipboard primary
selection to thecontainer widget.

If data is transferred from the clipboard, the function returns True, otherwise
False.

Usage
XmContainerPasteLink () is a convenience routine that initiates copying
links from the clipboard primary selection into a Container widget. The proce
dures identified by the XmNdestinationCallback list of the Container are call
the selection member of the XmDestinationCallbackStruct passed to callbac
has the value CLIPBOARD, and the operation member is set to XmLINK.
XmContainerPasteLink () does not transfer data itself: it is the responsib
ity of the programmer to supply a destination callback which will link the clip
board selection into the Container. SeeXmTransfer (1) for specific details of
the XmConvertCallbackStruct, and of the Uniform Transfer Model (UTM) in
general.

See Also
XmContainerCut (1), XmContainerCopy (1),
XmContainerCopyLink (1), XmContainerGetItemChildren (1),
XmContainerPaste (1), XmContainerRelayout (1),
XmContainerReorder (1), XmTransfer (1), XmContainer (2).
Motif Reference Manual 63

XmContainerRelayout Motif Functions and Macros

id
 if

g the
if
Name
XmContainerRelayout – force relayout of a Container widget.

Synopsis

#include <Xm/Container.h>

void XmContainerRelayout (Widgetcontainer)

Inputs
container Specifies a Container widget.

Availability
Motif 2.0 and later.

Description
XmContainerRelayout () forces thecontainer widget to recalculate the lay-
out of all Container items.

Usage
XmContainerRelayout () is a convenience routine that recalculates the gr
layout of a Container. The function has no effect if the widget is not realized,
XmNlayoutType is not XmSPATIAL, or if XmNspatialStyle is XmNONE.

The function does not cause geometry management effects when performin
relayout, although the Container window is completely cleared and redrawn
the widget is realized.

XmContainerRelayout () utilizes the place_item method of the Container
widget class. If this is NULL in any derived class,XmContainerRelayout ()
will have no effect upon the layout of Container items.

See Also
XmContainerCut (1), XmContainerCopy (1),
XmContainerCopyLink (1), XmContainerGetItemChildren (1),
XmContainerPaste (1), XmContainerPasteLink (1),
XmContainerReorder (1), XmContainer (2).
64 Motif Reference Manual

Motif Functions and Macros XmContainerReorder

E
e

Name
XmContainerReorder – reorder children of a Container.

Synopsis

#include <Xm/Container.h>

void XmContainerReorder (Widgetcontainer, WidgetListitem_list, int
item_count)

Inputs
container Specifies a Container widget.
item_list Specifies a list of Container child widgets.
item_count Specifies the number of widgets in item_list.

Availability
Motif 2.0 and later.

Description
XmContainerReorder () reorders an item_list set of items of a Container.
item_count is the number of items within the item_list array.

Usage
XmContainerReorder () is a convenience routine that reorders Container
items according to the value of the XmNpositionIndex constraint resource of
each item, using a quicksort algorithm. If the XmNlayoutType is XmOUTLIN
or XmDETAIL, the Container will subsequently relayout all the items within th
widget.

Neither relayout nor reorder is performed ifitem_countis less than or equal to 1;
there is no error checking performed onitem_listto compare it with NULL, or to
ensure that it matches the number of items specified byitem_count.

See Also
XmContainerCut (1), XmContainerCopy (1),
XmContainerCopyLink (1), XmContainerGetItemChildren (1),
XmContainerPaste (1), XmContainerPasteLink (1),
XmContainerRelayout (1), XmContainer (1).
Motif Reference Manual 65

XmConvertStringToUnits Motif Functions and Macros

g

so-

ed
y

n-
Name
XmConvertStringToUnits – convert a string to an integer, optionally translatin
the units.

Synopsis

int XmConvertStringToUnits (Screen *screen,
String spec,
int orientation,
int unit_type,
XtEnum *error_return)

Inputs
screen Specifies a pointer to the screen structure.
spec Specifies a value to be converted.
orientation Specifies whether to use horizontal or vertical screen re

lution. Pass either XmHORIZONTAL or XmVERTI-
CAL.

unit_type The units required for the result.

Outputs
error_return Returns the error status of the conversion.

Returns
The converted value.

Availability
Motif 2.0 and later.

Description
XmConvertStringToUnits () converts a stringspec into an integer. The
conversion ofspecis into the units specified byunit_type. Resolution for the con-
version is determined from thescreen, andorientation determines whether the
horizontal or vertical screen resolution is used. The converted value is return
by the function. Theerror_returnparameter is set by the function to indicate an
error in the conversion process.

Usage
XmConvertStringToUnits () converts a string into an integer, translating
the units of the original string into those specified by unit_type. If thescreen is
NULL, or if orientation is an invalid value, or if an invalidunit_type is supplied,
or if the stringspecis not parsable, the function returns 0 (zero), anderror_return
is set True. Otherwise,error_return is set False, and the function returns the co
verted value.

The stringspec is assumed to be in the following format:
66 Motif Reference Manual

Motif Functions and Macros XmConvertStringToUnits

: if
e

<float> <unit>

where <float> is a floating point number. The <unit> specification is optional
omitted, the default unit of XmPIXELS is used. Otherwise, <unit> is one of th
following strings:

pix pixel pixels
in inch inches
cm centimeter centimeters
mm millimeter millimeters
pt point points
fu font_unit font_units

Structures
The possible values for unit_type are:

XmPIXELS XmCENTIMETERS XmMILLIME-
TERS
Xm100TH_MILLIMETERS XmINCHES
Xm1000TH_INCHES
XmPOINTS Xm100TH_POINTS
XmFONT_UNITS
Xm100TH_FONT_UNITS

Example
The following are valid string specifications:

3.1415926 pix
-3.1 pt
6.3
0.3 font_units
1

See Also
XmConvertUnits (1), XmScreen (2).
Motif Reference Manual 67

XmConvertUnits Motif Functions and Macros

r-

d.

ctly.

ing
re

hor-

d-

,

nt
by
Name
XmConvertUnits – convert a value to a specified unit type.

Synopsis

int XmConvertUnits (Widget widget,
int orientation,
int from_unit_type,
int from_value,
int to_unit_type)

Inputs
widget Specifies the widget for which to convert the data.
orientation Specifies the screen orientation that is used in the conve

sion. Pass either XmHORIZONTAL or XmVERTICAL.
from_unit_type Specifies the unit type of the value that is being converte
from_value Specifies the value that is being converted.
to_unit_type Specifies the new unit type of the value.

Returns
The converted value or 0 (zero) if the input parameters are not specified corre

Description
XmConvertUnits () converts the value specified infrom_valueinto the equiva-
lent value in a different unit of measurement. This function returns the result
value if successful; it returns 0 (zero) if widget is NULL or if incorrect values a
supplied for orientation or conversion unit arguments.orientation matters only
when conversion values are font units, which are measured differently in the
izontal and vertical dimensions.

Usage
XmConvertUnits () allows an application to manipulate resolution-indepen
ent values. XmPIXELS specifies a normal pixel value,
Xm100TH_MILLIMETERS specifies a value in terms of 1/100 of a millimeter
Xm1000TH_INCHES specifies a value in terms of 1/1000 of an inch,
Xm100TH_POINTS specifies a value in terms of 1/100 of a point (1/72 of an
inch), and Xm100TH_FONT_UNITS specifies a value in terms of 1/100 of a fo
unit. A font unit has horizontal and vertical components which are specified
the XmScreen resources XmNhorizontalFontUnit and XmNverticalFontUnit.

Structures
The possible values for from_unit_type and to_unit_type are:

XmPIXELS XmCENTIMETERS
XmMILLIMETERS Xm100TH_MILLIMETERS
XmINCHES Xm1000TH_INCHES
68 Motif Reference Manual

Motif Functions and Macros XmConvertUnits

,

XmPOINTS Xm100TH_POINTS
XmFONT_UNITS Xm100TH_FONT_UNITS

The values XmPOINTS, XmINCHES, XmCENTIMETERS, XmFONT_UNITS
and XmMILLIMETERS are available in Motif 2.0 and later.

See Also
XmSetFontUnits (1), XmScreen (2).
Motif Reference Manual 69

XmCreate<Emphasis>Object<Default Para Font> Motif Functions and Macros

d

Name

XmCreateObject– create an instance of a particular widget class or compoun
object.

Synopsis

Simple Widgets
#include <Xm/ArrowB.h>
Widget XmCreateArrowButton (Widgetparent, char *name, ArgList argv, Car-
dinalargc)

#include <Xm/ArrowBG.h>
Widget XmCreateArrowButtonGadget (Widgetparent, char *name, ArgList
argv, Cardinalargc)

#include <Xm/BulletinB.h>
Widget XmCreateBulletinBoard (Widgetparent, char *name, ArgList argv, Car-
dinalargc)

#include <Xm/CascadeB.h>
Widget XmCreateCascadeButton (Widgetparent, char *name, ArgList argv,
Cardinalargc)

#include <Xm/CascadeBG.h>
Widget XmCreateCascadeButtonGadget (Widgetparent, char *name, ArgList
argv, Cardinalargc)

#include <Xm/Command.h>
Widget XmCreateCommand (Widgetparent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/ComboBox.h>
Widget XmCreateComboBox (Widgetparent, char *name, ArgList argv, Cardi-
nalargc)
Widget XmCreateDropDownComboBox (Widgetparent, char *name, ArgList
argv, Cardinalargc)
Widget XmCreateDropDownList (Widgetparent, char *name, ArgList argv, Car-
dinalargc)

#include <Xm/Container.h>
Widget XmCreateContainer (Widgetparent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/DialogS.h>
Widget XmCreateDialogShell (Widgetparent, char *name, ArgList argv, Cardi-
nalargc)
70 Motif Reference Manual

Motif Functions and Macros XmCreate<Emphasis>Object<Default Para Font>
#include <Xm/DragIcon.h>
Widget XmCreateDragIcon (Widgetparent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/DrawingA.h>
Widget XmCreateDrawingArea (Widgetparent, char *name, ArgList argv, Car-
dinalargc)

#include <Xm/DrawnB.h>
Widget XmCreateDrawnButton (Widgetparent, char *name, ArgList argv, Car-
dinalargc)

#include <Xm/FileSB.h>
Widget XmCreateFileSelectionBox (Widgetparent, char *name, ArgList argv,
Cardinalargc)

#include <Xm/Form.h>
Widget XmCreateForm (Widgetparent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/Frame.h>
Widget XmCreateFrame (Widgetparent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/GrabShell.h>
Widget XmCreateGrabShell (Widgetparent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/IconG.h>
Widget XmCreateIconGadget (Widgetparent, char *name, ArgList argv, Cardi-
nalargc)

#include <Xm/Label.h>
Widget XmCreateLabel (Widgetparent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/LabelG.h>
Widget XmCreateLabelGadget (Widgetparent, char *name, ArgList argv, Cardi-
nalargc)

#include <Xm/List.h>
Widget XmCreateList (Widgetparent, char *name, ArgList argv, Cardinalargc)

#include <Xm/MainW.h>
Widget XmCreateMainWindow (Widgetparent, char *name, ArgList argv, Car-
dinalargc)

#include <Xm/MenuShell.h>
Motif Reference Manual 71

XmCreate<Emphasis>Object<Default Para Font> Motif Functions and Macros
Widget XmCreateMenuShell (Widgetparent, char *name, ArgList argv, Cardi-
nalargc)

#include <Xm/MessageB.h>
Widget XmCreateMessageBox (Widgetparent, char *name, ArgList argv, Cardi-
nalargc)

#include <Xm/Notebook.h>
Widget XmCreateNotebook (Widgetparent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/PanedW.h>
Widget XmCreatePanedWindow (Widgetparent, char *name, ArgList argv, Car-
dinalargc)

#include <Xm/PushB.h>
Widget XmCreatePushButton (Widgetparent, char *name, ArgList argv, Cardi-
nalargc)

#include <Xm/PushBG.h>
Widget XmCreatePushButtonGadget (Widgetparent, char *name, ArgList argv,
Cardinalargc)

#include <Xm/RowColumn.h>
Widget XmCreateRowColumn (Widgetparent, char *name, ArgList argv, Cardi-
nalargc)
Widget XmCreateRadioBox (Widgetparent, char *name, ArgList argv, Cardinal
argc)
Widget XmCreateWorkArea (Widgetparent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/Scale.h>
Widget XmCreateScale (Widgetparent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/ScrollBar.h>
Widget XmCreateScrollBar (Widgetparent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/ScrolledW.h>
Widget XmCreateScrolledWindow (Widgetparent, char *name, ArgList argv,
Cardinalargc)

#include <Xm/SelectioB.h>
Widget XmCreateSelectionBox (Widgetparent, char *name, ArgList argv, Car-
dinalargc)
72 Motif Reference Manual

Motif Functions and Macros XmCreate<Emphasis>Object<Default Para Font>
#include <Xm/Separator.h>
Widget XmCreateSeparator (Widgetparent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/SeparatoG.h>
Widget XmCreateSeparatorGadget (Widgetparent, char *name, ArgList argv,
Cardinalargc)

#include <Xm/SSpinB.h>
Widget XmCreateSimpleSpinBox (Widgetparent, char *name, ArgList argv,
Cardinalargc)

#include <Xm/SpinB.h>
Widget XmCreateSpinBox (Widgetparent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/Text.h>
Widget XmCreateText (Widgetparent, char *name, ArgList argv, Cardinalargc)

#include <Xm/TextF.h>
Widget XmCreateTextField (Widgetparent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/ToggleB.h>
Widget XmCreateToggleButton (Widgetparent, char *name, ArgList argv, Car-
dinalargc)

#include <Xm/ToggleBG.h>
Widget XmCreateToggleButtonGadget (Widgetparent, char *name, ArgList
argv, Cardinalargc)

Dialog Objects
#include <Xm/BulletinB.h>
Widget XmCreateBulletinBoardDialog (Widgetparent, char *name, ArgList
argv, Cardinalargc)

#include <Xm/FileSB.h>
Widget XmCreateFileSelectionDialog (Widgetparent, char *name, ArgList argv,
Cardinalargc)

#include <Xm/Form.h>
Widget XmCreateFormDialog (Widgetparent, char *name, ArgList argv, Cardi-
nalargc)

#include <Xm/MessageB.h>
Widget XmCreateErrorDialog (Widgetparent, char *name, ArgList argv, Cardi-
nalargc)
Motif Reference Manual 73

XmCreate<Emphasis>Object<Default Para Font> Motif Functions and Macros
Widget XmCreateInformationDialog (Widgetparent, char *name, ArgList argv,
Cardinalargc)
Widget XmCreateMessageDialog (Widgetparent, char *name, ArgList argv,
Cardinalargc)
Widget XmCreateQuestionDialog (Widgetparent, char *name, ArgList argv,
Cardinalargc)
Widget XmCreateTemplateDialog (Widgetparent, char *name, ArgList argv,
Cardinalargc)
Widget XmCreateWarningDialog (Widgetparent, char *name, ArgList argv,
Cardinalargc)
Widget XmCreateWorkingDialog (Widgetparent, char *name, ArgList argv,
Cardinalargc)

#include <Xm/SelectioB.h>
Widget XmCreatePromptDialog (Widgetparent, char *name, ArgList argv, Car-
dinalargc)
Widget XmCreateSelectionDialog (Widgetparent, char *name, ArgList argv,
Cardinalargc)

#include <Xm/Command.h>
Widget XmCreateCommandDialog (Widgetparent, char *name, ArgList argv,
Cardinalargc)

Menu Objects
#include <Xm/RowColumn.h>
Widget XmCreateMenuBar (Widgetparent, char *name, ArgList argv, Cardinal
argc)
Widget XmCreateOptionMenu (Widgetparent, char *name, ArgList argv, Cardi-
nalargc)
Widget XmCreatePopupMenu (Widgetparent, char *name, ArgList argv, Cardi-
nalargc)
Widget XmCreatePulldownMenu (Widgetparent, char *name, ArgList argv,
Cardinalargc)

Simple Menu Objects
#include <Xm/Xm.h>
Widget XmCreateSimpleCheckBox (Widgetparent, char *name, ArgList argv,
Cardinalargc)
Widget XmCreateSimpleMenuBar (Widgetparent, char *name, ArgList argv,
Cardinalargc)
Widget XmCreateSimpleOptionMenu (Widgetparent, char *name, ArgList argv,
Cardinalargc)
Widget XmCreateSimplePopupMenu (Widgetparent, char *name, ArgList argv,
Cardinalargc)
74 Motif Reference Manual

Motif Functions and Macros XmCreate<Emphasis>Object<Default Para Font>

.

s
 is

ion

 of
tine

airs.
Widget XmCreateSimplePulldownMenu (Widgetparent, char *name, ArgList
argv, Cardinalargc)
Widget XmCreateSimpleRadioBox (Widgetparent, char *name, ArgList argv,
Cardinalargc)

Scrolled Objects
#include <Xm/List.h>
Widget XmCreateScrolledList (Widgetparent, char *name, ArgList argv, Cardi-
nalargc)

#include <Xm/Text.h>
Widget XmCreateScrolledText (Widgetparent, char *name, ArgList argv, Cardi-
nalargc)

Inputs
parent Specifies the widget ID of the parent of the new widget.
name Specifies the string name of the new widget for resource lookup
argv Specifies the resource name/value pairs used in creating the
widget.
argc Specifies the number of name/value pairs inargv.

Returns
The simple widget creation routines return the widget ID of the widget that i
created. The dialog creation routines return the widget ID of the widget that
created as a child of the DialogShell. The menu creation routines return the
widget ID of the RowColumn widget that is created. The scrolled object creat
routines return the widget ID of the List or Text widget.

Availability
XmCreateDragIcon () andXmCreateTemplateDialog () are only avail-
able in Motif 1.2 and later.

XmCreateGrabShell (), XmCreateIconGadget (), XmCreateCom-
boBox (),
XmCreateDropDownComboBox (), XmCreateDropDownList (), XmCre-
ateNotebook (), XmCreateContainer (), andXmCreateSpinBox () are
available from Motif 2.0 onwards.

XmCreateSimpleSpinBox () is available from Motif 2.1 and onwards.

Description
TheXmCreate *() routines are convenience routines for creating an instance
a particular widget class or a particular compound object. Each creation rou
takes the same four arguments: theparent’s widget ID, thename of the new
widget, a list of resource name/value pairs, and the number of name/value p
Motif Reference Manual 75

XmCreate<Emphasis>Object<Default Para Font> Motif Functions and Macros

set-

ar

r
om

pes

of

n

w.

In

For
, see
The simple creation routines create a single widget with the default resource
tings for the widget class, except forXmCreateRadioBox () andXmCreate-
WorkArea (), which create specially configured RowColumn widgets.

The dialog creation routines are convenience routines for creating a particul
unmanaged widget as a child of a DialogShell. Theparent argument specifies
the parent of the DialogShell andnamespecifies the string name of the particula
widget that is created. The name of the DialogShell is the string that results fr
appending "_popup" to thenameof the widget. The routines return the widget ID
of the widget that is created as the child of the DialogShell.

The menu creation routines are convenience routines for creating particular ty
of menu objects. Each routine creates a RowColumn widget with specific
resource settings that configure the widget to operate as the particular type
menu. XmCreatePopupMenu () andXmCreatePulldownMenu () create
the RowColumn widget as the child of a MenuShell.

Except forXmCreateSimpleSpinBox (), the simple menu creation routines
are convenience routines for creating particular configurations of RowColum
widgets and their children. For example,XmCreateSimpleCheckBox () cre-
ates a CheckBox with ToggleButtonGadgets as its children.

XmCreateScrolledList () andXmCreateScrolledText () are conven-
ience routines that create a List or Text widget as the child of a ScrolledWindo
Theparent argument specifies the parent of the ScrolledWindow andname spec-
ifies the string name of the List or Text widget. Thenameof the ScrolledWindow
is the string that results from appending "SW" to thename of the widget. The
routines return the widget ID of the List or Text widget.

Usage
Each widget or compound object that can be created with anXmCreate *() rou-
tine can also be created usingXtCreateWidget (). The simple Motif creation
routines are simply veneers toXtCreateWidget (). The rest of the Motif cre-
ation routines create multiple widgets and/or set specific widget resources.
order to useXtCreateWidget () to create these objects, you need to have a
complete understanding of the compound object that you are trying to create.
more information on each widget and compound object that can be created
the appropriate manual page in Section 2,Motif and Xt Widget Classes.
76 Motif Reference Manual

Motif Functions and Macros XmCreate<Emphasis>Object<Default Para Font>
See Also
XmArrowButtonGadget(2), XmArrowButton(2),
XmBulletinBoardDialog(2), XmBulletinBoard(2),
XmCascadeButtonGadget(2), XmCascadeButton(2),
XmCheckBox(2), XmComboBox(2), XmCommand(2),
XmCommandDialog(2), XmContainer(2), XmDialogShell(2),
XmDragIcon(2), XmDrawingArea(2), XmDrawnButton(2),
XmErrorDialog(2), XmFileSelectionBox(2),
XmFileSelectionDialog(2), XmFormDialog(2), XmForm(2),
XmFrame(2), XmGrabShell(2), XmIconGadget(2),
XmInformationDialog(2), XmLabelGadget(2), XmLabel(2),
XmList(2), XmMainWindow(2), XmMenuBar(2),
XmMenuShell(2), XmMessageBox(2), XmMessageDialog(2),
XmNotebook(2), XmOptionMenu(2), XmPanedWindow(2),
XmPopupMenu(2), XmPromptDialog(2),
XmPulldownMenu(2), XmPushButtonGadget(2)
XmPushButton(2), XmQuestionDialog(2), XmRadioBox(2),
XmRowColumn(2), XmScale(2), XmScrollBar(2),
XmScrolledList(2), XmScrolledText(2),
XmScrolledWindow(2), XmSelectionBox(2),
XmSelectionDialog(2), XmSeparatorGadget(2),
XmSeparator(2), XmSpinBox(2), XmSimpleSpinBox(2),
XmTemplateDialog(2), XmTextField(2), XmText(2),
XmToggleButtonGadget(2), XmToggleButton(2),
XmWarningDialog(2), XmWorkingDialog(2).
Motif Reference Manual 77

XmCvtByteStreamToXmString Motif Functions and Macros

.

d
ra-

ed
lo-
Name
XmCvtByteStreamToXmString – convert a byte stream to a compound string

Synopsis

XmString XmCvtByteStreamToXmString (unsigned char *property)

Inputs
property Specifies a byte stream.

Returns
An allocated compound string.

Availability
Motif 2.0 and later.

Description
XmCvtByteStreamToXmString () converts a stream of bytes to a compoun
string. The function is typically used by the destination of a data transfer ope
tion.

Usage
XmCvtByteStreamToXmString () converts a compound string in byte
stream format into an XmString. The function allocates storage for the return
compound string, and it is the responsibility of the programmer to free the al
cated memory by callingXmStringFree () at an appropriate point.

See Also
XmCvtXmStringToByteStream (1), XmStringFree (1),
78 Motif Reference Manual

Motif Functions and Macros XmCvtCTToXmString

If
-
d
-

cale.

 for
n

ent.
Name
XmCvtCTToXmString – convert compound text to a compound string.

Synopsis

XmString XmCvtCTToXmString (char *text)

Inputs
text Specifies the compound text that is to be converted.

Returns
The converted compound string.

Description
XmCvtCTToXmString () converts the specifiedtextstring from compound text
format, which is an X Consortium Standard defined inCompound Text Encoding,
to a Motif compound string. The routine assumes that the compound text is
NULL-terminated and NULLs within the compound text are handled correctly.
text contains horizontal tabulation (HT) control characters, the result is unde
fined.XmCvtCTToXmString () allocates storage for the converted compoun
string. The application is responsible for freeing this storage using XmString
Free().

Usage
Compound text is an encoding that is designed to represent text from any lo
Compound text strings identify their encoding using embedded escape
sequences. The compound text representation was standardized for X11R4
use as a text interchange format for interclient communication. An applicatio
must callXtAppInitialize () before callingXmCvtCTToXmString (). The
conversion of compound text to compound strings is implementation depend
XmCvtCTToXmString () is the complement ofXmCvtXmStringToCT ().

See Also
XmCvtXmStringToCT (1).
Motif Reference Manual 79

XmCvtStringToUnitType Motif Functions and Macros

rm

s

aced
Name
XmCvtStringToUnitType – convert a string to a unit-type value.

Synopsis

void XmCvtStringToUnitType (XrmValuePtr args,
Cardinal *num_args,
XrmValue *from_val,
XrmValue *to_val)

Inputs
args Specifies additional XrmValue arguments that are need to perfo
the conversion.
num_args Specifies the number of items in args.
from_val Specifies value to convert.

Outputs
to_val Returns the converted value.

Availability
In Motif 1.2,XmCvtStringToUnitType () is obsolete. It has been super-
seded by a new resource converter that uses the RepType facility.

Description
XmCvtStringToUnitType () converts the string specified infrom_valto one
of the unit-type values: XmPIXELS, Xm100TH_MILLIMETERS,
Xm1000TH_INCHES, Xm100TH_POINTS, or Xm100TH_FONT_UNITS.
This value is returned into_val.

Usage
XmCvtStringToUnitType () should not be called directly; it should be
installed as a resource converter using the R3 routineXtAddConverter (). The
routine only needs to be installed if the XmNunitType resource for a widget i
being set in a resource file. In this case,XmCvtStringToUnitType () must be
installed withXtAddConverter () before the widget is created. Use the fol-
lowing call toXtAddConverter () to install the converter:

XtAddConverter (XmRString, XmRUnitType, XmCvtStringToUnitType,
NULL, 0);

In Motif 1.2, the use ofXmCvtStringToUnitType () as a resource converter
is obsolete. A new resource converter that uses the RepType facility has repl
the routine.

See Also
XmGadget(2), XmManager(2), XmPrimitive (2).
80 Motif Reference Manual

Motif Functions and Macros XmCvtTextPropertyToXmStringTable

cale
nt

 to

mber
Name
XmCvtTextPropertyToXmStringTable – convert an XTextProperty to a Com-
pound String Table.

Synopsis

#include <Xm/TxtPropCv.h>

int XmCvtTextPropertyToXmStringTable (Display *display,
XTextProperty *text_prop,
XmStringTable

*str_table_return,
int *count_return)

Inputs
display Specifies the connection to the X server.
text_prop Specifies a pointer to an XTextProperty structure.

Outputs
str_table_return The XmStringTable array converted from text_prop.
count_return The number of XmStrings in str_table_return.

Returns
Success if the conversion succeeded, XLocaleNotSupported if the current lo
is unsupported, XConverterNotFound if no converter is available in the curre
locale.

Availability
Motif 2.0 and later.

Description
XmCvtTextPropertyToXmStringTable () converts the data specified
within text_propinto an array of XmStrings, returned throughstr_table_return.
The number of XmStrings in the array is returned incount_return.

Usage
TheXmCvtTextPropertyToXmStringTable () function converts data
specified within an XTextProperty structure into an XmStringTable. The data
be converted is the value member oftext_prop, where value is an array of bytes,
consisting of a series of concatenated items, each NULL separated. The nu
of such items is given by the nitems member oftext_prop. The last item is termi-
nated by two NULL bytes. The interpretation of each item depends upon the
encoding member oftext_prop.

If the encoding member oftext_prop is COMPOUND_TEXT, the data is con-
verted using the functionXmCvtCTToXmString (). If encoding is
COMPOUND_STRING, the data is converted using the functionXmCvt-
Motif Reference Manual 81

XmCvtTextPropertyToXmStringTable Motif Functions and Macros

ot-

ro-
ByteStreamToXmString (). Conversion requires that a converter has been
registered for the current locale, otherwise the function returns XConverterN
Found. If encoding is XA_STRING, each returned XmString is converted
throughXmStringGenerate () with a tag of "ISO8859-1" and a text type of
XmCHARSET_TEXT. If encoding is that of the current locale, each returned
XmString is converted throughXmStringGenerate () with a tag of
_MOTIF_DEFAULT_LOCALE, and a text type of XmMULTIBYTE_TEXT. For
other values of encoding, the function returns XLocaleNotSupported.

XmCvtTextPropertyToXmStringTable () returns allocated storage, and
it is the responsibility of the programmer to free the utilized memory at an app
priate point by freeing each element of the array throughXmStringFree (),
and subsequently the array itself throughXtFree ().

Structures
The XTextProperty structure is defined in <X11/Xutil.h> as follows:

typedef struct {
unsigned char *value; /*same as Property routines */
Atom encoding; /*the property type */
int format; /* property data format: 8, 16, or 32.*/
unsigned long nitems; /*number of data items in value */

} XTextProperty;

See Also
XmCvtByteStreamToXmString (1), XmCvtCTToXmString (1),
XmStringFree (1), XmStringGenerate (1).
82 Motif Reference Manual

Motif Functions and Macros XmCvtXmStringTableToTextProperty

xt-

cale

tains
Name
XmCvtXmStringTableToTextProperty – convert an XmStringTable to an XTe
Property.

Synopsis

#include <Xm/TxtPropCv.h>

int XmCvtXmStringTableToTextProperty (Display *dis-
play,

XmStringTable
string_table,

int count,
XmICCEncodingStyle style,
XTextProperty

*prop_return)

Inputs
display Specifies the connection to the X server.
string_table Specifies an array of compound strings.
count Specifies the number of compound strings instring_table.
style Specifies the encoding style from which to convert
string_table.

Outputs
prop_return The XTextProperty structure converted fromstring_table.

Returns
Success if the conversion succeeded, XLocaleNotSupported if the current lo
is unsupported.

Availability
Motif 2.0 and later.

Description
XmCvtXmStringTableToTextProperty () is the inverse function to
XmCvtTextPropertyToXmStringTable (). It converts an array of com-
pound strings, specified bystring_table, into the elements of an XTextProperty
structure. The number of compound strings within thestring_table is given by
count.

Usage
XmCvtXmStringTableToTextProperty () converts an XmStringTable
into the elements of an XTextProperty structure. The encoding member con
an Atom representing the requestedstyle. The value member contains a list of the
Motif Reference Manual 83

XmCvtXmStringTableToTextProperty Motif Functions and Macros

LL

g

s

converted items, each separated by NULL bytes, and terminated by two NU
bytes, the nitems member is the number of such items converted.

If style is XmSTYLE_COMPOUND_STRING, encoding is
_MOTIF_COMPOUND_STRING, and value contains a list of XmStrings in
byte stream format.

If style is XmSTYLE_COMPOUND_TEXT, encoding is COMPOUND_TEXT,
and value contains compound text items.

If styleis XmSTYLE_LOCALE, encoding is the Atom representing the encodin
for the current locale. value contains items converted into the current locale.

If style is XmSTYLE_STRING, encoding is STRING, and value contains item
converted into ISO8859-1 strings.

If style is XmSTYLE_TEXT, and all the XmStrings instring_table are converti-
ble into the encoding for the current locale, the function behaves as thoughstyle
is XmSTYLE_LOCALE. Otherwise, the function behaves as thoughstyle is
XmSTYLE_COMPOUND_TEXT.

If style is XmSTYLE_STANDARD_ICC_TEXT, and all the XmStrings in
string_tableare convertible as though thestyleis XmSTYLE_STRING, the func-
tion behaves as thoughstyle is indeed XmSTYLE_STRING. Otherwise, the
function behaves as thoughstyle is XmSTYLE_COMPOUND_TEXT.

XmCvtXmStringTableToTextProperty () returns XLocaleNotSupported
if the conversion cannot be performed within the current locale, or ifstyle is not
valid. Otherwise, the function returns Success.

Structures
The XTextProperty structure is defined in <X11/Xutil.h> as follows:

typedef struct {
unsigned char *value; /*same as Property routines */
Atom encoding; /*property type */
int format; /* property data format: 8, 16, or 32*/
unsigned long nitems; /*number of data items in value */

} XTextProperty;

The possible values of the XmICCEncodingStyle parameter style are:

XmSTYLE_COMPOUND_STRING
XmSTYLE_COMPOUND_TEXT
XmSTYLE_LOCALE
XmSTYLE_STANDARD_ICC_TEXT
XmSTYLE_STRING
XmSTYLE_TEXT
84 Motif Reference Manual

Motif Functions and Macros XmCvtXmStringTableToTextProperty
See Also
XmCvtByteStreamToXmString (1), XmCvtCTToXmString (1),
XmCvtTextPropertyToStringTable (1), XmStringFree (1),
XmStringGenerate (1).
Motif Reference Manual 85

XmCvtXmStringToByteStream Motif Functions and Macros

or-

he

n

Name
XmCvtXmStringToByteStream – convert a compound string to byte stream f
mat.

Synopsis

unsigned int XmCvtXmStringToByteStream (XmStringstring, unsigned char
** prop_return)

Inputs
string Specifies the compound string that is to be converted.

Outputs
prop_return The converted compound string in byte stream format.

Returns
The number of bytes in the byte stream.

Availability
Motif 2.0 and later.

Description
XmCvtXmStringToByteStream () converts a compound stringstring into a
stream of bytes, returning the number of bytes required for the conversion. T
byte stream is returned inprop_return. The function is the inverse ofXmCvt-
ByteStreamToXmString ().

Usage
XmCvtXmStringToByteStream () converts an XmString into byte stream
format. If prop_returnis not NULL, the function places intoprop_returnthe con-
verted string, and returns its length in bytes. Ifprop_returnis NULL, the number
of bytes is calculated and returned, but no conversion is performed.

XmCvtXmStringToByteStream () returns allocated storage inprop_return,
and it is the responsibility of the programmer to free the utilized memory at a
appropriate point by callingXtFree ().

See Also
XmCvtByteStreamToXmString (1).
86 Motif Reference Manual

Motif Functions and Macros XmCvtXmStringToCT

cale.

 for

r-

ags

g-
ound
ext
at is
-
ent"

ent
n.
Name
XmCvtXmStringToCT – convert a compound string to compound text.

Synopsis

char * XmCvtXmStringToCT (XmStringstring)

Inputs
string Specifies the compound string that is to be converted.

Returns
The converted compound text string.

Description
XmCvtXmStringToCT () converts the specified Motif compoundstring to a
string in X11 compound text format, which is described in the X Consortium
StandardCompound Text Encoding.

Usage
Compound text is an encoding that is designed to represent text from any lo
Compound text strings identify their encoding using embedded escape
sequences. The compound text representation was standardized for X11R4
use as a text interchange format for interclient communication.XmCvtXm-
StringToCT () is the complement ofXmCvtCTToXmString ().

In Motif 1.2 and later, an application must not callXmCvtXmStringToCT ()
until afterXtAppInitialize () is called, so that the locale is established co
rectly. The routine uses the font list tag of each compound string segment to
select a compound text format for the segment. A mapping between font list t
and compound text encoding formats is stored in a registry.

If the compound string segment tag is associated with
XmFONTLIST_DEFAULT_TAG in the registry, the converter callsXmbTex-
tListToTextProperty () with the XCompoundTextStyle encoding style and
uses the resulting compound text for the segment. If the compound string se
ment tag is mapped to a registered MIT charset, the routine creates the comp
text using the charset as defined in the X Consortium Standard Compound T
Encoding. If the compound string segment tag is associated with a charset th
not XmFONTLIST_DEFAULT_TAG or a registered charset, the converter cre
ates the compound text using the charset and the text as an "extended segm
with a variable number of octets per character. If the compound string segm
tag is not mapped in the registry, the result depends upon the implementatio

See Also
XmCvtCTToXmString (1), XmMapSegmentEncoding (1),
XmRegisterSegmentEncoding (1).
Motif Reference Manual 87

XmDeactivateProtocol Motif Functions and Macros

sim-
on.
Name
XmDeactivateProtocol – deactivate a protocol.

Synopsis

#include <Xm/Protocols.h>

void XmDeactivateProtocol (Widgetshell, Atomproperty, Atomprotocol)

Inputs
shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocol Specifies the protocol atom.

Description
XmDeactivateProtocol () deactivates the specifiedprotocol without
removing it. If the shell is realized,XmDeactivateProtocol () updates its
protocol handlers and the specifiedproperty. A protocol may be active or inac-
tive. If protocol is active, the protocol atom is stored inproperty; if protocol is
inactive, the protocol atom is not stored in property.

Usage
A protocol is a communication channel between applications. Protocols are
ply atoms, stored in a property on the top-level shell window for the applicati
XmDeactivateProtocol () allows a client to temporarily stop participating
in the communication. The inverse routine isXmActivateProtocol ().

See Also
XmActivateProtocol (1), XmDeactivateWMProtocol (1),
XmInternAtom (1), VendorShell (2).
88 Motif Reference Manual

Motif Functions and Macros XmDeactivateWMProtocol

.

-

n

Name
XmDeactivateWMProtocol – deactivate the XA_WM_PROTOCOLS protocol

Synopsis

#include <Xm/Protocols.h>

void XmDeactivateWMProtocol (Widgetshell, Atomprotocol)

Inputs
shell Specifies the widget associated with the protocol property.
protocol Specifies the protocol atom.

Description
XmDeactivateWMProtocol () is a convenience routine that callsXmDeac-
tivateProtocol () with property set to XA_WM_PROTOCOL, the window
manager protocol property.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com
munication between clients and window managers.XmDeactivateWMPro-
tocol () allows a client to temporarily stop participating in the communicatio
with the window manager. The inverse routine isXmActivateWMProto-
col ().

See Also
XmActivateWMProtocol (1), XmDeactivateProtocol (1),
XmInternAtom (1), VendorShell (2).
Motif Reference Manual 89

XmDestroyPixmap Motif Functions and Macros

 no

che.
Name
XmDestroyPixmap – remove a pixmap from the pixmap cache.

Synopsis

Boolean XmDestroyPixmap (Screen *screen, Pixmappixmap)

Inputs
screen Specifies the screen on which the pixmap is located.
pixmap Specifies the pixmap.

Returns
True on success or False if there is no matchingpixmap andscreen in the cache.

Description
XmDestroyPixmap () removes the specifiedpixmap from the pixmap cache
when it is no longer needed. A pixmap is not completely freed until there are
further reference to it.

Usage
The pixmap cache maintains a per-client list of the pixmaps that are in use.
Whenever a pixmap is requested usingXmGetPixmap (), an internal reference
counter for the pixmap is incremented.XmDestroyPixmap () decrements this
counter, so that when it reaches 0 (zero), the pixmap is removed from the ca

See Also
XmGetPixmap (1), XmInstallImage (1), XmUninstallImage (1).
90 Motif Reference Manual

Motif Functions and Macros XmDirectionMatch

-
e

m-
ch if
the

s not
t of
l

lse.

ent
e-

 (it is

urns
Name
XmDirectionMatch – compare two directions.

Synopsis

Boolean XmDirectionMatch (XmDirectiondir_1, XmDirectiondir_2)

Inputs
dir_1 Specifies a direction.
dir_2 Specifies a direction to compare withdir_1.

Returns
True if the directions match, otherwise False.

Availability
Motif 2.0 and later.

Description
XmDirectionMatch () is a convenience function which compares two direc
tion values,dir_1 anddir_2, returning True or False, depending upon whether th
values are a logical match for each other.

Usage
An XmDirection consists of three parts: a horizontal component, a vertical co
ponent, and an order of precedence between each. XmDirection values mat
both the horizontal components and vertical components of each are logically
same, and the order between the components is the same. If one value doe
have a horizontal component, this always matches the horizontal componen
the other value. Similarly, if one value has no vertical component, the vertica
component in the other value is automatically considered to match. Where a
match is found between the directions, the function returns True, otherwise Fa

For example, supposedir_1 is XmTOP_TO_BOTTOM_LEFT_TO_RIGHT.
This has a vertical component XmTOP_TO_BOTTOM, a horizontal compon
XmLEFT_TO_RIGHT, the vertical component being first in the order of prec
dence. Ifdir_2 is XmLEFT_TO_RIGHT, this has no vertical component, which
automatically matches the vertical component ofdir_1. The horizontal compo-
nents are identical, and therefore the two directions are considered a match
also a match ifdir_1 is XmLEFT_TO_RIGHT_TOP_TO_BOTTOM). Ifdir_2 is
XmRIGHT_TO_LEFT, or XmTOP_TO_BOTTOM_RIGHT_TO_LEFT, no
match is found because the horizontal components differ, and the function ret
False. Ifdir_2 is XmLEFT_TO_RIGHT_TOP_TO_BOTTOM, the function also
returns False because the horizontal and vertical components, although fully
specified and equal in value, have different orders of precedence.
Motif Reference Manual 91

XmDirectionMatch Motif Functions and Macros
Structures
Valid XmDirection values for each ofdir_1 anddir_2 are:

XmLEFT_TO_RIGHT XmRIGHT_TO_LEFT
XmBOTTOM_TO_TOP XmTOP_TO_BOTTOM
XmBOTTOM_TO_TOP_LEFT_TO_RIGHT
XmBOTTOM_TO_TOP_RIGHT_TO_LEFT
XmTOP_TO_BOTTOM_LEFT_TO_RIGHT
XmTOP_TO_BOTTOM_RIGHT_TO_LEFT
XmLEFT_TO_RIGHT_BOTTOM_TO_TOP
XmRIGHT_TO_LEFT_BOTTOM_TO_TOP
XmLEFT_TO_RIGHT_TOP_TO_BOTTOM
XmRIGHT_TO_LEFT_TOP_TO_BOTTOM

See Also
XmDirectionMatchPartial (1),
XmDirectionToStringDirection (1),
XmStringDirectionToDirection (1),
92 Motif Reference Manual

Motif Functions and Macros XmDirectionMatchPartial

d

rti-
pares

-
n
ve a
e.

a-

l
h

Name
XmDirectionMatchPartial – partially compare two directions.

Synopsis

Boolean XmDirectionMatchPartial (XmDirectiondir_1, XmDirectiondir_2,
XmDirectionmask)

Inputs
dir_1 Specifies a direction.
dir_2 Specifies another direction to compare withdir_1.
mask Specifies whether the horizontal component

(XmHORIZONTAL_MASK), vertical component
(XmVERTICAL_MASK), or the order of component precedence
(XmPRECEDENCE_MASK) is compared.

Returns
True if the directions match, otherwise False.

Availability
Motif 2.0 and later.

Description
XmDirectionMatchPartial () is a convenience function which compares
two direction values,dir_1 anddir_2 according to the comparison rule specifie
in mask.

Usage
An XmDirection consists of three logical parts: a horizontal component, a ve
cal component, and an order of precedence between each. The function com
corresponding logical parts of two XmDirection values. Ifmask is
XmHORIZONTAL_MASK, the horizontal components ofdir_1 anddir_2 are
compared. Ifmask is XmVERTICAL_MASK, the vertical components are com
pared. Ifmask is XmPRECEDENCE_MASK, the order of precedence betwee
the horizontal and vertical components is compared. If one value does not ha
particular logical part, this always matches the logical part in the second valu
Where a match is found, the function returns True, otherwise False.

For example, supposedir_1 is XmTOP_TO_BOTTOM_LEFT_TO_RIGHT, and
thatdir_2 is XmBOTTOM_TO_TOP_LEFT_TO_RIGHT. Ifmask is
XmHORIZONTAL_MASK, the two values match because each has an equiv
lent horizontal component (XmLEFT_TO_RIGHT). Ifmask is
XmVERTICAL_MASK, there is no match because each has different vertica
components. Ifmask is XmPRECEDENCE_MASK, the two values are a matc
because each has the vertical component before the horizontal.
Motif Reference Manual 93

XmDirectionMatchPartial Motif Functions and Macros
Structures
Valid XmDirection values for each ofdir_1 anddir_1 are:

XmLEFT_TO_RIGHT XmRIGHT_TO_LEFT
XmBOTTOM_TO_TOP XmTOP_TO_BOTTOM
XmBOTTOM_TO_TOP_LEFT_TO_RIGHT
XmBOTTOM_TO_TOP_RIGHT_TO_LEFT
XmTOP_TO_BOTTOM_LEFT_TO_RIGHT
XmTOP_TO_BOTTOM_RIGHT_TO_LEFT
XmLEFT_TO_RIGHT_BOTTOM_TO_TOP
XmRIGHT_TO_LEFT_BOTTOM_TO_TOP
XmLEFT_TO_RIGHT_TOP_TO_BOTTOM
XmRIGHT_TO_LEFT_TOP_TO_BOTTOM

See Also
XmDirectionMatch (1), XmDirectionToStringDirection (1),
XmStringDirectionToDirection (1),
94 Motif Reference Manual

Motif Functions and Macros XmDirectionToStringDirection

-

T,
-

c-
Name
XmDirectionToStringDirection – convert a direction to a string direction.

Synopsis

XmStringDirection XmDirectionToStringDirection (XmDirectiondirection)

Inputs
direction Specifies the direction to be converted.

Returns
The equivalent XmStringDirection.

Availability
Motif 2.0 and later.

Description
XmDirectionToStringDirection () converts an XmDirection value spec
ified bydirection into an XmStringDirection value.

Usage
XmDirectionToStringDirection () converts between the XmDirection
and XmStringDirection data types. Ifdirection has a horizontal component, that
component is converted. If the horizontal component is XmLEFT_TO_RIGH
the function returns XmSTRING_DIRECTION_LEFT_TO_RIGHT. If the hori
zontal component is XmRIGHT_TO_LEFT, the function returns
XmSTRING_DIRECTION_RIGHT_TO_LEFT. Ifdirection has no horizontal
component, the function returns XmSTRING_DIRECTION_DEFAULT.

For example, ifdirection is XmRIGHT_TO_LEFT_TOP_TO_BOTTOM, the
horizontal component is XmRIGHT_TO_LEFT, and the return value is
XmSTRING_DIRECTION_RIGHT_TO_LEFT. Ifdirection is
XmBOTTOM_TO_TOP, the value has only a vertical component, and the fun
tion returns XmSTRING_DIRECTION_DEFAULT.

See Also
XmDirectionMatch (1), XmDirectionMatchPartial (1),
XmStringDirectionToDirection (1).
Motif Reference Manual 95

XmDragCancel Motif Functions and Macros

n

ed
d.

era-

.

Name
XmDragCancel – cancel a drag operation.

Synopsis

#include <Xm/DragDrop.h>

void XmDragCancel (Widgetdragcontext)

Inputs
dragcontext Specifies the ID of the DragContext object for the drag operatio

that is being cancelled.

Description
XmDragCancel () cancels the drag operation that is in progress for the specifi
dragcontesxt. If the DragContext has any actions pending, they are terminate
The routine can only be called by the client that initiated the drag operation.
XmDragCancel () frees the DragContext object associated with the drag op
tion.

Usage
XmDragCancel () allows an initiating client to cancel a drag operation if it
decides that the operation should not continue for whatever reason. Calling
XmDragCancel () is equivalent to the user pressing KCancel during the drag
The XmNdropStartCallback informs the initiating client of the cancellation by
setting the dropAction field to XmDROP_CANCEL. So that it can undo any
drag-under effects under the dynamic protocol, the receiving client gets an
XmCR_DROP_SITE_LEAVE_MESSAGE when the drag is cancelled.

See Also
XmDragStart (1), XmDragContext (2).
96 Motif Reference Manual

Motif Functions and Macros XmDragStart

ng

rag-

d

n-
ess

m-

e
lues.

cts
using
s can
Name

XmDragStart – start a drag operation.

Synopsis
#include <Xm/DragDrop.h>

Widget XmDragStart (Widgetwidget, XEvent *event, ArgList arglist, Cardinal
argcount)

Inputs
widget Specifies the widget or gadget that contains the data that is bei

dragged.
event Specifies the event that caused the drag operation.
arglist Specifies the resource name/value pairs used in creating the D

Context.
argcount Specifies the number of name/value pairs in arglist.

Returns
The ID of the DragContext object that is created.

Availability
In Motif 2.0 and later,XmDragStart () is subsumed into the Uniform Transfer
Model (UTM). The Motif widget classes do not callXmDragStart () directly,
but install the XmQTtransfer trait to provide data transfer and conversion, an
initiate the drag through UTM mechanisms which callsXmDragStart () inter-
nally.

Description
XmDragStart () starts a drag operation by creating and returning a DragCo
text object. The DragContext stores information that the toolkit needs to proc
a drag transaction. The DragContext object is widget-like, in that it uses
resources to specify its attributes. The toolkit frees the DragContext upon co
pletion of the drag and drop operation.

Thewidget argument toXmDragStart () should be the smallest widget that
contains the source data for the drag operation. Theevent that starts the drag
operation must be a ButtonPress event. Thearglist andargcountparameters work
as for any creation routine; any DragContext resources that are not set by th
arguments are retrieved from the resource database or set to their default va

Usage
Motif supports the drag and drop model of selection actions. In a widget that a
as a drag source, a user can make a selection and then drag the selection,
BTransfer, to other widgets that are registered as drop sites. These drop site
be in the same application or another application.
Motif Reference Manual 97

XmDragStart Motif Functions and Macros

are
as a
he

re of
(s)
h as

ions
,
 the
The Text and TextField widgets, the List widget, and Label and its subclasses
set up to act as drag sources by the toolkit. In order for another widget to act
drag source, it must have a translation for BTransfer. The action routine for t
translation callsXmDragStart (), either directly or indirectly through the UTM,
to initiate the drag and drop operation.

The only DragContext resource that must be specified whenXmDragStart () is
called is the XmNconvertProc procedure. This resource specifies a procedu
type XtConvertSelectionIncrProc that converts the source data to the format
requested by the receiving client. The specification of the other resources, suc
those for operations and drag-over visuals, is optional. For more information
about the DragContext object, see the manual page in Section 2,Motif and Xt
Widget Classes].

Example
The following routines show the use ofXmDragStart () in setting up a Scroll-
Bar to function as a drag source. When the ScrollBar is created, the translat
are overridden to invoke StartDrag when BTransfer is pressed. ConvertProc
which is not shown here, is set up by StartDrag to perform the translation of
scrollbar data into compound text format.

/*
** XmSCOMPOUND_TEXT is defined in Motif 2.0 and
later
*/
#ifndef XmSCOMPOUND_TEXT
#define XmSCOMPOUND_TEXT "COMPOUND_TEXT"
#endif /* XmSCOMPOUND_TEXT */

/* global variable */
Atom COMPOUND_TEXT;

/* start the drag operation */
static void StartDrag(Widget widget,

XEvent *event,
String *params,
Cardinal *num_params)

{
Arg args[10];
int n = 0;
Atom exportList[1];

exportList[0] = COMPOUND_TEXT;
98 Motif Reference Manual

Motif Functions and Macros XmDragStart
XtSetArg (args[n], XmNexportTargets,
exportList); n++;
XtSetArg (args[n], XmNnumExportTargets, XtNumber
(exportList));
n++;
XtSetArg (args[n], XmNdragOperations,
XmDROP_COPY); n++;
XtSetArg (args[n], XmNconvertProc, ConvertProc);
n++;
XtSetArg (args[n], XmNclientData, widget); n++;

XmDragStart (widget, event, args, n);
}

/* define translations and actions */
static char dragTranslations[] =

"#override <Btn2Down>: StartDrag()";

static XtActionsRec dragActions[] =
{ {"StartDrag", (XtActionProc) StartDrag} };

void main (unsigned int argc, char **argv)
{

Arg args[10];
int n;
Widget top, bboard, scrollbar;
XtAppContext app;
XtTranslations parsed_trans;

XtSetLanguageProc (NULL, (XtLanguageProc) NULL,
NULL);

top = XtAppInitialize (&app, "Drag", NULL, 0,
&argc, argv, NULL, NULL,
0);

COMPOUND_TEXT = XInternAtom (XtDisplay (widget),
XmSCOMPOUND_TEXT,
False);

n = 0;
bboard = XmCreateBulletinBoard (top, "bboard",
args, n);
XtManageChild (bboard);

/* override button two press to start a drag */
Motif Reference Manual 99

XmDragStart Motif Functions and Macros
parsed_trans = XtParseTranslationTable
(dragTranslations);
XtAppAddActions (app, dragActions, XtNumber
(dragActions));

n = 0;
XtSetArg (args[n], XmNtranslations,
parsed_trans); n++;
XtSetArg (args[n], XmNorientation, XmHORIZON-
TAL); n++;
XtSetArg (args[n], XmNwidth, 100); n++;
scrollbar = XmCreateScrollBar (bboard, "scroll-
bar", args, n);
XtManageChild (scrollbar);

XtRealizeWidget (top);
XtAppMainLoop (app);

}

See Also
XmDragCancel (1), XmTransfer (1), XmDragContext (2).
100 Motif Reference Manual

Motif Functions and Macros XmDropSiteConfigureStackingOrder

ite.

e

t be

the

e
ra-
the

er or
Name
XmDropSiteConfigureStackingOrder – change the stacking order of a drop s

Synopsis

#include <Xm/DragDrop.h>

void XmDropSiteConfigureStackingOrder (Widgetwidget, Widgetsibling, Car-
dinalstack_mode)

Inputs
widget Specifies the widget ID associated with the drop site.
sibling Specifies an optional widget ID of a sibling drop site.
stack_mode Specifies the stacking position. Pass either XmABOVE or
XmBELOW.

Description
XmDropSiteConfigureStackingOrder () changes the stacking order of a
drop site relative to its siblings. The routine changes the stacking order of th
drop site associated with the specifiedwidget. The stacking order is changed only
if the drop sites associated withwidgetandsiblingare siblings in both the widget
hierarchy and the drop site hierarchy. The parent of both of the widgets mus
registered as a composite drop site.

If sibling is specified, the stacking order of the drop site is changed relative to
stack position of the drop site associated withsibling, based on the value of
stack_mode. If stack_mode is XmABOVE, the drop site is positioned just above
the sibling; ifstack_mode is XmBELOW, the drop site is positioned just below
the sibling. Ifsibling is not specified, astack_mode of XmABOVE causes the

drop site to be placed at the top of the stack, while astack_modeof XmBELOW1

causes it to be placed at the bottom of the stack.

Usage
A drop site for drag and drop operations can be a composite drop site, which
means that it has children which are also drop sites. The stacking order of th
drop sites controls clipping of drag-under effects during a drag and drop ope
tion. When drop sites overlap, the drag-under effects of the drop sites lower in
stacking order are clipped by the drop sites above them, regardless of wheth
not the drop sites are active. You can useXmDropSiteConfigure-
StackingOrder () to modify the stacking order. UseXmDropSiteQueryS-
tackingOrder () to get the current stacking order.

See Also
XmDropSiteQueryStackingOrder(1),
XmDropSiteRegister(1), XmDropSite(2)

1.Erroneously given as BELOW in 1st and 2nd editions.
Motif Reference Manual 101

XmDropSiteEndUpdate Motif Functions and Macros

es

of

,

Name
XmDropSiteEndUpdate – end an update of multiple drop sites.

Synopsis

#include <Xm/DragDrop.h>

void XmDropSiteEndUpdate (Widgetwidget)

Inputs
widget Specifies any widget in the hierarchy associated with the drop sit
that are to be updated.

Description
XmDropSiteEndUpdate () finishes an update of multiple drop sites. The
widget parameter specifies a widget in the widget hierarchy that contains all
the widgets associated with the drop sites being updated. The routine useswidget
to identify the shell that contains all of the drop sites.

Usage
XmDropSiteEndUpdate () is used withXmDropSiteStartUpdate () and
XmDropSiteUpdate () to update information about multiple drop sites in the
DropSite registry.XmDropSiteStartUpdate () starts the update processing
XmDropSiteUpdate () is called multiple times to update information about
different drop sites, andXmDropSiteEndUpdate () completes the processing.
These routines optimize the updating of drop site information. Calls toXmDrop-
SiteStartUpdate () andXmDropSiteEndUpdate () can be nested recur-
sively.

See Also
XmDropSiteStartUpdate (1), XmDropSiteUpdate (1),
XmDropSite (2).
102 Motif Reference Manual

Motif Functions and Macros XmDropSiteQueryStackingOrder

op

rned

 at

this
Name
XmDropSiteQueryStackingOrder – get the stacking order of a drop site.

Synopsis

#include <Xm/DragDrop.h>

Status XmDropSiteQueryStackingOrder (Widgetwidget,
Widget *parent_return,
Widget **child_returns,
Cardinal *num_child_returns)

Inputs
widget Specifies the widget ID associated with a composite dr
site.

Outputs
parent_return Returns the widget ID of the parent of the specified
widget.
child_returns Returns a list of the children ofwidget that are registered
as drop sites.
num_child_returns Returns the number of children inchild_returns.

Returns
A non-zero value on success or 0 (zero) on failure.

Description
XmDropSiteQueryStackingOrder () retrieves information about the
stacking order of drop sites. For the specifiedwidget, the routine returns its parent
and a list of its children that are registered as drop sites. The children are retu
in child_returns, which lists the children in the current stacking order, with the
lowest child in the stacking order at the beginning of the list and the top child
the end of the list.XmDropSiteQueryStackingOrder () allocates storage
for the list of returned children. The application is responsible for managing
storage, which can be freed usingXtFree (). The routine returns a non-zero
value on success or 0 (zero) on failure.
Motif Reference Manual 103

XmDropSiteQueryStackingOrder Motif Functions and Macros

e
ra-
the

er or

sites
Usage
A drop site for drag and drop operations can be a composite drop site, which
means that it has children which are also drop sites. The stacking order of th
drop sites controls clipping of drag-under effects during a drag and drop ope
tion. When drop sites overlap, the drag-under effects of the drop sites lower in
stacking order are clipped by the drop sites above them, regardless of wheth
not the drop sites are active. UseXmDropSiteQueryStackingOrder () to
get the current stacking order for a composite drop site. You can useXmDrop-
SiteConfigureStackingOrder () to modify the stacking order.

Text, TextField, and Container widgets are automatically registered as drop
by the Motif toolkit.

See Also
XmDropSiteConfigureStackingOrder (1),
XmDropSiteRegister (1), XmDropSite (2).
104 Motif Reference Manual

Motif Functions and Macros XmDropSiteRegister

te.
rop

h
rop
e
ite
data-
p-

cts
using
egis-
ld

nd

ic-
Name
XmDropSiteRegister – register a drop site.

Synopsis

#include <Xm/DragDrop.h>

void XmDropSiteRegister (Widgetwidget, ArgList arglist, Cardinalargcount)

Inputs
widget Specifies the widget ID that is to be associated with the drop si
arglist Specifies the resource name/value pairs used in registering the d
site.
argcount Specifies the number of name/value pairs in arglist.

Availability
In Motif 2.0 and later,XmDropSiteRegister () is subsumed into the Uniform
Transfer Model (UTM). The Motif widget classes do not callXmDropSi-
teRegister () directly, but initiate the site through UTM mechanisms which
call XmDropSiteRegister () internally. The callbacks specified by the
XmNdestinationCallback resource of a widget handle the data drop.

Description
XmDropSiteRegister () registers the specified widget as a drop site, whic
means the widget has a drop site associated with it in the DropSite registry. D
sites are widget-like, in that they use resources to specify their attributes. Th
arglist and argcount parameters work as for any creation routine; any drop s
resources that are not set by the arguments are retrieved from the resource
base or set to their default values. If the drop site is registered with XmNdro
SiteActivity set to XmDROP_SITE_ACTIVE and XmNdropProc set to NULL,
the routine generates a warning message.

Usage
Motif supports the drag and drop model of selection actions. In a widget that a
as a drag source, a user can make a selection and then drag the selection,
BTransfer, to other widgets that are registered as drop sites. The DropSite r
try stores information about all of the drop sites for a display. Text and TextFie
widgets are automatically registered as drop sites when they are created. An
application can register other widgets as drop sites usingXmDropSiteRegis-
ter (). Once a widget is registered as a drop site, it can participate in drag a
drop operations. A drop site can be removed from the registry usingXmDrop-
SiteUnregister (). When a drop site is removed, the widget no longer part
ipates in drag and drop operations.
Motif Reference Manual 105

XmDropSiteRegister Motif Functions and Macros

gis-
 site,

 a
rop
.

er or

Han-
A drop site for drag and drop operations can be a composite drop site, which
means that it has children which are also drop sites. If the drop site being re
tered is a descendant of a widget that has already been registered as a drop
the XmNdropSiteType resource of the ancestor must be set to
XmDROP_SITE_COMPOSITE. A composite drop site must be registered as
drop site before its descendants are registered. The stacking order of the d
sites controls clipping of drag-under effects during a drag and drop operation
When drop sites overlap, the drag-under effects of the drop sites lower in the
stacking order are clipped by the drop sites above them, regardless of wheth
not the drop sites are active. When a descendant drop site is registered, it is
stacked above all of its sibling drop sites that have already been registered.

Example
The following routine shows the use ofXmDropSiteRegister () to register a
Label widget as a drop site. When a drop operation occurs in the Label, the
dleDrop routine, which is not shown here, handles the drop:

/* global variable */
Atom COMPOUND_TEXT;

void main (unsigned int argc, char **argv)
{

Arg args[10];
int n;
Widget top, bb, label;
XtAppContext app;
Atom importList[1];

XtSetLanguageProc (NULL, (XtLanguageProc) NULL,
NULL);
top = XtAppInitialize (&app, "Drop", NULL, 0,

&argc, argv, NULL, NULL,
0);

n = 0;
bb = XmCreateBulletinBoard (top, "bb", args, n);
XtManageChild (bb);

COMPOUND_TEXT = XInternAtom (XtDisplay (top),
"COMPOUND_TEXT",
False);

n = 0;
label = XmCreateLabel (bb, "Drop Here", args,
n);
106 Motif Reference Manual

Motif Functions and Macros XmDropSiteRegister
XtManageChild (label);

/* register the label as a drop site */
importList[0] = COMPOUND_TEXT;

n = 0;
XtSetArg (args[n], XmNimportTargets,
importList); n++;
XtSetArg (args[n], XmNnumImportTargets, XtNumber
(importList)); n++;
XtSetArg (args[n], XmNdropSiteOperations,
XmDROP_COPY); n++;
XtSetArg (args[n], XmNdropProc, HandleDrop);
n++;
XmDropSiteRegister (label, args, n);

XtRealizeWidget (top);
XtAppMainLoop (app);

}

See Also
XmDropSiteConfigureStackingOrder (1),
XmDropSiteEndUpdate (1), XmDropSiteQueryStackingOrder (1),
XmDropSiteRetrieve (1), XmDropSiteStartUpdate (1),
XmDropSiteUpdate (1), XmDropSiteUnregister (1),
XmTransfer (1), XmDisplay (2), XmDropSite (2), XmScreen (2).
Motif Reference Manual 107

XmDropSiteRetrieve Motif Functions and Macros

urce
ed.

ci-

all

e

Name
XmDropSiteRetrieve – get the resource values for a drop site.

Synopsis

#include <Xm/DragDrop.h>

void XmDropSiteRetrieve (Widgetwidget, ArgList arglist, Cardinalargcount)

Inputs
widget Specifies the widget ID associated with the drop site.
arglist Specifies the resource name/address pairs that contain the reso

names and addresses into which the resource values are stor
argcount Specifies the number of name/value pairs inarglist.

Description
XmDropSiteRetrieve () gets the specified resources for the drop site asso
ated with the specifiedwidget. Drop sites are widget-like, in that they use
resources to specify their attributes. Thearglist andargcountparameters work as
for XtGetValues ().

Usage
XmDropSiteRetrieve () can be used to get the current attributes of a drop
site from the DropSite registry. The DropSite registry stores information about
of the drop sites for a display. An initiating client can also useXmDropSiteR-
etrieve () to retrieve information about the current drop site by passing the
DragContext for the operation to the routine. The initiator can access all of th

drop site resources except XmNdragProc and XmNdropProc1 using this tech-
nique.

See Also
XmDropSiteRegister (1), XmDropSiteUpdate (1), XmDropSite (2).

1.Erroneously given as XmdropProc in 1st and 2nd editions.
108 Motif Reference Manual

Motif Functions and Macros XmDropSiteStartUpdate

tes

of

-

alls
Name
XmDropSiteStartUpdate – start an update of multiple drop sites.

Synopsis

#include <Xm/DragDrop.h>

void XmDropSiteStartUpdate (Widgetwidget)

Inputs
widget Specifies any widget in the hierarchy associated with the drop si
that are to be updated.

Description
XmDropSiteStartUpdate () begins an update of multiple drop sites. The
widget parameter specifies a widget in the widget hierarchy that contains all
the widgets associated with the drop sites being updated. The routine useswidget
to identify the shell that contains all of the drop sites.

Usage
XmDropSiteStartUpdate () is used withXmDropSiteUpdate () and
XmDropSiteEndUpdate () to update information about multiple drop sites in
the DropSite registry.XmDropSiteStartUpdate () starts the update process
ing, XmDropSiteUpdate () is called multiple times to update information
about different drop sites, andXmDropSiteEndUpdate () completes the
processing. These routines optimize the updating of drop site information. C
to XmDropSiteStartUpdate () andXmDropSiteEndUpdate () can be
nested recursively.

See Also
XmDropSiteEndUpdate (1), XmDropSiteUpdate (1), XmDropSite (2).
Motif Reference Manual 109

XmDropSiteUnregister Motif Functions and Macros

i-
n-

cts
using
t is

-

ger
Name
XmDropSiteUnregister – remove a drop site.

Synopsis

#include <Xm/DragDrop.h>

void XmDropSiteUnregister (Widgetwidget)

Inputs
widget Specifies the widget ID associated with the drop site.

Description
XmDropSiteUnregister () removes the drop site associated with the spec
fiedwidgetfrom the DropSite registry. After the routine is called, the widget ca
not be the receiver in a drag and drop operation. The routine frees all of the
information associated with the drop site.

Usage
Motif supports the drag and drop model of selection actions. In a widget that a
as a drag source, a user can make a selection and then drag the selection,
BTransfer, to other widgets that are registered as drop sites. Once a widge
registered as a drop site withXmDropSiteRegister (), it can participate in
drag and drop operations. Text and TextField widgets are automatically regis
tered as drop sites when they are created.XmDropSiteUnregister () pro-
vides a way to remove a drop site from the registry, so that the widget no lon
participates in drag and drop operations.

See Also
XmDropSiteRegister (1), XmDropSite (2).
110 Motif Reference Manual

Motif Functions and Macros XmDropSiteUpdate

rop

ith

p

-

es
y
ally.
Name
XmDropSiteUpdate – change the resource values for a drop site.

Synopsis

#include <Xm/DragDrop.h>

void XmDropSiteUpdate (Widgetwidget, ArgList arglist, Cardinalargcount)

Inputs
widget Specifies the widget ID associated with the drop site.
arglist Specifies the resource name/value pairs used in updating the d
site.
argcount Specifies the number of name/value pairs in arglist.

Description
XmDropSiteUpdate () changes the resources for the drop site associated w
the specifiedwidget. Drop sites are widget-like, in that they use resources to
specify their attributes. Thearglist andargcountparameters work as forXtSet-
Values ().

Usage
XmDropSiteUpdate () can be used by itself to update the attributes of a dro
site. The routine can also be used withXmDropSiteStartUpdate () and
XmDropSiteEndUpdate () to update information about multiple drop sites in
the DropSite registry.XmDropSiteStartUpdate () starts the update
processing,XmDropSiteUpdate () is called multiple times to update informa
tion about different drop sites, andXmDropSiteEndUpdate () completes the
processing. The DropSite registry stores information about all of the drop sit
for a display. These routines optimize the updating of drop site information b
sending all of the updates at once, rather than processing each one individu

See Also
XmDropSiteEndUpdate (1), XmDropSiteRegister (1),
XmDropSiteStartUpdate (1), XmDropSiteUnregister (1),
XmDropSite (2).
Motif Reference Manual 111

XmDropTransferAdd Motif Functions and Macros

s

t of

.

at

al

he

 the

ter
rans-
ed
Name
XmDropTransferAdd – add drop transfer entries to a drop operation.

Synopsis

#include <Xm/DragDrop.h>

void XmDropTransferAdd (Widget drop_transfer,
XmDropTransferEntryRec *transfers,
Cardinal num_transfers)

Inputs
drop_transfer Specifies the ID of the DropTransfer object to which the entrie
are being added.
transfers Specifies the additional drop transfer entries.
num_transfer Specifies the number of drop transfer entries intransfers.

Availability
In Motif 2.0 and later, the drag and drop mechanisms are rationalized as par
the Uniform Transfer Model. Motif widget classes do not callXmDropTrans-
ferAdd () directly, but call XmTransferValue() to transfer data to a destination
XmTransferValue () callsXmDropTransferAdd () internally as the need
arises.

Description
XmDropTransferAdd () specifies a list of additional drop transfer entries th
are to be processed during a drop operation. Thewidget argument specifies the
DropTransfer object associated with the drop operation.transfers is an array of
XmDropTransferEntryRec structures that specifies the targets of the addition
drop transfer operations.XmDropTransferAdd () can be used to modify the
DropTransfer object until the last call to the XmNtransferProc is made. After t
last call, the result of modifying the DropTransfer object is undefined.

Usage
The toolkit uses the DropTransfer object to manage the transfer of data from
drag source to the drop site during a drag and drop operation.XmDropTrans-
ferAdd () provides a way for a drop site to specify additional target formats af
a drop operation has started. The routine adds the entries to the XmNdropT
fers resource. The attributes of a DropTransfer object can also be manipulat
with XtSetValues () andXtGetValues ().
112 Motif Reference Manual

Motif Functions and Macros XmDropTransferAdd
Structures
XmDropTransferEntryRec is defined as follows:

typedef struct {
XtPointer client_data; /*data passed to the transfer proc*/
Atom target; /*target format of the transfer*/

} XmDropTransferEntryRec, *XmDropTransferEntry;

See Also
XmDropTransferStart (1), XmTransferValue (1),
XmDragContext (2), XmDropTransfer (2).
Motif Reference Manual 113

XmDropTransferStart Motif Functions and Macros

e

t of

 the

a
eds

m-

argu-
.

hat
ion,
op
the
the
-

Name
XmDropTransferStart – start a drop operation.

Synopsis

#include <Xm/DragDrop.h>

Widget XmDropTransferStart (Widgetwidget, ArgList arglist, Cardinalarg-
count)

Inputs
widget Specifies the ID of the DragContext object associated with th
operation.
arglist Specifies the resource name/value pairs used in creating the
DropTransfer.
argcount Specifies the number of name/value pairs in arglist.

Returns
The ID of the DropTransfer object that is created.

Availability
In Motif 2.0 and later, the drag and drop mechanisms are rationalized as par
the Uniform Transfer Model.XmDropTransferStart () is called on request
internally as the need arises by the destination callback handlers, or through
XmTransferValue () andXmTransferDone () functions.

Description
XmDropTransferStart () starts a drop operation by creating and returning
DropTransfer object. The DropTransfer stores information that the toolkit ne
to process a drop transaction. The DropTransfer is widget-like, in that it uses
resources to specify its attributes. The toolkit frees the DropTransfer upon co
pletion of the drag and drop operation.

Thewidgetargument toXmDropTransferStart () is the DragContext object
associated with the drag operation. Thearglist andargcount parameters work as
for any creation routine; any DropTransfer resources that are not set by the
ments are retrieved from the resource database or set to their default values

Usage
Motif 1.2 supports the drag and drop model of selection actions. In a widget t
acts as a drag source, a user can make a selection and then drag the select
using BTransfer, to other widgets that are registered as drop sites. These dr
sites can be in the same application or another application. The toolkit uses
DropTransfer object to manage the transfer of data from the drag source to
drop site. XmDropTransferStart() is typically called from within the XmNdrop
Proc procedure of the drop site.
114 Motif Reference Manual

Motif Functions and Macros XmDropTransferStart

ing

t
)
t, is
The attributes of a DropTransfer object can be manipulated withXtSetVal-
ues () andXtGetValues () until the last call to the XmNtransferProc proce-
dure is made. You can also useXmDropTransferAdd () to add drop transfer
entries to be processed. After the last call to XmNtransferProc, the result of us
the DropTransfer object is undefined. For more information about the Drop-
Transfer object, see the manual page in Section 2,Motif and Xt Widget Classes.

Example
The following routine shows the use ofXmDropTransferStart () in the
HandleDrop routine, which is the XmNdropProc procedure for a Label widge
that is being used as a drop site. The data transfer procedure TransferProc(
which presumably translates the data in the Label into compound text forma
not shown.

/* global variable */
Atom COMPOUND_TEXT;

static void HandleDrop(Widget widget,
XtPointer client_data,
XtPointer call_data)

{
XmDropProcCallback DropData;
XmDropTransferEntryRec transferEntries[1];
XmDropTransferEntry transferList;
Arg args[10];
int n;

DropData = (XmDropProcCallback) call_data;

n = 0;

if ((DropData->dropAction != XmDROP) ||
(DropData->operation != XmDROP_COPY)) {

XtSetArg (args[n], XmNtransferStatus,
XmTRANSFER_FAILURE);
n++;

}
else {

transferEntries[0].target = COMPOUND_TEXT;
transferEntries[0].client_data = (XtPointer)
widget;
transferList = transferEntries;
XtSetArg (args[n], XmNdropTransfers, trans-
ferEntries); n++;
XtSetArg (args[n], XmNnumDropTransfers,
Motif Reference Manual 115

XmDropTransferStart Motif Functions and Macros
XtNumber (transferEntries)); n++;
XtSetArg (args[n], XmNtransferProc, Transfer-
Proc); n++;

}

 XmDropTransferStart (DropData->dragContext,
args, n);
}

See Also
XmDropTransferAdd (1), XmTransferValue (1), XmTransferDone (1),
XmDragContext (2), XmDropTransfer (2).
116 Motif Reference Manual

Motif Functions and Macros XmFileSelectionBoxGetChild

s

l.

ed

n
se,
is

he
Name
XmFileSelectionBoxGetChild – get the specified child of a FileSelectionBox
widget.

Synopsis

#include <Xm/FileSB.h>

Widget XmFileSelectionBoxGetChild (Widgetwidget, unsigned charchild)

Inputs
widget Specifies the FileSelectionBox widget.
child Specifies the child of the FileSelectionBox widget. Possible value

are defined below.

Returns
The widget ID of the specified child of the FileSelectionBox.

Availability
From Motif 2.0,XmFileSelectionBoxGetChild () is deprecated code.
XtNameToWidget () is the preferred method of accessing children of the
widget.

Description
XmFileSelectionBoxGetChild () returns the widget ID of the specified
child of the FileSelectionBoxwidget.

Usage
XmDIALOG_APPLY_BUTTON, XmDIALOG_CANCEL_BUTTON,
XmDIALOG_HELP_BUTTON, and XmDIALOG_OK_BUTTON specify the
action buttons in the widget. XmDIALOG_DEFAULT_BUTTON specifies the
current default button. XmDIALOG_DIR_LIST and
XmDIALOG_DIR_LIST_LABEL specify the directory list and its label, while
XmDIALOG_LIST and XmDIALOG_LIST_LABEL specify the file list and its
label. XmDIALOG_FILTER_LABEL and XmDIALOG_FILTER_TEXT spec-
ify the filter text entry area and its label, while XmDIALOG_TEXT and
XmDIALOG_SELECTION_LABEL specify the file text entry area and its labe
XmDIALOG_SEPARATOR specifies the separator and
XmDIALOG_WORK_AREA specifies any work area child that has been add
to the FileSelectionBox.

In Motif 2.0 and later, if the resource XmNpathMode is
XmPATH_MODE_RELATIVE, the directory pattern specification is displayed i
two text fields, rather than the single filter text entry area. When this is the ca
the pattern is displayed in the original filter text area, and the directory portion
displayed in an additional text field called DirText. The Label associated with t
Motif Reference Manual 117

XmFileSelectionBoxGetChild Motif Functions and Macros

ess

e

re-

d
the
the
DirText child is called DirL. No corresponding mask has been defined to acc
this extra text field or its Label throughXmFileSelectionBoxGetChild ():
XtNameToWidget () should be used to access the DirText widget ID when
required.

For more information on the different children of the FileSelectionBox, see th
manual page in Section 2,Motif and Xt Widget Classes.

Widget Hierarchy

As of Motif 2.0, most Motif composite child fetch routines are marked as dep
cated. However, since it is not possible to fetch the
XmDIALOG_DEFAULT_BUTTON or XmDIALOG_WORK_AREA children

using a public interface except through XmSelectionBoxGetChild()1, the routine
should not be considered truly deprecated. For consistency with the preferre
new style, when fetching all other child values, consider giving preference to
Intrinsics routine XtNameToWidget(), passing one of the following names as
second parameter:

“Apply” (XmDIALOG_APPLY_BUTTON)
“Cancel” (XmDIALOG_CANCEL_BUTTON)
“OK” (XmDIALOG_OK_BUTTON)
“Separator” (XmDIALOG_SEPARATOR)
“Help” (XmDIALOG_HELP_BUTTON)
“Symbol” (XmDIALOG_SYMBOL_LABEL)
“Message” (XmDIALOG_MESSAGE_LABEL)

“*ItemsList”2 (XmDIALOG_LIST)
“Items” (XmDIALOG_LIST_LABEL)
“Selection” (XmDIALOG_SELECTION_LABEL)
“Text” (XmDIALOG_TEXT)

“*DirList“ 3 (XmDIALOG_DIR_LIST)
“Dir“ (XmDIALOG_DIR_LIST_LABEL)
“FilterLabel“ (XmDIALOG_FILTER_LABEL)
“FilterText“ (XmDIALOG_FILTER_TEXT)
“DirL“ (no macro - must use XtNameToWidget()))
“DirText“ (no macro - must use XtNameToWidget())

1.Called internally by XmFileSelectionBoxGetChild().

2.The “*” is important: the Files List is not a direct child of the SelectionBox, but of a ScrolledList.

3.As above; the Directories list is a child of a ScrolledWindow, not the SelectionBox itself.
118 Motif Reference Manual

Motif Functions and Macros XmFileSelectionBoxGetChild

e

e.
CDE variants of the Motif 2.1 toolkit may support a ComboBox in place of th
Directory Text field (DirText). This is known as “DirComboBox”, and also has

no defined public macro1:

“DirComboBox” (no macro - must use XtNameToWidget())

Structures
The possible values for child are:

XmDIALOG_APPLY_BUTTON XmDIALOG_LIST
XmDIALOG_CANCEL_BUTTON XmDIALOG_LIST_LABEL
XmDIALOG_DEFAULT_BUTTON XmDIALOG_OK_BUTTON
XmDIALOG_DIR_LIST
XmDIALOG_SELECTION_LABEL
XmDIALOG_DIR_LIST_LABEL XmDIALOG_SEPARATOR
XmDIALOG_FILTER_LABEL XmDIALOG_TEXT
XmDIALOG_FILTER_TEXT XmDIALOG_WORK_AREA
XmDIALOG_HELP_BUTTON

See Also
XmFileSelectionBox (2).

1.The ComboBox, containing a List of directories, is enabled if the CDE resource XmNenableFsbPickList is tru
Motif Reference Manual 119

XmFileSelectionDoSearch Motif Functions and Macros

.

.

Name
XmFileSelectionDoSearch – start a directory search.

Synopsis

#include <Xm/FileSB.h>

void XmFileSelectionDoSearch (Widgetwidget, XmStringdirmask)

Inputs
widget Specifies the FileSelectionBox widget.
dirmask Specifies the directory mask that is used in the directory search

Description
XmFileSelectionDoSearch () starts a directory and file search for the
specified FileSelectionBoxwidget. dirmask is a text pattern that can include
wildcard characters.XmFileSelectionDoSearch () updates the lists of
directories and files that are displayed by the FileSelectionBox. Ifdirmaskis non-
NULL, the routine restricts the search to directories that match thedirmask.

Usage
XmFileSelectionDoSearch ()1 allows you to force a FileSelectionBox to
reinitialize itself, which is useful if you want to set the directory mask directly

See Also
XmFileSelectionBox (2).

1.Erroneously given as XmFileSelectionBoxDoSearch() in 1st and 2nd editions.
120 Motif Reference Manual

Motif Functions and Macros XmFontListAdd

ey
spec-
d

d
s
can
e
r-

e
d
new
ging
 the
Name
XmFontListAdd – create a new font list.

Synopsis

XmFontList XmFontListAdd (XmFontListoldlist, XFontStruct *font, XmString-
CharSetcharset)

Inputs
oldlist Specifies the font list to which font is added.
font Specifies the font structure.
charset Specifies a tag that identifies the character set for the font.

Returns
The new font list, oldlist if font or charset is NULL, or NULL if oldlist is NULL.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. Th
are superseded by the XmRenderTable type and the XmRendition object re
tively. To maintain backwards compatibility, the XmFontList is re-implemente
as a render table.

Description
XmFontListAdd () makes a new font list by adding the font structure specifie
by font to the old font list. The routine returns the new font list and deallocate
oldlist. charset specifies the character set that is associated with the font. It
be XmSTRING_DEFAULT_CHARSET, which takes the character set from th
current language environment, but this value may be removed from future ve
sions of Motif.

XmFontListAdd () searches the font list cache for a font list that matches th
new font list. If the routine finds a matching font list, it returns that font list an
increments its reference count. Otherwise, the routine allocates space for the
font list and caches it. In either case, the application is responsible for mana
the memory associated with the font list. When the application is done using
font list, it must be freed usingXmFontListFree ().
Motif Reference Manual 121

XmFontListAdd Motif Functions and Macros

e in
.2,
and
ndi-

t

Usage
In Motif 1.1 and 1.2, a font list contains entries that describe the fonts that ar
use. In Motif 1.1, each entry associates a font and a character set. In Motif 1
each entry consists of a font or a font set and an associated tag. In Motif 2.0
later, the XmFontList is implemented using the XmRenderTable type. XmRe
tion objects within a render table represent the font entries.XmFontListAdd ()
returns a reference counted render table.

XmFontListAdd () is retained for compatibility with Motif 1.2 and should no
be used in newer applications.

See Also
XmFontListAppendEntry (1), XmFontListFree (1),
XmRenderTableAddRenditions (1), XmRenditionCreate (1),
XmRendition (2).
122 Motif Reference Manual

Motif Functions and Macros XmFontListAppendEntry

y
endi-

-

t

at

pon-
a-
().

 a
list,

he
r

Name
XmFontListAppendEntry – append a font entry to a font list.

Synopsis

XmFontList XmFontListAppendEntry (XmFontListoldlist, XmFontListEntry
entry)

Inputs
oldlist Specifies the font list to which entry is appended.
entry Specifies the font list entry.

Returns
The new font list or oldlist if entry is NULL.

Availability
Motif 1.2 and later. In Motif 2.0 and later, the XmFontList and XmFontListEntr
are obsolete. They are superseded by the XmRenderTable type and the XmR
tion object respectively.

Description
XmFontListAppendEntry () makes a new font list by appending the speci
fiedentryto the old font list. Ifoldlist is NULL, the routine creates a new font list
that contains the single entry.XmFontListAppendEntry () returns the new
font list and deallocatesoldlist. The application is responsible for freeing the fon
list entry usingXmFontListEntryFree ().

XmFontListAppendEntry () searches the font list cache for a font list that
matches the new font list. If the routine finds a matching font list, it returns th
font list and increments its reference count. Otherwise, the routine allocates
space for the new font list and caches it. In either case, the application is res
sible for managing the memory associated with the font list. When the applic
tion is done using the font list, it should be freed using XmFontListEntryFree

Usage
In Motif 1.2, a font list contains font list entries, where each entry consists of
font or font set and an associated tag. Before a font list can be added to a font
it has to be created withXmFontListEntryCreate () or XmFontListEn-
tryLoad (). In Motif 2.0 and later, the XmFontList is an alias for the
XmRenderTable type. XmRendition objects within a render table represent t
font entries.XmFontListAppendEntry () returns a reference counted rende
table.

XmFontListAppendEntry () is retained for compatibility with Motif 1.2 and
should not be used in newer applications.
Motif Reference Manual 123

XmFontListAppendEntry Motif Functions and Macros
See Also
XmFontListEntryCreate (1), XmFontListEntryFree (1),
XmFontListEntryLoad (1), XmFontListFree (1),
XmFontListRemoveEntry (1), XmRenderTableAddRenditions (1),
XmRenditionCreate (1), XmRendition (2).
124 Motif Reference Manual

Motif Functions and Macros XmFontListCopy

ey
spec-

and
the
ont

,
nsists

in

e

ist,
ng
e

Name
XmFontListCopy – copy a font list.

Synopsis

XmFontList XmFontListCopy (XmFontListfontlist)

Inputs
fontlist Specifies the font list to be copied.

Returns
The new font list or NULL if fontlist is NULL.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. Th
are superseded by the XmRenderTable type and the XmRendition object re
tively.

Description
XmFontListCopy () makes and returns a copy offontlist.

The routine searches the font list cache for the font list, returns the font list,
increments its reference count. The application is responsible for managing
memory associated with the font list. When the application is done using the f
list, it should be freed usingXmFontListFree ().

Usage
A font list contains entries that describe the fonts that are in use. In Motif 1.1
each entry associates a font and a character set. In Motif 1.2, each entry co
of a font or a font set and an associated tag. In Motif 2.0 and later, the
XmFontList is an alias for the XmRenderTable type. XmRendition objects with
a render table represent the font entries.XmFontListCopy () is a convenience
routine which callsXmRenderTableCopy () to copy and return a reference
counted render table.

XmFontListCopy () makes a correct copy of the font list regardless of the typ
of entries in the list.

When a font list is assigned to a widget, the widget makes a copy of the font l
so it is safe to free the font list. When you retrieve a font list from a widget usi
XtGetValues (), you should not alter the font list directly. If you need to mak
changes to the font list, useXmFontListCopy () to make a copy of the font list
and then change the copy.

XmFontListCopy () is retained for compatibility with Motif 1.2 and should not
be used in newer applications.
Motif Reference Manual 125

XmFontListCopy Motif Functions and Macros
See Also
XmFontListFree(1), XmRenderTableCopy(1),
XmRenditionCreate(1), XmRendition(2)
126 Motif Reference Manual

Motif Functions and Macros XmFontListCreate

ey
spec-

h
ed

es
t
r the
an-

,
nsists

in

r

Name
XmFontListCreate – create a font list.

Synopsis

XmFontList XmFontListCreate (XFontStruct *font, XmStringCharSetcharset)

Inputs
font Specifies the font structure.
charset Specifies a tag that identifies the character set for the font.

Returns
The new font list or NULL if font or charset is NULL.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. Th
are superseded by the XmRenderTable type and the XmRendition object re
tively.

Description
XmFontListCreate () creates a new font list that contains a single entry wit
the specifiedfontandcharset. charsetspecifies the character set that is associat
with the font. It can be XmSTRING_DEFAULT_CHARSET, which takes the
character set from the current language environment, but this value may be
removed from future versions of Motif.

XmFontListCreate () searches the font list cache for a font list that match
the new font list. If the routine finds a matching font list, it returns that font lis
and increments its reference count. Otherwise, the routine allocates space fo
new font list and caches it. In either case, the application is responsible for m
aging the memory associated with the font list. When the application is done
using the font list, it should be freed usingXmFontListFree ().

Usage
A font list contains entries that describe the fonts that are in use. In Motif 1.1
each entry associates a font and a character set. In Motif 1.2, each entry co
of a font or a font set and an associated tag. In Motif 2.0 and later, the
XmFontList is an alias for the XmRenderTable type. XmRendition objects with
a render table represent the font entries.XmFontListCreate () is a conven-
ience routine which calls XmRenditionCreate() to create a rendition object fo
the font. The rendition object is added to a render table by theXmRenderTab-
leAddRenditions () function. The render table is returned.

XmFontListCreate () is retained for compatibility with Motif 1.2 and should
not be used in newer applications.
Motif Reference Manual 127

XmFontListCreate Motif Functions and Macros

.

XmFontListCreate () is not multi-thread safe if the application has multiple
application contexts. In Motif 2.1, the functionXmFontListCreate_r () is to
be preferred within multi-threaded applications.

Fonts must not be shared between displays in a multi-threaded environment

See Also
XmFontListAppendEntry (1), XmRenderTableAddRenditions (1),
XmRenditionCreate (1), XmRendition (2).
128 Motif Reference Manual

Motif Functions and Macros XmFontListCreate_r

ck

ti-

afe
Name
XmFontListCreate_r – create a font list in a thread-safe manner.

Synopsis

XmFontList XmFontListCreate_r (XFontStruct *font, XmStringCharSetcharset,
Widgetwidget)

Inputs
font Specifies the font structure.
charset Specifies a tag that identifies the character set for the font.
widget Specifies a widget.

Returns
The new font list or NULL if font or charset is NULL.

Availability
Motif 2.1 and later.

Description
XmFontListCreate_r () is identical toXmFontListCreate (), except that
it is multi-thread safe. The additional widget parameter is used to obtain a lo
upon the application context associated withwidget. The older routine
XmFontListCreate () is not safe in threaded environments which have mul
ple application contexts.

Usage
Thewidget does not need to be the widget which uses font. It must be on the
same display. The sharing of fonts or fontlists across multiple displays is not s
for multi-threaded applications.

Although the XmFontList is obsolete in Motif 2.0 and later,
XmFontListCreate_r () is provided for backwards compatibility with appli-
cations, using the XmFontList interface, which are intended to run in multi-
threaded environments.XmFontListCreate_r () should not be used in appli-
cations using the newer XmRendition and XmRenderTable interface.

See Also
XmFontListCreate (1), XmRendition (2).
Motif Reference Manual 129

XmFontListEntryCreate Motif Functions and Macros

ey
spec-
d

-

 list
d

 a

s to
Name
XmFontListEntryCreate – create a font list entry.

Synopsis

XmFontListEntry XmFontListEntryCreate (char *tag, XmFontTypetype,
XtPointerfont)

Inputs
tag Specifies the tag for the font list entry.
type Specifies the type of the font argument. Pass either

XmFONT_IS_FONT or XmFONT_IS_FONTSET.
font Specifies the font or font set.

Returns
A font list entry.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. Th
are superseded by the XmRenderTable type and the XmRendition object re
tively. To maintain backwards compatibility, the XmFontList is re-implemente
as a render table.

Description
XmFontListEntryCreate () makes a font list entry that contains the speci
fied font, which is identified bytag. type indicates whetherfont specifies an
XFontSet or a pointer to an XFontStruct.tag is a NULL-terminated string that
identifies the font list entry. It can have the value
XmFONTLIST_DEFAULT_TAG, which identifies the default font list entry in a
font list.

XmFontListEntryCreate () allocates space for the new font list entry. The
application is responsible for managing the memory associated with the font
entry. When the application is done using the font list entry, it should be free
usingXmFontListEntryFree ().

Usage
In Motif 1.2, a font list contains font list entries, where each entry consists of
font or font set and an associated tag.XmFontListEntryCreate () creates a
font list entry using an XFontStruct returned byXLoadQueryFont () or an
XFontSet returned byXCreateFontSet (). The routine does not copy the font
structure, so the XFontStruct or XFontSet must not be freed until all reference
it have been freed. The font list entry can be added to a font list using
XmFontListAppendEntry ().
130 Motif Reference Manual

Motif Functions and Macros XmFontListEntryCreate

.

.

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type
XmRendition objects within a render table represent the font entries.
XmFontListEntryCreate () returns a rendition object.

XmFontListEntryCreate () is not multi-thread safe if the application has
multiple application contexts. In Motif 2.1, the function
XmFontListEntryCreate_r () is to be preferred within multi-threaded
applications.

Fonts must not be shared between displays in a multi-threaded environment

XmFontListEntryCreate () is retained for compatibility with Motif 1.2 and
should not be used in newer applications.

Example
The following code fragment shows how to create font list entries using
XmFontListEntryCreate():

Widget toplevel;
XFontStruct *font1, *font2; /* Previously loaded
fonts */
XFontSet fontset3; /* Previously created
font sets */
XmFontListEntry entry1, entry2, entry3;
XmFontList fontlist;

entry1 = XmFontListEntryCreate("tag1", XmFONT_IS_FONT,
font1);
entry2 = XmFontListEntryCreate("tag2", XmFONT_IS_FONT,
font2);
entry3 = XmFontListEntryCreate("tag3",
XmFONT_IS_FONTSET, fontset3);
fontlist = XmFontListAppendEntry (NULL, entry1);
fontlist = XmFontListAppendEntry (fontlist, entry2);
fontlist = XmFontListAppendEntry (fontlist, entry3);

/* Bug in Motif 1.2.1: see XmFontListEntryFree() */
#if ((XmVERSION == 1) && (XmREVISION == 2) &&
(XmUPDATE_LEVEL == 1))

XtFree (entry1);
XtFree (entry2);
XtFree (entry3);

#else /* Motif 1.2.1 */
XmFontListEntryFree (entry1);
XmFontListEntryFree (entry2);
Motif Reference Manual 131

XmFontListEntryCreate Motif Functions and Macros
XmFontListEntryFree (entry3);
#endif /* Motif 1.2.1 */

XtVaCreateManagedWidget ("widget_name", xmLabelWidget-
Class, toplevel, XmNfontList,
fontlist, NULL);

XmFontListFree (fontlist);
...

See Also
XmFontListAppendEntry (1), XmFontListEntryFree (1),
XmFontListEntryCreate_r (1), XmFontListEntryGetFont (1),
XmFontListEntryGetTag (1), XmFontListEntryLoad (1),
XmFontListRemoveEntry (1), XmRenditionCreate (1),
XmRendition (2).
132 Motif Reference Manual

Motif Functions and Macros XmFontListEntryCreate_r

ion

afe

in

r-
Name
XmFontListEntryCreate_r – create a font list entry in a thread-safe manner.

Synopsis

XmFontListEntry XmFontListEntryCreate_r (char *tag,
XmFontType type,
XtPointer font,
Widget widget)

Inputs
tag Specifies the tag for the font list entry.
type Specifies the type of the font argument. Pass either

XmFONT_IS_FONT or XmFONT_IS_FONTSET.
font Specifies the font or font set.
widget Specifies a widget.

Returns
A font list entry.

Availability
Motif 2.1 and later.

Description
XmFontListEntryCreate_r () is in all respects identical toXmFontLis-
tEntryCreate (), except thatXmFontListEntryCreate_r () is provided
for multi-threaded applications: the additionalwidgetparameter is used to obtain
a lock upon an application context. The older routineXmFontListEntry-
Create () is not safe in threaded environments which have multiple applicat
contexts.

Usage
Thewidget does not need to be the widget which uses font. It must be on the
same display. The sharing of fonts or fontlists across multiple displays is not s
for multi-threaded applications.

Although the XmFontList is obsolete in Motif 2.0 and later,
XmFontListEntryCreate_r () is provided for backwards compatibility
with applications, using the XmFontList interface, which are intended to run
multi-threaded environments.XmFontListEntryCreate_r () should not be
used in applications using the newer XmRendition and XmRenderTable inte
face.

See Also
XmFontListEntryCreate (1), XmRendition (2).
Motif Reference Manual 133

XmFontListEntryFree Motif Functions and Macros

ey
spec-

st
sso-

 a

is

.

Name
XmFontListEntryFree – free the memory used by a font list entry.

Synopsis

void XmFontListEntryFree (XmFontListEntry *entry)

Inputs
entry Specifies the address of the font list entry that is to be freed.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. Th
are superseded by the XmRenderTable type and the XmRendition object re
tively.

Description
XmFontListEntryFree () deallocates storage used by the specified font li
entry. The routine does not free the XFontSet or XFontStruct data structure a
ciated with the font list entry.

Usage
In Motif 1.2, a font list contains font list entries, where each entry consists of
font or font set and an associated tag. A font list entry can be created using
XmFontListEntryCreate () or XmFontListEntryLoad () and then
appended to a font list withXmFontListAppendEntry (). Once the entry has
been appended to the necessary font lists, it should be freed usingXmFontLis-
tEntryFree ().

In Motif 1.2.1, there is a bug inXmFontListEntryFree () that causes it to
free the font or font set, rather than the font list entry. As a workaround for th
specific version, you can useXtFree () to free the font list entry.

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type
XmRendition objects within a render table represent the font entries.
XmFontListEntryFree () is a simple convenience routine which calls
XmRenditionFree ().

XmFontListEntryFree () is retained for compatibility with Motif 1.2 and
should not be used in newer applications.

See Also
XmFontListAppendEntry (1), XmFontListEntryCreate (1),
XmFontListEntryLoad (1), XmFontListNextEntry (1),
XmFontListRemoveEntry (1), XmRenditionFree (1),
XmRendition (2).
134 Motif Reference Manual

Motif Functions and Macros XmFontListEntryGetFont

ey
spec-

en

plica-

s to
rou-

t

.

try.
Name
XmFontListEntryGetFont – get the font information from a font list entry.

Synopsis

XtPointer XmFontListEntryGetFont (XmFontListEntryentry, XmFontType
* type_return)

Inputs
entry Specifies the font list entry.

Outputs
type_return Returns the type of the font information that is returned. Valid

types are XmFONT_IS_FONT or XmFONT_IS_FONTSET.

Returns
An XFontSet or a pointer to an XFontStruct.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. Th
are superseded by the XmRenderTable type and the XmRendition object re
tively.

Description
XmFontListEntryGetFont () retrieves the font information for the specified
font list entry. When the font listentry contains a font,type_return is
XmFONT_IS_FONT and the routine returns a pointer to an XFontStruct. Wh
the font listentry contains a font set,type_return is XmFONT_IS_FONTSET
and the routine returns the XFontSet. The XFontSet or XFontStruct that is
returned is not a copy of the data structure, so it must not be freed by an ap
tion.

Usage
The XmFontList and XmFontListEntry types are opaque, so if an application
needs to perform any processing on a font list, it has to use special function
cycle through the font list entries and retrieve information about them. These
tines use a XmFontContext to maintain an arbitrary position in a font list.
XmFontListEntryGetFont () can be used to get the font structure for a fon
list entry once it has been retrieved from the font list usingXmFontListNex-
tEntry ().

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type
XmRendition objects within a render table represent the font entries.
XmFontListEntryGetFont () is a convenience routine which fetches the
XmNfont and XmNfontType values of the rendition object represented by en
The values are fetched through the functionXmRenditionRetrieve ().
Motif Reference Manual 135

XmFontListEntryGetFont Motif Functions and Macros

n
f

type_return is set to the value of the XmNfontType resource, and the functio
XmFontListEntryGetFont () returns the value of the XmNfont resource o
the rendition object.

XmFontListEntryGetFont ()1 is retained for compatibility with Motif 1.2
and should not be used in newer applications.

See Also
XmFontListEntryCreate (1), XmFontListEntryGetTag (1),
XmFontListEntryLoad (1), XmFontListNextEntry (1),
XmRenditionRetrieve (1), XmRendition (2).

1.Erroneously given as XmFontListGetFont() in 2nd edition.
136 Motif Reference Manual

Motif Functions and Macros XmFontListEntryGetTag

ey
spec-

 for

s to
rou-

.

try.
Name
XmFontListEntryGetTag – get the tag of a font list entry.

Synopsis

char* XmFontListEntryGetTag (XmFontListEntryentry)

Inputs
entry Specifies the font list entry.

Returns
The tag for the font list entry.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. Th
are superseded by the XmRenderTable type and the XmRendition object re
tively.

Description
XmFontListEntryGetTag () retrieves the tag of the specified font listentry.
The routine allocates storage for the tag string; the application is responsible
freeing the memory usingXtFree ().

Usage
The XmFontList and XmFontListEntry types are opaque, so if an application
needs to perform any processing on a font list, it has to use special function
cycle through the font list entries and retrieve information about them. These
tines use a XmFontContext to maintain an arbitrary position in a font list.
XmFontListEntryGetTag () can be used to get the tag of a font list entry
once it has been retrieved from the font list usingXmFontListNextEntry ().

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type
XmRendition objects within a render table represent the font entries.
XmFontListEntryGetTag () is a convenience routine which fetches and
returns a copy of the XmNtag value of the rendition object represented by en
The value is fetched through the functionXmRenditionRetrieve ().

XmFontListEntryGetTag ()1 is retained for compatibility with Motif 1.2
and should not be used in newer applications.

See Also
XmFontListEntryCreate (1), XmFontListEntryGetFont (1),
XmFontListEntryLoad (1), XmFontListNextEntry (1),
XmRenditionRetrieve (1), XmRendition (2).

1.Erroneously given as XmFontListGetTag() in 2nd edition.
Motif Reference Manual 137

XmFontListEntryLoad Motif Functions and Macros

list

 or

ey
spec-

g
ta

e

 list
d

Name
XmFontListEntryLoad – load a font or create a font set and then create a font
entry.

Synopsis

XmFontListEntry XmFontListEntryLoad (Display *display,
char *font_name,
XmFontType type,
char *tag)

Inputs
display Specifies a connection to an X server; returned fromXOpenDis-

play () or XtDisplay ().
font_name Specifies an X Logical Font Description (XLFD) string.
type Specifies the type of font_name. Pass either XmFONT_IS_FONT

XmFONT_IS_FONTSET.
tag Specifies the tag for the font list entry.

Returns
A font list entry or NULL if the font cannot be found or the font set cannot be
created.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. Th
are superseded by the XmRenderTable type and the XmRendition object re
tively.

Description
XmFontListEntryLoad () either loads a font or creates a font set dependin
on the value oftype and then creates a font list entry that contains the font da
and the specifiedtag. font_name is an XLFD string which is parsed as either a
font name or a base font name list.tag is a NULL-terminated string that identifies
the font list entry. It can have the value XmFONTLIST_DEFAULT_TAG, which
identifies the default font list entry in a font list.

If type is set to XmFONT_IS_FONT, the routine uses theXtCvtStringTo-
FontStruct () converter to load the font struct specified by font_name. If th
value oftype is XmFONT_IS_FONTSET, XmFontListEntryLoad uses the
XtCvtStringToFontSet () converter to create a font set in the current
locale.

XmFontListEntryLoad () allocates space for the new font list entry. The
application is responsible for managing the memory associated with the font
entry. When the application is done using the font list entry, it should be free
usingXmFontListEntryFree ().
138 Motif Reference Manual

Motif Functions and Macros XmFontListEntryLoad

 a

list

.

ns
N-

of
Usage
In Motif 1.2, a font list contains font list entries, where each entry consists of
font or font set and an associated tag.XmFontListEntryLoad () sets up the
font data and creates a font list entry. The font list entry can be added to a font
usingXmFontListAppendEntry ().

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type
XmRendition objects within a render table represent the font entries.
XmFontListEntryLoad () is a convenience routine which creates and retur
a rendition object whose XmNfontName resource is set to font_name, and Xm
fontType value is type. The rendition object is created with an XmNloadModel
XmLOAD_IMMEDIATE.

XmFontListEntryLoad () is retained for compatibility with Motif 1.2 and
should not be used in newer applications.

See Also
XmFontListAppendEntry (1), XmFontListEntryCreate (1),
XmFontListEntryFree (1), XmFontListEntryGetFont (1),
XmFontListEntryGetTag (1), XmFontListRemoveEntry (1),
XmRenditionCreate (1), XmRendition (2).
Motif Reference Manual 139

XmFontListFree Motif Functions and Macros

ey
spec-

the

,
nsists

s. In

nt
Name
XmFontListFree – free the memory used by a font list.

Synopsis

void XmFontListFree (XmFontListfontlist)

Inputs
fontlist Specifies the font list that is to be freed.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. Th
are superseded by the XmRenderTable type and the XmRendition object re
tively.

Description
XmFontListFree () deallocates storage used by the specifiedfontlist. The rou-
tine does not free the XFontSet or XFontStruct data structures associated with
font list.

Usage

A font list contains entries that describe the fonts that are in use. In Motif 1.1
each entry associates a font and a character set. In Motif 1.2, each entry co
of a font or a font set and an associated tag.XmFontListFree () frees the stor-
age used by the font list but does not free the associated font data structure
Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListFree () is a convenience function which simply calls
XmRenderTableFree ().

It is important to callXmFontListFree () rather thanXtFree () because
Motif caches font lists. A call toXmFontListFree () decrements the reference
count for the font list; the font list is not actually freed until the reference cou
reaches 0 (zero).

XmFontListFree () is retained for compatibility with Motif 1.2 and should not
be used in newer applications.

See Also
XmFontListAppendEntry (1), XmFontListCopy (1),
XmFontListEntryFree (1), XmFontListRemoveEntry (1),
XmRenderTableFree (1).
140 Motif Reference Manual

Motif Functions and Macros XmFontListFreeFontContext

ey
spec-

d

font
 a

ees

lls
Name
XmFontListFreeFontContext – free a font context.

Synopsis

void XmFontListFreeFontContext (XmFontContextcontext)

Inputs
context Specifies the font list context that is to be freed.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. Th
are superseded by the XmRenderTable type and the XmRendition object re
tively.

Description
XmFontListFreeFontContext () deallocates storage used by the specifie
font list context.

Usage
The XmFontList type is opaque, so if an application needs to perform any
processing on a font list, it has to use special functions to cycle through the
list. These routines use a XmFontContext to maintain an arbitrary position in
font list.XmFontListFreeFontContext () is the last of the three font con-
text routines that an application should call when processing a font list, as it fr
the font context data structure. An application begins by callingXmFontLis-
tInitFontContext () to create a font context and then makes repeated ca
to XmFontListNextEntry () or XmFontListGetNextFont () to cycle
through the font list.

XmFontListFreeFontContext () is retained for compatibility with Motif
1.2, and should not be used in newer applications.

See Also
XmFontListGetNextFont (1), XmFontListInitFontContext (1),
XmFontListNextEntry (1), XmRenderTableAddRendition (1),
XmRenditionCreate (1), XmRendition (2).
Motif Reference Manual 141

XmFontListGetNextFont Motif Functions and Macros

nt.

ey
spec-

ns

,
nsists

in
type

e

font
 a
Name
XmFontListGetNextFont – retrieve information about the next font list eleme

Synopsis

Boolean XmFontListGetNextFont (XmFontContext context,
XmStringCharSet *charset,
XFontStruct **font)

Inputs
context Specifies the font context for the font list.

Outputs
charset Returns the tag that identifies the character set for the font.
font Returns the font structure for the current font list element.

Returns
True if the values being returned are valid or False otherwise.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. Th
are superseded by the XmRenderTable type and the XmRendition object re
tively.

Description
XmFontListGetNextFont () returns the character set and font for the next
element of the font list.context is the font context created byXmFontListIn-
itFontContext (). The first call toXmFontListGetNextFont () returns
the first font list element. Repeated calls toXmFontListGetNextFont ()
using the samecontext access successive font list elements. The routine retur
False when it has reached the end of the font list.

Usage

A font list contains entries that describe the fonts that are in use. In Motif 1.1
each entry associates a font and a character set. In Motif 1.2, each entry co
of a font or a font set and an associated tag. In Motif 2.0 and later, the
XmFontList is an alias for the XmRenderTable type. XmRendition objects with
a render table represent the font entries. The XmFontContext is an opaque
which contains an index into the renditions of a render table.

If the routine is called with a font context that contains a font set, it returns th
first font of the font set.

The XmFontList type is opaque, so if an application needs to perform any
processing on a font list, it has to use special functions to cycle through the
list. These routines use a XmFontContext to maintain an arbitrary position in
142 Motif Reference Manual

Motif Functions and Macros XmFontListGetNextFont
font list.XmFontListGetNextFont () cycles through the fonts in a font list.
XmFontListInitFontContext () is called first to create the font context.
When an application is done processing the font list, it should call
XmFontListFreeFontContext () with the same context to free the allo-
cated data.

XmFontListGetNextFont () is retained for compatibility with Motif 1.2,
and should not be used in newer applications.

See Also
XmFontListFreeFontContext (1),
XmFontListInitFontContext (1),
XmFontListNextEntry (1), XmRendition (2).
Motif Reference Manual 143

XmFontListInitFontContext Motif Functions and Macros

ey
spec-

 is

oci-

font
 a

cre-
Name
XmFontListInitFontContext – create a font context.

Synopsis

Boolean XmFontListInitFontContext (XmFontContext *context, XmFontList
fontlist)

Inputs
fontlist Specifies the font list.

Outputs
context Returns the allocated font context structure.

Returns
True if the font context is allocated or False otherwise.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. Th
are superseded by the XmRenderTable type and the XmRendition object re
tively.

Description
XmFontListInitFontContext () creates a font context for the specified
fontlist. This font context allows an application to access the information that
stored in the font list.XmFontListInitFontContext () allocates space for
the fontcontext. The application is responsible for managing the memory ass
ated with the font context. When the application is done using the fontcontext, it
should be freed usingXmFontListFreeFontContext ().

Usage
The XmFontList type is opaque, so if an application needs to perform any
processing on a font list, it has to use special functions to cycle through the
list. These routines use a XmFontContext to maintain an arbitrary position in
font list.XmFontListInitFontContext () is the first of the three font con-
text routines that an application should call when processing a font list, as it
ates the font context data structure. The context is passed to
XmFontListNextEntry () or XmFontListGetNextFont () to cycle
through the font list. When an application is done processing the font list, it
should callXmFontListFreeFontContext () with the same context to free
the allocated data.
144 Motif Reference Manual

Motif Functions and Macros XmFontListInitFontContext

.

of
In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type
XmRendition objects within a render table represent the font entries. The
XmFontContext is an opaque type which contains an index into the renditions
a render table.

XmFontListInitFontContext () is retained for compatibility with Motif
1.2, and should not be used in newer applications.

See Also
XmFontListFreeFontContext (1), XmFontListGetNextFont (1),
XmFontListInitFontContext (1), XmFontListNextEntry (1),
XmRendition (2).
Motif Reference Manual 145

XmFontListNextEntry Motif Functions and Macros

e

ey
spec-

e

 a
t is
ble
ains

s to
rou-

e

Name
XmFontListNextEntry – retrieve the next font list entry in a font list.

Synopsis

XmFontListEntry XmFontListNextEntry (XmFontContextcontext)

Inputs
context Specifies the font context for the font list.

Returns
A font list entry or NULL if the context refers to an invalid entry or if it is at th
end of the font list.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. Th
are superseded by the XmRenderTable type and the XmRendition object re
tively.

Description
XmFontListNextEntry () returns the next font list entry in a font list.con-
text is the font context created byXmFontListInitFontContext (). The
first call toXmFontListNextEntry () returns the first entry in the font list.
Repeated calls toXmFontListNextEntry () using the samecontext access
successive font list entries. The routine returns NULL when it has reached th
end of the font list.

Usage
In Motif 1.2, a font list contains font list entries, where each entry consists of
font or font set and an associated tag. In Motif 2.0 and later, the XmFontLis
an alias for the XmRenderTable type. XmRendition objects within a render ta
represent the font entries. The XmFontContext is an opaque type which cont
an index into the renditions of a render table.

The XmFontList and XmFontListEntry types are opaque, so if an application
needs to perform any processing on a font list, it has to use special function
cycle through the font list entries and retrieve information about them. These
tines use a XmFontContext to maintain an arbitrary position in a font list.
XmFontListInitFontContext () is called first to create the font context.
XmFontListNextEntry () cycles through the font entries in a font list.
XmFontListEntryGetFont () andXmFontListEntryGetTag () access
the information in a font list entry. When an application is done processing th
font list, it should callXmFontListFreeFontContext () with the same con-
text to free the allocated data.
146 Motif Reference Manual

Motif Functions and Macros XmFontListNextEntry
XmFontListNextEntry() is retained for compatibility with Motif 1.2, and should
not be used in newer applications.

See Also
XmFontListEntryFree (1), XmFontListEntryGetFont (1),
XmFontListEntryGetTag (1), XmFontListFreeFontContext (1),
XmFontListInitFontContext (1), XmRendition (2).
Motif Reference Manual 147

XmFontListRemoveEntry Motif Functions and Macros

f

ey
spec-

at

pon-
a-

 a
t is
ble
ains

ine
Name
XmFontListRemoveEntry – remove a font list entry from a font list.

Synopsis

XmFontList XmFontListRemoveEntry (XmFontListoldlist, XmFontListEntry
entry)

Inputs
oldlist Specifies the font list from which entry is removed.
entry Specifies the font list entry.

Returns
The new font list, oldlist if entry is NULL or no entries are removed, or NULL i
oldlist is NULL.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. Th
are superseded by the XmRenderTable type and the XmRendition object re
tively.

Description
XmFontListRemoveEntry () makes a new font list by removing any entries
in oldlist that match the specifiedentry. The routine returns the new font list and
deallocatesoldlist. XmFontListRemoveEntry () does not deallocate the font
list entry, so the application should free the storage usingXmFontListEntry-
Free ().

XmFontListRemoveEntry () searches the font list cache for a font list that
matches the new font list. If the routine finds a matching font list, it returns th
font list and increments its reference count. Otherwise, the routine allocates
space for the new font list and caches it. In either case, the application is res
sible for managing the memory associated with the font list. When the applic
tion is done using the font list, it should be freed usingXmFontListFree ().

Usage
In Motif 1.2, a font list contains font list entries, where each entry consists of
font or font set and an associated tag. In Motif 2.0 and later, the XmFontLis
an alias for the XmRenderTable type. XmRendition objects within a render ta
represent the font entries. The XmFontContext is an opaque type which cont
an index into the renditions of a render table.

An application can useXmFontListRemoveEntry () to remove a font list
entry from a font list. If an application needs to process the font list to determ
which entries to remove, it can useXmFontListInitFontContext () and
XmFontListNextEntry () to cycle through the entries in the font list.
148 Motif Reference Manual

Motif Functions and Macros XmFontListRemoveEntry
XmFontListRemoveEntry () is retained for compatibility with Motif 1.2,
and should not be used in newer applications.

See Also
XmFontListAppendEntry (1), XmFontListEntryCreate (1),
XmFontListEntryFree (1), XmFontListEntryLoad (1),
XmFontListFree (1), XmRendition (2).
Motif Reference Manual 149

XmGetAtomName Motif Functions and Macros

-

or-

es.
Name
XmGetAtomName – get the string representation of an atom.

Synopsis

#include <Xm/AtomMgr.h>

String XmGetAtomName (Display *display, Atomatom)

Inputs
display Specifies a connection to an X server; returned from XOpenDis
play() or XtDisplay().
atom Specifies the atom for the property name to be returned.

Returns
The string that represents atom.

Availability
In Motif 2.0 and later,XGetAtomName() is preferred.

Description
XmGetAtomName() returns the string that is used to represent a givenatom.
This routine works like Xlib’sXGetAtomName() routine, but the Motif routine
provides the added feature of client-side caching.XmGetAtomName() allocates
space for the returned string; the application is responsible for freeing this st
age usingXtFree () when the atom is no longer needed.

Usage
An Atom is a number that identifies a property. Properties also have string nam
XmGetAtomName() returns the string name specified in the original call to
XmInternAtom () or XInternAtom (), or for predefined atoms, a string ver-
sion of the symbolic constant without the XA_ attached.

In Motif 2.0 and later,XmGetAtomName() is no more than a convenience rou-
tine which callsXGetAtomName(). While XmGetAtomName() is not yet obso-
lete,XGetAtomName() is to be preferred.

See Also
XmInternAtom (1).
150 Motif Reference Manual

Motif Functions and Macros XmGetColorCalculation

lt
lates
.

en-
r
nent
r is a
t is

se

-
la-
 cal-
Name
XmGetColorCalculation – get the procedure that calculates default colors.

Synopsis

XmColorProc XmGetColorCalculation (void)

Returns
The procedure that calculates default colors.

Description
XmGetColorCalculation () returns the procedure that calculates the defau
foreground, top and bottom shadow, and select colors. The procedure calcu
these colors based on the background color that is passed to the procedure

Usage
Motif widgets rely on the use of shadowed borders to achieve their three-dim
sional appearance. The top and bottom shadow colors are lighter and darke
shades of the background color; these colors are reversed to make a compo
appear raised out of the screen or recessed into the screen. The select colo
slightly darker shade of the background color that indicates that a componen
selected. The default foreground color is either black or white, depending on
which color provides the most contrast with the background color.XmGet-
ColorCalculation () returns the procedure that calculates these colors. U
XmSetColorCalculation () to change the calculation procedure.

In Motif 2.0 and later, color calculation procedures can be specified on a per
screen basis by specifying a value for the XmScreen object XmNcolorCalcu
tionProc resource. Where a particular XmScreen does not have an assigned
culator, the procedure specified byXmGetColorCalculation () is used as
the default.

Procedures
The XmColorProc has the following syntax:

typedef void (*XmColorProc) (XColor *bg_color, /* specifies the
background color */

XColor *fg_color, /* returns the fore-
ground color */

XColor *sel_color, /* returns the select
color */

XColor *ts_color, /* returns the top
shadow color */

XColor *bs_color) /* returns the bot-
tom shadow color */
Motif Reference Manual 151

XmGetColorCalculation Motif Functions and Macros

lue,
are
ce-
An XmColorProc takes five arguments. The first argument,bg_color, is a pointer
to an XColor structure that specifies the background color. The red, green, b
and pixel fields in the structure contain valid values. The rest of the arguments
pointers to XColor structures for the colors that are to be calculated. The pro
dure fills in the red, green, and blue fields in these structures.

See Also
XmChangeColor (1), XmGetColors (1), XmSetColorCalculation (1).
XmScreen (2).
152 Motif Reference Manual

Motif Functions and Macros XmGetColors

l

el

oci-
,

n a

ed
ed as
lo-
sing

the
d by
ula-
Name
XmGetColors – update the colors for a widget.

Synopsis

void XmGetColors (Screen *screen,
Colormap color_map,
Pixel background,
Pixel *foreground_return,
Pixel *top_shadow_return,
Pixel *bottom_shadow_return,
Pixel *select_return)

Inputs
screen Specifies the screen for which colors are to be allocated.
color_map Specifies a Colormap from which the colors are allocated.
background Specifies the background from which to calculate allocated
colors.

Outputs
foreground_return Specifies an address into which the foreground Pixe
is returned.
top_shadow_return Specifies an address into which the top shadow Pix
is returned.
bottom_shadow_return Specifies an address into which the bottom shadow
Pixel is returned.
select_return Specifies an address into which the select Pixel is
returned.

Description
XmGetColors () allocates and returns a set of pixels within a Colormap ass
ated with a givenscreen for use as the foreground, top shadow, bottom shadow
and select colors of a widget. The returned values are calculated based upo
supplied background.

Usage
XmGetColors () allocates a set of pixels from a colormap. The pixels requir
are based upon a supplied background pixel. If any return address is specifi
NULL, the relevant pixel is not allocated. In Motif 1.2 and earlier, pixels are al
cated using the current color calculation procedure, which can be specified u
XmSetColorCalculation (). In Motif 2.0 and later, per-screen color calcu-
lation procedures are supported: if the XmNcolorCalculationProc resource of
XmScreen object associated with screen is not NULL, the procedure specifie
the resource is used to calculate the pixels. Otherwise, the current color calc
tion procedure is used.
Motif Reference Manual 153

XmGetColors Motif Functions and Macros
See Also
XmGetColorCalculation (1), XmSetColorCalculation (1).
XmScreen (2).
154 Motif Reference Manual

Motif Functions and Macros XmGetDestination

-

t

t

era-

ed

at
n do
Name
XmGetDestination – get the current destination widget.

Synopsis

Widget XmGetDestination (Display *display)

Inputs
display Specifies a connection to an X server; returned from XOpenDis
play() or XtDisplay().

Returns
The widget ID of the current destination widget or NULL if there is no curren
destination widget.

Description
XmGetDestination () returns the widget ID of the current destination widge
for the specifieddisplay. The destination widget is usually the widget most
recently changed by a select, edit, insert, or paste operation.XmGetDestina-
tion () identifies the widget that serves as the destination for quick paste op
tions and some clipboard routines. This routine returns NULL if there is no
current destination, which occurs when no edit operations have been perform
on a widget.

Usage
XmGetDestination() provides a way for an application to retrieve the widget th
would be acted on by various selection operations, so that the application ca
any necessary processing before the operation occurs.

See Also
XmGetFocusWidget (1), XmGetTabGroup (1).
Motif Reference Manual 155

XmGetDragContext Motif Functions and Macros

ra-

n

nd

ou-

ery
res
nts
g-
.

Name
XmGetDragContext – get information about a drag and drop operation.

Synopsis

#include <Xm/DragDrop.h>

Widget XmGetDragContext (Widgetwidget, Timetimestamp)

Inputs
widget Specifies a widget on the display where the drag and drop ope
tion is taking place.
timestamp Specifies a timestamp that identifies a DragContext.

Returns
The ID of the DragContext object or NULL if no active DragContext is found.

Availability
Motif 1.2 and later.

Description
XmGetDragContext () retrieves the DragContext object associated with the
display of the specifiedwidget that is active at the specifiedtimestamp. When
more that one drag operation has been started on a display, a timestamp ca
uniquely identify the active DragContext. If the specifiedtimestampcorresponds
to a timestamp processed between the beginning and end of a single drag a
drop operation,XmGetDragContext () returns the DragContext associated
with the operation. If there is no active DragContext for the time-stamp, the r
tine returns NULL.

Usage
Motif 1.2 and later supports the drag and drop model of selection actions. Ev
drag and drop operation has a DragContext object associated with it that sto
information about the drag operation. Both the initiating and the receiving clie
use information in the DragContext to process the drag transaction. The Dra
Context object is widget-like, in that it uses resources to specify its attributes
These resources can be checked usingXtGetValues () and modified using
XtSetValues ().

XmGetDragContext () provides a way for an application to retrieve a Drag-
Context object. The application can then useXtGetValues () andXtSet-
Values () to manipulate the DragContext.

See Also
XmDragCancel (1), XmDragStart (1), XmDragContext (2).
156 Motif Reference Manual

Motif Functions and Macros XmGetFocusWidget

s

d

arest

avi-
tine

tly
ard
Name
XmGetFocusWidget – get the widget that has the keyboard focus.

Synopsis

Widget XmGetFocusWidget (Widgetwidget)

Inputs
widget Specifies the widget whose hierarchy is to be traversed.

Returns
The widget ID of the widget with the keyboard focus or NULL if no widget ha
the focus.

Availability
Motif 1.2 and later.

Description
XmGetFocusWidget () returns the widget ID of the widget that has keyboar
focus in the widget hierarchy that contains the specifiedwidget. The routine
searches the widget hierarchy that contains the specified widget up to the ne
shell ancestor.XmGetFocusWidget () returns the widget in the hierarchy that
currently has the focus, or the widget that last had the focus when the user n
gated to another hierarchy. If no widget in the hierarchy has the focus, the rou
returns NULL.

Usage
XmGetFocusWidget() provides a means of determining the widget that curren
has the keyboard focus, which can be useful if you are trying to control keybo
navigation in an application.

See Also
XmGetTabGroup (1), XmGetVisibility (1), XmIsTraversable (1),
XmProcessTraversal (1).
Motif Reference Manual 157

XmGetMenuCursor Motif Functions and Macros

-

ed.

e
 the
lica-
or()

ed.
ter,
menu
Name
XmGetMenuCursor – get the current menu cursor.

Synopsis

Cursor XmGetMenuCursor (Display *display)

Inputs
display Specifies a connection to an X server; returned from XOpenDis
play() or XtDisplay().

Returns
The cursor ID for the current menu cursor or None if no cursor has been defin

Availability
In Motif 1.2 and later,XmGetMenuCursor () is obsolete. It has been super-
seded by getting the Screen resource XmNmenuCursor.

Description
XmGetMenuCursor () returns the cursor ID of the menu cursor currently in us
by the application on the specified display. The routine returns the cursor for
default screen of the display. If the cursor is not yet defined because the app
tion called the routine before any menus were created, then XmGetMenuCurs
returns the value None.

Usage
The menu cursor is the pointer shape that is used whenever a menu is post
This cursor can be different from the normal pointer shape. In Motif 1.2 and la
the new Screen object has a resource, XmNmenuCursor, that specifies the
cursor.XmGetMenuCursor () is retained for compatibility with Motif 1.1 and
should not be used in newer applications.

See Also
XmSetMenuCursor (1), XmScreen (2).
158 Motif Reference Manual

Motif Functions and Macros XmGetPixmap

ap.
e

ge

rns
 pix-

p
is
e
x-

e
. The

.
e
es
Name
XmGetPixmap – create and return a pixmap.

Synopsis

Pixmap XmGetPixmap (Screen *screen, char *image_name, Pixelforeground,
Pixelbackground)

Inputs
screen Specifies the screen on which the pixmap is to be drawn.
image_name Specifies the string name of the image used to make the pixm
foreground Specifies the foreground color that is combined with the imag
when it is a bitmap.
background Specifies the background color that is combined with the ima
when it is a bitmap.

Returns
A pixmap on success or XmUNSPECIFIED_PIXMAP when the specified
image_name cannot be found.

Description
XmGetPixmap () generates a pixmap, stores it in the pixmap cache, and retu
its resource ID. Before the routine actually creates the pixmap, it checks the
map cache for a pixmap that matches the specifiedimage_name, screen, fore-
ground, andbackground. If a match is found, the reference count for the pixma
is incremented and the resource ID for the pixmap is returned. If no pixmap
found,XmGetPixmap () checks the image cache for a image that matches th
specifiedimage_name. If a matching image is found, it is used to create the pi
map that is returned.

When no matches are found,XmGetPixmap () begins a search for an X10 or
X11 bitmap file, usingimage_nameas the filename. If a file is found, its contents
are read, converted into an image, and cached in the image cache. Then, th
image is used to generate a pixmap that is subsequently cached and returned
depth of the pixmap is the default depth of thescreen. If image_namespecifies a
bitmap, theforeground andbackground colors are combined with the image. If
no file is found, the routine returns XmUNSPECIFIED_PIXMAP.

Usage
Whenimage_name starts with a slash (/), it specifies a full pathname and
XmGetPixmap () opens the specified file. Otherwise,image_name specifies a
filename which causesXmGetPixmap () to look for the file using a search path
In Motif 1.2 and earlier, the XBMLANGPATH environment variable specifies th
search path for X bitmap files. In Motif 2.0 and later, the environment variabl
XMICONSEARCHPATH and XMICONBMSEARCHPATH specify search
Motif Reference Manual 159

XmGetPixmap Motif Functions and Macros

n-

me is

low-

t

sr/
e
dis-
sub-
paths for pixmap files: XMICONSEARCHPATH is used if a color server is ru
ning, XMICONBMSEARCHPATH otherwise, and XBMLANGPATH is used as
a fallback.

The search path can contain the substitution character %B, where image_na
substituted for %B. The search path can also use the substitution characters
accepted byXtResolvePathname (), where %T is mapped to bitmaps and %S
is mapped to NULL.

If XBMLANGPATH is not set,XmGetPixmap () uses a default search path. If
the XAPPLRESDIR environment variable is set, the routine searches the fol
ing paths:

%B
$XAPPLRESDIR/%L/bitmaps/%N/%B /usr/lib/X11/%L/bitmaps/%N/
%B
$XAPPLRESDIR/%l_%t/bitmaps/%N/%B /usr/lib/X11/%l_%t/bitmaps/
%N/%B
$XAPPLRESDIR/%l/bitmaps/%N/%B /usr/lib/X11/%l/bitmaps/%N/
%B
$XAPPLRESDIR/bitmaps/%N/%B /usr/lib/X11/bitmaps/%N/%B
$XAPPLRESDIR/%L/bitmaps/%B /usr/lib/X11/%L/bitmaps/%B
$XAPPLRESDIR/%l_%t/bitmaps/%B /usr/lib/X11/%l_%t/bitmaps/
%B
$XAPPLRESDIR/%l/bitmaps/%B /usr/lib/X11/%l/bitmaps/%B
$XAPPLRESDIR/bitmaps/%B /usr/lib/X11/bitmaps/%B

/usr/include/X11/bitmaps/%B
$HOME/bitmaps/%B $HOME/%B

If XAPPLRESDIR is not set,XmGetPixmap () searches the same paths, excep
that XAPPLRESDIR is replaced by HOME. These search paths are vendor-
dependent and a vendor may use different directories for /usr/lib/X11 and /u
include/X11. In the search paths, the image name is substituted for %B, th
class name of the application is substituted for %N, the language string of the
play is substituted for %L, the language component of the language string is
stituted for %l, and the territory string is substituted for %t.

See Also
XmDestroyPixmap (1), XmGetPixmapByDepth (1),
XmInstallImage (1), XmUninstallImage (1).
160 Motif Reference Manual

Motif Functions and Macros XmGetPixmapByDepth

ap.
e

ge

,
t

Then,
rned.

e is
Name
XmGetPixmapByDepth – create and return a pixmap of the specified depth.

Synopsis

Pixmap XmGetPixmapByDepth (Screen *screen,
char *image_name,
Pixel foreground,
Pixel background,
int depth)

Inputs
screen Specifies the screen on which the pixmap is to be drawn.
image_name Specifies the string name of the image used to make the pixm
foreground Specifies the foreground color that is combined with the imag
when it is a bitmap.
background Specifies the background color that is combined with the ima
when it is a bitmap.
depth Specifies the depth of the pixmap.

Returns
A pixmap on success or XmUNSPECIFIED_PIXMAP when the specified
image_name cannot be found.

Availability
Motif 1.2 and later.

Description
XmGetPixmapByDepth () generates a pixmap, stores it in the pixmap cache
and returns its resource ID. Before the routine actually creates the pixmap, i
checks the pixmap cache for a pixmap that matches the specifiedimage_name,
screen, foreground, background, anddepth. If a match is found, the reference
count for the pixmap is incremented and the resource ID for the pixmap is
returned. If no pixmap is found,XmGetPixmapByDepth () checks the image
cache for a image that matches the specifiedimage_name. If a matching image is
found, it is used to create the pixmap that is returned.

When no matches are found,XmGetPixmapByDepth () begins a search for an
X10 or X11 bitmap file, usingimage_name as the filename. If a file is found, its
contents are read, converted into an image, and cached in the image cache.
the image is used to generate a pixmap that is subsequently cached and retu
The depth of the pixmap is the specifieddepth. If image_namespecifies a bitmap,
the foreground and background colors are combined with the image. If no fil
found, the routine returns XmUNSPECIFIED_PIXMAP.
Motif Reference Manual 161

XmGetPixmapByDepth Motif Functions and Macros
Usage
XmGetPixmapByDepth () works just likeXmGetPixmap () except that the
depth of the pixmap can be specified. WithXmGetPixmap (), the depth of the
returned pixmap is the default depth of the screen. SeeXmGetPixmap () for an
explanation of the search path that is used to find the image.

See Also
XmDestroyPixmap (1), XmGetPixmap (1), XmInstallImage (1),
XmUninstallImage (1).
162 Motif Reference Manual

Motif Functions and Macros XmGetPostedFromWidget

 is

t
t is
Name
XmGetPostedFromWidget – get the widget that posted a menu.

Synopsis

#include <Xm/RowColumn.h>

Widget XmGetPostedFromWidget (Widgetmenu)

Inputs
menu Specifies the menu widget.

Returns
The widget ID of the widget that posted the menu.

Description
XmGetPostedFromWidget () returns the widget from which the specified
menu is posted. The value that is returned depends on the type of menu that
specified. For a PopupMenu, the routine returns the widget from whichmenu is
popped up. For a PulldownMenu, the routine returns the RowColumn widge
from whichmenuis pulled down. For cascading submenus, the returned widge
the original RowColumn widget at the top of the menu system. For tear-off
menus in Motif 1.2 and later,XmGetPostedFromWidget () returns the widget
from which the menu is torn off.

Usage
If an application uses the same menu in different contexts, it can useXmGet-
PostedFromWidget () in an activate callback to determine the context in
which the menu callback should be interpreted.

See Also
XmRowColumn(2), XmPopupMenu(2), XmPulldownMenu (2).
Motif Reference Manual 163

XmGetScaledPixmap Motif Functions and Macros

x-

e

ec-

hell
of
Name
XmGetScaledPixmap – create and return a scaled pixmap.

Synopsis

Pixmap XmGetScaledPixmap (Widget widget,
char *image_name,
Pixel foreground,
Pixel background,
int depth,
double scaling_ratio)

Inputs
widget Specifies a widget.
image_name Specifies the string name of the image used to make the pi
map.
foreground Specifies the foreground color that is combined with the imag
when it is a bitmap.
background Specifies the background color that is combined with the
image when it is a bitmap.
depth Specifies the depth of the pixmap.
scaling_ratio Specifies a scaling ratio applied to the pixmap.

Returns
A pixmap on success or XmUNSPECIFIED_PIXMAP when the specified
image_name cannot be found.

Availability
Motif 2.1 and later.

Description
XmGetScaledPixmap () is similar toXmGetPixmapByDepth () except that
the returned pixmap is scaled.

Usage
widgetis used to find a PrintShell by wandering up the widget hierarchy, and s
ondly to find a Screen on which to create the pixmap. Ifscaling_ratio is zero
and an ancestral PrintShell is found, the ratio applied is given by

(printer resolution / default pixmap resolution)
where the default pixmap resolution is the XmNdefaultPixmapResolution
resource of the PrintShell, and the printer resolution is fetched by the PrintS
using Xp extensions to communicate with the XPrint server. The default value
the PrintShell XmNdefaultPixmapResolution resource is 100.
164 Motif Reference Manual

Motif Functions and Macros XmGetScaledPixmap

rint-

l

At present, any resolution specified within the pixmap file itself is currently
ignored, although it is intended that this should take precedence over any P
Shell setting.
Although otherwise fully documented, the function does not have a functiona
prototype in any of the supplied public headers.

See Also
XmDestroyPixmap (1), XmGetPixmapByDepth (1), XmPrintShell (2).
Motif Reference Manual 165

XmGetSecondaryResourceData Motif Functions and Macros

et

t
ve

such

The

, and
Name
XmGetSecondaryResourceData – retrieve secondary widget resource data.

Synopsis

Cardinal XmGetSecondaryResourceData (WidgetClass
widget_class,

XmSecondaryResourceData
** secondary_data_return)

Inputs
widget_class Specifies the widget class.

Outputs
secondary_data_return Returns an array of XmSecondaryResourceData
pointers.

Returns
The number of secondary resource data structures associated with the widg
class.

Availability
Motif 1.2 and later.

Description
XmGetSecondaryResourceData () provides access to the secondary widge
resource data associated with a widget class. Some Motif widget classes ha
resources that are not accessible with the functionsXtGetResourceList ()
andXtGetConstraintResourceList (). If the specifiedwidget_class has
secondary resources,XmGetSecondaryResourceData () provides descrip-
tions of the resources in one or more data structures and returns the number
structures. If thewidget_class does not have secondary resources, the routine
returns 0 (zero) and the value ofsecondary_data_return is undefined.
If the widget_class has secondary resources,XmGetSecondaryResource-
Data() allocates an array of pointers to the corresponding data structures.
application is responsible for freeing the allocated memory usingXtFree (). The
resource list in each structure (the value of the resources field), the structures
the array of pointers to the structures all need to be freed.
166 Motif Reference Manual

Motif Functions and Macros XmGetSecondaryResourceData

l and
elds
tion
ry

p-

get:
Usage
XmGetSecondaryResourceData ()1 only returns the secondary resources
for a widget class if the class has been initialized. You can initialize a widget
class by creating an instance of the class or any of its subclass. VendorShel
Text are two Motif widget classes that have secondary resources. The two fi
in the XmSecondaryResourceData structure that are of interest to an applica
are resources and num_resources. These fields contain a list of the seconda
resources and the number of such resources.
Most applications do not need to query a widget class for the resources it su
ports.XmGetSecondaryResourceData () is intended to support interface
builders and applications likeeditres that allow a user to view the available
resources and set them interactively. UseXtGetResourceList () and
XtGetConstraintResourceList () to get the regular and constraint
resources for a widget class.

Example
The following code fragment shows the use ofXmGetSecondaryResource-
Data () to print the names of the secondary resources of the VendorShell wid

XmSecondaryResourceData *res; Cardinal num_res, i,
j;

if (num_res = XmGetSecondaryResourceData (vendor-
Shell-
WidgetCl
ass,
&res)) {

for (i = 0; i < num_res; i++) {
for (j = 0; j < res[i]->num_resources; j++) {

printf ("%s\n", res[i]-
>resources[j].resource_name);

}
XtFree ((char*) res[i]->resources);
XtFree ((char*) res[i]);

}
XtFree ((char*) res);

}

1.Erroneously given as XmGetSecondaryResources() in 1st and 2nd edition.
Motif Reference Manual 167

XmGetSecondaryResourceData Motif Functions and Macros
Structures
The XmSecondaryResourceData structure is defined as follows:

typedef struct {
XmResourceBaseProc base_proc;
XtPointer client_data;
String name;
String res_class;
XtResourceList resources;
Cardinal num_resources;

}XmSecondaryResourceDataRec, *XmSecondaryResourceData;

See Also
VendorShell (2), XmText (2).
168 Motif Reference Manual

Motif Functions and Macros XmGetTabGroup

r

is a

sed
et

ffer-
 is a
into

ain
le,
 a
 or
Name
XmGetTabGroup – get the tab group for a widget.

Synopsis

Widget XmGetTabGroup (Widgetwidget)

Inputs
widget Specifies the widget whose tab group is to be returned.

Returns
The widget ID of the tab group of widget.

Availability
Motif 1.2 and later.

Description
XmGetTabGroup () returns the widget ID of the widget that is the tab group fo
the specified widget. Ifwidgetis a tab group or a shell, the routine returnswidget.
If widget is not a tab group and no ancestor up to the nearest shell ancestor
tab group, the routine returns the nearest shell ancestor. Otherwise,XmGetTab-
Group () returns the nearest ancestor ofwidget that is a tab group.

Usage
XmGetTabGroup () provides a way to find out the tab group for a particular
widget in an application. A tab group is a group of widgets that can be traver
using the keyboard rather than the mouse. Users move from widget to widg
within a single tab group by pressing the arrow keys. Users move between di
ent tab groups by pressing the Tab or Shift-Tab keys. If the tab group widget
manager, its children are all members of the tab group (unless they are made
separate tab groups). If the widget is a primitive, it is its own tab group. Cert
widgets must not be included with other widgets within a tab group. For examp
each List, ScrollBar, OptionMenu, or multi-line Text widget must be placed in
tab group by itself, since these widgets define special behavior for the arrow
Tab keys, which prevents the use of these keys for widget traversal.

See Also
XmGetFocusWidget (1), XmGetVisibility (1), XmIsTraversable (1),
XmProcessTraversal (1), XmManager(2), XmPrimitive (2).
Motif Reference Manual 169

XmGetTearOffControl Motif Functions and Macros

u
e
the

-
een
r-off
he
ce.

ck-
N-
lor.
 con-
Name
XmGetTearOffControl – get the tear-off control for a menu.

Synopsis

#include <Xm/RowColumn.h>

Widget XmGetTearOffControl (Widgetmenu)

Inputs
menu Specifies the RowColumn widget whose tear-off control is to be
returned.

Returns
The widget ID of the tear-off control or NULL if no tear-off control exists.

Availability
Motif 1.2 and later.

Description
XmGetTearOffControl () retrieves the widget ID of the widget that is the
tear-off control for the specifiedmenu. When the XmNtearOffModel resource of
a RowColumn widget is set to XmTEAR_OFF_ENABLED for a PulldownMen
or a PopupMenu, the RowColumn creates a tear-off button for the menu. Th
tear-off button, which contains a dashed line by default, is the first element in
menu. When the button is activated, the menu is torn off. If the specifiedmenu
does not have a tear-off control,XmGetTearOffControl () returns NULL.

Usage
In Motif 1.2, a RowColumn that is configured as a PopupMenu or a Pulldown
Menu supports tear-off menus. When a menu is torn off, it remains on the scr
after a selection is made so that additional selections can be made. The tea
control is a button that has a Separator-like appearance. Once you retrieve t
widget ID of the tear-off control, you can set resources to specify its appearan
You can specify values for the following resources: XmNbackground, XmNba
groundPixmap, XmNbottomShadowColor, XmNforeground, XmNheight, Xm
margin, XmNseparatorType, XmNshadowThickness, and XmNtopShadowCo
You can also set these resources in a resource file by using the name of the
trol, which is TearOffControl.

See Also
XmRepTypeInstallTearOffModelConverter (1), XmPopupMenu(2),
XmPulldownMenu (2), XmRowColumn(2), XmSeparator (2).
170 Motif Reference Manual

Motif Functions and Macros XmGetVisibility

-

ped

e
r or

s of
stors
iew-
ized
e

ll-
Name
XmGetVisibility – determine whether or not a widget is visible.

Synopsis

XmVisibility XmGetVisibility (Widget widget)

Inputs
widget Specifies the widget whose visibility state is to be returned.

Returns
XmVISIBILITY_UNOBSCURED if widget is completely visi-
ble, XmVISIBILITY_PARTIALLY_OBSCURED if widget is partially visible,
XmVISIBILITY_FULLY_OBSCURED or if widget is not visible.

Availability
Motif 1.2 and later.

Description
XmGetVisibility () determines whether or not the specifiedwidget is visi-
ble. The routine returns XmVISIBILITY_UNOBSCURED if the entire rectangu
lar area of the widget is visible. It returns
XmVISIBILITY_PARTIALLY_OBSCURED if a part of the rectangular area of
the widget is obscured by its ancestors.XmGetVisibility () returns
XmVISIBILITY_FULLY_OBSCURED if the widget is completely obscured by
its ancestors or if it is not visible for some other reason, such as if it is unmap
or unrealized.

Usage
XmGetVisibility() provides a way for an application to find out the visibility stat
of a particular widget. This information can be used to help determine whethe
not a widget is eligible to receive the keyboard focus. In order for a widget to
receive the keyboard focus, it and all of its ancestors must not be in the proces
being destroyed and they must be sensitive to input. The widget and its ance
must also have their XmNtraversalOn resources set to True. If the widget is v
able, which means that it and its ancestors are managed, mapped, and real
and some part of the widget is visible, then the widget is eligible to receive th
keyboard focus. A fully-obscured widget is not eligible to receive the focus
unless part of it is within the work area of a ScrolledWindow with an XmNscro
ingPolicy of XmAUTOMATIC that has an XmNtraverseObscuredCallback.
Motif Reference Manual 171

XmGetVisibility Motif Functions and Macros
Structures
XmVisibility is defined as follows:

typedef enum {
XmVISIBILITY_UNOBSCURED,
XmVISIBILITY_PARTIALLY_OBSCURED,
XmVISIBILITY_FULLY_OBSCURED

} XmVisibility;

See Also
XmGetFocusWidget (1), XmGetTabGroup (1), XmIsTraversable (1),
XmProcessTraversal (1), XmManager(2), XmScrolledWindow (2).
172 Motif Reference Manual

Motif Functions and Macros XmGetXmDisplay

-

he
an
Name
XmGetXmDisplay – get the Display object for a display.

Synopsis

#include <Xm/Display.h>

Widget XmGetXmDisplay (Display *display)

Inputs
display Specifies a connection to an X server; returned from XOpenDis
play() or XtDisplay().

Returns
The Display object for the display.

Availability
Motif 1.2 and later.

Description
XmGetXmDisplay () retrieves the Display object for the specifieddisplay.

Usage
In Motif 1.2, the Display object stores display-specific information for use by t
toolkit. An application has a Display object for each display it accesses. When
application creates its first shell on a display, typically by callingXtAppIni-
tialize () or XtAppCreateShell (), a Display object is created automati-
cally. There is no way to create a Display independently. Use
XmGetXmDisplay () to get the ID of the Display object, so that you can use
XtGetValues () andXtSetValues () to access and modify Display
resources.

See Also
XmDisplay (2), XmScreen (2).
Motif Reference Manual 173

XmGetXmScreen Motif Functions and Macros

the
hen

s.
Name
XmGetXmScreen – get the Screen object for a screen.

Synopsis

Widget XmGetXmScreen (Screen *screen)

Inputs
screen Specifies a screen on a display; returned byXtScreen ().

Returns
The Screen object for the screen.

Availability
Motif 1.2 and later.

Description
XmGetXmScreen() retrieves the Screen object for the specifiedscreen.

Usage
In Motif 1.2, the Screen object stores screen-specific information for use by
toolkit. An application has a Screen object for each screen that it accesses. W
an application creates its first shell on a screen, typically by callingXtAppIni-
tialize () or XtAppCreateShell (), a Screen object is created automati-
cally. There is no way to create a Screen independently. Use
XmGetXmScreen() to get the ID of the Screen object, so that you can use
XtGetValues () andXtSetValues () to access and modify Screen resource

See Also
XmDisplay (2), XmScreen (2).
174 Motif Reference Manual

Motif Functions and Macros XmIm

an
ed
es, in
es-

e key-
rs of
e of an
the
es
-

on
rea is
ut
aux-

ter-
ot

f.
t.

 dia-
Name
XmIm – introduction to input methods.

Synopsis

Public Header:
<Xm/XmIm.h>

Functions/Macros:
XmImCloseXIM (), XmImFreeXIC (), XmImGetXIC (), XmIm-
GetXIM (),
XmImMbLookupString (), XmImMbResetIC (), XmImRegister (),
XmImSetFocusValues (), XmImSetValues (), XmImSetXIC (),
XmImUnregister (), XmImUnsetFocus (), XmImVaSetFocusVal-
ues (),
XmImVaSetValues ()

Availability
Motif 1.2 and later.

Description
Many languages are ideographic, and have considerably more characters th
there are keys on the keyboard: the Ascii keyboard was not originally design
for languages that are not based upon the Latin alphabet. For such languag
order to provide a mapping between the alphabet and the keyboard, it is nec
sary to represent particular characters by a key sequence rather than a singl
stroke. An input method is the means by which X maps between the characte
the language, and the representative key sequences. The most common us
input method is in implementing language-independent text widget input. As
user types the key sequences, the input method displays the actual keystrok
until the sequence completes a character, when the required character is dis
played in the text widget. The process of composing a character from a key
sequence is called pre-editing.
In order to facilitate pre-editing, the input method may maintain several areas
the screen: a status area, a pre-edit area, and an auxiliary area. The status a
an output-only window which provides feedback on the interaction with the inp
method. The pre-edit area displays the keyboard sequence as it is typed. The
iliary area is used for popup menus, or for providing customized controls
required by the particular input method. The location of the pre-edit area is de
mined by the XmNpreeditType resource of VendorShell. The value OnTheSp
displays the key sequence as it is typed into the destination text widget itsel
OverTheSpot superimposes an editing window over the top of the text widge
OffTheSpot creates a dedicated editing window, usually at the bottom of the
Motif Reference Manual 175

XmIm Motif Functions and Macros

is-

and
thod
the
l X
red

ppli-
ial
to

er-
e is
r is
in-

o

ut.
r

s
ent

t-
log. Root uses a pre-edit window which is a child of the root window of the d
play.
To control the interaction between the application and the input method, X
defines a structure called an input context, which the programmer can fetch
manipulate where the need arises. Each widget registered with the input me
has an associated input context, which may or may not be shared amongst
registered widgets. Motif extends the mechanisms provided by the lower leve
libraries, and provides a caching mechanism whereby input contexts are sha
between widgets.

Usage
Input methods are usually supplied by the vendors of the hardware, and the a
cation generally connects to the input method without the need for any spec
coding by the programmer. The Motif widgets are fully capable of connecting
an input method when required, and although Motif provides a functional int
face to enable the programmer to interact with an input method, the interfac
not required for the Motif widgets. The exceptions are where the programme
writing new widgets, or where internationalized input is required for the Draw
gArea.

XmImRegister () registers a widget with an input method.XmImSetVal-
ues () manipulates an input context by registering callbacks which respond t
specific states.XmImSetFocusValues () is similar, except that after the input
context has been modified, the focus is reset to the widget providing the inp
XmImMbLookupString () performs the necessary key sequence to characte
translation on behalf of the input widget.XmImUnRegister () unregisters the
widget with the input method. Typically,XmImRegister () is called within the
Initialize method of a widget,XmImUnRegister () is called by the Destroy
method, andXmImMbLookupString () is called within an action or callback
routine of the widget in response to an event. These are the primary function
which a programmer may need to call, and are all that are required to implem
internationalized input for the Motif text widget.

Note that an input method does not need to support all styles of XmNpreedi
Type.

See Also
XmImCloseXIM (1), XmImFreeXIC (1), XmImGetXIM (1),
XmImGetXIC (1), XmImMbLookupString (1), XmImMbResetIC (1),
XmImRegister (1), XmImSetFocusValues (1), XmImSetValues (1),
XmImSetXIC (1), XmImUnregister (1), XmImUnsetFocus (1),
XmImVaSetFocusValues (1), XmImVaSetValues(1).
176 Motif Reference Manual

Motif Functions and Macros XmImCloseXIM

ci-

t
con-
use

t

An
-

ers
Name
XmImCloseXIM – close all input contexts.

Synopsis

#include <Xm/XmIm.h>

void XmImCloseXIM (Widgetwidget)

Inputs
widget Specifies a widget used to determine the display connection.

Availability
Motif 2.0 and later.

Description
XmImCloseXIM () is a convenience function which closes all input contexts
associated with the current input method. Thewidget parameter is used to iden-
tify the XmDisplay object of the application.

Usage
XmImCloseXIM () uses thewidgetparameter to deduce the input method asso
ated with the XmDisplay object. The application’s connection to the input
method is closed, and all widgets which are registered with any input contex
associated with the input method are unregistered. In order to close the input
text associated with a single widget, rather than closing down all connections,
XmImUnregister().

The Motif widgets internally register and unregister themselves with the inpu
manager using XmImRegister() andXmImUnregister () as required. The Ven-
dorShell callsXmImCloseXIM () within its Destroy method once the last Ven-
dorShell is destroyed in order to clean up the connection to the input method.
application which dynamically switches between input methods in a multi-lan
guage application may need to invokeXmImCloseXIM () because Motif only
supports a single input method at any given instance. Application programm
will not normally need to useXmImCloseXIM () directly.

See Also
XmImRegister (1), XmImUnregister (1), XmIm(1).
Motif Reference Manual 177

XmImFreeXIC Motif Functions and Macros

ci-

ll,
e

Name
XmImFreeXIC – free an input context.

Synopsis

#include <Xm/XmIm.h>

void XmImFreeXIC (Widgetwidget, XIC xic)

Inputs
widget Specifies a widget from which the input context registry is
deduced.
xic Specifies the input context which is to be freed.

Availability
Motif 2.0 and later.

Description
XmImFreeXIC () is a convenience function which unregisters all widgets asso
ated with the input contextxic, and then frees the input context.

Usage
XmImFreeXIC () uses thewidgetparameter to deduce an ancestral VendorShe
from which the X input context registry is found. All widgets associated with th
input contextxic within the registry are unregistered, and the input context is
freed.

See Also
XmImGetXIC (1), XmImRegister (1). XmImSetXIC (1),
XmImUnregister (1), XmIm(1).
178 Motif Reference Manual

Motif Functions and Macros XmImGetXIC

nd-

 of
ing

ces-
h

Name
XmImGetXIC – create an input context for a widget.

Synopsis

#include <Xm/XmIm.h>

XIC XmImGetXIC (Widgetwidget, XmInputPolicyinput_policy, ArgList
arglist, Cardinalargcount)

Inputs
widget Specifies a widget for which the input context is required.
input_policy Specifies the policy for creating input contexts.
arglist Specifies a list of arguments consisting of name/value pairs.
argcount Specifies the number of arguments in arglist.

Returns
The input context associated with widget.

Availability
Motif 2.0 and later.

Description
XmImGetXIC () creates and registers a new input context for a widget, depe
ing upon theinput_policy. If input_policyis XmPER_WIDGET, a new input con-
text is created for the widget. If the value is XmPER_SHELL, a new input
context is created only if an input context associated with the ancestral shell
widgetdoes not already exist, otherwise the widget is registered with the exist
input context. If the policy is XmINHERIT_POLICY, the input policy is inher-
ited by taking the value of the XmNinputPolicy resource from the nearest an
tral VendorShell. The set of attributes for the input context is specified throug
the resource listarglist, each element of the list being a structure containing a
name/value pair. The number of elements within the list is given byargcount.
The name/value pairs are passed through to the functionXCreateIC () if the
input context is created.XmImGetXIC () returns either the input context which is
newly created if the input policy is XmPER_WIDGET, otherwise it returns the
shared context.
Motif Reference Manual 179

XmImGetXIC Motif Functions and Macros

are

k,
-

rage
ro-
Usage
In Motif 1.2, the supported attributes for configuring the created input context
XmNbackground, XmNforeground, XmNbackgroundPixmap, XmNspotLoca-
tion, XmNfontList, and XmNarea.

In Motif 2.0 and later, the list is extended to include XmNpreeditCaretCallbac
XmNpreeditDoneCallback, XmNpreeditDrawCallback, and XmNpreeditStart
Callback resources.

You are referred to theXCreateIC () entry within the Xlib Reference Manual
for the interpretation of each of the resource types. The function allocates sto
associated with the created input context, and it is the responsibility of the p
grammer to reclaim the space at a suitable point by callingXmImFreeXIC ().

Structures
The enumerated type XmInputPolicy has the following possible values:

XmINHERIT_POLICY
XmPER_WIDGET
XmPER_SHELL

See Also
XmImFreeXIC (1), XmImSetXIC (1), XmIm(1).
180 Motif Reference Manual

Motif Functions and Macros XmImGetXIM

ts
et.

or-

 be

by a

 the
Name
XmImGetXIM – retrieve the input method for a widget.

Synopsis
#include <Xm/XmIm.h>

XIM XmImGetXIM (Widget widget)

Inputs
widget Specifies a widget registered with the input manager.

Returns
The input method associated withwidget.

Availability
Motif 1.2 and later.

Description
XmImGetXIM() returns a pointer to an opaque data structure which represen
the input method which the input manager has opened for the specified widg

Usage
Widgets are normally registered with the input manager through a call toXmIm-
Register (). If no input method is associated with thewidget, the procedure
uses any specified XmNinputMethod resource of the nearest ancestral Vend
Shell in order to open an input method. If the resource is NULL, the input
method associated with the current locale is opened. If no input method can
opened, the function returns NULL.

XmImGetXIM() allocates storage for the opaque data structure which is
returned, and it is the responsibility of the programmer to reclaim the space
call toXmImCloseXIM () at a suitable point.XmImGetXIM() is not a procedure
which an application programmer needs to use: the routine is of more use to
programmer of new widgets.

See Also
XmImRegister (1), XmImCloseXIM (1), XmIm(1).
Motif Reference Manual 181

XmImMbLookupString Motif Functions and Macros

the
Name
XmImMbLookupString – retrieve a composed string from an input method.

Synopsis

#include <Xm/XmIm.h>

int XmImMbLookupString (Widget widget,
XKeyPressedEvent *event,
char *buffer,
int num_bytes,
KeySym *keysym,
int *status)

Inputs
widget Specifies a widget registered with the input manager.
event Specifies a key press event.
num_bytes Specifies the length of the buffer array.

Outputs
buffer Returns the composed string.
keysym Returns any keysym associated with the input keyboard event.
status Returns the status of the lookup.

Returns
The length of the composed string in bytes.

Availability
Motif 1.2 and later.

Description
XmImMbLookupString () translates anevent into a composed character, and/
or a keysym, using the input context associated with a givenwidget. Any com-
posed string which can be deduced from theevent is placed inbuffer; the com-
posed string consists of multi-byte characters in the encoding of the locale of
input context. If a keysym is associated with theevent, this is returned at the
address specified bykeysym. The function returns the number of bytes placed
into buffer.
182 Motif Reference Manual

Motif Functions and Macros XmImMbLookupString

-
be

 the
lan-
may

ll
Usage
A widget is registered with an input method through the functionXmImRegis-
ter (). If no input context is associated with thewidget, the function uses
XLookupString () to map the keyevent into composed text. Otherwise the
function callsXmbLookupString () with the input context as the first parame
ter. If the programmer is not interested in keysym values, a NULL value can
passed as thekeysym parameter.XmImMbLookupString () places intobuffer
any composed character string associated with the key event: if the event at
given point in the input sequence does not signify a unique character in the
guage of the current locale, the function returns zero: subsequent key events
be required before a character is composed.

Structures
The possible values returned instatus are the same as those returned from
XmbLookupString (): you are referred to the Xlib Reference Manual for a fu
description and interpretation of the values.

XBufferOverflow /* buffer size insufficient to hold composed sequence*/
XLookupNone /*no character sequence matching the input exists*/
XLookupChars /*input characters were composed */
XLookupKeysym /*input is keysym rather than composed character*/
XLookupBoth /* both a keysym and composed character are returned*/

See Also
XmImRegister (1), XmIm(1).
Motif Reference Manual 183

XmImMbResetIC Motif Functions and Macros

to

f the

L.
Name
XmImMbResetIC – reset an input context.

Synopsis

#include <Xm/XmIm.h>

void XmImMbResetIC (Widgetwidget, char **mb_text)

Inputs
widget Specifies a widget registered with the Input Manager.

Outputs
mb_text Returns pending input on the input context.

Availability
Motif 2.0 and later.

Description
XmImMbResetIC () resets the input context associated with a widget.

Usage
XmImMbResetIC () is a convenience function which resets an input context
the initial state. The function is no more than a wrapper onto the function
XmbResetIC (), which clears the pre-edit area and updates the status area o
input context. The return value ofXmbResetIC () is placed into the address
specified bymb_text. This data is implementation dependent, and may be NUL
If data is returned, the programmer is responsible for freeing it by calling
XFree ().

See Also
XmImRegister (1), XmIm(1).
184 Motif Reference Manual

Motif Functions and Macros XmImRegister

e
tion

er-

t
of
n

Name
XmImRegister – register a widget with an Input Manager.

Synopsis

#include <Xm/XmIm.h>

void XmImRegister (Widgetwidget, unsigned intreserved)

Inputs
widget Specifies a widget to register with the input manager.
reserved This parameter is current unused.

Availability
Motif 1.2 and later.

Description
XmImRegister () is a convenience function which registers a widget with th
input manager to establish a connection to the current input method. The func
is called when an application needs to specially arrange for internationalized
input to a widget.

Usage
The Motif widgets internally register themselves with the input manager as
required. Only a programmer who is writing a new widget, or who requires int
nationalized input for the DrawingArea needs to callXmImRegister () directly.
If the VendorShell ancestor containing thewidgetalready has an associated inpu
context, the function simply returns. Otherwise, the XmNinputPolicy resource
the nearest VendorShell ancestor is fetched to determine whether to share a
existing input context. The function opens an input method by inspecting the
XmNinputMethod resource of the VendorShell. If the resource is NULL, a
default input method is opened using information from the current locale.XmIm-
Register () should not be called twice using the samewidget parameter with-
out unregistering the widget from the input method first.

The programmer is responsible for closing down the connection to the input
method by callingXmImUnregister (). The Destroy method of the widget is
an appropriate place to call this.

See Also
XmImUnregister (1), XmIm(1).
Motif Reference Manual 185

XmImSetFocusValues Motif Functions and Macros

d
gis-

 of

o-
ho

s.
Name
XmImSetFocusValues – set the values and focus for an input context.

Synopsis

#include <Xm/XmIm.h>

void XmImSetFocusValues (Widgetwidget, ArgList arglist, Cardinalargcount)

Inputs
widget Specifies a widget registered with the input manager.
arglist Specifies a list of resources consisting of name/value pairs.
argcount Specifies the number of arguments in arglist.

Availability
Motif 1.2 and later.

Description
XmImSetFocusValues () notifies the input manager that a widget has
received the input focus. If the previous values of the input context associate
with the widget do not allow the context to be reused, the old context is unre
tered, and a new one registered with the widget.

Usage
XmImSetFocusValues () is identical in all respects toXmImSetValues (),
except that after the input context has been reset, the focus window attribute
the input context is set to the window of the inputwidget.

The Motif widgets invokeXmImSetFocusValues () as and when required.
For example, the Text and TextField widgets automatically invoke XmImSetF
cusValues() in response to FocusIn and EnterNotify events. A programmer w
is implementing internationalized input for a DrawingArea or creating a new
widget may need to call this function when the widget receives the input focu

See Also
XmImRegister (1), XmImSetValues (1), XmIm(1).
186 Motif Reference Manual

Motif Functions and Macros XmImSetValues

he

me/

-

-
ay
 the
Name
XmImSetValues – set the values for an input context.

Synopsis

#include <Xm/XmIm.h>

void XmImSetValues (Widgetwidget, ArgList arglist, Cardinalargcount)

Inputs
widget Specifies a widget registered with the Input Manager.
arglist Specifies a list of resources consisting of name/value pairs.
argcount Specifies the number of arguments in arglist.

Availability
Motif 1.2 and later.

Description
XmImSetValues () sets the attributes for the input context associated with t
specifiedwidget. The set of attributes to be modified is specified through the
resource listarglist, each element of the list being a structure containing a na
value pair. The number of elements within the list is given byargcount.

Usage
XmImSetValues () is a convenience routine which invokesXSetICValues ()
in order to configure an input context. You are referred to the Xlib Reference
Manual for the set of attributes supported byXSetICValues (), and for their
interpretation.

The Motif widgets invokeXmImSetValues () as and when required. For exam
ple, the Text and TextField widgets automatically invokeXmImSetValues ()
when the widget is resized or the font changed. A programmer who is imple
menting internationalized input for a DrawingArea or creating a new widget m
need to call this function when, for example, the widget needs to reconfigure
spot location.

See Also
XmImSetFocusValues (1), XmImRegister (1), XmIm(1).
Motif Reference Manual 187

XmImSetXIC Motif Functions and Macros

on-
he
is-

 is
t by
Name
XmImSetXIC – register a widget with an existing input context.

Synopsis

#include <Xm/XmIm.h>

XIC XmImSetXIC (Widgetwidget, XIC xic)

Inputs
widget Specifies a widget to be registered with the input context.
xic Specifies an input context where the widget is to be registered.

Returns
The input context where the widget is registered.

Availability
Motif 2.0 and later.

Description
XmImSetXIC () is a convenience function which registers awidgetwith an input
context. If thewidgetis registered with another input context, thewidgetis firstly
unregistered with that context. The widget is then registered with the input c
textxic. If xic is NULL, the function creates a new input context and registers t
widget with it. The function returns the input context where the widget is reg
tered.

Usage
XmImSetXIC () allocates storage when it creates a new input context, and it
the responsibility of the programmer to free the space at an appropriate poin
callingXmImFreeXIC ().

See Also
XmImFreeXIC (1), XmImRegister (1), XmIm(1).
188 Motif Reference Manual

Motif Functions and Macros XmImUnregister

n-

er-

i-

.

put
Name
XmImUnregister – unregister the input context for a widget.

Synopsis

#include <Xm/XmIm.h>

void XmImUnregister (Widgetwidget)

Inputs
widget Specifies a widget whose input context is to be unregistered.

Availability
Motif 1.2 and later.

Description
XmImUnregister () is a convenience function which unregisters the input co
text associated with a givenwidget. The function is the inverse ofXmImRegis-
ter (), which is called when an application needs to specially arrange for
internationalized input to a widget.

Usage
The Motif widgets internally register themselves with the input manager as
required. Only a programmer who is writing a new widget, or who requires int
nationalized input for the DrawingArea needs to callXmImRegister () directly.
WhereXmImRegister () has been called by the application, it is the respons
bility of the programmer to also callXmImUnregister (), usually within the
Destroy () method of the widget for which internationalized input is required
XmImUnregister () uses thewidget parameter to deduce the input method
associated with a display connection. Any input context associated with the in
method is unregistered.

See Also
XmImRegister (1), XmIm(1).
Motif Reference Manual 189

XmImUnsetFocus Motif Functions and Macros

ut

 is
Name
XmImUnsetFocus – unset focus for input context.

Synopsis

#include <Xm/XmIm.h>

void XmImUnsetFocus (Widgetwidget)

Inputs
widget Specifies a widget which has lost the input focus.

Availability
Motif 1.2 and later.

Description
XmImUnsetFocus () notifies the input manager that a widget has lost the inp
focus.

Usage
XmImUnsetFocus () is a convenience routine which invokesXUnsetICFo-
cus () using the input context associated with the specifiedwidget. The input
method is notified that no more input is expected from the widget.

The Motif widgets invokeXmImUnsetFocus () as and when required. For
example, the Text and TextField widgets automatically invokeXmImUnsetFo-

cus ()1 in response to FocusOut and LeaveNotify events. A programmer who
implementing internationalized input for a DrawingArea or creating a new
widget may need to call this function when the widget loses the input focus.

See Also
XmImSetFocusValues (1), XmImVaSetFocusValues (1), XmIm(1).

1.Erroneously given as XmUnsetFocus() in 2nd edition.
190 Motif Reference Manual

Motif Functions and Macros XmImVaSetFocusValues

d
is-

rs to
Name
XmImVaSetFocusValues – set the values and focus for an input context.

Synopsis

#include <Xm/XmIm.h>

void XmImVaSetFocusValues (Widgetwidget,....,NULL)

Inputs
widget Specifies a widget registered with the Input Manager.
..., NULL A NULL-terminated variable-length list of resource name/value
pairs.

Availability
Motif 1.2 and later.

Description
XmImVaSetFocusValues () notifies the input manager that awidget has
received the input focus. If the previous values of the input context associate
with thewidget do not allow the context to be reused, the old context is unreg
tered, and a new one registered with the widget.

Usage
XmImVaSetFocusValues () is simply a convenience routine with a variable
length argument list which constructs internal arglist and argcount paramete
aXmImSetFocusValues () call.

See Also
XmImSetFocusValues (1).
Motif Reference Manual 191

XmImVaSetValues Motif Functions and Macros

ith
Name
XmImVaSetValues – set the values for an input context.

Synopsis

#include <Xm/XmIm.h>

void XmImVaSetValues (Widgetwidget,...,NULL)

Inputs
widget Specifies a widget registered with the Input Manager.
...,NULL A NULL-terminated variable-length list of resource name/value
pairs.

Availability
Motif 1.2 and later.

Description
XmImVaSetValues ()1 sets the attributes for the input context associated w
the specifiedwidget.

Usage
XmImVaSetValues () is simply a convenience routine with a variable length
argument list which constructs internal arglist and argcount parameters to a
XmImSetValues () call.

See Also
XmImSetValues (1).

1.Erroneously given as XmImSetValues() in 2nd edition.
192 Motif Reference Manual

Motif Functions and Macros XmInstallImage

 does
e
that

t
alled,

d to
Name
XmInstallImage – install an image in the image cache.

Synopsis

Boolean XmInstallImage (XImage *image, char *image_name)

Inputs
image Specifies the image to be installed.
image_name Specifies the string name of the image.

Returns
True on success or False ifimageor image_nameis NULL or image_namedupli-
cates an image name already in the cache.

Description
XmInstallImage () installs the specifiedimagein the image cache. Theimage
can later be used to create a pixmap. When the routine installs the image, it
not make a copy of the image, so an application should not destroy the imag
until it has been uninstalled. The routine also expands the resource converter
handles images so thatimage_name can be used in a resource file. In order to
allow references from a resource file,XmInstallImage () must be called to
install an image before any widgets that use the image are created.

Usage
An application can useXmInstallImage () to install and cache images, so tha
the images can be shared throughout the application. Once an image is inst
it can be used to create a pixmap withXmGetPixmap (). The toolkit provides the
following pre-installed images that can be referenced in a resource file or use
create a pixmap:

Image Name Image Description

background Solid background tile

25_foreground A 25% foreground, 75% background tile

50_foreground A 50% foreground, 50% background tile

75_foreground A 75% foreground, 25% background tile

horizontal_tile Horizontal lines tile, in Motif 1.2.3 and later.

vertical_tile Vertical lines tile, in Motif 1.2.3 and later.

horizontal As horizontal_tile: maintained for 1.2.2 compatibility.

vertical As vertical_tile: maintained for 1.2.2 compatibility.

slant_right Right slanting lines tile

slant_left Left slanting lines tile
Motif Reference Manual 193

XmInstallImage Motif Functions and Macros
Example
You might use the following code to define and install an image:

#define bitmap_width 16
#define bitmap_height 16

static char bitmap_bits[] = {
0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00,
0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00,
0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF,
0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF

};

static XImage ximage = {
bitmap_width, /* width */
bitmap_height, /* height */
0, /* xoffset */
XYBitmap, /* format */
bitmap_bits, /* data */
MSBFirst, /* byte_order */
8, /* bitmap_unit */
LSBFirst, /* bitmap_bit_order */
8, /* bitmap_pad */
1, /* depth */
2, /* bytes_per_line */
NULL /* obdata */

};
...
XmInstallImage (&ximage, "image_name");
...

See Also
XmDestroyPixmap (1), XmGetPixmap (1), XmUninstallImage (1).

menu_cascade An arrow pointing to the right, in Motif 2.0 and later.

menu_cascade_rtol An arrow pointing to the left, in Motif 2.0 and later.

menu_checkmark A tick mark, in Motif 2.0 and later.

menu_dash A horizontal line, in Motif 2.0 and later.

collapsed A filled arrow pointing to the right, in Motif 2.0 and later.

collapsed_rtol A filled arrow pointing to the left, in Motif 2.0 and later.

expanded A filled arrow pointing downwards, in Motif 2.0 and later.

Image Name Image Description
194 Motif Reference Manual

Motif Functions and Macros XmInternAtom

is-

e

om

ith

es.
ay
lient
 con-
.h>
ith
Name
XmInternAtom – return an atom for a given property name string.

Synopsis

#include <Xm/AtomMgr.h>

Atom XmInternAtom (Display *display, Stringname, Booleanonly_if_exists)

Inputs
display Specifies a connection to an X server; returned from XOpenD

play() or XtDisplay().
name Specifies the string name of the property for which you want th

atom.
only_if_exists Specifies a Boolean value that indicates whether or not the at

is created if it does not exist.

Returns
An atom on success or None.

Availability
In Motif 2.0 and later,XInternAtom () is preferred.

Description
XmInternAtom () returns the atom that corresponds to the given property
name. This routine works like Xlib’sXInternAtom () routine, but the Motif
routine provides the added feature of client-side caching. If no atom exists w
the specifiednameandonly_if_existsis True,XmInternAtom () does not create
a new atom; it simply returns None. Ifonly_if_exists is False, the routine creates
the atom and returns it.

Usage
An atom is a number that identifies a property. Properties also have string nam
XmInternAtom() returns the atom associated with a property if it exists, or it m
create the atom if it does not exist. The atom remains defined even after the c
that defined it has exited. An atom does not become undefined until the last
nection to the X server closes. Predefined atoms are defined in <X11/Xatom
and begin with the prefix XA_. Predefined atoms do not need to be interned w
XmInternAtom ().

In Motif 2.0 and later,XmInternAtom () is no more than a convenience routine
which callsXInternAtom (). WhileXmInternAtom () is not yet officially
obsolete,XInternAtom () is to be preferred.

See Also
XmGetAtomName(1).
Motif Reference Manual 195

XmIsMotifWMRunning Motif Functions and Macros

ed

-
 on
Name
XmIsMotifWMRunning – check whether the Motif Window Manager (mwm) is
running.

Synopsis

Boolean XmIsMotifWMRunning (Widget shell)

Inputs
shell Specifies the shell widget whose screen is queried.

Returns
True if mwm is running or False otherwise.

Description
XmIsMotifWMRunning () checks for the presence of the
_MOTIF_WM_INFO property on the root window of the screen of the specifi
shell to determine whether the Motif Window Manager (mwm) is running on the
screen.

Usage
mwm defines additional types of communication between itself and client pro
grams. This communication is optional, so an application should not depend
the communication or the presence ofmwm for any functionality.XmIsMo-
tifWMRunning () allows an application to check ifmwm is running and act
accordingly.

See Also
mwm(4).
196 Motif Reference Manual

Motif Functions and Macros XmIs<Emphasis>Object<Default Para Font>
Name
XmIsObject – determine whether a widget is a subclass of a class.

Synopsis

#include <Xm/Gadget.h>
Boolean XmIsGadget (Widget widget)

#include <Xm/Manager.h>
Boolean XmIsManager (Widget widget)

#include <Xm/Primitive.h>
Boolean XmIsPrimitive (Widget widget)

#include <Xm/ArrowB.h>
Boolean XmIsArrowButton (Widget widget)

#include <Xm/ArrowBG.h>
Boolean XmIsArrowButtonGadget (Widget widget)

#include <Xm/BulletinB.h>
Boolean XmIsBulletinBoard (Widget widget)

#include <Xm/CascadeB.h>
Boolean XmIsCascadeButton (Widget widget)

#include <Xm/CascadeBG.h>
Boolean XmIsCascadeButtonGadget (Widget widget)

#include <Xm/ComboBox.h>
Boolean XmIsComboBox (Widget widget)

#include <Xm/Command.h>
Boolean XmIsCommand (Widget widget)

#include <Xm/Container.h>
Boolean XmIsContainer (Widget widget)

#include <Xm/DialogS.h>
Boolean XmIsDialogShell (Widget widget)

#include <Xm/Display.h>
Boolean XmIsDisplay (Widget widget)

#include <Xm/DragC.h>
Boolean XmIsDragContext (Widget widget)

#include <Xm/DragIcon.h>
Boolean XmIsDragIconObjectClass (Widget widget)
Motif Reference Manual 197

XmIs<Emphasis>Object<Default Para Font> Motif Functions and Macros
#include <Xm/DrawingA.h>
Boolean XmIsDrawingArea (Widget widget)

#include <Xm/DrawnB.h>
Boolean XmIsDrawnButton (Widget widget)

#include <Xm/DropSMgr.h>
Boolean XmIsDropSiteManager (Widget widget)

#include <Xm/DropTrans.h>
Boolean XmIsDropTransfer (Widget widget)

#include <Xm/FileSB.h>
Boolean XmIsFileSelectionBox (Widget widget)

#include <Xm/Form.h>
Boolean XmIsForm (Widget widget)

#include <Xm/Frame.h>
Boolean XmIsFrame (Widget widget)

#include <Xm/GrabShell.h>
Boolean XmIsGrabShell (Widget widget)

#include <Xm/IconG.h>
Boolean XmIsIconGadget (Widget widget)

#include <Xm/Label.h>
Boolean XmIsLabel (Widget widget)

#include <Xm/LabelG.h>
Boolean XmIsLabelGadget (Widget widget)

#include <Xm/List.h>
Boolean XmIsList (Widget widget)

#include <Xm/MainW.h>
Boolean XmIsMainWindow (Widget widget)

#include <Xm/MenuShell.h>
Boolean XmIsMenuShell (Widget widget)

#include <Xm/MessageB.h>
Boolean XmIsMessageBox (Widget widget)

#include <Xm/Notebook.h>
Boolean XmIsNotebook (Widget widget)

#include <Xm/PanedW.h>
Boolean XmIsPanedWindow (Widget widget)
198 Motif Reference Manual

Motif Functions and Macros XmIs<Emphasis>Object<Default Para Font>

ed.
#include <Xm/PrintS.h>
Boolean XmIsPrintShell (Widget widget)

#include <Xm/PushB.h>
Boolean XmIsPushButton (Widget widget)

#include <Xm/PushBG.h>
Boolean XmIsPushButtonGadget (Widget widget)

#include <Xm/RowColumn.h>
Boolean XmIsRowColumn (Widget widget)

#include <Xm/Scale.h>
Boolean XmIsScale (Widget widget)

#include <Xm/Screen.h>
Boolean XmIsScreen (Widget widget)

#include <Xm/ScrollBar.h>
Boolean XmIsScrollBar (Widget widget)

#include <Xm/ScrolledW.h>
Boolean XmIsScrolledWindow (Widget widget)

#include <Xm/SelectioB.h>
Boolean XmIsSelectionBox (Widget widget)

#include <Xm/Separator.h>
Boolean XmIsSeparator (Widget widget)

#include <Xm/SeparatoG.h>
Boolean XmIsSeparatorGadget (Widget widget)

#include <Xm/Text.h>
Boolean XmIsText (Widget widget)

#include <Xm/TextF.h>
Boolean XmIsTextField (Widget widget)

#include <Xm/ToggleB.h>
Boolean XmIsToggleButton (Widget widget)

#include <Xm/ToggleBG.h>
Boolean XmIsToggleButtonGadget (Widget widget)

#include <Xm/VendorS.h>
Boolean XmIsVendorShell (Widget widget)

Inputs
widget Specifies the widget ID of the widget whose class is to be check
Motif Reference Manual 199

XmIs<Emphasis>Object<Default Para Font> Motif Functions and Macros

x
er

The
eci-

nto the
Returns
True if widget is of the specified class or False otherwise.

Availability
XmIsDisplay (), XmIsDragContext (), XmIsDragIconObject-
Class (), XmIsDropSiteManager (), XmIsDropTransfer (), and
XmIsScreen () are only available in Motif 1.2 and later.

XmIsComboBox(), XmIsContainer (), XmIsNotebook (), XmIsIcon-
Gadget (), andXmIsGrabShell () are available in Motif 2.0 and later.

XmIsPrintShell () is available in Motif 2.1. Note that although the SpinBo
class is available in Motif 2.0, and the SimpleSpinBox class in Motif 2.1, neith

XmIsSpinBox () norXmIsSimpleSpinBox () are defined.1

Description
The XmIs*() routines are macros that check the class of the specified widget.
macros returns True if widget is of the specified class or a subclass of the sp
fied class. Otherwise, the macros return False.

Usage
An application can use the XmIs*() macros to check the class of a particular
widget. All of the macros useXtIsSubclass () to determine the class of the
widget.

Example
The missing macroXmIsSpinBox () could be defined as follows:

#include <Xm/SpinB.h>
#ifndef XmIsSpinBox
#define XmIsSpinBox(w) XtIsSubclass(w, xmSpinBoxWidgetClass)
#endif /* XmIsSpinBox */

1.Be warned that certain platforms, although they ship the PrintShell headers, do not compile the component i
native Motif toolkit. Sun Solaris is a case in point.
200 Motif Reference Manual

Motif Functions and Macros XmIs<Emphasis>Object<Default Para Font>
See Also
XmCreateObject(1), VendorShell(2), XmArrowButton(2),
XmArrowButtonGadget(2), XmBulletinBoard(2),
XmCascadeButton(2), XmCascadeButtonGadget(2),
XmComboBox(2), XmCommand(2), XmContainer(2),
XmDialogShell(2), XmDisplay(2), XmDragContext(2),
XmDragIcon(2), XmDrawingArea(2), XmDrawnButton(2),
XmDropSite(2), XmDropTransfer(2),
XmFileSelectionBox(2), XmForm(2), XmFrame(2),
XmGadget(2), XmGrabShell(2), XmIconGadget(2),
XmLabel(2), XmLabelGadget(2), XmList(2),
XmMainWindow(2), XmManager(2), XmMenuShell(2),
XmMessageBox(2), XmNotebook(2), XmPanedWindow(2),
XmPrimitive(2), XmPrintShell(2), XmPushButton(2),
XmPushButtonGadget(2), XmRowColumn(2), XmScale(2),
XmScreen(2), XmScrollBar(2), XmScrolledWindow(2),
XmSelectionBox(2), XmSeparator(2),
XmSeparatorGadget(2), XmSpinBox(2),
XmSimpleSpinBox(2), XmText(2), XmTextField(2),
XmToggleButton(2), XmToggleButtonGadget(2).
Motif Reference Manual 201

XmIsTraversable Motif Functions and Macros

ard

.

ust
. The
t to
n-

t
ed-

an-
 man-
For
i-
rce
Name
XmIsTraversable – determine whether or not a widget can receive the keybo
focus.

Synopsis

Boolean XmIsTraversable (Widgetwidget)

Inputs
widget Specifies the widget whose traversability state is to be returned

Returns
True if widget is eligible to receive the keyboard focus or False otherwise.

Availability
Motif 1.2 and later.

Description
XmIsTraversable () determines whether or not the specifiedwidget can
receive the keyboard focus. The routine returns True if thewidget is eligible to
receive the keyboard focus; otherwise it returns False.

Usage
In order for a widget to receive the keyboard focus, it and all of its ancestors m
not be in the process of being destroyed and they must be sensitive to input
widget and its ancestors must also have their XmNtraversalOn resources se
True. If the widget is viewable, which means that it and its ancestors are ma
aged, mapped, and realized and some part of the widget is visible, then the
widget is eligible to receive the keyboard focus. A fully-obscured widget is no
eligible to receive the focus unless part of it is within the work area of a Scroll
Window with an XmNscrollingPolicy of XmAUTOMATIC that has an XmNtra-
verseObscuredCallback.

Primitive widgets and gadgets can receive the keyboard focus, while most m
ager widgets cannot, even if they have traversable children. However, some
agers may be eligible to receive the keyboard focus under certain conditions.
example, a DrawingArea can receive the keyboard focus if it meets the cond
tions above and it does not have any children with the XmNtraversalOn resou
set to True.

See Also
XmGetFocusWidget (1), XmGetTabGroup (1), XmGetVisibility (1),
XmProcessTraversal (1), XmManager(2), XmScrolledWindow (2).
202 Motif Reference Manual

Motif Functions and Macros XmListAddItem

,
em

y

. If
new
orts
re
te a
Name
XmListAddItem, XmListAddItems – add an item/items to a list.

Synopsis

#include <Xm/List.h>

void XmListAddItem (Widgetwidget, XmStringitem, int position)
void XmListAddItems (Widgetwidget, XmString *items, int item_count, int
position)

Inputs
widget Specifies the List widget.
item Specifies the item that is to be added.
items Specifies a list of items that are to be added.
item_count Specifies the number of items to be added.
position Specifies the position at which to add the new item(s).

Description
XmListAddItem () inserts the specifieditem into the list, whileXmListAd-
dItems () inserts the specified list ofitems. If item_count is smaller than the
number of items, only the firstitem_countitems of the array are added. Theposi-
tion argument specifies the location of the new item(s) in the list. Aposition
value of 1 indicates the first item, apositionvalue of 2 indicates the second item
and so on. A value of 0 (zero) specifies the last item in the list. An inserted it
appears selected if it matches an item in the XmNselectedItems list.

Usage
XmListAddItem () andXmListAddItems () are convenience routines that
allow you to add items to a list. The routines add items to the list by internall
manipulating the arrays of compound strings specified by the XmNitems,
XmNitemCount, XmNselectedItems, and XmNselectedItemCount resources
an item being added to the list duplicates an item that is already selected, the
item appears as selected. You should only use these routines if the list supp
multiple selections and you want to select the new items whose duplicates a
already selected. In order to add items with these routines, you have to crea
compound string for each item.

See Also
XmListAddItemUnselected (1), XmListReplaceItems (1),
XmListReplaceItemsPos (1),
XmListReplaceItemsPosUnselected (1),
XmListReplacePositions (1), XmList (2).
Motif Reference Manual 203

XmListAddItemUnselected Motif Functions and Macros

 to

st
 an

add
ci-
 to
pear
om-
Name
XmListAddItemUnselected, XmListAddItemsUnselected – add an item/items
a list.

Synopsis

#include <Xm/List.h>

void XmListAddItemUnselected (Widgetwidget, XmStringitem, int position)
void XmListAddItemsUnselected (Widgetwidget, XmString *items, int
item_count, int position)

Inputs
widget Specifies the List widget.
item Specifies the item that is to be added.
items Specifies a list of items that are to be added.
item_count Specifies the number of items to be added.
position Specifies the position at which to add the new item(s).

Availability
XmListAddItemsUnselected () is only available in Motif 1.2 and later.

Description
XmListAddItemUnselected () inserts the specifieditem into the list, while
XmListAddItemsUnselected () inserts the specified list ofitems. If
item_countis smaller than the number of items, only the firstitem_countitems of
the array are added. Theposition argument specifies the location of the new
item(s) in the list. Aposition value of 1 indicates the first item, aposition value
of 2 indicates the second item, and so on. A value of 0 (zero) specifies the la
item in the list. An inserted item does not appear selected, even if it matches
item in the XmNselectedItems list.

Usage
XmListAddItemUnselected () andXmListAddItemsUnselected ()
are convenience routines that allow you to add items to a list. These routines
items to the list by internally manipulating the array of compound strings spe
fied by the XmNitems and XmNitemCount resources. If an item being added
the list duplicates an item that is already selected, the new item does not ap
as selected. In order to add items with these routines, you have to create a c
pound string for each item.

Example
The following callback routine shows how to use of XmListAddItemUnse-
lected() to insert an item into a list in alphabetical order:

void add_item (Widget text_w,
204 Motif Reference Manual

Motif Functions and Macros XmListAddItemUnselected
XtPointer client_data,
XtPointer call_data)

{
char *text, *newtext = XmTextFieldGetString
(text_w);
XmString str, *strlist;
int u_bound, l_bound = 0;
Widget list_w = (Widget) client_data;

/* newtext is the text typed in the TextField
widget */
if (!newtext || !*newtext) {

XtFree (newtext);
return;

}

/* get the current entries (and number of entries)
from the List */
XtVaGetValues (list_w, XmNitemCount, &u_bound,

XmNitems, &strlist, NULL);

u_bound--;

/* perform binary search */
while (u_bound >= l_bound) {

int i = l_bound + (u_bound - l_bound)/2;

text = (char *) XmStringUnparse (strlist[i],
NULL,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0,
XmOUTPUT_ALL);

if (!text)
break;

if (strcmp (text, newtext) > 0)
u_bound = i-1;

else
l_bound = i+1;

XtFree (text);
}

/* insert item at appropriate location */
Motif Reference Manual 205

XmListAddItemUnselected Motif Functions and Macros
str = XmStringCreateLocalized (newtext);
XmListAddItemUnselected (list_w, str, l_bound+1);
XmStringFree (str);
XtFree (newtext);

}

See Also
XmListAddItem (1), XmListReplaceItems (1),
XmListReplaceItemsPos (1),
XmListReplaceItemsPosUnselected (1),
XmListReplaceItemsUnselected (1),
XmListReplacePositions (1), XmList (2).
206 Motif Reference Manual

Motif Functions and Macros XmListDeleteAllItems
Name
XmListDeleteAllItems – delete all of the items from a list.

Synopsis

#include <Xm/List.h>

void XmListDeleteAllItems (Widgetwidget)

Inputs
widget Specifies the List widget.

Description
XmListDeleteAllItems () removes all of the items from the specified List
widget.

Usage
XmListDeleteAllItems () is a convenience routine that allows you to
remove all of the items from a list. The routine removes items from the list by
internally manipulating the array of compound strings specified by the
XmNitems and XmNitemCount resources.

See Also
XmListDeleteItem (1), XmListDeleteItemsPos (1),
XmListDeletePos (1), XmListDeletePositions (1), XmList (2).
Motif Reference Manual 207

XmListDeleteItem Motif Functions and Macros

is-

m
he
ce

o
ach
Name
XmListDeleteItem, XmListDeleteItems – delete an item/items from a list.

Synopsis

#include <Xm/List.h>

void XmListDeleteItem (Widgetwidget, XmStringitem)
void XmListDeleteItems (Widgetwidget, XmString *items, int item_count)

Inputs
widget Specifies the List widget.
item Specifies the item that is to be deleted.
items Specifies a list of items that are to be deleted.
item_count Specifies the number of items to be deleted.

Description
XmListDeleteItem ()1 removes the first occurrence of the specifieditem
from the list, whileXmListDeleteItems () removes the first occurrence of
each of the elements ofitems. If an item does not exist, a warning message is d
played.

Usage
XmListDeleteItem () andXmListDeleteItems () are convenience rou-
tines that allow you to remove items from a list. The routines remove items fro
the list by internally manipulating the array of compound strings specified by t
XmNitems and XmNitemCount resources. If there is more than one occurren
of an item in the list, the routines only remove the first occurrence. In order t
remove items with these routines, you have to create a compound string for e
item. The routines use a linear search to locate the items to be deleted.

See Also
XmListDeleteAllItems (1), XmListDeleteItemsPos (1),
XmListDeletePos (1), XmListDeletePositions (1), XmList (2).

1.Erroneously given as ListDeleteItem() in 1st and 2nd editions.
208 Motif Reference Manual

Motif Functions and Macros XmListDeleteItemsPos

list.

een

y

 to
rou-
 is
Name
XmListDeleteItemsPos – delete items starting at a specified position from a

Synopsis

#include <Xm/List.h>

void XmListDeleteItemsPos (Widgetwidget, int item_count, int position)

Inputs
widget Specifies the List widget.
item_count Specifies the number of items to be deleted.
position Specifies the position from which to delete items.

Description
XmListDeleteItemsPos () removesitem_count items from the list, starting
at the specifiedposition. A position value of 1 indicates the first item, aposition
value of 2 indicates the second item, and so on. If the number of items betw
position and the end of the list is less thanitem_count, the routine deletes all of
the items up through the last item in the list.

Usage
XmListDeleteItemsPos () is a convenience routine that allows you to
remove items from a list. The routine removes items from the list by internall
manipulating the array of compound strings specified by the XmNitems and
XmNitemCount resources. Since you are specifying the position of the items
be removed, you do not have to create compound strings for the items. The
tine does not have to search for the items, so it avoids the linear search that
used by XmListDeleteItems().

See Also
XmListDeleteAllItems (1), XmListDeleteItem (1),
XmListDeletePos (1), XmListDeletePositions (1), XmList (2).
Motif Reference Manual 209

XmListDeletePos Motif Functions and Macros

the

lat-

ved,
not
Name
XmListDeletePos – delete an item at the specified position from a list.

Synopsis

#include <Xm/List.h>

void XmListDeletePos (Widgetwidget, int position)

Inputs
widget Specifies the List widget.
position Specifies the position from which to delete an item.

Description
XmListDeletePos () removes the item at the specifiedposition from the list.
A position value of 1 indicates the first item, aposition value of 2 indicates the
second item, and so on. A value of 0 (zero) specifies the last item in the list. If
list does not have the specifiedposition, a warning message is displayed.

Usage
XmListDeletePos () is a convenience routine that allows you to remove an
item from a list. The routine removes items from the list by internally manipu
ing the array of compound strings specified by the XmNitems and XmNitem-
Count resources. Since you are specifying the position of the item to be remo
you do not have to create a compound string for the item. The routine does
have to search for the item, so it avoids the linear search that is used by
XmListDeleteItem ().

See Also
XmListDeleteAllItems (1), XmListDeleteItem (1),
XmListDeleteItemsPos (1), XmListDeletePositions (1),
XmList (2).
210 Motif Reference Manual

Motif Functions and Macros XmListDeletePositions

s

ave

ons
the
ar
Name
XmListDeletePositions – delete items at the specified positions from a list.

Synopsis

#include <Xm/List.h>

void XmListDeletePositions (Widgetwidget, int *position_list, int
position_count)

Inputs
widget Specifies the List widget.
position_list Specifies a list of positions from which to delete items.
position_count Specifies the number of positions to be deleted.

Availability
Motif 1.2 and later.

Description
XmListDeletePositions () removes the items that appear at the position
specified inposition_list from the list. A position value of 1 indicates the first
item, a value of 2 indicates the second item, and so on. If the list does not h
the specified position, a warning message is displayed. Ifposition_count is
smaller than the number of positions inposition_list, only the firstposition_count
items of the array are deleted.

Usage
XmListDeletePositions () is a convenience routine that allows you to
remove items from a list. The routine remove the items by modifying the
XmNitems and XmNitemCount resources. Since you are specifying the positi
of the items to be removed, you do not have to create compound strings for
items. The routine does not have to search for the items, so it avoids the line
search that is used byXmListDeleteItems ().

See Also
XmListDeleteAllItems (1), XmListDeleteItem (1),
XmListDeleteItemsPos (1), XmListDeletePos (1), XmList (2).
Motif Reference Manual 211

XmListDeselectAllItems Motif Functions and Macros

he
the

er-
te-
 any
Name
XmListDeselectAllItems – deselect all items in a list.

Synopsis

#include <Xm/List.h>

void XmListDeselectAllItems (Widgetwidget)

Inputs
widget Specifies the List widget.

Description
XmListDeselectAllItems () unhighlights all of the selected items in the
specifiedwidgetand removes these items from the XmNselectedItems list. If t
list is in normal mode, the item with the keyboard focus remains selected; if
list is in add mode, all of the items are deselected.

Usage
XmListDeselectAllItems () is a convenience routine that allows you to
deselect all of the items in a list. The routine deselects items in the list by int
nally manipulating the array of compound strings specified by the XmNselec
dItems and XmNselectedItemCount resources. This routine does not invoke
selection callbacks for the list when the items are deselected.

See Also
XmListDeselectItem (1), XmListDeselectPos (1),
XmListSelectItem (1), XmListSelectPos (1),
XmListUpdateSelectedList (1), XmList (2).
212 Motif Reference Manual

Motif Functions and Macros XmListDeselectItem

ct
ng
se-
acks
f an
lect
he
Name

XmListDeselectItem – deselect an item from a list.

Synopsis

#include <Xm/List.h>

void XmListDeselectItem (Widgetwidget, XmStringitem)

Inputs
widget Specifies the List widget.
item Specifies the item that is to be deselected.

Description
XmListDeselectItem () unhighlights and removes from the XmNselecte-
dItems list the first occurrence of the specifieditem.

Usage
XmListDeselectItem () is a convenience routine that allows you to desele
an item in a list. The routine deselects items in the list by internally manipulati
the array of compound strings specified by the XmNselectedItems and XmN
lectedItemCount resources. This routine does not invoke any selection callb
for the list when the item is deselected. If there is more than one occurrence o
item in the list, the routine only deselects the first occurrence. In order to dese
an item with this routine, you have to create a compound string for the item. T
routine uses a linear search to locate the item to be deselected.

See Also
XmListDeselectAllItems (1), XmListDeselectPos (1),
XmListSelectItem (1), XmListSelectPos (1),
XmListUpdateSelectedList (1), XmList (2).
Motif Reference Manual 213

XmListDeselectPos Motif Functions and Macros

.
he

t
ng
se-
acks
 of
he
Name
XmListDeselectPos – deselect an item at the specified position from a list.

Synopsis

#include <Xm/List.h>

void XmListDeselectPos (Widgetwidget, int position)

Inputs
widget Specifies the List widget.
position Specifies the position at which to deselect an item.

Description
XmListDeselectPos () unhighlights the item at the specifiedposition in the
list and removes the item from the XmNselectedItems list. Aposition value of 1
indicates the first item, apositionvalue of 2 indicates the second item, and so on
A value of 0 (zero) specifies the last item in the list. If the list does not have t
specifiedposition, the routine does nothing.

Usage
XmListDeselectPos () is a convenience routine that allows you to deselec
an item in a list. The routine deselects items in the list by internally manipulati
the array of compound strings specified by the XmNselectedItems and XmN
lectedItemCount resources. This routine does not invoke any selection callb
for the list when the item is deselected. Since you are specifying the position
the item to be deselected, you do not have to create a compound string for t
item. The routine does not have to search for the item, so it avoids the linear
search that is used byXmListDeselectItem ().

See Also
XmListDeselectAllItems (1), XmListDeselectPos (1),
XmListGetSelectedPos (1), XmListPosSelected (1),
XmListSelectItem (1), XmListSelectPos (1),
XmListUpdateSelectedList (1), XmList (2).
214 Motif Reference Manual

Motif Functions and Macros XmListGetKbdItemPos

ion

st
peci-

ns
Name
XmListGetKbdItemPos – get the position of the item in a list that has the locat
cursor.

Synopsis

#include <Xm/List.h>

int XmListGetKbdItemPos (Widgetwidget)

Inputs
widget Specifies the List widget.

Returns
The position of the item that has the location cursor.

Availability
Motif 1.2 and later.

Description
XmListGetKbdItemPos () retrieves the position of the item in the specified
List widget that has the location cursor. A returned value of 1 indicates the fir
item, a value of 2 indicates the second item, and so on. The value 0 (zero) s
fies that the list is empty.

Usage
XmListGetKbdItemPos () provides a way to determine which item in a list
has the keyboard focus. This information is useful if you need to perform actio
based on the position of the location cursor in the list.

See Also
XmListSetAddMode (1), XmListSetKbdItemPos (1), XmList (2).
Motif Reference Manual 215

XmListGetMatchPos Motif Functions and Macros

n.

te
Name
XmListGetMatchPos – get all occurrences of an item in a list.

Synopsis

#include <Xm/List.h>

Boolean XmListGetMatchPos (Widgetwidget, XmStringitem, int
** position_list, int *position_count)

Inputs
widget Specifies the List widget.
item Specifies the item whose positions are to be retrieved.

Outputs
position_list Returns a list of the positions of the item.
position_count Returns the number of items in position_list.

Returns
True if the item is in the list or False otherwise.

Description
XmListGetMatchPos () determines whether the specifieditem exists in the
list. If the list containsitem, the routine returns True andposition_list returns a
list of positions that specify the location(s) of theitem. A position value of 1 indi-
cates the first item, a position value of 2 indicates the second item, and so o
XmListGetMatchPos () allocates storage for theposition_list array when the
item is found; the application is responsible for freeing this storage using
XtFree (). If the list does not containitem, the routine returns False, and
position_countis set to zero. In Motif 1.2.3 and earlier, the value ofposition_list
is undefined ifitemis not within the list. From Motif 1.2.4 and later,position_list
is set to NULL.

Usage
XmListGetMatchPos () is a convenience routine that provides a way to loca
all of the occurrences of an item in a list. Alternatively, you could obtain this
information yourself using the XmNitems resource andXmListItemPos ().

Example
The following code fragments show the use ofXmListGetMatchPos ():

Widget list_w;
int *pos_list;
int pos_cnt, i;
char *choice = "A Sample Text String";
XmString str = XmStringCreateLocalized
(choice);
216 Motif Reference Manual

Motif Functions and Macros XmListGetMatchPos
if (!XmListGetMatchPos (list_w, str, &pos_list,
&pos_cnt))

XtWarning ("Can’t get items in list");
else {

printf ("%s exists at %d positions:", choice,
pos_cnt);

for (i = 0; i < pos_cnt; i++)
printf (" %d", pos_list[i]);

puts ("");

XtFree (pos_list);
}

XmStringFree (str);

See Also
XmListGetSelectedPos (1), XmList (2).
Motif Reference Manual 217

XmListGetSelectedPos Motif Functions and Macros

s

m,

this
e

nd
Name
XmListGetSelectedPos – get the positions of the selected items in a list.

Synopsis

#include <Xm/List.h>

Boolean XmListGetSelectedPos (Widgetwidget, int **position_list, int
*position_count)

Inputs
widget Specifies the List widget.

Outputs
position_list Returns a list of the positions of the selected items.
position_count Returns the number of items in position_list.

Returns
True if there are selected items in the list or False otherwise.

Description
XmListGetSelectedPos () determines whether there are any selected item
in the list. If the list has selected items, the routine returns True andposition_list
returns a list of positions that specify the location(s) of the items. A position
value of 1 indicates the first item, a position value of 2 indicates the second ite
and so on.XmListGetSelectedPos () allocates storage for theposition_list
array when there are selected items; the application is responsible for freeing
storage usingXtFree(). If the list does not contain any selected items, the routin
returns False andposition_count is set to zero. In Motif 1.2.3 and earlier, the
value ofposition_list is undefined if there are no selected items within the list.
From Motif 1.2.4 and later,position_list is set to NULL.

Usage
XmListGetSelectedPos () is a convenience routine that provides a way to
determine the positions of all of the selected items in a list. Alternatively, you
could obtain this information yourself using the XmNselectedItems resource a
XmListItemPos ().

See Also
XmListGetMatchPos (1), XmList (2).
218 Motif Reference Manual

Motif Functions and Macros XmListItemExists

ot
d
y be
st
Name
XmListItemExists – determine if a specified item is in a list.

Synopsis

#include <Xm/List.h>

Boolean XmListItemExists (Widgetwidget, XmStringitem)

Inputs
widget Specifies the List widget.
item Specifies the item whose presence in the list is checked.

Returns
True if the item is in the list or False otherwise.

Description
XmListItemExists () determines whether the list contains the specifieditem.
The routine returns True if theitem is present and False if it is not.

Usage
XmListItemExists () is a convenience routine that determines whether or n
an item is in a list. In order to use the routine, you have to create a compoun
string for the item. The routine uses a linear search to locate the item. You ma
able to obtain this information more effectively by searching the XmNitems li
using your own search procedure.

See Also
XmListGetMatchPos (1), XmListItemPos (1), XmList (2).
Motif Reference Manual 219

XmListItemPos Motif Functions and Macros

d
2

in
nly
ave

si-
Name
XmListItemPos – return the position of an item in a list.

Synopsis

#include <Xm/List.h>

int XmListItemPos (Widgetwidget, XmStringitem)

Inputs
widget Specifies the List widget.
item Specifies the item whose position is returned.

Returns
The position of the item in the list or 0 (zero) if theitem is not in the list.

Description
XmListItemPos () returns the position of the first occurrence of the specifie
item in the list. A position value of 1 indicates the first item, a position value of
indicates the second item, and so on. If item is not in the list,XmListItem-
Pos() returns 0 (zero).

Usage
XmListItemPos () is a convenience routine that finds the position of an item
a list. If there is more than one occurrence of the item in the list, the routine o
returns the position of the first occurrence. In order to use the routine, you h
to create a compound string for the item. The routine uses a linear search to
locate the item.

Example
The following routines show how to make sure that a given item in a list is vi
ble:

void MakePosVisible (Widget list_w, int item_no)
{

int top, visible;

XtVaGetValues (list_w, XmNtopItemPosition,
&top,

XmNvisibleItemCount,
&visible,

NULL);

if (item_no < top)
XmListSetPos (list_w, item_no);

else if (item_no >= top+visible)
XmListSetBottomPos (list_w, item_no);
220 Motif Reference Manual

Motif Functions and Macros XmListItemPos
}

void MakeItemVisible (Widget list_w, XmString item)
{

int item_no = XmListItemPos (list_w, item);

if (item_no > 0)
MakePosVisible (list_w, item_no);

}

See Also
XmListItemExists (1), XmListPosSelected (1), XmList (2).
Motif Reference Manual 221

XmListPosSelected Motif Functions and Macros

list.

-

 the
rns

at a
ns
Name
XmListPosSelected – check if the item at a specified position is selected in a

Synopsis

#include <Xm/List.h>

Boolean XmListPosSelected (Widgetwidget, int position)

Inputs
widget Specifies the List widget.
position Specifies the position that is checked.

Returns
True if the item is selected or False if the item is not selected or theposition is
invalid.

Availability
Motif 1.2 and later.

Description
XmListPosSelected () determines whether or not the list item at the speci
fiedpositionis selected. Apositionvalue of 1 indicates the first item, aposition
value of 2 indicates the second item, and so on. The value 0 (zero) specifies
last item in the list. The routine returns True if the list item is selected. It retu
False if the item is not selected or the list does not have the specifiedposition.

Usage
XmListPosSelected() is a convenience routine that lets you check if an item
particular position is selected. Alternatively, you could check the list of positio
returned byXmListGetSelectedPos () to see if the item at a position is
selected.

See Also
XmListDeselectPos (1), XmListGetSelectedPos (1),
XmListSelectPos (1), XmListUpdateSelectedList (1), XmList (2).
222 Motif Reference Manual

Motif Functions and Macros XmListPosToBounds

osi-

ng

d

st

he
Name
XmListPosToBounds – return the bounding box of an item at the specified p
tion in a list.

Synopsis

#include <Xm/List.h>

Boolean XmListPosToBounds (Widget widget,
int position,
Position *x,
Position *y,
Dimension *width,
Dimension *height)

Inputs
widget Specifies the List widget.
position Specifies the position of the item for which to return the boundi
box.

Outputs
x Returns the x-coordinate of the bounding box for the item.
y Returns the y-coordinate of the bounding box for the item.
width Returns the width of the bounding box for the item.
height Returns the height of the bounding box for the item.

Returns
True if item at the specified position is visible or False otherwise.

Availability
Motif 1.2 and later.

Description
XmListPosToBounds () returns the bounding box of the item at the specifie
position in the list. Aposition value of 1 indicates the first item, aposition value
of 2 indicates the second item, and so on. A value of 0 (zero) specifies the la
item in the list. The routine returns thex andy coordinates of the upper left corner
of the bounding box in relation to the upper left corner of the List widget.
XmListPosToBounds () also returns thewidth andheight of the bounding
box. Passing a NULL value for any of thex, y, width, orheight parameters indi-
cates that the value for the parameter should not be returned. If the item at t
specifiedpositionis not visible,XmListPosToBounds () returns False and the
return values are undefined.
Motif Reference Manual 223

XmListPosToBounds Motif Functions and Macros

n
t

Usage
XmListPosToBounds () provides a way to determine the bounding box of a
item in a list. This information is useful if you want to perform additional even
processing or draw special graphics for the list item.

See Also
XmListYToPos (1), XmList (2).
224 Motif Reference Manual

Motif Functions and Macros XmListReplaceItems

e
of

If a
s
ns
. In

s for
s to
Name
XmListReplaceItems – replace specified items in a list.

Synopsis

#include <Xm/List.h>

void XmListReplaceItems (Widget widget,
XmString *old_items,
int item_count,
XmString *new_items)

Inputs
widget Specifies the List widget.
old_items Specifies a list of the items that are to be replaced.
item_count Specifies the number of items that are to be replaced.
new_items Specifies a list of the new items.

Description
XmListReplaceItems () replaces the first occurrence of each item in the
old_items list with the corresponding item from thenew_items list. If an item in
theold_items list does not exist in the specified Listwidget, the corresponding

item innew_items1 is skipped. Ifitem_count is smaller than the number of
old_itemsor new_items, only the firstitem_countitems are replaced. A new item
appears selected if it matches an item in the XmNselectedItems list.

Usage
XmListReplaceItems () is a convenience routine that allows you to replac
particular items in a list. The routine replaces items by manipulating the array
compound strings specified by the XmNitems and XmNitemCount resources.
new item duplicates an item that is already selected, the new item appears a
selected. You should only use this routine if the list supports multiple selectio
and you want to select the new items whose duplicates are already selected
order to replace items with this routine, you have to create compound string
all of the old and new items. The routine uses a linear search to locate the item
be replaced.

See Also
XmListAddItem (1), XmListAddItemUnselected (1),
XmListReplaceItemsPos (1),
XmListReplaceItemsPosUnselected (1),
XmListReplaceItemsUnselected (1),
XmListReplacePositions (1), XmList (2).

1.Erroneously given asnew_list in 1st and 2nd edition.
Motif Reference Manual 225

XmListReplaceItemsPos Motif Functions and Macros

t
ing

 by

if the

ou
ot
y

Name
XmListReplaceItemsPos – replace specified items in a list.

Synopsis

#include <Xm/List.h>

void XmListReplaceItemsPos (Widgetwidget, XmString *new_items, int
item_count, int position)

Inputs
widget Specifies the List widget.
new_items Specifies a list of the new items.
item_count Specifies the number of items that are to be replaced.
position Specifies the position at which to replace items.

Description
XmListReplaceItemsPos () replaces a consecutive number of items in the
list with items from thenew_itemslist. The first item that is replaced is located a
the specifiedpositionand each subsequent item is replaced by the correspond
item fromnew_items. A position value of 1 indicates the first item, aposition
value of 2 indicates the second item, and so on. Ifitem_count is smaller than the
number ofnew_items, only the firstitem_countitems are replaced. If the number
of items betweenposition and the end of the list is less thanitem_count, the rou-
tine replaces all of the items up through the last item in the list. A new item
appears selected if it matches an item in the XmNselectedItems list.

Usage
XmListReplaceItemsPos () is a convenience routine that allows you to
replace a contiguous sequence of items in a list. The routine replaces items
manipulating the array of compound strings specified by the XmNitems and
XmNitemCount resources. If a new item duplicates an item that is already
selected, the new item appears as selected. You should only use this routine
list supports multiple selections and you want to select the new items whose
duplicates are already selected. In order to replace items with this routine, y
have to create compound strings for all of the new items. The routine does n
have to search for the items, so it avoids the linear searches that are used b
XmListReplaceItems ().

See Also
XmListAddItem (1), XmListAddItemUnselected (1),
XmListReplaceItems (1),
XmListReplaceItemsPosUnselected (1),
XmListReplaceItemsUnselected (1),
XmListReplacePositions (1), XmList (2).
226 Motif Reference Manual

Motif Functions and Macros XmListReplaceItemsPosUnselected

d

in
he

the
hat
place
w
ar
Name
XmListReplaceItemsPosUnselected – replace specified items in a list.

Synopsis

#include <Xm/List.h>

void XmListReplaceItemsPosUnselected (Widget widget,
XmString *new_items,
int item_count,
int position)

Inputs
widget Specifies the List widget.
new_items Specifies a list of the new items.
item_count Specifies the number of items that are to be replaced.
position Specifies the position at which to replace items.

Availability
Motif 1.2 and later.

Description
XmListReplaceItemsPosUnselected () replaces a consecutive number
of items in the list with items from thenew_items list. The first item that is
replaced is located at the specifiedpositionand each subsequent item is replace
by the corresponding item fromnew_items. A position value of 1 indicates the
first item, apositionvalue of 2 indicates the second item, and so on. Ifitem_count
is smaller than the number ofnew_items, only the firstitem_count items are
replaced. If the number of items betweenposition and the end of the list is less
thanitem_count, the routine replaces all of the items up through the last item
the list. A new item does not appear selected, even if it matches an item in t
XmNselectedItems list.

Usage
XmListReplaceItemsPosUnselected () is a convenience routine that
allows you to replace a contiguous sequence of items in a list. The routine
replaces items by modifying the array of compound strings specified through
XmNitems and XmNitemCount resources. If a new item duplicates an item t
is already selected, the new item does not appear as selected. In order to re
items with this routine, you have to create compound strings for all of the ne
items. The routine does not have to search for the items, so it avoids the line
searches that are used byXmListReplaceItemsUnselected ().
Motif Reference Manual 227

XmListReplaceItemsPosUnselected Motif Functions and Macros
See Also
XmListAddItem (1), XmListAddItemUnselected (1),
XmListReplaceItems (1), XmListReplaceItemsPos (1),
XmListReplaceItemsUnselected (1),
XmListReplacePositions (1), XmList (2).
228 Motif Reference Manual

Motif Functions and Macros XmListReplaceItemsUnselected

h

-

ing
-

new
 you
ses
Name
XmListReplaceItemsUnselected – replace specified items in a list.

Synopsis

#include <Xm/List.h>

void XmListReplaceItemsUnselected (Widget widget,
XmString *old_items,
int item_count,
XmString *new_items)

Inputs
widget Specifies the List widget.
old_items Specifies a list of the items that are to be replaced.
item_count Specifies the number of items that are to be replaced.
new_items Specifies a list of the new items.

Availability
Motif 1.2 and later.

Description
XmListReplaceItemsUnselected () replaces the first occurrence of eac
item in theold_itemslist with the corresponding item from thenew_itemslist. If
an item in theold_items list does not exist in the specified Listwidget, the corre-

sponding item innew_items1 is skipped. Ifitem_countis smaller than the number
of old_items or new_items, only the firstitem_count items are replaced. A new
item does not appear selected, even if it matches an item in the XmNselecte
dItems list.

Usage
XmListReplaceItemsUnselected () is a convenience routine that allows
you to replace particular items in a list. The routine replaces items by modify
the array of compound strings specified through the XmNitems and XmNitem
Count resources. If a new item duplicates an item that is already selected, the
item does not appear as selected. In order to replace items with this routine,
have to create compound strings for all of the old and new items. The routine u
a linear search to locate the items to be replaced.

See Also
XmListAddItem(1), XmListAddItemUnselected(1),
XmListReplaceItems(1), XmListReplaceItemsPos(1),
XmListReplaceItemsPosUnselected(1),
XmListReplacePositions(1), XmList(2).

1.Erroneously given asnew_list in 1st and 2nd editions.
Motif Reference Manual 229

XmListReplacePositions Motif Functions and Macros

s

 so
-

odi-

if the

ou
ot
y

Name
XmListReplacePositions – replace items at the specified positions in a list.

Synopsis

#include <Xm/List.h>

void XmListReplacePositions (Widgetwidget, int *position_list, XmString
* item_list, int item_count)

Inputs
widget Specifies the List widget.
position_list Specifies a list of positions at which to replace items.
item_list Specifies a list of the new items.
item_count Specifies the number of items that are to be replaced.

Availability
Motif 1.2 and later.

Description
XmListReplacePositions () replaces the items that appear at the position
specified inposition_listwith the corresponding items fromitem_list. A position
value of 1 indicates the first item, a value of 2 indicates the second item, and
on. If the list does not have the specified position, a warning message is dis
played. Ifitem_count is smaller than the number of positions inposition_list,
only the firstitem_count items are replaced. A new item appears selected if it
matches an item in the XmNselectedItems list.

Usage
XmListReplacePositions () is a convenience routine that allows you to
replace items at particular positions in a list. The routine replaces items by m
fying the array of compound strings specified through the XmNitems and
XmNitemCount resources. If a new item duplicates an item that is already
selected, the new item appears as selected. You should only use this routine
list supports multiple selections and you want to select the new items whose
duplicates are already selected. In order to replace items with this routine, y
have to create compound strings for all of the new items. The routine does n
have to search for the items, so it avoids the linear searches that are used b
XmListReplaceItems ().

See Also
XmListAddItem (1), XmListAddItemUnselected (1),
XmListReplaceItems (1), XmListReplaceItemsPos (1),
XmListReplaceItemsPosUnselected (1),
XmListReplaceItemsUnselected (1), XmList (2).
230 Motif Reference Manual

Motif Functions and Macros XmListSelectItem

ci-

ion

d

om-
o be
no
,

cur-
is

e

ble
Name
XmListSelectItem – select an item from a list.

Synopsis

#include <Xm/List.h>

void XmListSelectItem (Widgetwidget, XmStringitem, Booleannotify)

Inputs
widget Specifies the List widget.
item Specifies the item that is to be selected.
notify Specifies whether or not the selection callback is invoked.

Description
XmListSelectItem () highlights and selects the first occurrence of the spe
fied item in the list. If the XmNselectionPolicy resource of the list is
XmMULTIPLE_SELECT, the routine toggles the selection state ofitem. For any
other selection policy,XmListSelectItem () replaces the currently selected
item(s) withitem. The XmNselectedItems resource specifies the current select
of the list. If notify is True,XmListSelectItem () invokes the selection call-
back for the current selection policy.

Usage
XmListSelectItem () is a convenience routine that allows you to select an
item in a list. The routine selects the item by modifying the array of compoun
strings specified by the XmNselectedItems and XmNselectedItemCount
resources. In order to select an item with this routine, you have to create a c
pound string for the item. The routine uses a linear search to locate the item t
selected. XmListSelectItem() only allows you to select a single item; there are
routines for selecting multiple items. If you need to select more than one item
useXtSetValues () to set XmNselectedItems and XmNselectedItemCount.

Thenotify parameter indicates whether or not the selection callbacks for the
rent selection policy are invoked. You can avoid redundant code by setting th
parameter to True. If you are callingXmListSelectItem () from a selection
callback routine, you probably want to set the parameter to False to avoid th
possibility of an infinite loop. CallingXmListSelectItem () with notifyset to
True causes the callback routines to be invoked in a way that is indistinguisha
from a user-initiated selection action.

See Also
XmListDeselectAllItems (1), XmListDeselectItem (1),
XmListDeselectPos (1), XmListSelectPos (1),
XmListUpdateSelectedList (1), XmList (2).
Motif Reference Manual 231

XmListSelectPos Motif Functions and Macros

the
,
licy,

f
-

m
e
se-

 to
tine

ed by

cur-
is
ck

y of

ser-
Name
XmListSelectPos – select an item at the specified position from a list.

Synopsis

#include <Xm/List.h>

void XmListSelectPos (Widgetwidget, int position, Booleannotify)

Inputs
widget Specifies the List widget.
position Specifies the position of the item that is to be selected.
notify Specifies whether or not the selection callback is invoked.

Description
XmListSelectPos () highlights and selects the item at the specifiedposition
in the list. Apositionvalue of 1 indicates the first item, apositionvalue of 2 indi-
cates the second item, and so on. A value of 0 (zero) specifies the last item in
list. If the XmNselectionPolicy resource of the list is XmMULTIPLE_SELECT
the routine toggles the selection state of the item. For any other selection po
XmListSelectPos () replaces the currently selected item with the specified
item. The XmNselectedItems resource lists the current selection of the list. I
notify is True,XmListSelectPos () invokes the selection callback for the cur
rent selection policy.

Usage
XmListSelectPos () is a convenience routine that allows you to select an ite
at a particular position in a list. The routine selects the item by modifying th
array of compound strings specified through the XmNselectedItems and XmN
lectedItemCount resources. Since you are specifying the position of the item
be selected, you do not have to create a compound string for the item. The rou
does not have to search for the item, so it avoids the linear search that is us
XmListSelectItem (). XmListSelectPos () only allows you to select a
single item; there are no routines for selecting multiple items. If you need to
select more than one item, use XtSetValues() to set XmNselectedItems and
XmNselectedItemCount.

Thenotify parameter indicates whether or not the selection callbacks for the
rent selection policy are invoked. You can avoid redundant code by setting th
parameter to True. If you are calling XmListSelectPos() from a selection callba
routine, you probably want to set the parameter to False to avoid the possibilit
an infinite loop. CallingXmListSelectPos () with notify set to True causes
the callback routines to be invoked in a way that is indistinguishable from a u
initiated selection action.
232 Motif Reference Manual

Motif Functions and Macros XmListSelectPos
See Also
XmListDeselectAllItems (1), XmListDeselectItem (1),
XmListDeselectPos (1), XmListGetSelectedPos (1),
XmListPosSelected (1), XmListSelectItem (1), XmList (2).
Motif Reference Manual 233

XmListSetAddMode Motif Functions and Macros

ol-

e

ist.
ak-
elec-
 can
Name
XmListSetAddMode – set add mode in a list.

Synopsis

#include <Xm/List.h>

void XmListSetAddMode (Widgetwidget, Booleanmode)

Inputs
widget Specifies the List widget.
mode Specifies whether to set add mode on or off.

Description
XmListSetAddMode () sets the state of add mode when the XmNselectionP
icy is XmEXTENDED_SELECT. Ifmode is True, add mode is turned on; if
mode is False, add mode is turned off. When a List widget is in add mode, th
user can move the location cursor without disturbing the current selection.

Usage
XmListSetAddMode() provides a way to change the state of add mode in a l
The distinction between normal mode and add mode is only important for m
ing keyboard-based selections. In normal mode, the location cursor and the s
tion move together, while in add mode, the location cursor and the selection
be separate.

See Also
XmListGetKbdItemPos (1), XmListSetKbdItemPos (1), XmList (2).
234 Motif Reference Manual

Motif Functions and Macros XmListSetBottomItem

the
e

to
Name
XmListSetBottomItem – set the last visible item in a list.

Synopsis

#include <Xm/List.h>

void XmListSetBottomItem (Widgetwidget, XmStringitem)

Inputs
widget Specifies the List widget.
item Specifies the item that is made the last visible item.

Description
XmListSetBottomItem () scrolls the Listwidget so that the first occurrence
of the specifieditem appears as the last visible item in the list.

Usage
XmListSetBottomItem () provides a way to make sure that a particularitem
is visible in a list. The routine changes the viewable portion of the list so that
specifieditemis displayed at the bottom of the viewport. If there is more than on
occurrence of theitem in the list, the routine uses the first occurrence. In order
use this routine, you have to create a compound string for theitem. The routine
uses a linear search to locate theitem.

See Also
XmListSetBottomPos (1), XmListSetHorizPos (1),
XmListSetItem (1), XmListSetPos (1), XmList (2).
Motif Reference Manual 235

XmListSetBottomPos Motif Functions and Macros

m.

A

ic-
he

to
r the

in
Name
XmListSetBottomPos – set the last visible item in a list.

Synopsis

#include <Xm/List.h>

void XmListSetBottomPos (Widgetwidget, int position)

Inputs
widget Specifies the List widget.
position Specifies the position of the item that is made the last visible ite

Description
XmListSetBottomPos () scrolls the Listwidget so that the item at the speci-
fiedpositionappears as the last visible item in the list. Apositionvalue of 1 indi-
cates the first item, aposition value of 2 indicates the second item, and so on.
value of 0 (zero) specifies the last item in the list.

Usage
XmListSetBottomPos () provides a way to make sure that an item at a part
ular position is visible in a list. The routine changes the viewable portion of t
list so that the item at the specifiedposition is displayed at the bottom of the
viewport. Since you are specifying the position of the item, you do not have
create a compound string for the item. The routine does not have to search fo
item, so it avoids the linear search that is used byXmListSetBottomItem ().

Example
The following routine shows how to make sure that an item at a given position
a list is visible:

void MakePosVisible (Widget list_w, int item_no)
{

int top, visible;

XtVaGetValues (list_w, XmNtopItemPosition, &top, XmNvisibleItem-
Count, &visible, NULL);

if (item_no < top)
XmListSetPos (list_w, item_no);

else if (item_no >= top+visible)
XmListSetBottomPos (list_w, item_no);

}

See Also
XmListSetBottomItem (1), XmListSetHorizPos (1),
XmListSetItem (1), XmListSetPos (1), XmList (2).
236 Motif Reference Manual

Motif Functions and Macros XmListSetHorizPos

d

t
,

Name
XmListSetHorizPos – set the horizontal position of a list.

Synopsis

#include <Xm/List.h>

void XmListSetHorizPos (Widgetwidget, int position)

Inputs
widget Specifies the List widget.
position Specifies the horizontal position.

Description
XmListSetHorizPos () scrolls the list to the specified horizontalposition. If
XmNlistSizePolicy is set to XmCONSTANT or XmRESIZE_IF_POSSIBLE an
the horizontal scroll bar is visible,XmListSetHorizPos () sets the XmNvalue
resource of the horizontal scroll bar to the specifiedpositionand updates the visi-
ble area of the list.

Usage
When a list item is too long to fit horizontally inside the viewing area of a Lis
widget, the widget either expands horizontally or adds a horizontal scroll bar
depending on the value of the XmNlistSizePolicy resource. CallingXmListSe-
tHorizPos () is equivalent to the user moving the horizontal scroll bar to the
specified location.

See Also
XmListSetBottomItem (1), XmListSetBottomPos (1),
XmListSetItem (1), XmListSetPos (1), XmList (2).
Motif Reference Manual 237

XmListSetItem Motif Functions and Macros

fied
et-
 of
ou-
Name
XmListSetItem – set the first visible item in a list.

Synopsis

#include <Xm/List.h>

void XmListSetItem (Widgetwidget, XmStringitem)

Inputs
widget Specifies the List widget.
item Specifies the item that is made the first visible item.

Description
XmListSetItem () scrolls the Listwidget so that the first occurrence of the
specifieditem appears as the first visible item in the list.

Usage
XmListSetItem () provides a way to make sure that a particularitemis visible
in a list. The routine changes the viewable portion of the list so that the speci
itemis displayed at the top of the viewport. Using this routine is equivalent to s
ting the XmNtopItemPosition resource. If there is more than one occurrence
the item in the list, the routine uses the first occurrence. In order to use this r
tine, you have to create a compound string for theitem. The routine uses a linear
search to locate theitem.

See Also
XmListSetBottomItem (1), XmListSetBottomPos (1),
XmListSetHorizPos (1), XmListSetPos (1), XmList (2).
238 Motif Reference Manual

Motif Functions and Macros XmListSetKbdItemPos

ou-

s
ular
ves
Name
XmListSetKbdItemPos – set the position of the location cursor in a list.

Synopsis

#include <Xm/List.h>

Boolean XmListSetKbdItemPos (Widgetwidget, int position)

Inputs
widget Specifies the List widget.
position Specifies the position where the location cursor is set.

Returns
True on success or False if there is not item at position or the list is empty.

Availability
Motif 1.2 and later.

Description
XmListSetKbdItemPos () sets the location cursor at the specifiedposition. A
position value of 1 indicates the first item, aposition value of 2 indicates the sec-
ond item, and so on. A value of 0 (zero) specifies the last item in the list. The r
tine does not check the selection state of the item at the specified location.

Usage
XmListSetKbdItemPos () provides a way to change which item in a list ha
the keyboard focus. The routine is useful if you need to make sure that partic
item has the keyboard focus at a given time, such as when the list first recei
the keyboard focus.

See Also
XmListGetKbdItemPos (1), XmListSetAddMode (1), XmList (2).
Motif Reference Manual 239

XmListSetPos Motif Functions and Macros

.

0

ca-
at
g
ou
d
ids

in
Name
XmListSetPos – sets the first visible item in a list.

Synopsis

#include <Xm/List.h>

void XmListSetPos (Widgetwidget, int position)

Inputs
widget Specifies the List widget.
position Specifies the position of the item that is made the first visible item

Description
XmListSetPos () scrolls the List widget so that the item at the specifiedposi-
tion appears as the first visible item in the list. Apositionvalue of 1 indicates the
first item, apositionvalue of 2 indicates the second item, and so on. A value of
(zero) specifies the last item in the list.

Usage
XmListSetPos () provides a way to make sure that an item at a particular lo
tion is visible in a list. The routine changes the viewable portion of the list so th
the item at the specified position is displayed at the top of the viewport. Usin
this routine is equivalent to setting the XmNtopItemPosition resource. Since y
are specifying the position of the item, you do not have to create a compoun
string for the item. The routine does not have to search for the item, so it avo
the linear search that is used byXmListSetItem ().

Example
The following routine shows how to make sure that an item at a given position
a list is visible:

void MakePosVisible (Widget list_w, int item_no)
{

int top, visible;

XtVaGetValues (list_w, XmNtopItemPosition, &top, XmNvisibleItem-
Count, &visible, NULL);

if (item_no < top)
XmListSetPos (list_w, item_no);

else if (item_no >= top+visible)
XmListSetBottomPos (list_w, item_no);

}

See Also
XmListSetBottomItem(1), XmListSetBottomPos(1),
XmListSetHorizPos(1), XmListSetItem(1), XmList(2).
240 Motif Reference Manual

Motif Functions and Macros XmListUpdateSelectedList

rent
y the
-

cted
situ-
l

Name
XmListUpdateSelectedList – update the list of selected items in a list.

Synopsis

#include <Xm/List.h>

void XmListUpdateSelectedList (Widgetwidget)

Inputs
widget Specified the List widget.

Availability
Motif 1.2 and later.

Description
XmListUpdateSelectedList () updates the array of compound strings
specified through the XmNselectedItems resource. The routine frees the cur
selected array, and then traverses the array of compound strings specified b
XmNitems resource, adding each currently selected item to the XmNselecte
dItems list.

Usage
XmListUpdateSelectedList () provides a way to update the list of
selected items in a list. This routine is useful if the actual items that are sele
are not synchronized with the value of the XmNselectedItems resource. This
ation might arise if you are using internal list functions and modifying interna
data structures. If you are using the defined list routines, the situation should
never occur.

See Also
XmListDeselectAllItems (1), XmListDeselectItem (1),
XmListDeselectPos (1), XmListGetSelectedPos (1),
XmListPosSelected (1), XmListSelectItem (1),
XmListSelectPos (1), XmList (2).
Motif Reference Manual 241

XmListYToPos Motif Functions and Macros

a

em,
loca-

t is
the
.4

.

n.
on
Name
XmListYToPos – get the position of the item at the specified y-coordinate in
list.

Synopsis
#include <Xm/List.h>

int XmListYToPos (Widgetwidget, Positiony)

Inputs
widget Specifies the List widget.
y Specifies the y-coordinate.

Returns
The position of the item at the specified y-coordinate.

Availability
Motif 1.2 and later.

Description
XmListYToPos () retrieves the position of the item at the specifiedy-coordinate
in the list. They-coordinate is specified in the coordinate system of the list. A
returned value of 1 indicates the first item, a value of 2 indicates the second it
and so on. The value 0 (zero) specifies that there is no item at the specified
tion.

As of Motif 1.2, a return value of 0 (zero) indicates the first item, a value of 1
indicates the second item, and so on. In Motif 1.2.3 and earlier, the value tha
returned may not be a valid position in the list, so an application should check
value with respect to the value of XmNitemCount before using it. In Motif 1.2
and later, the returned position may not exceed the value of XmNitemCount

Usage
XmListYToPos () provides a way to translate a y-coordinate into a list positio
This routine is useful if you are processing events that report a pointer positi
and you need to convert the location of the event into an item position.

See Also
XmListPosToBounds (1), XmList (2).
242 Motif Reference Manual

Motif Functions and Macros XmMainWindowSep1

.
-
r

an
he

cond
Name
XmMainWindowSep1, XmMainWindowSep2, XmMainWindowSep3 – get the
widget ID of a MainWindow Separator.

Synopsis

#include <Xm/MainW.h>

Widget XmMainWindowSep1 (Widgetwidget)
Widget XmMainWindowSep2 (Widgetwidget)
Widget XmMainWindowSep3 (Widgetwidget)

Inputs
widget Specifies the MainWindow widget.

Returns
The widget ID of the particular MainWindow Separator.

Availability
In Motif 2.0 and later, these routines are marked as deprecated.

Description
XmMainWindowSep1() returns the widget ID of the MainWindow widget’s
first Separator, which is located directly below the MenuBar.
XmMainWindowSep2() returns the widget ID of the second Separator in the
Main Window, which is between the Command and ScrolledWindow widgets
XmMainWindowSep3() returns the widget ID of the MainWindow’s third Sep
arator, which is located just above the message window. The three Separato
widgets in a MainWindow are visible only when the XmNshowSeparator
resource is set to True.

Usage
XmMainWindowSep1(), XmMainWindowSep2(), and
XmMainWindowSep3() provide access to the three Separator widgets that c
be displayed by a MainWindow widget. With the widget IDs, you can change t
visual attributes of the individual Separators.

In Motif 2.0 and later, the functionXtNameToWidget () is the preferred
method of obtaining the MainWindow components. You should passwidget as
the first parameter, and "Separator1", "Separator2", or "Separator3" as the se
parameter to this procedure.

See Also
XmMainWindowSetAreas (1), XmMainWindow(2),
XmScrolledWindow (2).
Motif Reference Manual 243

XmMainWindowSetAreas Motif Functions and Macros

is

n-
ding
nd
he

;

enu-

es-
Name
XmMainWindowSetAreas – specify the children for a MainWindow.

Synopsis

#include <Xm/MainW.h>

void XmMainWindowSetAreas (Widgetwidget,
Widget menu_bar,
Widget command_window,
Widget horizontal_scrollbar,
Widget vertical_scrollbar,
Widget work_region)

Inputs
widget Specifies the MainWindow widget.
menu_bar Specifies the widget ID of the MenuBar.
command_window Specifies the widget ID of the command window.
horizontal_scrollbar Specifies the widget ID of the horizontal ScrollBar.
vertical_scrollbar Specifies the widget ID of the vertical ScrollBar.
work_region Specifies the widget ID of the work window.

Availability
In Motif 2.0 and later, the procedure is marked as deprecated.

Description
XmMainWindowSetAreas () sets up the standard regions of the MainWindow
widgetfor an application. The MainWindow must be created before the routine
called.XmMainWindowSetAreas () specifies the MenuBar, the work window,
the command window, and the horizontal and vertical ScrollBars for the Mai
Window. If an application does not have one of these regions, the correspon
argument can be specified as NULL. Each region may have child widgets, a
this routine determines which of those children will be actively managed by t
MainWindow.

Usage
Each of the MainWindow regions is associated with a MainWindow resource
XmMainWindowSetAreas () sets the associated resources. The associated
resources that correspond to the last five arguments to the routine are XmNm
Bar, XmNcommand, XmNhorizontalScrollBar, XmNverticalScrollBar, and
XmNworkWindow.XmMainWindowSetAreas () does not provide a way to
set up the message area; this region must be set up by specifying the XmNm
sageWindow resource.
244 Motif Reference Manual

Motif Functions and Macros XmMainWindowSetAreas

ain-
en
set,
ori-
not
e
r

n-
If an application does not callXmMainWindowSetAreas (), the widget may
still set some of the standard regions. When a MenuBar child is added to a M
Window, if XmNmenuBar has not been set, it is set to the MenuBar child. Wh
a Command child is added to a MainWindow, if XmNcommand has not been
it is set to the Command child. If ScrollBars are added as children, the XmNh
zontalScrollBar and XmNverticalScrollBar resources may be set if they have
already been specified. Any child that is not one of these types is used for th
XmNworkWindow. If you want to be certain about which widgets are used fo
the different regions, it is wise to callXmMainWindowSetAreas () explicitly.

In Motif 2.0 and later,XmMainWindowSetAreas (), is deprecated. The pro-
grammer should useXtSetValues () in order to specify the XmNcommand-
Window, XmNmenuBar, XmNworkWindow, XmNhorizontalScrollBar, and
XmNverticalScrollBar resources of the MainWindow.XmMainWindowSe-
tAreas () does not handle the XmNmessageWindow resource in any case.

Example
The following code fragment shows how to set some of the regions of a Mai
Window:

Widget top, main_w, menubar, command_w, text_w, scrolled_text_w;
Arg args[4];

main_w = XtVaCreateManagedWidget("main_w", xmMainWindowWidget-
Class, top, NULL);
menubar = XmCreateMenuBar (main_w, "menubar", NULL, 0);
XtManageChild (menubar);

XtSetArg (args[0], XmNrows, 24);
XtSetArg (args[1], XmNcolumns, 80);
XtSetArg (args[2], XmNeditable, False);
XtSetArg (args[3], XmNeditMode, XmMULTI_LINE_EDIT);
text_w = XmCreateScrolledText (main_w, "text_w", args, 4);
XtManageChild (text_w);

scrolled_text_w = XtParent (text_w);
command_w = XmCreateText (main_w, "command_w", (Arg *) 0, 0);
XtManageChild (command_w);

#if (XmVERSION > 1)
XtVaSetValues (main_w,

XmNmenuBar, menubar,
XmNcommandWindow, command_w,
XmNhorizontalScrollBar, NULL,
XmNverticalScrollBar, NULL,
Motif Reference Manual 245

XmMainWindowSetAreas Motif Functions and Macros
XmNworkWindow, scrolled_text_w,
0);

#else /* XmVERSION > 1 */
XmMainWindowSetAreas (main_w, menubar, command_w, NULL, NULL,
scrolled_text_w);
#endif /* XmVERSION > 1 */

See Also
XmMainWindowSep(1), XmMainWindow(2), XmScrolledWindow (2).
246 Motif Reference Manual

Motif Functions and Macros XmMapSegmentEncoding

nt

t or

d-

cale.

 for

text

uld
Name
XmMapSegmentEncoding – get the compound text encoding format for a fo
list element tag.

Synopsis

char * XmMapSegmentEncoding (char *fontlist_tag)

Inputs
fontlist_tag Specifies the compound string font list element tag.

Returns
A character string that contains a copy of the compound text encoding forma
NULL if the font list element tag is not found in the registry.

Availability
Motif 1.2 and later.

Description
XmMapSegmentEncoding () retrieves the compound text encoding format
associated with the specifiedfontlist_tag. The toolkit stores the mappings
between compound text encodings and font list elements tags in a registry.
XmMapSegmentEncoding () searches the registry for a compound text enco
ing format associated with the specifiedfontlist_tagand returns a copy of the for-
mat. If fontlist_tag is not in the registry, the routine returns NULL.
XmMapSegmentEncoding () allocates storage for the returned character
string; the application is responsible for freeing the storage using XtFree().

Usage
Compound text is an encoding that is designed to represent text from any lo
Compound text strings identify their encoding using embedded escape
sequences. The compound text representation was standardized for X11R4
use as a text interchange format for interclient communication.

XmCvtXmStringToCT () converts a compound string into compound text by
using the font list tag of each compound string segment to select a compound
format from the registry for the segment.XmMapSegmentEncoding () pro-
vides a way for an application to determine the compound text format that wo
be used for a particular font list element tag.

See Also
XmCvtXmStringToCT (1), XmRegisterSegmentEncoding (1).
Motif Reference Manual 247

XmMenuPosition Motif Functions and Macros

nag-

the

he
e
he

nu.

h)
Name
XmMenuPosition – position a popup menu.

Synopsis

#include <Xm/RowColumn.h>

void XmMenuPosition (Widgetmenu, XButtonPressedEvent *event)

Inputs
menu Specifies the PopupMenu.
event Specifies the event that was passed to the action procedure ma
ing the PopupMenu.

Description
XmMenuPosition () positions a popup menu, using the values of the x_root
and y_root fields from the specifiedevent. An application must call this routine
before managing the popup menu, except when the application is positioning
menu itself.

Usage
Theevent parameter forXmMenuPosition () is defined to be of type XButton-
PressedEvent *; using another type of event might lead to toolkit problems. T
x_root and y_root fields in theeventstructure are used to position the menu at th
location of the mouse button press. You can modify these fields to position t
menu at another location.

In Motif 2.0 and later, a menu whose XmNpopupEnabled resource is
XmPOPUP_AUTOMATIC or XmPOPUP_AUTOMATIC_RECURSIVE has an
installed event handler which callsXmMenuPosition () directly without the
need for an application to intervene in posting the menu.

Example
The following routine shows the use of an event handler to post a popup me

void PostIt (Widget w, XtPointer client_data, XEvent *event, Boolean *dispatc
{

Widget popup = (Widget) client_data;
XButtonPressedEvent *bevent = (XButtonPressedEvent *) event;

if ((bevent->type != ButtonPress) && (bevent->button != 3))
return;

XmMenuPosition (popup, bevent);
XtManageChild (popup);

}

248 Motif Reference Manual

Motif Functions and Macros XmMenuPosition

ter)
...
extern Widget some_widget; /* Where the menu is posted */
extern Widget my_menu; /* The menu to post */

XtAddEventHandler(some_widget, ButtonPressMask, False, PostIt, (XtPoin
my_menu) ;

See Also
XmRowColumn(2), XmPopupMenu(2).
Motif Reference Manual 249

XmMessageBoxGetChild Motif Functions and Macros

val-

a-

ge

iffer-

re-

g all

:

Name
XmMessageBoxGetChild – get the specified child of a MessageBox widget.

Synopsis

#include <Xm/MessageB.h>

Widget XmMessageBoxGetChild (Widgetwidget, unsigned charchild)

Inputs
widget Specifies the MessageBox widget.
child Specifies the child of the MessageBox widget. Pass one of the
ues from the list below.

Returns
The widget ID of the specified child of the MessageBox.

Availability
As of Motif 2.0, the toolkit abstract child fetch routines are marked for deprec
tion. You should give preference toXtNameToWidget (), except when fetching
the MessageBox default button.

Description
XmMessageBoxGetChild () returns the widget ID of the specifiedchild of the
MessageBoxwidget.

Usage
Thechild values XmDIALOG_CANCEL_BUTTON,
XmDIALOG_HELP_BUTTON, and XmDIALOG_OK_BUTTON specify the
action buttons in thewidget. A child value of
XmDIALOG_DEFAULT_BUTTON specifies the current default button. The
value XmDIALOG_SYMBOL_LABEL specifies the label used to display the
message symbol, while XmDIALOG_MESSAGE_LABEL specifies the messa
label. XmDIALOG_SEPARATOR specifies the separator that is positioned
between the message and the action buttons. For more information on the d
ent children of the MessageBox, see the manual page in Section 2,Motif and Xt
Widget Classes.

Widget Hierarchy

As of Motif 2.0, most Motif composite child fetch routines are marked as dep
cated. However, since it is not possible to fetch the
XmDIALOG_DEFAULT_BUTTON child using a public interface except
throughXmMessageBoxGetChild (), the routine should not be considered
truly deprecated. For consistency with the preferred new style, when fetchin
other child values, consider giving preference to the Intrinsics routineXtNam-
eToWidget (), passing one of the following names as the second parameter
250 Motif Reference Manual

Motif Functions and Macros XmMessageBoxGetChild
“Cancel” (XmDIALOG_CANCEL_BUTTON)
“OK” (XmDIALOG_OK_BUTTON)
“Separator” (XmDIALOG_SEPARATOR)
“Help” (XmDIALOG_HELP_BUTTON)
“Symbol” (XmDIALOG_SYMBOL_LABEL)
“Message” (XmDIALOG_MESSAGE_LABEL)

Structures
The possible values for child are:

XmDIALOG_CANCEL_BUTTON XmDIALOG_OK_BUTTON
XmDIALOG_DEFAULT_BUTTON XmDIALOG_SEPARATOR
XmDIALOG_HELP_BUTTON
XmDIALOG_SYMBOL_LABEL
XmDIALOG_MESSAGE_LABEL

See Also
XmBulletinBoard (2), XmBulletinBoardDialog(2),XmErrorDialog (2),
XmInformationDialog (2), XmManager(2), XmMessageBox(2),
XmMessageDialog (2), XmQuestionDialog (2),
XmTemplateDialog (2), XmWarningDialog (2),
XmWorkingDialog (2).
Motif Reference Manual 251

XmNotebookGetPageInfo Motif Functions and Macros

is

h

 on

t-
ue,

e
e

Name
XmNotebookGetPageInfo – return information about a Notebook page.

Synopsis

#include <Xm/Notebook.h>

XmNotebookPageStatus XmNotebookGetPageInfo (Widget
widget,

int
page_number,

XmNotebookPageInfo
*page_info)

Inputs
widget Specifies the Notebook widget.
page_number Specifies a logical page number.

Outputs
page_info Returns a structure into which the requested page information
placed.

Returns
The status of the search for the requested information.

Availability
Motif 2.0 and later.

Description
XmNotebookGetPageInfo () returns information associated with a logical
page of the Notebook.

The Notebook searches through the list of its children, looking for those whic
are associated with the logical page number specified bypage_number. The
Notebook principally searches for page children, but collects data in passing
any status area child with a matching logical number, or major and minor tab
children whose logical page number does not exceedpage_number. The function
returns within thepage_info structure the data collected for each of the child
widget types.

If the requestedpage_numberis greater than the value of the Notebook XmNlas
PageNumber resource, or less than the Notebook XmNfirstPageNumber val
the function returns XmPAGE_INVALID.

Otherwise, if exactly one matching page child is found, the function returns
XmPAGE_FOUND. If more than one matching page child is found, the routin
returns XmPAGE_DUPLICATED. For no matching page child, the return valu
is XmPAGE_EMPTY.
252 Motif Reference Manual

Motif Functions and Macros XmNotebookGetPageInfo

e
 the

,

k

al

and
ich
Usage

XmNotebookGetPageInfo performs a linear search through the children of th
Notebook for widgets whose XmNpageNumber constraint resource matches
requestedpage_number. If a matching child is found with the XmNnotebook-
ChildType resource set to XmPAGE, the widget ID is stored within the
page_widget element of thepage_info structure. If a matching child is of type
XmSTATUS_AREA, the widget ID is placed in thestatus_area_widgetelement.
If during the search a child widget is found which is of type XmMAJOR_TAB
and the logical page number of the child does not exceedpage_number, the
widget ID is stored within themajor_tab_widget element. Again, if a child
widget is found of type XmMINOR_TAB, and the logical page number of the
child does not exceedpage_number, the widget ID is stored within the
minor_tab_widget element of page_info.

Thepage_widget, status_area_widget, major_tab_widget, andminor_tab_widget
elements of thepage_info structure are set during the search as each Noteboo
child is compared, even if no XmPAGE child is found, or ifpage_number
exceeds the Notebook first and last page resources. An element of thepage_info
structure can be NULL if no child of the associated type is found with a logic
page number which meets the matching criteria.

The Notebook automatically sorts children into ascending logical page order,
the search is terminated as soon as any child has a logical page number wh
exceeds the requestedpage_number.

Structures
XmNotebookPageInfo is defined as follows:

typedef struct {
int page_number; /*the requested page number */
Widget page_widget; /*any matching page widget */
Widget status_area_widget; /*any matching status area widget*/
Widget major_tab_widget; /*the nearest major tab widget*/
Widget minor_tab_widget; /*the nearest minor tab widget*/

} XmNotebookPageInfo;

A XmNotebookPageStatus can have one of the following values:

XmPAGE_FOUND XmPAGE_INVALID
XmPAGE_EMPTY XmPAGE_DUPLICATED

See Also
XmNotebook (2).
Motif Reference Manual 253

XmObjectAtPoint Motif Functions and Macros

n-
oci-

y

on-

r
rdi-

he

e

his
Name
XmObjectAtPoint – determine the child nearest to a point.

Synopsis

#include <Xm/Xm.h>

Widget XmObjectAtPoint (Widgetwidget, Positionx, Positiony)

Inputs
widget Specifies a composite widget.
x Specifies an X coordinate relative to the widget left side.
y Specifies an Y coordinate relative to the widget top side.

Returns
The widget most closely associated with the coordinate x, y.

Availability
Motif 2.0 or later.

Description
XmObjectAtPoint () searches the list of children ofwidget, and returns the
widget ID of the child associated with thex, y coordinate. x andy are interpreted
as pixel values, relative to the top left of the Manager widget.

Usage
XmObjectAtPoint () calls the object_at_point method associated with a Ma
ager widget, in order to determine the child of the Manager most closely ass
ated with the coordinate specified byx andy. Each widget class may override the
object_at_point method inherited from Manager, to redefine what is meant b
"associated".

The default Manager class method returns the last managed gadget which c
tains the coordinate.

The DrawingArea overrides the default method, and performs a simple linea
search for the first managed child, widget or gadget, which contains the coo
nate.

The Container overrides the object_at_point method, by searching through t
list of logical child nodes, using any XmQTpointIn trait held by each child to
determine a logical match with the coordinate. If no XmQTpointIn is held by th
child, the Container simply checks whether the coordinate is within the child
dimensions. The IconGadget holds the XmQTpointIn trait, although neither t
fact nor the trait itself is otherwise documented.

See Also
XmContainer (2), XmDrawingArea (2), XmGadget(2),
XmIconGadget (2), XmManager(2).
254 Motif Reference Manual

Motif Functions and Macros XmOptionButtonGadget

But-
Label-

e
pec-
Name
XmOptionButtonGadget – get the CascadeButtonGadget in an option menu

Synopsis

#include <Xm/RowColumn.h>

Widget XmOptionButtonGadget (Widgetoption_menu)

Inputs
option_menu Specifies the option menu.

Returns
The widget ID of the internal CascadeButtonGadget.

Description
XmOptionButtonGadget () returns the widget ID for the internal Cascade-
ButtonGadget that is created when the specifiedoption_menu widget is created.
An option menu is a RowColumn widget containing two gadgets: a Cascade
tonGadget that displays the current selection and posts the submenu and a
Gadget that displays the XmNlabelString resource.

Usage
XmOptionButtonGadget () provides a way for an application to access the
internal CascadeButtonGadget that is part of an option menu. Once you hav
retrieved the gadget, you can alter its appearance. In Motif 1.2, you can also s
ify resources for the gadget using the widget name OptionButton.

See Also
XmOptionLabelGadget (1), XmCascadeButtonGadget (2),
XmLabelGadget (2), XmOptionMenu (2), XmRowColumn(2).
Motif Reference Manual 255

XmOptionLabelGadget Motif Functions and Macros

t

is-
ys

the
rces
Name
XmOptionLabelGadget – get the LabelGadget in an option menu.

Synopsis

#include <Xm/RowColumn.h>

Widget XmOptionLabelGadget (Widgetoption_menu)

Inputs
option_menu Specifies the option menu.

Description
XmOptionLabelGadget () returns the widget ID for the internal LabelGadge
that is created when the specifiedoption_menu widget is created. An option
menu is a RowColumn widget containing two gadgets: a LabelGadget that d
plays the XmNlabelString resource, and a CascadeButtonGadget that displa
the current selection and posts the submenu.

Usage
XmOptionLabelGadget () provides a way for an application to access the
internal LabelGadget that is part of an option menu. Once you have retrieved
gadget, you can alter its appearance. In Motif 1.2, you can also specify resou
for the gadget using the widget name OptionLabel.

See Also
XmOptionButtonGadget (1), XmCascadeButtonGadget (2),
XmLabelGadget (2), XmOptionMenu (2), XmRowColumn(2).
256 Motif Reference Manual

Motif Functions and Macros XmParseMappingCreate

irs.

bsti-

 is

 can

llo-

ple
Name
XmParseMappingCreate – create a parse mapping.

Synopsis

XmParseMapping XmParseMappingCreate (Arg *arg_list, Cardinalarg_count)

Inputs
arg_list Specifies an argument list, consisting of resource name/value pa
arg_count Specifies the number of arguments in arg_list.

Returns
An allocated parse mapping.

Availability
Motif 2.0 and later.

Description
XmParseMappingCreate () creates a parse mapping, which is an entry in a
parse table. A parse mapping consists minimally of a match pattern, and a su
tution pattern or procedure, which can be used by string parsing functions in
order to compare against and subsequently transform text. A parse mapping
created through a resource style argument list, wherearg_list is an array of
resource name/value pairs, andarg_count is the number of such pairs.

Usage
A parse table is an array of parse mappings.XmParseMappingCreate () cre-
ates a parse mapping using a resource style parameter list. The parse table
subsequently be passed toXmStringParseText () in order to filter or modify
an input string.

XmParseMappingCreate () allocates storage associated with the returned
parse mapping object. It is the responsibility of the programmer to free the a
cated memory by a call toXmParseMappingFree () at the appropriate
moment.

Example
The following code fragment creates a parse mapping which performs a sim
swap of occurrences of two characters within an input string:

char *swapover (char *input, /* input string */
char *a, /* only first character in array used */
char *b) /* only first character in array used */

{
XmString tmp;
XmParseMapping parse_mapping;
Motif Reference Manual 257

XmParseMappingCreate Motif Functions and Macros
XmParseTable parse_table = (XmParseTable) XtCalloc (2, sizeof
(XmParseMapping));
Cardinal parse_table_index = 0;
Arg argv[4];
Cardinal argc = 0;
char *output = (char *) 0;

/* create a XmParseMapping object to swap *a with *b */

argc = 0;
tmp = XmStringCreateLocalized (a);
XtSetArg (argv[argc], XmNincludeStatus, XmINSERT);
argc++;
XtSetArg (argv[argc], XmNsubstitute, tmp);
argc++;
XtSetArg (argv[argc], XmNpattern, b);
argc++;
XtSetArg (argv[argc], XmNpatternType, XmCHARSET_TEXT);
argc++;
parse_mapping = XmParseMappingCreate (argv, argc);
parse_table[parse_table_index++] = parse_mapping;
XmStringFree (tmp);

/* create a XmParseMapping object to swap *b with *a */
argc = 0;
tmp = XmStringCreateLocalized (b);
XtSetArg (argv[argc], XmNincludeStatus, XmINSERT);
argc++;
XtSetArg (argv[argc], XmNsubstitute, tmp);
argc++;
XtSetArg (argv[argc], XmNpattern, a);
argc++;
XtSetArg (argv[argc], XmNpatternType, XmCHARSET_TEXT);
argc++;
parse_mapping = XmParseMappingCreate (argv, argc);
parse_table[parse_table_index++] = parse_mapping;
XmStringFree (tmp);

/* substitute using the XmParseMapping. */

tmp = XmStringParseText ((XtPointer) input, NULL, NULL,
XmCHARSET_TEXT,
parse_table, parse_table_index, NULL);

XmParseTableFree (parse_table, parse_table_index);
258 Motif Reference Manual

Motif Functions and Macros XmParseMappingCreate
/* convert XmString to String */
if (tmp != (XmString) 0) {

output = (char *) XmStringUnparse (tmp, NULL,
XmCHARSET_TEXT,
XmCHARSET_TEXT, NULL,

0, XmOUTPUT_ALL);1

XmStringFree (tmp);
}

return output;
}

See Also
XmParseMappingFree(1), XmParseMappingGetValues(1),
XmParseMappingSetValues(1), XmParseTableFree(1),
XmStringParseText(1), XmStringUnparse(1),
XmParseMapping(2).

1.The code sample in the 2nd edition usedXmStringGetLtoR () to convert the compound string.Xm-
StringGetLtoR () is deprecated as of Motif 2.0.
Motif Reference Manual 259

XmParseMappingFree Motif Functions and Macros

ap-

ble,

he

d by
Name
XmParseMappingFree – free the memory used by a parse mapping.

Synopsis
void XmParseMappingFree (XmParseMappingparse_mapping)

Inputs
parse_mapping Specifies a parse mapping.

Availability
Motif 2.0 and later.

Description
XmParseMappingFree () deallocates storage used by the specified parse m
ping object.

Usage
The XmParseMapping type is opaque, and represents an entry in a parse ta
which can be used for transforming text. A parse mapping is created by
XmParseMappingCreate (), which allocates storage for the object repre-
sented by the type, and it is the responsibility of the programmer to reclaim t
memory when the parse mapping is no longer required.

It is important to callXmParseMappingFree () rather thanXtFree () upon
redundant parse mappings, otherwise compound strings internally reference
the object are not deallocated.

See Also
XmParseMappingCreate (1), XmParseMappingGetValues (1),
XmParseMappingSetValues (1), XmParseTableFree (1),
XmStringParseText (1), XmParseMapping (2).
260 Motif Reference Manual

Motif Functions and Macros XmParseMappingGetValues

.

he
lues

ce
e

re
r to

;

Name
XmParseMappingGetValues – fetch resources from a parse mapping object

Synopsis

void XmParseMappingGetValues (XmParseMappingparse_mapping,
Arg *arg_list,
Cardinal arg_count)

Inputs
parse_mapping Specifies a parse mapping object.
arg_count Specifies the number of arguments in the list arg_list.

Outputs
arg_list Specifies the argument list of name/value pairs that contain t

resource names and addresses into which the resource va
are to be stored.

Availability
Motif 2.0 and later.

Description
XmParseMappingGetValues () fetches selected attributes from
parse_mapping. The set of attributes retrieved is specified through the resour
list arg_list, each element of the list being a structure containing a name/valu
pair. The number of elements within the list is given byarg_count.

Usage
If the XmNsubstitute attribute of the parse mapping is retrieved, the procedu
returns a copy of the internal value. It is the responsibility of the programme
recover the allocated space at a suitable point by callingXmStringFree ().

Example
The following code illustrates fetching the values from an XmParseMapping:

XtPointer pattern;
XmTextType pattern_type;
XmString substitute;
XmParseProc parse_proc;
XtPointer client_data;
XmIncludeStatus include_status;
Arg argv[6];
Cardinal argc = 0;

/* construct a resource-style argument list for all XmParseMapping values */
XtSetArg (argv[argc], XmNpattern, &pattern); argc++;
XtSetArg (argv[argc], XmNpatternType, &pattern_type); argc++
Motif Reference Manual 261

XmParseMappingGetValues Motif Functions and Macros

;

;

 */
XtSetArg (argv[argc], XmNsubstitute, &substitute); argc++;
XtSetArg (argv[argc], XmNinvokeParseProc, &parse_proc); argc++
XtSetArg (argv[argc], XmNclientData, &client_data); argc++;
XtSetArg (argv[argc], XmNincludeStatus, &include_status); argc++

/* fetch the values. parse_mapping here is an unspecified XmParseMapping
XmParseMappingGetValues (parse_mapping, argv, argc);
...
/* XmParseMappingGetValues returns a copy of the XmNsubstitute value */
/* which must be freed when no longer required by the application */
XmStringFree (substitute);

See Also
XmParseMappingCreate (1), XmParseMappingFree (1),
XmParseMappingSetValues (1), XmParseTableFree (1),
XmParseMapping (2).
262 Motif Reference Manual

Motif Functions and Macros XmParseMappingSetValues

to

e

r-
er

ing:
Name
XmParseMappingSetValues – sets resources for a parse mapping object.

Synopsis

void XmParseMappingSetValues (XmParseMappingparse_mapping,
Arg *arg_list,
Cardinal arg_count)

Inputs
parse_mapping Specifies a parse mapping object.
arg_list Specifies the list of name/value pairs containing resources

be modified.
arg_count Specifies the number of arguments in the listarg_list.

Availability
Motif 2.0 and later.

Description
XmParseMappingSetValues () sets selected attributes within
parse_mapping. The set of attributes which is modified is specified through th
resource listarg_list, each element of the list being a structure containing a
name/value pair. The number of elements within the list is given byarg_count.

Usage
If the XmNsubstitute attribute of the parse mapping is set, the procedure inte
nally takes a copy of the supplied value. It is the responsibility of the programm
to recover the allocated space at a suitable point by callingXmStringFree ().

Example
The following skeleton code illustrates changing the values of a parse mapp

XmIncludeStatus map_tab (XtPointer *in_out,
XtPointer text_end, /* unused

*/
XmTextType type, /* unused

*/
XmStringTag tag, /* unused

*/
XmParseMapping entry, /* unused

*/
int pattern_length, /* unused

*/
XmString *str_out,
Motif Reference Manual 263

XmParseMappingSetValues Motif Functions and Macros

,

XtPointer call_data) /* unused
*/
{

/* Insert an XmString Tab component into the output stream */
*str_out = XmStringComponentCreate (XmSTRING_COMPONENT_TAB
0, NULL);
*in_out = (*in_out + 1);

return XmINSERT;

}

/* change a parse mapping to invoke the above parse procedure */
void set_parse_tab_mapping (XmParseMapping parse_mapping)
{

Arg argv[4];
Cardinal argc = 0;

/* construct resource-style argument list for XmParseMapping values */
XtSetArg (argv[argc], XmNpattern, "\t");
argc++;
XtSetArg (argv[argc], XmNpatternType, XmCHARSET_TEXT);
argc++;
XtSetArg (argv[argc], XmNincludeStatus, XmINVOKE);
argc++;
XtSetArg (argv[argc], XmNinvokeParseProc, map_tab);
argc++;

/* change the values */
XmParseMappingSetValues (parse_mapping, argv, argc);

}

See Also
XmParseMappingCreate (1), XmParseMappingFree (1),
XmParseMappingGetValues (1), XmParseTableFree (1),
XmParseMapping (2),
264 Motif Reference Manual

Motif Functions and Macros XmParseTableFree

ents

g is

ble

con-
rse
arse
Name
XmParseTableFree – free the memory used by a parse table.

Synopsis

void XmParseTableFree (XmParseTableparse_table, Cardinalparse_count)

Inputs
parse_table Specifies a parse table.
parse_count Specifies the number of entries in the parse table.

Availability
Motif 2.0 and later.

Description
XmParseTableFree () deallocates storage used by the specifiedparse_table.
In addition, the function deallocates storage used by any parse mapping elem
of the table.parse_count indicates the number of mapping elements within the
table.

Usage
A parse table is an array of XmParseMapping objects. The XmParseMappin
an opaque type, which is used when transforming text. Each parse mapping
object allocates memory in addition to any memory allocated by the parse ta
array. It is important to callXmParseTableFree () rather thanXtFree ()
when deallocating storage associated with a parse table, otherwise objects
stituent within the array, and compound strings internally referenced by the pa
mapping objects, are not deallocated. The function should be called when a p
table is no longer needed.

Example
/* Allocate a parse table */
XmParseTable parse_table = (XmParseTable) XtCalloc (2, sizeof
(XmParseMapping));
Cardinal parse_table_index = 0;
XmParseMapping parse_mapping;
Arg argv[MAX_ARGS];
Cardinal argc = 0;

/* Create a XmParseMapping object */
argc = 0;
...
parse_mapping = XmParseMappingCreate (argv, argc);

/* Insert into parse table */
parse_table[parse_table_index++] = parse_mapping;
Motif Reference Manual 265

XmParseTableFree Motif Functions and Macros
/* Create another XmParseMapping object */
argc = 0;
...
parse_mapping = XmParseMappingCreate (argv, argc);

/* Insert into parse table */
parse_table[parse_table_index++] = parse_mapping;

/* Use the XmParseTable. */
tmp = XmStringParseText ((XtPointer) input, NULL, NULL,

XmCHARSET_TEXT, parse_table,
parse_table_index, NULL);

/* Free the parse table: this also frees the parse mappings */
XmParseTableFree (parse_table, parse_table_index);

See Also
XmParseMappingCreate (1), XmParseMappingFree (1),
XmParseMappingGetValues (1), XmParseMappingSetValues (1),
XmParseMapping (2).
266 Motif Reference Manual

Motif Functions and Macros XmPrintPopupPDM

in

or
h

y

The

een

o
 ini-
Name
XmPrintPopupPDM – notify the Print Display Manager.

Synopsis

#include <Xm/Print.h>

XtEnum XmPrintPopupPDM (Widgetprint_shell, Widgetvideo_shell)

Inputs
print_shell Specifies a PrintShell widget.
video_shell Specifies the widget on whose behalf the PDM dialog is
required.

Returns
Returns XmPDM_NOTIFY_SUCCESS if the PDM was notified,
XmPDM_NOTIFY_FAIL otherwise.

Availability
Motif 2.1 and later.

Note that not all operating system vendors incorporate the XmPrintShell with

the native Motif toolkit.1

Description
XmPrintPopupPDM () sends a notification to start a Print Display Manager f
the application. The notification is issued to either the display associated wit
print_shell, or the display ofvideo_shell, depending upon the value of the envi-
ronment variable XPDMDISPLAY. XPDMDISPLAY can only be set to "print"
or "video". If the value is "print", the notification is sent to the display of
print_shell, and similarly the value "video" sends the notification to the displa
of video_shell. If the notification could be sent, the function returns
XmPDM_NOTIFY_SUCCESS, otherwise the return value is
XmPDM_NOTIFY_FAIL.

Usage
XmPrintPopupPDM () is a convenience function which issues a notification
through the X selection mechanisms in order to start a Print Dialog Manager.
notification is issued asynchronously: the return value
XmPDM_NOTIFY_SUCCESS indicates that the message has successfully b
issued, not that any PDM is now initialized. In order to track the status of the
PDM, the programmer registers an XmNpdmNotificationCallback with the
widgetprint_shell, which must be an instance of the PrintShell widget class. T
ensure that the contents of the video_shell is not modified whilst the PDM is

1.Sun Solaris being a case in point.
Motif Reference Manual 267

XmPrintPopupPDM Motif Functions and Macros

is
et
tializing, XmPrintPopupPDM () creates an input-only window over the top of
video_shell, and the window is only removed when the PDM indicates that it
present, or if the selection XmIPDM_START times out. The timeout period is s
at two minutes.

See Also
XmPrintSetup (1), XmPrintToFile (1), XmRedisplayWidget (1),
XmPrintShell (2).
268 Motif Reference Manual

Motif Functions and Macros XmPrintSetup

es
es

pli-
from
 of
Name
XmPrintSetup – create a Print Shell widget.

Synopsis

#include <Xm/Print.h>

Widget XmPrintSetup (Widget video_widget,
Screen *print_screen,
String name
ArgList arg_list,
Cardinal arg_count)

Inputs
video_widget Specifies a widget from which video application data is

fetched.
print_screen Specifies the screen on which the PrintShell is created.
name Specifies the name of the created PrintShell.
arg_list Specifies an argument list of name/value pairs that contain

resources for the PrintShell.
arg_count Specifies the number of arguments in the list arg_list.

Returns
The created PrintShell, or NULL if no ApplicationShell can be found from
video_widget,

Availability
Motif 2.1 and later.

Note that not all operating system vendors incorporate the PrintShell in their

native toolkit.1

Description
XmPrintSetup () creates a PrintShell widget with the givenname on the
screenprint_screen. The new PrintShell is returned to the application. Resourc
which configure the new print shell are supplied through an array of structur
which contain name/value pairs. The array of resources isarg_list, and the
number of items in the array isarg_count.

Usage
XmPrintSetup () creates a new ApplicationShell on the screen specified by
print_screen, and thereafter creates a PrintShell as a popup child. The new Ap
cationShell is created with the same name and class as the ApplicationShell
whichvideo_widget is descended. The XmNmappedWhenManaged resource

1.For example, Sun Solaris includes the headers, but does not compile the widget into the Motif library.
Motif Reference Manual 269

XmPrintSetup Motif Functions and Macros

n of
ll is
the PrintShell is set to False under the assumption that subsequent notificatio
the start of a job or page is the correct time to map the widget. The print she
finally realized, and returned.

See Also
XmPrintPopupPDM (1), XmPrintToFile (1), XmRedisplayWidget (1),
XmPrintShell (2).
270 Motif Reference Manual

Motif Functions and Macros XmPrintToFile

heir

e

n of

d

and

con-

fter

.

Name
XmPrintToFile – save X Print Server data to file.

Synopsis

#include <Xm/Print.h>

XtEnum XmPrintToFile (Display *display,
String file_name,
XPFinishProc finish_proc,
XPointer client_data)

Inputs
display Specifies the print connection to the X server.
file_name Specifies the name of the file to contain the print output.
finish_proc Specifies a procedure called when printing is finished.
client_data Specifies application data to be passed to finish_proc.

Returns
True if printing can be initiated, otherwise False.

Availability
Motif 2.1 and later.

Note that not all operating system vendors incorporate the XmPrintShell in t

native toolkits.1

Description
XmPrintToFile () is a convenience function which provides a simple interfac
onto the X Print mechanisms, in order to save print data to the filefile_name.
Printing takes place asynchronously, and the programmer receives notificatio
the status of the printing task by supplyingfinish_proc, which is called when the
task is finished. Thedisplayparameter is the print connection to the X server, an
is used to deduce an application name and class.

Usage
If XmPrintToFile () cannot open the filefile_name for writing, create a pipe,
or fork off a child process, the procedure returns False. An application name
class is deduced using thedisplay parameter, and these are used by the child
process, which creates a new application context, and opens a new display
nection using the same name and class as the application process. Data is
retrieved from the X server through a call toXpGetDocumentData (). The par-
ent process does not wait for the child to complete, but returns immediately a

1.For example, Sun Solaris supply the widget headers, but do not compile the component into the Motif library
Motif Reference Manual 271

XmPrintToFile Motif Functions and Macros

at

d is
ild
initiating the child process. The return value True therefore does not mean th
the print task is complete, merely that the task is initiated.

The application is notified of task completion by supplying an XPFinishProc.
Thestatusparameter passed to the finish procedure when the task is complete
set to XPGetDocFinished on successful completion. If for any reason the ch
process fails to print the data, the filefile_name is both closed and removed. The
file is closed in any case prior to calling the XPFinishProc.

XpStartJob () must be called by the application beforeXmPrintToFile ()
can be called.

Structures
An XPFinishProc is specified as follows:

typedef void (*XPFinishProc)(Display *display,
XPContext context,
XPGetDocStatus status,
XPointer client_data);

If status is XPGetDocFinished, the print task has completed successfully.

See Also
XmPrintPopupPDM (1), XmPrintSetup (1), XmRedisplayWidget (1),
XmPrintShell (2).
272 Motif Reference Manual

Motif Functions and Macros XmProcessTraversal

one

et
s

, the

ch
then

it
,
-

e

d

rd
Name
XmProcessTraversal – set the widget that has the keyboard focus.

Synopsis

Boolean XmProcessTraversal (Widgetwidget, XmTraversalDirectiondirection)

Inputs
widget Specifies the widget whose hierarchy is to be traversed.
direction Specifies the direction in which to traverse the hierarchy. Pass

of the values from the list below.

Returns
True on success or False otherwise.

Description
XmProcessTraversal () causes the input focus to change to another widg
under application control, rather than as a result of keyboard traversal event
from a user.widget specifies the widget whose hierarchy is traversed up to the
shell widget. If that shell has the keyboard focus,XmProcessTraversal ()
changes the keyboard focus immediately. If that shell does not have the focus
routine does not have an effect until the shell receives the focus.

Thedirection argument specifies the nature of the traversal to be made. In ea
case, the routine locates the hierarchy that contains the specified widget and
performs the action that is particular to thedirection. If the new setting succeeds,
XmProcessTraversal () returns True. The routine returns False if the key-
board focus policy is not XmEXPLICIT, if no traversable items exist, or if the
arguments are invalid.

Usage
For XmTRAVERSE_CURRENT, if the tab group that containswidget is inac-
tive, it is made the active tab group. Ifwidgetis in the active tab group, it is given
the keyboard focus; ifwidgetis the active tab group, the first traversable item in
is given the keyboard focus. For XmTRAVERSE_UP, XmTRAVERSE_DOWN
XmTRAVERSE_LEFT, and XmTRAVERSE_RIGHT, in the hierarchy that con
tainswidget, the item in the specifieddirection from the active item is given the
keyboard focus. For XmTRAVERSE_NEXT and XmTRAVERSE_PREV, in th
hierarchy that containswidget, the next and previous items in child order from
the active item are given keyboard focus. For XmTRAVERSE_HOME, in the
hierarchy that contains widget, the first traversable item is given the keyboar
focus. For XmTRAVERSE_NEXT_TAB_GROUP and
XmTRAVERSE_PREV_TAB_GROUP, in the hierarchy that containswidget, the
next and previous tab groups from the active tab group are given the keyboa
focus.
Motif Reference Manual 273

XmProcessTraversal Motif Functions and Macros

to

p,
to

key-
In Motif 2.0 and later, new XmTraversalDirection values
XmTRAVERSE_GLOBALLY_FORWARD and
XmTRAVERSE_GLOBALLY_BACKWARD are provided in order to imple-
ment the XmDisplay resource XmNenableButtonTab. If enabled, for
XmTRAVERSE_GLOBALLY_FORWARD navigation proceeds to the next (or
downwards, depending upon orientation) item within the current tab group,
unless the current location is the last item in the group, when navigation is in
the next tab group. Similarly, for XmTRAVERSE_GLOBALLY_BACKWARD
navigation proceeds to the previous (or upwards) item in the current tab grou
unless the current location is the first item in the group, when navigation is in
the previous tab group. The interpretation of thedirection values
XmTRAVERSE_GLOBALLY_FORWARD and
XmTRAVERSE_GLOBALLY_BACKWARD is reversed where XmNlayoutDi-
rection is XmRIGHT_TO_LEFT.

XmProcessTraversal () does not allow traversal to widgets in different
shells or widgets that are not mapped. CallingXmProcessTraversal ()
inside a XmNfocusCallback causes a segmentation fault.

Example
The following code fragments shows the use ofXmProcessTraversal () as a
callback routine for a text widget. When the user presses the Return key, the
board focus is advanced to the next input area:

Widget form, label, text;

form = XtVaCreateWidget ("form", xmFormWidgetClass, parent,
XmNorientation, XmHORIZONTAL,
NULL);

label = XtVaCreateManagedWidget ("label", xmLabelGadgetClass, form,
XmNleftAttachment, XmATTACH_FORM,
XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
NULL);

text = XtVaCreateManagedWidget ("text", xmTextWidgetClass, form,
XmNleftAttachment,
XmATTACH_WIDGET,
XmNleftWidget, label,
XmNtopAttachment, XmATTACH_FORM,
XmNrightAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
NULL);

XtAddCallback (text, XmNactivateCallback,
274 Motif Reference Manual

Motif Functions and Macros XmProcessTraversal
XmProcessTraversal, (XtPointer)
XmTRAVERSE_NEXT_TAB_GROUP);

XtManageChild (form);

Structures
The possible values for direction are:

XmTRAVERSE_CURRENT XmTRAVERSE_NEXT
XmTRAVERSE_UP XmTRAVERSE_PREV
XmTRAVERSE_DOWN XmTRAVERSE_HOME
XmTRAVERSE_LEFT
XmTRAVERSE_NEXT_TAB_GROUP
XmTRAVERSE_RIGHT
XmTRAVERSE_PREV_TAB_GROUP
XmTRAVERSE_GLOBALLY_FORWARD
XmTRAVERSE_GLOBALLY_BACKWARD

See Also
XmGetFocusWidget (1), XmGetTabGroup (1), XmGetVisibility (1),
XmIsTraversable (1).
Motif Reference Manual 275

XmRedisplayWidget Motif Functions and Macros

ir

s

et is

all-
se to
Name
XmRedisplayWidget – force widget exposure for printing.

Synopsis

#include <Xm/Print.h>

void XmRedisplayWidget (Widgetwidget)

Inputs
widget Specifies the widget to redisplay.

Availability
Motif 2.1 and later.

Note that not all operating system vendors compile the XmPrintShell into the

native Motif toolkits.1

Description
XmRedisplayWidget () forces widget to redisplay itself by invoking the
expose method of thewidget. The routine is a convenience function which hide
the internals of the X11R6 Xp mechanisms, which usewidget exposure in order
to implement printing.

Usage
XmRedisplayWidget () constructs a region which corresponds precisely to
the location and area occupied by a widget. The expose method of the widg
called directly using the region in order to redisplay the widget.XmRedis-
playWidget () is synchronous in effect. Asynchronous printing is performed
by creating a PrintShell, and specifying XmNstartJobCallback, XmNendJobC
back, and XmNpageSetupCallback procedures which are invoked in respon
X Print events as they arrive.

XmRedisplayWidget () is not multi-thread safe, nor is thewidget parameter
fully validated: it is implicitly assumed to be the descendant of a PrintShell.

1.Sun Solaris supplied the widget headers, but the widget itself is compiled out of the Motif library.
276 Motif Reference Manual

Motif Functions and Macros XmRedisplayWidget
Example
The following code synchronously prints the contents of a text widget:

Widget app_shell, app_text;
Screen print_screen;
Display print_display;
Widget print_shell, print_form, print_text;
short rows;
int lines, pages, page;
char *data;
...
/* create a connection to the X Print server */
print_shell = XmPrintSetup (app_shell, print_screen, "PrintShell", NULL, 0);

/* create a suitable print hierarchy */
print_form = XmCreateForm (print_shell,...);
print_text = XmCreateText (print_form,...);

/* configure and manage the print hierarchy */
...
/* copy the video text to the print text */
/* what is copied depends upon whether it is */
/* contents and/or visuals that are printed */
...
data = XmTextGetString (app_text);
XmTextSetString (print_text, data);
XtFree (data);
...
/* start a print job */
print_display = XtDisplay (print_shell);
XpStartJob (print_display, XPSpool);

/* deduce number of logical pages in the print text widget */
XtVaGetValues (print_text, XmNrows, &rows, XmNtotalLines, &lines, 0);

for (page = 0, pages = lines / rows; page < pages; page++) {
/* start of page notification */
XpStartPage (print_display, XtWindow (print_shell), False);

/* force the print text to expose itself */
XmRedisplayWidget (print_text);

/* end of page notification */
XpEndPage (print_display);

/* scroll to next page */
Motif Reference Manual 277

XmRedisplayWidget Motif Functions and Macros
XmTextScroll (print_text, rows);
}

/* end of print job notification */
XpEndJob (print_display);
...

See Also
XmPrintPopupPDM (1), XmPrintSetup (1), XmPrintToFile (1),
XmPrintShell (2).
278 Motif Reference Manual

Motif Functions and Macros XmRegisterSegmentEncoding

or a

le-

s
t list
com-
tine

t

ica-

cale.

 for

e
m-
-

Name
XmRegisterSegmentEncoding – register a compound text encoding format f
font list element tag.

Synopsis

char *XmRegisterSegmentEncoding (char *fontlist_tag, char *ct_encoding)

Inputs
fontlist_tag Specifies the compound string font list element tag.
ct_encoding Specifies the compound text character set.

Returns
The old compound text encoding format for a previously-registered font list e
ment tag or NULL for a new font list element tag.

Availability
Motif 1.2 and later.

Description
XmRegisterSegmentEncoding () registers the specified compound text
encoding formatct_encoding for the specifiedfontlist_tag. Bothfontlist_tag and
ct_encoding must be NULL-terminated ISO8859-1 strings. If the font list tag i
already associated with a compound text encoding format, registering the fon
tag again overwrites the previous entry and the routine returns the previous
pound text format. If the font list tag is has not been registered before, the rou
returns NULL. Ifct_encoding is NULL, the font list tag is unregistered. If
ct_encoding is the reserved value XmFONTLIST_DEFAULT_TAG, the font lis
tag is mapped to the code set of the current locale.XmRegisterSegmentEn-
coding () allocates storage if the routine returns a character string; the appl
tion is responsible for freeing the storage usingXtFree ().

Usage
Compound text is an encoding that is designed to represent text from any lo
Compound text strings identify their encoding using embedded escape
sequences. The compound text representation was standardized for X11R4
use as a text interchange format for interclient communication.

XmCvtXmStringToCT () converts a compound string into compound text. Th
routine uses the font list tag of each compound string segment to select a co
pound text format for the segment. A mapping between font list tags and com
pound text encoding formats is stored in a registry.
XmRegisterSegmentEncoding () provides a way for an application to map
particular font list element tags to compound text encoding formats.

See Also
XmCvtXmStringToCT (1), XmMapSegmentEncoding (1).
Motif Reference Manual 279

XmRemoveFromPostFromList Motif Functions and Macros

h,

n-

rigi-
pro-
 that
Name
XmRemoveFromPostFromList – make a menu inaccessible from a widget.

Synopsis

#include <Xm/RowColumn.h>

void XmRemoveFromPostFromList (Widgetmenu, Widgetwidget)

Inputs
menu Specifies a menu widget
widget Specifies the widget which no longer posts menu.

Availability
In Motif 2.0 and later, the functional prototype is removed from RowColumn.

although there is otherwise no indication that the procedure is obsolete.1

Description
XmRemoveFromPostFromList () is the inverse of the procedureXmAddTo-
PostFromWidget (). The menu hierarchy associated withmenu is made inac-
cessible fromwidget.

Usage
If the type of menu is XmMENU_PULLDOWN, the XmNsubMenuId resource
of widget is set to NULL. If the type of menu is XmMENU_POPUP, event ha
dlers presumably added to widget by XmAddToPostFromWidget() in order to
post the menu are removed.

No check is made to ensure that the XmNsubMenuId resource of widget is o
nally set to menu before clearing the value. Passing the wrong menu into the
cedure can therefore have unwanted effects. There are implicit assumptions
widget is a CascadeButton or CascadeButtonGadget when menu is
XmMENU_PULLDOWN, and that widget is not a Gadget when menu is
XmMENU_POPUP. These are not checked by the procedure.

See Also
XmAddToPostFromList (1), XmGetPostedFromWidget (1),
XmPopupMenu(2), XmPulldownMenu (2), XmRowColumn(2).

1.This is true of Motif 2.1.10, although the header reference is restored in the OpenMotif 2.1.30.
280 Motif Reference Manual

Motif Functions and Macros XmRemoveProtocolCallback

ond-

sim-
on.
tain-
o-
Name
XmRemoveProtocolCallback – remove client callback from a protocol.

Synopsis

#include <Xm/Protocols.h>

void XmRemoveProtocolCallback (Widget shell,
Atom property,
Atom protocol,
XtCallbackProc callback,
XtPointer closure)

Inputs
shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocol Specifies the protocol atom.
callback Specifies the procedure that is to be removed.
closure Specifies any client data that is passed to the callback.

Description
XmRemoveProtocolCallback () removes the specifiedcallback from the
list of callback procedures that are invoked when the client message corresp
ing toprotocol is received.

Usage
A protocol is a communication channel between applications. Protocols are
ply atoms, stored in a property on the top-level shell window for the applicati
To communicate using a protocol, a client sends a ClientMessage event con
ing apropertyandprotocol, and the receiving client responds by calling the ass
ciated protocolcallback routine.XmRemoveProtocolCallback () allows
you to unregister one of these callback routines. The inverse routine isXmAd-
dProtocolCallback ().

See Also
XmAddProtocolCallback (1), XmInternAtom (1),
XmRemoveWMProtocolCallback (1), VendorShell (2).
Motif Reference Manual 281

XmRemoveProtocols Motif Functions and Macros

sim-
on.
Name
XmRemoveProtocols – remove protocols from the protocol manager.

Synopsis

#include <Xm/Protocols.h>

void XmRemoveProtocols (Widgetshell, Atomproperty, Atom *protocols, Car-
dinalnum_protocols)

Inputs
shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocols Specifies a list of protocol atoms.
num_protocols Specifies the number of atoms in protocols.

Description
XmRemoveProtocols () removes the specifiedprotocols from the protocol
manager and deallocates the internal tables for the protocols. If the specifiedshell
is realized and at least one of theprotocols is active, the routine also updates the
handlers and theproperty. The inverse routine isXmAddProtocols ().

Usage
A protocol is a communication channel between applications. Protocols are
ply atoms, stored in a property on the top-level shell window for the applicati
XmRemoveProtocols () allows you eliminate protocols that can be under-
stood by your application. The inverse routine is XmAddProtocols().

See Also
XmAddProtocols (1), XmInternAtom (1), XmRemoveWMProtocols (1),
VendorShell (2).
282 Motif Reference Manual

Motif Functions and Macros XmRemoveTabGroup

et-

or

mN-

ther
by

g the
Name
XmRemoveTabGroup – remove a widget from a list of tab groups.

Synopsis

void XmRemoveTabGroup (Widgettab_group)

Inputs
tab_group Specifies the widget to be removed.

Availability
In Motif 1.1, XmRemoveTabGroup() is obsolete. It has been superseded by s
ting XmNnavigationType to XmNONE.

Description
XmRemoveTabGroup() removes the specifiedtab_group widget from the list
of tab groups associated with the widget hierarchy. This routine is retained f
compatibility with Motif 1.0 and should not be used in newer applications. If
traversal behavior needs to be changed, this should be done by setting the X
navigationType resource directly.

Usage
A tab group is a group of widgets that can be traversed using the keyboard ra
than the mouse. Users move from widget to widget within a single tab group
pressing the arrow keys. Users move between different tab groups by pressin
Tab or Shift-Tab keys. The inverse routine is XmAddTabGroup().

See Also
XmAddTabGroup(1), XmGetTabGroup (1), XmManager(2),
XmPrimitive (2).
Motif Reference Manual 283

XmRemoveWMProtocolCallback Motif Functions and Macros

-
 pro-
Name
XmRemoveWMProtocolCallback – remove client callbacks from a
XA_WM_PROTOCOLS protocol.

Synopsis

#include <Xm/Protocols.h>

void XmRemoveWMProtocolCallback (Widget shell,
Atom protocol,
XtCallbackProc callback,
XtPointer closure)

Inputs
shell Specifies the widget associated with the protocol property.
protocol Specifies the protocol atom.
callback Specifies the procedure that is to be removed.
closure Specifies any client data that is passed to the callback.

Description
XmRemoveWMProtocolCallback () is a convenience routine that calls
XmRemoveProtocolCallback () with property set to
XA_WM_PROTOCOL, the window manager protocol property.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com
munication between clients and window managers. To communicate using a
tocol, a client sends a ClientMessage event containing aproperty andprotocol,
and the receiving client responds by calling the associated protocolcallback rou-
tine.XmRemoveWMProtocolCallback () allows you to unregister one of
thesecallback routines with the window managerprotocol property. The inverse
routine isXmAddWMProtocolCallback ().

See Also
XmAddProtocolCallback (1), XmAddWMProtocolCallback (1),
XmInternAtom (1), XmRemoveProtocolCallback (1),
VendorShell (2).
284 Motif Reference Manual

Motif Functions and Macros XmRemoveWMProtocols

m

-

by
Name
XmRemoveWMProtocols – remove the XA_WM_PROTOCOLS protocols fro
the protocol manager.

Synopsis

#include <Xm/Protocols.h>

void XmRemoveWMProtocols (Widgetshell, Atom *protocols, Cardinal
num_protocols)

Inputs
shell Specifies the widget associated with the protocol property.
protocols Specifies a list of protocol atoms.
num_protocols Specifies the number of atoms in protocols.

Description
XmRemoveWMProtocols () is a convenience routine that callsXmRemove-
Protocols () with property set to XA_WM_PROTOCOL, the window man-
ager protocol property. The inverse routine isXmAddWMProtocols ().

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com
munication between clients and window managers.XmRemoveWMProto-
cols () allows you to remove this protocol so that it is no longer understood
your application. The inverse routine isXmAddWMProtocols ().

See Also
XmAddProtocols (1), XmAddWMProtocols (1), XmInternAtom (1),
XmRemoveProtocols (1), VendorShell (2).
Motif Reference Manual 285

XmRenderTableAddRenditions Motif Functions and Macros

e

ndi-
Name
XmRenderTableAddRenditions – add renditions to a render table.

Synopsis

XmRenderTable XmRenderTableAddRenditions (XmRenderTable
old_table,

XmRendition
*new_renditions,

 Cardinal
new_rendition_count,

XmMergeMode
merge_mode)

Inputs
old_table Specifies a render table.
new_renditions Specifies an array of renditions to merge with the
render table.
new_rendition_count Specifies the number of renditions in the array.
merge_mode Specifies the action to take if entries have the sam
tag.

Returns
The newly allocated merged render table.

Availability
Motif 2.0 and later.

Description
A render table is a set of renditions which can be used to specify the way in
which XmStrings are drawn.XmRenderTableAddRenditions () creates a
new render table by merging the list of renditions specified bynew_renditions
into the renditions contained withinold_table. If a rendition with the same tag is
found in bothold_table andnew_renditions, merge_mode is used to give prece-
dence. The new render table is returned.

If old_table is NULL, a new render table is allocated which contains only the
renditions ofnew_renditions. If new_renditionsis NULL or new_rendition_count
is zero, theold_table is returned unmodified. If a rendition withinold_table has
the same tag as one withinnew_renditions, merge_mode determines how to
resolve the conflict. Ifmerge_mode is XmMERGE_REPLACE, the rendition
within old_table is ignored, and the rendition withinnew_renditions is added to
the new table. If the mode is XmMERGE_SKIP, the new table contains the re
tion fromold_table, and that fromnew_renditions is ignored. If the mode is
XmMERGE_NEW, the rendition withinnew_renditions is used, except that
286 Motif Reference Manual

Motif Functions and Macros XmRenderTableAddRenditions

the

e

here

em-

o an
where any resources of the rendition are unspecified, the value is copied from
matching rendition from theold_table. A resource is unspecified if the value is
XmAS_IS or NULL. Lastly, if the mode is XmMERGE_OLD, it is theold_table
rendition which is added to the new table, and any unspecified resources ar
taken from the new rendition.

Usage

The reference count for the original table is decremented and deallocated w
necessary, and a newly allocated render table containing the merged data is
returned. It is the responsibility of the programmer to reclaim the allocated m
ory for the returned render table by callingXmRenderTableFree () at a suita-
ble point.

Example
The following specimen code creates a set of renditions and merges them int
unspecified render table:

XmRendition new_renditions[2];
XmRenderTable new_table;
Arg argv[4];
Cardinal argc = 0;
Pixel fg =...;
Pixel bg =...;

XtSetArg (argv[argc], XmNfontName, "fixed");
argc++;
XtSetArg (argv[argc], XmNfontType, XmFONT_IS_FONT);
argc++;
XtSetArg (argv[argc], XmNloadModel, XmLOAD_DEFERRED);
argc++;
new_renditions[0] = XmRenditionCreate (widget,
XmFONTLIST_DEFAULT_TAG, argv, argc);

argc = 0;
XtSetArg (argv[argc], XmNrenditionBackground, bg); argc++;
XtSetArg (argv[argc], XmNrenditionForeground, fg); argc++;
new_renditions[1] = XmRenditionCreate (widget, "colors", argv, argc);
new_table = XmRenderTableAddRenditions (old_table, new_renditions, 2,
XmMERGE_REPLACE);)
Motif Reference Manual 287

XmRenderTableAddRenditions Motif Functions and Macros
See Also
XmRenderTableCopy (1), XmRenderTableFree (1),
XmRenderTableGetRendition (1),
XmRenderTableGetRenditions (1), XmRenderTableGetTags (1),
XmRenderTableRemoveRenditions (1), XmRenditionCreate (1),
XmRenditionFree (1), XmRenditionRetrieve (1),
XmRenditionUpdate (1), XmRendition (2).
288 Motif Reference Manual

Motif Functions and Macros XmRenderTableCopy

re

der

ny

for
to

h is
ue
Name
XmRenderTableCopy – copy a render table.

Synopsis

XmRenderTable XmRenderTableCopy (XmRenderTableold_table, XmString-
Tag *tags, int tag_count)

Inputs
old_table Specifies the table containing the renditions to be copied.
tags Specifies an array of tags. Renditions with matching tags a
copied.
tag_count Specifies the number of items within the tags array.

Returns
A new render table containing renditions with matching tags, or NULL.

Availability
Motif 2.0 and later.

Description
An XmRenderTable is an array of XmRendition objects, which are used to ren
compound strings.XmRenderTableCopy () creates a newly allocated render
table by copying renditions from an existing table,old_table. An array of tags
can be supplied which acts as a filter: only those renditions fromold_tablewhich
have a matching XmNtag resource are copied. The number of items within a
tags array is specified throughtag_count. If tags is NULL, all of the renditions
within old_table are copied. Ifold_table is NULL, the function returns NULL.

Usage
The function allocates storage for the returned render table, including storage
each of the newly copied renditions. It is the responsibility of the programmer
reclaim the memory at an appropriate point by callingXmRenderTable-
Free ().

In Motif 2.0 and later, the XmRenderTable supersedes the XmFontList, whic
now considered obsolete. For backwards compatibility, the XmFontList opaq
type is implemented through the render table.

See Also
XmRenderTableAddRenditions (1), XmRenderTableFree (1),
XmRenderTableGetRendition (1),
XmRenderTableGetRenditions (1), XmRenderTableGetTags (1),
XmRenderTableRemoveRenditions (1), XmRenditionCreate (1),
XmRenditionFree (1), XmRenditionRetrieve (1),
XmRenditionUpdate (1), XmRendition (2).
Motif Reference Manual 289

XmRenderTableCvtFromProp Motif Functions and Macros

r
iven

it

.

all-
Name
XmRenderTableCvtFromProp – convert from a string representation into a
render table.

Synopsis

XmRenderTable XmRenderTableCvtFromProp (Widgetwidget, char *property,
unsigned intlength)

Inputs
widget Specifies a destination widget in a data transfer.
property Specifies the render table in string representation format.
length Specifies the number of bytes in the property string.

Returns
The converted render table.

Availability
Motif 2.0 and later.

Description
XmRenderTableCvtFromProp () converts a string representation of a rende
table into an XmRenderTable. The string representation to be converted is g
by property, and the size of the string in bytes islength.

Usage
Typically, the procedure is used within the destination callback of widget when
is the target of a data transfer. The inverse functionXmRenderTableCvtTo-
Prop () is called by the convert procedures of the source of the data transfer
XmRenderTableCvtFromProp () returns allocated memory, and it is the
responsibility of the programmer to reclaim the space at a suitable point by c
ing XmRenderTableFree ().

See Also
XmRenderTableCvtToProp (1), XmRenderTableFree (1),
XmRendition (2).
290 Motif Reference Manual

Motif Functions and Macros XmRenderTableCvtToProp

ion.

 is
n

Name
XmRenderTableCvtToProp – convert a render table into a string representat

Synopsis

unsigned int XmRenderTableCvtToProp (Widget widget,
XmRenderTable render_table,
char

** property_return)

Inputs
widget Specifies a source widget for the render table.
render_table Specifies the render table to convert.

Outputs
property_return Returns the string representation of the converted render
table.

Returns
The number of bytes in the converted string representation.

Availability
Motif 2.0 and later.

Description
XmRenderTableCvtToProp () converts an XmRenderTable render_table
into a string representation at the address specified byproperty_return. The
length of the converted string is returned.

Usage
Typically, the procedure is used within the convert callback of widget when it
the source of a data transfer. The procedure returns allocated memory withi
property_return, and it is the responsibility of the programmer to reclaim the
space at a suitable point by callingXtFree ().

The standard built-in conversion routines within the Uniform Transfer Model
internally callXmRenderTableCvtToProp () when asked to convert the
_MOTIF_RENDER_TABLE selection.

See Also
XmRenderTableCvtFromProp (1), XmRendition (2).
Motif Reference Manual 291

XmRenderTableFree Motif Functions and Macros

. It is

 so an

r-
Name
XmRenderTableFree – free the memory used by a render table.

Synopsis

void XmRenderTableFree (XmRenderTabletable)

Inputs
table Specifies the render table to free.

Availability
Motif 2.0 and later.

Description
XmRenderTableFree () is a convenience function which deallocates space
used by the render table table.

Usage
Render tables, and the renditions which they contain, are reference counted
important to callXmRenderTableFree () on a render table rather than
XtFree () so that each rendition in the table is properly deallocated. Motif
caches and shares render tables and the renditions which they contain, and
improper XtFree() would not respect any sharing currently in place.
XmRenderTableFree () does not actually free the render table until the refe
ence count is zero.

See Also
XmRenderTableAddRenditions (1), XmRenderTableCopy (1),
XmRenderTableRemoveRenditions (1), XmRenditionCreate (1),
XmRenditionFree (1), XmRendition (2).
292 Motif Reference Manual

Motif Functions and Macros XmRenderTableGetRendition

n.

s

-

ble
ll-

,
le
Name
XmRenderTableGetRendition – search a render table for a matching renditio

Synopsis

XmRendition XmRenderTableGetRendition (XmRenderTabletable, XmString-
Tagtag)

Inputs
table Specifies the render table to search.
tag Specifies the tag with which to find a rendition.

Returns
A Rendition which matches tag, otherwise NULL.

Availability
Motif 2.0 and later.

Description
XmRenderTableGetRendition () is a convenience function which searche
table, and returns the rendition which matchestag.

Usage
XmRenderTableGetRendition () performs a linear search through the ren
ditions contained withintable, comparing the XmNtag resource value with the

search string given bytag. If no match is found, any XmNnoRenditionCallback1

callbacks registered with the XmDisplay object are invoked, supplying the ta
as therender_table element of the XmDisplayCallbackStruct passed to the ca
backs. If the callbacks modify therender_table element, the linear search is
restarted. A copy of any matching rendition is returned, otherwise NULL.

XmRenderTableGetRendition () allocates space for the returned rendition
and it is the responsibility of the programmer to reclaim the space at a suitab
point by callingXmRenditionFree ().

See Also
XmRenderTableAddRenditions (1),
XmRenderTableGetRenditions (1),
XmRenderTableRemoveRenditions (1), XmRenditionFree (1),
XmRendition (2).

1.Erroneously given as XmNnoRendition in 2nd edition.
Motif Reference Manual 293

XmRenderTableGetRenditions Motif Functions and Macros

ns.

e.

 as

ions
tags

LL.

ed
do
Name
XmRenderTableGetRenditions – search a render table for matching renditio

Synopsis

XmRendition *XmRenderTableGetRenditions (XmRenderTabletable,
XmStringTag *tags,
Cardinal tag_count)

Inputs
table Specifies the render table to search.
tags Specifies an array of tags for which matching renditions are
required.
tag_count Specifies the number of items in tags.

Returns
The array of renditions which have matching tags.

Availability
Motif 2.0 and later.

Description
XmRenderTableGetRenditions () searchestable for all renditions which
have a tag that matches an entry within the listtags. If the table is NULL, or if
tags is NULL, or if tag_count is zero, the function returns NULL. Otherwise,
the function returns an allocated array of matching rendition objects.

Usage
XmRenderTableGetRenditions () iterates through a set oftags, compar-
ing in turn each tag with the group of renditions contained within a render tabl

If no match is found when comparing a tag, any XmNnoRenditionCallback1 call-
backs registered with the XmDisplay object are invoked, supplying the table
therender_table element of the XmDisplayCallbackStruct passed to the call-
backs. If the callbacks modify therender_table element, the linear search is
restarted for that tag.

The documentation states that the function returns an allocated array, rendit
being copied into the array at the same index of the matching tag within the
array. For example, if the third tag intags matches a rendition, that rendition is
copied into the third element of the returned array. If any tag in thetagslist does
not match any rendition in the table, that slot in the returned array is set to NU

The sources, however, do not match the documentation: renditions are copi
into the array in the order which they are matched, ignoring any slots which

1.Erroneously given as XmNnoRendition in 2nd edition.
294 Motif Reference Manual

Motif Functions and Macros XmRenderTableGetRenditions

ed

 of a
e

stit-
not match. Thus if the first tag intags results in a NULL match, any rendition
found from the second tag is placed into the first slot. If the number of match
renditions is less than the number of suppliedtags, then memory for the returned
array is reallocated to match the number of found renditions. In the absence
XmNnoRenditionCallback callback, it is not possible to deduce the size of th
returned rendition array.

The function allocates space for both the returned rendition array and the con
uent renditions, and it is the responsibility of the programmer to reclaim the
space at a suitable point by callingXmRenditionFree () on each of the ele-
ments in the returned array, and subsequentlyXtFree () on the array itself.

Example
The following specimen code illustrates the basic outline of a call to
XmRenderTableGetRenditions ():

XmRendition *match_renditions;
XmStringTag tags[MAX_TAGS];
int i;

tags[0] = XmFONTLIST_DEFAULT_TAG;
tags[1] = XmS; /* "" */

...
/* search an unspecified render table */
match_renditions = XmRenderTableGetRenditions (render_table, tags,
MAX_TAGS);

/* use the matched set of renditions */
...

/* free the returned space */
if (match_renditions != NULL) {

/* ASSUMPTION: XtNumber (match_renditions) == MAX_TAGS */
/* Not a valid assumption if a tag does not match */

for (i = 0; i < MAX_TAGS; i++) {
XmRenditionFree (match_renditions[i]);

}

XtFree (match_renditions);
}

See Also
XmRenderTableAddRenditions (1), XmRenderTableGetRendition (1),
XmRenderTableRemoveRenditions (1), XmRenditionFree (1),
XmRendition (2).
Motif Reference Manual 295

XmRenderTableGetTags Motif Functions and Macros

.

h

the

y
ed

e

Name
XmRenderTableGetTags – fetch the list of rendition tags from a render table

Synopsis

int XmRenderTableGetTags (XmRenderTabletable, XmStringTag **tag_list)

Inputs
table Specifies the render table.

Outputs
tag_list Returns the list of rendition tags.

Returns
The number of tags within the returned tag_list.

Availability
Motif 2.0 and later.

Description
XmRenderTableGetTags () is a convenience function which iterates throug
a rendertable, collecting all the tags from the individual renditions within the
table, and returning them to the programmer. The number of tags placed at
addresstag_list by the function is returned.

Usage
XmRenderTableGetTags () allocates an array, and places in the array a cop
of the XmNtag resource for each rendition within the table. The array is return
at the address specified by thetag_listparameter. If thetableis NULL, tag_listis
initialized to NULL, and the function returns zero. It is the responsibility of th
programmer to reclaim the space by callingXtFree () on each of the items
within the allocated array, and then subsequently callingXtFree () on the array
itself.

Example
The following specimen code illustrates the basic outline of a call to
XmRenderTableGetTags ():

XmStringTag *tags;
int count, i;

/* fetch the tags from an unspecified render table */
count = XmRenderTableGetTags (render_table, &tags);

/* use the tags */
...

/* free the returned space */
296 Motif Reference Manual

Motif Functions and Macros XmRenderTableGetTags
if (tags != (XmStringTag *) 0) {
for (i = 0; i < count; i++) {

XtFree (tags[i]);
}

XtFree (tags);
}

See Also
XmRenditionFree (1), XmRendition (2).
Motif Reference Manual 297

XmRenderTableRemoveRenditions Motif Functions and Macros

d

-
s

are

ue
ffers

all-
Name
XmRenderTableRemoveRenditions – copy a render table, excluding specifie
renditions.

Synopsis

XmRenderTable XmRenderTableRemoveRenditions (XmRenderTable
old_table,

XmStringTag *tags,
int

tag_count)

Inputs
old_table Specifies a render table.
tags Specifies an array of rendition tags. Any rendition which

matches an item in the array is not copied from old_table.
tag_count Specifies the number of items in the tags array.

Returns
A new render table with matching renditions removed.

Availability
Motif 2.0 and later.

Description
XmRenderTableRemoveRenditions () creates a new render table by copy
ing fromold_tableonly those renditions which do not have a tag matching item
within the arraytags. If tagsis NULL, or if tag_countis zero, or if no renditions
are removed, the function returns theold_table unmodified. Otherwise,
old_tableis deallocated, and the reference counts for any excluded renditions
decremented, before the function returns the newly allocated render table.

Usage
A rendition is not copied into the returned table if it has a XmNtag resource val
the same as any item within the tags list. When the returned render table di
from the originalold_table parameter, the function allocates space for the new
table, and it is the responsibility of the programmer to reclaim the space by c
ing XmRenderTableFree ().

See Also
XmRenderTableAddRenditions (1), XmRenderTableFree (1),
XmRendition (2).
298 Motif Reference Manual

Motif Functions and Macros XmRenditionCreate

irs.

as

d in

ot a
and

ing

und
e

It
oint

nto
Name
XmRenditionCreate – create a rendition object.

Synopsis

XmRendition XmRenditionCreate (Widgetwidget, XmStringTagtag, Arg
*arglist, Cardinalargcount)

Inputs
widget Specifies a widget.
tag Specifies a tag for the rendition object.
arglist Specifies an argument list, consisting of resource name/value pa
argcount Specifies the number of arguments in arglist.

Returns
The new rendition object.

Availability
Motif 2.0 and later.

Description
XmRenditionCreate () creates a new rendition object, which can be used
an entry in a render table used for rendering XmStrings.widget is used to find a
connection to the X server and an application context.tag is used as the XmNtag
resource of the new rendition object. Resources for the new object are supplie
thearglist array.

Usage
The implementation of XmRendition is through a pseudo widget: although n
true widget, the object has resources and a resource style interface for setting
fetching values of the rendition. Typically, a rendition is merged into an exist
render table through the functionXmRenderTableAddRenditions (). Com-
pound strings are rendered by successively matching tags within the compo
string with the XmNtag resources of renditions in the table, and then using th
resources of matched renditions to display the string components.

XmRenditionCreate () allocates storage for the returned rendition object.
is the responsibility of the programmer to reclaim the storage at a suitable p
by callingXmRenditionFree (). Renditions are reference counted, and it is
important to callXmRenditionFree () rather thanXtFree () in order to main-
tain the references.

Example
The following specimen code creates a pair of renditions and merges them i
an unspecified render table:

XmRendition new_renditions[2];
Motif Reference Manual 299

XmRenditionCreate Motif Functions and Macros
XmRenderTable new_table;
Arg argv[4];
Cardinal argc = 0;
Pixel fg =...;
Pixel bg =...;

/* create a rendition with fonts specified */
argc = 0;
XtSetArg (argv[argc], XmNfontName, "fixed");
argc++;
XtSetArg (argv[argc], XmNfontType, XmFONT_IS_FONT);
argc++;
XtSetArg (argv[argc], XmNloadModel, XmLOAD_DEFERRED);
argc++;
new_renditions[0] = XmRenditionCreate (widget,
XmFONTLIST_DEFAULT_TAG, argv, argc);

/* create a rendition with line style specified */
argc = 0;
XtSetArg (argv[argc], XmNrenditionBackground, bg);
argc++;
XtSetArg (argv[argc], XmNrenditionForeground, fg);
argc++;
XtSetArg (argv[argc], XmNunderlineType, XmSINGLE_LINE);
argc++;
XtSetArg (argv[argc], XmNstrikethruType, XmSINGLE_LINE);
argc++;
new_renditions[1] = XmRenditionCreate (widget, "lineStyle", argv, argc);

/* merge into an unspecified render table */
new_table = XmRenderTableAddRenditions (old_table, new_renditions, 2,
XmMERGE_REPLACE);

See Also
XmRenderTableAddRenditions (1), XmRenditionFree (1),
XmRenditionRetrieve (1), XmRenditionUpdate (1),
XmRendition (2).
300 Motif Reference Manual

Motif Functions and Macros XmRenditionFree

d

s
ject.

ef-
Name
XmRenditionFree – free the memory used by a rendition.

Synopsis

void XmRenditionFree (XmRenditionrendition)

Inputs
rendition Specifies the rendition that is to be freed.

Availability
Motif 2.0 and later.

Description
XmRenditionFree () deallocates storage used by the specifiedrendition. The
routine does not free any XFontSet or XFontStruct data structures associate
with the rendition object.

Usage
XmRenditionFree () frees the storage used by the rendition object, but doe
not free font data structures associated with the XmNfont resource of the ob
It is important to callXmRenditionFree () rather thanXtFree () because
Motif reference counts rendition objects.XmRenditionFree () decrements the
reference count for the rendition; the rendition is not actually freed until the r
erence count reaches 0 (zero).

See Also
XmRenditionCreate (1), XmRendition (2).
Motif Reference Manual 301

XmRenditionRetrieve Motif Functions and Macros

irs.

air.

y
ce
ces
ating

e
is
d

e
es.

ed
Name
XmRenditionRetrieve – fetch rendition object resources.

Synopsis

void XmRenditionRetrieve (XmRenditionrendition, Arg *arg_list, Cardinal
arg_count)

Inputs
rendition Specifies the rendition whose resources are fetched.
arg_count Specifies the number of arguments in arg_list.

Outputs
arg_list Specifies an argument list, consisting of resource name/value pa

Availability
Motif 2.0 and later.

Description
XmRenditionRetrieve () fetches selective resource values of arendition
object. The set of resources retrieved is specified through the resource list
arg_list, each element of the list being a structure containing a name/value p
The number of elements within the list is given byarg_count.

Usage
XmRenditionRetrieve () directly returns the values of the rendition
resources, and not copies of them. The programmer should not inadvertentl
modify a returned value, but should take a copy of any pointer-valued resour
which is to be changed. For example, the XmNtag and XmNfontName resour
should be copied into a separate address space before modifying or manipul
the values.

If the XmNloadModel of the rendition object is XmLOAD_DEFERRED, and th
font specified by the XmNfont resource is NULL, but the XmNfontName value
not NULL, and if the programmer has specified that the font is to be retrieve
within arg_list, thenXmRenditionRetrieve () automatically changes the
load model to XmLOAD_IMMEDIATE and directly calls a procedure to load th
font indicated by XmNfontName before returning the requested resource valu

Example
The following specimen code illustrates fetching resources from an unspecifi
rendition object:

Pixel bg;
Pixel fg;
XtPointer font;
String font_name;
302 Motif Reference Manual

Motif Functions and Macros XmRenditionRetrieve
XmFontType font_type;
unsigned char load_model;
unsigned char strike_type;
XmTabList tab_list;
XmStringTag tag;
unsigned char ul_type;
Arg av[10];
Cardinal ac = 0;

XtSetArg (av[ac], XmNrenditionForeground, &fg); ac++;
XtSetArg (av[ac], XmNrenditionBackground, &bg); ac++;
XtSetArg (av[ac], XmNfont, &font); ac++;
XtSetArg (av[ac], XmNfontName, &font_name); ac++;
XtSetArg (av[ac], XmNfontType, &font_type); ac++;
XtSetArg (av[ac], XmNloadModel, &load_model); ac++;
XtSetArg (av[ac], XmNstrikethruType, &strike_type); ac++;
XtSetArg (av[ac], XmNtabList, &tab_list); ac++;
XtSetArg (av[ac], XmNtag, &tag); ac++;
XtSetArg (av[ac], XmNunderlineType, &ul_type); ac++;

XmRenditionRetrieve (rendition, av, ac);

See Also
XmRenditionCreate (1), XmRenditionFree (1),
XmRenditionUpdate (1), XmRendition (2).
Motif Reference Manual 303

XmRenditionRetrieve Motif Functions and Macros

irs.

or

t

 ren-
Name
XmRenditionUpdate – set rendition object resources.

Synopsis

void XmRenditionUpdate (XmRenditionrendition, Arg *arg_list, Cardinal
arg_count)

Inputs
rendition Specifies the rendition whose resources are to be changed.
arg_list Specifies an argument list, consisting of resource name/value pa
arg_count Specifies the number of arguments within arg_list.

Availability
Motif 2.0 and later.

Description
XmRenditionUpdate () is a convenience function which sets the resources f
a rendition object. The attributes to change are specified through an array of
name/value pairs, similar to the resource-style interface ofXtSetValues ().

Usage
Modifying the value of the XmNfontName resource initially resets the XmNfon
resource to NULL, irrespective of whether the load model for the new font is
XmLOAD_IMMEDIATE or XmLOAD_DEFERRED.

Example
The following specimen code illustrates setting resources for an unspecified
dition object:

Pixel bg =...;
Pixel fg =...;
Arg av[10];
Cardinal ac = 0;

XtSetArg (av[ac], XmNrenditionForeground, fg);
ac++;
XtSetArg (av[ac], XmNrenditionBackground, bg);
ac++;
XtSetArg (av[ac], XmNfontType, XmFONT_IS_FONT);
ac++;
XtSetArg (av[ac], XmNfontName, "fixed");
ac++;
XtSetArg (av[ac], XmNloadModel, XmLOAD_DEFERRED);
ac++;
304 Motif Reference Manual

Motif Functions and Macros XmRenditionRetrieve
XtSetArg (av[ac], XmNstrikethruType, XmSINGLE_LINE);
ac++;
XtSetArg (av[ac], XmNunderlineType, XmSINGLE_LINE);
ac++;

XmRenditionUpdate (rendition, av, ac);

See Also
XmRenditionCreate (1), XmRenditionFree (1),
XmRenditionRetrieve (1), XmRendition (2).
Motif Reference Manual 305

XmRepTypeAddReverse Motif Functions and Macros

ype.

-
nta-

ate

han-

n.
t the
pli-
Name
XmRepTypeAddReverse – install the reverse converter for a representation t

Synopsis

#include <Xm/RepType.h>

void XmRepTypeAddReverse (XmRepTypeIdrep_type_id)

Inputs
rep_type_id Specifies the ID number of the representation type.

Availability
Motif 1.2 and later.

Description
XmRepTypeAddReverse () installs a reverse converter for a previously regis
tered representation type. The reverse converter converts numerical represe
tion type values to string values. Therep_type_id argument specifies the ID
number of the representation type. If the representation type contains duplic
values, the reverse converter uses the first name in thevalue_names list that
matches the specified numeric value.

Usage
In Motif 1.2 and later, the representation type manager provides support for
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representatio
The representation type manager can also be queried to get information abou
registered types. This facility is especially useful for interface builders and ap
cations likeeditres that allow a user to set resources interactively.XmRep-
TypeAddReverse () provides a way for an application to install a converter
that converts numeric values to their string values.

See Also
XmRepTypeGetId (1), XmRepTypeRegister (1).
306 Motif Reference Manual

Motif Functions and Macros XmRepTypeGetId

-
type
s

han-

n.
t the
pli-

n
r rou-
Name
XmRepTypeGetId – get the ID number of a representation type.

Synopsis

#include <Xm/RepType.h>

XmRepTypeId XmRepTypeGetId (Stringrep_type)

Inputs
rep_type Specifies the string name of a representation type.

Returns
The ID number of the representation type or XmREP_TYPE_INVALID if the
representation type is not registered.

Availability
Motif 1.2 and later.

Description
XmRepTypeGetId () retrieves the ID number of the specified representation
typerep_type from the representation type manager. Therep_type string is the
string name of a representation type that has been registered withXmRepTy-
peRegister (). XmRepTypeGetId () returns the ID number if the represen
tation type has been registered. This value is used in other representation
manager routines to identify a particular type. Otherwise, the routine return
XmREP_TYPE_INVALID.

Usage
In Motif 1.2 and later, the representation type manager provides support for
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representatio
The representation type manager can also be queried to get information abou
registered types. This facility is especially useful for interface builders and ap
cations likeeditres that allow a user to set resources interactively.XmRep-
TypeGetId () provides a way for an application get the ID of a representatio
type, which can be used to identify the type to other representation manage
tine.

See Also
XmRepTypeGetNameList (1), XmRepTypeGetRecord (1),
XmRepTypeGetRegistered (1), XmRepTypeRegister (1).
Motif Reference Manual 307

XmRepTypeGetNameList Motif Functions and Macros

pe.

har-

h

low-

tor-
-

han-

n.
t the
pli-
Name
XmRepTypeGetNameList – get the list of value names for a representation ty

Synopsis

#include <Xm/RepType.h>

String * XmRepTypeGetNameList (XmRepTypeIdrep_type_id, Boolean
use_uppercase_format)

Inputs
rep_type_id Specifies the ID number of the representation type.
use_uppercase_formatSpecifies whether or not the names are in uppercase c
acters.

Returns
A pointer to an array of value names.

Availability
Motif 1.2 and later.

Description
XmRepTypeGetNameList () retrieves the list of value names associated wit
the specifiedrep_type_id. The routine returns a pointer to a NULL-terminated
list of value names for the representation type, where each value name is a
NULL-terminated string. Ifuse_uppercase_format is True, the value names are
in uppercase characters with Xm prefixes. Otherwise, the value names are in
ercase characters without Xm prefixes.XmRepTypeGetNameList () allocates
storage for the returned data. The application is responsible for freeing the s
age usingXtFree () on each of the elements in the returned array, and subse
quently upon the array pointer itself.

Usage
In Motif 1.2 and later, the representation type manager provides support for
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representatio
The representation type manager can also be queried to get information abou
registered types. This facility is especially useful for interface builders and ap
cations likeeditres that allow a user to set resources interactively.XmRep-
TypeGetNameList () provides a way for an application to get the named
values for a particular representation type.

See Also
XmRepTypeGetId (1), XmRepTypeGetRecord (1),
XmRepTypeGetRegistered (1), XmRepTypeRegister (1).
308 Motif Reference Manual

Motif Functions and Macros XmRepTypeGetRecord

e

ma-

s

han-

n.
t the
pli-
Name
XmRepTypeGetRecord – get information about a representation type.

Synopsis

#include <Xm/RepType.h>

XmRepTypeEntry XmRepTypeGetRecord (XmRepTypeIdrep_type_id)

Inputs
rep_type_id Specifies the ID number of the representation type.

Returns
A pointer to a representation type entry structure.

Availability
Motif 1.2 and later.

Description
XmRepTypeGetRecord () retrieves information about the representation typ
specified byrep_type_id. The routine returns a XmRepTypeEntry, which is a
pointer to a representation type entry structure. This structure contains infor
tion about the value names and values for the enumerated type.XmRep-
TypeGetRecord () allocates storage for the returned data. The application i
responsible for freeing the storage usingXtFree ().

Usage
In Motif 1.2 and later, the representation type manager provides support for
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representatio
The representation type manager can also be queried to get information abou
registered types. This facility is especially useful for interface builders and ap
cations likeeditres that allow a user to set resources interactively.XmRep-
TypeGetRecord () provides a way for an application to retrieve information
about a particular representation type.

Structures
The XmRepTypeEntry is defined as follows:

typedef struct {
String rep_type_name; /*name of representation type */
String *value_names; /*array of value names */
unsigned char *values; /*array of numeric values */
unsigned char num_values; /*number of values */
Boolean reverse_installed; /*reverse converter installed flag*/
XmRepTypeId rep_type_id; /*representation type ID */
Motif Reference Manual 309

XmRepTypeGetRecord Motif Functions and Macros
} XmRepTypeEntryRec, *XmRepTypeEntry, XmRepTypeListRec, *XmRep-
TypeList;

See Also
XmRepTypeGetId(1), XmRepTypeGetNameList(1),

XmRepTypeGetRegistered(1), XmRepTypeRegister(1).
310 Motif Reference Manual

Motif Functions and Macros XmRepTypeGetRegistered

ist,
he

re
ation

e

han-

n.
t the
pli-

ta-
Name
XmRepTypeGetRegistered – get the registered representation types.

Synopsis

#include <Xm/RepType.h>

XmRepTypeList XmRepTypeGetRegistered (void)

Returns
A pointer to the registration list of representation types.

Availability
Motif 1.2 and later.

Description
XmRepTypeGetRegistered () retrieves the whole registration list for the
representation type manager. The routine returns a copy of the registration l
which contains information about all of the registered representation types. T
registration list is an array of XmRepTypeList structures, where each structu
contains information about the value names and values for a single represent
type. The end of the registration list is indicated by a NULL pointer in the
rep_type_name field.XmRepTypeGetRegistered allocates storage for the
returned data. The application is responsible for freeing this storage using
XtFree (). The list of value names (the value of thevalue_names field), the list
of values (the value of thevalues field), and the array of structures all need to b
freed.

Usage
In Motif 1.2 and later, the representation type manager provides support for
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representatio
The representation type manager can also be queried to get information abou
registered types. This facility is especially useful for interface builders and ap
cations likeeditres that allow a user to set resources interactively.XmRep-
TypeGetRegistered () provides a way for an application to get information
about all of the registered representation types.

Example
The following code fragment shows the use ofXmRepTypeGetRegis-
tered () to print the value names and values of all of the registered represen
tion types:

XmRepTypeList replist; int i;
replist = XmRepTypeGetRegistered();
Motif Reference Manual 311

XmRepTypeGetRegistered Motif Functions and Macros
while (replist->rep_type_name != NULL) {
printf ("Representation type name: %s\n", replist->rep_type_name);
printf ("Value names and associated values: \n");

for (i = 0; i < replist->num_values; i++) {
printf ("%s: ", replist->value_names[i]);
printf ("%d\n", replist->values[i]);

}

replist++;
XtFree ((char *)replist->values);
XtFree ((char *)replist->value_names);

}

XtFree ((char *)replist);

Structures
The XmRepTypeList is defined as follows:

typedef struct {
String rep_type_name; /*name of representation type
*/
String *value_names; /*array of value names */
unsigned char *values; /*array of numeric values */
unsigned char num_values; /*number of values */
Boolean reverse_installed; /*reverse converter installed flag
*/
XmRepTypeId rep_type_id; /*representation type ID */

} XmRepTypeEntryRec, *XmRepTypeEntry, XmRepTypeListRec, *XmRep-
TypeList;

See Also
XmRepTypeGetRecord (1), XmRepTypeGetNameList (1),
XmRepTypeRegister (1).
312 Motif Reference Manual

Motif Functions and Macros XmRepTypeInstallTearOffModelConverter

r

-
 be
e

-
een
 pane

enu
t fail
Name
XmRepTypeInstallTearOffModelConverter – install the resource converter fo
the RowColumn XmNtearOffModel resource.

Synopsis

#include <Xm/RepType.h>

void XmRepTypeInstallTearOffModelConverter (void)

Availability
Motif 1.2 and later. In Motif 2.0 and later, the converter for the XmNtearOff-
Model resource is internally installed, and this function is obsolete.

Description
XmRepTypeInstallTearOffModelConverter () installs the resource
converter for the RowColumn XmNtearOffModel resource. This resource con
trols whether or not PulldownMenus and PopupMenus in an application can
torn off. Once the converter is installed, the value of XmNtearOffModel can b
specified in a resource file.

Usage
In Motif 1.2, a RowColumn that is configured as a PopupMenu or a Pulldown
Menu supports tear-off menus. When a menu is torn off, it remains on the scr
after a selection is made so that additional selections can be made. A menu
that can be torn off contains a tear-off button at the top of the menu. The
XmNtearOffModel resource controls whether or not tear-off functionality is
available for a menu. This resource can take the values
XmTEAR_OFF_ENABLED or XmTEAR_OFF_DISABLED.

In Motif 1.2, the resource converter for XmNtearOffModel is not installed by
default. Some existing applications depend on receiving a callback when a m
is mapped; since torn-off menus are always mapped, these applications migh
if a user is allowed to enable tear-off menus from a resource file.XmRepTy-
peInstallTearOffModelConverter () registers the converter that allows
the resource to be set from a resource file.

See Also
XmRowColumn(2).
Motif Reference Manual 313

XmRepTypeRegister Motif Functions and Macros

pe.
a-

on
ion

The
n
rac-

mes

-

-
es to
 If a
an-
Name
XmRepTypeRegister – register a representation type resource.

Synopsis

#include <Xm/RepType.h>

XmRepTypeId XmRepTypeRegister (String rep_type,
String *value_names,
unsigned char *values,
unsigned char num_values)

Inputs
rep_type Specifies the string name for the representation type.
value_names Specifies an array of value names for the representation ty

IP values 1i Specifies an array of values for the represent
tion type.

num_values Specifies the number of items in value_names and values.

Returns
The ID number of the representation type.

Availability
Motif 1.2 and later.

Description
XmRepTypeRegister () registers a representation type with the representati
type manager. The representation type manager provides resource convers
facilities for enumerated values.XmRepTypeRegister () installs a resource
converter that converts string values to numerical representation type values.
strings in thevalue_names array specify the value names for the representatio
type. The strings are specified in lowercase characters, with underscore cha
ters separating words and without Xm prefixes.

If the valuesargument is NULL, the order of the strings in thevalue_namesarray
determines the numerical values for the enumerated type. In this case, the na
are assigned consecutive values starting with 0 (zero). Ifvalues is non-NULL, it
is used to assign values to the names. Each name in thevalue_names array is
assigned the corresponding value in thevaluesarray, so it is possible to have non
consecutive values or duplicate names for the same value.

XmRepTypeRegister () returns the ID number that is assigned to the repre
sentation type. This value is used in other representation type manager routin
identify a particular type. A representation type can only be registered once.
type is registered more than once, the behavior of the representation type m
ager is undefined.
314 Motif Reference Manual

Motif Functions and Macros XmRepTypeRegister

han-

n.
t the
pli-
Usage
In Motif 1.2 and later, the representation type manager provides support for
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representatio
The representation type manager can also be queried to get information abou
registered types. This facility is especially useful for interface builders and ap
cations likeeditres that allow a user to set resources interactively.XmRepTy-
peRegister () provides a way for an application to register representation
types for application-specific resources or for new widget classes.

See Also
XmRepTypeAddReverse (1), XmRepTypeGetId (1),
XmRepTypeGetNameList (1), XmRepTypeGetRecord (1),
XmRepTypeGetRegistered (1), XmRepTypeValidValue (1).
Motif Reference Manual 315

XmRepTypeValidValue Motif Functions and Macros

re-

.

lt

-

han-

n.
t the
pli-

r

Name
XmRepTypeValidValue – determine the validity of a numerical value for a rep
sentation type.

Synopsis

#include <Xm/RepType.h>

Boolean XmRepTypeValidValue (XmRepTypeIdrep_type_id,
unsigned char test_value,
Widget enable_default_warning)

Inputs
rep_type_id Specifies the ID number of the representation type
test_value Specifies the value that is to be tested.
enable_default_warning Specifies a widget that is used to generate a defau
warning message.

Returns
True if the specified value is valid or False otherwise.

Availability
Motif 1.2 and later.

Description
XmRepTypeValidValue () checks the validity of the specifiedtest_value for
the representation type specified byrep_type_id. The routine returns True if the
value is valid. Otherwise, it returns False. If theenable_default_warningparame-
ter is non-NULL,XmRepTypeValidValue () uses the specified widget to gen
erate a default warning message if the value is invalid. Ifenable_default_warning
is NULL, no default warning message is provided.

Usage
In Motif 1.2 and later, the representation type manager provides support for
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representatio
The representation type manager can also be queried to get information abou
registered types. This facility is especially useful for interface builders and ap
cations likeeditres that allow a user to set resources interactively.XmRepType-
ValidValue () provides a way for an application to check if a value is valid fo
a particular representation type.

See Also
XmRepTypeGetId (1), XmRepTypeRegister (1).
316 Motif Reference Manual

Motif Functions and Macros XmResolveAllPartOffsets

ns.

l
, if
 to

e
ts()
Name
XmResolveAllPartOffsets – ensure upward-compatible widgets and applicatio

Synopsis

void XmResolveAllPartOffsets (WidgetClass widget_class,
XmOffsetPtr *offset,
XmOffsetPtr *constraint_offset)

Inputs
widget_class Specifies the widget class pointer.

Outputs
offset Returns the widget offset record.
constraint_offset Returns the constraint offset record.

Description
XmResolveAllPartOffsets () ensures that an application or a widget wil
be upwardly compatible with the records in a widget structure. In other words
the size of a widget structure changes in the future, this routine can be used
calculate the locations of the new offsets. This routine andXmResolvePart-
Offsets () are similar. During the creation of a widget, both routines modify th
widget structure by allocating an array of offset values. XmResolvePartOffse
affects only the widget instance record, whileXmResolveAllPartOff-
sets () affects the widget instance and constraint records.

Usage
If you are subclassing a Motif widget, you should useXmResolveAllPart-
Offsets () andXmResolvePartOffsets () to ensure that your widget will
be compatible with future releases of the toolkit.

See Also
XmResolvePartOffsets (1).
Motif Reference Manual 317

XmResolvePartOffsets Motif Functions and Macros

s.

he
alcu-

e

Name
XmResolvePartOffsets – ensure upward-compatible widgets and application

Synopsis

void XmResolvePartOffsets (WidgetClasswidget_class, XmOffsetPtr *offset)

Inputs
widget_class Specifies the widget class pointer.

Outputs
offset Returns the widget offset record.

Description
XmResolvePartOffsets () ensures that an application or a widget will be
upwardly compatible with the records in a widget structure. In other words, if t
size of a widget structure changes in the future, this routine can be used to c
late the locations of the new offsets. This routine andXmResolveAllPart-
Offsets () are similar. During the creation of a widget, both routines modify th
widget structure by allocating an array of offset values.XmResolvePart-
Offsets () affects only the widget instance record, whileXmResolveAll-
PartOffsets () affects the widget instance and constraint records.

Usage
If you are subclassing a Motif widget, you should useXmResolvePartOff-
sets () andXmResolveAllPartOffsets () to ensure that your widget will
be compatible with future releases of the toolkit.

See Also
XmResolveAllPartOffsets (1).
318 Motif Reference Manual

Motif Functions and Macros XmScaleGetValue

c-

all-

h

Name
XmScaleGetValue – get the slider value for a Scale widget.

Synopsis

#include <Xm/Scale.h>

void XmScaleGetValue (Widgetwidget, int *value_return)

Inputs
widget Specifies the Scale widget.

Outputs
value_return Returns the current slider position for the Scale.

Description
XmScaleGetValue () returns the current position of the slider within the spe
ified Scalewidget.

Usage
XmScaleGetValue () is a convenience routine that returns the value of the
XmNvalue resource for the Scale widget. Calling the routine is equivalent to c
ing XtGetValues () for that resource, althoughXmScaleGetValue ()
accesses the value through the widget instance structure rather than throug
XtGetValues ().

See Also
XmScaleSetValue (1), XmScale (2).
Motif Reference Manual 319

XmScaleSetTicks Motif Functions and Macros

rge

ks
ch
tion
ale
ach
ach

 the
aced
or
The
r of
Name
XmScaleSetTicks – set tick marks for a Scale widget.

Synopsis

#include <Xm/Scale.h>

void XmScaleSetTicks (Widget widget,
int big_every,
Cardinal num_med,
Cardinal num_small,
Dimension size_big,
Dimension size_med,
Dimension size_small)

Inputs
widget Specifies a scale widget.
big_every Specifies the number of scale values between large ticks.
num_med Specifies the number of medium-sized ticks between the la
tick marks.
num_small Specifies the number of small-sized ticks between the
medium-sized tick marks.
size_big Specifies the size of the large ticks.
size_med Specifies the size of the medium ticks.
size_small Specifies the size of the small ticks.

Availability
Motif 2.0 and later.

Description
XmScaleSetTicks() places tick marks along the edges of a Scale widget. Tic
may be of three types: big, medium, and small, and the size (in pixels) of ea
type is specified by size_big, size_med, and size_small respectively. The loca
of each big tick is given by big_every, which simply specifies the number of sc
values between each big tick. The number of medium-sized ticks between e
big tick is given by num_med, and the number of small-sized ticks between e
medium-sized tick is num_small.

Usage
XmScaleSetTicks() is a convenience function which places tick marks along
edge of a Scale by creating a series of SeparatorGadget children at evenly sp
intervals. If size_big is zero, XmScaleSetTicks() simply returns. If size_med
size_small is zero, num_med and num_small are forced to zero respectively.
number of medium and small tick marks required may be zero, but the numbe
large tick marks must not be less than 2.
320 Motif Reference Manual

Motif Functions and Macros XmScaleSetTicks

ll-
.
ar-

ase,
d.

w

SeparatorGadgets are created with the names "BigTic", "MedTic", and "Sma
Tic", the XmNseparatorType resource of each is forced to XmSINGLE_LINE
XmScaleSetTicks() does not delete any existing ticks when invoked on any p
ticular Scale, neither does the Scale recalculate proper positions for the tick
marks if the scale orientation is changed after tick marks are added. In each c
existing tick marks must be erased and subsequently redrawn or re-specifie

Example
The following code ensures that any tick marks are erased before adding ne
ticks to a Scale:

#include <Xm/Scale.h>
#include <Xm/SeparatoG.h>

void ScaleEraseSetTicks (Widget scale,
int big_every,
Cardinal num_med,
Cardinal num_small,
Dimension size_big,
Dimension size_med,
Dimension size_med)

{
WidgetList children = (WidgetList) 0;
Cardinal num_children = (Cardinal) 0;
int i;
String name;

/* fetch scale children. */
XtVaGetValues (scale, XmNchildren, &children, XmNnumChildren,
&num_children, 0)

/* destroy old ticks. */
/* some optimization to reuse correctly */
/* placed ticks might be in order here... */
for (i = 0; i < num_children; i++) {

if (XmIsSeparatorGadget (children[i])) {
if ((name = XtName (children[i])) != (String) 0) {

if ((strcmp (name, "BigTic") == 0) ||
(strcmp (name, "MedTic") == 0) ||
(strcmp (name, "SmallTic") == 0)) {
XtDestroyWidget (children[i]);}

}
}

}

Motif Reference Manual 321

XmScaleSetTicks Motif Functions and Macros
/* create new ticks. */
XmScaleSetTicks (scale, big_every, num_med, num_small, size_big,
size_med, size_small);

}

See Also
XmScaleSetValues (1). XmScale (2), XmSeparatorGadget (2).
322 Motif Reference Manual

Motif Functions and Macros XmScaleSetValue

N-
g

Name
XmScaleSetValue – set the slider value for a Scale widget.

Synopsis

#include <Xm/Scale.h>

void XmScaleSetValue (Widgetwidget, int value)

Inputs
widget Specifies the Scale widget.
value Specifies the value of the slider.

Description
XmScaleSetValue () sets the current position of the slider to value in the
specified Scalewidget. Thevalue must be in the range XmNminimum to XmN-
maximum.

Usage
XmScaleSetValue () is a convenience routine that sets the value of the Xm
value resource for the Scale widget. Calling the routine is equivalent to callin
XtSetValues () for that resource, althoughXmScaleSetValue () accesses
the value through the widget instance structure rather than throughXtSetVal-
ues ().

See Also
XmScaleGetValue (1), XmScale (2).
Motif Reference Manual 323

XmScrollBarGetValues Motif Functions and Macros

ar

l.
t

c-

s

gh
Name
XmScrollBarGetValues – get information about the current state of a ScrollB
widget.

Synopsis

#include <Xm/ScrollBar.h>

void XmScrollBarGetValues (Widget widget,
int *value_return,
int *slider_size_return,
int * increment_return,
int *page_increment_return)

Inputs
widget Specifies the ScrollBar widget.

Outputs
value_return Returns the current slider position.
slider_size_return Returns the current size of the slider.
increment_return Returns the current increment and decrement leve
page_increment_return Returns the current page increment and decremen
level.

Description
XmScrollBarGetValues () returns the current state information for the spe
ified ScrollBarwidget. This information consists of the position and size of the
slider, as well as the increment and page increment values.

Usage
XmScrollBarGetValues () is a convenience routine that returns the value
of the XmNvalue, XmNsliderSize, XmNincrement, and XmNpageIncrement
resources for the ScrollBar widget. Calling the routine is equivalent to calling
XtGetValues () for those resources, althoughXmScrollBarGetValues ()
accesses the values through the widget instance structure rather than throu
XtGetValues ().

See Also
XmScrollBarSetValues (1), XmScrollBar (2).
324 Motif Reference Manual

Motif Functions and Macros XmScrollBarSetValues

is
he

f

gh

the
r to
Name
XmScrollBarSetValues – set the current state of a ScrollBar widget.

Synopsis

#include <Xm/ScrollBar.h>

void XmScrollBarSetValues (Widget widget,
int value,
int slider_size,
int increment,
int page_increment,
Boolean notify)

Inputs
widget Specifies the ScrollBar widget.
value Specifies the slider position.
slider_size Specifies the size of the slider.
increment Specifies the increment and decrement level.
page_increment Specifies the page increment and decrement level.
notify Specifies whether or not the value changed callback is
invoked.

Description
XmScrollBarSetValues () sets the current state of the specified ScrollBar
widget. The position of the slider is set tovalue, which must be in the range
XmNminimum to XmNmaximum minus XmNsliderSize. The size of the slider
set toslider_size, which must be between 1 and the size of the scroll region. T
increment and page increment values are set toincrement andpage_increment,
respectively.

If notify is True,XmScrollBarSetValues () invokes the XmNval-
ueChangedCallback for the ScrollBar when the state is set.

Usage
XmScrollBarSetValues () is a convenience routine that sets the values o
the XmNvalue, XmNsliderSize, XmNincrement, and XmNpageIncrement
resources for the ScrollBar widget. Calling the routine is equivalent to calling
XtSetValues () for those resources, althoughXmScrollBarSetValues ()
accesses the values through the widget instance structure rather than throu
XtSetValues ().

Thenotifyparameter indicates whether or not the value changed callbacks for
ScrollBar are invoked. You can avoid redundant code by setting this paramete
True. If you are callingXmScrollBarSetValues () from a value changed
Motif Reference Manual 325

XmScrollBarSetValues Motif Functions and Macros

e

n-
callback routine, you probably want to set the parameter to False to avoid th
possibility of an infinite loop. CallingXmScrollBarSetValues () with notify
set to True causes the callback routines to be invoked in a way that is indisti
guishable from a user-initiated adjustment to the ScrollBar.

See Also
XmScrollBarGetValues (1), XmScrollBar (2).
326 Motif Reference Manual

Motif Functions and Macros XmScrolledWindowSetAreas

-
ore

d-
n be

mN-

ren,
t if
for

d

pec-
Name
XmScrolledWindowSetAreas – specify the children for a scrolled window.

Synopsis

#include <Xm/ScrolledW.h>

void XmScrolledWindowSetAreas (Widget widget,
Widget horizontal_scrollbar,
Widget vertical_scrollbar,
Widget work_region)

Inputs
widget Specifies the ScrolledWindow widget.
horizontal_scrollbar Specifies the widget ID of the horizontal ScrollBar.
vertical_scrollbar Specifies the widget ID of the vertical ScrollBar.
work_region Specifies the widget ID of the work window.

Availability
In Motif 2.0 and later,XmScrolledWindowSetAreas () is obsolete.

Description
XmScrolledWindowSetAreas () sets up the standard regions of a Scrolled
Window widget for an application. The ScrolledWindow must be created bef
the routine is called.XmScrolledWindowSetAreas () specifies the horizon-
tal and vertical ScrollBars and the work window region. If a particular Scrolle
Window does not have one of these regions, the corresponding argument ca
specified as NULL.

Usage
Each of the ScrolledWindow regions is associated with a ScrolledWindow
resource;XmScrolledWindowSetAreas () sets the associated resources.
The resources that correspond to the last three arguments to the routine are X
horizontalScrollBar, XmNverticalScrollBar, and XmNworkWindow, respec-
tively.

If an application does not callXmScrolledWindowSetAreas (), the widget
may still set some of the standard regions. If ScrollBars are added as child
the XmNhorizontalScrollBar and XmNverticalScrollBar resources may be se
they have not already been specified. Any child that is not a ScrollBar is used
the XmNworkWindow. If you want to be certain about which widgets are use
for the different regions, it is wise to callXmScrolledWindowSetAreas ()
explicitly.

In Motif 2.0 and later, the function is obsolete, and the programmer should s
ify the XmNhorizontalScrollBar, XmNverticalScrollBar, and XmNworkWindow
Motif Reference Manual 327

XmScrolledWindowSetAreas Motif Functions and Macros

rs
a
ent

w:

-

_w,

_w,
resources directly through a call toXtSetValues (). Although ostensibly main-
tained for backwards compatibility, the implementation ofXmScrolledWin-
dowSetAreas () in Motif 2.0 and later is not Motif 1.2 compatible. In Motif
1.2, supplying a NULL value for any of the scrollbar or work window paramete
directly sets the internal component to NULL. In Motif 2.0 and later, supplying
NULL value causes that parameter to be ignored, leaving the internal compon
intact.

Example
The following code fragment shows how to set the regions of a ScrolledWindo

Widget toplevel, scrolled_w, drawing_a, vsb, hsb;
int view_width, view_height;

scrolled_w = XtVaCreateManagedWidget ("scrolled_w", xmScrolledWindow-
WidgetClass, toplevel,

XmNscrollingPolicy,
XmAPPLICATION_DEFINED,
XmNvisualPolicy, XmVARIABLE,
NULL);

drawing_a = XtVaCreateManagedWidget ("drawing_a", xmDrawingAreaWidg
etClass, scrolled_w,

XmNwidth, view_width,
XmNheight, view_height,
NULL);

vsb = XtVaCreateManagedWidget ("vsb", xmScrollBarWidgetClass, scrolled
XmNorientation, XmVERTICAL,
NULL);

hsb = XtVaCreateManagedWidget ("hsb", xmScrollBarWidgetClass, scrolled
XmNorientation, XmHORIZONTAL,
NULL);

XmScrolledWindowSetAreas (scrolled_w, hsb, vsb, drawing_a);

See Also
XmScrolledWindow (2).
328 Motif Reference Manual

Motif Functions and Macros XmScrollVisible

e

or

or

et

ic-

ack
Name
XmScrollVisible – make an obscured child of a ScrolledWindow visible.

Synopsis

#include <Xm/ScrolledW.h>

void XmScrollVisible (Widget scrollw_widget,
Widget widget,
Dimension left_right_margin,
Dimension top_bottom_margin)

Inputs
scrollw_widget Specifies the ScrolledWindow widget.
widget Specifies the widget ID of the widget that is to be mad

visible.
left_right_margin Specifies the distance between the widget and the left

right edge of the viewport if the ScrolledWindow is
scrolled horizontally.

top_bottom_margin Specifies the distance between the widget and the top
bottom edge of the viewport if the ScrolledWindow is
scrolled vertically.

Availability
Motif 1.2 and later.

Description
XmScrollVisible () scrolls the specified ScrolledWindowscrollw_widgetso
that the obscured or partially obscuredwidget becomes visible in the work area
viewport.widgetmust be a descendent ofscrollw_widget. The routine repositions
the work area of the ScrolledWindow and sets the margins between the widg
and the viewport boundaries based onleft_right_marginandtop_bottom_margin
if necessary.

Usage
XmScrollVisible () provides a way for an application to ensure that a part
ular child of a ScrolledWindow is visible. In order for the routine to work, the
XmNscrollingPolicy of the ScrolledWindow widget must be set to XmAUTO-
MATIC. This routine is designed to be used in the XmNtraverseObscureCallb
for a ScrolledWindow.

See Also
XmScrolledWindow (2).
Motif Reference Manual 329

XmSelectionBoxGetChild Motif Functions and Macros

al-

a-

s

ed
lec-

re-

ne
d
the
Name
XmSelectionBoxGetChild – get the specified child of a SelectionBox widget.

Synopsis

#include <Xm/SelectioB.h>

Widget XmSelectionBoxGetChild (Widgetwidget, unsigned charchild)

Inputs
widget Specifies the SelectionBox widget.
child Specifies the child of the SelectionBox widget. Pass one of the v
ues from the list below.

Returns
The widget ID of the specified child of the SelectionBox.

Availability
As of Motif 2.0, the toolkit abstract child fetch routines are marked for deprec
tion. You should give preference toXtNameToWidget (), except when fetching
the SelectionBox default button or work area.

Description
XmSelectionBoxGetChild () returns the widget ID of the specified child of
the SelectionBox widget.

Usage
XmDIALOG_APPLY_BUTTON, XmDIALOG_CANCEL_BUTTON,
XmDIALOG_HELP_BUTTON, and XmDIALOG_OK_BUTTON specify the
action buttons in thewidget. XmDIALOG_DEFAULT_BUTTON specifies the
current default button. XmDIALOG_LIST and XmDIALOG_LIST_LABEL
specify the list and its label. XmDIALOG_TEXT and
XmDIALOG_SELECTION_LABEL specify the selection text entry area and it
label. XmDIALOG_SEPARATOR specifies the separator and
XmDIALOG_WORK_AREA specifies any work area child that has been add
to the SelectionBox. For more information on the different children of the Se
tionBox, see the manual page in Section 2,Motif and Xt Widget Classes.

Widget Hierarchy

As of Motif 2.0, most Motif composite child fetch routines are marked as dep
cated. However, since it is not possible to fetch the
XmDIALOG_DEFAULT_BUTTON or XmDIALOG_WORK_AREA children
using a public interface except through XmSelectionBoxGetChild(), the routi
should not be considered truly deprecated. For consistency with the preferre
new style, when fetching all other child values, consider giving preference to
330 Motif Reference Manual

Motif Functions and Macros XmSelectionBoxGetChild

the
Intrinsics routine XtNameToWidget(), passing one of the following names as
second parameter:

“Apply” (XmDIALOG_APPLY_BUTTON)
“Cancel” (XmDIALOG_CANCEL_BUTTON)
“OK” (XmDIALOG_OK_BUTTON)
“Separator” (XmDIALOG_SEPARATOR)
“Help” (XmDIALOG_HELP_BUTTON)
“Symbol” (XmDIALOG_SYMBOL_LABEL)
“Message” (XmDIALOG_MESSAGE_LABEL)

“*ItemsList”1 (XmDIALOG_LIST)
“Items” (XmDIALOG_LIST_LABEL)
“Selection” (XmDIALOG_SELECTION_LABEL)
“Text” (XmDIALOG_TEXT)

Structures
The possible values for child are:

XmDIALOG_APPLY_BUTTON
XmDIALOG_OK_BUTTON
XmDIALOG_CANCEL_BUTTON
XmDIALOG_SELECTION_LABEL
XmDIALOG_DEFAULT_BUTTON XmDIALOG_SEPARATOR
XmDIALOG_HELP_BUTTON XmDIALOG_TEXT
XmDIALOG_LIST
XmDIALOG_WORK_AREA
XmDIALOG_LIST_LABEL

See Also
XmPromptDialog (2), XmSelectionBox (2).

1.The “*” is important: the List is not a direct child of the SelectionBox, but of a ScrolledList.
Motif Reference Manual 331

XmSetColorCalculation Motif Functions and Macros

r that

h
.

n-
r
nent
r is a
t is
lor

: if
ith

 to
d by
Name
XmSetColorCalculation – set the procedure that calculates default colors.

Synopsis

XmColorProc XmSetColorCalculation (XmColorProccolor_proc)

Inputs
color_proc Specifies the procedure that is used for color calculation.

Returns
The previous color calculation procedure.

Description
XmSetColorCalculation () sets the procedure called byXmGetColors ()1

that calculates the default foreground, top and bottom shadow, and selection
colors. The procedure calculates these colors based on the background colo
has been passed to the procedure. Ifcolor_procis NULL, this routine restores the
default color calculation procedure.XmSetColorCalculation () returns the
color calculation procedure that was in use when the routine was called. Bot
XmGetColors () andXmChangeColor () use the color calculation procedure

Usage
Motif widgets rely on the use of shadowed borders to create their three-dime
sional appearance. The top and bottom shadow colors are lighter and darke
shades of the background color; these colors are reversed to make a compo
appear raised out of the screen or recessed into the screen. The select colo
slightly darker shade of the background color that indicates that a componen
selected. The foreground color is either black or white, depending on which co
provides the most contrast with the background color.XmSetColorCalcula-
tion () sets the procedure that calculates these colors. UseXmGetColorCal-
culation () to get the default color calculation procedure.

In Motif 2.0 and later, per-screen color calculation procedures are supported
the XmNcolorCalculationProc resource of the XmScreen object associated w
a given widget is not NULL, the procedure specified by the resource is used
calculate color in preference to any procedure which may have been specifie
XmSetColorCalculation ().

Procedures
The XmColorProc has the following syntax:

typedef void (*XmColorProc) (XColor *bg_color, /* specifies the back-
ground color */

1.Erroneously missing from 1st and 2nd editions.
332 Motif Reference Manual

Motif Functions and Macros XmSetColorCalculation

ter
lue,
are
ce-
XColor *fg_color, /* returns the fore-
ground color */

XColor *sel_color, /* returns the select
color */

XColor *ts_color, /* returns the top
shadow color */

XColor *bs_color) /* returns the bottom
shadow color */

An XmColorProc takes five arguments. The first argument, bg_color, is a poin
to an XColor structure that specifies the background color. The red, green, b
and pixel fields in the structure contain valid values. The rest of the arguments
pointers to XColor structures for the colors that are to be calculated. The pro
dure fills in the red, green, and blue fields in these structures.

See Also
XmChangeColor (1), XmGetColorCalculation (1), XmGetColors (1).
XmScreen (2).
Motif Reference Manual 333

XmSetFontUnit Motif Functions and Macros

D-

s.

tU-

ll
tif

n the
d
.2,
 val-
ts
Name
XmSetFontUnit – set the font unit values.

Synopsis

void XmSetFontUnit (Display *display, int font_unit_value)

Inputs
display Specifies a connection to an X server; returned from XOpen
isplay() or XtDisplay().
font_unit_value Specifies the value for both horizontal and vertical font unit

Availability
In Motif 1.2 and later,XmSetFontUnit () is obsolete. It has been superseded
by setting the Screen resources XmNhorizontalFontUnit and XmNverticalFon
nit.

Description
XmSetFontUnit () sets the value of the horizontal and vertical font units for a
of the screens on the display. This routine is retained for compatibility with Mo
1.1 and should not be used in newer applications.

Usage
Font units are a resolution-independent unit of measurement that are based o
width and height characteristics of a particular font. The default horizontal an
vertical font unit values are based on the XmNfont resource, which in Motif 1
is a resource of the Screen object. An application can override these default
ues by callingXmSetFontUnit (). The values should be set before any widge
that use resolution-independent data are created.

See Also
XmConvertUnits (1), XmSetFontUnits (1), XmGadget(2),
XmManager(2), XmPrimitive (2), XmScreen (2).
334 Motif Reference Manual

Motif Functions and Macros XmSetFontUnits

-

d
tU-

1

n the
d
.2
se
Name
XmSetFontUnits – set the font unit values.

Synopsis

void XmSetFontUnits (Display *display, int h_value, int v_value)

Inputs
display Specifies a connection to an X server; returned from XOpenDis
play() or XtDisplay().
h_value Specifies the value for horizontal font units.
v_value Specifies the value for vertical font units.

Availability
In Motif 1.2 and later,XmSetFontUnits () is obsolete. It has been supersede
by setting the Screen resources XmNhorizontalFontUnit and XmNverticalFon
nit.

Description
XmSetFontUnits () sets the value of the horizontal and vertical font units to
h_value andv_value respectively. The routine sets the font units for all of the
screens on the display. This routine is retained for compatibility with Motif 1.
and should not be used in newer applications.

Usage
Font units are a resolution-independent unit of measurement that are based o
width and height characteristics of a particular font. The default horizontal an
vertical font unit values are based on the XmNfont resource, which in Motif 1
and later, is a resource of the Screen object. An application can override the
default values by callingXmSetFontUnits (). The values should be set before
any widgets that use resolution-independent data are created.

See Also
XmConvertUnits (1), XmSetFontUnit (1), XmGadget(2),
XmManager(2), XmPrimitive (2), XmScreen (2).
Motif Reference Manual 335

XmSetMenuCursor Motif Functions and Macros

-

ts

ed.
ter,
menu
Name
XmSetMenuCursor – set the current menu cursor.

Synopsis

void XmSetMenuCursor (Display *display, CursorcursorId)

Inputs
display Specifies a connection to an X server; returned from XOpenDis
play() or XtDisplay().
cursorId Specifies the cursor ID for the menu cursor.

Availability
In Motif 1.2 and later,XmSetMenuCursor () is obsolete. It has been super-
seded by setting the Screen resource XmNmenuCursor.

Description
XmSetMenuCursor () sets the menu cursor for an application. The routine se
the cursor for all screens on the specifieddisplay. The specified cursor is shown
whenever the application is using a Motif menu on the specifieddisplay. This
routine is retained for compatibility with Motif 1.1 and should not be used in
newer applications.

Usage
The menu cursor is the pointer shape that is used whenever a menu is post
This cursor can be different from the normal pointer shape. In Motif 1.2 and la
the new Screen object has a resource, XmNmenuCursor, that specifies the
cursor.XmSetMenuCursor () is retained for compatibility with Motif 1.1 and
should not be used in newer applications.

See Also
XmGetMenuCursor (1), XmScreen (2).
336 Motif Reference Manual

Motif Functions and Macros XmSetProtocolHooks

tif
ked
ook
his
ssar-

sim-
on.
tain-
o-

are
Name
XmSetProtocolHooks – set prehooks and posthooks for a protocol.

Synopsis

#include <Xm/Protocols.h>

void XmSetProtocolHooks (Widget shell,
Atom property,
Atom protocol,
XtCallbackProc prehook,
XtPointer pre_closure,
XtCallbackProc posthook,
XtPointer post_closure)

Inputs
shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocol Specifies the protocol atom.
prehook Specifies the procedure to invoke before the client callbacks.
pre_closure Specifies any client data that is passed to the prehook.
posthook Specifies the procedure to invoke after the client callbacks.
post_closure Specifies any client data that is passed to the posthook.

Description
XmSetProtocolHooks () allows pre- and post-procedures to be invoked in
addition to the regular callback procedures that are performed when the Mo
window manager sends a protocol message. The prehook procedure is invo
before calling the procedures on the client’s callback list, whereas the posth
procedure is invoked after calling the procedures on the client’s callback list. T
routine gives shells more control flow, since callback procedures aren’t nece
ily executed in any particular order.

Usage
A protocol is a communication channel between applications. Protocols are
ply atoms, stored in a property on the top-level shell window for the applicati
To communicate using a protocol, a client sends a ClientMessage event con
ing apropertyandprotocol, and the receiving client responds by calling the ass
ciated protocol callback routine.XmSetProtocolHooks () gives an
application more control over the flow of callback procedures, since callbacks
not necessarily invoked in any particular order.

See Also
XmAddProtocolCallback (1), XmRemoveProtocolCallback (1),
XmSetWMProtocolHooks (1), VendorShell (2).
Motif Reference Manual 337

XmSetWMProtocolHooks Motif Functions and Macros

s.

-
 a

ack

 in
Name
XmSetWMProtocolHooks – set prehooks and posthooks for the
XA_WM_PROTOCOLS protocol.

Synopsis

#include <Xm/Protocols.h>

void XmSetWMProtocolHooks (Widget shell,
Atom protocol,
XtCallbackProc prehook,
XtPointer pre_closure,
XtCallbackProc posthook,
XtPointer post_closure)

Inputs
shell Specifies the widget associated with the protocol property.
protocol Specifies the protocol atom.
prehook Specifies the procedure to invoke before the client callback
pre_closure Specifies any client data that is passed to the prehook.
posthook Specifies the procedure to invoke after the client callbacks.
post_closure Specifies any client data that is passed to the posthook.

Description
XmSetWMProtocolHooks ()1 is a convenience routine that callsXmSetPro-
tocolHooks () with property set to XA_WM_PROTOCOL, the window man-
ager protocol property.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com
munication between clients and window managers. To communicate using
protocol, a client sends a ClientMessage event containing a property andproto-
col, and the receiving client responds by calling the associated protocol callb
routine.XmSetWMProtocolHooks () gives an application more control over
the flow of callback procedures, since callbacks are not necessarily invoked
any particular order.

See Also
XmAddWMProtocolCallback (1), XmInternAtom (1),
XmRemoveWMProtocolCallback (1), XmSetProtocolHooks (1),
VendorShell (2).

1.Erroneously given as XmSetXmProtocolHooks() in 1st and 2nd editions.
338 Motif Reference Manual

Motif Functions and Macros XmSimpleSpinBoxAddItem

 to

r is
g

in-
Name
XmSimpleSpinBoxAddItem – add an item to a SimpleSpinBox.

Synopsis

#include <Xm/SSpinB.h>

void XmSimpleSpinBoxAddItem (Widgetwidget, XmStringitem, int position)

Inputs
widget Specifies a SimpleSpinBox widget.
item Specifies an item to add.
position Specifies the position at which to add the new item.

Availability
Motif 2.1 and later.

Description
XmSimpleSpinBoxAddItem () adds anitem to a SimpleSpinBoxwidget at a
givenposition within the list of values which the widget may display. Ifposition
is zero, or ifposition is greater than the number of items in the list, theitem is
appended to the list of values.

Usage
XmSimpleSpinBoxAddItem () is a convenience routine that adds anitem to
the list of items which a SimpleSpinBox may display. In order to add an item
the SimpleSpinBox, a compound string must be created.XmSimpleSpinBox-
AddItem () adds theitem to the SimpleSpinBox by manipulating the XmNval-
ues, XmNnumValues, and XmNposition resources of the widget. If the
XmNspinBoxChildType resource of the widget is not XmSTRING, or if the item
is NULL, the procedure simply returns without modifying the array of values.

The SimpleSpinBox widget takes a copy of the supplied item; the programme
responsible for freeing the compound string at an appropriate point by callin
XmStringFree ().

Example
The following procedure simply appends an item onto the end of a SimpleSp
Box list:

void SimpleSpinBoxAppend (Widget spinb, char *item)
{

XmString xms = XmStringGenerate ((XtPointer)
value,

XmFONTLIST_DEF
AULT_TAG,
Motif Reference Manual 339

XmSimpleSpinBoxAddItem Motif Functions and Macros
XmCHARSET_TEXT,
NULL);

XmSimpleSpinBoxAddItem (spinb, xms, 0);
XmStringFree (xms);

}

See Also
XmSimpleSpinBoxDeletePos (1), XmSimpleSpinBoxSetItem (1),
XmStringFree (1), XmSimpleSpinBox (2).
340 Motif Reference Manual

Motif Functions and Macros XmSimpleSpinBoxDeletePos

a

m,

n

t is
l-
Name
XmSimpleSpinBoxDeletePos – delete an item at the specified position from
SimpleSpinBox.

Synopsis

#include <Xm/SSpinB.h>

void XmSimpleSpinBoxDeletePos (Widgetwidget, int position)

Inputs
widget Specifies a SimpleSpinBox widget.
position Specifies the position at which to delete an item.

Availability
Motif 2.1 and later.

Description
XmSimpleSpinBoxDeletePos () deletes an item at a givenposition from a
SimpleSpinBox widget. A value of 1 indicates the first item, 2 is the second ite
and so on. The last item in the list can be specified by passing aposition of zero.

Usage
XmSimpleSpinBoxDeletePos () is a convenience function which deletes a
item from the set of values associated with a SimpleSpinBox. The function
directly manipulates the XmNvalues, XmNnumValues, and XmNposition
resources of the widget. If the XmNspinBoxChildType resource of the widge
not XmSTRING, the function simply returns without modifying the array of va
ues.

See Also
XmSimpleSpinBoxAddItem (1), XmSimpleSpinBoxSetItem (1),
XmSimpleSpinBox (2).
Motif Reference Manual 341

XmSimpleSpinBoxSetItem Motif Functions and Macros

the
ed
Name
XmSimpleSpinBoxSetItem – set an item in a SimpleSpinBox.

Synopsis

#include <Xm/SSpinB.h>

void XmSimpleSpinBoxSetItem (Widgetwidget, XmStringitem)

Inputs
widget Specifies a SimpleSpinBox widget.
item Specifies the item to set.

Availability
Motif 2.1 and later.

Description
XmSimpleSpinBoxSetItem () makes an item in a SimpleSpinBox widget
the current value.

Usage
XmSimpleSpinBoxSetItem () is a convenience routine that selects one of
the SimpleSpinBox values. Theitem must exist within the XmNvalues array of
thewidget, otherwise a warning message is displayed. The function modifies
XmNposition resource of the widget if the item is found. No check is perform
to ensure that the XmNspinBoxChildType resource of the SimpleSpinBox is
XmSTRING.

See Also
XmSimpleSpinBoxAddItem (1), XmSimpleSpinBoxDeletePos (1),
XmSimpleSpinBox (2).
342 Motif Reference Manual

Motif Functions and Macros XmSpinBoxValidatePosition

ld at

-

t-
ts
e is
-

ed
Name
XmSpinBoxValidatePosition – validate the current value of a SpinBox.

Synopsis

#include <Xm/SpinB.h>

int XmSpinBoxValidatePosition (Widgettext_field, int *position_value)

Inputs
text_field Specifies a text field child of a SpinBox widget.

Outputs
position_value Returns the position of the current value.

Returns
The status of the validation.

Availability
Motif 2.1 and later.

Description
XmSpinBoxValidatePosition () checks that thetext_field child of a Spin-
Box has a valid position value, and places the validated value of the text_fie
the addressposition_value. If the position is valid, the function returns
XmVALID_VALUE. Otherwise the function returns XmCURRENT_VALUE,
XmMAXIMUM_VALUE, XmMINIMUM_VALUE, or
XmINCREMENT_VALUE, depending upon a comparison of the current posi
tion and other constraint resources of thetext_field.

Usage
XmSpinBoxValidatePosition () can be used to ensure that the user has
entered a valid value into an editable textual child of a SpinBox. Iftext_field is
NULL, or if text_field does not hold the XmQTaccessTextual trait, or if the
XmNspinBoxChildType of this widget is not XmNUMERIC the function returns
XmCURRENT_VALUE. The current value of the text field is fetched as a floa
ing point number, then converted into an integer using the XmNdecimalPoin
resource: digits after the decimal place are simply truncated. The current valu
subsequently compared against the XmNminimumValue and XmNmaximum
Value resources: if less than XmNminimumValue,position_value is set to the
value of XmNminimumValue, and the function returns XmMINIMUM_VALUE,
or if the current value is more than XmNmaximumValue,position_valueis set to
the value of XmNmaximumValue, and the function returns
XmMAXIMUM_VALUE. Lastly, the function checks that the current value falls
between XmNminimumValue and XmNmaximumValue on an interval specifi
Motif Reference Manual 343

XmSpinBoxValidatePosition Motif Functions and Macros

 of

ction
by the XmNincrementValue resource. That is, the current value is a member
the set:

{
XmNminimumValue,
XmNminimumValue + XmNincrementValue,
XmNminimumValue + (2 * XmNincrementValue),
XmNminimumValue + (3 * XmNincrementValue),
...
XmNminimumValue + (n * XmNincrementValue),
...
XmNmaximumValue

}

If the current value does not fall within the set, theposition_value is set to the
nearest item in the set which is not more than the current value, and the fun
returns XmINCREMENT_VALUE. If all checks pass, theposition_valueis set to
the current value, and the function returns XmVALID_VALUE.

The SpinBox does not modify the contents oftext_fieldwhen performing the val-
idation.

Structures
The returned status has the following values:

XmCURRENT_VALUE XmINCREMENT_VALUE
XmMAXIMUM_VALUE XmMINIMUM_VALUE
XmVALID_VALUE

See Also
XmSpinBox (2).
344 Motif Reference Manual

Motif Functions and Macros XmStringBaseline

he

r-

re
xt
 to

lly,
ur
Name
XmStringBaseline – get the baseline spacing for a compound string.

Synopsis

Dimension XmStringBaseline (XmFontListfontlist, XmStringstring)

Inputs
fontlist Specifies the font list for the compound string.
string Specifies the compound string.

Returns
The distance, in pixels, from the top of the character box to the baseline of t
first line of text.

Availability
In Motif 2.0 and later, the XmFontList is obsolete. It is superseded by the
XmRenderTable, to which it has become an alias.

Description
XmStringBaseline () returns the distance, in pixels, from the top of the cha
acter box to the baseline of the first line of text instring. If string is created with
XmStringCreateSimple (), thenfontlistmust begin with the font associated
with the character set from the current language environment, otherwise the
result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringBaseline () provides information that is useful if you need to
render a compound string. Motif widgets render compound string automatica
so you only need to worry about rendering them yourself if you are writing yo
own widget. The routine is also useful if you want to get the dimensions of a
compound string rendered with a particular font.

See Also
XmStringComponentCreate (1), XmStringExtent (1),
XmStringHeight (1), XmStringWidth (1), XmRendition (2).
Motif Reference Manual 345

XmStringByteCompare Motif Functions and Macros

e.

ing,
ted

re
xt
 to

li-

n-

und

t

Name
XmStringByteCompare – compare two compound strings byte-by-byte.

Synopsis

Boolean XmStringByteCompare (XmStringstring1, XmStringstring2)

Inputs
string1 Specifies a compound string.
string2 Specifies another compound string.

Returns
True if the two compound strings are byte-by-byte identical or False otherwis

Description
XmStringByteCompare () compares the compound stringsstring1 and
string2 byte by byte. If the strings are equivalent, it returns True; otherwise it
returns False. If two compound strings are created withXmStringCreateLo-
calized () in the same language environment, using the same character str
the strings are byte-for-byte equal. Similarly, if two compound strings are crea
with XmStringCreate () using the same font list element tag and character
string, the strings are equal.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringByteCompare () is one of a number of routines that allow an app
cation to manipulate compound strings as it would regular character strings.

When a compound string is placed into a widget, the string is sometimes co
verted to an internal format, which provides faster processing but strips out
redundant information. As a result, when an application retrieves the compo
string from the widget by callingXtGetValues (), the returned string does not
necessarily match the original string byte-for-byte. This situation occurs mos
often with Label widgets and its subclasses.

See Also
XmStringComponentCreate (1), XmStringCompare (1).
346 Motif Reference Manual

Motif Functions and Macros XmStringByteStreamLength

e

Name
XmStringByteStreamLength – calculates the length of a byte stream.

Synopsis

unsigned int XmStringByteStreamLength (unsigned char *string)

Inputs
string Specifies a string in byte stream format.

Returns
The length, in bytes, of the string.

Availability
Motif 2.0 and later.

Description
XmStringByteStreamLength () calculates and returns the length of a byt
streamstring in bytes, including any header information. Thestring is presumed
to be a compound string which has been converted into byte stream format.

Usage
Since the returned value includes the size of the stream header, the function
returns a non-zero value even ifstring is NULL. The function is primarily used as
part of data transfer operations, for example in transferring compound string
tables to and from the clipboard or other widgets.

See Also
XmCvtXmStringToByteStream (1),
XmCvtByteStreamToXmString (1).
Motif Reference Manual 347

XmStringCompare Motif Functions and Macros

ise.

the

re
xt
 to

n

Name
XmStringCompare – compare two compound strings.

Synopsis

Boolean XmStringCompare (XmStringstring1, XmStringstring2)

Inputs
string1 Specifies a compound string.
string2 Specifies another compound string.

Returns
True if the two compound strings are semantically equivalent or False otherw

Description
XmStringCompare () compares the compound stringsstring1 andstring2
semantically. If the strings are equivalent, it returns True; otherwise it returns
False.XmStringCompare () is similar toXmStringByteCompare () but
less restrictive. Two compound string are semantically equivalent if they have
same text components, font list element tags, directions, and separators.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringCompare () is one of a number of routines that allow an applicatio
to manipulate compound strings as it would regular character strings.

See Also
XmStringcomponentCreate (1), XmStringByteCompare (1).
348 Motif Reference Manual

Motif Functions and Macros XmStringComponentCreate

le

f

lo-
the
Name
XmStringComponentCreate – create a compound string consisting of a sing
component.

Synopsis

XmString XmStringComponentCreate (XmStringComponentTypetype,
unsigned int length,
XtPointer value)

Inputs
type Specifies the type of component to create.
length Specifies the length, in bytes, of value.
value Specifies the value of the component.

Returns
A new compound string, or NULL.

Availability
Motif 2.0 and later.

Description
XmStringComponentCreate () creates a new compound string consisting o
a component of the type specified bytype, which contains the givenvalue.

Usage
If typeis not a valid component type, or iflengthis greater than zero andvalueis
NULL, then the function returns NULL. Otherwise, the function returns an al
cated compound string. It is the responsibility of the programmer to reclaim
utilized space at an appropriate point by callingXmStringFree ().

Structures
The string componenttype can have one of the following values:

XmSTRING_COMPONENT_CHARSET
XmSTRING_COMPONENT_TEXT
XmSTRING_COMPONENT_LOCALE_TEXT
XmSTRING_COMPONENT_DIRECTION
XmSTRING_COMPONENT_SEPARATOR
XmSTRING_COMPONENT_TAB
XmSTRING_COMPONENT_END
XmSTRING_COMPONENT_UNKNOWN
XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
XmSTRING_COMPONENT_WIDECHAR_TEXT
XmSTRING_COMPONENT_LAYOUT_PUSH
XmSTRING_COMPONENT_LAYOUT_POP
Motif Reference Manual 349

XmStringComponentCreate Motif Functions and Macros

ing
XmSTRING_COMPONENT_RENDITION_BEGIN
XmSTRING_COMPONENT_RENDITION_END

Example
The following code illustrates basic compound string creation by concatenat
elements from an array of strings:

XmString create_xmstring_from_array (char **array, int count, Boolean tab)
{

XmString txt, sep;
XmString xms = (XmString) 0;
XmStringComponentType sep_type;
int i;

if (tab) {
sep_type = XmSTRING_COMPONENT_TAB;

}
else {

sep_type = XmSTRING_COMPONENT_SEPARATOR;
}

for (i = 0; i < count; i++) {
txt = XmStringComponentCreate

(XmSTRING_COMPONENT_TE
XT, strlen (array[i]), (XtPointer)
array[i]);

xms = XmStringConcatAndFree (xms, txt);

if (i < count) {
/* another item after this... */
sep = XmStringComponentCreate (sep_type, 0, NULL);
xms = XmStringConcatAndFree (xms, sep);

}
}

/* caller must free this */
return xms;

}

See Also
XmStringConcatAndFree (1), XmStringFree (1).
350 Motif Reference Manual

Motif Functions and Macros XmStringConcat

pli-

re
xt
 to

o

Name
XmStringConcat – concatenate two compound strings.

Synopsis

XmString XmStringConcat (XmStringstring1, XmStringstring2)

Inputs
string1 Specifies a compound string.
string2 Specifies another compound string.

Returns
A new compound string.

Description
XmStringConcat () returns the compound string formed by appendingstring2
to string1, leaving the original compound strings unchanged. Storage for the
result is allocated within the routine and should be freed by callingXmString-
Free (). Management of the allocated memory is the responsibility of the ap
cation.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringConcat () is one of a number of routines that allow an application t
manipulate compound strings as it would regular character strings.

See Also
XmStringComponentCreate (1), XmStringCopy (1),
XmStringNConcat (1), XmStringNCopy (1).
Motif Reference Manual 351

XmStringConcatAndFree Motif Functions and Macros

re
xt
 to
ts.

b-
Name
XmStringConcatAndFree – concatenate two compound strings.

Synopsis

XmString XmStringConcatAndFree (XmStringstring1, XmStringstring2)

Inputs
string1 Specifies a compound string.
string2 Specifies another compound string.

Returns
A new compound string.

Availability
Motif 2.0 and later.

Description
XmStringConcatAndFree () is similar toXmStringConcat () in that each
returns a compound string formed by appendingstring2 to string1. XmString-
ConcatAndFree () differs fromXmStringConcat () by freeing the original
compound strings. Storage for the result is allocated within the routine and
should be freed by callingXmStringFree (). Management of the allocated
memory is the responsibility of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, and locale componen

Example
The following code constructs a simple compound string out of piecemeal su
components:

XmString xms;
XmString xms_temp;

xms = XmStringGenerate((XtPointer) “Multiple”,
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
NULL);

xms_temp = XmStringComponentCreate
(XmSTRING_COMP
ONENT_TAB, 0,
NULL);

xms = XmStringConcatAndFree(xms, xms_temp);
352 Motif Reference Manual

Motif Functions and Macros XmStringConcatAndFree
xms_temp = XmStringGenerate((XtPointer) “Column”,
XmFONTLIST_DEFAULT_TAG
,
XmCHARSET_TEXT,
NULL);

xms = XmStringConcatAndFree (xms, xms_temp);
xms_temp = XmStringComponentCreate

(XmSTRING_COMP
ONENT_TAB, 0,
NULL);

xms = XmStringConcatAndFree (xms, xms_temp);
xms_temp = XmStringGenerate((XtPointer) “Format”,

XmFONTLIST_DEFAULT_TAG
,
XmCHARSET_TEXT,
NULL);

xms = XmStringConcatAndFree (xms, xms_temp);

See Also
XmStringComponentCreate (1), XmStringCopy (1),
XmStringConcat (1), XmStringNConcat (1), XmStringNCopy (1).
Motif Reference Manual 353

XmStringCopy Motif Functions and Macros

d by

re
xt
 to
Name
XmStringCopy – copy a compound string.

Synopsis

XmString XmStringCopy (XmStringstring)

Inputs
string Specifies a compound string.

Returns
A new compound string.

Description
XmStringCopy () copies the compound stringstringand returns the copy, leav-
ing the original compound string unchanged. Storage for the result is allocate
the routine and should be freed by callingXmStringFree (). Management of
the allocated memory is the responsibility of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringCopy () is one of a number of routines that allow an application to
manipulate compound strings as it would regular character strings.

See Also
XmStringComponentCreate (1), XmStringConcat (1),
XmStringNConcat (1), XmStringNCopy (1).
354 Motif Reference Manual

Motif Functions and Macros XmStringCreate

: a

and

re
xt
 to

ist
e

e

he
with

g

Name
XmStringCreate – create a compound string.

Synopsis

XmString XmStringCreate (char *text, XmStringCharSettag)

Inputs
text Specifies the text component of the compound string.
tag Specifies the font list element tag.

Returns
A new compound string.

Description
XmStringCreate () creates a compound string containing two components
text component composed oftext and the font list element tag specified bytag.
text must be a NULL-terminated string.tag can have the value
XmFONTLIST_DEFAULT_TAG, which identifies a locale-encoded text seg-
ment. Storage for the returned compound string is allocated by the routine
should be freed by callingXmStringFree (). Management of the allocated
memory is the responsibility of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringCreate () allows you to create a compound string composed of a
font list element tag and a text component.

In Motif 1.1, compound strings use character set identifiers rather than font l
element tags. The character set identifier for a compound string can have th
value XmSTRING_DEFAULT_CHARSET, which takes the character set from
the current language environment, but this value may be removed from futur
versions of Motif.

XmStringCreate () creates a compound string with no specified direction.
The default direction may be taken from the XmNstringDirection resource of t
parent of the widget that contains the compound string. If you need a string
a direction other than the default direction, useXmStringDirectionCre-
ate () to create a direction string and concatenate it with the compound strin
containing the text.
Motif Reference Manual 355

XmStringCreate Motif Functions and Macros

=

,

Example
The following code fragment shows how to create compound strings using
XmStringCreate ():

Widget toplevel;
XmString s1, s2, s3, text, tmp;
String string1 = "This is a string", string2 = "that contains three", string3
"separate fonts.";

s1 = XmStringCreate (string1, "tag1");
s2 = XmStringCreate (string2, "tag2");
s3 = XmStringCreate (string3, XmFONTLIST_DEFAULT_TAG);

tmp = XmStringConcatAndFree (s1, s2);
text = XmStringConcatAndFree (tmp, s3);

XtVaCreateManagedWidget ("widget_name", xmLabelWidgetClass, toplevel
XmNlabelString, text, NULL);

XmStringFree (text);

See Also
XmStringBaseline (1), XmStringByteCompare (1),
XmStringCompare (1), XmStringConcat (1),
XmStringComponentCreate (1), XmStringCopy (1),
XmStringCreateLocalized (1), XmStringCreateLtoR (1),
XmStringCreateSimple (1), XmStringDirectionCreate (1),
XmStringDraw (1), XmStringDrawImage (1),
XmStringDrawUnderline (1), XmStringEmpty (1),
XmStringExtent (1), XmStringFree (1), XmStringFreeContext (1),
XmStringGetLtoR (1), XmStringGetNextComponent (1),
XmStringGetNextSegment (1), XmStringHasSubstring (1),
XmStringHeight (1), XmStringInitContext (1),
XmStringLength (1), XmStringLineCount (1),
XmStringNConcat (1), XmStringNCopy (1),
XmStringPeekNextComponent (1), XmStringSegmentCreate (1),
XmStringSeparatorCreate (1), XmStringWidth (1).
356 Motif Reference Manual

Motif Functions and Macros XmStringCreateLocalized

nd

pli-

re
xt
 to

t

Name
XmStringCreateLocalized – create a compound string in the current locale.

Synopsis

XmString XmStringCreateLocalized (Stringtext)

Inputs
text Specifies the text component of the compound string.

Returns
A new compound string.

Availability
Motif 1.2 and later.

Description
XmStringCreateLocalized () creates a compound string containing two
components: a text component composed oftext and the font list element tag
XmFONTLIST_DEFAULT_TAG, which identifies a locale-encoded text seg-
ment.textmust be a NULL-terminated string. Storage for the returned compou
string is allocated by the routine and should be freed by callingXmString-
Free (). Management of the allocated memory is the responsibility of the ap
cation.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringCreateLocalized () creates the identical compound string that
would result from calling XmStringCreate with
XmFONTLIST_DEFAULT_TAG as the font list entry tag.

Example
The following program shows how to create a compound string in the curren
locale and use it as the label for a PushButton:

#include <Xm/RowColumn.h>
#include <Xm/PushB.h>

String fallbacks[] = { "*fontList:9x15=tag", NULL };

main (int argc, char *argv[])
{

Widget toplevel, rowcol;
XtAppContext app;
Motif Reference Manual 357

XmStringCreateLocalized Motif Functions and Macros
XmString text;

XtSetLanguageProc (NULL, (XtLanguageProc) NULL, NULL);

toplevel = XtVaAppInitialize (&app, argv[0], NULL, 0, &argc, argv, fall-
backs, NULL);
rowcol = XtVaCreateWidget ("rowcol", xmRowColumnWidgetClass,
toplevel, NULL);

text = XmStringCreateLocalized ("Testing, testing...");
XtVaCreateManagedWidget ("pb", xmPushButtonWidgetClass, rowcol,

XmNlabelString, text, NULL);

XmStringFree (text);
XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

See Also
XmStringComponentCreate (1), XmStringCreate (1),
XmStringFree (1).
358 Motif Reference Manual

Motif Functions and Macros XmStringCreateLtoR

n

-

eg-
ator
ing
it

allo-

re

 to

d

Name
XmStringCreateLtoR – create a compound string.

Synopsis

XmString XmStringCreateLtoR (char *text, XmStringCharSettag)

Inputs
text Specifies the text component of the compound string.
tag Specifies the font list element tag.

Returns
A new compound string.

Availability
In Motif 2.0 and later, this function is obsolete, and is replaced by the functio
XmStringGenerate ().

Description
XmStringCreateLtoR () creates a compound string containing two compo
nents: a text component composed oftext and the font list element tag specified
by tag. text must be a NULL-terminated string. In addition,XmStringCre-
ateLtoR () searches for newline characters (\n) intext. Each time a newline is
found, the characters up to the newline are placed into a compound string s
ment followed by a separator component. The routine does not add a separ
component to the end of the compound string. The default direction of the str
is left to right and the assumed encoding is 8-bit characters rather than 16-b
characters.

tag can have the value XmFONTLIST_DEFAULT_TAG, which identifies a
locale-encoded text segment. Storage for the returned compound string is
cated by the routine and should be freed by callingXmStringFree (). Manage-
ment of the allocated memory is the responsibility of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list elementtag, a string direction, and atext
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringCreateLtoR () allows you to create a compound string compose
of a font list elementtag and a multi-linetext component.
Motif Reference Manual 359

XmStringCreateLtoR Motif Functions and Macros

ist
e

e

In Motif 1.1, compound strings use character set identifiers rather than font l
element tags. The character set identifier for a compound string can have th
value XmSTRING_DEFAULT_CHARSET, which takes the character set from
the current language environment, but this value may be removed from futur
versions of Motif.

See Also
XmStringComponentCreate (1), XmStringCreate (1),
XmStringFree (1). XmStringGenerate (1).
360 Motif Reference Manual

Motif Functions and Macros XmStringCreateSimple

envi-

d

-

is

 call-
il-

re
xt
 to

 ele-
Name
XmStringCreateSimple – create a compound string in the current language
ronment.

Synopsis

XmString XmStringCreateSimple (char *text)

Inputs
text Specifies the text component of the compound string.

Returns
A new compound string.

Availability
In Motif 1.2,XmStringCreateSimple () is obsolete. It has been supersede
by XmStringCreateLocalized ().

Description
XmStringCreateSimple () creates a compound string containing two com
ponents: a text component composed oftextand a character set identifier derived
from the LANG environment variable or from a vendor-specific default, which
usually ISO8859-1.text must be a NULL-terminated string. Storage for the
returned compound string is allocated by the routine and should be freed by
ing XmStringFree (). Management of the allocated memory is the responsib
ity of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components. In
Motif 1.1, compound strings use character set identifiers rather than font list
ment tags. XmStringCreateSimple () is retained for compatibility with
Motif 1.1 and should not be used in newer applications.

See Also
XmStringComponentCreate (1), XmStringCreate (1),
XmStringCreateLocalized (1), XmStringFree (1).
Motif Reference Manual 361

XmStringDirectionCreate Motif Functions and Macros

-

e
 call-
il-

re
xt
 to

-
mpo-
Name
XmStringDirectionCreate – create a compound string containing a direction
component.

Synopsis

XmString XmStringDirectionCreate (XmStringDirectiondirection)

Inputs
direction Specifies the value of the direction component. Pass either

XmSTRING_DIRECTION_L_TO_R,
XmSTRING_DIRECTION_R_TO_L or
XmSTRING_DIRECTION_DEFAULT.

Returns
A new compound string.

Description
XmStringDirectionCreate () creates a compound string containing a sin
gle component, which is a direction component with the specifieddirection
value. If thedirection is XmSTRING_DIRECTION_DEFAULT, the widget
where the compound string is rendered controls the direction. Storage for th
returned compound string is allocated by the routine and should be freed by
ing XmStringFree (). Management of the allocated memory is the responsib
ity of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringDirectionCreate () allows you to create a string direction com
ponent that can be concatenated with a compound string containing other co
nents.

See Also
XmStringComponentCreate (1), XmStringCreate (1),
XmStringFree (1).
362 Motif Reference Manual

Motif Functions and Macros XmStringDirectionToDirection
Name
XmStringDirectionToDirection – converts a string direction to a direction.

Synopsis

XmDirection XmStringDirectionToDirection (XmStringDirection
string_direction)

Inputs
string_direction Specifies the string direction to be converted.

Returns
The converted direction.

Availability
Motif 2.0 and later.

Description
XmStringDirectionToDirection () converts an XmStringDirection
value specified bystring_direction into an XmDirection value.

Usage
XmStringDirectionToDirection () converts between the XmStringDi-
rection and XmDirection data types. Ifstring_direction is
XmSTRING_DIRECTION_LEFT_TO_RIGHT, the function returns
XmLEFT_TO_RIGHT. Ifstring_direction is
XmSTRING_DIRECTION_RIGHT_TO_LEFT, the function returns
XmRIGHT_TO_LEFT. Otherwise, the function returns
XmDIRECTION_DEFAULT.

See Also
XmStringDirectionCreate (1).
Motif Reference Manual 363

XmStringDraw Motif Functions and Macros

g.
in

in

s

s

e

Name
XmStringDraw – draw a compound string.

Synopsis

void XmStringDraw (Display *display,
Window window,
XmFontList fontlist,
XmString string,
GC gc,
Position x,
Position y,
Dimension width,
unsigned char alignment,
unsigned char layout_direction,
XRectangle *clip)

Inputs
display Specifies a connection to an X server; returned from

XOpenDisplay() or XtDisplay().
window Specifies the window where the string is drawn.
fontlist Specifies the font list for drawing the string.
string Specifies a compound string.
gc Specifies the graphics context that is used to draw the strin
x Specifies the x-coordinate of the rectangle that will conta

the string.
y Specifies the y-coordinate of the rectangle that will conta

the string.
width Specifies the width of the rectangle that will contain the

string.
alignment Specifies the alignment of the string in the rectangle. Pas

one of the following values:
XmALIGNMENT_BEGINNING,
XmALIGNMENT_CENTER, or
XmALIGNMENT_END.

layout_direction Specifies the layout direction of the string segments. Pas
XmSTRING_DIRECTION_L_TO_R,
XmSTRING_DIRECTION_R_TO_L, or
XmSTRING_DIRECTION_DEFAULT.

clip Specifies an clip rectangle that restricts the area where th
string will be drawn.
364 Motif Reference Manual

Motif Functions and Macros XmStringDraw

g

re
xt
 to

nd
lf if

ont

ber.
Availability
In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description
XmStringDraw () draws the compound string specified by string by renderin
the foreground pixels for each character. Ifstring is created with
XmStringCreateSimple (), thenfontlistmust begin with the font associated
with the character set from the current language environment, otherwise the
result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringDraw () provides a means of rendering a compound string that is
analogous to the Xlib string rendering routines. Motif widgets render compou
string automatically, so you only need to worry about rendering them yourse
you are writing your own widget.

In Motif 1.2 or later, if a segment of a compound string is associated with a f
list entry that is a font set, the font member of thegc is left in an undefined state
by the underlying call toXmbDrawString (). If a segment of the compound
string is not associated with a font set, the gc must contain a valid font mem
Thegcmust be created usingXtAllocateGC (); graphics contexts created with
XtGetGC () are not valid.

See Also
XmStringDrawImage (1), XmStringDrawUnderline (1),
XmRendition (2).
Motif Reference Manual 365

XmStringDrawImage Motif Functions and Macros

-

-

ss

ss

the
Name
XmStringDrawImage – draw a compound string.

Synopsis

void XmStringDrawImage (Display *display,
Window window,
XmFontList fontlist,
XmString string,
GC gc,
Position x,
Position y,
Dimension width,
unsigned char alignment,
unsigned char layout_direction,
XRectangle *clip)

Inputs
display Specifies a connection to an X server; returned from

XOpenDisplay() or XtDisplay().
window Specifies the window where the string is drawn.
fontlist Specifies the font list for drawing the string.
string Specifies a compound string.
gc Specifies the graphics context that is used to draw the

string.
x Specifies the x-coordinate of the rectangle that will con

tain the string.
y Specifies the y-coordinate of the rectangle that will con

tain the string.
width Specifies the width of the rectangle that will contain the

string.
alignment Specifies the alignment of the string in the rectangle. Pa

one of the following values:
XmALIGNMENT_BEGINNING,
XmALIGNMENT_CENTER, or
XmALIGNMENT_END.

layout_direction Specifies the layout direction of the string segments. Pa
XmSTRING_DIRECTION_L_TO_R,
XmSTRING_DIRECTION_R_TO_L, or
XmSTRING_DIRECTION_DEFAULT.

clip Specifies an clip rectangle that restricts the area where
string will be drawn.
366 Motif Reference Manual

Motif Functions and Macros XmStringDrawImage

cre-

her-

re
xt
 to

m-

ont
Availability
In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description
XmStringDrawImage () draws the compound string specified bystring by
painting the foreground and background pixels for each character. If string is
ated withXmStringCreateSimple (), thenfontlist must begin with the font
associated with the character set from the current language environment, ot
wise the result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringDrawImage () provides a means of rendering a compound string
that is analogous to the Xlib string rendering routines. Motif widgets render co
pound string automatically, so you only need to worry about rendering them
yourself if you are writing your own widget.

In Motif 1.2 or later, if a segment of a compound string is associated with a f
list entry that is a font set, the font member of thegc is left in an undefined state
by the underlying call toXmbDrawImageString (). If a segment of the com-
pound string is not associated with a font set, thegc must contain a valid font
member. Thegc must be created usingXtAllocateGC (); graphics contexts
created withXtGetGC () are not valid.

See Also
XmStringDraw (1), XmStringDrawUnderline (1), XmRendition (2).
Motif Reference Manual 367

XmStringDrawUnderline Motif Functions and Macros

g.
in

in

s

s

e

Name
XmStringDrawUnderline – draw a compound string with an underlined sub-
string.

Synopsis

void XmStringDrawUnderline (Display *display,
Window window,
XmFontList fontlist,
XmString string,
GC gc,
Position x,
Position y,
Dimension width,
unsigned char alignment,
unsigned char layout_direction,
XRectangle *clip,
XmString underline)

Inputs
display Specifies a connection to an X server; returned from

XOpenDisplay() or XtDisplay().
window Specifies the window where the string is drawn.
fontlist Specifies the font list for drawing the string.
string Specifies a compound string.
gc Specifies the graphics context that is used to draw the strin
x Specifies the x-coordinate of the rectangle that will conta

the string.
y Specifies the y-coordinate of the rectangle that will conta

the string.
width Specifies the width of the rectangle that will contain the

string.
alignment Specifies the alignment of the string in the rectangle. Pas

one of the following values:
XmALIGNMENT_BEGINNING,
XmALIGNMENT_CENTER, or
XmALIGNMENT_END.

layout_direction Specifies the layout direction of the string segments. Pas
XmSTRING_DIRECTION_L_TO_R,
XmSTRING_DIRECTION_R_TO_L, or
XmSTRING_DIRECTION_DEFAULT.

clip Specifies an clip rectangle that restricts the area where th
string will be drawn.
368 Motif Reference Manual

Motif Functions and Macros XmStringDrawUnderline

e

re
xt
 to

lf if

ont
underline Specifies the substring that is to be underlined.

Availability
In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description
XmStringDrawUnderline () is similar toXmStringDraw (), but it also
draws an underline beneath the first matching substringunderline that is con-
tained withinstring. If string is created withXmStringCreateSimple (),
thenfontlist must begin with the font associated with the character set from th
current language environment, otherwise the result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringDrawUnderline () provides a means of rendering a compound
string and underlining a substring within it. Motif widgets render compound
string automatically, so you only need to worry about rendering them yourse
you are writing your own widget.

In Motif 1.2 and later, if a segment of a compound string is associated with a f
list entry that is a font set, the font member of thegc is left in an undefined state
by the underlying call toXmbDrawString (). If a segment of the compound
string is not associated with a font set, thegc must contain a valid font member.
Thegcmust be created usingXtAllocateGC (); graphics contexts created with
XtGetGC () are not valid.

See Also
XmStringDraw (1), XmStringDrawImage (1), XmRendition (2).
Motif Reference Manual 369

XmStringEmpty Motif Functions and Macros

d

re
xt
 to

o

Name
XmStringEmpty – determine whether there are text segments in a compoun
string.

Synopsis

Boolean XmStringEmpty (XmStringstring)

Inputs
string Specifies a compound string.

Returns
True if there are no text segments in the string or False otherwise.

Description
XmStringEmpty () returns True if no text segments exist in the specifiedstring
and False otherwise. If the routine is passed NULL, it returns True.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringEmpty () is one of a number of routines that allow an application t
manipulate compound strings as it would regular character strings.

See Also
XmStringLength (1), XmStringLineCount (1).
370 Motif Reference Manual

Motif Functions and Macros XmStringExtent

g.

e

re
xt
 to

a
u

-

Name
XmStringExtent – get the smallest rectangle that contains a compound strin

Synopsis

void XmStringExtent (XmFontListfontlist, XmStringstring, Dimension *width,
Dimension *height)

Inputs
fontlist Specifies the font list for the compound string.
string Specifies the compound string.

Outputs
width Returns the width of the containing rectangle.
height Returns the height of the containing rectangle.

Availability
In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description
XmStringExtent () calculates the size of the smallest rectangle that can
enclose the specified compoundstring and returns thewidth andheight of the
rectangle in pixels. Ifstring is created withXmStringCreateSimple (), then
fontlist must begin with the font from the character set of the current languag
environment, otherwise the result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringExtent () provides information that is useful if you need to render
compound string. Motif widgets render compound string automatically, so yo
only need to worry about rendering them yourself if you are writing your own
widget. The routine is also useful if you want to get the dimensions of a com
pound string rendered with a particular font.

See Also
XmStringBaseline (1), XmStringHeight (1), XmStringWidth (1),
XmRendition (2).
Motif Reference Manual 371

XmStringFree Motif Functions and Macros

re
xt
 to
l of
Name
XmStringFree – free the memory used by a compound string.

Synopsis

void XmStringFree (XmStringstring)

Inputs
string Specifies the compound string.

Description
XmStringFree () frees the memory used by the specified compound string.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components. Al
the routines that return a compound string allocate memory for the string. An
application is responsible for this storage;XmStringFree () provides a way to
free the memory.

WhenXtGetValues () is called for a resource that contains an XmString, a
copy of the compound string is returned. The allocated storage is again the
responsibility of the application and can be freed usingXmStringFree ().

Example
The following code fragment shows the use ofXmStringFree ():

Widget toplevel, rowcol, pb;
XmString str;
char *text;

rowcol = XtVaCreateWidget ("rowcol", xmRowColumnWidgetClass, toplevel,
NULL);

str = XmStringCreateLocalized ("Testing, testing...");
pb = XtVaCreateManagedWidget ("pb", xmPushButtonWidgetClass, rowcol,

XmNlabelString, str, NULL);
XmStringFree (str);
...
XtVaGetValues (pb, XmNlabelString, &str, NULL);
text = (char *) XmStringUnparse (str, NULL,

XmCHARSET_TEXT,
XmCHARSET_TEXT,

NULL, 0, XmOUTPUT_ALL)1;
372 Motif Reference Manual

Motif Functions and Macros XmStringFree

rds.
printf ("PushButton’s label is %s\n", text);
XmStringFree (str);
XtFree (text);

See Also
XmStringCreate (1), XmStringCreateLocalized (1),
XmStringCreateLtoR (1), XmStringCreateSimple (1),
XmStringDirectionCreate (1), XmStringSegmentCreate (1),
XmStringSeparatorCreate (1).

1.Erroneously given as XmStringGetLtoR() in 2nd edition. XmStringGetLtoR() is deprecated from Motif 2.0 onwa
Motif Reference Manual 373

XmStringFreeContext Motif Functions and Macros

ess-

n in
u-

 it

ls to
e

to a
ent
Name
XmStringFreeContext – free a string context.

Synopsis

void XmStringFreeContext (XmStringContextcontext)

Inputs
context Specifies the string context that is to be freed.

Description
XmStringFreeContext () deallocates the string context structure specified
by context.

Usage
The XmString type is opaque, so if an application needs to perform any proc
ing on a compound string, it has to use special functions to cycle through the
string. These routines use a XmStringContext to maintain an arbitrary positio
a compound string. XmStringFreeContext() is the last of the string context ro
tines that an application should call when processing a compound string, as
frees the string context data structure. An application begins by calling
XmStringInitContext() to create a string context and then makes repeated cal
either XmStringGetNextComponent() or XmStringGetNextSegment() to cycl
through the compound string.

The most common use of these routines is in converting a compound string
regular character string when the compound string uses multiple fontlist elem
tags or it has a right-to-left orientation.

Example
The following code fragment shows how to convert a compound string into a
character string:

XmString str;
XmStringContext context;
char *text, buf[128], *p;
XmStringCharSet tag;
XmStringDirection direction;
Boolean separator;

XtVaGetValues (widget, XmNlabelString, &str, NULL);

if (!XmStringInitContext (&context, str)) {
XmStringFree (str);
XtWarning ("Can’t convert compound string.");
return;
374 Motif Reference Manual

Motif Functions and Macros XmStringFreeContext
}

/* p keeps a running pointer thru buf as text is read */ p = buf;
while (XmStringGetNextSegment (context, &text, &tag, &direction, &separa-
tor)) {

/* copy text into p and advance to the end of the string */
p += (strlen (strcpy (p, text)));

if (separator == True) {
/* if there’s a separator... */
*p++ = ’\n’;
p = 0; / add newline and null-terminate */

}
XtFree (text); /* we’re done with the text; free it */

}

XmStringFreeContext (context);
XmStringFree (str);

printf ("Compound string:\n%s\n", buf);

See Also
XmStringInitContext (1), XmStringGetNextSegment (1),
XmStringGetNextComponent (1),
XmStringPeekNextComponent (1).
Motif Reference Manual 375

XmStringGenerate Motif Functions and Macros

am-
Name
XmStringGenerate – generate a compound string.

Synopsis

XmString XmStringGenerate (XtPointer text,
XmStringTag tag,
XmTextType type,
XmStringTag rendition)

Inputs
text Specifies the data forming the value of the compound string.
tag Specifies the tag used in creating the compound string.
type Specifies the type of text.
rendition Specifies a rendition tag.

Returns
A new compound string.

Availability
Motif 2.0 and later.

Description
XmStringGenerate () is a convenience function which invokesXmString-
ParseText () using a default parse table in order to converttext into a com-
pound string. The default parse table maps tab characters to
XmSTRING_COMPONENT_TAB, and newline characters to
XmSTRING_COMPONENT_SEPARATOR components of the compound
string. If arendition tag is specified, the resulting compound string is placed
within matching components of type XmSTRING_RENDITION_BEGIN and
XmSTRING_RENDITION_END which contain therendition. The type of the
input text is specified bytype, and is one of XmCHARSET_TEXT,
XmWIDECHAR_TEXT, or XmMULTIBYTE_TEXT.type also specifies the
type of thetag which is used in creating the compound string. Iftag is NULL
and the inputtext is of type XmCHARSET_TEXT, then the compound string is
created with thetagset to XmFONTLIST_DEFAULT_TAG. Iftag is NULL and
the inputtext is of type XmWIDECHAR_TEXT or XmMULTIBYTE_TEXT,
then thetag used is constructed from the value of
_MOTIF_DEFAULT_LOCALE.

Usage
The function returns allocated storage, and it is the responsibility of the progr
mer to reclaim the space by callingXmStringFree () at an appropriate point.
376 Motif Reference Manual

Motif Functions and Macros XmStringGenerate

 to
ally.
In Motif 2.0 and later, in common with other objects, the compound string is
manipulated as a reference counted data structure. XmString functions prior
Motif 2.0 handle ASN.1 strings, and the data structures are only used intern

Example
The following code converts data taken from a Text widget into a compound
string:

XmString convert_text (Widget text)
{

/* ignoring widechar text values */
char *value = XmTextGetString (text);
XmString xms = (XmString) 0;

if (value) {
xms = XmStringGenerate ((XtPointer) value,

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT, NULL);

XtFree (value);
}
/* caller must free this */
return xms;

}

See Also
XmStringFree(1), XmStringPutRendition (1), XmRendition (2).
Motif Reference Manual 377

XmStringGetLtoR Motif Functions and Macros

t.
d be
n-

re
xt
 to

ula-

ist
e

e

Name
XmStringGetLtoR – get a text segment from a compound string.

Synopsis

Boolean XmStringGetLtoR (XmStringstring, XmStringCharSettag, char **text)

Inputs
string Specifies the compound string.
tag Specifies the font list element tag.

Outputs
text Returns the NULL-terminated character string.

Returns
True if there is a matching text segment or False otherwise.

Availability
In Motif 2.0 and later, the function is obsolete, and is replaced byXmStrin-
gUnparse ().

Description
XmStringGetLtoR () looks for a text segment instring that matches the font
list element tag specified bytag. tag can have the value
XmFONTLIST_DEFAULT_TAG, which identifies a locale-encoded text seg-
ment. The routine returns True if a text segment is found.textreturns a pointer to
the NULL-terminated character string that contains the text from the segmen
Storage for the returned character string is allocated by the routine and shoul
freed by callingXtFree (). Management of the allocated memory is the respo
sibility of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringGetLtoR () allows you to retrieve a character string from a com-
pound string, so that you can use the string with the standard C string manip
tion functions.

In Motif 1.1, compound strings use character set identifiers rather than font l
element tags. The character set identifier for a compound string can have th
value XmSTRING_DEFAULT_CHARSET, which takes the character set from
the current language environment, but this value may be removed from futur
versions of Motif.
378 Motif Reference Manual

Motif Functions and Macros XmStringGetLtoR

at

g-
XmStringGetLtoR () gets the first text segment from the compound string th
is associated with the specified tag. If thestring contains multiple font list ele-
ment tags, you must cycle through the compound string and retrieve each se
ment individually in order to retrieve the entire string. The routine only gets
strings with a left-to-right orientation.

See Also
XmStringCreate (1), XmStringCreateLtoR (1),
XmStringGetNextSegment (1), XmStringUnparse (1).
Motif Reference Manual 379

XmStringGetNextComponent Motif Functions and Macros

nd

.

d
n
the
ion
Name
XmStringGetNextComponent – retrieves information about the next compou
string
component.

Synopsis

XmStringComponentType
XmStringGetNextComponent (XmStringContext context,

char **text,
XmStringCharSet *tag,
XmStringDirection *direction,
XmStringComponentType *unknown_tag,
unsigned short

*unknown_length,
unsigned char

** unknown_value)

Inputs
context Specifies the string context for the compound string.

Outputs
text Returns the NULL-terminated string for a text component
tag Returns the font list element tag for a tag component.
direction Returns the string direction for a direction component.
unknown_tag Returns the tag of an unknown component.
unknown_length Returns the length of an unknown component.
unknown_value Returns the value of an unknown component.

Returns
The type of the compound string component. The type is one of the values
described below.

Availability
In Motif 2.0 and later,XmStringGetNextComponent () is obsolete, and is
replaced byXmStringGetNextTriple ().

Description
XmStringGetNextComponent () reads the next component in the compoun
string specified bycontext and returns the type of component found. The retur
value indicates which, if any, of the output parameters are valid. Storage for
returned values is allocated by the routine and must be freed by the applicat
usingXtFree ().

For the type XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG, the
font list element tag is returned intag. In Motif 2.0 and later, the type
380 Motif Reference Manual

Motif Functions and Macros XmStringGetNextComponent

at-

the

ess-

n in

ring,
XmSTRING_COMPONENT_CHARSET is obsolete and is retained for comp
ibility with Motif 1.2. The type indicates that the character set identifier is
returned intag. XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
replaces XmSTRING_COMPONENT_CHARSET.

For the string component types XmSTRING_COMPONENT_TEXT and
XmSTRING_COMPONENT_LOCALE_TEXT, the text string is returned in
text. For XmSTRING_COMPONENT_DIRECTION, the direction is returned in
direction. Only one oftag, text, anddirection can be valid at any one time.

The type XmSTRING_COMPONENT_SEPARATOR indicates that the next
component is a separator, while XmSTRING_COMPONENT_END specifies
end of the compound string. For type
XmSTRING_COMPONENT_UNKNOWN, the tag, length, and value of the
unknown component are returned in the corresponding arguments.

Usage
The XmString type is opaque, so if an application needs to perform any proc
ing on a compound string, it has to use special functions to cycle through the
string. These routines use a XmStringContext to maintain an arbitrary positio
a compound string.XmStringInitContext () is called first to create the
string context.XmStringGetNextComponent () cycles through the compo-
nents in the compound string. When an application is done processing the st
it should callXmStringFreeContext () with the same context to free the
allocated data.

Structures
A XmStringComponentType can have one of the following values:

XmSTRING_COMPONENT_CHARSET
XmSTRING_COMPONENT_TEXT
XmSTRING_COMPONENT_LOCALE_TEXT
XmSTRING_COMPONENT_DIRECTION
XmSTRING_COMPONENT_SEPARATOR
XmSTRING_COMPONENT_END
XmSTRING_COMPONENT_UNKNOWN

In Motif 2.0 and later, the following additional types are defined:

XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
XmSTRING_COMPONENT_WIDECHAR_TEXT
XmSTRING_COMPONENT_LAYOUT_PUSH
XmSTRING_COMPONENT_LAYOUT_POP
XmSTRING_COMPONENT_RENDITION_BEGIN
XmSTRING_COMPONENT_RENDITION_END
Motif Reference Manual 381

XmStringGetNextComponent Motif Functions and Macros
See Also
XmStringFreeContext (1), XmStringGetNextTriple (1),
XmStringGetNextSegment (1), XmStringInitContext (1),
XmStringPeekNextComponent (1).
382 Motif Reference Manual

Motif Functions and Macros XmStringGetNextSegment

,

reed

ess-

n in

r
ppli-
Name
XmStringGetNextSegment – retrieves information about the next compound
string segment.

Synopsis

Boolean XmStringGetNextSegment (XmStringContextcontext,
char **text,
XmStringCharSet *charset,
XmStringDirection *direction,
Boolean *separator)

Inputs
context Specifies the string context for the compound string.

Outputs
text Returns the NULL-terminated string for the segment.
tag Returns the font list element tag for the segment.
direction Returns the string direction for the segment.
separator Returns whether or not the next component is a separator.

Returns
True if a valid segment is located or False otherwise.

Availability
In Motif 2.0 and later, the function is obsolete, and is replaced by
XmStringGetNextTriple ().

Description
XmStringGetNextSegment () retrieves the text string, font list element tag
and direction for the next segment of the compound string specified bycontext.
The routine returns True if a valid segment is retrieved; otherwise, it returns
False. Storage for the returned text is allocated by the routine and must be f
by the application usingXtFree ().

Usage
The XmString type is opaque, so if an application needs to perform any proc
ing on a compound string, it has to use special functions to cycle through the
string. These routines use a XmStringContext to maintain an arbitrary positio
a compound string.XmStringInitContext () is called first to create the
stringcontext. XmStringGetNextSegment () cycles through the segments
in the compound string. The Booleanseparatorcan be used to determine whethe
or not the next component in the compound string is a separator. When an a
cation is done processing the string, it should callXmStringFreeContext ()
with the same context to free the allocated data.
Motif Reference Manual 383

XmStringGetNextSegment Motif Functions and Macros

to a
ent
The most common use of these routines is in converting a compound string
regular character string when the compound string uses multiple fontlist elem
tags or it has a right-to-left orientation.

See Also
XmStringFreeContext (1), XmStringGetLtoR (1),
XmStringGetNextComponent (1), XmStringGetNextTriple (1),
XmStringInitContext (1), XmStringPeekNextComponent (1),
XmStringPeekNextTriple (1).
384 Motif Reference Manual

Motif Functions and Macros XmStringGetNextTriple

e,
ith
ings
to

ed
Name
XmStringGetNextTriple – retrieve information about the next component.

Synopsis

XmStringComponentType
XmStringGetNextTriple (XmStringContextcontext, unsigned int *length,
XtPointer *value)

Inputs
context Specifies the string context for the compound string.

Outputs
length Returns the length of the value of the component.
value Returns the value of the component.

Returns
The type of the component.

Availability
Motif 2.0 and later.

Description

XmStringGetNextTriple () is a convenience function which returns the typ
length, andvalueof the next component within the compound string associated w
context. The context is an opaque structure used for walking along compound str
one component at a time, and is initialized through a call
XmStringInitContext ().

Usage
If either ofvalue or length are NULL pointers, the function immediately returns
XmSTRING_COMPONENT_END without fetching the next string segment.
Otherwise,valueis initially set to point to NULL, andlengthis reset to zero, and
the next segment is processed. The function allocates memory for the return
value, which should be reclaimed at an appropriate point by callingXtFree ().

Structures
An XmStringComponentType can have one of the following values:

XmSTRING_COMPONENT_CHARSET
XmSTRING_COMPONENT_TEXT
XmSTRING_COMPONENT_LOCALE_TEXT
XmSTRING_COMPONENT_DIRECTION
XmSTRING_COMPONENT_SEPARATOR
XmSTRING_COMPONENT_END
XmSTRING_COMPONENT_UNKNOWN
Motif Reference Manual 385

XmStringGetNextTriple Motif Functions and Macros
In Motif 2.0 and later, the following additional types are defined:

XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
XmSTRING_COMPONENT_WIDECHAR_TEXT
XmSTRING_COMPONENT_LAYOUT_PUSH
XmSTRING_COMPONENT_LAYOUT_POP
XmSTRING_COMPONENT_RENDITION_BEGIN
XmSTRING_COMPONENT_RENDITION_END

Example
The following code fragment shows how to convert a compound string into a
character string:

XmString str;
XmStringContext context;
char *text, buf[128], *p;
XmStringComponentType type;
unsigned int len;

/* Fetch the Compound String from somewhere */
XtVaGetValues (widget, XmNlabelString, &str, NULL);

if (!XmStringInitContext (&context, str)) {
XmStringFree (str);
XtWarning ("Can’t convert compound string.");
return;

}

/* p keeps a running pointer through buf as text is read */
p = buf;

/* Ignoring locale or widechar text for simplicity */
while ((type = XmStringGetNextTriple (context, &len, &text)) !=
XmSTRING_COMPONENT_END)
{

switch (type) {
case XmSTRING_COMPONENT_TAB :

*p++ = ’\t’;
break;

case XmSTRING_COMPONENT_SEPARATOR :
*p++ = ’\n’;
*p = ’\0’;
break;

case XmSTRING_COMPONENT_TEXT :
(void) strcpy (p, text);
386 Motif Reference Manual

Motif Functions and Macros XmStringGetNextTriple
p += len;
break;

}
XtFree (text);

}

XmStringFreeContext (context);
XmStringFree (str);
printf ("Compound string:\n%s\n", buf);

See Also
XmStringFreeContext (1), XmStringGetNextComponent (1),
XmStringGetNextSegment (1), XmStringInitContext (1),
XmStringPeekNextComponent (1), XmStringPeekNextTriple (1).
Motif Reference Manual 387

XmStringHasSubstring Motif Functions and Macros

ub-

i-
ted

re
xt
 to

gs.
Name
XmStringHasSubstring – determine whether a compound string contains a s
string.

Synopsis

Boolean XmStringHasSubstring (XmStringstring, XmStringsubstring)

Inputs
string Specifies the compound string.
substring Specifies the substring.

Returns
True if string containssubstring or False otherwise.

Description
XmStringHasSubstring () determines whether the compound stringsub-
string is contained within any single segment of the compound stringstring. sub-
string must have only a single segment. The routine returns True if thestring
contains thesubstring and False otherwise.

If two compound strings are created withXmStringCreateLocalized () in
the same language environment and they satisfy the above condition,
XmStringHasSubstring () returns True. If two strings are created with
XmStringCreate () using the same character set and they satisfy the cond
tion, the routine also returns True. When comparing a compound string crea
by XmStringCreate () with a compound string created byXmStringCrea-
teSimple () the result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringHasSubstring () is one of a number of routines that allow an
application to manipulate compound strings as it would regular character strin

See Also
XmStringEmpty (1), XmStringLength (1), XmStringLineCount (1).
388 Motif Reference Manual

Motif Functions and Macros XmStringHeight

s

re
xt
 to

a
u

-

Name
XmStringHeight – get the line height of a compound string.

Synopsis

Dimension XmStringHeight (XmFontListfontlist, XmStringstring)

Inputs
fontlist Specifies the font list for the compound string.
string Specifies the compound string.

Returns
The height of the compound string.

Availability
In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description
XmStringHeight () returns the height, in pixels, of the specified compound
string. If string contains multiple lines, where a separator component delimits
each line, then the total height of all of the lines is returned. Ifstring is created
with XmStringCreateSimple (), thenfontlistmust begin with the font from
the character set of the current language environment, otherwise the result i
undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringHeight () provides information that is useful if you need to render
compound string. Motif widgets render compound string automatically, so yo
only need to worry about rendering them yourself if you are writing your own
widget. The routine is also useful if you want to get the dimensions of a com
pound string rendered with a particular font.

See Also
XmStringBaseline (1), XmStringExtent (1), XmStringWidth (1),
XmRendition (2).
Motif Reference Manual 389

XmStringInitContext Motif Functions and Macros

f a

ess-

n in

d

n

to a
ent
Name
XmStringInitContext – create a string context.

Synopsis

Boolean XmStringInitContext (XmStringContext *context, XmStringstring)

Inputs
string Specifies the compound string.

Outputs
context Returns the allocated string context structure.

Returns
True if the string context is allocated or False otherwise.

Description
XmStringInitContext () creates a string context for the specified com-
poundstring. This string context allows an application to access the contents o
compound string.

Usage
The XmString type is opaque, so if an application needs to perform any proc
ing on a compound string, it has to use special functions to cycle through the
string. These routines use a XmStringContext to maintain an arbitrary positio
a compound string.XmStringInitContext () is the first of the three string
context routines that an application should call when processing a compoun
string, as it creates the string context data structure. Thecontext is passed to
XmStringGetNextTriple () to cycle through the compound string. When a
application is done processing the string, it should callXmStringFreeCon-
text () with the samecontext to free the allocated data.

The most common use of these routines is in converting a compound string
regular character string when the compound string uses multiple fontlist elem
tags or it has a right-to-left orientation.

Example
The following code fragment shows how to convert a compound string into a
character string:

XmString str;
XmStringContext context;
char *text, buf[128], *p;
XmStringComponentType type;
unsigned int len;

/* Fetch the Compound String from somewhere */
390 Motif Reference Manual

Motif Functions and Macros XmStringInitContext
XtVaGetValues (widget, XmNlabelString, &str, NULL);

if (!XmStringInitContext (&context, str)) {
XmStringFree (str);
XtWarning ("Can’t convert compound string.");
return;

}

/* p keeps a running pointer through buf as text is read */
p = buf;

/* Ignoring locale or widechar text for simplicity */
while ((type = XmStringGetNextTriple (context, &len, &text)) !=
XmSTRING_COMPONENT_END)
{

switch (type) {
case XmSTRING_COMPONENT_TAB :

*p++ = ’\t’;
break;

case XmSTRING_COMPONENT_SEPARATOR :
*p++ = ’\n’;
*p = ’\0’;
break;

case XmSTRING_COMPONENT_TEXT :
(void) strcpy (p, text);
p += len;
break;

}

XtFree (text);
}

XmStringFreeContext (context);
XmStringFree (str);
printf ("Compound string:\n%s\n", buf);

See Also
XmStringFreeContext (1), XmStringGetNextComponent (1),
XmStringGetNextTriple (1), XmStringGetNextSegment (1),
XmStringPeekNextComponent (1), XmStringPeekNextTriple (1).
Motif Reference Manual 391

XmStringIsVoid Motif Functions and Macros

d

eg-

r-

re
xt
 to
ts.
Name
XmStringIsVoid – determine whether there are valid segments in a compoun
string.

Synopsis

Boolean XmStringIsVoid (XmStringstring)

Inputs
string Specifies a compound string.

Returns
True if there are no segments in the string or False otherwise.

Availability
XmStringIsVoid () is available from Motif 2.0 or later.

Description
XmStringIsVoid () checks to see whether there any text, tab, or separator s
ments within the specifiedstring. If the routine is passed NULL, it returns True.
If the string contains text, tab or separator components, it returns False. Othe
wise, it returns True.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, and locale componen

See Also
XmStringEmpty (1), XmStringLength (1), XmStringLineCount (1).
392 Motif Reference Manual

Motif Functions and Macros XmStringLength

d

re
xt
 to

o
this
ound
Name
XmStringLength – get the length of a compound string.

Synopsis

int XmStringLength (XmStringstring)

Inputs
string Specifies the compound string.

Returns
The length of the compound string.

Availability
In Motif 2.0 and later, the function is obsolete, and is replaced byXmString-
ByteStreamLength ().

Description
XmStringLength () returns the length, in bytes, of the specified compound
string. The calculation includes the length of all tags, direction indicators, an
separators. The routine returns 0 (zero) if the structure ofstring is invalid.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringLength () is one of a number of routines that allow an application t
manipulate compound strings as it would regular character strings. However,
routine cannot be used to get the length of the text represented by the comp
string; it is not the same as strlen().

See Also
XmStringByteStreamLength (1), XmStringEmpty (1),
XmStringLineCount (1).
Motif Reference Manual 393

XmStringLineCount Motif Functions and Macros

 in

nts,
nd a
ded
.
-

nd

 {
Name
XmStringLineCount – get the number of lines in a compound string.

Synopsis

int XmStringLineCount (XmStringstring)

Inputs
string Specifies the compound string.

Returns
The number of lines in the compound string.

Description
XmStringLineCount() returns the number of lines in the specified compound
string. The line count is determined by adding 1 to the number of separators
the string.

Usage
In Motif 1.2 and later, a compound string is composed of one or more segme
where each segment can contain a font list element tag, a string direction, a
text component. In Motif 2.0 and later, the set of available segments is exten
to include, amongst other items, tab, rendition, direction, locale components
XmStringLineCount () provides information that is useful in laying out com
ponents that display compound strings.

Example
The following routine shows how to read the contents of a file into a buffer a
then convert the buffer into a compound string. The routine also returns the
number of lines in the compound string:

XmString ConvertFileToXmString (char *filename, int *lines)
{

struct stat statb;
int fd, len, lines;
char *text;
XmString str;

*lines = 0;

if ((fd = open (filename, O_RDONLY)) < 0) {
XtWarning ("internal error -- can’t open file");
return (XmString) 0;

}

if ((fstat (fd, &statb) == -1) || !(text = XtMalloc ((len = statb.st_size) + 1)))
XtWarning("internal error -- can’t show text");
394 Motif Reference Manual

Motif Functions and Macros XmStringLineCount

,

0 on-
(void) close (fd);
return (XmString) 0;

}

(void) read (fd, text, len);
text[len] = ‘\0’;
str = XmStringGenerate ((XtPointer) text, XmFONTLIST_DEFAULT_TAG

XmCHARSET_TEXT, NULL);1

XtFree (text);
(void) close (fd);
*lines = XmStringLineCount (str);
return str;

}

See Also
XmStringEmpty (1), XmStringLength (1).

1.Erroneously given as XmStringCreateLtoR() in 2nd edition. XmStringCreateLtoR() is deprecated from Motif 2.
wards.
Motif Reference Manual 395

XmStringNConcat Motif Functions and Macros

k-

s

l
ine

,

re
xt
 to

n

Name
XmStringNConcat – concatenate a specified portion of a compound string to
another compound string.

Synopsis

XmString XmStringNConcat (XmStringstring1, XmStringstring2, int
num_bytes)

Inputs
string1 Specifies a compound string.
string2 Specifies the compound string that is appended.
num_bytes Specifies the number of bytes of string2 that are appended.

Returns
A new compound string.

Availability
In Motif 2.0 and later, the function is obsolete, and is only maintained for bac
wards compatibility.

Description
XmStringNConcat () returns the compound string formed by appending byte
from string2 to the end ofstring1, leaving the original compound strings
unchanged.num_bytes of string are appended, which includes tags, directiona
indicators, and separators. Storage for the result is allocated within this rout
and should be freed by callingXmStringFree (). Management of the allocated
memory is the responsibility of the application.

If num_bytes is less than the length ofstring2, the resulting string could be
invalid. In this case,XmStringNConcat () appends as many bytes as possible
up to a maximum ofnum_bytes, to ensure the creation of a valid string.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringNConcat () is one of a number of routines that allow an applicatio
to manipulate compound strings as it would regular character strings.

See Also
XmStringConcat (1), XmStringCopy (1), XmStringNCopy (1).
396 Motif Reference Manual

Motif Functions and Macros XmStringNCopy

k-

ber
 for

y

id.
ax-

re
xt
 to

o

Name
XmStringNCopy – copy a specified portion of a compound string.

Synopsis

XmString XmStringNCopy (XmStringstring, int num_bytes)

Inputs
string Specifies a compound string.
num_bytes Specifies the number of bytes of string that are copied.

Returns
A new compound string.

Availability
In Motif 2.0 and later, the function is obsolete, and is only maintained for bac
wards compatibility.

Description
XmStringNCopy () copiesnum_bytes bytes from the compound stringstring
and returns the resulting copy, leaving the original string unchanged. The num
of bytes copied includes tags, directional indicators, and separators. Storage
the result is allocated within this routine and should be freed by calling
XmStringFree (). Management of the allocated memory is the responsibilit
of the application.

If num_bytesis less than the length of string, the resulting string could be inval
In this case,XmStringNCopy () copies as many bytes as possible, up to a m
imum ofnum_bytes to ensure the creation of a valid string.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringNCopy () is one of a number of routines that allow an application t
manipulate compound strings as it would regular character strings.

See Also
XmStringConcat (1), XmStringCopy (1), XmStringNConcat (1).
Motif Reference Manual 397

XmStringParseText Motif Functions and Macros

g.

xt.

on-
e in
The

r, it
m-

r-
Name
XmStringParseText – convert a string to a compound string.

Synopsis

XmString XmStringParseText (XtPointer text,
XtPointer *text_end,
XmStringTag tag,
XmTextType type,
XmParseTable parse_table,
Cardinal parse_count,
XtPointer client_data)

Inputs
text Specifies a string to be converted.
text_end Specifies a pointer into text where parsing is to finish.
tag Specifies the tag to be used in creating the compound strin
type Specifies the type of the text and the tag.
parse_table Specifies a table used for matching characters in the input te
parse_count Specifies the number of items in the parse_table.
client_data Specifies application data to pass to any parse procedures
within the parse_table.

Outputs
text_end Returns a location within the text where parsing finished.

Returns
The converted compound string.

Availability
Motif 2.0 and later.

Description
XmStringParseText () converts the string specified bytext into a compound
string. Aparse_tablecan be specified which consists of a set of mappings to c
trol the conversion process. The contents of the string to be converted can b
one of a number of formats: simple characters, multibyte, or wide characters.
typeparameter specifies the type of the inputtext, and is also used to interpret the
tag which is used in creating text components within the returned compound
string.text_endis both an input and an output parameter: as an input paramete
specifies a location withintext where parsing is to terminate; as an output para
eter, it points to a location withintextwhere parsing actually finished. Supplying
NULL for text_end is interpreted to mean that parsing should stop at the occu
rence of a null byte.
398 Motif Reference Manual

Motif Functions and Macros XmStringParseText

e
rn,
t
 cor-

rse
 in
ing
w the
f the

put
r

se
to
here

nce

.
to
Usage
If type is XmCHARSET_TEXT, the inputtext is assumed to consist of a simple
array of characters, and thetag is interpreted as the name of a charset to use in
constructing the returned compound string. Iftag is NULL, a default charset
using XmFONTLIST_DEFAULT_TAG is used.

If the typeis XmMULTIBYTE_TEXT or XmWIDECHAR_TEXT, the inputtext
is assumed to be in multibyte or widechar text format respectively, and thetag is
interpreted as a locale specifier. Thetag should either be specified as NULL or
_MOTIF_DEFAULT_LOCALE: if NULL, a locale component with a value of
_MOTIF_DEFAULT_LOCALE is created in any case.

A parse table can be specified for controlling the conversion process. A pars
table consists of a set of XmParseMapping objects, which have match patte
substitution pattern and parse procedure components. The head of the inpu
stream is compared against elements within the parse table, and if there is a
respondence between the input and a parse mapping match pattern, the pa
mapping object is used to construct the output compound string at that point
the conversion, either by directly inserting the substitution pattern, or by invok
the parse procedure of the mapping object. The parse mapping specifies ho
input pointer is advanced, and the process is repeated, comparing the head o
input against the parse table. At the end of the conversion, thetext_endparameter
is set to point to the location within the inputtext where parsing actually termi-
nated. Depending upon the way in which the parse table interacts with the in
text, the returnedtext_end may not be the same location which the programme
specified if more or less of the inputtext is consumed.

An implicit automatic conversion takes place where there is no matching par
mapping object for the head of the input. In other words, it is not necessary
provide a parse table to convert everything: parse tables are only required w
specific inputs need to be handled specially.XmStringParseText () uses an
internal parse mapping which handles changes in string direction in the abse
of a supplied mapping for the task. A parse mapping handles string direction
changes if the XmNpattern resource of the object is equal to
XmDIRECTION_CHANGE.

XmStringParseText () allocates memory for the returned compound string
It is the responsibility of the programmer to reclaim the space through a call
XmStringFree () at an appropriate point.
Motif Reference Manual 399

XmStringParseText Motif Functions and Macros

line

Example

The following specimen code converts an input string containing tab and new
characters into a compound string:

XmParseTable parse_table = (XmParseTable) XtCalloc (2, sizeof
(XmParseMapping));
XmString tmp;
XmString output;
Arg av[4];
Cardinal ac;

/* map \t to a tab component */
tmp = XmStringComponentCreate (XmSTRING_COMPONENT_TAB, 0,
NULL);
ac = 0;
XtSetArg (av[ac], XmNincludeStatus, XmINSERT); ac++;
XtSetArg (av[ac], XmNsubstitute, tmp); ac++;
XtSetArg (av[ac], XmNpattern, "\t"); ac++;
parse_table[0] = XmParseMappingCreate (av, ac);
XmStringFree (tmp);

/* map \n to a separator component */
tmp = XmStringSeparatorCreate();
ac = 0;
XtSetArg (av[ac], XmNincludeStatus, XmINSERT); ac++;
XtSetArg (av[ac], XmNsubstitute, tmp); ac++;
XtSetArg (av[ac], XmNpattern, "\n"); ac++;
parse_table[1] = XmParseMappingCreate (av, ac);
XmStringFree (tmp);

/* convert the (unspecified) input string into a compound string *
 output = XmStringParseText (input, NULL, NULL, XmCHARSET_TEXT,
parse_table, 2, NULL);
XmParseTableFree (parse_table);

See Also
XmStringFree(1), XmStringGenerate (1), XmStringUnparse (1).
XmParseMapping (2).
400 Motif Reference Manual

Motif Functions and Macros XmStringPeekNextComponent

g

pe
at-
er

t
-

the
Name
XmStringPeekNextComponent – returns the type of the next compound strin
component.

Synopsis

XmStringComponentType XmStringPeekNextComponent (XmStringContext
context)

Inputs
context Specifies the string context for the compound string.

Returns
The type of the compound string component. The type is one of the values
described below.

Availability
In Motif 2.0 and later, the function is obsolete, andXmStringPeekNextTri-
ple () is preferred.

Description
XmStringPeekNextComponent () checks the next component in the com-
pound string specified bycontext and returns the type of the component found.
The routine shows what would be returned by a call toXmStringGetNext-
Component (), without actually updatingcontext.

The returned type XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
indicates that the next component is a font list element tag. In Motif 1.2, the ty
XmSTRING_COMPONENT_-CHARSET is obsolete and is retained for comp
ibility with Motif 1.1. The type indicates that the next component is a charact
set identifier. XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
replaces XmSTRING_COMPONENT_CHARSET.

The types XmSTRING_COMPONENT_TEXT and
XmSTRING_COMPONENT_LOCALE_TEXT specify that the next componen
is text. XmSTRING_COMPONENT_DIRECTION indicates that the next com
ponent is a string direction component.

The type XmSTRING_COMPONENT_SEPARATOR indicates that the next
component is a separator, while XmSTRING_COMPONENT_END specifies
end of the compound string. The type
XmSTRING_COMPONENT_UNKNOWN, indicates that the type of the next
component is unknown.
Motif Reference Manual 401

XmStringPeekNextComponent Motif Functions and Macros

ess-

n in

 an
Usage
The XmString type is opaque, so if an application needs to perform any proc
ing on a compound string, it has to use special functions to cycle through the
string. These routines use a XmStringContext to maintain an arbitrary positio
a compound string.XmStringInitContext () is called first to create the
string context. XmStringPeekNextComponent () peeks at the next compo-
nent in the compound string without cycling through the component. When
application is done processing the string, it should callXmStringFreeCon-
text () with the same context to free the allocated data.

Structures
A XmStringComponentType can have one of the following values:

XmSTRING_COMPONENT_CHARSET
XmSTRING_COMPONENT_TEXT
XmSTRING_COMPONENT_LOCALE_TEXT
XmSTRING_COMPONENT_DIRECTION
XmSTRING_COMPONENT_SEPARATOR
XmSTRING_COMPONENT_END
XmSTRING_COMPONENT_UNKNOWN

In Motif 2.0 and later, the following additional types are defined:

XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
XmSTRING_COMPONENT_WIDECHAR_TEXT
XmSTRING_COMPONENT_LAYOUT_PUSH
XmSTRING_COMPONENT_LAYOUT_POP
XmSTRING_COMPONENT_RENDITION_BEGIN
XmSTRING_COMPONENT_RENDITION_END

See Also
XmStringFreeContext (1), XmStringGetNextComponent (1),
XmStringGetNextSegment (1), XmStringPeekNextTriple (1),
XmStringInitContext (1).
402 Motif Reference Manual

Motif Functions and Macros XmStringPeekNextTriple

-

 a
ng-
Name
XmStringPeekNextTriple – retrieve the type of the next component.

Synopsis

XmStringComponentType XmStringPeekNextTriple (XmStringContextcontext)

Inputs
context Specifies the string context for the compound string.

Returns
The type of the next component.

Availability
Motif 2.0 and later.

Description
XmStringPeekNextTriple () returns the type of the next component with
out updating the compound stringcontext.

Usage
An XmStringContext is an opaque data type which is used for walking along
compound string one component at a time. It is initialized by a call to XmStri
InitContext. Each successive call toXmStringGetNextComponent () adjusts
the string context to point to the next component.XmStringPeekNextTri-
ple () returns the type of the next component without adjusting thecontext, and
thus it can be used to look ahead into the compound string.

Structures
The string component type can have one of the following values:

XmSTRING_COMPONENT_CHARSET
XmSTRING_COMPONENT_TEXT
XmSTRING_COMPONENT_LOCALE_TEXT
XmSTRING_COMPONENT_DIRECTION
XmSTRING_COMPONENT_SEPARATOR
XmSTRING_COMPONENT_END
XmSTRING_COMPONENT_UNKNOWN
XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
XmSTRING_COMPONENT_WIDECHAR_TEXT
XmSTRING_COMPONENT_LAYOUT_PUSH
XmSTRING_COMPONENT_LAYOUT_POP
XmSTRING_COMPONENT_RENDITION_BEGIN
XmSTRING_COMPONENT_RENDITION_END
Motif Reference Manual 403

XmStringPeekNextTriple Motif Functions and Macros
See Also
XmStringFreeContext (1), XmStringGetNextComponent (1),
XmStringGetNextSegment (1), XmStringInitContext (1),
XmStringPeekNextComponent (1).
404 Motif Reference Manual

Motif Functions and Macros XmStringPutRendition

ts.

n

Name
XmStringPutRendition – add rendition components to a compound string.

Synopsis

XmString XmStringPutRendition (XmStringstring, XmStringTagrendition)

Inputs
string Specifies a compound string which requires rendition componen
rendition Specifies a tag used to create the rendition components.

Returns
A newly allocated compound string with rendition components.

Availability
Motif 2.0 and later.

Description
XmStringPutRendition () is a convenience function which places
XmSTRING_COMPONENT_RENDITION_BEGIN and
XmSTRING_COMPONENT_RENDITION_END components containingren-
dition around a compound string. Thestring is not modified by the procedure,
which takes a copy.

Usage
XmStringPutRendition () allocates space for the returned compound
string, and it is the responsibility of the programmer to reclaim the space at a
appropriate point by callingXmStringFree ().

See Also
XmStringFree (1).
Motif Reference Manual 405

XmStringSegmentCreate Motif Functions and Macros

nt.

nd

ound

pli-

re
xt
 to

n

Name
XmStringSegmentCreate – create a compound string segment.

Synopsis

XmString XmStringSegmentCreate (char *text,
XmStringCharSet tag,
XmStringDirection direction,
Boolean separator)

Inputs
text Specifies the text component of the compound string segme
tag Specifies the font list element tag.
direction Specifies the value of the direction component. Pass either

XmSTRING_DIRECTION_L_TO_R or
XmSTRING_DIRECTION_R_TO_L.

separator Specifies whether or not a separator is added to the compou
string.

Returns
A new compound string.

Availability
In Motif 2.0 and later, the function is deprecated. A combination ofXmString-
ComponentCreate () andXmStringConcat () is preferred.

Description
XmStringSegmentCreate () creates a compound string segment that con-
tains the specifiedtext, tag, anddirection. If separator is True, a separator is
added to the segment, following thetext. If separator is False, the compound
string segment does not contain a separator. Storage for the returned comp
string is allocated by the routine and should be freed by callingXmString-
Free (). Management of the allocated memory is the responsibility of the ap
cation.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringSegmentCreate () allows you to create a single segment that ca
be concatenated with a compound string containing other segments.

See Also
XmStringCreate (1), XmStringFree (1).
406 Motif Reference Manual

Motif Functions and Macros XmStringSeparatorCreate

r

-

re
xt
 to

t
nts.
Name
XmStringSeparatorCreate – create a compound string containing a separato
component.

Synopsis

XmString XmStringSeparatorCreate (void)

Returns
A new compound string.

Description
XmStringSeparatorCreate () creates and returns a compound string con
taining a separator as its only component.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringSeparatorCreate () allows you to create a separator componen
that can be concatenated with a compound string containing other compone

See Also
XmStringCreate (1), XmStringFree (1),
XmStringSegmentCreate (1).
Motif Reference Manual 407

XmStringTableParseStringArray Motif Functions and Macros

nd

g

 the

-

loca-

ts of
ple
Name
XmStringTableParseStringArray – convert an array of strings into a compou
string table.

Synopsis

XmStringTable XmStringTableParseStringArray (XtPointer *strings,
Cardinal count,
XmStringTag tag,
XmTextType type,
XmParseTable

parse_table,
Cardinal

parse_count,
XtPointer

client_data)

Inputs
strings Specifies an array of strings.
count Specifies the number of items in strings.
tag Specifies the tag used to create the resulting compound strin
table.
type Specifies the type of each input string, and the tag.
parse_table Specifies a parse table to control the conversion process.
parse_count Specifies the number of parse mappings in parse_table.
client_data Specifies application data to pass to parse procedures within
parse_table.

Returns
An array of compound strings.

Availability
Motif 2.0 and later.

Description
XmStringTableParseStringArray () converts an array of strings into an
array of compound strings.XmStringTableParseStringArray () is no
more than a convenience function which allocates space for an table of com
pound strings, and subsequently callsXmStringParseText () iteratively on
each item within thestrings array to convert the item into a compound string.
Each converted item is placed within the allocated table at a corresponding
tion to its position in thestrings array. Aparse_table can be specified which
consists of a set of mappings to control the conversion process. The conten
each of the strings to be converted can be in one of a number of formats: sim
characters, multibyte, or wide characters. Thetypeparameter specifies the type of
408 Motif Reference Manual

Motif Functions and Macros XmStringTableParseStringArray

e

om-
the input strings, and is also used to interpret thetag which is used in creating
text components within the returned compound string array.

Usage
The function callsXmStringParseText () passing NULL as thetext_end
(second) parameter: each item within the array of strings is converted until th
occurrence of a terminating null byte.XmStringTableParseStringAr-
ray () returns allocated storage: the elements within the returned table are c
pound strings allocated by the internal call toXmStringParseText (), and
these should each be freed at an appropriate point throughXmStringFree ().
XmStringTableParseStringArray () also allocates space for the table
itself, and this should subsequently be freed usingXtFree ().

Structures
The XmTextType typeparameter can take one of the following values:

XmCHARSET_TEXT
XmMULTIBYTE_TEXT
XmWIDECHAR_TEXT

See Also
XmStringFree (1), XmStringGenerate (1), XmStringParseText (1),
XmStringTableUnparse (1), XmParseMapping (2).
Motif Reference Manual 409

XmStringTableProposeTablist Motif Functions and Macros

.

-

ff-

B
ivid-
con-

the
d by

-
B-
Name
XmStringTableProposeTablist – create a tab list for a compound string table

Synopsis

XmTabList XmStringTableProposeTablist (XmStringTable strings,
Cardinal string_count,
Widget widget,
float padding,
XmOffsetModel

offset_model)

Inputs
strings Specifies an array of compound strings.
string_count Specifies the number of items instrings.
widget Specifies a widget from which rendition information is calcu
lated.
padding Specifies a separation between columns.
offset_model Specifies whether tabs are created at absolute or relative o
sets.

Returns
A new XmTabList.

Availability
Motif 2.0 and later.

Description
XmStringTableProposeTablist () creates an XmTabList value which
can be used to specify how an array of tabbed compoundstrings is aligned into
columns.

A compound string is tabbed if it contains an XmSTRING_COMPONENT_TA
component between textual components: each text component forms an ind
ual column entry. The strings are rendered with respect to a tab list: each tab
tains a floating point offset which specifies the starting location of a column.
XmStringTableProposeTablist () creates a tab list appropriate for laying
out the given strings in a multi-column format.

The XmNunitType resource of widget is used to calculate the units in which
tab calculation is performed. Extra spacing between each column is specifie
thepadding parameter, and this is also interpreted in terms of the unit type of
widget. Theoffset_model determines whether the floating point positions calcu
lated for each tab in the returned XmTabList are at absolute locations (XmA
SOLUTE), or relative to the previous tab (XmRELATIVE).
410 Motif Reference Manual

Motif Functions and Macros XmStringTableProposeTablist

dify-

oint

ines
Usage
The tab list created byXmStringTableProposeTablist () can be applied
to the render table of the widget where the strings are to be displayed by mo
ing the XmNtabList resource of an existing rendition through the procedure
XmRenditionUpdate (). Alternatively, a new rendition can be created using
XmRenditionCreate (), and thereafter merged into the widget render table
usingXmRenderTableAddRenditions ().

XmStringTableProposeTablist () returns allocated storage, and it is the
responsibility of the programmer to reclaim the allocated space at a suitable p
by callingXmTabListFree ().

If no render table is associated withwidget, XmStringTableProposeTab-
list () invokes internal routines to deduce a default render table: these rout
are not multi-thread safe.

See Also
XmTabCreate (1), XmTabFree (1), XmTabListCopy (1),
XmTabListFree (1), XmRenderTableAddRenditions (1),
XmRenditionCreate (1), XmRenditionUpdate (1), XmRendition (2).
Motif Reference Manual 411

XmStringTableToXmString Motif Functions and Macros

g.

ble

om

the

aim
Name
XmStringTableToXmString – convert compound string table to compound strin

Synopsis

XmString
XmStringTableToXmString (XmStringTabletable, Cardinalcount, XmString
break_component)

Inputs
table Specifies an array of compound strings.
count Specified the number of items in the table.
break_component Specifies a compound string used to separate converted ta
items.

Returns
A compound string.

Availability
Motif 2.0 and later.

Description
XmStringTableToXmString () is a convenience function which converts a
table of compound strings into a single compound string. A
break_component can be inserted between each component converted fr
thetable in order to separate each.

Usage
XmStringTableToXmString () simply walks along the array of items within
thetable, concatenating a copy of each item to the result, along with a copy of
break_component. Thebreak_component can be NULL, although a component
of type XmSTRING_COMPONENT_TAB or
XmSTRING_COMPONENT_SEPARATOR is a suitable choice. The function
returns allocated storage, and it is the responsibility of the programmer to recl
the space by callingXmStringFree () at a suitable point.

Example
The following code illustrates a basic call toXmStringTableToXm-
String ():

extern XmString table table ;
extern int table_count ;
XmString xms;
XmString break_component;

/* create a break component */
412 Motif Reference Manual

Motif Functions and Macros XmStringTableToXmString

y well.
break_component = XmStringComponentCreate
(XmSTRING_COMPONEN
T_SEPARATOR, 0,

NULL)1;

/* convert an (unspecified) compound string table */
xms = XmStringTableToXmString (table, table_count, break_component);

/* use the compound string */
...

/* free the allocated space */
XmStringFree (xms);

See Also
XmStringConcat (1), XmStringCopy (1), XmStringFree (1),
XmStringToXmStringTable (1).

1.Erroneously given as XmComponentCreate() in 2nd edition. XmStringSeparatorCreate() would do here equall
Motif Reference Manual 413

XmStringTableUnparse Motif Functions and Macros

ngs.

h
st

on-

n

Name
XmStringTableUnparse – convert a compound string table to an array of stri

Synopsis

XtPointer *XmStringTableUnparse (XmStringTable table,
Cardinal count,
XmStringTag tag,
XmTextType tag_type,
XmTextType output_type,
XmParseTable parse_table,
Cardinal parse_count,
XmParseModel parse_model)

Inputs
table Specifies the compound string table to unparse.
count Specifies the number of compound strings in table.
tag Specifies which text segments to unparse.
tag_type Specifies the type of tag.
output_type Specifies the type of conversion required.
parse_table Specifies a parse table to control the conversion.
parse_count Specifies the number of parse mappings in parse_table.
parse_model Specifies how non-text components are converted.

Returns
An allocated string array containing the unparsed contents of the compound
strings.

Availability
Motif 2.0 and later.

Description
XmStringTableUnparse () is a convenience function which unparses an
array of compound strings. The XmStringTabletable is converted into a string
array, whose contents is determined byoutput_type, which can be
XmCHARSET_TEXT, XmWIDECHAR_TEXT, or XmMULTIBYTE_TEXT.
Only those text components within thetable which matchtag are converted:
NULL converts all text components. An XmParseTable can be supplied whic
acts as a filter: each parse mapping in the table contains a pattern which mu
match a text component of the compound string if that component is to be c
verted.

parse_model determines how non-text components of string are handled whe
matching againstparse_table. If the value is XmOUTPUT_ALL, all components
are taken into account in the conversion process. If the value is
414 Motif Reference Manual

Motif Functions and Macros XmStringTableUnparse

wo

imi-
ich
a-

om-
d

,
pon-
all-
XmOUTPUT_BETWEEN, any non-text components which are not between t
text components are ignored. If the value is XmOUTPUT_BEGINNING, any
non-text components which do not precede a text component are ignored. S
larly, the value XmOUTPUT_END specifies that any non-text components wh
do not follow a text component are ignored. XmOUTPUT_BOTH is a combin
tion of XmOUTPUT_BEGINNING and XmOUTPUT_END. The number of
items within the returned string array is identical to the supplied number of c
pound strings. Each converted string occupies the same index in the returne
array as the index of the source compound string in table.

Usage
XmStringTableUnparse () is the logical inverse of the routineXmString-
TableParseStringArray (). It simply invokesXmStringUnparse () on
each of the elements in the suppliedtable. The function returns allocated storage
both for the returned array, and for each element within the array. It is the res
sibility of the programmer to reclaim the storage at an appropriate point by c
ing XtFree () on each element in the array and upon the array itself.

Structures
An XmParseModel has the following possible values:

XmOUTPUT_ALL
XmOUTPUT_BEGINNING
XmOUTPUT_BETWEEN
XmOUTPUT_BOTH
XmOUTPUT_END

See Also
XmStringFree (1), XmStringParseText (1), XmStringUnparse (1),
XmParseMapping (2).
Motif Reference Manual 415

XmStringToXmStringTable Motif Functions and Macros

g

to

o-

c-
to
Name
XmStringToXmStringTable – convert a compound string to a compound strin
table.

Synopsis

Cardinal XmStringToXmStringTable (XmStringstring, XmStringbreak_comp,
XmStringTable *table)

Inputs
string Specifies a compound string.
break_comp Specifies a component which indicates where to split string in

an individual table element.

Outputs
table Returns the converted compound string table.

Returns
The number of elements in the converted compound string table.

Availability
Motif 2.0 and later.

Description
XmStringToXmStringTable () is a convenience function which converts an
XmStringstring into an array of compound strings.break_comp is a component
which is used to determine how to split the string into individual items: comp
nents in string are considered to form contiguous sequences delimited by
break_comp, each sequence forming a separate entry in the converted string
table. Any component fromstring which matches the delimitingbreak_comp is
not copied into the converted table. Ifbreak_comp is NULL, the returned com-
pound string table contains a single entry: a copy of the original string.

Usage
XmStringToXmStringTable () is the inverse function toXmStringTab-
leToXmString (). A break_comp component of type
XmSTRING_COMPONENT_TAB or
XmSTRING_COMPONENT_SEPARATOR is the most useful choice. The fun
tion returns allocated storage, and it is the responsibility of the programmer
reclaim the space by callingXmStringFree () on each element in the table, and
thenXtFree () on the table itself.

Example
The following code illustrates a basic call toXmStringToXmStringTa-
ble ():

extern XmString xms;
416 Motif Reference Manual

Motif Functions and Macros XmStringToXmStringTable

ly well.
Cardinal count;
XmStringTable table;
XmString break_component;
int i;

/* create a break component */
break_component = XmStringComponentCreate

(XmSTRING_COMPONEN
T_SEPARATOR, 0,

NULL)1;

/* convert an (unspecified) compound string */
count = XmStringToXmStringTable (xms, break_component, &table);

/* use the table */
...

/* free the allocated space */
for (i = 0; i < count; i++) {

XmStringFree (table[i]);
}

XtFree ((char *) table);

See Also
XmStringFree (1), XmStringTableToXmString (1).

1.Erroneously given as XmComponentCreate() in 2nd edition. XmStringSeparatorCreate() could be used equal
Motif Reference Manual 417

XmStringUnparse Motif Functions and Macros

d

arse
 of

st
d
xt

o-
ch
Name
XmStringUnparse – convert a compound string into a string.

Synopsis

XtPointer XmStringUnparse (XmString string,
XmStringTag tag,
XmTextType tag_type,
XmTextType output_type,
XmParseTable parse_table,
Cardinal parse_count,
XmParseModel parse_model)

Inputs
string Specifies the compound string to unparse.
tag Specifies which text segments of string to unparse.
tag_type Specifies the type of tag.
output_type Specifies the type of conversion required.
parse_table Specifies a parse table to control the conversion.
parse_count Specifies the number of parse mappings in parse_table.
parse_model Specifies how non-text components are converted.

Returns
An allocated string containing the unparsed contents of a compound string.

Availability
Motif 2.0 and later.

Description
XmStringUnparse () is a convenience function which unparses a compoun
string. The XmStringstring is converted into a string, whose contents is deter-
mined byoutput_type, which can be XmCHARSET_TEXT,
XmWIDECHAR_TEXT, or XmMULTIBYTE_TEXT. Only those text compo-
nents within the string which matchtag are converted: NULL converts all text
components. An XmParseTable can be supplied which acts as a filter: each p
mapping in the table contains a pattern which must match a text component
the compound string if that component is to be converted.parse_model deter-
mines how non-text components of string are handled when matching again
parse_table. If the value is XmOUTPUT_ALL, all non-text components are use
in the conversion process. If the value is XmOUTPUT_BETWEEN, any non-te
components which fall between text components are used. If the value is
XmOUTPUT_BEGINNING, non-text components which precede a text comp
nent are utilized. Similarly, XmOUTPUT_END uses non-text components whi
follow a text component. XmOUTPUT_BOTH is a combination of
XmOUTPUT_BEGINNING and XmOUTPUT_END.
418 Motif Reference Manual

Motif Functions and Macros XmStringUnparse

the
Usage
XmStringUnparse () is the logical inverse of the routineXmStringParse-
Text (). The function returns allocated storage, and it is the responsibility of
programmer to reclaim the storage by callingXtFree () at an appropriate point.

Structures
An XmParseModel has the following possible values:

XmOUTPUT_ALL
XmOUTPUT_BEGINNING
XmOUTPUT_BETWEEN
XmOUTPUT_BOTH
XmOUTPUT_END

Example
The following specimen code outlines a basic call toXmStringUnparse (),
which converts separator and tab components into the output:

XmParseTable parse_table = (XmParseTable) XtCalloc (2, sizeof
(XmParseMapping));
XmString tmp;
XmString output;
char *string;
Arg av[4];
Cardinal ac;

/* map tab component to \t */
tmp = XmStringComponentCreate (XmSTRING_COMPONENT_TAB, 0,
NULL);
ac = 0;
XtSetArg (av[ac], XmNincludeStatus, XmINSERT); ac++;
XtSetArg (av[ac], XmNsubstitute, tmp); ac++;
XtSetArg (av[ac], XmNpattern, "\t"); ac++;
parse_table[0] = XmParseMappingCreate (av, ac);
XmStringFree (tmp);

/* map separator component to \n */
tmp = XmStringSeparatorCreate();
ac = 0;
XtSetArg (av[ac], XmNincludeStatus, XmINSERT); ac++;
XtSetArg (av[ac], XmNsubstitute, tmp); ac++;
XtSetArg (av[ac], XmNpattern, "\n"); ac++;
parse_table[1] = XmParseMappingCreate (av, ac);
XmStringFree (tmp);
Motif Reference Manual 419

XmStringUnparse Motif Functions and Macros
/* convert the (unspecified) compound string */
string = (char *) XmStringUnparse (xms, NULL, XmCHARSET_TEXT,

XmCHARSET_TEXT, parse_table, 2,
XmOUTPUT_ALL);

/* use the converted string */
....

/* free the allocated space */
XtFree (string);

/* Free the parse table: this also frees the parse mappings */
XmParseTableFree (parse_table, 2);

See Also
XmStringFree (1), XmStringParseText (1),
XmStringTableUnparse (1), XmParseMapping (2).
420 Motif Reference Manual

Motif Functions and Macros XmStringWidth

g.

-

e

re
xt
 to

a
ou

-

Name
XmStringWidth – get the width of the longest line of text in a compound strin

Synopsis

Dimension XmStringWidth (XmFontListfontlist, XmStringstring)

Inputs
fontlist Specifies the font list for the compound string.
string Specifies the compound string.

Returns
The width of the compound string.

Availability
In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description
XmStringWidth () returns the width, in pixels, of the longest line of text in the
specified compoundstring. Lines in the compound string are delimited by sepa
rator components. Ifstring is created withXmStringCreateSimple (), then
fontlist must begin with the font from the character set of the current languag
environment, otherwise the result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, whe
each segment can contain a font list element tag, a string direction, and a te
component. In Motif 2.0 and later, the set of available segments is extended
include, amongst other items, tab, rendition, direction, locale components.
XmStringWidth () provides information that is useful if you need to render
compound string. Motif widgets render compound strings automatically, so y
only need to worry about rendering them yourself if you are writing your own
widget. The routine is also useful if you want to get the dimensions of a com
pound string rendered with a particular font.

See Also
XmStringBaseline (1), XmStringExtent (1), XmStringHeight (1).
Motif Reference Manual 421

XmTabCreate Motif Functions and Macros

ab

to

ed

,

r-

ion
-
f a
Name
XmTabCreate – create a tab stop.

Synopsis

XmTab XmTabCreate (float value,
unsigned char units,
XmOffsetModel offset_model,
unsigned char alignment,
char *decimal)

Inputs
value Specifies the value to be used in calculating the location of a t
stop.
units Specifies the units in which value is expressed.
offset_model Specifies whether the tab is at an absolute position, or relative
the previous tab.
alignment Specifies how text should be aligned to this tab stop.
decimal Specifies the multibyte character in the current locale to be us
as a decimal point.

Returns
An XmTab object.

Availability
Motif 2.0 and later.

Description
XmTabCreate () creates a tab stop at the position specified byvalue, which is
expressed in terms ofunits. If value is less than 0 (zero), a warning is displayed
andvalueis reset to 0.0. Theoffset_modeldetermines whether the tab position is
an absolute location (XmABSOLUTE) calculated from the start of any rende
ing, or relative to the previous tab stop (XmRELATIVE).alignment specifies
how text is aligned with respect to the tab location: at present only
XmALIGNMENT_BEGINNING is supported.decimal is a multibyte character
which describes the decimal point character in the current locale.

Usage
A tab stop can be created, and inserted into an XmTabList through the funct
XmTabListInsertTabs (). The tab list is used to render a multi-column lay
out of compound strings by specifying the list as the XmNtabList resource o
rendition object within a render table associated with a widget. Thedecimal
parameter is currently unused.
422 Motif Reference Manual

Motif Functions and Macros XmTabCreate

y a

s; it
n

XmTabCreate () allocates storage for the object which it returns. It is the
responsibility of the programmer to free the memory at an appropriate point b
call toXmTabFree ().

Structures
The XmOffsetModel type has the following possible values:

XmABSOLUTE XmRELATIVE

Valid values for the units parameter are:

XmPIXELS
Xm100TH_MILLIMETERS XmMILLIMETERS
Xm1000TH_INCHES XmINCHES
Xm100TH_FONT_UNITS XmFONT_UNITS
Xm100TH_POINTS XmPOINTS
XmCENTIMETERS

Example
The following code creates a multi-column arrangement of compound string
creates a set of XmTab objects, which are then inserted into an XmRenditio
object. The XmRendition object is added to a render table:

extern Widget widget;
int i;
Arg argv[3];
XmTab tabs[MAX_COLUMNS];
XmTabList tab_list = (XmTabList) 0;
XmRendition rendition;
XmRenderTable render_table;

/* Create the XmTab objects */
for (i = 0 ; i < MAX_COLUMNS ; i++) {

tabs[i] = XmTabCreate ((float) 1.5,
XmINCHES,
((i == 0) ? XmABSOLUTE :
XmRELATIVE),
XmALIGNMENT_BEGINNING,
“.”);

}

/* Add them to an XmTabList */
tab_list = XmTabListInsertTabs (NULL, tabs,
MAX_COLUMNS, 0);

/* Put the XmTabList into an XmRendition object */
Motif Reference Manual 423

XmTabCreate Motif Functions and Macros
i = 0;
XtSetArg (argv[i], XmNtabList, tab_list); i++;
XtSetArg (argv[i], XmNfontName, “fixed”); i++;
XtSetArg (argv[i], XmNfontType, XmFONT_IS_FONT);
i++;
rendition = XmRenditionCreate (widget,NULL,argv,
i);

/* Add the XmRendition object into an XmRenderTable
*/
render_table = XmRenderTableAddRenditions (NULL,

&rendi-
tion,
1,
XmMERGE
_NEW);

/* Apply to the widget */
XtVaSetValues (widget, XmNrenderTable,
render_table, NULL);
...

/* Free Up - render table applied to widget takes a
reference
** counted copy of everything
*/
for (i = 0 ; i < MAX_COLUMNS ; i++) {

XmTabFree (tabs[i]);
}
XmTabListFree (tab_list);
XmRenditionFree (rendition);
XmRenderTableFree (render_table);

See Also
XmTabFree (1), XmTabGetValues (1), XmTabListInsertTabs (1),
XmTabSetValue (1), XmRenditionCreate (1),
XmRenderTableAddRenditions (1), XmRendition (2).
424 Motif Reference Manual

Motif Functions and Macros XmTabFree

by

e
ith
Name
XmTabFree – free the memory used by an XmTab object.

Synopsis

void XmTabFree (XmTabtab)

Inputs
tab Specifies an XmTab object.

Availability
Motif 2.0 and later.

Description
XmTabFree () reclaims the memory associated with tab, previously allocated
a call toXmTabCreate ().

Usage
A tab stop can be created usingXmTabCreate (), and inserted into an XmTab-
List through the functionXmTabListInsertTabs (). The tab list is used to
render a multi-column layout of compound strings by specifying the list as th
XmNtabList resource of a rendition object within a render table associated w
a widget.

See Also
XmTabCreate (1), XmRendition (2).
Motif Reference Manual 425

XmTabGetValues Motif Functions and Macros

al

he
 of

nt

list
ted
Name
XmTabGetValues – fetch the value of an XmTab object.

Synopsis

float XmTabGetValues (XmTab tab,
unsigned char *units,
XmOffsetModel *offset_model,
unsigned char *alignment,
char **decimal)

Inputs
tab Specifies an XmTab object.

Outputs
units Returns the units in which the tab stop is calculated.
offset_model Returns the offset model.
alignment Returns the text alignment with respect to the tab stop.
decimal Returns the multibyte character used to represent the decim
point.

Returns
The distance, expressed in units, which the tab is offset.

Availability
Motif 2.0 and later.

Description
XmTabGetValues () retrieves the data associated with a tab stop object. T
function returns the position value of a tab stop, which is expressed in terms
units. Theoffset_model determines whether thetab position is an absolute loca-
tion (XmABSOLUTE) calculated from the start of any rendering, or relative to
the previous tab stop (XmRELATIVE).alignment specifies how text is aligned
with respect to the tab location: at present only XmALIGNMENT_BEGINNING
is supported.decimal is a multibyte character which describes the decimal poi
character in the current locale.

Usage
A tab stop can be created using the functionXmTabCreate (), and inserted into
an XmTabList through the functionXmTabListInsertTabs (). The tab list is
used to render a multi-column layout of compound strings by specifying the
as the XmNtabList resource of a rendition object within a render table associa
with a widget. The decimal value is currently unused.

Structures
The XmOffsetModel type has the following possible values:
426 Motif Reference Manual

Motif Functions and Macros XmTabGetValues
XmABSOLUTE XmRELATIVE

Valid values for units are:

XmPIXELS
Xm100TH_MILLIMETERS XmMILLIMETERS
Xm1000TH_INCHES XmINCHES
Xm100TH_FONT_UNITS XmFONT_UNITS
Xm100TH_POINTS XmPOINTS
XmCENTIMETERS

See Also
XmTabCreate (1), XmTabSetValue (1), XmRendition (2).
Motif Reference Manual 427

XmTabListCopy Motif Functions and Macros

st

re

list
ted

y a
Name
XmTabListCopy – copy an XmTabList object.

Synopsis

XmTabList XmTabListCopy (XmTabListtab_list, int offset, Cardinalcount)1

Inputs
tab_list Specifies the tab list to copy.
offset Specifies an index into the tab list from which to start copying.
count Specifies the number of tab stops to copy.

Returns
A new tab list containing tabs copied fromtab_list.

Availability
Motif 2.0 and later.

Description
XmTabListCopy () is a convenience function which creates a new XmTabLi
by copying portions of an existingtab_list. If tab_list is NULL, the function sim-
ply returns NULL. Otherwise, a new tab list is allocated, and selected tabs a
copied, depending on theoffsetandcountparameters.countspecifies the number
of tabs to copy, andoffsetdetermines where in the original list to start. Ifoffsetis
zero, tabs are copied from the beginning of tab_list. Ifoffset is negative, tabs are
copied in reverse order from the end oftab_list. If countis zero, all tabs fromoff-
set to the end oftab_list are copied.

Usage
A tab stop can be created using the functionXmTabCreate (), and inserted into
an XmTabList through the functionXmTabListInsertTabs (). The tab list is
used to render a multi-column layout of compound strings by specifying the
as the XmNtabList resource of a rendition object within a render table associa
with a widget.

XmTabListCopy () allocates storage for the object which it returns. It is the
responsibility of the programmer to free the memory at an appropriate point b
call toXmTabListFree ().

See Also
XmTabCreate (1), XmTabListFree (1), XmTabListInsertTabs (1),
XmRendition (2).

1.Erroneously given as XmTabListTabCopy() in 2nd edition.
428 Motif Reference Manual

Motif Functions and Macros XmTabListFree

ist
hen

st.
Name
XmTabListFree – free the memory used by a tab list.

Synopsis

void XmTabListFree (XmTabListtab_list)

Inputs
tab_list Specified the tab list to free.

Availability
Motif 2.0 and later.

Description
XmTabListFree () reclaims the space used by an XmTabList object,tab_list.

Usage
In common with other objects in Motif 2.0 and later, the tab (XmTab) and tab l
(XmTabList) are dynamically allocated data structures which must be freed w
no longer required. For example,XmStringTableProposeTablist ()
dynamically creates a tab list for rendering a multi-column compound string
table which must be subsequently deallocated.

It is important to callXmTabListFree () instead ofXtFree () because
XmTabListFree () also reclaims storage for each of the elements in the tab li

See Also
XmStringTableProposeTablist (1), XmTabCreate (1),
XmTabListInsertTabs (1), XmRendition (2).
Motif Reference Manual 429

XmTabListGetTab Motif Functions and Macros

y
d

list
ted

d
oint
Name
XmTabListGetTab – retrieve a tab from a tab list

Synopsis

XmTab XmTabListGetTab (XmTabListtab_list, Cardinalposition)

Inputs
tab_list Specifies a tab list.
position Specifies the position of the required tab within the tab_list.

Returns
A copy of the required tab.

Availability
Motif 2.0 and later.

Description
XmTabListGetTab () returns a copy of a tab from the XmTabList specified b
tab_list. position determines where in the list of tabs the required tab is copie
from. The first tab withintab_list is atpositionzero, the second tab atposition1,
and so on. Ifposition is not less than the number of tabs within the list,XmTab-
ListGetTab () returns NULL.

Usage
A tab stop can be created using the functionXmTabCreate (), and inserted into
an XmTabList through the functionXmTabListInsertTabs (). The tab list is
used to render a multi-column layout of compound strings by specifying the
as the XmNtabList resource of a rendition object within a render table associa
with a widget.

XmTabListGetTab () returns a copy of the tab within the original tab list, an
it is the responsibility of the programmer to reclaim the space at a suitable p
by callingXmTabFree ().

See Also
XmTabCreate (1), XmTabFree (1), XmTabListInsertTabs (1),
XmRendition (2).
430 Motif Reference Manual

Motif Functions and Macros XmTabListInsertTabs

o

the
ew

list
ted

il-
Name
XmTabListInsertTabs – insert tabs into a tab list.

Synopsis

XmTabList XmTabListInsertTabs (XmTabListtab_list, XmTab *tabs, Cardinal
tab_count, int position)

Inputs
tab_list Specifies the tab list into which tabs are added.
tabs Specifies an array of tabs to add.
tab_count Specifies the number of tabs within the tabs array.
position Specifies an index into tab_list at which to insert the tabs.

Returns
A newly allocated tab list.

Availability
Motif 2.0 and later.

Description
XmTabListInsertTabs () creates a new tab list by merging a set oftabsinto
a tab_list at a givenposition. If tabs is NULL, or tab_count is zero, the function
returns the originaltab_list. If position is zero, the new tabs are inserted at the
head of the new tab list, ifpositionis 1, they are inserted after the first tab, and s
forth. If position is greater than the number of tabs intab_list, the new tabs are
appended. Ifpositionis negative, the new tabs are inserted in reverse order at
end of the original list, so that the first new tab becomes the last tab in the n
list.

Usage
A tab stop can be created using the functionXmTabCreate (), and inserted into
an XmTabList through the functionXmTabListInsertTabs (). The tab list is
used to render a multi-column layout of compound strings by specifying the
as the XmNtabList resource of a rendition object within a render table associa
with a widget.

XmTabListInsertTabs () returns allocated storage, and it is the responsib
ity of the programmer to reclaim the space at a suitable point by callingXmTab-
ListFree ().

See Also
XmTabCreate (1), XmTabFree (1), XmTabListFree (1),
XmTabListInsertTabs (1), XmRendition (2).
Motif Reference Manual 431

XmTabListRemoveTabs Motif Functions and Macros

ific

llo-

list
ted

e

Name
XmTabListRemoveTabs – copy a tab list, excluding specified tabs.

Synopsis

XmTabList XmTabListRemoveTabs (XmTabListold_list,
Cardinal *position_list,
Cardinal position_count)

Inputs
old_list Specifies the tab list to copy.
position_list Specifies an array of tab positions to exclude.
position_count Specifies the length of position_list.

Returns
A copy ofold_list, with the specified positions excluded.

Availability
Motif 2.0 and later.

Description
XmTabListRemoveTabs () removes tabs from aold_list by allocating a new
tab list which contains all the tabs of the original list except for those at spec
positions within aposition_list. The first tab within a tab list is at position zero,
the second tab at position 1, and so on. Ifold_list is NULL, or if position_list is
NULL, or if position_countis zero, the function returnsold_listunmodified. Oth-
erwiseold_list is freed, as are any excluded tab elements, before the newly a
cated tab list is returned.

Usage
A tab stop can be created using the functionXmTabCreate (), and inserted into
an XmTabList through the functionXmTabListInsertTabs (). The tab list is
used to render a multi-column layout of compound strings by specifying the
as the XmNtabList resource of a rendition object within a render table associa
with a widget.

When the returned tab list differs from the original old_list parameter,XmTab-
ListRemoveTabs () returns allocated storage, and it is the responsibility of th
programmer to reclaim the space at a suitable point by callingXmTabList-
Free ().

See Also
XmTabCreate (1), XmTabFree (1), XmTabListFree (1),
XmTabListInsertTabs (1), XmRendition (2).
432 Motif Reference Manual

Motif Functions and Macros XmTabListReplacePositions

i-

igi-

s,

list
ted

i-
Name
XmTabListReplacePositions – copy a tab list, replacing tabs at specified pos
tions.

Synopsis

XmTabList XmTabListReplacePositions (XmTabList old_list,
Cardinal *position_list,
XmTab *tabs,
Cardinal tab_count)

Inputs
old_list Specifies the tab list to modify.
position_list Specifies an array of positions at which to replace the tabs.
tabs Specifies the tabs which replace those in old_list.
tab_count Specifies the number of tabs and positions.

Returns
A new tab list with tabs replaced at specified positions.

Availability
Motif 2.0 and later.

Description
XmTabListReplacePositions () creates a newly allocated tab list which
contains all the original tabs inold_list, except that at any position contained
within position_list, the corresponding tab from tabs is used instead of the or
nal. That is, at the first position specified withinposition_list, the original tab is
replaced by the first tab withintabs. The first tab within a tab list is at position
zero, the second tab at position 1, and so on. Ifold_list is NULL, or if tabs is
NULL, or if position_list is NULL, or if tab_count is zero, the function returns
old_listunmodified. Otherwiseold_list is freed, as are any replaced tab element
before the newly allocated tab list is returned.

Usage
A tab stop can be created using the functionXmTabCreate (), and inserted into
an XmTabList through the functionXmTabListInsertTabs (). The tab list is
used to render a multi-column layout of compound strings by specifying the
as the XmNtabList resource of a rendition object within a render table associa
with a widget.

When the returned tab list differs from the original old_list parameter,XmTab-
ListReplacePositions () returns allocated storage, and it is the respons
bility of the programmer to reclaim the space at a suitable point by calling
XmTabListFree ()
Motif Reference Manual 433

XmTabListReplacePositions Motif Functions and Macros
See Also
XmTabCreate (1), XmTabFree (1), XmTabListFree (1),
XmTabListInsertTabs (1), XmTabListRemoveTabs (1),
XmRendition (2).
434 Motif Reference Manual

Motif Functions and Macros XmTabListTabCount

r

list
ted
Name
XmTabListTabCount – count the number of tabs in a tab list.

Synopsis

Cardinal XmTabListTabCount (XmTabListtab_list)

Inputs
tab_list The tab list to count.

Returns
The number of tab stops in tab_list.

Availability
Motif 2.0 and later.

Description
XmTabListTabCount ()1 is a convenience function which counts the numbe
of XmTab objects contained withintab_list. If tab_list is NULL, the function
returns zero.

Usage
A tab stop can be created using the functionXmTabCreate (), and inserted into
an XmTabList through the functionXmTabListInsertTabs (). The tab list is
used to render a multi-column layout of compound strings by specifying the
as the XmNtabList resource of a rendition object within a render table associa
with a widget.

See Also
XmTabCreate (1), XmTabFree (1), XmTabListFree (1),
XmTabListInsertTabs (1), XmTabListRemoveTabs (1),
XmRendition *(s2.

1.Erroneously given as XmTabListCount() in 2nd edition.
Motif Reference Manual 435

XmTabSetValue Motif Functions and Macros

 the
 off-
tive

the

list
ted
Name
XmTabSetValue – set the value of a tab stop.

Synopsis

void XmTabSetValue (XmTabtab, floatvalue)

Inputs
tab Specifies the tab to modify.
value Specifies the new value for the tab stop.

Availability
Motif 2.0 and later.

Description
XmTabSetValue () sets the value associated with an XmTab object. Thevalue
is a floating point quantity which either represents an absolute distance from
start of the current rendition, or a value relative to the previous tab stop. The
set model specified when the tab is created determines whether value is rela
or absolute. Ifvalueis less than 0 (zero), a warning message is displayed and
function returns without modifying the tab.

Usage
A tab stop can be created using the functionXmTabCreate (), and inserted into
an XmTabList through the functionXmTabListInsertTabs (). The tab list is
used to render a multi-column layout of compound strings by specifying the
as the XmNtabList resource of a rendition object within a render table associa
with a widget.

See Also
XmTabCreate (1), XmTabListInsertTabs (1), XmRendition (2).
436 Motif Reference Manual

Motif Functions and Macros XmTargetsAreCompatible

rag

he

s
urns
ns

 a
g the
.
der
must

ite
Name
XmTargetsAreCompatible – determine whether or not the target types of a d
source and a drop site match.

Synopsis

#include <Xm/DragDrop.h>

Boolean XmTargetsAreCompatible (Display *display,
Atom *export_targets,
Cardinal num_export_targets,
Atom *import_targets,
Cardinal num_import_targets)

Inputs
display Specifies a connection to an X server; returned from

XOpenDisplay() or XtDisplay().
export_targets Specifies the list of target atoms to which the drag

source can convert the data.
num_export_targets Specifies the number of items in export_targets.
import_targets Specifies the list of target atoms that are accepted by t

drop site.
num_import_targets Specifies the number of items in import_targets.

Returns
True if there is a compatible target or False otherwise.

Availability
Motif 1.2 and later.

Description
XmTargetsAreCompatible () determines whether or not the import target
of a drop site match any of the export targets of a drag source. The routine ret
True if the two objects have at least one target in common; otherwise it retur
False.

Usage
Motif 1.2 and later supports the drag and drop model of selection actions. In
widget that acts as a drag source, a user can make a selection and then dra
selection, using BTransfer, to other widgets that are registered as drop sites
These drop sites can be in the same application or another application. In or
for a drag and drop operation to succeed, the drag source and the drop site
both be able to handle data in the same format.XmTargetsAreCompati-
ble () provides a way for an application to check if a drag source and a drop s
support compatible formats.

See Also
XmDragContext (1), XmDropSite (1).
Motif Reference Manual 437

XmTextClearSelection Motif Functions and Macros

-

r the

et.
ip-
 the
ou
c-
e,
en
Name
XmTextClearSelection, XmTextFieldClearSelection – clear the primary selec
tion.

Synopsis

#include <Xm/Text.h>

void XmTextClearSelection (Widgetwidget, Timetime)

#include <Xm/TextF.h>

void XmTextFieldClearSelection (Widgetwidget, Timetime)

Inputs
widget Specifies the Text or TextField widget.
time Specifies the time of the event that caused the request.

Description
XmTextClearSelection () andXmTextFieldClearSelection () clear
the primary selection in the specifiedwidget. XmTextClearSelection ()
works whenwidget is a Text widget or a TextField widget, whileXmText-
FieldClearSelection () only works for a TextField widget. For each rou-
tine, timespecifies the server time of the event that caused the request to clea
selection.

Usage
XmTextClearSelection () andXmTextFieldClearSelection () pro-
vide a convenient way to deselect the text selection in a Text or TextField widg
If no text is selected, the routines do nothing. Any text that is stored in the cl
board or selection properties remains; the routines affect the selected text in
widget only. If you are calling one of these routines from a callback routine, y
probably want to use the time field from the event pointer in the callback stru
ture as the value of thetime parameter. You can also use the value CurrentTim
but there is no guarantee that using this time prevents race conditions betwe
multiple clients that are trying to use the clipboard.

Example
The following callback routine for the items on anEdit menu (Cut, Copy, Link ,
Paste, andClear) shows the use of XmTextClearSelection():

Widget text_w, status;

void cut_paste (Widget widget, XtPointer client_data, XtPointer call_data)
{

int num = (int) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
438 Motif Reference Manual

Motif Functions and Macros XmTextClearSelection

ak;

);
Boolean result = True;

switch (num) {
case 0: result = XmTextCut (text_w, cbs->event->xbutton.time);bre
case 1: result = XmTextCopy (text_w, cbs->event->xbutton.time);
break;
case 2: result = XmTextCopyLink (text_w, cbs->event->xbutton.time
break;
case 3: result = XmTextPaste (text_w);break
case 4: XmTextClearSelection (text_w, cbs->event->xbutton.time);
break;

}

if (result == False)
XmTextSetString (status, "There is no selection.");

else
XmTextSetString (status, NULL);

}

See Also
XmTextCopy (1), XmTextCopyLink (1), XmTextCut (1),
XmTextGetSelection (1), XmTextGetSelectionPosition (1),
XmTextGetSelectionWcs (1), XmTextSetSelection (1), XmText (2),
XmTextField (2).
Motif Reference Manual 439

XmTextCopy Motif Functions and Macros

d.

t
ful.
 if

t.

of

ter.
g this
the
Name
XmTextCopy, XmTextFieldCopy – copy the primary selection to the clipboar

Synopsis

#include <Xm/Text.h>

Boolean XmTextCopy (Widgetwidget, Timetime)

#include <Xm/TextF.h>

Boolean XmTextFieldCopy (Widgetwidget, Timetime)

Inputs
widget Specifies the Text or TextField widget.
time Specifies the time of the event that caused the request.

Returns
True on success or False otherwise.

Description
XmTextCopy () andXmTextFieldCopy () copy the primary selection in the
specifiedwidgetto the clipboard. XmTextCopy () works whenwidgetis a Text
widget or a TextField widget, whileXmTextFieldCopy () only works for a
TextField widget. For each routine,timespecifies the server time of the event tha
caused the request to copy the selection. Both routines return True if success
If the primary selection is NULL, if it is not owned by the specified widget, or
the function cannot obtain ownership of the clipboard selection, the routines
return False.

In Motif 2.0 and later,XmTextCopy () interfaces with the Uniform Transfer
Model by indirectly invoking the XmNconvertCallback procedures of the widge

Usage
XmTextCopy () andXmTextFieldCopy () copy the text that is selected in a
Text or TextField widget and place it on the clipboard. If you are calling one
these routines from a callback routine, you probably want to use thetime field
from the event pointer in the callback structure as the value of the time parame
You can also use the value CurrentTime, but there is no guarantee that usin
time prevents race conditions between multiple clients that are trying to use
clipboard.

Example
The following callback routine for the items on anEdit menu (Cut, Copy, Link ,
Paste, PasteLink, andClear) shows the use ofXmTextCopy ():

Widget text_w, status;
440 Motif Reference Manual

Motif Functions and Macros XmTextCopy

k;

);
void cut_paste (Widget widget, XtPointer client_data, XtPointer call_data)
{

int num = (int) client_data;
XmAnyCallbackStruct*cbs = (XmAnyCallbackStruct *) call_data;
Boolean result = True;

switch (num) {
case 0: result = XmTextCut (text_w, cbs->event->xbutton.time);brea
case 1: result = XmTextCopy (text_w, cbs->event->xbutton.time);
break;
case 2: result = XmTextCopyLink (text_w, cbs->event->xbutton.time
break;
case 3: result = XmTextPaste (text_w);break;
case 4: result = XmTextPasteLink (text_w);break;
case 5: XmTextClearSelection (text_w, cbs->event->xbutton.time);
break;

}

if (result == False)
XmTextSetString (status, "There is no selection.");

else
XmTextSetString (status, NULL);

}

See Also
XmTextClearSelection (1), XmTextCopyLink (1), XmTextCut (1),
XmTextGetSelection (1), XmTextGetSelectionWcs (1),
XmTextPaste (1), XmTextPasteLink (1), XmTextRemove(1),
XmTextSetSelection (1), XmText (2), XmTextField (2).
Motif Reference Manual 441

XmTextCopyLink Motif Functions and Macros

tion.
s
 of

r
ich
d.

ou
to
e of
guar-
that
Name
XmTextCopyLink, XmTextFieldCopyLink – copy the primary selection to the
clipboard.

Synopsis

#include <Xm/Text.h>

Boolean XmTextCopyLink (Widgetwidget, Timetime)

#include <Xm/TextF.h>

Boolean XmTextFieldCopyLink (Widgetwidget, Timetime)

Inputs
widget Specifies the Text or TextField widget.
time Specifies the time of the event that caused the request.

Returns
True on success or False otherwise.

Availability
Motif 2.0 and later.

Description
XmTextCopyLink () andXmTextFieldCopyLink () copy a link to the pri-
mary selection in the specifiedwidget to the clipboard.XmTextCopyLink ()
works when widget is a Text widget or a TextField widget, whileXmText-
FieldCopyLink () only works for a TextField widget. For each routine,time
specifies the server time of the event that caused the request to copy the selec
Both routines return True if successful. If the primary selection is NULL, if it i
not owned by the specified widget, or if the function cannot obtain ownership
the clipboard selection, the routines return False.

XmTextCopyLink () andXmTextFieldCopyLink () interface with the Uni-
form Transfer Model by indirectly invoking XmNconvertCallback procedures fo
the widget. The Text widget itself does not copy links: convert procedures wh
the programmer provides are responsible for copying the link to the clipboar

Usage

XmTextCopyLink () andXmTextFieldCopyLink () copy links to the text
that is selected in a Text or TextField widget and place it on the clipboard. If y
are calling one of these routines from a callback routine, you probably want
use the time field from the event pointer in the callback structure as the valu
thetime parameter. You can also use the value CurrentTime, but there is no
antee that using this time prevents race conditions between multiple clients
are trying to use the clipboard.
442 Motif Reference Manual

Motif Functions and Macros XmTextCopyLink

ak;

);
Example
The following callback routine for the items on anEdit menu (Cut, Copy, Link ,
Paste, PasteLink, andClear) shows the use ofXmTextCopyLink ():

Widget text_w, status;

void cut_paste (Widget widget, XtPointer client_data, XtPointer call_data)
{
int num = (int) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
Boolean result = True;

switch (num) {
case 0: result = XmTextCut (text_w, cbs->event->xbutton.time);bre
case 1: result = XmTextCopy (text_w, cbs->event->xbutton.time);
break;
case 2: result = XmTextCopyLink (text_w, cbs->event->xbutton.time
break;
case 3: result = XmTextPaste (text_w);break;
case 4: result = XmTextPasteLink (text_w);break;
case 5: XmTextClearSelection (text_w, cbs->event->xbutton.time);
break;

}

if (result == False)
XmTextSetString (status, "There is no selection.");

else
XmTextSetString (status, NULL);

}

See Also
XmTextClearSelection (1), XmTextCopy (1), XmTextCut (1),
XmTextGetSelection (1), XmTextGetSelectionWcs (1),
XmTextPaste (1), XmTextPasteLink (1), XmTextRemove(1),
XmTextSetSelection (1), XmText (2), XmTextField (2).
Motif Reference Manual 443

XmTextCut Motif Functions and Macros

d

tion.
ri-

rn

N-
n

res.

t,
lec-

t. If
ant
Name
XmTextCut, XmTextFieldCut – copy the primary selection to the clipboard an
remove the selected text.

Synopsis

#include <Xm/Text.h>

Boolean XmTextCut (Widgetwidget, Timetime)

#include <Xm/TextF.h>

Boolean XmTextFieldCut (Widgetwidget, Timetime)

Inputs
widget Specifies the Text or TextField widget.
time Specifies the time of the event that caused the request.

Returns
True on success or False otherwise.

Description
XmTextCut () andXmTextFieldCut () copy the primary selection in the
specifiedwidget to the clipboard and then delete the primary selection.
XmTextCut () works when widget is a Text widget or a TextField widget, while
XmTextFieldCut () only works for a TextField widget. For each routine,time
specifies the server time of the event that caused the request to cut the selec
Both routines return True if successful. If the widget is not editable, if the p
mary selection is NULL or if it is not owned by the specified widget, or if the
function cannot obtain ownership of the clipboard selection, the routines retu
False.

XmTextCut () andXmTextFieldCut () also invoke the callback routines for
the XmNvalueChangedCallback, the XmNmodifyVerifyCallback, and the Xm
modifyVerifyCallbackWcs callbacks for the specified widget. If both verificatio
callbacks are present, the XmNmodifyVerifyCallback procedures are invoked
first and the results are passed to the XmNmodifyVerifyCallbackWcs procedu

In Motif 2.0 and later,XmTextCut () interfaces with the Uniform Transfer
Model by indirectly invoking the XmNconvertCallback procedures of the widge
firstly to transfer the selection to the clipboard, and secondly to delete the se
tion.

Usage
XmTextCut () andXmTextFieldCut () copy the text that is selected in a Text
or TextField widget, place it on the clipboard, and then delete the selected tex
you are calling one of these routines from a callback routine, you probably w
444 Motif Reference Manual

Motif Functions and Macros XmTextCut

lue
o
nts

k;

);
to use the time field from the event pointer in the callback structure as the va
of thetime parameter. You can also use the value CurrentTime, but there is n
guarantee that using this time prevents race conditions between multiple clie
that are trying to use the clipboard.

Example
The following callback routine for the items on anEdit menu (Cut, Copy, Link ,
Paste, andPasteLink, Clear) shows the use ofXmTextCut ():

Widget text_w, status;

void cut_paste (Widget widget, XtPointer client_data, XtPointer call_data)
{

int num = (int) client_data;
XmAnyCallbackStruct*cbs = (XmAnyCallbackStruct *) call_data;
Boolean result = True;

switch (num) {
case 0: result = XmTextCut (text_w, cbs->event->xbutton.time);brea
case 1: result = XmTextCopy (text_w, cbs->event->xbutton.time);
break;
case 2: result = XmTextCopyLink (text_w, cbs->event->xbutton.time
break;
case 3: result = XmTextPaste (text_w);break;
case 4: result = XmTextPasteLink (text_w);break;
case 5: XmTextClearSelection (text_w, cbs->event->xbutton.time);
break;

}

if (result == False)
XmTextSetString (status, "There is no selection.");

else
XmTextSetString (status, NULL);

}

See Also
XmTextClearSelection (1), XmTextCopy (1), XmTextCopyLink (1),
XmTextGetSelection (1), XmTextGetSelectionWcs (1),
XmTextPaste (1), XmTextPasteLink (1), XmTextRemove(1),
XmTextSetSelection (1), XmText (2), XmTextField (2).
Motif Reference Manual 445

XmTextDisableRedisplay Motif Functions and Macros

-
d,

 vis-
l

Name
XmTextDisableRedisplay – prevent visual update of a Text widget.

Synopsis

#include <Xm/Text.h>

void XmTextDisableRedisplay (Widgetwidget)

Inputs
widget Specifies the Text widget.

Availability
Motif 1.2 and later.

Description
XmTextDisableRedisplay () temporarily inhibits visual update of the spec
ified Textwidget. Even if the visual attributes of the widget have been modifie
the appearance remains unchanged untilXmTextEnableRedisplay () is
called.

Usage
XmTextDisableRedisplay () andXmTextEnableRedisplay () allow
an application to make multiple changes to a Text widget without immediate
ual updates. When multiple changes are made with redisplay enabled, visua
flashing often occurs. These routines eliminate this problem.

See Also
XmTextEnableRedisplay (1), XmUpdateDisplay (1), XmText (2).
446 Motif Reference Manual

Motif Functions and Macros XmTextEnableRedisplay

f

 vis-
l

Name
XmTextEnableRedisplay – allow visual update of a Text widget.

Synopsis
#include <Xm/Text.h>

void XmTextEnableRedisplay (Widgetwidget)

Inputs
widget Specifies the Text widget.

Availability
Motif 1.2 and later.

Description
XmTextEnableRedisplay () allows the specified Textwidget to update its
visual appearance. This routine is used in conjunction withXmTextDisable-
Redisplay (), which prevents visual update of the Text widget. WhenXmTex-
tEnableRedisplay () is called, the widget modifies its visuals to reflect all o
the changes since the last call toXmTextDisableRedisplay (). All future
changes that affect the visual appearance are displayed immediately.

Usage
XmTextDisableRedisplay () andXmTextEnableRedisplay () allow
an application to make multiple changes to a Text widget without immediate
ual updates. When multiple changes are made with redisplay enabled, visua
flashing often occurs. These routines eliminate this problem.

See Also
XmTextDisableRedisplay (1), XmUpdateDisplay (1), XmText *(s2.
Motif Reference Manual 447

XmTextFindString Motif Functions and Macros

rac-
). If

xt
d

Name

XmTextFindString – find the beginning position of a text string.

Synopsis

#include <Xm/Xm.h>

Boolean XmTextFindString (Widget widget,
XmTextPosition start,
char *string,
XmTextDirection direction,
XmTextPosition *position)

Inputs
widget Specifies the Text widget.
start Specifies the position from which the search begins.
string Specifies the string for which to search.
direction Specifies the direction of the search. Pass either

XmTEXT_FORWARD or XmTEXT_BACKWARD.

Outputs
position Returns the position where the search string starts.

Returns
True if the string is found or False otherwise.

Availability
Motif 1.2 and later.

Description
XmTextFindString () finds the beginning position of the specifiedstring in
the Text widget. Depending on the value ofdirection, the routine searches for-
ward or backward from the specifiedstart position for the first occurrence of
string. If XmTextFindString () finds a match, it returns True andposition
specifies the position of the first character of the string as the number of cha
ters from the beginning of the text, where the first character position is 0 (zero
a match is not found, the routine returns False and the value ofposition is unde-
fined.

Usage
XmTextFindString () is a convenience routine that searches the text in a Te
widget for a particularstring. Without the routine, the search must be performe
using the standard string manipulation routines.
448 Motif Reference Manual

Motif Functions and Macros XmTextFindString

 sin-
Example
The following routine shows the use ofXmTextFindString () to locate a
string in a text editing window. The search string is specified by the user in a
gle-line Text widget:

Widget text_w, search_w;

void search_text (void)
{

char *search_pat = (char *) 0;
XmTextPosition pos, search_pos;
Boolean found = False;

if (!(search_pat = XmTextGetString (search_w)) || !*search_pat) {
XtFree (search_pat);
return;

}

/* find next occurrence from current position -- wrap if necessary */
pos = XmTextGetCursorPosition (text_w);
found = XmTextFindString (text_w, pos, search_pat,
XmTEXT_FORWARD, &search_pos);

if (!found)
found = XmTextFindString (text_w, 0, search_pat,
XmTEXT_FORWARD, &search_pos);

if (found)
XmTextSetInsertionPosition (text_w, search_pos);

XtFree (search_pat);
}

See Also
XmTextFindStringWcs (1), XmTextGetSubstring (1),
XmTextGetSubstringWcs (1), XmText (2).
Motif Reference Manual 449

Motif Functions and Macros

in

-

g
rac-

 the

for
ring
e

Name
XmTextFindStringWcs – find the beginning position of a wide-character string
a Text widget.

Synopsis

#include <Xm/Text.h>

Boolean XmTextFindStringWcs (Widget widget,
XmTextPosition start,
wchar_t *wcstring,
XmTextDirection direction,
XmTextPosition *position)

Inputs
widget Specifies the Text widget.
start Specifies the position from which the search begins.
wcstring Specifies the wide-character string for which to search.
direction Specifies the direction of the search. Pass either

XmTEXT_FORWARD or XmTEXT_BACKWARD.

Outputs
position Returns the position where the search string starts.

Returns
True if the string is found or False otherwise.

Availability
Motif 1.2 and later.

Description
XmTextFindStringWcs () finds the beginning position of the specified wide
characterwcstring in the Textwidget. Depending on the value ofdirection, the
routine searches forward or backward from the specifiedstart position for the
first occurrence ofwcstring. If XmTextFindStringWcs () finds a match, it
returns True andposition specifies the position of the first character of the strin
as the number of characters from the beginning of the text, where the first cha
ter position is 0 (zero). If a match is not found, the routine returns False and
value ofposition is undefined.

Usage
In Motif 1.2, the Text widget supports wide-character strings.XmTextFind-
StringWcs () is a convenience routine that searches the text in a Text widget
a particular wide-character string. The routine converts the wide-character st
into a multi-byte string and then performs the search. Without the routine, th
search must be performed using the standard string manipulation routines.
Motif Reference Manual 450

Motif Functions and Macros
See Also
XmTextFindString (1), XmTextGetSubstring (1),
XmTextGetSubstringWcs (1), XmText (2).
Motif Reference Manual 451

Motif Functions and Macros

ine.

e
k-

n

Name
XmTextGetBaseline, XmTextFieldGetBaseline – get the position of the basel

Synopsis

#include <Xm/Text.h>

int XmTextGetBaseline (Widgetwidget)

#include <Xm/TextF.h>

int XmTextFieldGetBaseline (Widgetwidget)

Inputs
widget Specifies the Text or TextField widget.

Returns
The baseline position.

Description
XmTextGetBaseline () returns the y coordinate of the baseline of the first
line of text in the specified Textwidget, while XmTextFieldGetBaseline ()
returns the y coordinate of the baseline for the text in the specified TextField
widget. XmTextGetBaseline () works whenwidget is a Text widget or a
TextField widget, whileXmTextFieldGetBaseline () only works for a Tex-
tField widget. For each routine, the returned value is relative to the top of th
widget and it accounts for the margin height, shadow thickness, highlight thic
ness, and font ascent of the first font in the font list.

Usage
XmTextGetBaseline () andXmTextFieldGetBaseline () provide infor-
mation that is useful when you are laying out an application and trying to alig
different components.

See Also
XmTextGetCenterline (1), XmWidgetGetBaselines (1),
XmWidgetGetDisplayRect (1), XmText (2), XmTextField (2).
Motif Reference Manual 452

Motif Functions and Macros

s
tive
the
Name
XmTextGetCenterline – get the height of vertical text.

Synopsis

#include <Xm/Text.h>

int XmTextGetCenterline (Widgetwidget)

Inputs
widget Specifies the Text widget.

Returns
The center line x position.

Availability
Motif 2.1 and later.

Description
XmTextGetCenterline () calculates the x coordinate of the centerline in a
Text widget containing vertical text. If the layout direction of the Text widget
does not match XmTOP_TO_BOTTOM_RIGHT_TO_LEFT the function return
zero. Otherwise the procedure calculates the x position of the centerline rela
to the left of the Text. The margin width, shadow thickness, and the width of
font are taken into consideration when performing the calculation.

Usage
XmTextGetCenterline () provides information that is useful when you are
laying out an application and trying to align different components.

See Also
XmTextGetBaseline (1), XmWidgetGetCenterlines (1),
XmWidgetGetDisplayRect (1), XmText (2), XmTextField (2).
Motif Reference Manual 453

Motif Functions and Macros

of

ca-
the

ion
ent
Name
XmTextGetCursorPosition, XmTextFieldGetCursorPosition – get the position
the insertion cursor.

Synopsis

#include <Xm/Text.h>

XmTextPosition XmTextGetCursorPosition (Widgetwidget)

#include <Xm/TextF.h>

XmTextPosition XmTextFieldGetCursorPosition (Widgetwidget)

Inputs
widget Specifies the Text or TextField widget.

Returns
The value of the XmNcursorPosition resource.

Description
XmTextGetCursorPosition () andXmTextFieldGetCursorPosi-
tion () return the value of the XmNcursorPosition resource for the specified
widget. XmTextGetCursorPosition () works whenwidget is a Text
widget or a TextField widget, whileXmTextFieldGetCursorPosition ()
only works for a TextField widget. For each routine, the value specifies the lo
tion of the insertion cursor as the number of characters from the beginning of
text, where the first character position is 0 (zero).

Usage
XmTextGetCursorPosition () andXmTextFieldGetCursorPosi-
tion () are convenience routines that return the value of the XmNcursorPosit
resource for a Text or TextField widget. Calling one of the routines is equival
to callingXtGetValues () for the resource, although the routines access the
value through the widget instance structures rather than throughXtGetVal-
ues ().

See Also
XmTextGetInsertionPosition (1),
XmTextSetCursorPosition (1),
XmTextSetInsertionPosition (1), XmTextShowPosition (1),
XmText (2), XmTextField (2).
Motif Reference Manual 454

Motif Functions and Macros

.

edit

r

he
Name
XmTextGetEditable, XmTextFieldGetEditable – get the edit permission state

Synopsis

#include <Xm/Text.h>

Boolean XmTextGetEditable (Widgetwidget)

#include <Xm/TextF.h>

Boolean XmTextFieldGetEditable (Widgetwidget)

Inputs
widget Specifies the Text or TextField widget.

Returns
The state of the XmNeditable resource.

Description
XmTextGetEditable () andXmTextFieldGetEditable () return the
value of the XmNeditable resource for the specified Text or TextFieldwidget.
XmTextGetEditable () works whenwidget is a Text widget or a TextField
widget, whileXmTextFieldGetEditable () only works for a TextField
widget.

Usage
By default, the XmNeditable resource is True, which means that a user can
the text string. Setting the resource to False makes a text area read-only.
XmTextGetEditable () andXmTextFieldGetEditable () are conven-
ience routines that return the value of the XmNeditable resource for a Text o
TextField widget. Calling one of the routines is equivalent to callingXtGet-
Values () for the resource, although the routines access the value through t
widget instance structures rather than throughXtGetValues ().

See Also
XmTextSetEditable (1), XmText (2), XmTextField (2).
Motif Reference Manual 455

Motif Functions and Macros

i-

,
cters

f
f

han
Name
XmTextGetInsertionPosition, XmTextFieldGetInsertionPosition – get the pos
tion of the insertion cursor.

Synopsis

#include <Xm/Text.h>

XmTextPosition XmTextGetInsertionPosition (Widgetwidget)

#include <Xm/TextF.h>

XmTextPosition XmTextFieldGetInsertionPosition (Widgetwidget)

Inputs
widget Specifies the Text or TextField widget.

Returns
The value of the XmNcursorPosition resource.

Description
The functions,XmTextGetInsertionPosition () andXmTextFieldG-
etInsertionPosition (), return the value of the XmNcursorPosition
resource for the specifiedwidget. XmTextGetInsertionPosition () works
whenwidgetis a Text widget or a TextField widget, whileXmTextFieldGet-
InsertionPosition () only works for a TextField widget. For each routine
the value specifies the location of the insertion cursor as the number of chara
from the beginning of the text, where the first character position is 0 (zero).

Usage
The functions,XmTextGetInsertionPosition () andXmTextFieldG-
etInsertionPosition (), are convenience routines that return the value o
the XmNcursorPosition resource for a Text or TextField widget. Calling one o
the routines is equivalent to callingXtGetValues () for the resource, although
the routines access the value through the widget instance structures rather t
throughXtGetValues ().

See Also
XmTextGetCursorPosition (1),
XmTextSetInsertionPosition (1),
XmTextSetCursorPosition (1), XmTextShowPosition (1),
XmText (2), XmTextField (2).
Motif Reference Manual 456

Motif Functions and Macros

e

the
r

xt or
Name
XmTextGetLastPosition, XmTextFieldGetLastPosition – get the position of th
last character of text.

Synopsis

#include <Xm/Text.h>

XmTextPosition XmTextGetLastPosition (Widgetwidget)

#include <Xm/TextF.h>

XmTextPosition XmTextFieldGetLastPosition (Widgetwidget)

Inputs
widget Specifies the Text or TextField widget.

Returns
The position of the last text character.

Description
XmTextGetLastPosition () andXmTextFieldGetLastPosition ()
return the position of the last character of text in the specifiedwidget. XmText-
GetLastPosition () works whenwidget is a Text widget or a TextField
widget, whileXmTextFieldGetLastPosition () only works for a Text-
Field widget. For each routine, the returned value specifies the position as
number of characters from the beginning of the text, where the first characte
position is 0 (zero).

Usage
XmTextGetLastPosition () andXmTextFieldGetLastPosition ()
are convenience routines that return the number of characters of text in a Te
TextField widget.

See Also
XmTextGetCursorPosition (1),
XmTextGetInsertionPosition (1), XmTextGetTopCharacter (1),
XmTextScroll (1), XmTextSetCursorPosition (1),
XmTextSetInsertionPosition (1), XmTextSetTopCharacter (1),
XmTextShowPosition (1), XmText (2), XmTextField (2).
Motif Reference Manual 457

Motif Functions and Macros

i-

le

ext

he
Name
XmTextGetMaxLength, XmTextFieldGetMaxLength – get the maximum poss
ble length of a text string.

Synopsis

#include <Xm/Text.h>

int XmTextGetMaxLength (Widgetwidget)

#include <Xm/TextF.h>

int XmTextFieldGetMaxLength (Widgetwidget)

Inputs
widget Specifies the Text or TextField widget.

Returns
The value of the XmNmaxLength resource.

Description
XmTextGetMaxLength () andXmTextFieldGetMaxLength () return the
value of the XmNmaxLength resource for the specified Text or TextFieldwidget.
XmTextGetMaxLength () works whenwidget is a Text widget or a TextField
widget, whileXmTextFieldGetMaxLength () only works for a TextField
widget. For each routine, the returned value specifies the maximum allowab
length of a text string that a user can enter from the keyboard.

Usage
XmTextGetMaxLength () andXmTextFieldGetMaxLength () are con-
venience routines that return the value of the XmNmaxLength resource for a T
or TextField widget. Calling one of the routines is equivalent to callingXtGet-
Values () for the resource, although the routines access the value through t
widget instance structures rather than throughXtGetValues ().

See Also
XmTextSetMaxLength (1), XmText (2), XmTextField (2).
Motif Reference Manual 458

Motif Functions and Macros

y

ine
Name
XmTextGetSelection, XmTextFieldGetSelection – get the value of the primar
selection.

Synopsis

#include <Xm/Text.h>

char * XmTextGetSelection (Widgetwidget)

#include <Xm/TextF.h>

char * XmTextFieldGetSelection (Widgetwidget)

Inputs
widget Specifies the Text or TextField widget.

Returns
A string containing the primary selection.

Description
XmTextGetSelection () andXmTextFieldGetSelection () return a
pointer to a character string containing the primary selection in the specified
widget. XmTextGetSelection () works whenwidget is a Text widget or a
TextField widget, whileXmTextFieldGetSelection () only works for a
TextField widget. For each routine, if no text is selected in the widget, the
returned value is NULL. Storage for the returned string is allocated by the rout
and should be freed by callingXtFree (). Management of the allocated memory
is the responsibility of the application.

Usage
XmTextGetSelection () andXmTextFieldGetSelection () provide a
convenient way to get the current selection from a Text or TextField widget.

See Also
XmTextGetSelectionPosition (1), XmTextGetSelectionWcs (1),
XmTextSetSelection (1), XmText (2), XmTextField (2).
Motif Reference Manual 459

Motif Functions and Macros

si-

n.
n.

egin-
rns
Name
XmTextGetSelectionPosition, XmTextFieldGetSelectionPosition – get the po
tion of the primary selection.

Synopsis

#include <Xm/Text.h>

Boolean XmTextGetSelectionPosition (Widget widget,
XmTextPosition *left,
XmTextPosition *right)

#include <Xm/TextF.h>

Boolean XmTextFieldGetSelectionPosition (Widget widget,
XmTextPosition *left,
XmTextPosition *right)

Inputs
widget Specifies the Text or TextField widget.

Outputs
left Returns the position of the left boundary of the primary selectio
right Returns the position of the right boundary of the primary selectio

Returns
True if widget owns the primary selection or False otherwise.

Description
The functions,XmTextGetSelectionPosition () andXmTextFieldG-
etSelectionPosition () return theleft andright boundaries of the primary
selection for the specifiedwidget. XmTextGetSelectionPosition ()
works whenwidget is a Text widget or a TextField widget, whileXmText-
FieldGetSelectionPosition () only works for a TextField widget. Each
boundary value specifies the position as the number of characters from the b
ning of the text, where the first character position is 0 (zero). Each routine retu
True if the specified Text or TextFieldwidget owns the primary selection; other-
wise, the routine returns False and the values ofleft andright are undefined.

Usage
The functions,XmTextGetSelectionPosition () andXmTextFieldG-
etSelectionPosition (), provide a convenient way to get the position of
the current selection from a Text or TextField widget.

See Also
XmTextGetSelection (1), XmTextGetSelectionWcs (1),
XmTextSetSelection (1), XmText (2), XmTextField (2).
Motif Reference Manual 460

Motif Functions and Macros

ac-

the

e

at
Name
XmTextGetSelectionWcs, XmTextFieldGetSelectionWcs – get the wide-char
ter value of the primary selection.

Synopsis

#include <Xm/Text.h>

wchar_t * XmTextGetSelectionWcs (Widgetwidget)

#include <Xm/TextF.h>

wchar_t * XmTextFieldGetSelectionWcs (Widgetwidget)

Inputs
widget Specifies the Text or TextField widget.

Returns
A wide-character string containing the primary selection.

Availability
Motif 1.2 and later.

Description
XmTextGetSelectionWcs () andXmTextFieldGetSelectionWcs ()
return a pointer to a wide-character string containing the primary selection in
specifiedwidget. XmTextGetSelectionWcs () works whenwidget is a Text
widget or a TextField widget, whileXmTextFieldGetSelectionWcs ()
only works for a TextField widget. For each routine, if no text is selected in th
widget, the returned value is NULL. Storage for the returned wide-character
string is allocated by the routine and should be freed by callingXtFree (). Man-
agement of the allocated memory is the responsibility of the application.

Usage
In Motif 1.2, the Text and TextField widgets support wide-character strings.
XmTextGetSelectionWcs () andXmTextFieldGetSelectionWcs ()
provide a convenient way to get the current selection in wide-character form
from a Text or TextField widget.

See Also
XmTextGetSelection (1), XmTextGetSelectionPosition (1),
XmTextSetSelection (1), XmText (2), XmTextField (2).
Motif Reference Manual 461

Motif Functions and Macros

ons

g in

ce of

e

ce
Name
XmTextGetSource – get the text source.

Synopsis

#include <Xm/Text.h>

XmTextSource XmTextGetSource (Widgetwidget)

Inputs
widget Specifies the Text widget.

Returns
The source of the Text widget.

Description
XmTextGetSource () returns the source of the specified Textwidget. Every
Text widget has an XmTextSource data structure associated with it that functi
as the text source and sink.

Usage
Multiple text widgets can share the same text source, which means that editin
one of the widgets is reflected in all of the others.XmTextGetSource ()
retrieves the source for a widget; this source can then be used to set the sour
another Text widget usingXmTextSetSource (). XmTextGetSource () is a
convenience routine that returns the value of the XmNsource resource for th
Text widget. Calling the routine is equivalent to callingXtGetValues () for the
resource, although the routine accesses the value through the widget instan
structures rather than throughXtGetValues ().

See Also
XmTextSetSource (1), XmText (2).
Motif Reference Manual 462

Motif Functions and Macros

be
n-

ld

ance

he

e,

yte
Name
XmTextGetString, XmTextFieldGetString – get the text string.

Synopsis

#include <Xm/Text.h>

char * XmTextGetString (Widgetwidget)

#include <Xm/TextF.h>

char * XmTextFieldGetString (Widgetwidget)

Inputs
widget Specifies the Text or TextField widget.

Returns
A string containing the value of the Text or TextField widget.

Description
XmTextGetString () andXmTextFieldGetString () return a pointer to a
character string containing the value of the specifiedwidget. XmTextGet-
String () works when widget is a Text widget or a TextField widget, while
XmTextFieldGetString () only works for a TextField widget. For each
routine, if the string has a length of 0 (zero), the returned value is the empty
string. Storage for the returned string is allocated by the routine and should
freed by callingXtFree (). Management of the allocated memory is the respo
sibility of the application.

Usage
XmTextGetString () andXmTextFieldGetString () are convenience
routines that return the value of the XmNvalue resource for a Text or TextFie
widget. Calling one of the routines is equivalent to callingXtGetValues () for
the resource, although the routines access the value through the widget inst
structures rather than throughXtGetValues ().

In Motif 1.2, the Text and TextField widgets support wide-character strings. T
resource XmNvalueWcs can be used to set the value of a Text or TextField
widget to a wide-character string. Even if you set the XmNvalueWcs resourc
you can still useXmTextGetString () or XmTextFieldGetString () to
retrieve the value of the widget, since the value is stored internally as a multi-b
string.
Motif Reference Manual 463

Motif Functions and Macros

ext
Example
The following routine shows the use ofXmTextGetString () to retrieve the
text from one Text widget and use the text to search for the string in another T
widget:

Widget text_w, search_w;

void search_text (void)
{

char *search_pat;
XmTextPosition pos, search_pos;
Boolean found = False;

if (!(search_pat = XmTextGetString (search_w)) || !*search_pat) {
XtFree (search_pat);
return;

}

/* find next occurrence from current position -- wrap if necessary */
pos = XmTextGetCursorPosition (text_w);
found = XmTextFindString (text_w, pos, search_pat,
XmTEXT_FORWARD, &search_pos);

if (!found)
found = XmTextFindString (text_w, 0, search_pat,
XmTEXT_FORWARD, &search_pos);

if (found)
XmTextSetInsertionPosition (text_w, search_pos);
XtFree (search_pat);

}

See Also
XmTextGetStringWcs (1), XmTextGetSubstring (1),
XmTextGetSubstringWcs (1), XmTextSetString (1),
XmTextSetStringWcs (1), XmText (2), XmTextField (2).
Motif Reference Manual 464

Motif Functions and Macros

ext

alue
by

ext

he

he

 set

n

Name
XmTextGetStringWcs, XmTextFieldGetStringWcs – get the wide-character t
string.

Synopsis

#include <Xm/Text.h>

wchar_t * XmTextGetStringWcs (Widgetwidget)

#include <Xm/TextF.h>

wchar_t * XmTextFieldGetStringWcs (Widgetwidget)

Inputs
widget Specifies the Text or TextField widget.

Returns
A wide-character string containing the value of the Text or TextField widget.

Availability
Motif 1.2 and later.

Description
XmTextGetStringWcs () andXmTextFieldGetStringWcs () return a
pointer to a wide-character string containing the value of the specifiedwidget.
XmTextGetStringWcs () works whenwidget is a Text widget or a TextField
widget, whileXmTextFieldGetStringWcs () only works for a TextField
widget. For each routine, if the string has a length of 0 (zero), the returned v
is the empty string. Storage for the returned wide-character string is allocated
the routine and should be freed by callingXtFree (). Management of the allo-
cated memory is the responsibility of the application.

Usage
XmTextGetStringWcs () andXmTextFieldGetStringWcs () are con-
venience routines that return the value of the XmNvalueWcs resource for a T
or TextField widget. Calling one of the routines is equivalent to callingXtGet-
Values () for the resource, although the routines access the value through t
widget instance structures rather than throughXtGetValues ().

In Motif 1.2, the Text and TextField widgets support wide-character strings. T
resource XmNvalueWcs can be used to set the value of a Text or TextField
widget to a wide-character string. Even if you use the XmNvalue resource to
the value of a widget, you can still useXmTextGetStringWcs () or XmText-
FieldGetStringWcs () to retrieve the value of the widget, since the value ca
be converted to a wide-character string.
Motif Reference Manual 465

Motif Functions and Macros
See Also
XmTextGetString (1), XmTextGetSubstring (1),
XmTextGetSubstringWcs (1), XmTextSetString (1),
XmTextSetStringWcs (1), XmText (2), XmTextField (2).
Motif Reference Manual 466

Motif Functions and Macros

xt

d.
Name
XmTextGetSubstring, XmTextFieldGetSubstring – get a copy of part of the te
string.

Synopsis

#include <Xm/Text.h>

int XmTextGetSubstring (Widget widget,
XmTextPosition start,
int num_chars,
int buffer_size,
char *buffer)

#include <Xm/TextF.h>

int XmTextFieldGetSubstring (Widget widget,
XmTextPosition start,
int num_chars,
int buffer_size,
char *buffer)

Inputs
widget Specifies the Text or TextField widget.
start Specifies the starting character position from which data is copie
num_chars Specifies the number of characters that are copied.
buffer_size Specifies the size of buffer.
buffer Specifies the character buffer where the copy is stored.

Returns
XmCOPY_SUCCEEDED on success, XmCOPY_TRUNCATED if fewer than
num_chars are copied, or XmCOPY_FAILED on failure.

Availability
Motif 1.2 and later.

Description
XmTextGetSubstring () andXmTextFieldGetSubstring () get a copy
of part of the internal text buffer for the specifiedwidget. XmTextGetSub-

string ()1 works when widget is a Text widget or a TextField widget, while

XmTextFieldGetSubstring ()2 only works for a TextField widget. The
routines copynum_charscharacters starting atstartposition, which specifies the

1.Erroneously given as XmTextGetString() in 1st and 2nd editions.

2.Erroneously given as XmTextFieldGetString() in 1st and 2nd editions.
Motif Reference Manual 467

Motif Functions and Macros

e
d

er
n-

the

he

e,

r-

b-
e

position as the number of characters from the beginning of the text, where th
first character position is 0 (zero). The characters are copied into the provide
buffer and are NULL-terminated.

XmTextGetSubstring () andXmTextFieldGetSubstring () return
XmCOPY_SUCCEEDED on success. If the specifiednum_chars does not fit in
the providedbuffer, the routines return XmCOPY_TRUNCATED. In this case,
buffercontains as many characters as would fit plus a NULL terminator. If eith
of the routines fails to make the copy, it returns XmCOPY_FAILED and the co
tents ofbuffer are undefined.

Usage
XmTextGetSubstring () andXmTextFieldGetSubstring () provide a
convenient way to retrieve a portion of the text string in a Text or TextField
widget. The routines return the specified part of the XmNvalue resource for
widget.

In Motif 1.2, the Text and TextField widgets support wide-character strings. T
resource XmNvalueWcs can be used to set the value of a Text or TextField
widget to a wide-character string. Even if you set the XmNvalueWcs resourc
you can still useXmTextGetSubstring () or XmTextFieldGetSub-
string () to retrieve part of the value of the widget, since the value is stored
internally as a multi-byte string.

The necessarybuffer_size for XmTextGetSubstring () andXmText-
FieldGetSubstring () depends on the maximum number of bytes per cha
acter for the current locale. This information is stored in MB_CUR_MAX, a
macro defined in <stdlib.h>. Thebufferneeds to be large enough to store the su
string and a NULL terminator. You can use the following equation to calculat
the necessarybuffer_size:

buffer_size = (num_chars * MB_CUR_MAX) + 1

See Also
XmTextGetString (1), XmTextGetStringWcs (1),
XmTextGetSubstringWcs (1), XmTextSetString (1),
XmTextSetStringWcs (1), XmText (2), XmTextField (2).
Motif Reference Manual 468

Motif Functions and Macros

of

d.

g at
the
-

Name
XmTextGetSubstringWcs, XmTextFieldGetSubstringWcs – get a copy of part
the wide-character text string.

Synopsis

#include <Xm/Text.h>

int XmTextGetSubstringWcs (Widget widget,
XmTextPosition start,
int num_chars,
int buffer_size,
wchar_t *buffer)

#include <Xm/TextF.h>

int XmTextFieldGetSubstringWcs (Widget widget,
XmTextPosition start,
int num_chars,
int buffer_size,
wchar_t *buffer)

Inputs
widget Specifies the Text or TextField widget.
start Specifies the starting character position from which data is copie
num_chars Specifies the number of wide-characters that are copied.
buffer_size Specifies the size of buffer.
buffer Specifies the wide-character buffer where the copy is stored.

Returns
XmCOPY_SUCCEEDED on success, XmCOPY_TRUNCATED if fewer than
num_chars are copied, or XmCOPY_FAILED on failure.

Availability
Motif 1.2 and later.

Description
XmTextGetSubstringWcs () andXmTextFieldGetSubstringWcs ()
get a copy of part of the internal wide-character text buffer for the specified
widget. XmTextGetSubstringWcs () works whenwidget is a Text widget or
a TextField widget, whileXmTextFieldGetSubstringWcs () only works
for a TextField widget. The routines copy num_chars wide-characters startin
start position, which specifies the position as the number of characters from
beginning of the text, where the first character position is 0 (zero). The wide
characters are copied into the providedbuffer and are NULL-terminated.
Motif Reference Manual 469

Motif Functions and Macros

na-
D

in
val-

he

 set
XmTextGetSubstringWcs () andXmTextFieldGetSubstringWcs ()
return XmCOPY_SUCCEEDED on success. If the specifiednum_charsdoes not
fit in the providedbuffer, the routines return XmCOPY_TRUNCATED. In this
case,buffer contains as many wide-characters as would fit plus a NULL termi
tor. If either of the routines fails to make the copy, it returns XmCOPY_FAILE
and the contents ofbuffer are undefined.

Usage
XmTextGetSubstringWcs () andXmTextFieldGetSubstringWcs ()
provide a convenient way to retrieve a portion of the wide-character text string
a Text or TextField widget. The routines return the specified part of the XmN
ueWcs resource for the widget.

In Motif 1.2, the Text and TextField widgets support wide-character strings. T
resource XmNvalueWcs can be used to set the value of a Text or TextField
widget to a wide-character string. Even if you use the XmNvalue resource to
the value of a widget, you can still use XmTextGetSubstringWcs() orXmText-
FieldGetSubstringWcs () to retrieve part of the value of the widget, since
the value can be converted to a wide-character string.

The necessarybuffer_size for XmTextGetSubstringWcs () andXmText-
FieldGetSubstringWcs () is num_chars + 1.

See Also
XmTextGetString (1), XmTextGetStringWcs (1),
XmTextGetSubstring (1), XmTextSetString (1),
XmTextSetStringWcs (1), XmText (2), XmTextField (2).
Motif Reference Manual 470

Motif Functions and Macros

s

in-

e

gh
Name
XmTextGetTopCharacter – get the position of the first character of text that i
displayed.

Synopsis

#include <Xm/Text.h>

XmTextPosition XmTextGetTopCharacter (Widgetwidget)

Inputs
widget Specifies the Text widget.

Returns
The position of the first visible character.

Description
XmTextGetTopCharacter () returns the value of the XmNtopCharacter
resource for the specified Textwidget. The returned value specifies the position
of the first visible character of text as the number of characters from the beg
ning of the text, where the first character position in 0 (zero).

Usage
XmTextGetTopCharacter () is a convenience routine that returns the valu
of the XmNtopCharacter resource for a Text widget. Calling the routines is
equivalent to callingXtGetValues () for the resource, although the routines
accesses the value through the widget instance structures rather than throu
XtGetValues ().

See Also
XmTextGetCursorPosition (1),
XmTextGetInsertionPosition (1), XmTextGetLastPosition (1),
XmTextScroll (1), XmTextSetCursorPosition (1),
XmTextSetInsertionPosition (1), XmTextSetTopCharacter (1),
XmTextShowPosition (1), XmText (2).
Motif Reference Manual 471

Motif Functions and Macros

g of

d

are

fy-
Name
XmTextInsert, XmTextFieldInsert – insert a string into the text string.

Synopsis

#include <Xm/Text.h>

void XmTextInsert (Widgetwidget, XmTextPositionposition, char *value)

#include <Xm/TextF.h>

void XmTextFieldInsert (Widgetwidget, XmTextPositionposition, char *string)

Inputs
widget Specifies the Text or TextField widget.
position Specifies the position at which the string is inserted.
string Specifies the string to be inserted.

Description
XmTextInsert () andXmTextFieldInsert () insert a textstring in the
specified Text or TextFieldwidget. XmTextInsert () works whenwidget is a
Text widget or a TextField widget, whileXmTextFieldInsert () only works
for a TextField widget. The specifiedstring is inserted atposition, where charac-
ter positions are numbered sequentially, starting with 0 (zero) at the beginnin
the text. To insert a string after the nth character, use a position value of n.

XmTextInsert () andXmTextFieldInsert () also invoke the callback rou-
tines for the XmNvalueChangedCallback, the XmNmodifyVerifyCallback, an
the XmNmodifyVerifyCallbackWcs callbacks for the specified widget. If both
verification callbacks are present, the XmNmodifyVerifyCallback procedures
invoked first and the results are passed to the XmNmodifyVerifyCallbackWcs
procedures.

Usage
XmTextInsert () andXmTextFieldInsert () provide a convenient means
of inserting text in a Text or TextField widget. The routines insert text by modi
ing the value of the XmNvalue resource of the widget.

Example
The following routine shows the use ofXmTextInsert () to insert a message
into a status Text widget:

Widget status;

void insert_text (char *message)
{

XmTextPosition curpos = XmTextGetInsertionPosition (status);
Motif Reference Manual 472

Motif Functions and Macros
XmTextInsert (status, curpos, message);

curpos = curpos + strlen (message);
XmTextShowPosition (status, curpos);
XmTextSetInsertionPosition (status, curpos);

}

See Also
XmTextInsertWcs (1), XmTextReplace (1), XmTextReplaceWcs (1),
XmText (2), XmTextField (2).
Motif Reference Manual 473

Motif Functions and Macros

to

0

-
et.
e-
ll-
Name
XmTextInsertWcs, XmTextFieldInsertWcs – insert a wide-character string in
the text string.

Synopsis

#include <Xm/Text.h>

void XmTextInsertWcs (Widgetwidget, XmTextPositionposition, wchar_t

*wcstring)1

#include <Xm/TextF.h>

void XmTextFieldInsertWcs (Widgetwidget, XmTextPositionposition, wchar_t
* wcstring)

Inputs
widget Specifies the Text or TextField widget.
position Specifies the position at which the string is inserted.
wcstring Specifies the wide-character string to be inserted.

Availability
Motif 1.2 and later.

Description
XmTextInsertWcs () andXmTextFieldInsertWcs () insert a wide-char-
acter textwcstring in the specifiedwidget. XmTextInsertWcs () works when
widget is a Text widget or a TextField widget, whileXmTextFieldInsert-

Wcs() only works for a TextField widget. The specifiedwcstring2 is inserted at
position, where character positions are numbered sequentially, starting with
(zero) at the beginning of the text. To insert a string after thenth character, use a
position value of n.

XmTextInsertWcs () andXmTextFieldInsertWcs () also invoke the call-
back routines for the XmNvalueChangedCallback, the XmNmodifyVerifyCall
back, and the XmNmodifyVerifyCallbackWcs callbacks for the specified widg
If both verification callbacks are present, the XmNmodifyVerifyCallback proc
dures are invoked first and the results are passed to the XmNmodifyVerifyCa
backWcs procedures.

1.Erroneously given as XmTextInsert() in 1st and 2nd editions.

2.Erroneously given asstring in 1st and 2nd editions.
Motif Reference Manual 474

Motif Functions and Macros

he
ing
Usage
In Motif 1.2, the Text and TextField widgets support wide-character strings.
XmTextInsertWcs () andXmTextFieldInsertWcs () provide a conven-
ient means of inserting a wide-character string in a Text or TextField widget. T
routines insert text by converting the wide-character string to a multi-byte str
and then modifying the value of the XmNvalue resource of the widget.

See Also
XmTextInsert (1), XmTextReplace (1), XmTextReplaceWcs (1),
XmText (2), XmTextField (2).
Motif Reference Manual 475

Motif Functions and Macros

es

d

are
Name
XmTextPaste, XmTextFieldPaste – insert the clipboard selection.

Synopsis

#include <Xm/Text.h>

Boolean XmTextPaste (Widgetwidget)

#include <Xm/TextF.h>

Boolean XmTextFieldPaste (Widgetwidget)

Inputs
widget Specifies the Text or TextField widget.

Returns
True on success or False otherwise.

Description
XmTextPaste () andXmTextFieldPaste () insert the clipboard selection at
the current position of the insertion cursor in the specifiedwidget. XmText-
Paste () works whenwidget is a Text widget or a TextField widget, while
XmTextFieldPaste () only works for a TextField widget. If the insertion
cursor is within the current selection and the value of XmNpendingDelete is
True, the current selection is replaced by the clipboard selection. Both routin
return True if successful. If thewidget is not editable or if the function cannot
obtain ownership of the clipboard selection, the routines return False.

In Motif 2.0 and later,XmTextPaste () interfaces with the Uniform Transfer
Model by indirectly invoking the XmNdestinationCallback procedures of the
widget.

XmTextPaste () andXmTextFieldPaste () also invoke the callback rou-
tines for the XmNvalueChangedCallback, the XmNmodifyVerifyCallback, an
the XmNmodifyVerifyCallbackWcs callbacks for the specified widget. If both
verification callbacks are present, the XmNmodifyVerifyCallback procedures
invoked first and the results are passed to the XmNmodifyVerifyCallbackWcs
procedures.

Usage
XmTextPaste () andXmTextFieldPaste () get the current selection from
the clipboard and insert it at the location of the insertion cursor in the Text or
TextField widget.
Motif Reference Manual 476

Motif Functions and Macros

ak;

);
Example
The following callback routine for the items on anEdit menu (Cut, Copy, Link ,
Paste, PasteLink, andClear) shows the use ofXmTextPaste ():

Widget text_w, status;

void cut_paste (Widget widget, XtPointer client_data, XtPointer call_data)
{

int num = (int) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
Boolean result = True;

switch (num) {
case 0: result = XmTextCut (text_w, cbs->event->xbutton.time);bre
case 1: result = XmTextCopy (text_w, cbs->event->xbutton.time);
break;
case 2: result = XmTextCopyLink (text_w, cbs->event->xbutton.time
break;
case 3: result = XmTextPaste (text_w);break;
case 4: result = XmTextPasteLink (text_w);break;
case 5: XmTextClearSelection (text_w, cbs->event->xbutton.time);
break;

}

if (result == False)
XmTextSetString (status, "There is no selection.");

else
XmTextSetString (status, NULL);

}

See Also
XmTextCopy (1), XmTextCopyLink (1), XmTextCut (1),
XmTextPasteLink (1), XmText (2), XmTextField (2).
Motif Reference Manual 477

Motif Functions and Macros

ec-

rn

pri-
nsi-

-

e-
ll-
Name
XmTextPasteLink, XmTextFieldPasteLink – insert the clipboard selection.

Synopsis

#include <Xm/Text.h>

Boolean XmTextPasteLink (Widgetwidget)

#include <Xm/TextF.h>

Boolean XmTextFieldPasteLink (Widgetwidget)

Inputs
widget Specifies the Text or TextField widget.

Returns
True on success or False otherwise.

Availability
Motif 2.0 and later.

Description
XmTextPasteLink () andXmTextFieldPasteLink () insert the clipboard
selection at the current position of the insertion cursor in the specifiedwidget.
XmTextPasteLink () works whenwidget is a Text widget or a TextField
widget, whileXmTextFieldPasteLink () only works for a TextField widget.
If the insertion cursor is within the current selection and the value of XmN-
pendingDelete is True, the current selection is replaced by the clipboard sel
tion. Both routines return True if successful. If thewidgetis not editable or if the
function cannot obtain ownership of the clipboard selection, the routines retu
False.

XmTextPasteLink () andXmTextFieldPasteLink () interface with the
Uniform Transfer Model by indirectly invoking the XmNdestinationCallback
procedures of the widget. The Text widget itself does not create links to the
mary selection: destination callbacks provided by the programmer are respo
ble for performing any data transfer required.

XmTextPasteLink () andXmTextFieldPasteLink () also invoke the call-
back routines for the XmNvalueChangedCallback, the XmNmodifyVerifyCall
back, and the XmNmodifyVerifyCallbackWcs callbacks for the specifiedwidget.
If both verification callbacks are present, the XmNmodifyVerifyCallback proc
dures are invoked first and the results are passed to the XmNmodifyVerifyCa
backWcs procedures.
Motif Reference Manual 478

Motif Functions and Macros

ion

ak;

);
Usage
XmTextPasteLink () andXmTextFieldPasteLink () get the current
selection from the clipboard and insert a link to it at the location of the insert
cursor in the Text or TextField widget.

Example
The following callback routine for the items on anEdit menu (Cut, Copy, Link ,

Paste, PasteLink, andClear) shows the use ofXmTextPasteLink ()1:

Widget text_w, status;

void cut_paste (Widget widget, XtPointer client_data, XtPointer call_data)
{

int num = (int) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
Boolean result = True;

switch (num) {
case 0: result = XmTextCut (text_w, cbs->event->xbutton.time);bre
case 1: result = XmTextCopy (text_w, cbs->event->xbutton.time);
break;
case 2: result = XmTextCopyLink (text_w, cbs->event->xbutton.time
break;
case 3: result = XmTextPaste (text_w);break;
case 4: result = XmTextPasteLink (text_w);break;
case 5: XmTextClearSelection (text_w, cbs->event->xbutton.time);
break;

}

if (result == False)
XmTextSetString (status, "There is no selection.");

else
XmTextSetString (status, NULL);

}

See Also
XmTextCopy (1), XmTextCopyLink (1), XmTextCut (1),
XmTextPaste (1), XmText (2), XmTextField (2).

1.Erroneously given as XmTextPaste() in 1st and 2nd editions.
Motif Reference Manual 479

Motif Functions and Macros

r

g of
ft

lues

or-
Name
XmTextPosToXY, XmTextFieldPosToXY – get the x, y position of a characte
position.

Synopsis

#include <Xm/Text.h>

Boolean XmTextPosToXY (Widgetwidget, XmTextPositionposition, Position
*x, Position *y)

#include <Xm/TextF.h>

Boolean XmTextFieldPosToXY (Widgetwidget, XmTextPositionposition, Posi-
tion *x, Position *y)

Inputs
widget Specifies the Text or TextField widget.
position Specifies the character position.

Outputs
x Returns the x-coordinate of the character position.
y Returns the y-coordinate of the character position.

Returns
True if the character position is displayed in the widget or False otherwise.

Description
XmTextPosToXY () andXmTextFieldPosToXY () return thex andy coordi-
nates of the character at the specifiedposition within the specifiedwidget.
XmTextPosToXY () works whenwidget is a Text widget or a TextField widget,
while XmTextFieldPosToXY () only works for a TextField widget. Charac-
ter positions are numbered sequentially, starting with 0 (zero) at the beginnin
the text. The returned coordinate values are specified relative to the upper-le
corner of widget. Both routines return True if the character atposition is cur-
rently displayed in the widget. Otherwise, the routines return False and no va
are returned in the x and y arguments.

Usage
XmTextPosToXY () andXmTextFieldPosToXY () provide a way to deter-
mine the actual position of a character in a Text or TextField widget. This inf
mation is useful if you need to perform additional event processing or draw
special graphics in the widget.

See Also
XmTextXYToPos (1), XmText (2), XmTextField (2).
Motif Reference Manual 480

Motif Functions and Macros

d

d

are

d

Name
XmTextRemove, XmTextFieldRemove – delete the primary selection.

Synopsis

#include <Xm/Text.h>

Boolean XmTextRemove (Widgetwidget)

#include <Xm/TextF.h>

Boolean XmTextFieldRemove (Widgetwidget)

Inputs
widget Specifies the Text or TextField widget.

Returns
True on success or False otherwise.

Description
XmTextRemove() andXmTextFieldRemove () delete the primary selected
text from the specifiedwidget. XmTextRemove() works whenwidget is a Text
widget or a TextField widget, whileXmTextFieldRemove () only works for a
TextField widget. Both routines return True if successful. If thewidget is not
editable, if the primary selection is NULL, or if it is not owned by the specifie
widget, the routines return False.

XmTextRemove() andXmTextFieldRemove () also invoke the callback rou-
tines for the XmNvalueChangedCallback, the XmNmodifyVerifyCallback, an
the XmNmodifyVerifyCallbackWcs callbacks for the specifiedwidget. If both
verification callbacks are present, the XmNmodifyVerifyCallback procedures
invoked first and the results are passed to the XmNmodifyVerifyCallbackWcs
procedures.

Usage
XmTextRemove() andXmTextFieldRemove () are likeXmTextCut () and
XmTextFieldCut (), in that they remove selected text from a Text or TextFiel
widget. However, the routines do not copy the selected text to the clipboard
before removing it.

See Also
XmTextClearSelection (1), XmTextCut (1),
XmTextGetSelection (1), XmTextGetSelectionPosition (1),
XmTextGetSelectionWcs (1), XmTextSetSelection (1),
XmText (2), XmTextField (2).
Motif Reference Manual 481

Motif Functions and Macros

e

ll-

xt
Name
XmTextReplace, XmTextFieldReplace – replace part of the text string.

Synopsis

#include <Xm/Text.h>

void XmTextReplace (Widget widget,
XmTextPosition from_pos,
XmTextPosition to_pos,
char *value)

#include <Xm/TextF.h>

void XmTextFieldReplace (Widget widget,
XmTextPosition from_pos,
XmTextPosition to_pos,
char *value)

Inputs
widget Specifies the Text or TextField widget.
from Specifies the starting position of the text that is to be replaced.
to Specifies the ending position of the text that is to be replaced.
value Specifies the replacement string.

Description
XmTextReplace () andXmTextFieldReplace () replace a portion of the
textstring in the specifiedwidget. XmTextReplace () works whenwidget is a
Text widget or a TextField widget, whileXmTextFieldReplace () only
works for a TextField widget. The specifiedvalue replaces the text starting at
from_pos and continuing up to, but not including,to_pos, where character posi-
tions are numbered sequentially, starting with 0 (zero) at the beginning of th
text. To replace the characters after thenth character up to themth character, use
a from_pos value ofn and ato_pos value ofm.

XmTextReplace () andXmTextFieldReplace () also invoke the callback
routines for the XmNvalueChangedCallback, the XmNmodifyVerifyCallback,
and the XmNmodifyVerifyCallbackWcs callbacks for the specifiedwidget. If
both verification callbacks are present, the XmNmodifyVerifyCallback proce-
dures are invoked first and the results are passed to the XmNmodifyVerifyCa
backWcs procedures.

Usage
XmTextReplace () andXmTextFieldReplace () provide a convenient
means of replacing text in a Text or TextField widget. The routines replace te
by modifying the value of the XmNvalue resource of the widget.
Motif Reference Manual 482

Motif Functions and Macros

s are

pat);
Example
The following routine shows the use ofXmTextReplace () to replace all of the
occurrences of a string in a Text widget. The search and replacement string
specified by the user in single-line Text widgets:

Widget text_w, search_w, replace_w;

void search_and_replace (void)
{

char *search_pat, *new_pat;
XmTextPosition curpos, searchpos;
int search_len, pattern_len;
Boolean found = False;

search_len = XmTextGetLastPosition (search_w);

if (!(search_pat = XmTextGetString (search_w)) || !*search_pat) {
XtFree (search_pat);
return;

}

pattern_len = XmTextGetLastPosition (replace_w);

if (!(new_pat = XmTextGetString (replace_w)) || !*new_pat) {
XtFree (search_pat);
XtFree (new_pat);
return;

}

curpos = 0;
found = XmTextFindString (text_w, curpos, search_pat,
XmTEXT_FORWARD, &searchpos);

while (found) {
XmTextReplace (text_w, searchpos, searchpos + search_len, new_
curpos = searchpos + 1;
found = XmTextFindString (text_w, curpos, search_pat,
XmTEXT_FORWARD, &searchpos);

}

XtFree (search_pat);
XtFree (new_pat);

}

See Also
XmTextInsert (1), XmTextInsertWcs (1), XmTextReplaceWcs (1),
XmText (2), XmTextField (2).
Motif Reference Manual 483

Motif Functions and Macros

ar-

ing

k
rify-
Name
XmTextReplaceWcs, XmTextFieldReplaceWcs – replace part of the wide-ch
acter text string.

Synopsis

#include <Xm/Text.h>

void XmTextReplaceWcs (Widget widget,
XmTextPosition from_pos,
XmTextPosition to_pos,
wchar_t *wcstring)

#include <Xm/TextF.h>

void XmTextFieldReplaceWcs (Widget widget,
XmTextPosition from_pos,
XmTextPosition to_pos,
wchar_t *wcstring)

Inputs
widget Specifies the Text or TextField widget.
from_pos Specifies the starting position of the text that is to be replaced.
to_pos Specifies the ending position of the text that is to be replaced.
wcstring Specifies the replacement wide-character string.

Availability
Motif 1.2 and later.

Description
XmTextReplaceWcs () andXmTextFieldReplaceWcs () replace a portion
of the text string in the specified widget with the specified wide-character str
wcstring. XmTextReplaceWcs () works whenwidgetis a Text widget or a Tex-
tField widget, whileXmTextFieldReplaceWcs () only works for a TextField
widget. The specifiedwcstringreplaces the text starting atfrom_posand continu-
ing up to, but not including,to_pos, where character positions are numbered
sequentially, starting with 0 (zero) at the beginning of the text. To replace the
characters after thenth character up to themth character, use afrom_posvalue of
n and ato_pos value ofm.

XmTextReplaceWcs () andXmTextFieldReplaceWcs () also invoke the
callback routines for the XmNvalueChangedCallback, the XmNmodifyVerify-
Callback, and the XmNmodifyVerifyCallbackWcs callbacks for the specified
widget. If both verification callbacks are present, the XmNmodifyVerifyCallbac
procedures are invoked first and the results are passed to the XmNmodifyVe
CallbackWcs procedures.
Motif Reference Manual 484

Motif Functions and Macros

-
te
rce
Usage
In Motif 1.2, the Text and TextField widgets support wide-character strings.
XmTextReplaceWcs () andXmTextFieldReplaceWcs () provide a con-
venient means of replacing a string in a Text or TextField widget with a wide
character string. The routines convert the wide-character string to a multi-by
string and then replace the text by modifying the value of the XmNvalue resou
of the widget.

See Also
XmTextInsert (1), XmTextInsertWcs (1), XmTextReplace (1),
XmText (2), XmTextField (2).
Motif Reference Manual 485

Motif Functions and Macros

or-

.
oll-
t.
Name
XmTextScroll – scroll the text.

Synopsis

#include <Xm/Text.h>

void XmTextScroll (Widgetwidget, int lines)

Inputs
widget Specifies the Text widget.
lines Specifies the number of lines.

Description
XmTextScroll () scrolls the text in the specified Textwidget by the specified
number oflines. The text is scrolled upward iflines is positive and downward if
lines is negative. In the case of vertical text, a positive value scrolls the text f
wards, and a negative value scrolls backwards.

Usage
XmTextScroll () provides a way to perform relative scrolling in a Text widget
The Text widget does not have to be the child of a ScrolledWindow for the scr
ing to occur. The routine simply changes the currently viewable region of tex

See Also
XmTextGetCursorPosition (1),
XmTextGetInsertionPosition (1), XmTextGetLastPosition (1),
XmTextGetTopCharacter (1), XmTextSetCursorPosition (1),
XmTextSetInsertionPosition (1), XmTextSetTopCharacter (1),
XmText (2).
Motif Reference Manual 486

Motif Functions and Macros

de,
.

-
e
rate.
Name
XmTextSetAddMode, XmTextFieldSetAddMode – set the add mode state.

Synopsis

#include <Xm/Text.h>

void XmTextSetAddMode (Widgetwidget, Booleanstate)

#include <Xm/TextF.h>

void XmTextFieldSetAddMode (Widgetwidget, Booleanstate)

Inputs
widget Specifies the Text or TextField widget.
state Specifies the state of add mode.

Description
XmTextSetAddMode () andXmTextFieldSetAddMode () set the state of
add mode for the specifiedwidget. XmTextSetAddMode () works whenwidget
is a Text widget or a TextField widget, whileXmTextFieldSetAddMode ()
only works for a TextField widget. Ifstateis True add mode is turned on; ifstate
is False, add mode is turned off. When a Text or TextField widget is in add mo
the user can move the insertion cursor without altering the primary selection

Usage
XmTextSetAddMode () andXmTextFieldSetAddMode () provide a way to
change the state of add mode in a Text or TextField widget. The distinction
between normal mode and add mode is only important for making keyboard
based selections. In normal mode, the location cursor and the selection mov
together, while in add mode, the location cursor and the selection can be sepa

See Also
XmTextSetCursorPosition (1),
XmTextSetInsertionPosition (1), XmText (2), XmTextField (2).
Motif Reference Manual 487

Motif Functions and Macros

 of

ec-

ere

r

n
ent
Name
XmTextSetCursorPosition, XmTextFieldSetCursorPosition – set the position
the insertion cursor.

Synopsis

#include <Xm/Text.h>

void XmTextSetCursorPosition (Widgetwidget, XmTextPositionposition)

#include <Xm/TextF.h>

void XmTextFieldSetCursorPosition (Widgetwidget, XmTextPositionposition)

Inputs
widget Specifies the Text or TextField widget.
position Specifies the position of the insertion cursor.

Description
XmTextSetCursorPosition () andXmTextFieldSetCursorPosi-
tion () set the value of the XmNcursorPosition resource to position for the sp
ified widget. XmTextSetCursorPosition () works whenwidget is a Text
widget or a TextField widget, whileXmTextFieldSetCursorPosition ()
only works for a TextField widget. This resource specifies the location of the
insertion cursor as the number of characters from the beginning of the text, wh
the first character position is 0 (zero).

XmTextSetCursorPosition () andXmTextFieldSetCursorPosi-
tion () also invoke the callback routines for the XmNmotionVerifyCallback fo
the specified widget if the position of the insertion cursor changes.

Usage
XmTextSetCursorPosition () andXmTextFieldSetCursorPosi-
tion () are convenience routines that set the value of the XmNcursorPositio
resource for a Text or TextField widget. Calling one of the routines is equival
to callingXtSetValues () for the resource, although the routines access the
value through the widget instance structures rather than throughXtSetVal-
ues ().

See Also
XmTextGetCursorPosition (1),
XmTextGetInsertionPosition (1),
XmTextSetInsertionPosition (1), XmTextShowPosition (1),
XmText (2), XmTextField (2).
Motif Reference Manual 488

Motif Functions and Macros

edit

ext-
Name
XmTextSetEditable, XmTextFieldSetEditable – set the edit permission state.

Synopsis

#include <Xm/Text.h>

void XmTextSetEditable (Widgetwidget, Booleaneditable)

#include <Xm/TextF.h>

void XmTextFieldSetEditable (Widgetwidget, Booleaneditable)

Inputs
widget Specifies the Text or TextField widget.
editable Specifies whether or not the text can be edited.

Description
XmTextSetEditable () andXmTextFieldSetEditable () set the value
of the XmNeditable resource to editable for the specifiedwidget. XmTextSe-
tEditable () works whenwidgetis a Text widget or a TextField widget, while
XmTextFieldSetEditable () only works for a TextField widget.

Usage
By default, the XmNeditable resource is True, which means that a user can
the text string. Setting the resource to False makes a text area read-only.
XmTextSetEditable () andXmTextFieldSetEditable () are conven-
ience routines that set the value of the XmNeditable resource for a Text or T
Field widget. Calling one of the routines is equivalent to calling
XtSetValues () for the resource, although the routines access the value
through the widget instance structures rather than throughXtSetValues ().

See Also
XmTextGetEditable (1), XmText (2), XmTextField (2).
Motif Reference Manual 489

Motif Functions and Macros

.
d.
s:

gh-
cters
he

com-
moved
Name
XmTextSetHighlight, XmTextFieldSetHighlight – highlight text.

Synopsis

#include <Xm/Text.h>

void XmTextSetHighlight (Widget widget,
XmTextPosition left,
XmTextPosition right,
XmHighlightMode mode)

#include <Xm/TextF.h>

void XmTextFieldSetHighlight (Widget widget,
XmTextPosition left,
XmTextPosition right,
XmHighlightMode mode)

Inputs
widget Specifies the Text or TextField widget.
left Specifies the left boundary position of the text to be highlighted
right Specifies the right boundary position of the text to be highlighte
mode Specifies the highlighting mode. Pass one of the following value

XmHIGHLIGHT_NORMAL, XmHIGHLIGHT_SELECTED,
or

XmHIGHLIGHT_SECONDARY_SELECTED1.

Description
XmTextSetHighlight () andXmTextFieldSetHighlight () highlight
text in the specifiedwidget without selecting the text.XmTextSetHigh-
light () works whenwidget is a Text widget or a TextField widget, while
XmTextFieldSetHighlight () only works for a TextField widget. Theleft
andright arguments specify the boundary positions of the text that is to be hi
lighted. Each boundary value specifies the position as the number of chara
from the beginning of the text, where the first character position is 0 (zero). T
mode parameter indicates the type of highlighting that is done.
XmHIGHLIGHT_NORMAL removes any highlighting,
XmHIGHLIGHT_SELECTED uses reverse video highlighting, and
XmHIGHLIGHT_SECONDARY_SELECTED uses underline highlighting.

1.Motif 2.0 defines the additional value XmSEE_DETAIL for the enumerated type, but does not use it for the Text
ponents. The Compound String Text, CSText, supports the notion, but this widget is abortive, and has been re
from the 2.1 distribution. XmSEE_DETAIL is therefore redundant.
Motif Reference Manual 490

Motif Functions and Macros

if
xt;

ed
Usage
XmTextSetHighlight () andXmTextFieldSetHighlight () provide a
way to highlight text in a Text or TextField widget. These routines are useful
you need to emphasize certain text in a widget. These routine only highlight te
they do not select the specified text.

Example
The following routine shows the use ofXmTextSetHighlight () to highlight
all of the occurrences of a string in a Text widget. The search string is specifi
by the user in a single-line Text widget:

Widget text_w, search_w;

void search_text (void)
{

char *search_pat;
XmTextPosition curpos, searchpos;
int len;
Boolean found = False;

len = XmTextGetLastPosition (search_w);

if (!(search_pat = XmTextGetString (search_w)) || !*search_pat) {
XtFree (search_pat);
return;

}

curpos = 0;
found = XmTextFindString (text_w, curpos, search_pat,
XmTEXT_FORWARD, &searchpos);

while (found) {
XmTextSetHighlight (text_w, searchpos, searchpos + len,

XmHIGHLIGHT_SECONDARY_SELECTE
D);

curpos = searchpos + 1;
found = XmTextFindString (text_w, curpos, search_pat,
XmTEXT_FORWARD, &searchpos);

}
XtFree (search_pat);

}

See Also
XmTextSetSelection (1), XmText (2), XmTextField (2).
Motif Reference Manual 491

Motif Functions and Macros

ion

o

cters

-
es.

e
e

rsor
Name
XmTextSetInsertionPosition, XmTextFieldSetInsertionPosition – set the posit
of the insertion cursor.

Synopsis

#include <Xm/Text.h>

void XmTextSetInsertionPosition (Widgetwidget, XmTextPositionposition)

#include <Xm/TextF.h>

void XmTextFieldSetInsertionPosition (Widgetwidget, XmTextPositionposi-
tion)

Inputs
widget Specifies the Text or TextField widget.
position Specifies the position of the insertion cursor.

Description
The functions,XmTextSetInsertionPosition() andXmTextFieldSe-
tInsertionPosition (), set the value of the XmNcursorPosition resource t
position for the specifiedwidget. XmTextSetInsertionPosition ()
works whenwidget is a Text widget or a TextField widget, whileXmText-
FieldSetInsertionPosition () only works for a TextField widget. This
resource specifies the location of the insertion cursor as the number of chara
from the beginning of the text, where the first character position is 0 (zero).

XmTextSetInsertionPosition () andXmTextFieldSetInser-
tionPosition () also invoke the callback routines for the XmNmotionVerify
Callback for the specified widget if the position of the insertion cursor chang

Usage
The functions,XmTextSetInsertionPosition () andXmTextField-
SetInsertionPosition (), are convenience routines that set the value of th
XmNcursorPosition resource for a Text or TextField widget. Calling one of th
routines is equivalent to callingXtSetValues () for the resource, although the
routines access the value through the widget instance structures rather than
throughXtSetValues ().

Example
The following code shows the use ofXmTextSetInsertionPosition () in
a routine that searches for a string in a Text widget and moves the insertion cu
to the string if it is found:

Widget text_w, search_w;
Motif Reference Manual 492

Motif Functions and Macros
void search_text (void)
{

char *search_pat;
XmTextPosition pos, searchpos;
Boolean found = False;

if (!(search_pat = XmTextGetString (search_w)) || !*search_pat) {
XtFree (search_pat);
return;

}

pos = XmTextGetCursorPosition (text_w);
found = XmTextFindString (text_w, pos, search_pat,
XmTEXT_FORWARD, &searchpos);

if (!found) {
found = XmTextFindString (text_w, 0, search_pat,
XmTEXT_FORWARD, &searchpos);

}

if (found)
XmTextSetInsertionPosition (text_w, searchpos);

XtFree (search_pat);
}

See Also
XmTextGetCursorPosition (1),
XmTextGetInsertionPosition (1),
XmTextSetCursorPosition (1), XmTextShowPosition (1),
XmText (2), XmTextField (2).
Motif Reference Manual 493

Motif Functions and Macros

ble

g

ld

ance
Name
XmTextSetMaxLength, XmTextFieldSetMaxLength – set the maximum possi
length of a text string.

Synopsis

#include <Xm/Text.h>

void XmTextSetMaxLength (Widgetwidget, int max_length)

#include <Xm/TextF.h>

void XmTextFieldSetMaxLength (Widgetwidget, int max_length)

Inputs
widget Specifies the Text or TextField widget.
max_length Specifies the maximum allowable length of the text string.

Description
XmTextSetMaxLength () andXmTextFieldSetMaxLength () set the
value of the XmNmaxLength resource tomax_length for the specifiedwidget.
XmTextSetMaxLength () works whenwidget is a Text widget or a TextField
widget, whileXmTextFieldSetMaxLength () only works for a TextField
widget. This resource specifies the maximum allowable length of a text strin
that a user can enter from the keyboard.

Usage
XmTextSetMaxLength () andXmTextFieldSetMaxLength () are con-
venience routines that set the XmNmaxLength resource for a Text or TextFie
widget. Calling one of the routines is equivalent to callingXtSetValues () for
the resource, although the routines access the value through the widget inst
structures rather than throughXtSetValues (). The resource limits the length
of a text string that a user may type, but it does not limit the length of strings
entered with the XmNvalue or XmNvalueWcs resources or theXmTextSet-
String (), XmTextFieldSetString (), XmTextSetStringWcs (), and
XmTextFieldSetStringWcs () routines.

See Also
XmTextGetMaxLength (1), XmText (2), XmTextField (2).
Motif Reference Manual 494

Motif Functions and Macros

y

ach
egin-
e,
 selec-

c-
Name
XmTextSetSelection, XmTextFieldSetSelection – set the value of the primar
selection.

Synopsis

#include <Xm/Text.h>

void XmTextSetSelection (Widgetwidget, XmTextPositionfirst, XmTextPosition
last, Timetime)

#include <Xm/TextF.h>

void XmTextFieldSetSelection (Widgetwidget, XmTextPositionfirst, XmText-
Positionlast, Timetime)

Inputs
widget Specifies the Text or TextField widget.
first Specifies the first character position to be selected.
last Specifies the last character position to be selected.
time Specifies the time of the event that caused the request.

Description
XmTextSetSelection () andXmTextFieldSetSelection () set the pri-
mary selection in the specifiedwidget. XmTextSetSelection () works when
widget is a Text widget or a TextField widget, whileXmTextFieldSetSe-
lection () only works for a TextField widget. Thefirst andlast arguments
specify the beginning and ending positions of the text that is to be selected. E
of these values specifies the position as the number of characters from the b
ning of the text, where the first character position is 0 (zero). For each routin
time specifies the server time of the event that caused the request to set the
tion.

XmTextSetSelection () andXmTextFieldSetSelection () change the
insertion cursor for thewidget to the last position of the selection. The routines
also invoke the callback routines for the XmNmotionVerifyCallback for the spe
ified widget.

Usage
XmTextSetSelection () andXmTextFieldSetSelection () provide a
convenient way to set the current selection in a Text or TextField widget.

See Also
XmTextClearSelection (1), XmTextCopy (1), XmTextCut (1),
XmTextGetSelection (1), XmTextGetSelectionPosition (1),
XmTextGetSelectionWcs (1), XmTextRemove(1), XmText (2),
XmTextField (2).
Motif Reference Manual 495

Motif Functions and Macros

s 0
is-

g in

ce of

ext

ce

Text

t

Name
XmTextSetSource – set the text source.

Synopsis

#include <Xm/Text.h>

void XmTextSetSource (Widget widget,
XmTextSource source,
XmTextPosition top_character,
XmTextPosition cursor_position)

Inputs
widget Specifies the Text widget.
source Specifies the text source.
top_character Specifies the character position to display at the top of the
widget.
cursor_position Specifies the position of the insertion cursor.

Description
XmTextSetSource () sets the source of the specified Textwidget. The
top_character andcursor_position values specify positions as the number of
characters from the beginning of the text, where the first character position i
(zero). Ifsourceis NULL, the Text widget creates a default string source and d
plays a warning message.

Usage
Multiple text widgets can share the same text source, which means that editin
one of the widgets is reflected in all of the others.XmTextGetSource ()
retrieves the source for a widget; this source can then be used to set the sour
another Text widget usingXmTextSetSource (). XmTextSetSource () is a
convenience routine that sets the value of the XmNsource resource for the T
widget. Calling the routine is equivalent to callingXtSetValues () for the
resource, although the routine accesses the value through the widget instan
structures rather than throughXtSetValues ().

When a new text source is set, the old text source is destroyed unless another
widget is using the old source. If you want to replace a text source without
destroying it, create an unmanaged Text widget and set its source to the tex
source you want to save.

See Also
XmTextGetSource (1), XmText (2).
Motif Reference Manual 496

Motif Functions and Macros

.

ll-

ance

ser
Name
XmTextSetString, XmTextFieldSetString – set the text string.

Synopsis

#include <Xm/Text.h>

void XmTextSetString (Widgetwidget, char *value)

#include <Xm/TextF.h>

void XmTextFieldSetString (Widgetwidget, char *value)

Inputs
widget Specifies the Text or TextField widget.
value Specifies the string value.

Description
XmTextSetString () andXmTextFieldSetString () set the current text
string in the specifiedwidget to the specifiedvalue. XmTextSetString ()
works whenwidget is a Text widget or a TextField widget, whileXmText-
FieldSetString () only works for a TextField widget. Both functions also
set the position of the insertion cursor to the beginning of the new text string

XmTextSetString () andXmTextFieldSetString () invoke the callback
routines for the XmNvalueChangedCallback, the XmNmodifyVerifyCallback,
and the XmNmodifyVerifyCallbackWcs callbacks for the specified widget. If
both verification callbacks are present, the XmNmodifyVerifyCallback proce-
dures are invoked first and the results are passed to the XmNmodifyVerifyCa
backWcs procedures. The routines also invoke the callback routines for the
XmNmotionVerifyCallback for the specified widget.

Usage
XmTextSetString () andXmTextFieldSetString () are convenience
routines that set the value of the XmNvalue resource for a Text or TextField
widget. Calling one of the routines is equivalent to callingXtSetValues () for
the resource, although the routines access the value through the widget inst
structures rather than throughXtSetValues ().

Example
The following code shows the use ofXmTextSetString () in a routine that
displays the contents of file in a Text widget. The filename is specified by the u
in a TextField widget:

Widget text_w, file_w;

void read_file (void)
Motif Reference Manual 497

Motif Functions and Macros
{
char *filename, *text;
struct stat statb;
int fd, len;

if (!(filename = XmTextFieldGetString (file_w)) || !*filename) {
XtFree (filename);
return;

}

if (!(fd = open (filename, O_RDONLY))) {
XtWarning ("internal error -- can’t open file");

}

if (fstat (fd, &statb) == -1 || !(text = XtMalloc ((len = statb.st_size) + 1))) {
XtWarning("internal error -- can’t show text");
(void) close (fd);

}

(void) read (fd, text, len);
text[len] = ‘\0’;
XmTextSetString (text_w, text);
XtFree (text);
XtFree (filename);
(void) close (fd);

}

See Also
XmTextGetString (1), XmTextGetStringWcs (1),
XmTextGetSubstring (1), XmTextGetSubstringWcs (1),
XmTextSetStringWcs (1), XmText (2), XmTextField (2).
Motif Reference Manual 498

Motif Functions and Macros

xt

to

k
rify-
the
Name
XmTextSetStringWcs, XmTextFieldSetStringWcs – set the wide-character te
string.

Synopsis

#include <Xm/Text.h>

void XmTextSetStringWcs (Widgetwidget, wchar_t *wcstring)

#include <Xm/TextF.h>

void XmTextFieldSetStringWcs (Widgetwidget, wchar_t *wcstring)

Inputs
widget Specifies the Text or TextField widget.
wcstring Specifies the wide-character string value.

Availability
Motif 1.2 and later.

Description
XmTextSetStringWcs () andXmTextFieldSetStringWcs () set the
current wide-character text string in the specifiedwidget to the specified

wcstring1. XmTextSetStringWcs () works whenwidgetis a Text widget or a
TextField widget, whileXmTextFieldSetStringWcs () only works for a
TextField widget. Both functions also set the position of the insertion cursor
the beginning of the new text string.

XmTextSetStringWcs () andXmTextFieldSetStringWcs () invoke the
callback routines for the XmNvalueChangedCallback, the XmNmodifyVerify-
Callback, and the XmNmodifyVerifyCallbackWcs callbacks for the specified
widget. If both verification callbacks are present, the XmNmodifyVerifyCallbac
procedures are invoked first and the results are passed to the XmNmodifyVe
CallbackWcs procedures. The routines also invoke the callback routines for
XmNmotionVerifyCallback for the specified widget.

1.Erroneously given asstring in 1st and 2nd editions.
Motif Reference Manual 499

Motif Functions and Macros

he

-
-
ough
Usage
In Motif 1.2, the Text and TextField widgets support wide-character strings. T
resource XmNvalueWcs can be used to set the value of a Text or TextField
widget to a wide-character string.XmTextSetStringWcs () andXmText-
FieldSetStringWcs () are convenience routines that set the value of the
XmNvalueWcs resource for a Text or TextField widget. Calling one of the rou
tines is equivalent to callingXtSetValues () for the resource, although the rou
tines access the value through the widget instance structures rather than thr
XtSetValues ().

See Also
XmTextGetString (1), XmTextGetStringWcs (1),
XmTextGetSubstring (1), XmTextGetSubstringWcs (1),
XmTextSetString (1), XmText (2), XmTextField (2).
Motif Reference Manual 500

Motif Functions and Macros

dis-

e

ter

ac-
ro).

f
iva-
es
Name
XmTextSetTopCharacter – set the position of the first character of text that is
played.

Synopsis

#include <Xm/Text.h>

void XmTextSetTopCharacter (Widgetwidget, XmTextPositiontop_character)

Inputs
widget Specifies the Text widget.
top_character Specifies the position that is to be displayed at the top of the
widget.

Description
XmTextSetTopCharacter () sets the value of the XmNtopCharacter
resource totop_character for the specified Textwidget. If the XmNeditMode
resource is set to XmMULTI_LINE_EDIT, the routine scrolls the text so that th
line containing the character position specified bytop_character appears at the
top of the widget, but does not shift the text left or right. Otherwise, the charac
position specified bytop_character is displayed as the first visible character in
the widget.top_character specifies a character position as the number of char
ters from the beginning of the text, where the first character position in 0 (ze

Usage
XmTextSetTopCharacter () is a convenience routine that sets the value o
the XmNtopCharacter resource for a Text widget. Calling the routines is equ
lent to callingXtSetValues () for the resource, although the routines access
the value through the widget instance structures rather than throughXtSetVal-
ues ().

See Also
XmTextGetCursorPosition (1),
XmTextGetInsertionPosition (1), XmTextGetLastPosition (1),
XmTextGetTopCharacter (1), XmTextScroll (1),
XmTextSetCursorPosition (1),
XmTextSetInsertionPosition (1), XmTextShowPosition (1),
XmText (2).
Motif Reference Manual 501

Motif Functions and Macros

i-

e

-

the
the
Name
XmTextShowPosition, XmTextFieldShowPosition – display the text at a spec
fied position.

Synopsis

#include <Xm/Text.h>

void XmTextShowPosition (Widgetwidget, XmTextPositionposition)

#include <Xm/TextF.h>

void XmTextFieldShowPosition (Widgetwidget, XmTextPositionposition)

Inputs
widget Specifies the Text or TextField widget.
position Specifies the character position that is to be displayed.

Description
XmTextShowPosition () andXmTextFieldShowPosition () cause the
text character atpositionto be displayed in the specifiedwidget. XmTextShow-
Position () works whenwidget is a Text widget or a TextField widget, while
XmTextFieldShowPosition () only works for a TextField widget. The
position argument specifies the position as the number of characters from th
beginning of the text, where the first character position in 0 (zero).

Usage
XmTextShowPosition () andXmTextFieldShowPosition () provide a
way to force a Text or TextField widget to display a certain portion of its text.
This routine is useful if you modify the value of widget and want the modifica
tion to be immediately visible without the user having to scroll the text. If the
value of the XmNautoShowCursorPosition resource is True, you should set
insertion cursor to position as well. You can set the insertion cursor by setting

XmNcursorPosition1 resource or by usingXmTextSetInsertionPosi-
tion () or XmTextFieldSetInsertionPosition ().

1.Erroneously given as XmcursorPosition in 1st and 2nd editions.
Motif Reference Manual 502

Motif Functions and Macros
Example
The following code shows the use ofXmTextShowPosition () in a routine
that inserts a message into a status Text widget:

Widget status;

void insert_text (char *message)
{

XmTextPosition curpos = XmTextGetInsertionPosition (status);

XmTextInsert (status, curpos, message);
curpos = curpos + strlen (message);
XmTextShowPosition (status, curpos);
XmTextSetInsertionPosition (status, curpos);

}

See Also
XmTextGetCursorPosition (1),
XmTextGetInsertionPosition (1),
XmTextSetCursorPosition (1),
XmTextSetInsertionPosition (1), XmText (2), XmTextField (2).
Motif Reference Manual 503

Motif Functions and Macros

y

si-
e

his
aw
Name
XmTextXYToPos, XmTextFieldXYToPos – get the character position for an x,
position.

Synopsis

#include <Xm/Text.h>

XmTextPosition XmTextXYToPos (Widgetwidget, Positionx, Positiony)

#include <Xm/TextF.h>

XmTextPosition XmTextFieldXYToPos (Widgetwidget, Positionx, Positiony)

Inputs
widget Specifies the Text or TextField widget.
x Specifies the x-coordinate relative to the upper-left corner of the
widget.
y Specifies the y-coordinate relative to the upper-left corner of the
widget.

Returns
The character position that is closest to the x, y position.

Description
XmTextXYToPos () andXmTextFieldXYToPos () return the position of the
character closest to the specifiedx andy coordinates within the specifiedwidget.
XmTextXYToPos () works whenwidget is a Text widget or a TextField widget,
while XmTextFieldXYToPos () only works for a TextField widget. Thex and
y coordinates are relative to the upper-left corner of the widget. Character po
tions are numbered sequentially, starting with 0 (zero) at the beginning of th
text.

Usage
XmTextXYToPos () andXmTextFieldXYToPos () provide a way to deter-
mine the character at a particular coordinate in a Text or TextField widget. T
information is useful if you need to perform additional event processing or dr
special graphics in the widget.

See Also
XmTextPosToXY (1), XmText (2), XmTextField (2).
Motif Reference Manual 504

Motif Functions and Macros

of a

e

is

E-

rce
iva-
Name
XmToggleButtonGetState, XmToggleButtonGadgetGetState – get the state
ToggleButton.

Synopsis

#include <Xm/ToggleB.h>

Boolean XmToggleButtonGetState (Widgetwidget)

#include <Xm/ToggleBG.h>

Boolean XmToggleButtonGadgetGetState (Widgetwidget)

Inputs
widget Specifies the ToggleButton or ToggleButtonGadget.

Returns
The state of the button.

Description
XmToggleButtonGetState () andXmToggleButtonGadgetGet-
State () return the state of the specifiedwidget. XmToggleButtonGet-
State () works whenwidget is a ToggleButton or a ToggleButtonGadget, whil
XmToggleButtonGadgetGetState () only works for a ToggleButton-
Gadget. In Motif 1.2 and earlier, each of the routines returns True if the button
selected or False if the button is unselected.

In Motif 2.0 and later, a Toggle can be in any of three states: XmSET, XmIND
TERMINATE, and XmUNSET, where XmUNSET is equivalent to False and
XmSET is equivalent to True. The third indeterminate state is enabled if the
Motif 2.x XmNtoggleMode resource of the widget is set to the value
XmTOGGLE_INDETERMINATE. If the toggle mode is
XmTOGGLE_BOOLEAN, the widget has only two dynamic states, which is
consistent with Motif 1.2 behavior.

Usage
XmToggleButtonGetState () andXmToggleButtonGadgetGet-
State () are convenience routines that return the value of the XmNset resou
for a ToggleButton or ToggleButtonGadget. Calling one of the routines is equ
lent to callingXtGetValues () for the resource, although the routines access
the value through the widget instance structures rather than throughXtGetVal-
ues ().
Motif Reference Manual 505

Motif Functions and Macros

er

med
Because XmToggleButtonGetState () returns the toggleset element of its
widget instance structure directly, and because XmINDETERMINATE is neith
True nor False, programs relying on the strictly Boolean nature ofXmToggle-
ButtonGetState () are at risk of error if the toggle is configured for three
states. Setting tri-state toggles using a convenience function should be perfor
usingXmToggleButtonSetValue ().

See Also
XmToggleButtonSetState (1), XmToggleButtonSetValue (1),
XmToggleButton (2), XmToggleButtonGadget (2).
Motif Reference Manual 506

Motif Functions and Macros

f a

d.

E-
Name
XmToggleButtonSetState, XmToggleButtonGadgetSetState – set the state o
ToggleButton.

Synopsis

#include <Xm/ToggleB.h>

void XmToggleButtonSetState (Widgetwidget, Booleanstate, Booleannotify)

#include <Xm/ToggleBG.h>

void XmToggleButtonGadgetSetState (Widgetwidget, Booleanstate, Boolean
notify)

Inputs
widget Specifies the ToggleButton or ToggleButtonGadget.
state Specifies the state of the button.
notify Specifies whether or not the XmNvalueChangedCallback is calle

Description
XmToggleButtonSetState () andXmToggleButtonGadgetSet-
State () set the state of the specifiedwidget. XmToggleButtonSetState ()
works whenwidget is a ToggleButton or a ToggleButtonGadget, whileXmTog-
gleButtonGadgetSetState () only works for a ToggleButtonGadget. In
Motif 1.2 and earlier, ifstate is True, the button is selected, and whenstate is
False, the button is deselected.

In Motif 2.0 and later, a Toggle can be in any of three states: XmSET, XmIND
TERMINATE, and XmUNSET, where XmUNSET is equivalent to False and
XmSET is equivalent to True. The third indeterminate state is enabled if the
Motif 2.x XmNtoggleMode resource of the widget is set to the value
XmTOGGLE_INDETERMINATE. If the toggle mode is
XmTOGGLE_BOOLEAN, the widget has only two dynamic states, which is
consistent with Motif 1.2 behavior.

If notify is True, the routines invoke the callbacks specified by the XmNval-
ueChangedCallback resource. If the specifiedwidget is the child of a RowCol-
umn with XmNradioBehavior set to True, the currently selected child of the
RowColumn is deselected.
Motif Reference Manual 507

Motif Functions and Macros

or a
t to
lue

e

Usage
XmToggleButtonSetState () andXmToggleButtonGadgetSet-
State () are convenience routines that set the value of the XmNset resource f
ToggleButton or ToggleButtonGadget. Calling one of the routines is equivalen
callingXtSetValues () for the resource, although the routines access the va
through the widget instance structures rather than throughXtSetValues ().

In Motif 2.0 and later, passing the value XmINDETERMINATE is mapped to
XmSET. It is therefore not possible to set the XmINDETERMINATE state
using XmToggleButtonSetState(). To set a Toggle into an indeterminate stat
through the convenience functions, callXmToggleButtonSetValue () or
XmToggleButtonGadgetSetValue ().

See Also
XmToggleButtonGetState (1), XmToggleButtonSetValue (1),
XmToggleButton (2), XmToggleButtonGadget (2).
Motif Reference Manual 508

Motif Functions and Macros

f a

d.

o
e.

e
es if

or a
ate.

e

Name
XmToggleButtonSetValue, XmToggleButtonGadgetSetValue – set the value o
ToggleButton.

Synopsis

#include <Xm/ToggleB.h>

Boolean XmToggleButtonSetValue (Widgetwidget, XmToggleButtonStatestate,
Booleannotify)

#include <Xm/ToggleBG.h>

Boolean XmToggleButtonGadgetSetValue (Widget widget,
XmToggleButtonState state,
Boolean notify)

Inputs
widget Specifies the ToggleButton or ToggleButtonGadget.
state Specifies the state of the button.
notify Specifies whether or not the XmNvalueChangedCallback is calle

Availability
Motif 2.0 and later.

Description
XmToggleButtonSetValue () andXmToggleButtonGadgetSet-
Value () are similar toXmToggleButtonSetState () andXmToggleBut-
tonGadgetSetState (), except that it is possible to set the ToggleButton int
an XmINDETERMINATE state, provided that the Toggle is in the correct mod
If the widget has the XmNtoggleMode resource of
XmTOGGLE_INDETERMINATE, the routine sets the XmNset resource of th
widget to the required state, calls any XmNvalueChangedCallback procedur
notify is True, and then returns True. Otherwise, the function returns False.

Usage
XmToggleButtonSetValue () andXmToggleButtonGadgetSet-
Value () are convenience routines that set the value of the XmNset resource f
ToggleButton or ToggleButtonGadget which can display an indeterminate st
Calling one of the routines is equivalent to callingXtSetValues () for the
resource, although the routines access the value through the widget instanc
structures rather than throughXtSetValues ().
Motif Reference Manual 509

Motif Functions and Macros
Structures
The XmToggleButtonState type has the following possible values:

XmSET XmUNSET XmINDETERMINATE

See Also
XmToggleButtonGetState (1), XmToggleButtonSetState (1),
XmToggleButton (2), XmToggleButtonGadget (2).
Motif Reference Manual 510

Motif Functions and Macros

et

e-
 rou-
t or

LL.

.
ere

d to
Name
XmTrackingEvent – allow for modal selection of a component.

Synopsis

#include <Xm/Xm.h>

Widget XmTrackingEvent (Widgetwidget, Cursorcursor, Booleanconfine_to,
XEvent *event_return)

Inputs
widget Specifies the widget in which the modal interaction occurs.
cursor Specifies the cursor that is to be used as the pointer.
confine_to Specifies whether or not the pointer is confined to widget.

Outputs
event_return Returns the ButtonRelease or KeyRelease event.

Returns
The widget or gadget that contains the pointer or NULL if no widget or gadg
contains the pointer.

Availability
Motif 1.2 and later.

Description
XmTrackingEvent () grabs the pointer and waits for the user to release BS
lect or press and release a key, discarding all of the intervening events. The
tine returns the ID of the widget or gadget containing the pointer when BSelec
the key is released andevent_return contains the release event. If no widget or
gadget contains the pointer when the release occurs, the function returns NU
The modal interaction occurs within the specifiedwidget, which is typically a
top-level shell. During the interaction,cursor is used as the pointer shape. If
confine_to is True, the pointer is confined towidget during the interaction; other-
wise the pointer is not confined.

Usage
XmTrackingEvent () provides a way to allow a user to select a component
This modal interaction is meant to support a context-sensitive help system, wh
the user clicks on a widget to obtain more information about it.XmTrackin-
gEvent () returns the selected widget, so that a help callback can be invoke
provide the appropriate information.
Motif Reference Manual 511

Motif Functions and Macros

l);

ta)
Example
The following code shows the use ofXmTrackingEvent () in a routine that
initiates context-sensitive help:

Widget toplevel, help_button;
...
XtAddCallback (help_button, XmNactivateCallback, query_for_help, topleve
...
void query_for_help (Widget widget, XtPointer client_data, XtPointer call_da
{

Cursor cursor;
Widget top, help_widget;
XmAnyCallbackStruct cb;
XtCallbackStatus hascb;
XEvent *event;

top = (Widget) client_data;
cursor = XCreateFontCursor (XtDisplay (top), XC_question_arrow);
help_widget = XmTrackingEvent (top, cursor, True, &event);

while (help_widget != NULL) {
hascb = XtHasCallbacks (help_widget, XmNhelpCallback);

if (hascb == XtCallbackHasSome) {
cb.reason = XmCR_HELP;
cb.event = event;
XtCallCallbacks (help_widget, XmNhelpCallback, (XtPointer)
&cb);
help_widget = NULL;

}
else

help_widget = XtParent (help_widget);
}

}

See Also
XmTrackingLocate (1).
Motif Reference Manual 512

Motif Functions and Macros

et

Se-
 rou-
t or
ase

t.
ere

d to
Name
XmTrackingLocate – allow for modal selection of a component.

Synopsis

Widget XmTrackingLocate (Widgetwidget, Cursorcursor, Booleanconfine_to)

Inputs
widget Specifies the widget in which the modal interaction occurs.
cursor Specifies the cursor that is to be used as the pointer.
confine_to Specifies whether or not the pointer is confined to widget.

Returns
The widget or gadget that contains the pointer or NULL if no widget or gadg
contains the pointer.

Availability
In Motif 1.2,XmTrackingLocate () is obsolete. It has been superseded by
XmTrackingEvent ().

Description
XmTrackingLocate () grabs the pointer and waits for the user to release B
lect or press and release a key, discarding all of the intervening events. The
tine returns the ID of the widget or gadget containing the pointer when BSelec
the key is released. If no widget or gadget contains the pointer when the rele
occurs, the function returns NULL. The modal interaction occurs within the
specifiedwidget, which is typically a top-level shell. During the interaction,cur-
sor is used as the pointer shape. Ifconfine_to is True, the pointer is confined to
widget during the interaction; otherwise the pointer is not confined.XmTrack-
ingLocate () is retained for compatibility with Motif 1.1 and should not be
used in newer applications.

Usage
XmTrackingLocate () provides a way to allow a user to select a componen
This modal interaction is meant to support a context-sensitive help system, wh
the user clicks on a widget to obtain more information about it.XmTrackin-
gLocate () returns the selected widget, so that a help callback can be invoke
provide the appropriate information.

See Also
XmTrackingEvent (1).
Motif Reference Manual 513

Motif Functions and Macros

red
gh
f
r. In
r-
ing

 the
way
 to
e

awin-

n
, the
ta in

It is

t of
dure.
lues
 call-
Name
XmTransfer – introduction to the uniform transfer model.

Synopsis

Public Header:
<Xm/Transfer.h>

Functions/Macros:
XmTransferDone (), XmTransferSendRequest (), XmTransferSet-
Parameters (),
XmTransferStartRequest (), XmTransferValue ().

Availability
Motif 2.0 and later.

Description
Motif widgets support several methods of data transfer. Data can be transfer
from a widget to the Primary or Secondary selection, the Clipboard, or, throu
the drag and drop mechanisms, to another widget. Up until Motif 2.0, each o
these data transfer operations require a different treatment by the programme
Motif 2.0 and later, the Uniform Transfer Model (UTM) makes it possible to pe
form data transfer using any of the transfer methods using a single programm
interface. UTM is designed to allow applications to use common code for all
supported data transfer requirements, and is intentionally written to ease the
in which new transfer targets can be written. Data transfer code written prior
Motif 2.0 will continue to work in newer versions of the toolkit, although all th
widgets have been rewritten to internally use the UTM where appropriate.

The UTM is implemented through two new callback resources:XmNconvertCall-
back, andXmNdestinationCallback, which are available in the Primitive widget
class (and in any derived classes), as well as in the Container, Scale, and Dr
gArea widget classes. The programmer provides XmNconvertCallback and
XmNdestinationCallback procedures which communicate with one another i
order to negotiate the target format in which the data is required. In addition
programmer provides a transfer procedure which performs the insertion of da
the right format into the destination widget.

An XmNconvertCallback procedure is associated with the source of the data.
responsible for converting the data, typically the selected items of the source
widget, into the format requested by the destination. It may also provide a lis
the supported transfer targets requested by a XmNdestinationCallback proce
The convert procedure transfers data to the destination widget by placing va
within the XmConvertCallbackStruct structure passed as a parameter to the
back.
Motif Reference Manual 514

Motif Functions and Macros

at
sup-
pro-

 the
per-

esti-

ic

As

are
na-
m-
the
-

ove

t-
The XmNdestinationCallback procedure is responsible for negotiating the form
in which data is required at the destination widget. It may request the set of
ported formats in which the source can export the data, although the simplest
cedure requests data in a specific target format. In specifying the request to
source of the data, the callback specifies a further transfer procedure which
forms the actual insertion of data at the destination. The destination callback
communicates with the source by issuing requests using theXmTransfer-
Value () routine. If the destination callback requests the full list of supported
source targets, the transfer procedure itself decides the best format for the d
nation, and internally issues a furtherXmTransferValue () call, requesting the
data in a specific target format. The programmer will have to provide the log
which determines the best format within the transfer procedure.

Usage
It is not necessary for the programmer to provide XmNconvertCallback and
XmNdestinationCallback procedures for all the targets which Motif supports.
part of the UTM, Motif widgets which support the XmNconvertCallback and
XmNdestinationCallback resources also have internal routines which enable
automatic data transfer of a set of built-in target types. The internal routines
implemented using the XmQTtransfer trait, which has convertProc and desti
tionProc methods. Where no XmNconvertCallback is supplied by the progra
mer, the convertProc is invoked to perform the data conversion. Similarly, in
absence of a XmNdestinationCallback, UTM calls the destinationProc. A pro
grammer only needs to implement XmNconvertCallback or XmNdestination-
Callback procedures where a new target type is being provided over and ab
those handled by the widget class default procedures.

Structures
A pointer to the following structure is passed to callbacks on the XmNconver
Callback list:

typedef struct {
int reason; /*the reason that the callback is
invoked */
XEvent *event; /*points to event that triggered call-
back */
Atom selection; /*selection for which conversion is
requested */
Atom target; /*the conversion target*/
XtPointer source_data; /*selection source information*/
XtPointer location_data; /*information about the data to be
transferred */
int flags; /* input status of the conversion*/
Motif Reference Manual 515

Motif Functions and Macros

s

n

mer-
XtPointer parm; /*parameter data for the target*/
int parm_format; /*format of parameter data*/
unsigned long parm_length; /*number of elements in parameter
data */
Atom parm_type; /*the type of the parameter data*/
int status; /*output status of the conversion*/
XtPointer value; /*returned conversion data*/
Atom type; /* type of conversion data returned*/
int format; /* format of the conversion data*/
unsigned long length; /*number of elements in the conver-
sion data */

} XmConvertCallbackStruct;

selection represents the selection for which conversion is requested. CLIP-
BOARD, PRIMARY, SECONDARY, or _MOTIF_DROP are the possible value
(that is, one of the types of data transfer which the UTM rationalizes).

target represents the required format for the data to transfer, expressed as a
Atom.

source_data provides data related to the source of the selection. Ifselection is
_MOTIF_DROP, thensource_datapoints to a DragContext object, otherwise it is
NULL.

location_data specifies where the data to be converted is to be found. If
location_data is NULL, conversion data is interpreted as the widget’s current
selection. Otherwise, the interpretation oflocation_data is widget class specific.

flagsspecifies the current status of the conversion. Possible values of the enu
ated type:

XmCONVERTING_NONE /*unused */
XmCONVERTING_PARTIAL /* some, but not all, of target data is
converted */
XmCONVERTING_SAME /*conversion target is source of the
transfer data */
XmCONVERTING_TRANSACT /*unused */

parmcontains extra data associated withtarget. If targetis the Atom represented
by _MOTIF_CLIPBOARD_TARGETS or
_MOTIF_DEFERRED_CLIPBOARD_TARGETS, thenparm is one of
XmCOPY, XmMOVE, or XmLINK.parm is an array of data items, the number
of such items is specified byparm_length, and the type of each item by
parm_format.
Motif Reference Manual 516

Motif Functions and Macros

lt

n-
the
ites

erg-

to be

ess-

e
to

,
l

parm_format specifies whether the data withinparm is represented by a list of
char, short, or long quantities. Ifparm_format is 0 (zero),parm is NULL. A
parm_format value of 8 indicatesparm is logically a list of char, 16 represents a
list of short quantities, and 32 is for a list of long values.parm_format indicates
logical type, and not physical implementation: aparm_format of 32 indicates a
list of long quantities even if a particular machine has 64-bit longs.

parm_length specifies the number of data items at theparm address.

parm_typespecifies the type of theparmdata, expressed as an Atom. The defau
is XA_INTEGER.

status specifies the status of the conversion. The initial (default) value is
XmCONVERT_DEFAULT, which, if unchanged by the callback, invokes any
conversion procedures associated with the widget class when the callback fi
ishes. These are the convertProc methods of any XmQTtransfer trait which
widget holds. Any converted data produced by a widget class routine overwr
any data from the callback. If the callback setsstatus to
XmCONVERT_MERGE, widget class conversion procedures are invoked, m
ing any data so produced with conversion data from the callback. A returnedsta-
tus of XmCONVERT_REFUSE indicates that the callback terminates the
conversion process without completion, and no widget class procedures are
invoked. XmCONVERT_DONE similarly results in no widget class procedure
invocation, except that the callback indicates that conversion has been succ
fully completed.

value is where the callback places the result of the conversion process. The
default is NULL. It is assumed that anyvalue specified is dynamically allocated
by the programmer, although the programmer must not subsequently free th
value: this is performed by the UTM. It is the responsibility of the programmer
ensure that thetype, format, andlength elements are appropriately set to match
any data placed invalue.

type specifies the logical type of any data returned withinvalue, expressed as an
Atom.

format specifies whether the data withinvalue is represented by a list of char,
short, or long quantities. Ifformatis 0 (zero),valueis NULL. A formatvalue of 8
indicatesvalue is logically a list of char, 16 represents a list of short quantities
and 32 is for a list of long values.format indicates logical type, and not physica
implementation: aformat of 32 indicates a list of long values even if they are
actually 64 bits.

length specifies the number of data items at thevalue address.
Motif Reference Manual 517

Motif Functions and Macros

llow-

e

s

le

for

Pos-

er-
y

the
Callbacks on the XmNdestinationCallback list are passed a pointer to the fo
ing structure:

typedef struct {
int reason; /*reason that the callback is invoked */
XEvent *event; /*points to event that triggered callback*/
Atom selection; /*the requested selection type, as an Atom*/
XtEnum operation; /*the type of transfer requested */
int flags; /*whether destination and source are the sam
*/
XtPointer transfer_id; /*unique identifier for the request */
XtPointer destination_data; /*information about the destination */
XtPointer location_data; /*information about the data */
Time time; /* time when transfer operation started */

} XmDestinationCallbackStruct;

selection specifies, as an Atom, the type of selection for which data transfer i
required. CLIPBOARD, PRIMARY, SECONDARY, or _MOTIF_DROP are the
possible logical values.

operation indicates the type of data transfer operation requested. The possib
values are:

XmCOPY /* copy transfer*/
XmMOVE /* move transfer*/
XmLINK /* link transfer*/
XmOTHER /* information contained within destination_data element*/

If operation is XmOTHER,destination_data contains a pointer to an XmDrop-
ProcCallbackStruct, which contains an operation element. See XmDropSite
more information concerning the XmDropProcCallbackStruct.

flagsindicates whether the source of the transfer data is also the destination.
sible values are:

XmCONVERTING_NONE /*destination is not the source of the data*/
XmCONVERTING_SAME /*destination is the source of the data*/

transfer_id specifies a unique identifier for the current transfer request.

destination_data specifies information about the destination of the transfer op
ation. If theselection is _MOTIF_DROP, then the callback has been invoked b
an XmDropProc of the drop site, anddestination_data contains a pointer to an
XmDropProcCallbackStruct. If theselection is SECONDARY,destination_data
is an Atom representing a target type into which the selection owner suggests
transfer should be converted. Otherwise,destination_data is NULL.
Motif Reference Manual 518

Motif Functions and Macros

ion

i-

pre-
.

dure

ta)
location_data determines where the data is to be transferred. The interpretat
varies between the widget classes. In the Container widget, the value of
location_data is a pointer to an XPoint structure, containing the x and y coord
nates of the transfer location. Iflocation_data is NULL, data is to be transferred
to the current cursor location for the widget.

time is the server time when the transfer operation was initiated.

Transfer procedures are passed a pointer to the following structure: the inter
tation of the elements is the same as those in the callbacks described above

typedef struct {
int reason; /*reason that the callback is invoked
*/
XEvent *event; /*points to event that triggered callback
*/
Atom selection; /*the requested selection type, as an Atom
*/
Atom target; /*the conversion target
*/
Atom type; /* type of conversion data returned
*/
XtPointer transfer_id; /*unique identifier for the request
*/
int flags; /* whether destination and source are same
*/
int remaining; /*number transfers remaining for transfer_id
*/
XtPointer value; /*returned conversion data
*/
unsigned long length; /*number of elements in conversion data
*/
int format; /* format of the conversion data
*/

} XmSelectionCallbackStruct;

Example

The following is a specimen XmNdestinationCallback which simply requests
from the source the list of export targets, and which specifies a transfer proce
for handling the data import.

void destination_handler (Widget w, XtPointer client_data, XtPointer call_da
{

Motif Reference Manual 519

Motif Functions and Macros

d
he
s

XmDestinationCallbackStruct *dptr = (XmDestinationCallbackStruct *)
call_data;
Atom TARGETS = XmInternAtom (XtDisplay (w), "TARGETS", False);

/* transfer procedure will issue a subsequent request */
/* for data in a specific target format. it receives */
/* the list of supported targets from the source. */
XmTransferValue (dptr->transfer_id, TARGETS, (XtCallbackProc)
transfer_procedure,

NULL, XtLastTimestampProcessed (XtDisplay (w))1);
}

The following specimen XmNconvertCallback procedure exports the selecte
text within a Text widget: although the convertProc method associated with t
Text’s XmQTtransfer trait performs this task in a modified form, the code doe
outline the basic structure required.

void convert_callback (Widget w, XtPointer client_data, XtPointer call_data)
{

XmConvertCallbackStruct *cptr = (XmConvertCallbackStruct *)
call_data;
Atom TARGETS, CB_TARGETS,
SELECTED_TEXT;
Atom targets[1];
Display *display = XtDisplay (w);

TARGETS = XmInternAtom (display, "TARGETS", False);
CB_TARGETS = XmInternAtom (display,
"_MOTIF_CLIPBOARD_TARGETS", False);
SELECTED_TEXT = XmInternAtom (display, "SELECTED_TEXT",
False);

/* if the destination has requested the list of supported targets */
/* this is returned in the callback data */
if ((cptr->target == TARGETS) || (cptr->target == CB_TARGETS)) {

targets[0] = SELECTED_TEXT;
cptr->type = XA_ATOM;
cptr->value = (XtPointer) targets;
cptr->length = 1;
cptr->format = 32;
/* merge the data with the list of targets supported by */
/* the convertProc method of the XmQTtransfer trait */

1.Erroneously given as XtLastTimestampProcessed() in 2nd edition.
Motif Reference Manual 520

Motif Functions and Macros

a)

lt into
GE is
cptr->status = XmCONVERT_MERGE;
}
else {

if (cptr->target == SELECTED_TEXT) {
char *selection = XmTextGetSelection (w);
/* destination has requested the new target */
cptr->value = selection;
/* exported target is the requested target */
cptr->type = cptr->target;
cptr->format = 8;
cptr->length = (selection ? strlen (selection) : 0);
/* conversion complete */
cptr->status = XmCONVERT_DONE;

}
else {

/* target is one this procedure is not handling */
/* result is either XmCONVERT_MERGE or
XmCONVERT_DEFAULT */
/* depending on whether we throw away results from any */
/* other convert callback we have registered. */
/* the default is XmCONVERT_DEFAULT */

return XmCONVERT_MERGE;1

}
}

return XmCONVERT_MERGE;2

}

The following is a specimen transfer procedure, which is registered by a
XmNdestinationCallback using XmTransferValue():

void transfer_procedure (Widget w, XtPointer client_data, XtPointer call_dat
{

XmSelectionCallbackStruct *sptr = (XmSelectionCallbackStruct *)
call_data;
Atom TARGETS, CB_TARGETS,
SELECTED_TEXT;
Display *display = XtDisplay (w);

1.The 2nd edition gave XmCONVERT_DEFAULT as the return value here. Since certain focus operations bui
the toolkit use the Uniform Transfer Model as mechanism, you need to inherit these, so XmCONVERT_MER
the better value. Apologies..

2.As above.
Motif Reference Manual 521

Motif Functions and Macros

-

Atom *targets, choice;
int i;

choice = (Atom) 0;
TARGETS = XmInternAtom (display, "TARGETS", False);
CB_TARGETS = XmInternAtom (display,
"_MOTIF_CLIPBOARD_TARGETS", False); SELECTED_TEXT =
XmInternAtom (display, "SELECTED_TEXT", False);

if (((sptr->target == TARGETS) || (sptr->target == CB_TARGETS)) &&
(sptr->type == XA_ATOM)) {
/* destination callback requested list of targets from the source */
/* the source convertCallback returns the list. We now choose... */
targets = (Atom *) sptr->value;

for (i = 0; i < sptr->length; i++) {
if (targets[i] == SELECTED_TEXT) {
/* the source exports selected text. lets pick this one... */
choice = targets[i];
}

}

/* There’s no selection we like... */
if (choice == (Atom) 0) {

XmTransferDone (sptr->transfer_id,
XmTRANSFER_DONE_FAIL);
return;

}

/* now go back to source and ask for the data in format of choice */
/* might as well use ourself again as transfer procedure... */
XmTransferValue (sptr->transfer_id, choice, /* Preferred
SELECTED_TEXT target */

transfer_procedure, NULL, XtLastTimestampProc

essed (display)1);
}
else if (sptr->target == SELECTED_TEXT) {

/* insert the selected text at our own insertion point */
XmTextPosition pos = XmTextGetInsertionPosition (w);
XmTextInsert (w, pos, (char *) sptr->value);
/* all done */

1.Erroneously given as XtLastTimestampProcessed() in 2nd edition.
Motif Reference Manual 522

Motif Functions and Macros
XmTransferDone (sptr->transfer_id,
XmTRANSFER_DONE_SUCCEED);

}
}

See Also
XmTransferDone (1), XmTransferSendRequest (1),
XmTransferSetParameters (1), XmTransferStartRequest (1),
XmTransferValue (1), XmContainer (2), XmDrawingArea (2),
XmPrimitive (2), XmScale (2).
Motif Reference Manual 523

Motif Functions and Macros

sfer
he

to

r

er-

ed

of
Name
XmTransferDone – complete a data transfer operation.

Synopsis

#include <Xm/Transfer.h>

void XmTransferDone (XtPointertransfer_id, XmTransferStatusstatus)

Inputs
transfer_id Specifies a unique identifier for the transfer operation.
status Specifies the completion status of the transfer.

Availability
Motif 2.0 and later.

Description
Under the Uniform Transfer Model,XmTransferDone () completes a data
transfer operation. The procedure is called from destination callbacks or tran
procedures in order to signal the end of data transfer back to the source of t
data.

transfer_id uniquely identifies a transfer operation, and the value is supplied
either from thetransfer_id element of a XmDestinationCallbackStruct passed
the destination callback, or from thetransfer_id element of a XmSelectionCall-
backStruct passed to a transfer procedure.statusis set to indicate the status of the
current transfer operation, which is notified back to the selection owner.

status is one of XmTRANSFER_DONE_FAIL,
XmTRANSFER_DONE_SUCCEED, XmTRANSFER_DONE_CONTINUE, o
XmTRANSFER_DONE_DEFAULT. Thestatus
XmTRANSFER_DONE_DEFAULT ignores all remaining queued transfer op
ations which may have been initiated within the destination callbacks and
invokes the widget class default transfer procedures. That is, any unprocess
multiple batched requests created betweenXmTransferStartRequest ()

andXmTransferSendRequest ()1 calls are skipped. Ifstatus is
XmTRANSFER_DONE_FAIL, the XmNtransferStatus of the current Drop-
Transfer object is set to XmTRANSFER_FAILURE.
XmTRANSFER_DONE_SUCCEED and XmTRANSFER_DONE_CONTINUE
are similar, except that with XmTRANSFER_DONE_CONTINUE the owner
the selection is not notified if the target is _MOTIF_SNAPSHOT.

1.Erroneously given as XmTransferEndRequest() in 2nd edition.
Motif Reference Manual 524

Motif Functions and Macros

ch-
ary
d
k
oci-
for-

the

t
tion
ter to
it
 calls

a)
Usage
The Uniform Transfer Model (UTM) enhances the Motif 1.2 data transfer me
anisms by providing a standard interface through which Drag and Drop, Prim
and Secondary selection, and Clipboard data transfer is achieved both to an
from a widget. The implementation of the UTM is through XmNconvertCallbac
and XmNdestinationCallback resource procedures. A convert callback is ass
ated with the source of the data, and it is responsible for exporting data in the
mat required by the destination widget.

The destination callback is responsible for requesting data from the source in
format which it requires, and it calls the functionXmTransferValue () to do
this. The destination callback typically does not import the data directly, bu
specifies a transfer procedure to perform the insertion of data at the destina
widget. The transfer procedure is specified by passing a routine as a parame
theXmTransferValue () call. When the transfer is finished, either because
is completed or because it is aborted due to an error, the transfer procedure
XmTransferDone () to return the status to the source.

Structures
The XmTransferStatus type has the following possible values:

XmTRANSFER_DONE_CONTINUE
XmTRANSFER_DONE_DEFAULT
XmTRANSFER_DONE_FAIL
XmTRANSFER_DONE_SUCCEED

Example
The following specimen transfer procedure callsXmTransferDone () to indi-
cate the status of the data drop:

void transfer_procedure (Widget w, XtPointer client_data, XtPointer call_dat
{

XmSelectionCallbackStruct *sptr = (XmSelectionCallbackStruct *)
call_data;
Atom TARGETS, CB_TARGETS,
IMPORT_FORMAT;
Display *display = XtDisplay (w);
Atom *targets, choice;
int i;

TARGETS = XmInternAtom (display, "TARGETS", False);
CB_TARGETS = XmInternAtom (display,
"_MOTIF_CLIPBOARD_TARGETS", False);
Motif Reference Manual 525

Motif Functions and Macros

-

IMPORT_FORMAT = XmInternAtom (display, "IMPORT_FORMAT",
False);

if (((sptr->target == TARGETS) || (sptr->target == CB_TARGETS)) &&
(sptr->type == XA_ATOM)) {
/* destination callback requested list of targets from the source */
/* the source convertCallback returns the list. We now choose... */
targets = (Atom *) sptr->value;
choice = (Atom) 0;

for (i = 0; i < sptr->length; i++) {
if (targets[i] == IMPORT_FORMAT) {

/* the source exports our required target... */
choice = targets[i];

}
}

if (choice == (Atom) 0) {
/* source does not export what we require */
/* assume destinationProc in the XmQTtransferTrait */
/* does not either... */
XmTransferDone (sptr->transfer_id,
XmTRANSFER_DONE_FAIL);
return;

}

/* now go back to source and ask for the data in format of choice */
/* might as well use ourself again as transfer procedure... */
XmTransferValue (sptr->transfer_id, choice, /* IMPORT_FORMAT */

transfer_procedure, NULL, XtLastTimestampProc

essed (display)1);
}
else if (sptr->target == IMPORT_FORMAT) {

/* perform whatever is required to import sptr->value */
...
/* all done */
XmTransferDone (sptr->transfer_id,
XmTRANSFER_DONE_SUCCEED);

}
else {

/* wrong export target */

1.Erroneously given as XtLastTimestampProcessed() in 2nd edition.
Motif Reference Manual 526

Motif Functions and Macros
XmTransferDone (sptr->transfer_id, XmTRANSFER_DONE_FAIL);
}

}

See Also
XmTransferSendRequest (1), XmTransferSetParameters (1),
XmTransferStartRequest (1), XmTransferValue (1),
XmTransfer (1), XmDropTransfer (1).
Motif Reference Manual 527

Motif Functions and Macros

n-
-

ch-
ary
d
k
 is
s,
Name
XmTransferSendRequest – send a multiple transfer request.

Synopsis

#include <Xm/Transfer.h>

void XmTransferSendRequest (XtPointertransfer_id, Timetime)

Inputs
transfer_id Specifies a unique identifier for the transfer operation.
time Specifies the time of the transfer.

Availability
Motif 2.0 and later.

Description
In the Uniform Transfer Model,XmTransferSendRequest () marks the end
of a series of transfer requests started byXmTransferStartRequest ().
transfer_id uniquely identifies a transfer operation, and the value is supplied
from thetransfer_idelement of a XmDestinationCallbackStruct or XmSelectio
CallbackStruct passed to a destination callback or transfer procedure respec
tively. time specifies the time of the XEvent which initiated the data transfer.
XtLastTimestampProcessed () is the simplest method of specifying the
time value.

Usage
The Uniform Transfer Model (UTM) enhances the Motif 1.2 data transfer me
anisms by providing a standard interface through which Drag and Drop, Prim
and Secondary selection, and Clipboard data transfer is achieved both to an
from a widget. The implementation of the UTM is through XmNconvertCallbac
and XmNdestinationCallback resource procedures. The destination callback
responsible for requesting data from the source in the format which it require
and it calls the functionXmTransferValue () to do this. A set of data transfer
requests can be queued by wrapping the series ofXmTransferValue () calls
within XmTransferStartRequest () andXmTransferSendRequest ()
calls.

See Also
XmTransferDone (1), XmTransferSetParameters (1),
XmTransferStartRequest (1), XmTransferValue (1),
XmTransfer (1).
Motif Reference Manual 528

Motif Functions and Macros

ck-

the
ion.
it

by
Name
XmTransferSetParameters – set parameters for next transfer

Synopsis

#include <Xm/Transfer.h>

void XmTransferSetParameters (XtPointer transfer_id,
XtPointer parm,
int parm_format,
unsigned long parm_length,
Atom parm_type)

Inputs
transfer_id Specifies a unique identifier for the transfer operation.
parm Specifies parameters to be passed to conversion routines.
parm_format Specifies the format of data in the parm argument.
parm_length Specifies the number of elements within the parm data.
parm_type Specifies the type of parm.

Availability
Motif 2.0 and later.

Description
In the Uniform Transfer Model,XmTransferSetParameters () defines
parameter data for a subsequentXmTransferValue () call. transfer_id
uniquely identifies a transfer operation, and the value is supplied from the
transfer_id element of a XmDestinationCallbackStruct or XmSelectionCallba
Struct passed to a destination callback or transfer procedure respectively.

parm specifies parameter data to be passed to the conversion function, and
XmNconvertCallback procedures, of the source widget which owns the select
parm_format specifies whether the data within parm consists of 8, 16, or 32 b
quantities.parm_length specifies the number of elements, of size determined
parm_format, which are at the addressparm. parm_typespecifies the logical type
of parm, and is application specific. Neither Motif, the X toolkit, nor the X
library interpretparm_type in any manner.
Motif Reference Manual 529

Motif Functions and Macros

ms
ata
ck

nsfer
Usage
The Uniform Transfer Model enhances the Motif 1.2 data transfer mechanis
by providing a standard interface by which the source and destination of the d
transfer can communicate. The programmer provides XmNdestinationCallba
procedures which issue the request to transfer data from the source of the tra
by callingXmTransferValue (). Any parameterized data for theXmTrans-
ferValue () procedure is established through a priorXmTransferSetPa-
rameters () call.XmTransferSetParameters () is a convenience function
which maps simply onto a X Toolkit IntrinsicsXtSetSelectionParame-
ters () call.

See Also
XmTransferDone (1), XmTransferSendRequest (1),
XmTransferStartRequest (1), XmTransferValue (1),
XmTransfer (1).
Motif Reference Manual 530

Motif Functions and Macros

n.

p-
-

ta
and
ests
Name
XmTransferStartRequest – initiate a multiple data transfer request

Synopsis

#include <Xm/Transfer.h>

void XmTransferStartRequest (XtPointertransfer_id)

Inputs
transfer_id Specifies a unique identifier for the current data transfer operatio

Availability
Motif 2.0 and later.

Description
XmTransferStartRequest () initiates the start of a series of transfer
requests.transfer_iduniquely identifies a transfer operation, and the value is su
plied from thetransfer_id element of a XmDestinationCallbackStruct or XmSe
lectionCallbackStruct passed to a destination callback or transfer procedure
respectively.

Usage
In Motif 2.0 and later, the Uniform Transfer Model enhances the Motif 1.2 da
transfer mechanisms by providing a standard interface by which the source
destination of the data transfer can communicate. A set of data transfer requ
can be queued by wrapping the series of requests withinXmTransferStar-
tRequest () andXmTransferSendRequest () calls. The procedure
XmTransferValue () provides the data transfer requests in the queue.

See Also
XmTransferDone (1), XmTransferSendRequest (1),
XmTransferSetParameters (1), XmTransferValue (1),
XmTransfer (1).
Motif Reference Manual 531

Motif Functions and Macros

a-

has

ch-
ary
d
k
oci-
for-

e

s a

ta

t

Name
XmTransferValue – transfer data to a destination

Synopsis

#include <Xm/Transfer.h>

void XmTransferValue (XtPointer transfer_id,
Atom target,
XtCallbackProc callback,
XtPointer client_data,
Time time)

Inputs
transfer_id Specifies a unique identifier for the current data transfer oper
tion.
target Specifies the target to which the selection is to be converted.
callback Specifies a transfer procedure to be called when the selection

been converted by the source.
client_data Specifies application data to be passed to callback.
time Specifies the time of the transfer.

Availability
Motif 2.0 and later.

Description
The Uniform Transfer Model (UTM) enhances the Motif 1.2 data transfer me
anisms by providing a standard interface through which Drag and Drop, Prim
and Secondary selection, and Clipboard data transfer is achieved both to an
from a widget. The implementation of the UTM is through XmNconvertCallbac
and XmNdestinationCallback resource procedures. A convert callback is ass
ated with the source of the data, and it is responsible for exporting data in the
mat required by the destination. The destination callback is responsible for
requesting data from the source in the format which it requires, and it calls th
functionXmTransferValue () to do this. The destination callback itself does
not typically insert the transferred data into the destination widget: it specifie
transfer procedure, which performs the import, as a parameter to theXmTrans-
ferValue () call.

XmTransferValue () arranges to transfer data from the source of transfer da
to the destination.transfer_id uniquely identifies a transfer operation, and the
value is supplied from thetransfer_idelement of a XmDestinationCallbackStruc
or XmSelectionCallbackStruct passed to a destination or transfer callback
respectively.
Motif Reference Manual 532

Motif Functions and Macros

led

.

e
ans-
ter-
targetspecifies the selection which is to be converted and transferred. Iftargetis
_MOTIF_DROP, the function invokesXmDropTransferStart () with inter-
nal transfer procedures to perform the data transfer. Otherwise, the data is
extracted from the selection usingXtGetSelectionValue ().

callback is a transfer procedure, which is an application procedure that is cal
when the data is converted and available from the source.client_datais any data
which the programmer wants to be passed to thecallback. Thecallback is
invoked with three parameters: the destination widget, the application
client_data, and a pointer to a XmSelectionCallbackStruct.

time specifies the time of the XEvent which initiated the data transfer.XtLast-
TimestampProcessed () is the simplest method of specifying the time value

Usage
XmTransferValue () is called from destination callbacks or transfer proce-
dures to effect the actual transfer of data from the source, whether that be th
clipboard or a widget. The programmer-defined callback replaces the XmNtr
ferProc added to a DropTransfer object, which the Uniform Transfer Model in
nally encapsulates and hides.

See Also
XmTransferDone (1), XmTransferSendRequest (1),
XmTransferSetParameters (1), XmTransferStartRequest (1),
XmTransfer (1), XmDropTransfer (2).
Motif Reference Manual 533

Motif Functions and Macros

r.

-

te

e

use
stom-
at is

epre-

s

Name
XmTranslateKey – convert a keycode to a keysym using the default translato

Synopsis

#include <Xm/Xm.h>

void XmTranslateKey (Display *display,
KeyCode keycode,
Modifiers modifiers,
Modifiers *modifiers_return,
KeySym *keysym_return)

Inputs
display Specifies a connection to an X server; returned from XOpenDis
play() or XtDisplay().
keycode Specifies the keycode that is translated.
modifiers Specifies the modifier keys that are applied to the keycode.

Outputs
modifiers_return Returns the modifiers used by the key translator to genera
the keysym.
keysym_return Returns the resulting keysym.

Availability
Motif 1.2 and later.

Description
XmTranslateKey () is the default XtKeyProc translation procedure used by
Motif applications. The routine takes a keycode and modifiers and returns th
corresponding osf keysym.

Usage
The Motif toolkit uses a mechanism calledvirtual bindings to map one set of
keysyms to another set. This mapping permits widgets and applications to
one set of keysyms in translation tables; applications and users can then cu
ize the keysyms used in the translations based on the particular keyboard th
being used. Keysyms that can be used in this way are called osf keysyms. Motif
maintains a mapping between the osf keysyms and the actual keysyms that r
sent keys on a particular keyboard. See the introduction to Section 2,Motif and
Xt Widget and Classes, for more information about the mapping of osf keysym
to actual keysyms.
Motif Reference Manual 534

Motif Functions and Macros

s-
ing
e if

all

an
XmTranslateKey () is used by the X Toolkit during event processing to tran
late the keycode of an event to the appropriate osf keysym if there is a mapp
for the keysym. The event is then dispatched to the appropriate action routin
there is a translation for the osf keysym.

If you need to provide a new translator with expanded functionality, you can c
XmTranslateKey () to get the default translation. UseXtSetKeyTransla-
tor () to register a new key translator. To reinstall the default behavior, you c
call XtSetKeyTranslator () with XmTranslateKey () as the proc argu-
ment.

See Also
xmbind (4).
Motif Reference Manual 535

Motif Functions and Macros

if

ased
can
Name
XmUninstallImage – remove an image from the image cache.

Synopsis

Boolean XmUninstallImage (XImage *image)

Inputs
image Specifies the image structure to be removed.

Returns
True on success or False if image is NULL or it cannot be found.

Description
XmUninstallImage () removes the specifiedimage from the image cache.
The routine returns True if it is successful. It returns False if image is NULL or
image is not found in the image cache.

Usage
XmUninstallImage () removes an image from the image cache. Once an
image is uninstalled, it cannot be referenced again and a new image can be
installed with the same name. If you have created any pixmaps that use the
image, they are not affected by the image being uninstalled, since they are b
on image data, not the image itself. After an image has been uninstalled, you
safely free the image.

See Also
XmDestroyPixmap (1), XmGetPixmap (1), XmInstallImage (1).
Motif Reference Manual 536

Motif Functions and Macros

ks

re
not
n-
he
Name
XmUpdateDisplay – update the display.

Synopsis

void XmUpdateDisplay (Widgetwidget)

Inputs
widget Specifies any widget.

Description
XmUpdateDisplay () causes all pending exposure events to be processed
immediately, instead of having them remain in the queue until all of the callbac
have been invoked.

Usage
XmUpdateDisplay () provides applications with a way to force an visual
update of the display. Because callbacks are invoked before normal exposu
processing occurs, when a menu or a dialog box is unposted, the display is
updated until all of the callbacks have been called. This routine is useful whe
ever a time-consuming action might delay the redrawing of the windows on t
display.

See Also
XmDisplay (2).
Motif Reference Manual 537

Motif Functions and Macros

.
f a

t
is

e
 the

et

e
e

.
ich

g
st-
Name
XmVaCreateSimpleCheckBox – create a CheckBox compound object.

Synopsis

Widget XmVaCreateSimpleCheckBox (Widget parent,
String name,
XtCallbackProc callback,
...,
NULL)

Inputs
parent Specifies the widget ID of the parent of the new widget.
name Specifies the string name of the new widget for resource lookup
callback Specifies the callback procedure that is called when the value o
button changes.
..., NULL A NULL-terminated variable-length list of resource name/value
pairs.

Returns
The widget ID of the RowColumn widget.

Description
XmVaCreateSimpleCheckBox () is a RowColumn convenience routine tha
creates a CheckBox with ToggleButtonGadgets as its children. This routine
similar toXmCreateSimpleCheckBox (), but it uses a NULL-terminated var-
iable-length argument list in place of the arglist and argcount parameters. Th
variable-length argument list specifies resource name/value pairs as well as
children of the CheckBox. Thecallback argument specifies the callback routine
that is added to the XmNvalueChangedCallback of each ToggleButtonGadg
child of the CheckBox. When thecallback is invoked, the button number of the
button whose value has changed is passed to thecallback in theclient_data
parameter.

The name of each ToggleButtonGadget child is button_n, wheren is the number
of the button, ranging from 0 (zero) to 1 less than the number of buttons in th
CheckBox. The buttons are created and named in the order in which they ar
specified in the variable-length argument list.

Usage
A variable-length argument list is composed of several groups of arguments
Within each group, the first argument is a constant or a string that specifies wh
arguments follow in the group. The first argument can be one of the followin
values: XmVaCHECKBUTTON, a resource name, XtVaTypedList, or XtVaNe
edList. The variable-length argument list must be NULL-terminated.
Motif Reference Manual 538

Motif Functions and Macros

peci-
es.

ame/
y-
up
t. If
of
If the first argument in a group is XmVaCHECKBUTTON, it is followed by four
arguments: label, mnemonic, accelerator, and accelerator text. This group s
fies a ToggleButtonGadget child of the CheckBox and its associated resourc
(As of Motif 1.2, all but the label argument are ignored.)

If the first argument in a group is a resource name string, it is followed by a
resource value of type XtArgVal. This group specifies a standard resource n
value pair for the RowColumn widget. If the first argument in a group is XtVaT
pedArg, it is followed by four arguments: name, type, value, and size. This gro
specifies a resource name and value using the standard XtVaTypedArg forma
the first argument in a group is XtVaNestedList, it is followed by one argument
type XtVarArgsList, which is returned byXtVaCreateArgsList ().

Example
You can useXmVaCreateSimpleCheckBox () as in the following example:

Widget toplevel, check_box;
XmString normal, bold, italic;

normal = XmStringCreateLocalized ("normal");
bold = XmStringCreateLocalized ("bold");
italic = XmStringCreateLocalized ("italic");
check_box = XmVaCreateSimpleCheckBox (toplevel, "check_box", toggled,

XmVaCHECKBUTTON, normal,
NULL, NULL, NULL,
XmVaCHECKBUTTON, bold,
NULL, NULL, NULL,
XmVaCHECKBUTTON, italic,
NULL, NULL, NULL,
NULL);

XmStringFree (normal);
XmStringFree (bold);
XmStringFree (italic);

See Also
XmCheckBox(2), XmRowColumn(2), XmToggleButtonGadget (2).
Motif Reference Manual 539

Motif Functions and Macros

.

 is

var-

en-
ified

.
ich

g

.

-

ame/
y-
up
t. If
Name
XmVaCreateSimpleMenuBar – create a MenuBar compound object.

Synopsis

Widget XmVaCreateSimpleMenuBar (Widgetparent, char *name,..., NULL)

Inputs
parent Specifies the widget ID of the parent of the new widget.
name Specifies the string name of the new widget for resource lookup
..., NULL A NULL-terminated variable-length list of resource name/value
pairs.

Returns
The widget ID of the RowColumn widget.

Description
XmVaCreateSimpleMenuBar () is a RowColumn convenience routine that
creates a MenuBar with CascadeButtonGadgets as its children. This routine
similar toXmCreateSimpleMenuBar (), but it uses a NULL-terminated vari-
able-length argument list in place of the arglist and argcount parameters. The
iable-length argument list specifies resource name/value pairs as well as the
children of the MenuBar.

The name of each CascadeButtonGadget is button_n, wheren is the number of
the button, ranging from 0 (zero) to 1 less than the number of buttons in the M
uBar. The buttons are created and named in the order in which they are spec
in the variable-length argument list.

Usage
A variable-length argument list is composed of several groups of arguments
Within each group, the first argument is a constant or a string that specifies wh
arguments follow in the group. The first argument can be one of the followin
values: XmVaCASCADEBUTTON, a resource name, XtVaTypedList, or
XtVaNestedList. The variable-length argument list must be NULL-terminated

If the first argument in a group is XmVaCASCADEBUTTON, it is followed by
two arguments: label and mnemonic. This group specifies a CascadeButton
Gadget child of the MenuBar and its associated resources.

If the first argument in a group is a resource name string, it is followed by a
resource value of type XtArgVal. This group specifies a standard resource n
value pair for the RowColumn widget. If the first argument in a group is XtVaT
pedArg, it is followed by four arguments: name, type, value, and size. This gro
specifies a resource name and value using the standard XtVaTypedArg forma
Motif Reference Manual 540

Motif Functions and Macros

of

,

the first argument in a group is XtVaNestedList, it is followed by one argument
type XtVarArgsList, which is returned byXtVaCreateArgsList ().

Example
You can useXmVaCreateSimpleMenuBar () as in the following example:

Widget top, mainw, menubar, fmenu, emenu;
XmString file, edit, new, quit, cut, clear, copy, paste;

file = XmStringCreateLocalized ("File");
edit = XmStringCreateLocalized ("Edit");
menubar = XmVaCreateSimpleMenuBar (mainw, "menubar",

XmVaCASCADEBUTTON,
file,’F’,
XmVaCASCADEBUTTON,
edit,’E’,
NULL);

XmStringFree (file);
XmStringFree (edit);

new = XmStringCreateLocalized ("New");
quit = XmStringCreateLocalized ("Quit");
fmenu = XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb

XmVaPUSHBUTTON,
new,’N’, NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON,
quit,’Q’, NULL, NULL,
NULL);

XmStringFree (new);
XmStringFree (quit);

cut = XmStringCreateLocalized ("Cut");
copy = XmStringCreateLocalized ("Copy");
clear = XmStringCreateLocalized ("Clear");
paste = XmStringCreateLocalized ("Paste");
emenu = XmVaCreateSimplePulldownMenu (menubar, "edit_menu", 0,
cut_paste,

XmVaPUSHBUTTON,cut,’C’,
NULL, NULL,
XmVaPUSHBUTTON,
copy,’o’, NULL, NULL,
XmVaPUSHBUTTON,
paste,’P’, NULL, NULL,
Motif Reference Manual 541

Motif Functions and Macros
XmVaSEPARATOR,
XmVaPUSHBUTTON,
clear,’l’, NULL, NULL,
NULL);

XmStringFree (cut);
XmStringFree (clear);
XmStringFree (copy);
XmStringFree (paste);

See Also
XmCascadeButtonGadget (2), XmMenuBar(2), XmRowColumn(2).
Motif Reference Manual 542

Motif Functions and Macros

on

/

et

t
ent

-

is-
Name
XmVaCreateSimpleOptionMenu – create an OptionMenu compound object.

Synopsis

Widget XmVaCreateSimpleOptionMenu (Widget parent,
String name,
XmString option_label,
KeySym

option_mnemonic,
int button_set,
XtCallbackProc callback,
...,
NULL)

Inputs
parent Specifies the widget ID of the parent of the new widget.
name Specifies the string name of the new widget for resource
lookup.
option_label Specifies the label used for the OptionMenu.
option_mnemonic Specifies the mnemonic character associated with the
OptionMenu.
button_set Specifies the initial setting of the OptionMenu.
callback Specifies the callback procedure that is called when a butt
is activated.
..., NULL A NULL-terminated variable-length list of resource name
value pairs.

Returns
The widget ID of the RowColumn widget.

Description
XmVaCreateSimpleOptionMenu () is a RowColumn convenience routine
that creates an OptionMenu along with its submenu of CascadeButtonGadg
and/or PushButtonGadget children. This routine is similar toXmCreateSim-
pleOptionMenu (), but it uses a NULL-terminated variable-length argumen
list in place of the arglist and argcount parameters. The variable-length argum
list specifies resource name/value pairs as well as the children of the Option
Menu.

Theoption_label, option_mnemonic, andbutton_set arguments are used to set
the XmNlabelString, XmNmnemonic, and XmNmenuHistory resources of the
RowColumn respectively. Thebutton_setparameter specifies thenth button child
of the OptionMenu, where the first button is button 0 (zero); the XmNmenuH
tory resource is set to the actual widget. Thecallbackargument specifies the call-
Motif Reference Manual 543

Motif Functions and Macros

me

ttons
le-

.
ich

g

.

peci-
ts
T-
es
s
or

nu.

ame/
y-
up
t. If
of
back routine that is added to the XmNactivateCallback of each
CascadeButtonGadget and PushButtonGadget child in the submenu of the
OptionMenu. When thecallback is invoked, the button number of the button
whose value has changed is passed to thecallback in theclient_data parameter.

The name of each button is button_n, wheren is the number of the button, rang-
ing from 0 (zero) to 1 less than the number of buttons in the submenu. The na
of each separator is separator_n, wheren is the number of the separator, ranging
from 0 (zero) to 1 less than the number of separators in the submenu. The bu
are created and named in the order in which they are specified in the variab
length argument list.

Usage
A variable-length argument list is composed of several groups of arguments
Within each group, the first argument is a constant or a string that specifies wh
arguments follow in the group. The first argument can be one of the followin
values: XmVaPUSHBUTTON, XmVaCASCADEBUTTON, XmVaSEPARA-
TOR, XmVaDOUBLE_SEPARATOR, a resource name, XtVaTypedList, or
XtVaNestedList. The variable-length argument list must be NULL-terminated

If the first argument in a group is XmVaPUSHBUTTON, it is followed by four
arguments: label, mnemonic, accelerator, and accelerator text. This group s
fies a PushButtonGadget in the pulldown submenu of the OptionMenu and i
associated resources. If the first argument in a group is XmVaCASCADEBU
TON, it is followed by two arguments: label and mnemonic. This group specifi
a CascadeButtonGadget in the pulldown submenu of the OptionMenu and it
associated resources. If the first argument in a group is XmVaSEPARATOR
XmVaDOUBLE_SEPARATOR, it is not followed by any arguments. These
groups specify SeparatorGadgets in the pulldown submenu of the OptionMe

If the first argument in a group is a resource name string, it is followed by a
resource value of type XtArgVal. This group specifies a standard resource n
value pair for the RowColumn widget. If the first argument in a group is XtVaT
pedArg, it is followed by four arguments: name, type, value, and size. This gro
specifies a resource name and value using the standard XtVaTypedArg forma
the first argument in a group is XtVaNestedList, it is followed by one argument
type XtVarArgsList, which is returned byXtVaCreateArgsList ().

Example
You can useXmVaCreateSimpleOptionMenu () as in the following exam-
ple:

Widget rc, option_menu;
XmString draw_shape, line, square, circle;
Motif Reference Manual 544

Motif Functions and Macros
draw_shape = XmStringCreateLocalized ("Draw Mode:");
line = XmStringCreateLocalized ("Line");
square = XmStringCreateLocalized ("Square");
circle = XmStringCreateLocalized ("Circle");
option_menu = XmVaCreateSimpleOptionMenu (rc, "option_menu",
draw_shape, ’D’, 0, option_cb,

XmVaPUSHBUTTON, line,
’L’, NULL, NULL,
XmVaPUSHBUTTON, square,
’S’, NULL, NULL,
XmVaPUSHBUTTON, circle,
’C’, NULL, NULL,
NULL);

XmStringFree (line);
XmStringFree (square);
XmStringFree (circle);
XmStringFree (draw_shape);

See Also
XmOptionButtonGadget (1), XmOptionLabelGadget (1),
XmCascadeButtonGadget (2), XmLabelGadget (2),
XmOptionMenu (2), XmPushButtonGadget (2),
XmRowColumn(2), XmSeparatorGadget (2).
Motif Reference Manual 545

Motif Functions and Macros

 the

p.
 is

e

 the

nt
ent

enu.
ac-
and
p-
se

e of

e of

ed in
Name
XmVaCreateSimplePopupMenu – create a PopupMenu compound object as
child of a MenuShell.

Synopsis

Widget XmVaCreateSimplePopupMenu (Widget parent,
String name,
XtCallbackProc callback,
...,
NULL)

Inputs
parent Specifies the widget ID of the parent of the MenuShell.
name Specifies the string name of the new widget for resource looku
callback Specifies the callback procedure that is called when a button

activated or its value changes.
...,NULL A NULL-terminated variable-length list of resource name/valu

pairs.

Returns
The widget ID of the RowColumn widget.

Description
XmVaCreateSimplePopupMenu () is a RowColumn convenience routine
that creates a PopupMenu along with its button children. The routine creates
PopupMenu as a child of a MenuShell. This routine is similar toXmCreateS-
implePopupMenu (), but it uses a NULL-terminated variable-length argume
list in place of the arglist and argcount parameters. The variable-length argum
list specifies resource name/value pairs as well as the children of the PopupM
Thecallbackargument specifies the callback routine that is added to the XmN
tivateCallback of each CascadeButtonGadget and PushButtonGadget child
the XmNvalueChangedCallback of each ToggleButtonGadget child in the Po
upMenu. When the callback is invoked, the button number of the button who
value has changed is passed to the callback in theclient_data parameter.

The name of each button is button_n, wheren is the number of the button, rang-
ing from 0 (zero) to 1 less than the number of buttons in the menu. The nam
each separator is separator_n, wheren is the number of the separator, ranging
from 0 (zero) to 1 less than the number of separators in the menu. The nam
each title is label_n, wheren is the number of the title, ranging from 0 (zero) to 1
less than the number of titles in the menu. The buttons are created and nam
the order in which they are specified in the variable-length argument list.
Motif Reference Manual 546

Motif Functions and Macros

.
ich

g

t-

peci-
es. If

get
 a

oups
d

ame/
y-
up
t. If
of
Usage
A variable-length argument list is composed of several groups of arguments
Within each group, the first argument is a constant or a string that specifies wh
arguments follow in the group. The first argument can be one of the followin
values: XmVaPUSHBUTTON, XmVaCASCADEBUTTON, XmVaRADI-
OBUTTON, XmVaCHECKBUTTON, XmVaTITLE, XmVaSEPARATOR,
XmVaDOUBLE_SEPARATOR, a resource name, XtVaTypedList, or XtVaNes
edList. The variable-length argument list must be NULL-terminated.

If the first argument in a group is XmVaPUSHBUTTON, it is followed by four
arguments: label, mnemonic, accelerator, and accelerator text. This group s
fies a PushButtonGadget child of the PopupMenu and its associated resourc
the first argument in a group is XmVaCASCADEBUTTON, it is followed by two
arguments: label and mnemonic. This group specifies a CascadeButtonGad
child of the PopupMenu and its associated resources. If the first argument in
group is XmVaRADIOBUTTON or XmVaCHECKBUTTON, it is followed by
four arguments: label, mnemonic, accelerator, and accelerator text. These gr
specify ToggleButtonGadget children of the PopupMenu and their associate
resources.

If the first argument is XmVaTITLE, it is followed by a title argument. This
group specifies a LabelGadget title in the PopupMenu and its associated
resource. If the first argument in a group is XmVaSEPARATOR or
XmVaDOUBLE_SEPARATOR, it is not followed by any arguments. These
groups specify SeparatorGadgets in the PopupMenu.

If the first argument in a group is a resource name string, it is followed by a
resource value of type XtArgVal. This group specifies a standard resource n
value pair for the RowColumn widget. If the first argument in a group is XtVaT
pedArg, it is followed by four arguments: name, type, value, and size. This gro
specifies a resource name and value using the standard XtVaTypedArg forma
the first argument in a group is XtVaNestedList, it is followed by one argument
type XtVarArgsList, which is returned byXtVaCreateArgsList ().

Example
You can useXmVaCreateSimplePopupMenu () as in the following example:

Widget drawing_a, popup_menu;
XmString line, square, circle, quit, quit_acc;

line = XmStringCreateLocalized ("Line");
square = XmStringCreateLocalized ("Square");
circle = XmStringCreateLocalized ("Circle");
quit = XmStringCreateLocalized ("Quit");
Motif Reference Manual 547

Motif Functions and Macros

_cb,

quit_acc = XmStringCreateLocalized ("Ctrl-C");
popup_menu = XmVaCreateSimplePopupMenu (drawing_a, "popup", popup

XmVaPUSHBUTTON, line, NULL, NULL,
NULL,
XmVaPUSHBUTTON, square, NULL,
NULL, NULL,
XmVaPUSHBUTTON, circle, NULL,
NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, quit, NULL,
"Ctrl<Key>c", quit_acc,
NULL);

XmStringFree (line);
XmStringFree (square);
XmStringFree (circle);
XmStringFree (quit);
XmStringFree (quit_acc);

See Also
XmCascadeButtonGadget (2), XmLabelGadget (2), XmMenuShell (2),
XmPopupMenu(2), XmPushButtonGadget (2), XmRowColumn(2),
XmSeparatorGadget (2), XmToggleButtonGadget (2).
Motif Reference Manual 548

Motif Functions and Macros

ect

e

t in

ut-

cre-

vari-

ton-
nt
utton

But-
Name
XmVaCreateSimplePulldownMenu – create a PulldownMenu compound obj
as the child of a MenuShell.

Synopsis

Widget XmVaCreateSimplePulldownMenu (Widget parent,
String name,
int

post_from_button,
XtCallbackProc callback,
...,
NULL)

Inputs
parent Specifies the widget ID of the parent of the MenuShell.
name Specifies the string name of the new widget for resourc

lookup.
post_from_button Specifies the CascadeButton or CascadeButtonGadge

the parent widget to which the menu is attached.
callback Specifies the callback procedure that is called when a b

ton is activated or its value changes.
..., NULL A NULL-terminated variable-length list of resource

name/value pairs.

Returns
The widget ID of the RowColumn widget.

Description
XmVaCreateSimplePulldownMenu () is a RowColumn convenience rou-
tine that creates a PulldownMenu along with its button children. The routine
ates the PulldownMenu as a child of a MenuShell. This routine is similar to
XmCreateSimplePulldownMenu (), but it uses a NULL-terminated varia-
ble-length argument list in place of the arglist and argcount parameters. The
able-length argument list specifies resource name/value pairs as well as the
children of the PulldownMenu.

Thepost_from_button parameter specifies the CascadeButton or CascadeBut
Gadget to which the PulldownMenu is attached as a submenu. The argume
specifies the nth CascadeButton or CascadeButtonGadget, where the first b
is button 0 (zero). Thecallback argument specifies the callback routine that is
added to the XmNactivateCallback of each CascadeButtonGadget and Push
tonGadget child and the XmNvalueChangedCallback of each ToggleButton-
Gadget child in the PulldownMenu. When thecallback is invoked, the button
Motif Reference Manual 549

Motif Functions and Macros

the

e of

e of

ed in

.
ich

g

t-

peci-
rces.

-
rgu-

xt.
d

ame/
y-
up
t. If
of
number of the button whose value has changed is passed to the callback in
client_data parameter.

The name of each button is button_n, wheren is the number of the button, rang-
ing from 0 (zero) to 1 less than the number of buttons in the menu. The nam
each separator is separator_n, wheren is the number of the separator, ranging
from 0 (zero) to 1 less than the number of separators in the menu. The nam
each title is label_n, wheren is the number of the title, ranging from 0 (zero) to 1
less than the number of titles in the menu. The buttons are created and nam
the order in which they are specified in the variable-length argument list.

Usage
A variable-length argument list is composed of several groups of arguments
Within each group, the first argument is a constant or a string that specifies wh
arguments follow in the group. The first argument can be one of the followin
values: XmVaPUSHBUTTON, XmVaCASCADEBUTTON, XmVaRADI-
OBUTTON, XmVaCHECKBUTTON, XmVaTITLE, XmVaSEPARATOR,
XmVaDOUBLE_SEPARATOR, a resource name, XtVaTypedList, or XtVaNes
edList. The variable-length argument list must be NULL-terminated.

If the first argument in a group is XmVaPUSHBUTTON, it is followed by four
arguments: label, mnemonic, accelerator, and accelerator text. This group s
fies a PushButtonGadget child of the PulldownMenu and its associated resou
If the first argument in a group is XmVaCASCADEBUTTON, it is followed by
two arguments: label and mnemonic. This group specifies a CascadeButton
Gadget child of the PulldownMenu and its associated resources. If the first a
ment in a group is XmVaRADIOBUTTON or XmVaCHECKBUTTON, it is
followed by four arguments: label, mnemonic, accelerator, and accelerator te
These groups specify ToggleButtonGadget children of the PulldownMenu an
their associated resources.

If the first argument is XmVaTITLE, it is followed by a title argument. This
group specifies a LabelGadget title in the PulldownMenu and its associated
resource. If the first argument in a group is XmVaSEPARATOR or
XmVaDOUBLE_SEPARATOR, it is not followed by any arguments. These
groups specify SeparatorGadgets in the PulldownMenu.

If the first argument in a group is a resource name string, it is followed by a
resource value of type XtArgVal. This group specifies a standard resource n
value pair for the RowColumn widget. If the first argument in a group is XtVaT
pedArg, it is followed by four arguments: name, type, value, and size. This gro
specifies a resource name and value using the standard XtVaTypedArg forma
the first argument in a group is XtVaNestedList, it is followed by one argument
type XtVarArgsList, which is returned byXtVaCreateArgsList ().
Motif Reference Manual 550

Motif Functions and Macros

,

Example
You can useXmVaCreateSimplePulldownMenu () as in the following
example:

Widget top, mainw, menubar, fmenu, emenu;
XmString file, edit, new, quit, cut, clear, copy, paste;

file = XmStringCreateLocalized ("File");
edit = XmStringCreateLocalized ("Edit");
menubar = XmVaCreateSimpleMenuBar (mainw, "menubar",

XmVaCASCADEBUTTON, file, ’F’,
XmVaCASCADEBUTTON, edit, ’E’,
NULL);

XmStringFree (file);
XmStringFree (edit);

new = XmStringCreateLocalized ("New");
quit = XmStringCreateLocalized ("Quit");
fmenu = XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb

XmVaPUSHBUTTON, new,
’N’, NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, quit,
’Q’, NULL, NULL,
NULL);

XmStringFree (new);
XmStringFree (quit);

cut = XmStringCreateLocalized ("Cut");
copy = XmStringCreateLocalized ("Copy");
clear = XmStringCreateLocalized ("Clear");
paste = XmStringCreateLocalized ("Paste");
emenu = XmVaCreateSimplePulldownMenu (menubar, "edit_menu", 1,
cut_paste,

XmVaPUSHBUTTON, cut, ’C’,
NULL, NULL,
XmVaPUSHBUTTON, copy, ’o’,
NULL, NULL,
XmVaPUSHBUTTON, paste,
’P’, NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, clear, ’l’,
NULL, NULL,
NULL);
Motif Reference Manual 551

Motif Functions and Macros
XmStringFree (cut);
XmStringFree (clear);
XmStringFree (copy);
XmStringFree (paste);

See Also
XmCascadeButtonGadget (2), XmLabelGadget (2), XmMenuShell (2),
XmPulldownMenu (2), XmPushButtonGadget (2), XmRowColumn(2),
XmSeparatorGadget (2), XmToggleButtonGadget (2).
Motif Reference Manual 552

Motif Functions and Macros

lue

t
s

e
 the
-

-

gle-

e
e

Name
XmVaCreateSimpleRadioBox – create a RadioBox compound object.

Synopsis

Widget XmVaCreateSimpleRadioBox (Widget parent,
String name,
int button_set,
XtCallbackProc callback,
...,
NULL)

Inputs
parent Specifies the widget ID of the parent of the new widget.
name Specifies the string name of the new widget for resource
lookup.
button_set Specifies the initial setting of the RadioBox.
callback Specifies the callback procedure that is called when the va
of a button changes.
..., NULL A NULL-terminated variable-length list of resource name/
value pairs.

Returns
The widget ID of the RowColumn widget.

Description
XmVaCreateSimpleRadioBox () is a RowColumn convenience routine tha
creates a RadioBox with ToggleButtonGadgets as its children. This routine i
similar toXmCreateSimpleRadioBox (), but it uses a NULL-terminated var-
iable-length argument list in place of the arglist and argcount parameters. Th
variable-length argument list specifies resource name/value pairs as well as
children of the CheckBox. Thebutton_set argument is used to set the XmNmen
uHistory resource of the RowColumn. The parameter specifies the nth button
child of the RadioBox, where the first button is button 0 (zero); the XmNmen
uHistory resource is set to the actual widget. Thecallbackargument specifies the
callback routine that is added to the XmNvalueChangedCallback of each Tog
ButtonGadget child of the RadioBox. When thecallback is invoked, the button
number of the button whose value has changed is passed to thecallback in the
client_data parameter.

The name of each ToggleButtonGadget child is button_n, wheren is the number
of the button, ranging from 0 (zero) to 1 less than the number of buttons in th
RadioBox. The buttons are created and named in the order in which they ar
specified in the variable-length argument list.
Motif Reference Manual 553

Motif Functions and Macros

.
ich

g
t-

r
peci-
es.

ame/
y-
up
t. If
of
Usage
A variable-length argument list is composed of several groups of arguments
Within each group, the first argument is a constant or a string that specifies wh
arguments follow in the group. The first argument can be one of the followin
values: XmVaRADIOBUTTON, a resource name, XtVaTypedList, or XtVaNes
edList. The variable-length argument list must be NULL-terminated.

If the first argument in a group is XmVaRADIOBUTTON, it is followed by fou
arguments: label, mnemonic, accelerator, and accelerator text. This group s
fies a ToggleButtonGadget child of the RadioBox and its associated resourc
(As of Motif 1.2, all but the label argument are ignored.)

If the first argument in a group is a resource name string, it is followed by a
resource value of type XtArgVal. This group specifies a standard resource n
value pair for the RowColumn widget. If the first argument in a group is XtVaT
pedArg, it is followed by four arguments: name, type, value, and size. This gro
specifies a resource name and value using the standard XtVaTypedArg forma
the first argument in a group is XtVaNestedList, it is followed by one argument
type XtVarArgsList, which is returned byXtVaCreateArgsList ().

Example
You can useXmVaCreateSimpleRadioBox () as in the following example:

Widget toplevel, radio_box;
XmString one, two, three;

one = XmStringCreateLocalized ("WFNX");
two = XmStringCreateLocalized ("WMJX");
three = XmStringCreateLocalized ("WXKS");
radio_box = XmVaCreateSimpleRadioBox (toplevel, "radio_box", 0, toggled,

XmVaRADIOBUTTON, one, NULL,
NULL, NULL,
XmVaRADIOBUTTON, two, NULL,
NULL, NULL,
XmVaRADIOBUTTON, three,
NULL, NULL, NULL,
NULL);

XmStringFree (one);
XmStringFree (two);
XmStringFree (three);

See Also
XmRadioBox (2), XmRowColumn(2), XmToggleButtonGadget (2).
Motif Reference Manual 554

Motif Functions and Macros

the

es
is
to

e

s

ng
Name
XmWidgetGetBaselines – get the positions of the baselines in a widget.

Synopsis

Boolean XmWidgetGetBaselines (Widgetwidget, Dimension **baselines, int
* line_count)

Inputs
widget Specifies the widget for which to get baseline values.

Outputs
baselines Returns an array containing the value of each baseline of text in
widget.
line_count Returns the number of lines of text in the widget.

Returns
True if the widget contains at least one baseline or False otherwise.

Availability
Motif 1.2 and later.

Description
XmWidgetGetBaselines () returns an array that contains the baseline valu
for the specifiedwidget. For each line of text in the widget, the baseline value
the vertical offset in pixels from the origin of the bounding box of the widget
the text baseline. The routine returns the baseline values inbaselines and the
number of lines of text in the widget inline_count. XmWidgetGetBase-
lines () returns True if thewidgetcontains at least one line of text and therefor
has a baseline. If thewidget does not contain any text, the routine returns False
and the values ofbaselines andline_count are undefined. The routine allocates
storage for the returned values. The application is responsible for freeing thi
storage usingXtFree ().

Usage
XmWidgetGetBaselines() provide information that is useful when you are layi
out an application and trying to align different components.

See Also
XmWidgetGetDisplayRect (1).
Motif Reference Manual 555

Motif Functions and Macros

e

 of

e

er
Name
XmWidgetGetDisplayRect – get the display rectangle for a widget.

Synopsis

Boolean XmWidgetGetDisplayRect (Widgetwidget, XRectangle *displayrect)

Inputs
widget Specifies the widget for which to get the display rectangle.

Outputs
displayrect Returns an XRectangle that specifies the display rectangle of th
widget.

Returns
True if the widget has a display rectangle or False otherwise.

Availability
Motif 1.2 and later.

Description
XmWidgetGetDisplayRect () gets the display rectangle for the specified
widget. The routine returns the width, the height, and the x and y-coordinates
the upper left corner of the display rectangle in thedisplayrect XRectangle. All
of the values are specified as pixels. The display rectangle for a widget is th
smallest rectangle that encloses the string or the pixmap in the widget.XmWidg-
etGetDisplayRect () returns True if the widget has a display rectangle; oth
it returns False and the value ofdisplayrect is undefined.

Usage
XmWidgetGetDisplayRect () provide information that is useful when you
are laying out an application and trying to align different components.

See Also
XmWidgetGetBaselines (1).
Motif Reference Manual 556

tion 2,

 of the

rrow

 the
e
e

ions
the

-

Section 2 - Motif and Xt Widget Classes

This page describes the format and contents of each reference page in Sec
which covers each of the Motif and Xt Intrinsics widget types.

Name
Widget – a brief description of the widget.

Synopsis

Public Headers:
The files to include when you use this widget.

Class Name:
The name of the widget class; used as the resource class for each instance
widget.

Class Hierarchy:
The superclasses of this widget, listed in superclass-to-subclass order. The a
symbol (→) indicates a subclass.

Class Pointer:
The global variable that points to the widget class structure. This is the value
used when creating a widget.

Instantiation:
C code that instantiates the widget, for widgets that can be instantiated. For
widgets and gadgets in the Motif toolkit, we have shown how to instantiate th
widget usingXtCreateWidget (). Each widget and gadget has a convenienc
creation routine of the general form:

Widget XmCreate object(Widget parent
String name
ArgList arglist,
Cardinal argcount)

whereobject is the shorthand for the class.

Functions/Macros:
Functions and/or macros specific to this widget class.

Availability
This section describes the availability of the widget class across various vers
of Motif. The section is omitted if the widget class has always been present in
toolkit.

Description
This section gives an overview of the widget class and the functionality it pro
vides.
Motif Reference Manual 557

Introduction Motif and Xt Widget Classes

h
me,
e or
n be
(S),

con-
in

f the
ion

d by
n-

ns.

me,
e or

with

rces
rwise
Traits
This section appears for any traits that are set by the widget class. The Trait
mechanisms are available in Motif 2.0 and later.

New Resources
This section presents a table of the resources that are newly defined by eac
widget class (not inherited from a superclass). In addition to the resource’s na
class, data type, and default value, a fifth column lists a code consisting of on
more of the letters C, S, and G. This code indicates whether the resource ca
set when the widget is created (C), whether it can be set with XtSetValues()
and whether it can be read withXtGetValues() (G). A brief description of
each new resource follows the table. For resources whose values are defined
stants, these constants are listed. Unless otherwise noted, they are defined
<Xm/Xm.h> .

Other New Resources
If present, these sections describe resources associated with specific uses o
widget; for example, RowColumn widget resources for use with simple creat
routines, or Text widget resources for use in text input.

Callback Resources
This section presents a table of the callback resources that are newly define
this class. The table lists the name of each resource along with its reason co
stant.

Callback Structure
This section lists the structure(s) associated with the object’s callback functio

New Constraint Resources
This section defines any constraint resources that are newly defined by each
widget class (not inherited from a superclass). In addition to the resource’s na
class, data type, and default value, a fifth column lists a code consisting of on
more of the letters C, S, and G. This code indicates whether the constraint
resource can be set when a child widget is created (C), whether it can be set
XtSetValues() (S), and whether it can be read withXtGetValues() (G). A
brief description of each new constraint resource follows the table. For resou
whose values are defined constants, these constants are listed. Unless othe
noted, they are defined in<Xm/Xm.h> .

Procedures
This section lists any procedure or function prototypes associated with the
widget.
558 Motif Reference Manual

Motif and Xt Widget Classes Introduction

n a

,

g a

t.
orre-

ts
the
orre-
llow-
Default Resource Values
This section presents a table of the default resource values that are set whe
compound object is created.

Inherited Resources
This section presents an alphabetically arranged table of inherited resources
along with the superclass that defines them.

Widget Hierarchy
This section presents the widget instance hierarchy that results from creatin
compound object.
The full widget hierarchy is shown in Figure 1.

Translations
This section presents the translations associated with each widget or gadge
Because the button events and key events used in Motif do not necessarily c
spond to the events in the X Window System, the Motif toolkit has created a
mechanism calledvirtual bindings. Virtual bindings link the translations used in
Motif to their X event counterparts. The "Translations" sections list their even
in terms of these virtual bindings. In order to understand the syntax used in
"Translations" sections of these reference pages, you must understand the c
spondence between virtual bindings and actual keysyms or buttons. The fo
ing tables describe the virtual bindings of events.

Virtual Modifier Actual Modifier

MAlt <Mod1>

MCtrl <Ctrl>

MShift <Shift>

MLink <Ctrl><Shift>

MMove <Shift>

MCopy <Ctrl>

Virtual Button Actual Button Events

BCustom <Btn3>

BTransfer <Btn2>

BExtend <Shift><Btn1>

BMenu <Btn3>

BSelect <Btn1>
Motif Reference Manual 559

Introduction Motif and Xt Widget Classes
ApplicationShellMenuShell

WMShell

Manager

Primitive

OverrideShell

Object

RectObj

WindowObj

ArrowButtonGadgetCore

PanedWindow

Notebook

Frame

DrawingArea

Container

ComboBox

TextField

Text

ScrollBar

List

Label

SeparatorGadget

LabelGadget

IconGadget

Separator

ScrolledWindow

Scale

ArrowButton

SpinBox

BulletinBoard

RowColumn

CascadeButtonGadget

PushButtonGadget

ToggleButtonGadget

ToggleButton

PushButton

DrawnButton

CascadeButton

Gadget

Form

SelectionBox

MessageBox

Command

FileSelectionBox

Shell

Composite

Constraint

DialogShellVendorShell TransientShell

PrintShellTopLevelShell

GrabShell

MainWindow

SimpleSpinBox

Key

Motif

Xt Intrinsics

Figure 1: Class Hierarchy of the Motif widget set

SessionShell
560 Motif Reference Manual

Motif and Xt Widget Classes Introduction
BToggle <Ctrl><Btn1>

Virtual Key Actual Key Events

KActivate <Key>Return
<Ctrl><Key>Return
<Key>osfActivate

KAddMode <Key>osfAddMode

KBackSpace <Key>osfBackSpace

KBackTab <Shift><Key>Tab

KBeginData <Ctrl><Key>osfBeginLine

KBeginLine <Key>osfBeginLine

KCancel <Key>osfCancel

KClear <Key>osfClear

KCopy <Key>osfCopy
<Ctrl><Key>osfInsert

KCut <Key>osfCut
<Shift><Key>osfDelete

KDelete <Key>osfDelete

KDeselectAll <Ctrl><Key>backslash

KDown <Key>osfDown

KEndData <Ctrl><Key>osfEndLine

KEndLine <Key>osfEndLine

KEnter <Key>Return

KEscape <Key>Escape

KExtend <Ctrl><Shift><Key>space
<Shift><Key>osfSelect

KHelp[<Key>osfHelp

KInsert <Key>osfInsert

KLeft <Key>osfLeft

KMenu <Key>osfMenu

KMenuBar <Key>osfMenuBar

KNextField <Key>Tab
<Ctrl><Key>Tab

Virtual Button Actual Button Events
Motif Reference Manual 561

Introduction Motif and Xt Widget Classes
KNextMenu <Ctrl><Key>osfDown
<Ctrl><Key>osfRight

KPageDown <Key>osfPageDown

KPageLeft <Ctrl<Key>osfPageUp
<Key>osfPageUp

KPageRight <Ctrl><Key>osfPageDown

KPageUp <Key>osfPageUp

KPaste <Key>osfPaste
<Shift><Key>osfInsert

KPrevField <Shift><Key>Tab
<Ctrl><Key><Shift><Tab>

KPrevMenu <Ctrl><Key>osfUp
<Ctrl><Key>osfLeft

KPrimaryCopy <Ctrl><Key>osfPrimaryPaste
<Mod1><Key>osfCopy
<Mod1><Ctrl><Key>osfInsert

KPrimaryCut <Mod1><Key>osfPrimaryPaste
<Mod1><Key>osfCut
<Mod1><Shift><Key>osfDelete

KPrimaryPaste <Key>osfPrimaryPaste

KQuickCopy <Ctrl><Key>osfQuickPaste

KQuickCut <Mod1><Key>osfQuickPaste

KQuickExtend <Shift><Key>osfQuickPaste

KQuickPaste <key>osfQuickPaste

KReselect <Ctrl><Shift><Key>osfSelect

KRestore <Ctrl><Shift><Key>osfInsert

KRight <Key>osfRight

KSelect <Key>space
<Ctrl><Key>space
<Key>osfSelect

KSelectAll <Ctrl><Key>slash

KSpace <Key>space

KTab <Key>Tab

KUndo <Key>osfUndo
<Mod1><Key>osfBackSpace

Virtual Key Actual Key Events
562 Motif Reference Manual

Motif and Xt Widget Classes Introduction

e

n
 and
tar-
of

e

 with
suc-

name
Keysyms that begin with the letters osf are not defined by the X server. Thes
keysyms are generated at run time by a client, interpreted byXmTrans-
lateKey() , and used by the translation manager when the server sends a
actual key event. An application maintains a mapping between osf keysyms
actual keysyms that is based on information that is retrieved at application s
tup. This information comes from one of the following sources, listed in order
precedence:

• TheXmNdefaultVirtualBindings resource in a resource database. A
sample specification is shown below:

*defaultVirtualBindings:\
osfBackSpace: <Key>BackSpace \n\
osfInsert: <Key>InsertChar \n\
osfDelete: <Key>DeleteChar

• A property on the root window.mwmsets this property on startup. It can also b
set by thexmbindclient in Motif 1.2 or later, or the prior startup of another Motif
application.

• A file named .motifbind, in the user’s home directory. In this file, the previous
specification would be typed as follows:

osfBackSpace: <Key>BackSpace
osfInsert: <Key>InsertChar
osfDelete: <Key>DeleteChar

• A vendor-specific set of bindings located using the filexmbind.alias. If this file
exists in the user’s home directory, it is searched for a pathname associated
the vendor string or the vendor string and vendor release. If the search is un
cessful, Motif continues looking forxmbind.alias in the directory specified by
XMBINDDIR or in /usr/lib/Xm/bindings if the variable is not set. If this file
exists, it is searched for a pathname as before. If either search locates a path
and the file exists, the bindings in that file are used. Anxmbind.aliasfile contains
lines of the following form:

"vendor_string[vendor_release]"bindings_file

• Via fixed fallback defaults.osf keysym strings have the fixed fallback default
bindings listed below:

osfActivate <unbound>

KUp <Key>osfUp

KAny <Key>

Virtual Key Actual Key Events
Motif Reference Manual 563

Introduction Motif and Xt Widget Classes

sec-

which

s in
ich
osfAddMode <Shift> F8
osfBackSpace Backspace
osfBeginLine Home
osfClear Clear
osfCopy <unbound>
osfCut <unbound>
osfDelete Delete
osfDown Down
osfEndLine End
osfCancel <Escape>
osfHelp F1
osfInsert Insert
osfLeft Left
osfMenu F4
osfMenuBar F10
osfPageDown Next
osfPageLeft <unbound>
osfPageRight <unbound>
osfPageUp Prior
osfPaste <unbound>
osfPrimaryPaste <unbound>
osfQuickPaste <unbound>
osfRight Right
osfSelect Select
osfUndo Undo
osfUp Up

Action Routines
This section describes the action routines that are listed in the "Translations"
tion.

Behavior
This section describes the keyboard and mouse events that affect gadgets,
do not have translations or actions.

Additional Behavior
This section describes any additional widget behavior that is not provided by
translations and actions.

See Also
This section refers you to related functions and widget classes. The number
parentheses following each reference refer to the sections of this book in wh
they are found.
564 Motif Reference Manual

Motif and Xt Widget Classes ApplicationShell

e

s
ld
lti-
ts
Name
ApplicationShell widget class – the main shell for an application.

Synopsis

Public Headers:
<Xm/Xm.h>
<X11/Shell.h>

Class Name:
ApplicationShell

Class Hierarchy:
Core→ Composite→ Shell→ WMShell→ VendorShell→ TopLevelShell→
ApplicationShell

Class Pointer:
applicationShellWidgetClass

Instantiation:
widget = XtAppInitialize (...)
or
widget = XtAppCreateShell (app_name, app_class,

applicationShellWidget-
Class,...)

Functions/Macros:
XtAppCreateShell() , XtVaAppCreateShell() , XtIsApplica-
tionShell()

Availability
From X11R6, the ApplicationShell is considered deprecated: you should giv
preference to the SessionShell widget class.

Description
An ApplicationShell is the normal top-level window for an application. It doe
not have a parent and it is at the root of the widget tree. An application shou
have only one ApplicationShell, unless the application is implemented as mu
ple logical applications. Normally, an application will use TopLevelShell widge
for other top-level windows.

An ApplicationShell is returned by the call toXtVaAppInitialize() . It can
also be created explicitly with a call toXtVaAppCreateShell() .
Motif Reference Manual 565

ApplicationShell Motif and Xt Widget Classes

ard

alue
n

pha-
New Resources
ApplicationShell defines the following resources:

XmNargc
Number of arguments inXmNargv.

XmNargv
List of command-line arguments used to start the application. This is the stand
C argv, passed in the call toXtAppInitialize() . It is used to set the
WM_COMMAND property for this window, which is the argument list required
by a session manager to restart the application if necessary. The resource v
can be changed at appropriate points if some specific internal state has bee
reached from which the application can be directly restarted.

Inherited Resources
ApplicationShell inherits the following resources. The resources are listed al
betically, along with the superclass that defines them. The default value ofXmN-
borderWidth is reset to 0 by VendorShell.

Name Class Type Default Access

XmNargc XmCArgc int 0 CSG

XmNargv XmCArgv String * NULL CSG

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNmappedWhenManaged Core

XmNallowShellResize Shell XmNmaxAspectX WMShell

XmNancestorSensitive Core XmNmaxAspectY WMShell

XmNaudibleWarning VendorShell XmNmaxHeight WMShell

XmNbackground Core XmNmaxWIdth WMShell

XmNbackgroundPixmap Core XmNminAspectX WMShell

XmNbaseHeight WMShell XmNminAspectY WMShell

XmNbaseWidth WMShell XmNminHeight WMShell

XmNborderColor Core XmNminWidth WMShell

XmNborderPixmap Core XmNmwmDecorations VendorShell

XmNborderWidth Core XmNmwmFunctions VendorShell

XmNbuttonFontList VendorShell XmNmwmInputMode VendorShell

XmNbuttonRenderTable VendorShell XmNmwmMenu VendorShell

XmNchildren Composite XmNnumChildren Composite

XmNcolormap Core XmNoverrideRedirect Shell
566 Motif Reference Manual

Motif and Xt Widget Classes ApplicationShell

an-
ses

a-
t().
The VendorShell superclass installs a handler which intercepts the window m
ager WM_DELETE_WINDOW message. The handler is inherited by sub-clas
of VendorShell, and has the behavior that if XmNdeleteResponse is XmDE-
STROY, and the widget is an instance of an ApplicationShell, then the applic
tion context associated with the widget is destroyed, followed by a call to exi

See Also
Composite (2), Core (2), SessionShell (2), Shell (2),
TopLevelShell (2), VendorShell (2), WMShell (2).

XmNcreatePopupChildProc Shell XmNpopdownCalback Shell

XmNdefaultFontList VendorShell XmNpopupCallback Shell

XmNdeleteResponse VendorShell XmNpreeditType VendorShell

XmNdepth Core XmNsaveUnder Shell

XmNdestroyCallback Core XmNscreen Core

XmNgeometry Shell XmNsensitive Core

XmNheight Core XmNshellUnitType VendorShell

XmNheightInc WMShell XmNtextFontList VendorShell

XmNiconic TopLevelShell XmNtextRenderTable VendorShell

XmNiconMask WMShell XmNtitle WMShell

XmNiconName TopLevelShell XmNtitleEncoding WMShell

XmNiconNameEncoding TopLevelShell XmNtransient WMShell

XmNiconPixmap WMShell XmNtranslations Core

XmNiconWindow WMShell XmNuseAsyncGeometry VendorShell

XmNinitialResourcesPersistent Core XmNunitType VendorShell

XmNinitialState WMShell XmNvisual Shell

XmNinput WMShell XmNwaitForWm WMShell

XmNinputMethod VendorShell XmNwidth Core

XmNinputPolicy VendorShell XmNwidthInc WMShell

XmNinsertPosition Composite XmNwindowGroup WMShell

XmNkeyboardFocusPolicy VendorShell XmNwinGravity WMShell

XmNlabelFontList VendorShell XmNwmTimeout WMShell

XmNlabelRenderTable VendorShell XmNx Core

XmNlayoutDirection VendorShell XmNy Core

Resource Inherited From Resource Inherited From
Motif Reference Manual 567

Composite Motif and Xt Widget Classes

arbi-
at-
also
om-

e the

s a
Name
Composite widget class – the fundamental widget that can have children.

Synopsis

Public Headers:
<Xm/Xm.h>
<X11/Composite.h>

Class Name:
Composite

Class Hierarchy:
Core→ Composite

Class Pointer:
compositeWidgetClass

Instantiation:
Composite is an Intrinsics meta-class and is not normally instantiated.

Functions/Macros:
XtIsComposite()

Description
Composite widgets contain other widgets. A Composite widget supports an
trary number of children, although derived classes may impose a limit for wh
ever reason. Composite handles the geometry management of its children. It
manages the destruction of descendants when it is destroyed. Children of a C
posite widget are ordered, and Composite provides the means to sort or plac
list of children in some logical order.

New Resources
Composite defines the following resources:

XmNchildren
List of widget’s children.

XmNinsertPosition
Points to anXtOrderProc() function that is called to determine the position
at which each child is inserted into the XmNchildren array. Composite supplie
default function that appends children in the order of creation.

Name Class Type Default Access

XmNchildren XmCReadOnly WidgetList NULL G

XmNinsertPosition XmCInsertPosition XtOrderProc NULL CSG

XmNnumChildren XmCReadOnly Cardinal 0 G
568 Motif Reference Manual

Motif and Xt Widget Classes Composite

e
as

ns
.
e

ram-
an-

eti-
XmNnumChildren
Length of the list in XmNchildren.

Procedures
XtOrderProc

An XtOrderProc is a pointer to a function, specified as follows:

typedef Cardinal (*XtOrderProc) (Widget);

An XtOrderProc function is called by the insert_child method of a Composit
or derived class, when a new child is created within the widget. The function h
a single parameter, which is the widget ID of the new child. The function retur
the number of children that go before the new child in the XmNchildren array
Composite supplies a default function that simply appends new children in th
order of creation. Sub-classes may supply alternative default behavior. Prog
mers may supply their own XtOrderProc to sort children in some specified m
ner.

Inherited Resources
Composite inherits the following resources. The resources are listed alphab
cally, along with the superclass that defines them.

See Also
Core (2).

Name Inherited From Name Inherited From

XmNaccelerators Core XmNheight Core

XmNancestorSensitive Core XmNinitialResourcesPersistent Core

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNscreen Core

XmNborderColor Core XmNsensitive Core

XmNborderPixmap Core XmNtranslations Core

XmNborderWidth Core XmNwidth Core

XmNcolormap Core XmNx Core

XmNdepth Core XmNy Core

XmNdestroyCallback Core
Motif Reference Manual 569

Constraint Motif and Xt Widget Classes

chil-

their
an be
py,

d.
il-
ight

ti-
Name
Constraint widget class – a widget that provides constraint resources for its
dren.

Synopsis

Public Headers:
<Xm/Xm.h>
<X11/Constraint.h>

Class Name:
Constraint

Class Hierarchy:
Core→ Composite→ Constraint

Class Pointer:
constraintWidgetClass

Instantiation:
Constraint is an Intrinsics meta-class and is not normally instantiated.

Functions/Macros:
XtIsConstraint()

Description
Constraint widgets are so named because they may manage the geometry of
children based on constraints associated with each child. These constraints c
as simple as the maximum width and height the parent allows the child to occu
or as complicated as how other children change if a child is moved or resize
Constraint widgets let a parent define resources that are supplied for their ch
dren. For example, if a Constraint parent defines the maximum width and he
for its children, these resources are retrieved for each child as if they are
resources that are defined by the child widget itself.

New Resources
Constraint does not define any new resources.

Inherited Resources
Constraint inherits the following resources. The resources are listed alphabe
cally, along with the superclass that defines them.

Name Inherited From Name Inherited From

XmNaccelerators Core XmNheight Core

XmNancestorSensitive Core XmNinsertPosition Composite

XmNbackground Core XmNinitialResourcesPersistent Core
570 Motif Reference Manual

Motif and Xt Widget Classes Constraint
See Also
Composite (2), Core (2).

XmNbackgroundPixmap Core XmNmappedWhenManaged Core

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNscreen Core

XmNborderWidth Core XmNsensitive Core

XmNchildren Composite XmNtranslations Core

XmNcolormap Core XmNwidth Core

XmNdepth Core XmNx Core

XmNdestroyCallback Core XmNy Core

Name Inherited From Name Inherited From
Motif Reference Manual 571

Core Motif and Xt Widget Classes

s
in-

area.

 the

Nam cess

Xm CSG

Xm G

Xm CSG

Xm CSG

Xm CSG

Xm CSG

Xm SG

Xm SG
Name
Core widget class – the fundamental class for windowed widgets.

Synopsis

Public Header:
<Xm/Xm.h>
<X11/Core.h>

Class Name:
Core

Class Hierarchy:
Object→ RectObj→ unnamed→ Core

Class Pointer:
widgetClass or coreWidgetClass

Instantiation:
Core is an Intrinsics meta-class and is not normally instantiated.

Functions/Macros:
XtIsWidget ()

Description
Core is the fundamental class for windowed widgets. All widgets with window
are subclasses of Core. The Object and RectObj classes support gadgets (w
dowless widgets). Core is sometimes instantiated for use as a basic drawing

New Resources
Core defines the following resources (some of which are actually defined by
Object and RectObj classes)

e Class Type Default Ac

Naccelerators XmCAccelerators XtAccelerators dynamic

NancestorSensitive XmCSensitive Boolean dynamic

Nbackground XmCBackground Pixel dynamic

NbackgroundPixmap XmCPixmap Pixmap XmUNSPECIFIED_PIXMAP

NborderColor XmCBorderColor Pixel XtDefaultForeground

NborderPixmap XmCPixmap Pixmap XmUNSPECIFIED_PIXMAP

NborderWidth XmCBorderWidth Dimension 1 C

Ncolormap XmCColormap Colormap dynamic C
572 Motif Reference Manual

Motif and Xt Widget Classes Core

an

e is

idg-

Xm SG

Xm

Xm SG

Xm C

Xm CSG

Xm CG

Xm SG

Xm CSG

Xm SG

Xm SG

Xm SG

Nam cess
XmNaccelerators
A translation table bound with its actions for a widget. A destination widget c
be set up to use this accelerator table.

XmNancestorSensitive
Tells whether a widget’s immediate parent should receive input. Default valu
True if the widget is a top-level shell, copied from the XmNancestorSensitive
resource of its parent if the widget is a popup shell, or the bitwise AND of the
XmNsensitive and XmNancestorSensitive resources of the parent for other w
ets.

XmNbackground
Widget’s background color.

XmNbackgroundPixmap
Pixmap with which to tile the background, beginning at the upper-left corner.

XmNborderColor
Pixel value that defines the color of the border.

XmNborderPixmap
Pixmap with which to tile the border, beginning at the upper-left corner of the
border.

XmNborderWidth
Width (in pixels) of the window’s border.

Ndepth XmCDepth int dynamic C

NdestroyCallback XmCCallback XtCallbackList NULL C

Nheight XmCHeight Dimension dynamic C

NinitialResourcesPersistent XmCInitialResourcesPersistent Boolean True

NmappedWhenManaged XmCMappedWhenManaged Boolean True

Nscreen XmCScreen Screen * dynamic

Nsensitive XmCSensitive Boolean True C

Ntranslations XmCTranslations XtTranslations dynamic

Nwidth XmCWidth Dimension dynamic C

Nx XmCPosition Position 0 C

Ny XmCPosition Position 0 C

e Class Type Default Ac
Motif Reference Manual 573

Core Motif and Xt Widget Classes

 are
ells

en

and
lse if

h

d

n’s

t has
-

left
XmNcolormap
Colormap used in converting to pixel values. Previously created pixel values
unaffected. The default value is the screen’s default colormap for top-level sh
or is copied from the parent for other widgets.

XmNdepth
Number of bits allowed for each pixel. The Xt Intrinsics set this resource wh
the widget is created. As with the XmNcolormap resource, the default value
comes from the screen’s default or is copied from the parent.

XmNdestroyCallback
List of callbacks invoked when the widget is destroyed.

XmNheight
Window height (in pixels), excluding the border.

XmNinitialResourcesPersistent
Tells whether resources should be reference counted. If True (default), it is
assumed that the widget won’t be destroyed while the application is running,
thus the widget’s resources are not reference counted. Set this resource to Fa
your application might destroy the widget and will need to deallocate the
resources.

XmNmappedWhenManaged
If True (default), the widget becomes visible (is mapped) as soon as it is bot
realized and managed. If False, the application performs the mapping and
unmapping of the widget. If changed to False after the widget is realized an
managed, the widget is unmapped.

XmNscreen
Screen location of the widget. The default value comes either from the scree
default or is copied from the parent.

XmNsensitive
Tells whether a widget is sensitive to input. TheXtSetSensitive () routine
can be used to change a widget’s sensitivity and to guarantee that if a paren
its XmNsensitive resource set to False, then its children will have their ances
tor-sensitive flag set correctly.

XmNtranslations
Points to a translation table; must be compiled withXtParseTransla-
tionTable ().

XmNwidth
Window width (in pixels), excluding the border.

XmNx
The x-coordinate of the widget’s upper-left outer corner, relative to the upper-
inner corner of its parent.
574 Motif Reference Manual

Motif and Xt Widget Classes Core

left

XmNy

The y-coordinate of the widget’s upper-left outer corner, relative to the upper-
inner corner of its parent.

See Also
Object (2), RectObj (2).
Motif Reference Manual 575

Object Motif and Xt Widget Classes

ets
s for
Name
Object widget class – fundamental object class.

Synopsis

Public Headers:
<Xm/Xm.h>
<X11/Object.h>

Class Name:
Object

Class Hierarchy:
Object

Class Pointer:
objectClass

Instantiation:
Object is an Intrinsics meta-class and is not normally instantiated.

Functions/Macros:
XtIsObject ()

Description
Object is the root of the class hierarchy; it does not have a superclass. All widg
and gadgets are subclasses of Object. Object encapsulates the mechanism
resource management and is never instantiated.

New Resources
Object defines the following resources:

XmNdestroyCallback
List of callbacks invoked when the Object is destroyed.

See Also
Core (2).

Name Class Type Default Access

XmNdestroyCallback XmCCallback XtCallbackList NULL C
576 Motif Reference Manual

Motif and Xt Widget Classes OverrideShell

ent.

in-
pass

abet-
fault
Name
OverrideShell widget class – a popup shell that bypasses window managem

Synopsis

Public Header:
<X11/Shell.h>

Class Name:
OverrideShell

Class Hierarchy:
Core→ Composite→ Shell→ OverrideShell

Class Pointer:
overrideShellWidgetClass

Instantiation:
widget =XtCreatePopupShell (name, overrideShellWidgetClass,...)

Functions/Macros:
XtIsOverrideShell ()

Description
OverrideShell is a direct subclass of Shell that performs no interaction with w
dow managers. It is used for widgets, such as popup menus, that should by
the window manager.

New Resources
OverrideShell does not define any new resources.

Inherited Resources
OverrideShell inherits the following resources. The resources are listed alph
ically, along with the superclass that defines them. OverrideShell sets the de
values of both XmNoverrideRedirect and XmNsaveUnder to True.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinitialResourcesPersistent Core

XmNallowShellResize Shell XmNinsertPosition Composite

XmNancestorSensitive Core XmNmappedWhenManaged Core

XmNaudibleWarning VendorShell XmNnumChildren Composite

XmNbackground Core XmNoverrideRedirect Shell

XmNbackgroundPixmap Core XmNpopdownCalback Shell

XmNborderColor Core XmNpopupCallback Shell

XmNborderPixmap Core XmNsaveUnder Shell

XmNborderWidth Core XmNscreen Core
Motif Reference Manual 577

OverrideShell Motif and Xt Widget Classes
See Also
Composite (2), Core (2), Shell (2).

XmNchildren Composite XmNsensitive Core

XmNcolormap Core XmNtranslations Core

XmNcreatePopupChildProc Shell XmNvisual Shell

XmNdepth Core XmNwidth Core

XmNdestroyCallback Core XmNx Core

XmNgeometry Shell XmNy Core

XmNheight Core

Resource Inherited From Resource Inherited From
578 Motif Reference Manual

Motif and Xt Widget Classes RectObj

X
t
it
Name
RectObj widget class – fundamental object class with geometry.

Synopsis

Public Header:
<Xm/Xm.h>
<X11/RectObj.h>

Class Name:
RectObj

Class Hierarchy:
Object→ RectObj

Class Pointer:
rectObjClass

Instantiation:
RectObj is an Intrinsics meta-class and is not normally instantiated.

Functions/Macros:
XtIsRectObj ()

Description
RectObj is a supporting superclass for widgets and gadgets, defined by the
toolkit intrinsics. All of the Motif widgets are ultimately derived from RectObj. I
does not have a window, but it does have a height, width, and location, and
encapsulates the mechanisms for geometry management.

New Resources
RectObj defines the following resources:

Name Class Type Default Access

XmNancestorSensitive XmCSensitive Boolean dynamic G

XmNborderWidth XmCBorderWidth Dimension 1 CSG

XmNheight XmCHeight Dimension dynamic CSG

XmNsensitive XmCSensitive Boolean True CSG

XmNwidth XmCWidth Dimension dynamic CSG

XmNx XmCPosition Position 0 CSG

XmNy XmCPosition Position 0 CSG
Motif Reference Manual 579

RectObj Motif and Xt Widget Classes

e is
of

tine
t has
-

left

y
ide
XmNancestorSensitive
Tells whether a gadget’s immediate parent should receive input. Default valu
the bitwise AND of the XmNsensitive and XmNancestorSensitive resources
the parent.

XmNborderWidth
Width (in pixels) of the window’s border.

XmNheight
Window height (in pixels), excluding the border.

XmNsensitive
Tells whether a widget receives input (is sensitive). The XtSetSensitive() rou
can be used to change a widget’s sensitivity and to guarantee that if a paren
its XmNsensitive resource set to False, then its children will have their ances
tor-sensitive flag set correctly.

XmNwidth
Window width (in pixels), excluding the border.

XmNx
The x-coordinate of the widget’s upper-left outer corner, relative to the upper-
inner corner of its parent.

XmNy
The y-coordinate of the widget’s upper-left outer corner (that is, outside of an
border or shadow rectangle), relative to its parents upper-left inner corner (ins
all border or shadow rectangles).

Inherited Resources
RectObj inherits the following resource:

See Also
Object (2).

Resource Inherited From

XmNdestroyCallback Core
580 Motif Reference Manual

Motif and Xt Widget Classes SessionShell

ave
ical
r

top

h a
Name
SessionShell widget class – the main shell for an application.

Synopsis

Public Headers:
<Xm/Xm.h>
<X11/Shell.h>

Class Name:
SessionShell

Class Hierarchy:
Core→ Composite→ Shell→ WMShell→ VendorShell→ TopLevelShell→
ApplicationShell → SessionShell

Class Pointer:
sessionShellWidgetClass

Instantiation:
widget = XtAppInitialize (...)
or
widget = XtAppCreateShell (app_name, app_class,

sessionShellWidget-
Class,...)

Functions/Macros:
XtAppCreateShell() , XtVaAppCreateShell() , XtIsSession-
Shell()

Availability
The Session shell is only available from X11R6.

Description
A SessionShell is the normal top-level window for an application. It does not
have a parent and it is at the root of the widget tree. An application should h
only one SessionShell, unless the application is implemented as multiple log
applications. Normally, an application will use TopLevelShell widgets for othe
top-level windows.

The SessionShell differs from the ApplicationShell in that it interfaces to the
X11R6 Session Management facilities, which enable applications to save or
restart themselves in a known state in response to commands from the desk

A SessionShell is returned by the call toXtVaAppInitialize() . It can also
be created explicitly with a call toXtVaAppCreateShell() .

Interaction with the user during session management is implemented throug
token-passing mechanism. ACheckpoint token is passed between the Session
Motif Reference Manual 581

SessionShell Motif and Xt Widget Classes

the
ould
lica-
a
list.
ion,

c-

ved

an-
Manager and the Session Shell callbacks; the application may interact with
user directly (usually to ask the user if unsaved changes to the application sh
be saved) only if the SessionShell of the application holds the token. The app
tion may only interact with the user after issuing a request to do so. Issuing
request takes the form of registering a procedure on the XtNinteractCallback
If and when the Session Manager decides that it is time to allow user interact
the interact procedures are invoked, with thecheckpoint token passed to the
application throughcall_data for the procedures so registered. After the intera
tion with the user is complete, the application returns thecheckpoint by calling
XtSessionReturnToken (). Unusually, callbacks on the XtNinteractCall-
back list are invoked one at a time; after the first procedure is called, it is remo
from the list.

New Resources
SessionShell defines the following resources:

XtNcancelCallback
List of callbacks to be invoked when the SessionShell receives a ShutdownC
celled message from the Session Manager.

Name Class Type Default Access

XtNcancelCallback XtCCallback XtCallbackList NULL C

XtNcloneCommand XtCCloneCommand String * dynamic CSG

XtNconnection XtCConnection SmcConn NULL CSG

XtNcurrentDirectory XtCCurrentDirectory String NULL CSG

XtNdieCallback XtCCallback XtCallbackList NULL C

XtNdiscardCommand XtCDiscardCommand String * NULL CSG

XtNenvironment XtCEnvironment String * NULL CSG

XtNerrorCallback XtCCallback XtCallbackList NULL C

XtNinteractCallback XtCCallback XtCallbackList NULL C

XtNjoinSession XtCJoinSession Boolean True CSG

XtNprogramPath XtCProgramPath String dynamic CSG

XtNresignCommand XtCResignCommand String * NULL CSG

XtNrestartCommand XtCRestartCommand String * dynamic CSG

XtNrestartStyle XtCRestartStyle unsigned char SmRestartIfRunning CSG

XtNsaveCallback XtCCallback XtCallbackList NULL C

XtNsaveCompleteCallback XtCCallback XtCallbackList NULL C

XtNsessionID XtCSessionID String NULL CSG

XtNshutdownCommand XtCShutdownCommand String * NULL CSG
582 Motif Reference Manual

Motif and Xt Widget Classes SessionShell

ce of
 of

er.

stab-

ange

the
to

r-
ger
m-

r
 con-

er
to

 a
ch
ssion

er-
XtNcloneCommand
Specifies a command which the Session Manager uses to create a new instan
the application. If the value is NULL, the Session Manager will use the value
the XtNrestartCommand resource.

XtNconnection
Specifies the connection between the SessionShell and the Session Manag
Normally the SessionShell instantiates this value when the shell is created,
although the programmer can specify a value if the application has already e
lished a private connection.

XtNcurrentDirectory
Specifies a location in the file system where the Session Manager should arr
to restart the application when required to do so.

XtNdieCallback
List of callbacks invoked when the application receives a Die message from
Session Manager. The application should take whatever steps are required
cleanly terminate.

XtNdiscardCommand
Specifies a command which, if invoked, will cause the host to discard all info
mation pertaining to the current application state. If NULL, the Session Mana
assumes that the application state is fully recoverable from the XtNrestartCo
mand specification.

XtNenvironment
Specifies the environment variables (and values) which the Session Manage
should set up prior to restarting the application. The resource is assumed to
sist of a list of “name=value” strings.

XtNerrorCallback
List of callbacks to be invoked if the connection between the Session Manag
and the SessionShell becomes irrevocably lost. The XtNconnection is reset
NULL by the SessionShell in these circumstances.

XtNinteractCallback
List of callbacks invoked when a client wants to interact with the user before
session shutdown. This callback list is implemented in a special manner: ea
time the Session Manager is issued a request to interact with the user, the Se
Manager callsand then removes the top callback from the list. Furthermore, the
request to interact with the user during Session Management operations is p
formedsimply by registering a callback on this list. If there is more than one call-
back on the list, subsequent
callbacks below the top are not called until the application callsXtSession-
ReturnToken (), returning the checkpoint token to the Session Manager.
Motif Reference Manual 583

SessionShell Motif and Xt Widget Classes

ion
he

nt
.

e

e
ce

like

if it

i-

If it
n.

ion

self
ng the

a
ra-
XtNjoinSession
Specifies whether the SessionShell should automatically initialize a connect
to the Session Manager. Setting the resource True at any time will initialize t
connection; subsequently setting it False will resign from the session.

XtNprogramPath
The full path of the program which is running. If NULL, the session manageme
uses the first element of the XtNrestartCommand array as the program path

XtNresignCommand
Specifies a command which logically undoes the client: saved state should b
removed.

XtNrestartCommand
Specifies a command which should cause an instance of the application to b
invoked, such that it restarts in its current state. If NULL, the XmNargv resour
is used as fallback.

XtNrestartStyle
Specifies a hint to the session manager, indicating how the application would
to be restarted. Possible values are:

SmRestartIfRunning
SmRestartAnyway
SmRestartImmediately
SmRestartNever

SmRestartIfRunning is the default, and specifies that the client should restart
was running at the end of the current session.

SmRestartAnyway specifies that the client should be restarted even if it term
nated before the end of the current session.

SmRestartImmediately specifies that the client is meant to run continuously.
exits at any time, the session manager should restart it in the current sessio

SmRestartNever specifies that the client should not be restarted under sess
management control.

XtNsaveCallback
Specifies a list of callbacks to be invoked when the client receives a SaveYour
message from the session manager. The procedures are responsible for savi
application state.

XtNsaveCompleteCallback
Specifies a list of callbacks to be invoked when the session manager sends
SaveComplete message to the client. Clients can continue their normal ope
tions thereafter.
584 Motif Reference Manual

Motif and Xt Widget Classes SessionShell

gned
ny

e

sed

Er-

ed

te

lled
XtNsessionID
This resource identifies the client to the session manager. This is either assi
by the session manager when connection is established, or deduced from a
-xtsessionID command line argument to the application.

XtNshutdownCommand
Specifies a command which the session manager will invoke at shutdown; th
command should clean up after the client, but not remove any saved state.

Callback Structure
Callbacks on the XtNsaveCallback and XtNinteractCallback lists are each pas
the following structure as call_data when invoked:

typedef struct _XtCheckpointTokenRec {
int save_type;
int interact_style;
Boolean shutdown;
Boolean fast;
Boolean cancel_shutdown;
int phase;
int interact_dialog_type;
Boolean request_cancel;
Boolean request_next_phase;
Boolean save_success;
int type;
Widget widget;

} XtCheckpointTokenRec, *XtCheckpointToken;

Thesave_type element indicates the type of information which the application
should attempt to save. Possible values are: SmSaveLocal, SmSaveGlobal,
SmSaveBoth.

The interact_style element indicates the kind of user interaction which is cur-
rently permitted. Possible values are: SmInteractStyleNone, SmInteractStyle
rors, SmInteractStyleAny.

Theshutdown element indicates whether the save interaction is being perform
prior to a session shutdown.

If fast is True, the client should endeavour to save the minimum recovery sta
possible.

If cancel_shutdown is True, the Session Manager has sent a ShutdownCance
message to the client.
Motif Reference Manual 585

SessionShell Motif and Xt Widget Classes

an-
r and

e

t
era-

he

er
s that

e

beti-
Thephase element is for specialized manager clients use only (the window m
ager), and indicates the state of the interaction between the Session Manage
the client. The value will be either 1 or 2.

The remaining fields are where the client communicates back to the Session
Manager.

Theinteract_dialog_typeelement specifies the kind of interaction required by th
client. The initial value is SmDialogNormal, which is for a normal interactive
dialog. The value of SmDialogError requests an error dialog interaction.

Therequest_cancel element is only used by XtNinteractCallbacks, and is a hin
to the session manager that the client requests that the current shutdown op
tion should be cancelled.

Therequest_next_phase element is used by the specialized manager clients: t
default value is False, but can be set True by these clients.

Thesave_success element is where the client indicates to the Session Manag
the status of the application save-state operations. The value False indicate
the client could not save its state successfully.

Thetype andwidget fields are internal to the implementation, and are not to b
used by application programmers.

Inherited Resources
SessionShell inherits the following resources. The resources are listed alpha
cally, along with the superclass that defines them. The default value ofXmNbor-
derWidth is reset to 0 by VendorShell.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNlabelRenderTable VendorShell

XmNallowShellResize Shell XmNlayoutDirection VendorShell

XmNancestorSensitive Core XmNmappedWhenManaged Core

XmNargc ApplicationShell XmNmaxAspectX WMShell

XmNargv ApplicationShell XmNmaxAspectY WMShell

XmNaudibleWarning VendorShell XmNmaxHeight WMShell

XmNbackground Core XmNmaxWIdth WMShell

XmNbackgroundPixmap Core XmNminAspectX WMShell

XmNbaseHeight WMShell XmNminAspectY WMShell

XmNbaseWidth WMShell XmNminHeight WMShell

XmNborderColor Core XmNminWidth WMShell

XmNborderPixmap Core XmNmwmDecorations VendorShell
586 Motif Reference Manual

Motif and Xt Widget Classes SessionShell

an-
ses

a-
t().
The VendorShell superclass installs a handler which intercepts the window m
ager WM_DELETE_WINDOW message. The handler is inherited by sub-clas
of VendorShell, and has the behavior that if XmNdeleteResponse is XmDE-
STROY, and the widget is an instance of an ApplicationShell, then the applic
tion context associated with the widget is destroyed, followed by a call to exi

XmNborderWidth Core XmNmwmFunctions VendorShell

XmNbuttonFontList VendorShell XmNmwmInputMode VendorShell

XmNbuttonRenderTable VendorShell XmNmwmMenu VendorShell

XmNchildren Composite XmNnumChildren Composite

XmNcolormap Core XmNoverrideRedirect Shell

XmNcreatePopupChildProc Shell XmNpopdownCalback Shell

XmNdefaultFontList VendorShell XmNpopupCallback Shell

XmNdeleteResponse VendorShell XmNpreeditType VendorShell

XmNdepth Core XmNsaveUnder Shell

XmNdestroyCallback Core XmNscreen Core

XmNgeometry Shell XmNsensitive Core

XmNheight Core XmNshellUnitType VendorShell

XmNheightInc WMShell XmNtextFontList VendorShell

XmNiconic TopLevelShell XmNtextRenderTable VendorShell

XmNiconMask WMShell XmNtitle WMShell

XmNiconName TopLevelShell XmNtitleEncoding WMShell

XmNiconNameEncoding TopLevelShell XmNtransient WMShell

XmNiconPixmap WMShell XmNtranslations Core

XmNiconWindow WMShell XmNvisual Shell

XmNinitialResourcesPersistent Core XmNwaitForWm WMShell

XmNinitialState WMShell XmNwidth Core

XmNinput WMShell XmNwidthInc WMShell

XmNinputMethod VendorShell XmNwindowGroup WMShell

XmNinputPolicy VendorShell XmNwinGravity WMShell

XmNinsertPosition Composite XmNwmTimeout WMShell

XmNkeyboardFocusPolicy VendorShell XmNx Core

XmNlabelFontList VendorShell XmNy Core

Resource Inherited From Resource Inherited From
Motif Reference Manual 587

SessionShell Motif and Xt Widget Classes
See Also
ApplicationShell(2), Composite (2), Core (2), Shell (2),
TopLevelShell (2), VendorShell (2), WMShell (2).
588 Motif Reference Manual

Motif and Xt Widget Classes Shell

en

w

n

Name
Shell widget class – fundamental widget class that controls interaction betwe
top-level windows and the window manager.

Synopsis

Public Header:
<Xm/Xm.h>
<X11/Shell.h>

Class Name:
Shell

Class Hierarchy:
Core→ Composite→ Shell

Class Pointer:
shellWidgetClass

Instantiation:
Shell is an Intrinsics meta-class and is not normally instantiated.

Functions/Macros:
XtIsShell ()

Description
Shell is a subclass of Composite that handles interaction between the windo
manager and its single child.

New Resources
Shell defines the following resources:

XmNallowShellResize
If False (default), the Shell widget refuses geometry requests from its childre
(by returning XtGeometryNo).

Name Class Type Default Access

XmNallowShellResize XmCAllowShellResize Boolean False CSG

XmNcreatePopupChildProc XmCCreatePopupChildProc XtCreatePopupChildProc NULL CSG

XmNgeometry XmCGeometry String NULL CSG

XmNoverrideRedirect XmCOverrideRedirect Boolean False CSG

XmNpopdownCallback XmCCallback XtCallbackList NULL C

XmNpopupCallback XmCCallback XtCallbackList NULL C

XmNsaveUnder XmCSaveUnder Boolean False CSG

XmNvisual XmCVisual Visual * CopyFromParent CSG
Motif Reference Manual 589

Shell Motif and Xt Widget Classes

ted.
u
 the

th,

ard
n’t

iding

:

s is
XmNcreatePopupChildProc
A pointer to an XtCreatePopupChildProc procedure that creates a child
widget--but only when the shell is popped up, not when the application is star
This is useful in menus, for example, since you don’t need to create the men
until it is popped up. This procedure is called after any callbacks specified in
XmNpopupCallback resource.

XmNgeometry
This resource specifies the values for the resources XmNx, XmNy, XmNwid
and
 XmNheight in situations where an unrealized widget has added or removed
some of its managed children.

XmNoverrideRedirect
If True, the widget is considered a temporary window that redirects the keybo
focus away from the main application windows. Usually this resource should
be changed.

XmNpopdownCallback
List of callbacks that are called when the widget is popped down usingXtPop-
down().

XmNpopupCallback
List of callbacks that are called when the widget is popped up usingXtPopup ().

XmNsaveUnder
If True, screen contents that are obscured by a widget are saved, thereby avo
the overhead of sending expose events after the widget is unmapped.

XmNvisual
The visual server resource that is used when creating the widget.

Procedures

XtCreatePopupChildProc
An XtCreatePopupChildProc is a pointer to a procedure, specified as follows

typedef void (*XtCreatePopupChildProc) (Widget);

An XtCreatePopupChildProc procedure is called when a Shell or derived clas
popped up, typically through a call toXtPopup (). The function has a single
parameter, which is the widget ID of the shell.
590 Motif Reference Manual

Motif and Xt Widget Classes Shell

y,

Inherited Resources

Shell inherits the following resources. The resources are listed alphabeticall
along with the superclass that defines them.

See Also
Composite (2), Core (2).

Name Inherited From Name Inherited From

XmNaccelerators Core XmNheight Core

XmNancestorSensitive Core XmNinsertPosition Composite

XmNbackground Core XmNinitialResourcesPersistent Core

XmNbackgroundPixmap Core XmNmappedWhenManaged Core

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNscreen Core

XmNborderWidth Core XmNsensitive Core

XmNchildren Composite XmNtranslations Core

XmNcolormap Core XmNwidth Core

XmNdepth Core XmNx Core

XmNdestroyCallback Core XmNy Core
Motif Reference Manual 591

TopLevelShell Motif and Xt Widget Classes

in

Ni-
Name
TopLevelShell widget class – additional top-level shells for an application.

Synopsis

Public Header:
<Xm/Xm.h>
<X11/Shell.h>

Class Name:
TopLevelShell

Class Hierarchy:
Core→ Composite→ Shell→ WMShell→ VendorShell→ TopLevelShell

Class Pointer:
topLevelShellWidgetClass

Instantiation:
widget =XtCreatePopupShell (name, topLevelShellWidgetClass,...)

Functions/Macros:
XtIsTopLevelShell ()

Description
TopLevelShell is a subclass of VendorShell that is used for additional shells
applications having more than one top-level window.

New Resources
TopLevelShell defines the following resources:

XmNiconic
If True, the widget is realized as an icon, otherwise as a normal window. Xm
conic overrides the value of the inherited XmNinitialState resource.

XmNiconName
The abbreviated name that labels an iconified application.

XmNiconNameEncoding
The property type for encoding the XmNiconName resource.

Name Class Type Default Access

XmNiconic XmCIconic Boolean False CSG

XmNiconName XmCIconName String NULL CSG

XmNiconNameEncoding XmCIconNameEncoding Atom dynamic CSG
592 Motif Reference Manual

Motif and Xt Widget Classes TopLevelShell

a-

Inherited Resources

TopLevelShell inherits the following resources. The resources are listed alph
betically, along with the superclass that defines them. TopLevelShell resets
XmNinput to True.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNmaxAspectX WMShell

XmNallowShellResize Shell XmNmaxAspectY WMShell

XmNancestorSensitive Core XmNmaxHeight WMShell

XmNaudibleWarning VendorShell XmNmaxWIdth WMShell

XmNbackground Core XmNminAspectX WMShell

XmNbackgroundPixmap Core XmNminAspectY WMShell

XmNbaseHeight WMShell XmNminHeight WMShell

XmNbaseWidth WMShell XmNminWidth WMShell

XmNborderColor Core XmNmwmDecorations VendorShell

XmNborderPixmap Core XmNmwmFunctions VendorShell

XmNborderWidth Core XmNmwmInputMode VendorShell

XmNbuttonFontList VendorShell XmNmwmMenu VendorShell

XmNbuttonRenderTable VendorShell XmNnumChildren Composite

XmNchildren Composite XmNoverrideRedirect Shell

XmNcolormap Core XmNpopdownCalback Shell

XmNcreatePopupChildProc Shell XmNpopupCallback Shell

XmNdefaultFontList VendorShell XmNpreeditType VendorShell

XmNdeleteResponse VendorShell XmNsaveUnder Shell

XmNdepth Core XmNscreen Core

XmNdestroyCallback Core XmNsensitive Core

XmNgeometry Shell XmNshellUnitType VendorShell

XmNheight Core XmNtextFontList VendorShell

XmNheightInc WMShell XmNtextRenderTable VendorShell

XmNiconMask WMShell XmNtitle WMShell

XmNiconPixmap WMShell XmNtitleEncoding WMShell

XmNiconWindow WMShell XmNtransient WMShell

XmNinitialResourcesPersistent Core XmNtranslations Core

XmNinitialState WMShell XmNvisual Shell

XmNinput WMShell XmNwaitForWm WMShell

XmNinputMethod VendorShell XmNwidth Core
Motif Reference Manual 593

TopLevelShell Motif and Xt Widget Classes
See Also
Composite (2), Core (2). Shell (2), VendorShell (2), WMShell (2).

XmNinputPolicy VendorShell XmNwidthInc WMShell

XmNinsertPosition Composite XmNwindowGroup WMShell

XmNkeyboardFocusPolicy VendorShell XmNwinGravity WMShell

XmNlabelFontList VendorShell XmNwmTimeout WMShell

XmNlabelRenderTable VendorShell XmNx Core

XmNlayoutDirection VendorShell XmNy Core

XmNmappedWhenManaged Core

Resource Inherited From Resource Inherited From
594 Motif Reference Manual

Motif and Xt Widget Classes TransientShell

-

ets,
an-

d

the
Name
TransientShell widget class – popup shell that interacts with the window man
ager.

Synopsis

Public Header:
<Xm/Xm.h>
<X11/Shell.h>

Class Name:
TransientShell

Class Hierarchy:
Core→ Composite→ Shell→ WMShell→ VendorShell→ TransientShell

Class Pointer:
transientShellWidgetClass

Instantiation:

Functions/Macros:
XtIsTransientShell ()

Description
TransientShell is a subclass of VendorShell that is used for popup shell widg
such as dialog boxes, that interact with the window manager. Most window m
agers will not allow the user to iconify a TransientShell window on its own an
may iconify it automatically if the window that it is transient for is iconified.

New Resources
TransientShell defines the following resources:

XmNtransientFor
The widget from which the TransientShell will pop up. If the value of this
resource is NULL or identifies an unrealized widget, then TransientShell uses
value of the WMShell resource XmNwindowGroup.

Name Class Type Default Access

XmNtransientFor XmCTransientFor Widget NULL CSG
Motif Reference Manual 595

TransientShell Motif and Xt Widget Classes

abet-

Inherited Resources

TransientShell inherits the following resources. The resources are listed alph
ically, along with the superclass that defines them. TransientShell resets the
resources XmNinput, XmNtransient, and XmNsaveUnder to True.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNmaxAspectX WMShell

XmNallowShellResize Shell XmNmaxAspectY WMShell

XmNancestorSensitive Core XmNmaxHeight WMShell

XmNaudibleWarning VendorShell XmNmaxWIdth WMShell

XmNbackground Core XmNminAspectX WMShell

XmNbackgroundPixmap Core XmNminAspectY WMShell

XmNbaseHeight WMShell XmNminHeight WMShell

XmNbaseWidth WMShell XmNminWidth WMShell

XmNborderColor Core XmNmwmDecorations VendorShell

XmNborderPixmap Core XmNmwmFunctions VendorShell

XmNborderWidth Core XmNmwmInputMode VendorShell

XmNbuttonFontList VendorShell XmNmwmMenu VendorShell

XmNbuttonRenderTable VendorShell XmNnumChildren Composite

XmNchildren Composite XmNoverrideRedirect Shell

XmNcolormap Core XmNpopdownCalback Shell

XmNcreatePopupChildProc Shell XmNpopupCallback Shell

XmNdefaultFontList VendorShell XmNpreeditType VendorShell

XmNdeleteResponse VendorShell XmNsaveUnder Shell

XmNdepth Core XmNscreen Core

XmNdestroyCallback Core XmNsensitive Core

XmNgeometry Shell XmNshellUnitType VendorShell

XmNheight Core XmNtextFontList VendorShell

XmNheightInc WMShell XmNtextRenderTable VendorShell

XmNiconMask WMShell XmNtitle WMShell

XmNiconPixmap WMShell XmNtitleEncoding WMShell

XmNiconWindow WMShell XmNtransient WMShell

XmNinitialResourcesPersistent Core XmNtranslations Core

XmNinitialState WMShell XmNvisual Shell

XmNinput WMShell XmNwaitForWm WMShell

XmNinputMethod VendorShell XmNwidth Core
596 Motif Reference Manual

Motif and Xt Widget Classes TransientShell
See Also
Composite (2), Core (2), Shell (2), VendorShell (2), WMShell (2).

XmNinputPolicy VendorShell XmNwidthInc WMShell

XmNinsertPosition Composite XmNwindowGroup WMShell

XmNkeyboardFocusPolicy VendorShell XmNwinGravity WMShell

XmNlabelFontList VendorShell XmNwmTimeout WMShell

XmNlabelRenderTable VendorShell XmNx Core

XmNlayoutDirection VendorShell XmNy Core

XmNmappedWhenManaged Core

Resource Inherited From Resource Inherited From
Motif Reference Manual 597

VendorShell Motif and Xt Widget Classes

hat
en-

s the
Name
VendorShell widget class – shell widget with Motif-specific hooks for window
manager interaction.

Synopsis

Public Header:
<Xm/VendorS.h>
<X11/Shell.h>

Class Name:
VendorShell

Class Hierarchy:
Core→ Composite→ Shell→ WMShell→ VendorShell

Class Pointer:
vendorShellWidgetClass

Instantiation:
VendorShell is a meta-class and is not normally instantiated.

Functions/Macros:
XmIsVendorShell ()

Description
VendorShell is a vendor-specific supporting superclass for all shell classes t
are visible to the window manager and that do not have override redirection. V
dorShell defines resources that provide the Motif look-and-feel and manage
specific communication needed by the Motif Window Manager (mwm).

Traits
VendorShell holds theXmQTspecifyRenderTable , XmQTspecifyLay-
outDirection , XmQTaccessColors andXmQTspecifyUnitType
traits, which are inherited by any derived classes, and uses theXmQTspeci-
fyRenderTable trait.

New Resources
VendorShell defines the following resources:

Name Class Type Default Access

XmNaudibleWarning XmCAudibleWarning unsigned char XmBELL CSG

XmNbuttonFontList XmCButtonFontList XmFontList dynamic CSG

XmNbuttonRenderTable XmCButtonRenderTable XmRenderTable dynamic CSG

XmNdefaultFontList XmCDefaultFontList XmFontList dynamic CG

XmNdeleteResponse XmCDeleteResponse unsigned char XmDESTROY CSG

XmNinputMethod XmCInputMethod String NULL CSG
598 Motif Reference Manual

Motif and Xt Widget Classes VendorShell

alues:

get.
by

 but-
e-
st

 is
ex-
XmNaudibleWarning
Specifies whether an action performs an associated audible cue. Possible v

XmBELL /* rings the bell */
XmNONE /* does nothing */

XmNbuttonFontList
Specifies the font list used for the button descendants of the VendorShell wid
In Motif 2.0 and later, the XmFontList is considered obsolete, and is replaced
the XmRenderTable. The XmNbuttonRenderTable resource is the preferred
method of specifying appearance.

XmNbuttonRenderTable
In Motif 2.0 and later, specifies the render table to be used by VendorShell’s
ton descendants. If initially NULL, the value is taken from any specified XmNd
faultFontList value for backwards compatability. If this is also NULL, the neare
ancestor which has the XmQTspecifyRenderTable trait is sought, taking the
XmBUTTON_RENDER_TABLE value from any widget so found.

XmNdefaultFontList
The default font list for the children of the VendorShell widget. The resource
obsolete, replaced by the XmNbuttonFontList, XmNlabelFontList, and XmNt
tFontList resources, which are in their turn also obsolete.

XmNinputPolicy XmCInputPolicy XmInputPolicy XmPER_SHELL CSG

XmNkeyboardFocusPolicy XmCKeyboardFocusPolicy unsigned char XmEXPLICIT CSG

XmNlabelFontList XmCLabelFontList XmFontList dynamic CG

XmNlabelRenderTable XmCLabelRenderTable XmRenderTable dynamic CSG

XmNlayoutDirection XmCLayoutDirection XmDirection XmLEFT_TO_RIGHT CG

XmNmwmDecorations XmCMwMDecorations int -1 CSG

XmNmwmFunctions XmCMwMFunctions int -1 CSG

XmNmwmInputMode XmCMwMInputMode int -1 CSG

XmNmwmMenu XmCMwmMenu String NULL

XmNpreeditType XmCPreeditType String dynamic CSG

XmNshellUnitType XmCShellUnitType unsigned char XmPIXELS CSG

XmNtextFontList XmCTextFontList XmFontList dynamic CG

XmNtextRenderTable XmCTextRenderTable XmRenderTable dynamic CSG

XmNuseAsyncGeometry XmCUseAsyncGeometry Boolean False CSG

XmNunitType XmCUnitType unsigned char XmPIXELS CSG

Name Class Type Default Access
Motif Reference Manual 599

VendorShell Motif and Xt Widget Classes

es-

n-

t. In
the
d of

bel

st

ts
of an
XmNdeleteResponse
The action to perform when the shell receives a WM_DELETE_WINDOW m
sage. Possible values:

XmDESTROY /* destroy window */
XmUNMAP /* unmap window */
XmDO_NOTHING /* leave window as is */

XmNinputMethod
Specifies the string that sets the locale modifier for the input method.

XmNinputPolicy
In Motif 2.0 and later, specifies the policy to adopt when creating an Input Co
text. Possible values:

XmPER_SHELL /*one input context per shell hierarchy*/
XmPER_WIDGET /*one input context per widget */

XmNkeyboardFocusPolicy
The method of assigning keyboard focus. Possible values:

XmEXPLICIT /* click-to-type policy */
XmPOINTER /* pointer-driven policy */

XmNlabelFontList
Specifies the font list used for the label descendants of the VendorShell widge
Motif 2.0 and later, the XmFontList is considered obsolete, and is replaced by
XmRenderTable. The XmNlabelRenderTable resource is the preferred metho
specifying appearance.

XmNlabelRenderTable
In Motif 2.0 and later, specifies the render table to be used by VendorShell’s la
descendants. If initially NULL, the value is taken from any specified XmNde-
faultFontList value for backwards compatability. If this is also NULL, the neare
ancestor which has the XmQTspecifyRenderTable trait is sought, taking the
XmLABEL_RENDER_TABLE value from any widget so found.

XmNlayoutDirection
In Motif 2.0 and later, specifies the default direction in which visual componen
are to be laid out. Descendants of VendorShell use this value in the absence
explicit layout direction further down the widget hierarchy. Possible values:

XmLEFT_TO_RIGHT
XmRIGHT_TO_LEFT
XmBOTTOM_TO_TOP
XmTOP_TO_BOTTOM
XmBOTTOM_TO_TOP_LEFT_TO_RIGHT
XmBOTTOM_TO_TOP_RIGHT_TO_LEFT
600 Motif Reference Manual

Motif and Xt Widget Classes VendorShell

f the
ns

e

 OR

f the
the
the
as
XmTOP_TO_BOTTOM_LEFT_TO_RIGHT
XmTOP_TO_BOTTOM_RIGHT_TO_LEFT
XmLEFT_TO_RIGHT_BOTTOM_TO_TOP
XmRIGHT_TO_LEFT_BOTTOM_TO_TOP
XmLEFT_TO_RIGHT_TOP_TO_BOTTOM
XmRIGHT_TO_LEFT_TOP_TO_BOTTOM

XmNmwmDecorations
This resource corresponds to the values assigned by the decorations field o
_MOTIF_WM_HINTS property. This resource determines which frame butto
and handles to include with a window. The value for the resource is a bitwise
inclusive OR of one or more of the following, which are defined in<Xm/MwmU-
til.h> :

MWM_DECOR_ALL /* remove decorations from full set*/
MWM_DECOR_BORDER /*window border */
MWM_DECOR_RESIZEH /*resize handles */
MWM_DECOR_TITLE /* title bar */
MWM_DECOR_MENU /* window’s menu button */
MWM_DECOR_MINIMIZE /* minimize button */
MWM_DECOR_MAXIMIZE /* maximize button */

XmNmwmFunctions
This resource corresponds to the values assigned by the functions field of th
_MOTIF_WM_HINTS property. This resource determines which functions to
include in the system menu. The value for the resource is a bitwise inclusive
of one or more of the following, which are defined in the header file
<Xm/MwmUtil.h>.

MWM_FUNC_ALL /* remove functions from full set*/
MWM_FUNC_RESIZE /*f.resize */
MWM_FUNC_MOVE /* f.move */
MWM_FUNC_MINIMIZE /* f.minimize */
MWM_FUNC_MAXIMIZE /* f.maximize */
MWM_FUNC_CLOSE /*f.kill */

XmNmwmInputMode
This resource corresponds to the values assigned by the input_mode field o
_MOTIF_WM_HINTS property. This resource determines the constraints on
window’s keyboard focus. That is, it determines whether the application takes
keyboard focus away from the primary window or not. The possible values are
follows, defined in<Xm/MwmUtil.h>:

MWM_INPUT_MODELESS1

MWM_INPUT_PRIMARY_APPLICATION_MODAL
Motif Reference Manual 601

VendorShell Motif and Xt Widget Classes

t

has

 a

ype

t. In
the
d of

 text

e
king
MWM_INPUT_SYSTEM_MODAL
MWM_INPUT_FULL_APPLICATION_MODAL

If the value is MWM_INPUT_MODELESS, input can be directed to any win-
dow. If the value is MWM_INPUT_PRIMARY_APPLICATION_MODAL,
input can not be directed at an ancestor of the window. The value
MWM_INPUT_SYSTEM_MODAL indicates that input only goes to the curren
window. MWM_INPUT_FULL_APPLICATION_MODAL specifies that input
may not be directed at any other window of the application.

XmNmwmMenu
The menu items to add at the bottom of the client’s window menu. The string
this format:

label [mnemonic] [accelerator] mwm_f.function

XmNpreeditType
Specifies the input method style(s) that are available. The resource value is
comma separated list of the following values:

OffTheSpot /*XIMPreeditArea */
Root /* XIMPreeditNothing */
None /* XIMPreeditNone */
OverTheSpot /*XIMPreeditPosition */
OnTheSpot /*XIMPreeditCallbacks */

XmNshellUnitType
The measurement units to use in resources that specify a size or position. In
Motif 2.0 and later, the resource is obsolete, being replaced by the XmNunitT
resource.

XmNtextFontList
Specifies the font list used for the text descendants of the VendorShell widge
Motif 2.0 and later, the XmFontList is considered obsolete, and is replaced by
XmRenderTable. The XmNtextRenderTable resource is the preferred metho
specifying appearance.

XmNtextRenderTable
In Motif 2.0 and later, specifies the render table to be used by VendorShell’s
and list descendants. If initially NULL, the value is taken from any specified
XmNdefaultFontList value for backwards compatability. If this is also NULL, th
nearest ancestor which has the XmQTspecifyRenderTable trait is sought, ta
the XmTEXT_RENDER_TABLE value from any widget so found.

1.Erroneously given as MWM_INPUT_MODELES in 2nd edition.
602 Motif Reference Manual

Motif and Xt Widget Classes VendorShell

at
tting
l

n-
m

are
bso-
i-

n

beti-
or-
XmNuseAsyncGeometry
If True, the geometry manager doesn’t wait to confirm a geometry request th
was sent to the window manager. The geometry manager performs this by se
the WMShell resource XmNwaitForWm to False and by setting the WMShel
resource XmNwmTimeout to 0.

If XmNuseAsyncGeometry is False (default), the geometry manager uses sy
chronous notification, and so it doesn’t change the resources XmNwaitForW
and XmNwmTimeout.

XmNunitType
In Motif 2.0 and later, specifies the units in which size and position resources
calculated. The resource replaces XmNshellUnitType, which is considered o
lete. The values XmFONT_UNITS and Xm100TH_FONT_UNITS have a hor
zontal and vertical component, calculated from the values of the
XmNhorizontalFontUnit and XmNverticalFontUnit resources of the XmScree
object. Possible values:

XmPIXELS /* pixels */
XmMILLIMETERS /* millimeters */
Xm100TH_MILLIMETERS /* 1/100 of a millimeter */
XmCENTIMETERS /*centimeters */
XmINCHES /* inches */
Xm1000TH_INCHES /*1/1000 of an inch */
XmPOINTS /* point units (1/72 of an inch) */
Xm100TH_POINTS /*1/100 of a point */
XmFONT_UNITS /* depends on XmScreen resources*/
Xm100TH_FONT_UNITS /*1/100 of the above */

Inherited Resources
VendorShell inherits the following resources. The resources are listed alpha
cally, along with the superclass that defines them. VendorShell resets XmNb
derWidth from 1 to 0 and resets XmNinput to True.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNmaxAspectX WMShell

XmNallowShellResize Shell XmNmaxAspectY WMShell

XmNancestorSensitive Core XmNmaxHeight WMShell

XmNbackground Core XmNmaxWIdth WMShell

XmNbackgroundPixmap Core XmNminAspectX WMShell

XmNbaseHeight WMShell XmNminAspectY WMShell

XmNbaseWidth WMShell XmNminHeight WMShell
Motif Reference Manual 603

VendorShell Motif and Xt Widget Classes
See Also
Composite (2), Core (2), Shell (2), WMShell (2).

XmNborderColor Core XmNminWidth WMShell

XmNborderPixmap Core XmNnumChildren Composite

XmNborderWidth Core XmNoverrideRedirect Shell

XmNchildren Composite XmNpopdownCalback Shell

XmNcolormap Core XmNpopupCallback Shell

XmNcreatePopupChildProc Shell XmNsaveUnder Shell

XmNdepth Core XmNscreen Core

XmNdestroyCallback Core XmNsensitive Core

XmNgeometry Shell XmNtitle WMShell

XmNheight Core XmNtitleEncoding WMShell

XmNheightInc WMShell XmNtransient WMShell

XmNiconic TopLevelShell XmNtranslations Core

XmNiconMask WMShell XmNvisual Shell

XmNiconName TopLevelShell XmNwaitForWm WMShell

XmNiconNameEncoding TopLevelShell XmNwidth Core

XmNiconPixmap WMShell XmNwidthInc WMShell

XmNiconWindow WMShell XmNwindowGroup WMShell

XmNinitialResourcesPersistent Core XmNwinGravity WMShell

XmNinitialState WMShell XmNwmTimeout WMShell

XmNinput WMShell XmNx Core

XmNinsertPosition Composite XmNy Core

XmNmappedWhenManaged Core

Resource Inherited From Resource Inherited From
604 Motif Reference Manual

Motif and Xt Widget Classes WMShell

ter-
Name
WMShell widget class – fundamental shell widget that interacts with an
ICCCM-compliant window manager.

Synopsis

Public Header:
<Xm/Xm.h>
<X11/Shell.h>

Class Name:
WMShell

Class Hierarchy:
Core→ Composite→ Shell→ WMShell

Class Pointer:
wmShellWidgetClass

Instantiation:
WMShell is an Intrinsics meta-class and is not normally instantiated.

Functions/Macros:
XtIsWMShell ()

Description
WMShell is a direct subclass of Shell that provides basic window manager in
action. WMShell is not directly instantiated; it encapsulates the application
resources that applications use to communicate with window managers.

New Resources
WMShell defines the following resources:

Name Class Type Default Access

XmNbaseHeight XmCBaseHeight int XtUnspecifiedShellInt CSG

XmNbaseWidth XmCBaseWidth int XtUnspecifiedShellInt CSG

XmNheightInc XmCHeightInc int XtUnspecifiedShellInt CSG

XmNiconMask XmCIconMask Pixmap NULL CSG

XmNiconPixmap XmCIconPixmap Pixmap NULL CSG

XmNiconWindow XmCIconWindow Window NULL CSG

XmNinitialState XmCInitialState int NormalState CSG

XmNiconX XmCIconY int -1 CSG

XmNiconY XmCIconY int -1 CSG

XmNinput XmCInput Boolean False CSG

XmNmaxAspectX XmCMaxAspectX int XtUnspecifiedShellInt CSG
Motif Reference Manual 605

WMShell Motif and Xt Widget Classes

ped

the
ight,
the

on

n.
XmNbaseHeight

XmNbaseWidth
The base dimensions from which the preferred height and width can be step
up or down (as specified by XmNheightInc or XmNwidthInc).

XmNheightInc
The amount by which to increment or decrement the window’s height when
window manager chooses a preferred value. The base height is XmNbaseHe
and the height can decrement to the value of XmNminHeight or increment to
value of XmN-maxHeight. See also XmNwidthInc.

XmNiconMask
A bitmap that the window manager can use in order to clip the application’s ic
into a non-rectangular shape.

XmNiconPixmap
The application’s icon.

XmNiconWindow
The ID of a window that serves as the application’s icon.

XmNiconX

XmNiconY
Window manager hints for the root window coordinates of the application’s ico

XmNmaxAspectY XmCMaxAspectY int XtUnspecifiedShellInt CSG

XmNmaxHeight XmCMaxHeight int XtUnspecifiedShellInt CSG

XmNmaxWIdth XmCMaxWidth int XtUnspecifiedShellInt CSG

XmNminAspectX XmCMinAspectX int XtUnspecifiedShellInt CSG

XmNminAspectY XmCMinAspectY int XtUnspecifiedShellInt CSG

XmNminHeight XmCMinHeight int XtUnspecifiedShellInt CSG

XmNminWidth XmCMinWidth int XtUnspecifiedShellInt CSG

XmNtitle XmCTitle String dynamic CSG

XmNtitleEncoding XmCTitleEncoding Atom dynamic CSG

XmNtransient XmCTransient Boolean False CSG

XmNwaitForWm XmCWaitForWm Boolean True CSG

XmNwidthInc XmCWidthInc int XtUnspecifiedShellInt CSG

XmNwindowGroup XmCWindowGroup Window dynamic CSG

XmNwinGravity XmCWinGravity int dynamic CSG

XmNwmTimeout XmCWmTimeout int 5000 CSG

Name Class Type Default Access
606 Motif Reference Manual

Motif and Xt Widget Classes WMShell

 of

lica-
XmNinitialState
The initial appearance of the widget instance. Possible values are defined in
<X11/Xutil.h>:

NormalState /*application starts as a window*/
IconicState /*application starts as an icon*/

XmNinput
A Boolean that, in conjunction with the WM_TAKE_FOCUS atom in the
WM_PROTOCOLS property, determines the application’s keyboard focus
model. The result is determined by the value of XmNinput and the existence
the atom, as described below:

XmNmaxAspectX

XmNmaxAspectY
The numerator and denominator, respectively, of the maximum aspect ratio
requested for this widget.

XmNmaxHeight

XmNmaxWidth
The maximum dimensions for the widget’s preferred height or width.

XmNminAspectX

XmNminAspectY
The numerator and denominator, respectively, of the minimum aspect ratio
requested for this widget.

XmNminHeight

XmNminWidth
The minimum dimensions for the widget’s preferred height or width.

XmNtitle
The string that the window manager displays as the application’s name. By
default, the icon name is used, but if this isn’t specified, the name of the app
tion is used.

Value of XmNinput Resource WM_TAKE_FOCUS Atom Keyboard Focus Model

False Does not exist No input allowed

True Does not exist Passive

False Exists Globally active

True Exists Locally active
Motif Reference Manual 607

WMShell Motif and Xt Widget Classes

r
y

e
dth,
he

ri-

 is

.

in-
rce

i-
XmNtitleEncoding
The property type for encoding the XmNtitle resource.

XmNtransient
If True, this indicates a popup window or some other transient widget. This
resource is usually not changed.

XmNwaitForWm
If True (default), the X Toolkit waits for a response from the window manage
before acting as if no window manager exists. The waiting time is specified b
the XmNwmTimeout resource.

XmNwidthInc
The amount by which to increment or decrement the window’s width when th
window manager chooses a preferred value. The base width is XmNbaseWi
and the width can decrement to the value of XmNminWidth or increment to t
value of XmN-maxWidth. See also XmNheightInc.

XmNwindowGroup
The window associated with this widget instance. This window acts as the p
mary window of a group of windows that have similar behavior.

XmNwinGravity
The window gravity used in positioning the widget. Unless an initial value is
given, this resource will be set when the widget is realized. The default value
NorthWestGravity (if the Shell resource XmNgeometry is NULL); otherwise,
XmNwinGravity assumes the value returned by the XmWMGeometry routine

XmNwmTimeout
The number of milliseconds that the X Toolkit waits for a response from the w
dow manager. This resource is meaningful when the XmNwaitForWm resou
is set to True.

Inherited Resources
WMShell inherits the following resources. The resources are listed alphabet
cally, along with the superclass that defines them.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinitialResourcesPersistent Core

XmNallowShellResize Shell XmNinsertPosition Composite

XmNancestorSensitive Core XmNmappedWhenManaged Core

XmNbackground Core XmNnumChildren Composite

XmNbackgroundPixmap Core XmNoverrideRedirect Shell

XmNborderColor Core XmNpopdownCalback Shell

XmNborderPixmap Core XmNpopupCallback Shell
608 Motif Reference Manual

Motif and Xt Widget Classes WMShell
See Also
Composite (2), Core (2), Shell (2).

XmNborderWidth Core XmNsaveUnder Shell

XmNchildren Composite XmNscreen Core

XmNcolormap Core XmNsensitive Core

XmNcreatePopupChildProc Shell XmNtranslations Core

XmNdepth Core XmNvisual Shell

XmNdestroyCallback Core XmNwidth Core

XmNgeometry Shell XmNx Core

XmNheight Core XmNy Core

Resource Inherited From Resource Inherited From
Motif Reference Manual 609

XmArrowButton Motif and Xt Widget Classes

 bor-

ed
Name
XmArrowButton widget class – a directional arrow-shaped button widget.

Synopsis

Public Header:
<Xm/ArrowB.h>

Class Name:
XmArrowButton

Class Hierarchy:
Core→ XmPrimitive→ XmArrowButton

Class Pointer:
xmArrowButtonWidgetClass

Instantiation:
widget =XmCreateArrowButton (parent, name,...)
or
widget =XtCreateWidget (name, xmArrowButtonWidgetClass,...)

Functions/Macros:
XmCreateArrowButton (), XmIsArrowButton ()

Description
An ArrowButton is a directional arrow-shaped button that includes a shaded
der. The shading changes to make the ArrowButton appear either pressed in
when selected or raised when unselected.

Traits
ArrowButton holds the XmQTactivatable trait, which is inherited by any deriv
classes.

New Resources
ArrowButton defines the following resources:

XmNarrowDirection
Sets the arrow direction. Possible values:

XmARROW_UP XmARROW_LEFT
XmARROW_DOWN XmARROW_RIGHT

Name Class Type Default Access

XmNarrowDirection XmCArrowDirection unsigned char XmARROW_UP CSG

XmNdetailShadowThickness XmCShadowThickness Dimension dynamic CSG

XmNmultiClick XmCMultiClick unsigned char dynamic CSG
610 Motif Reference Manual

Motif and Xt Widget Classes XmArrowButton

of

e
r-

red.

 the

ssed
XmNdetailShadowThickness
In Motif 2.0 and later, specifies the thickness of the shadow inside the triangle
the ArrowButton. Values of 0 (zero), 1, and 2 are supported. In Motif 2.0, the
default is 2. In Motif 2.1 and later, the default depends upon the value of th
XmDisplay resource XmNenableThinThickness: if True, the default is 1, othe
wise 2.

XmNmultiClick
A flag that determines whether successive button clicks are processed or igno
Possible values:

XmMULTICLICK_DISCARD /* ignore successive button clicks;*/
/* default value in a menu system*/

XmMULTICLICK_KEEP /* count successive button clicks;*/
/* default value when not in a menu*/

Callback Resources
ArrowButton defines the following callback resources:

XmNactivateCallback
List of callbacks that are called when BSelect is pressed and released inside
widget.

XmNarmCallback
List of callbacks that are called when BSelect is pressed while the pointer is
inside the widget.

XmNdisarmCallback
List of callbacks that are called when BSelect is released after it has been pre
inside the widget.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /*the reason that the callback was called*/
XEvent *event; /*event structure that triggered callback*/
int click_count; /*number of clicks in multi-click sequence*/

} XmArrowButtonCallbackStruct;

Callback Reason Constant

XmNactivateCallback XmCR_ACTIVATE

XmNarmCallback XmCR_ARM

XmNdisarmCallback XmCR_DISARM
Motif Reference Manual 611

XmArrowButton Motif and Xt Widget Classes

-
of
ul-

beti-
bor-
click_count is meaningful only for XmNactivateCallback. Furthermore, if the
XmN-multiClick resource is set to XmMULTICLICK_KEEP, then XmN-activate
Callback is called for each click, and the value of click_count is the number
clicks that have occurred in the last sequence of multiple clicks. If the XmNm
tiClick resource is set to XmMULTICLICK_DISCARD, then click_count always
has a value of 1.

Inherited Resources
ArrowButton inherits the following resources. The resources are listed alpha
cally, along with the superclass that defines them. The default value of XmN
derWidth is reset to 0 by Primitive.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNhighlightThickness XmPrimitive

XmNancestorSensitive Core XmNinitialResourcesPersistent Core

XmNbackground Core XmNlayoutDirection XmPrimitive

XmNbackgroundPixmap Core XmNmappedWhenManaged Core

XmNborderColor Core XmNnavigationType XmPrimitive

XmNborderPixmap Core XmNpopupHandlerCallback XmPrimitive

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmPrimitive XmNsensitive Core

XmNbottomShadowPixmap XmPrimitive XmNshadowThickness XmPrimitive

XmNcolormap Core XmNtopShadowColor XmPrimitive

XmNconvertCallback XmPrimitive XmNtopShadowPixmap XmPrimitive

XmNdepth Core XmNtranslations Core

XmNdestroyCallback Core XmNtraversalOn XmPrimitive

XmNforeground XmPrimitive XmNunitType XmPrimitive

XmNheight Core XmNuserData XmPrimitive

XmNhelpCallback XmPrimitive XmNwidth Core

XmNhighlightColor XmPrimitive XmNx Core

XmNhighlightOnEnter XmPrimitive XmNy Core

XmNhighlightPixmap XmPrimitive
612 Motif Reference Manual

Motif and Xt Widget Classes XmArrowButton

ll-

ll-

list
-

e

m.
Translations
The translations of ArrowButton include those of Primitive:

Action Routines
ArrowButton defines the following action routines:

Activate()
Displays the ArrowButton as unselected, and invokes the list of
callbacks specified by XmNactivateCallback.

Arm()
Displays the ArrowButton as selected, and invokes the list of ca
backs specified by XmNarmCallback.

ArmAndActivate()
Displays the ArrowButton as selected, and invokes the list of ca
backs specified by XmNarmCallback. After doing this, the action
routine displays the ArrowButton as unselected, and invokes the
of callbacks specified by XmNactivateCallback and XmNdisarm
Callback.

ButtonTakeFocus()
In Motif 2.0 and later, moves the current keyboard focus to the
ArrowButton, without activating the widget.

Disarm()
Displays the ArrowButton as unselected, and invokes the list of
callbacks specified by XmNdisarmCallback.

Help()
Invokes the list of callbacks specified by XmNhelpCallback. If th
ArrowButton doesn’t have any help callbacks, the Help() routine
invokes those associated with the nearest ancestor that has the

Event Action

BSelect Press Arm()

BSelect Click Activate()
Disarm()

BSelect Release Activate()
Disarm()

Bselect Press 2+ MultiArm()

BSelect Release 2+ MultiActivate()

KSelect ArmAndActivate()

MCtrl BSelect Press ButtonTakeFocus()

KHelp Help()
Motif Reference Manual 613

XmArrowButton Motif and Xt Widget Classes

-
list
-
l-

ll-
MultiActivate()
Increments the click_count member of XmArrowButtonCallback
Struct, displays the ArrowButton as unselected, and invokes the
of callbacks specified by XmNactivateCallback and XmNdisarm
Callback. This action routine takes effect only when the XmNmu
tiClick resource is set to XmMULTICLICK_KEEP.

MultiArm()
Displays the ArrowButton as selected, and invokes the list of ca
backs specified by XmNarmCallback. This action routine takes
effect only when the XmNmultiClick resource is set to
XmMULTICLICK_KEEP.

Additional Behavior
ArrowButton has the following additional behavior:

<EnterWindow>
Displays the ArrowButton as selected if the pointer leaves and
re-enters the window while BSelect is pressed.

<LeaveWindow>
Displays the ArrowButton as unselected if the pointer leaves the
window while BSelect is pressed.

See Also
XmCreateObject (1), Core (2), XmPrimitive (2).
614 Motif Reference Manual

Motif and Xt Widget Classes XmArrowButtonGadget

t.

are

d

d
e of
Name
XmArrowButtonGadget widget class – a directional arrow-shaped button gadge

Synopsis

Public Header:
<Xm/ArrowBG.h>

Class Name:
XmArrowButtonGadget

Class Hierarchy:
Object→ RectObj→ XmGadget→ XmArrowButtonGadget

Class Pointer:
xmArrowButtonGadgetClass

Instantiation:
widget =XmCreateArrowButtonGadget (parent, name,...)
or
widget =XtCreateWidget (name, xmArrowButtonGadgetClass,...)

Functions/Macros:
XmCreateArrowButtonGadget (), XmIsArrowButtonGadget ()

Description
ArrowButtonGadget is the gadget variant of ArrowButton.

ArrowButtonGadget’s resources, callback resources, and callback structure
the same as those of ArrowButton.

Traits
ArrowButtonGadget holds the XmQTactivatable, XmQTcareParentVisual, an
XmQTaccessColors traits, which are inherited by any derived classes.

Inherited Resources
ArrowButtonGadget inherits the following resources. The resources are liste
alphabetically, along with the superclass that defines them. The default valu
XmNborderWidth is reset to 0 by Gadget.

Resource Inherited From Resource Inherited From

XmNancestorSensitive RectObj XmNhighlightThickness XmGadget

XmNbackground XmGadget XmNlayoutDirection XmGadget

XmNbackgroundPixmap XmGadget XmNnavigationType XmGadget

XmNbottomShadowColor XmGadget XmNsensitive RectObj

XmNbottomShadowPixmap XmGadget XmNshadowThickness XmGadget

XmNborderWidth RectObj XmNtopShadowColor XmGadget
Motif Reference Manual 615

XmArrowButtonGadget Motif and Xt Widget Classes

ith it.
the
n.

ves
inter
Behavior
As a gadget subclass, ArrowButtonGadget has no translations associated w
However, ArrowButtonGadget behavior corresponds to the action routines of
ArrowButton widget. See the ArrowButton action routines for more informatio

ArrowButtonGadget has additional behavior associated with <Enter> and
<Leave>, which display the ArrowButtonGadget as selected if the pointer lea
and re-enters the gadget while BSelect is pressed or as unselected if the po
leaves the gadget while BSelect is pressed.

See Also
XmCreateObject (1), Core (2), Object (2), RectObj (2),
XmArrowButton (2), XmGadget(2), XmPrimitive (2).

XmNdestroyCallback Object XmNtopShadowPixmap XmGadget

XmNforeground XmGadget XmNtraversalOn XmGadget

XmNheight RectObj XmNunitType XmGadget

XmNhelpCallback XmGadget XmNuserData XmGadget

XmNhighlightColor XmGadget XmNwidth RectObj

XmNhighlightOnEnter XmGadget XmNx RectObj

XmNhighlightPixmap XmGadget XmNy RectObj

Event Action

BSelect Press Arm()

BSelect Click Activate()
Disarm()

BSelect Release Activate()
Disarm()

Bselect Press 2+ MultiArm()

BSelect Release 2+ MultiActivate()

KSelect ArmAndActivate()

MCtrl BSelect Press ButtonTakeFocus()

KHelp Help()

Resource Inherited From Resource Inherited From
616 Motif Reference Manual

Motif and Xt Widget Classes XmBulletinBoard

d at
can
ul-
rces

vy
e-
Name
XmBulletinBoard widget class – a simple geometry-managing widget.

Synopsis

Public Header:
<Xm/BulletinB.h>

Class Name:
XmBulletinBoard

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmBulletinBoard

Class Pointer:
xmBulletinBoardWidgetClass

Instantiation:
widget = XmCreateBulletinBoard (parent, name,...)
or
widget = XtCreateWidget (name, xmBulletinBoardWidgetClass,...)

Functions/Macros:
XmCreateBulletinBoard (), XmCreateBulletinBoardDialog ()

Description
BulletinBoard is a general-purpose manager that allows children to be place
arbitrary x, y positions. The simple geometry management of BulletinBoard
be used to enforce margins and to prevent child widgets from overlapping. B
letinBoard is the base widget for most dialog widgets and defines many resou
that have an effect only when it is an immediate child of a DialogShell.

Traits
BulletinBoard holds the XmQTspecifyRenderTable and XmQTdialogShellSav
traits, which are inherited by any derived classes, and uses the XmQTtakesD
fault and XmQTspecifyRenderTable traits.

New Resources
BulletinBoard defines the following resources:

Name Class Type Default Access

XmNallowOverlap XmCAllowOverlap Boolean True CSG

XmNautoUnmanage XmCAutoUnmanage Boolean True CSG

XmNbuttonFontList XmCButtonFontList XmFontList dynamic CSG

XmNbuttonRenderTable XmCButtonRenderTable XmRenderTable dynamic CSG

XmNcancelButton XmCWidget Widgeta NULL SG
Motif Reference Manual 617

XmBulletinBoard Motif and Xt Widget Classes

 is

e

ants
or

but-
XmNallowOverlap
If True (default), child widgets are allowed to overlap.

XmNautoUnmanage
If True (default), the BulletinBoard is automatically unmanaged after a button
activated unless the button is anApply or Help button.

XmNbuttonFontList
Specifies the font list used for the button descendants of the BulletinBoard
widget. In Motif 2.0 and later, the XmFontList is considered obsolete, and is
replaced by the XmRenderTable. The XmNbuttonRenderTable resource is th
preferred method of specifying appearance.

XmNbuttonRenderTable
In Motif 2.0 and later, specifies the render table used for any button descend
of the BulletinBoard widget. If NULL, this is inherited from the nearest ancest
that has the XmQTspecifyRenderTable trait, using the
XmBUTTON_RENDER_TABLE value of any ancestor so found.
The button render table resource takes precedence over any specified XmN
tonFontList.

XmNcancelButton
The widget ID of theCancel button. The subclasses of BulletinBoard define a
Cancel button and set this resource.

XmNdefaultButton XmCWidget Widgetb NULL SG

XmNdefaultPosition XmCDefaultPosition unsigned char True CSG

XmNdialogStyle XmCDialogStyle unsigned char dynamic CSG

XmNdialogTitle XmCDialogTitle XmString NULL CSG

XmNlabelFontList XmCLabelFontList XmFontList dynamic CSG

XmNlabelRenderTable XmCLabelRenderTable XmRenderTable dynamic CSG

XmNmarginHeight XmCMarginHeight Dimension 10 CSG

XmNmarginWidth XmCMarginWidth Dimension 10 CSG

XmNnoResize XmCNoResize Boolean False CSG

XmNresizePolicy XmCResizePolicy unsigned char XmRESIZE_ANY CSG

XmNshadowType XmCShadowType unsigned char XmSHADOW_OUT CSG

XmNtextFontList XmCTextFontList XmFontList dynamic CSG

XmNtextRenderTable XmCTextRenderTable XmRenderTable dynamic CSG

XmNtextTranslations XmCTranslations XtTranslations NULL C

a.Erroneously given as Window in 2nd Edition.
b.Erroneously given as Window in 2nd Edition.

Name Class Type Default Access
618 Motif Reference Manual

Motif and Xt Widget Classes XmBulletinBoard

this

e

N--

get.
by

ts of

ild
XmNdefaultButton
The widget ID of the default button. Some of the subclasses of BulletinBoard
define a default button and set this resource. To indicate that it is the default,
button appears different from the others.

XmNdefaultPosition
If True (default) and if the BulletinBoard is the child of a DialogShell, then th
BulletinBoard is centered relative to the DialogShell’s parent.

XmNdialogStyle
The BulletinBoard’s dialog style, whose value can be set only if the Bullet-
inBoard is unmanaged. Possible values:

XmDIALOG_WORK_AREA /*default when parent is not a DialogShell*/
XmDIALOG_MODELESS /*default when parent is a DialogShell*/*
XmDIALOG_FULL_APPLICATION_MODAL
XmDIALOG_APPLICATION_MODAL
XmDIALOG_PRIMARY_APPLICATION_MODAL
XmDIALOG_SYSTEM_MODAL

The value XmDIALOG_APPLICATION_MODAL, although maintained for
backwards compatibility, is deprecated in Motif 1.2 and later. Use
XmDIALOG_PRIMARY_APPLICATION_MODAL instead.

XmNdialogTitle
The dialog title. Setting this resource also sets the resources XmNtitle and Xm
titleEncoding in a parent that is a subclass of WMShell.

XmNlabelFontList
Specifies the font list used for the label descendants of the BulletinBoard wid
In Motif 2.0 and later, the XmFontList is considered obsolete, and is replaced
the XmRenderTable. The XmNlabelRenderTable resource is the preferred
method of specifying appearance.

XmNlabelRenderTable
In Motif 2.0 and later, specifies the render table used for any label descendan
the BulletinBoard widget. If NULL, this is inherited from the nearest ancestor
that has the XmQTspecifyRenderTable trait, using the
XmLABEL_RENDER_TABLE value of any ancestor so found.

XmNmarginHeight
Minimum spacing between a BulletinBoard’s top or bottom edge and any ch
widget.

XmNmarginWidth
Minimum spacing between a BulletinBoard’s right or left edge and any child
widget.
Motif Reference Manual 619

XmBulletinBoard Motif and Xt Widget Classes

f

get.
by

thod

ts of
XmNnoResize
If False (default),mwmincludes resize controls in the window manager frame o
the BulletinBoard’s shell parent.

XmNresizePolicy
How BulletinBoard widgets are resized. Possible values:

XmRESIZE_NONE /*remain at fixed size */
XmRESIZE_GROW /*expand only */
XmRESIZE_ANY /* shrink or expand, as needed*/

XmNshadowType
The style in which shadows are drawn. Possible values:

XmSHADOW_IN /* widget appears inset */
XmSHADOW_OUT /* widget appears outset */
XmSHADOW_ETCHED_IN /*double line; widget appears inset*/
XmSHADOW_ETCHED_OUT /*double line; widget appears raised*/

XmNtextFontList
Specifies the font list used for the text descendants of the BulletinBoard wid
In Motif 2.0 and later, the XmFontList is considered obsolete, and is replaced
the XmRenderTable. The XmNtextRenderTable resource is the preferred me
of specifying appearance.

XmNtextRenderTable
In Motif 2.0 and later, specifies the render table used for any text descendan
the BulletinBoard widget. If NULL, this is inherited from the nearest ancestor
that has the XmQTspecifyRenderTable trait, using the
XmTEXT_RENDER_TABLE value of any ancestor so found.

XmNtextTranslations
For any Text widget (or its subclass) that is a child of a BulletinBoard, this
resource adds translations.

Callback Resources
BulletinBoard defines the following callback resources:

XmNfocusCallback
List of callbacks that are called when the widget or one of its descendants
receives the input focus.

Callback Reason Constant

XmNfocusCallback XmCR_FOCUS

XmNmapCallback XmCR_MAP

XmNunmapCallback XmCR_UNMAP
620 Motif Reference Manual

Motif and Xt Widget Classes XmBulletinBoard

a

f a

bet-
e of
a-
.

XmNmapCallback
List of callbacks that are called when the widget is mapped, if it is a child of
DialogShell.

XmNunmapCallback
List of callbacks that are called when the widget is unmapped, if it is a child o
DialogShell.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /*the reason that the callback was called*/
XEvent *event; /*points to event structure that triggered callback*/

} XmAnyCallbackStruct;

Inherited Resources
BulletinBoard inherits the following resources. The resources are listed alpha
ically, along with the superclass that defines them. BulletinBoard sets the valu
XmNinitialFocus to the value of XmNdefaultButton. When it is a child of a Di
logShell, BulletinBoard resets the default XmNshadowThickness from 0 to 1
The default value of XmNborderWidth is reset to 0 by Manager.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmManager XmNsensitive Core

XmNbottomShadowPixmap XmManager XmNshadowThickness XmManager

XmNchildren Composite XmNstringDirection XmManager

XmNcolormap Core XmNtopShadowColor XmManager

XmNdepth Core XmNtopShadowPixmap XmManager

XmNdestroyCallback Core XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNwidth Core
Motif Reference Manual 621

XmBulletinBoard Motif and Xt Widget Classes

e-

ol-
Translations
The translations for BulletinBoard include those of XmManager.

Additional Behavior
BulletinBoard has the following additional behavior:

MAny KCancel
For a sensitiveCancel button, invokes the XmNactivateCallback
callbacks.

KActivate
For the button that has keyboard focus, invokes the XmNactivat
Callback callbacks.

<FocusIn>
Invokes the XmNfocusCallback callbacks. The widget receives
focus either when the user traverses to it (XmNkeyboardFocusP
icy is XmEXPLICIT) or when the pointer enters the window
(XmNkeyboardFocusPolicy is XmPOINTER).

<Map>
Invokes the XmNmapCallback callbacks.

<Unmap>
Invokes the XmNunmapCallback callbacks.

See Also
XmCreateObject (1), Composite (2), Constraint (2), Core (2),
XmBulletinBoardDialog (2), XmDialogShell (2), XmManager(2).

XmNhighlightPixmap XmManager XmNx Core

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core

Resource Inherited From Resource Inherited From
622 Motif Reference Manual

Motif and Xt Widget Classes XmBulletinBoardDialog

te-

-
tion.
Name
XmBulletinBoardDialog – an unmanaged BulletinBoard as a child of a Dia-
logShell.

Synopsis

Public Header:
<Xm/BulletinB.h>

Instantiation:
widget =XmCreateBulletinBoardDialog (...)

Functions/Macros:
XmCreateBulletinBoardDialog ()

Description
An XmBulletinBoardDialog is a compound object created by a call to XmCrea
BulletinBoardDialog() that is useful for creating custom dialogs. A Bullet-
inBoardDialog consists of a DialogShell with an unmanaged BulletinBoard
widget as its child. The BulletinBoardDialog does not contain any labels, but
tons, or other dialog components; these components are added by the applica

Default Resource Values
A BulletinBoardDialog sets the following default values for BulletinBoard
resources:

Widget Hierarchy
When a BulletinBoardDialog is created with a specifiedname, the DialogShell is
namedname_popup and the BulletinBoard is calledname.

See Also
XmCreateObject (1), XmBulletinBoard (2), XmDialogShell (2).

Name Default

XmNdialogStyle XmDIALOG_MODELESS
Motif Reference Manual 623

XmCascadeButton Motif and Xt Widget Classes

ton
menu

 this
Name
XmCascadeButton widget class – a button widget that posts menus.

Synopsis

Public Header:
<Xm/CascadeB.h>

Class Name:
XmCascadeButton

Class Hierarchy:
Core→ XmPrimitive→ XmLabel→ XmCascadeButton

Class Pointer:
xmCascadeButtonWidgetClass

Instantiation:
widget =XmCreateCascadeButton (parent, name,...)
or
widget =XtCreateWidget (name, xmCascadeButtonWidgetClass,...)

Functions/Macros:
XmCascadeButtonHighlight (), XmCreateCascadeButton (), XmIs-
CascadeButton ()

Description
CascadeButtons are used in menu systems to post menus. A CascadeBut
either links a menu bar to a menu pane or connects a menu pane to another
pane. The widget can have a menu attached to it as a submenu.

Traits
CascadeButton uses the XmQTmenuSystem and XmQTspecifyRenderTable
traits.

New Resources
CascadeButton defines the following resources:

XmNcascadePixmap
The pixmap within the CascadeButton that indicates a submenu. By default,
pixmap is an arrow pointing toward the submenu to be popped up.

Name Class Type Default Access

XmNcascadePixmap XmCPixmap Pixmap dynamic CSG

XmNmappingDelay XmCMappingDelay int 180 CSG

XmNsubMenuId XmCMenuWidget Widget NULL CSG
624 Motif Reference Manual

Motif and Xt Widget Classes XmCascadeButton

-

n.
own

 the

cade-

ha-
he

r,

en-
lt
XmNmappingDelay
The number of milliseconds it should take for the application to display a sub
menu after its CascadeButton has been selected.

XmNsubMenuId
The widget ID of the pulldown menu pane associated with the CascadeButto
The menu pane is displayed when the CascadeButton is selected. The pulld
menu pane and the CascadeButton must have a common parent.

Callback Resources
CascadeButton defines the following callback resources:

XmNactivateCallback
List of callbacks that are called when BSelect is pressed and released while
pointer is inside the widget and there is no submenu to post.

XmNcascadingCallback
List of callbacks that are called before the submenu associated with the Cas
Button is mapped.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /*the reason that the callback was called*/
XEvent *event; /*event structure that triggered callback*/

} XmAnyCallbackStruct;

Inherited Resources
CascadeButton inherits the following resources. The resources are listed alp
betically, along with the superclass that defines them. CascadeButton sets t
default values of XmNmarginBottom, XmNmarginRight, XmNmarginTop,
XmNmarginWidth, and XmN-traversalOn dynamically. In Motif 2.0 and earlie
the default values of XmNhighlightThickness and XmNshadowThickness are
reset to 2. In Motif 2.1, the default values depend upon the XmDisplay XmN
ableThinThickness resource: if True the default is 1, otherwise 2. The defau
value of XmNborderWidth is reset to 0 by Primitive.

Callback Reason Constant

XmNactivateCallback XmCR_ACTIVATE

XmNcascadingCallback XmCR_CASCADING
Motif Reference Manual 625

XmCascadeButton Motif and Xt Widget Classes
Resource Inherited From Resource Inherited From

XmNaccelerator XmLabel XmNlabelType XmLabel

XmNaccelerators Core XmNlayoutDirection XmPrimitive

XmNacceleratorText XmLabel XmNmappedWhenManaged Core

XmNalignment XmLabel XmNmarginBottom XmLabel

XmNancestorSensitive Core XmNmarginHeight XmLabel

XmNbackground Core XmNmarginLeft XmLabel

XmNbackgroundPixmap Core XmNmarginRight XmLabel

XmNborderColor Core XmNmarginTop XmLabel

XmNborderPixmap Core XmNmarginWidth XmLabel

XmNborderWidth Core XmNmnemonicCharSet XmLabel

XmNbottomShadowColor XmPrimitive XmNmnemonic XmLabel

XmNbottomShadowPixmap XmPrimitive XmNnavigationType XmPrimitive

XmNcolormap Core XmNpopupHandlerCallback XmPrimitive

XmNconvertCallback XmPrimitive XmNrecomputeSize XmLabel

XmNdepth Core XmNrenderTable XmLabel

XmNdestroyCallback Core XmNscreen Core

XmNfontList XmLabel XmNsensitive Core

XmNforeground XmPrimitive XmNshadowThickness XmPrimitive

XmNheight Core XmNstringDirection XmLabel

XmNhelpCallback XmPrimitive XmNtopShadowColor XmPrimitive

XmNhighlightColor XmPrimitive XmNtopShadowPixmap XmPrimitive

XmNhighlightOnEnter XmPrimitive XmNtranslations Core

XmNhighlightPixmap XmPrimitive XmNtraversalOn XmPrimitive

XmNhighlightThickness XmPrimitive XmNunitType XmPrimitive

XmNinitialResourcesPersistent Core XmNuserData XmPrimitive

XmNlabelInsensitivePixmap XmLabel XmNwidth Core

XmNlabelPixmap XmLabel XmNx Core

XmNlabelString XmLabel XmNy Core
626 Motif Reference Manual

Motif and Xt Widget Classes XmCascadeButton

f

p of
n

rsal.
n

 in

y
he
t-

ver-
ut-
s all
Translations
The translations of CascadeButton include the menu traversal translations o
Label.

Action Routines
CascadeButton defines the following action routines:

CleanupMenuBar()
Unposts any menus and restores the keyboard focus to the grou
widgets (tab group) that had the focus before the CascadeButto
was armed.

DoSelect()
Posts the CascadeButton’s submenu and allows keyboard trave
If there is no submenu attached to the CascadeButton, this actio
routine activates the CascadeButton and unposts all the menus
the cascade.

Help()
Similar to CleanupMenuBar() in that the Help() routine unposts an
menus and restores keyboard focus. This routine also invokes t
list of callbacks specified by XmNhelpCallback. If the CascadeBu
ton doesn’t have any help callbacks, the Help() routine invokes
those associated with the nearest ancestor that has them.

KeySelect()
Posts the CascadeButton’s submenu, provided that keyboard tra
sal is allowed. If there is no submenu attached to the CascadeB
ton, this action routine activates the CascadeButton and unpost
the menus in the cascade.

Event Action

BSelect Press MenuBarSelect() (in a menu bar)
StartDrag() (in a popup or pulldown menu)

BSelect Release DoSelect()

MCtrl BSelect Press MenuButtonTakeFocus()

MCtrl BSelect Release MenuButtonTakeFocusUp()

KActivate KeySelect()

KSelect KeySelect()

KHelp Help()

MAny KCancel CleanupMenuBar()
Motif Reference Manual 627

XmCascadeButton Motif and Xt Widget Classes

ci-

as-

bles

nu.
MenuBarSelect()
Unposts any previously posted menus, posts the submenu asso
ated with the CascadeButton, and enables mouse traversal.

MenuButtonTakeFocus()
In Motif 2.0 and later, moves the current keyboard focus to the C
cadeButton, without activating the widget.

StartDrag()
Posts the submenu associated with the CascadeButton and ena
mouse traversal.

Additional Behavior
CascadeButton has the following additional behavior:

<EnterWindow> Arms the CascadeButton and posts its submenu.
<LeaveWindow> Disarms the CascadeButton and unposts its subme

See Also
XmCascadeButtonHighlight (1), XmCreateObject (2), Core (2),
XmLabel (2), XmPrimitive (2), XmRowColumn(2).
628 Motif Reference Manual

Motif and Xt Widget Classes XmCascadeButtonGadget

ruc-

erTa-

sted

N-
 of
0

Name
XmCascadeButtonGadget widget class – a button gadget that posts menus.

Synopsis

Public Header:
<Xm/CascadeBG.h>

Class Name:
XmCascadeButtonGadget

Class Hierarchy:
Object→ RectObj→ XmGadget→ XmLabelGadget→ XmCascadeButton-
Gadget

Class Pointer:
xmCascadeButtonGadgetClass

Instantiation:
widget =XmCreateCascadeButtonGadget (parent, name,...)
or

widget =XtCreateWidget (name, xmCascadeButtonGadgetClass,...)1

Functions/Macros:
XmCascadeButtonGadgetHighlight (), XmCreateCascadeButton-
Gadget (),
XmIsCascadeButtonGadget (), XmOptionButtonGadget ()

Description
CascadeButtonGadget is the gadget variant of CascadeButton.

CascadeButtonGadget’s new resources, callback resources, and callback st
ture are the same as those for CascadeButton.

Traits
CascadeButtonGadget uses the XmQTmenuSystem and XmQTspecifyRend
ble traits.

Inherited Resources
CascadeButtonGadget inherits the following resources. The resources are li
alphabetically, along with the superclass that defines them. CascadeButton-
Gadget sets the default values of XmNmarginBottom, XmNmarginRight, Xm
marginTop, and XmNmarginWidth dynamically. It also sets the default value
XmNhighlightThickness to 0. The default value of XmNborderWidth is reset to
by Gadget.

1.Erroneously given as xmCascadeButtonWidgetClass in 2nd Edition.
Motif Reference Manual 629

XmCascadeButtonGadget Motif and Xt Widget Classes

d with
es of
infor-
Behavior
As a gadget subclass, CascadeButtonGadget has no translations associate
it. However, CascadeButtonGadget behavior corresponds to the action routin
the CascadeButton widget. See the CascadeButton action routines for more
mation.

Resource Inherited From Resource Inherited From

XmNaccelerator XmLabelGadget XmNmarginBottom XmLabelGadget

XmNacceleratorText XmLabelGadget XmNmarginHeight XmLabelGadget

XmNalignment XmLabelGadget XmNmarginLeft XmLabelGadget

XmNancestorSensitive RectObj XmNmarginRight XmLabelGadget

XmNbackground XmGadget XmNmarginTop XmLabelGadget

XmNbackgroundPixmap XmGadget XmNmarginWidth XmLabelGadget

XmNbottomShadowColor XmGadget XmNmnemonic XmLabelGadget

XmNbottomShadowPixmap XmGadget XmNmnemonicCharSet XmLabelGadget

XmNborderWidth RectObj XmNnavigationType XmGadget

XmNdestroyCallback Object XmNrecomputeSize XmLabelGadget

XmNfontList XmLabelGadget XmNrenderTable XmLabelGadget

XmNforeground XmGadget XmNsensitive RectObj

XmNheight RectObj XmNshadowThickness XmGadget

XmNhelpCallback XmGadget XmNstringDirection XmLabelGadget

XmNhighlightColor XmGadget XmNtopShadowColor XmGadget

XmNhighlightOnEnter XmGadget XmNtopShadowPixmap XmGadget

XmNhighlightPixmap XmGadget XmNtraversalOn XmGadget

XmNhighlightThickness XmGadget XmNunitType XmGadget

XmNlabelInsensitivePixmap XmLabelGadget XmNuserData XmGadget

XmNlabelPixmap XmLabelGadget XmNwidth RectObj

XmNlabelType XmLabelGadget XmNx RectObj

XmNlayoutDirection XmGadget XmNy RectObj

Event Action

BSelect Press MenuBarSelect() (in a menu bar)
StartDrag() (in a popup or pulldown menu)

BSelect Release DoSelect()

MCtrl BSelect Press MenuButtonTakeFocus()
630 Motif Reference Manual

Motif and Xt Widget Classes XmCascadeButtonGadget

 asso-
b-
osts
In a menu bar that is armed, CascadeButtonGadget has additional behavior
ciated with <Enter>, which arms the CascadeButtonGadget and posts its su
menu, and with <Leave>, which disarms the CascadeButtonGadget and unp
its submenu.

See Also
XmCascadeButtonHighlight (1), XmCreateObject (1),
XmOptionButtonGadget (1), Object (2), RectObj (2),
XmCascadeButton (2), XmGadget(2), XmLabelGadget (2),
XmRowColumn(2).

MCtrl BSelect Release MenuButtonTakeFocusUp()

KActivate KeySelect()

KSelect KeySelect()

KHelp Help()

MAny KCancel CleanupMenuBar()

Event Action
Motif Reference Manual 631

XmCheckBox Motif and Xt Widget Classes

e-
d at
-
e.

ues.
og-

r
eck-
n
e
e

Name
XmCheckBox – a RowColumn that contains ToggleButtons.

Synopsis

Public Header:
<Xm/RowColumn.h>

Class Name:
XmRowColumn

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmRowColumn

Class Pointer:
xmRowColumnWidgetClass

Instantiation:
widget =XmCreateSimpleCheckBox (parent, name,...)

Functions/Macros:
XmCreateRowColumn (), XmCreateSimpleCheckBox (), XmIsRowCol-
umn(),
XmVaCreateSimpleCheckBox ()

Description
An XmCheckBox is an instance of a RowColumn widget that contains Toggl
Button or ToggleButtonGadget children, any number of which may be selecte
a given time. A CheckBox is a RowColumn widget with its XmNrowColumn
Type resource set to XmWORK_AREA and XmNradioAlwaysOne set to Fals

A CheckBox can be created by making a RowColumn with these resource val
When it is created in this way, a CheckBox does not automatically contain T
gleButton children; they are added by the application.

A CheckBox can also be created by a call to XmCreateSimpleCheckBox() o
XmVaCreateSimpleCheckBox(). These routines automatically create the Ch
Box with ToggleButtonGadgets as children. The routines use the RowColum
resources associated with the creation of simple menus. For a CheckBox, th
only type allowed in the XmNbuttonType resource is XmCHECKBUTTON. Th
name of each ToggleButtonGadget isbutton_n, wheren is the number of the but-
ton, ranging from 0 to 1 less than the number of buttons in the CheckBox.
632 Motif Reference Manual

Motif and Xt Widget Classes XmCheckBox
Default Resource Values
A CheckBox sets the following default values for its resources:

See Also
XmCreateObject (2), XmVaCreateSimpleCheckBox (2),
XmRowColumn(2), XmToggleButton (2), XmToggleButtonGadget (2).

Name Default

XmNnavigationType XmTAB_GROUP

XmNradioBehavior False

XmNrowColumnType XmWORK_AREA

XmNtraversalOn True
Motif Reference Manual 633

XmComboBox Motif and Xt Widget Classes

t

 list

er-

ing
tem
uto-
Name
XmComboBox widget class – a composite widget which combines a text widge
with a list of choices.

Synopsis

Public Header:
<Xm/ComboBox.h>

Class Name:
XmComboBox

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmComboBox

Class Pointer:
xmComboBoxWidgetClass

Instantiation:
widget =XmCreateComboBox (parent, name,...)
or
widget =XmCreateDropDownComboBox (parent, name,...)
or
widget =XmCreateDropDownList (parent, name,...)
or
widget =XtCreateWidget (name, xmComboBoxWidgetClass,...)

Functions/Macros:
XmComboBoxAddItem(), XmComboBoxDeletePos (), XmComboBoxSe-
lectItem (),
XmComboBoxSetItem (), XmComboBoxUpdate(), XmCreateCom-
boBox (),
XmCreateDropDownComboBox (), XmCreateDropDownList (), XmIs-
ComboBox()

Availability
Motif 2.0 and later.

Description
ComboBox is a composite widget that combines both text entry and scrolled
selection. The ComboBox can be configured in various ways, depending on
whether the text field is to be editable, and whether the scrolled list is to be p
manently visible. The text field contains the currently selected item; an item
selected from the list is automatically placed into the text field. Whether enter
data into the text field, or selecting from the list, the user can select only one i
at any given time. Data typed directly into the text field does not, however, a
matically select any matching item in the list.
634 Motif Reference Manual

Motif and Xt Widget Classes XmComboBox

d
 the
n
-

e
m

u

t
t,
ld,
a

t

o
com-
vior
re
nd,
e
m.

the
. If
e
w

its.
By default, both the text field and the list are fully visible, and the list is place
underneath the text widget. The user can either enter characters directly into
text field, or select an item from the list. Alternatively, the ComboBox widget ca
be configured such that the list is hidden until required. In this case, the Com
boBox widget draws an arrow button adjacent to the text field. Clicking on th
arrow displays the hidden list underneath the text field. Selecting an item fro
the displayed popup list automatically pops down the list.

The XmNcomboBoxType resource configures the type of the ComboBox. Yo
may specify one of the following types: combo box (XmCOMBO_BOX),
drop-down combo box (XmDROP_DOWN_COMBO_BOX), or drop-down lis
(XmDROP_DOWN_LIST). The combo box type has a permanently visible lis
and the text field is editable. A drop-down combo box has an editable text fie
the list is hidden, and the arrow button is drawn. A drop-down list is identical to
drop-down combo box except that the text field is not editable: the user mus
select from the list to change the selection.

If the ComboBox widget has a non-editable text field, any characters typed d
not appear directly in the text field. Instead, any characters entered may be
pared against items in the list, depending on the value of the XmNmatchBeha
resource. When enabled, and the list has the input focus, characters typed a
compared against the first character of each item in the list. If a match is fou
the matched list item is automatically selected. Subsequently typing the sam
character progresses cyclically through the list to find any further matching ite

The position of the drawn arrow button relative to the text field depends upon
XmNlayoutDirection resource of the Shell ancestor of the ComboBox widget
XmNlayoutDirection is XmLEFT_TO_RIGHT, the arrow button is drawn to th
right of the text field. Otherwise, a value XmRIGHT_TO_LEFT draws the arro
button to the left.

Traits
ComboBox uses the XmQTaccessTextual and XmQTspecifyRenderTable tra

New Resources
ComboBox defines the following resources:

Name Class Type Default Access

XmNarrowSize XmCArrowSize Dimension dynamic CSG

XmNarrowSpacing XmCArrowSpacing Dimension dynamic CSG

XmNcolumns XmCColumns short dynamic CSG

XmNcomboBoxType XmCComboBoxType unsigned char XmCOMBO_BOX CG

XmNfontList XmCFontList XmFontList NULL CSG
Motif Reference Manual 635

XmComboBox Motif and Xt Widget Classes

lt

st to
 is
om-

xt

e
ck-
XmNarrowSize
The size of the drawn arrow button used to display the hidden list. The defau
size depends upon the size of the text field, and the size of the ComboBox
widget. Attempting to change the arrow size may result in a geometry reque
the parent of the ComboBox widget. If this request is refused, the arrow size
set to the maximum size that fits into the space allowed by the parent of the C
boBox widget.

XmNarrowSpacing
The horizontal spacing, in pixels, between the drawn arrow button and the te
field. The default value is calculated from the value of the XmNmarginWidth
resource.

XmNcolumns
Specifies the number of columns in the text field. The default value is that of
XmTextField.

XmNcomboBoxType
Specifies the type of the ComboBox. Possible values:

XmCOMBO_BOX /* visible list; editable text field */
XmDROP_DOWN_COMBO_BOX /*hidden list; editable text field */
XmDROP_DOWN_LIST /*hidden list; non-editable text field*/

XmNfontList
The font list used for the items in the list and text field. In Motif 2.0 and later, th
XmFontList is obsolete as a data type, and the resource is maintained for ba
wards compatibility through an implementation as an XmRenderTable. The

XmNhighlightThickness XmCHighlightThickness Dimension dynamic CSG

XmNitemCount XmCItemCount int dynamic CSG

XmNitems XmCItems XmStringTable dynamic CSG

XmNlist XmCList Widget dynamic G

XmNmarginHeight XmCMarginHeight Dimension 2 CSG

XmNmarginWidth XmCMarginWidth Dimension 2 CSG

XmNmatchBehavior XmCMatchBehavior unsigned char dynamic CSG

XmNpositionMode XmCPositionMode XtEnum XmZERO_BASED CG

XmNrenderTable XmCRenderTable XmRenderTable dynamic CSG

XmNselectedItem XmCSelectedItem XmString NULL CSG

XmNselectedPosition XmCSelectedPosition int 0 CSG

XmNtextField XmCTextField Widget dynamic G

XmNvisibleItemCount XmCVisibleItemCount int 10 CSG

Name Class Type Default Access
636 Motif Reference Manual

Motif and Xt Widget Classes XmComboBox

. If
nce.

ist.
 or

in
ca-
e is

s on

hild

ld

are
XmNrenderTable resource is the preferred method of specifying appearance
both a render table and font list are specified, the render table takes precede
The default font list is taken from the default render table.

XmNhighlightThickness
The thickness of the highlighting rectangle. In Motif 2.0, the default is 2. In
Motif 2.1 and later, the default depends upon the value of the XmDisplay
resource XmNenableThinThickness: if True, the default is 1, otherwise 2.

XmNitemCount
The total number of items. If unspecified, the value is taken from the internal l
The ComboBox widget updates this resource every time a list item is added
removed through the ComboBox convenience functions.

XmNitems
A pointer to an array of compound strings, representing the items to display
the list. A call to XtGetValues() returns the actual list items, not a copy. Appli
tions should not directly free any items fetched in this manner. If the resourc
unspecified, the value is taken from the internal list. The ComboBox widget
updates this resource every time a list item is added or removed through the
ComboBox convenience functions.

XmNlist
The list widget created by the ComboBox. Applications may not change the
value of this resource, but may fetch the value to perform required operation
the internal list.

XmNmarginHeight
The minimum spacing between the ComboBox top or bottom edge and the c
list and text field widgets.

XmNmarginWidth
The minimum spacing between the ComboBox left or right edge and the chi
list and text field widgets.

XmNmatchBehavior
Determines whether matching behavior is enabled, where characters typed
compared against items in the list. Possible values:

XmNONE /* No match behavior */
XmQUICK_NAVIGATE /* Match behavior enabled*/

The value XmQUICK_NAVIGATE may only be specified if the XmNcom-
boBoxType resource has value XmDROP_DOWN_LIST.
XmQUICK_NAVIGATE is the default when XmNcomboBoxType is
XmDROP_DOWN_LIST. Otherwise, XmNONE is the default.
Motif Reference Manual 637

XmComboBox Motif and Xt Widget Classes

ll-
rce.

-
ck-
to
larly,

ng
d at
rce

ero.

not

s in

e
ith

and

h-

t.

the
XmNpositionMode
Specifies the way in which the position of the selected item is reported in ca
backs, and controls the initial index value of the XmNselectedPosition resou
Possible values:

XmZERO_BASED /*first item in list is position zero*/
XmONE_BASED /*first item in list is position one*/

A value of XmZERO_BASED configures callback data on the XmNselection
Callback list such that the item_position element of the XmComboBoxCallba
Struct is indexed from zero: selecting the first list item has item_position set
zero, selecting the second item has item_position as one, and so forth. Simi
fetching the XmNselectedPosition resource when the first item in the list is
selected will return the value zero.

A value of XmONE_BASED sets the item_position element such that selecti
the first item in the list is reported at position one, the second item is reporte
position two, and so on. By analogy, fetching the XmNselectedPosition resou
when the first item in the list is selected will return the value one.

In all cases, changes to the text field are reported with item_position set to z

A XmNpositionMode of XmONE_BASED therefore makes it easier to distin-
guish between text field and list selection, since item_position set to zero is
ambiguous.

The ComboBox convenience functions for adding, deleting, or selecting item
the list are unaffected by the value of this resource: these functions always
assume that the first item is at position one.

This resource is provided for CDE compatibility. In particular, setting the valu
to XmZERO_BASED makes the ComboBox selection behavior consistent w
that of the DtComboBox widget.

XmNrenderTable
Specifies the render table for the ComboBox, and is used in both the text field
list children. If NULL, this is inherited from the nearest ancestor that has the
XmQTspecifyRenderTable trait. The BulletinBoard, VendorShell, and MenuS
ell widgets and derived classes set this trait.
The render table resource takes precedence over any specified XmNfontLis

XmNselectedItem
A compound string representing the currently selected item contained within
ComboBox text field.
638 Motif Reference Manual

Motif and Xt Widget Classes XmComboBox

he
si-
i-
 is

ist

the
s on

et.
ox

-
at-
XmNselectedPosition
Identifies the index of the XmNselectedItem in the list. The interpretation of t
index depends upon the value of the XmNpositionMode resource. If XmNpo
tionMode is XmZERO_BASED, a XmNselectedPosition value of 0 (zero) ind
cates that the first list item is selected, a value of 1 indicates the second item
selected, and so forth. If XmNpositionMode is XmONE_BASED, the value 1
indicates that the first list item is selected, the value 2 indicates the second l
item, and so on, with value 0 (zero) indicating that no list item is selected.

XmNtextField
The text field widget created by the ComboBox. Applications may not change
value of this resource, but may fetch the value to perform required operation
the internal text field.

XmNvisibleItemCount
The number of items to display in the work area of the list. If specified, this
resource overrides the XmNvisibleItemCount resource of the internal list widg
The resource may affect the height of the list widget, and hence the ComboB
itself, depending upon whether the list is permanently visible. If the XmNvisi
bleItemCount value is less than the number of items in the list, the list is autom
ically configured with a vertical ScrollBar.

Callback Resources
ComboBox defines the following callback resources:

XmNselectionCallback
List of callbacks that are called when a selection occurs in the ComboBox
widget.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /*the reason that the callback was called */
XEvent *event; /*points to event structure that triggered callback*/
XmString item_or_text; /*the selected item */
int item_position; /*the index of the item in the list */

} XmComboBoxCallbackStruct;

Callback Reason Constant

XmNselectionCallback XmCR_SELECT
Motif Reference Manual 639

XmComboBox Motif and Xt Widget Classes

cks
the

the
e
t,
ed

m

ta-
,
is

ha-
fault
n-

nd
ess
The item_or_text element is a compound string representing the ComboBox
selected item. It points to allocated memory that is reclaimed after the callba
on the XmNselectionCallback list have returned. If the item is to be cached,
application should copy the item using XmStringCopy().

The item_position element specifies the index of the selected item within the
XmNitems array of the list. The interpretation of the value will depend upon
XmNpositionMode resource of the ComboBox widget. With XmNpositionMod
set to XmONE_BASED, an item_position of 1 refers to the first item in the lis
and an item_position of zero indicates that the selected item has been enter
directly into the text field (no list selection). With a XmNpositionMode of
XmZERO_BASED, an item_position of zero could either mean that the first ite
in the list is selected, or that the selection is from direct text entry, and an
item_position of 1 refers to the second list item.

Default Resource Values
A ComboBox sets the following default values for the scrolled list resources:

If the ComboBox is a drop down list, XmNcursorPositionVisible and XmNedi
ble are set to False, and the XmNshadowThickness is set to zero. Otherwise
XmNcursorPositionVisible and XmNeditable are set True, and XmNeditMode
set to XmSINGLE_LINE_EDIT.

Inherited Resources
ComboBox inherits the resources shown below. The resources are listed alp
betically, along with the superclass that defines them. ComboBox sets the de
values of XmNmarginWidth, and XmNmarginHeight to 2, and XmNnavigatio
Type to XmSTICKY_TAB_GROUP. The default value of XmNborderWidth is
reset to 0 (zero) by Manager. The default values for XmNhighlightThickness a
XmNshadowThickness depend upon the XmDisplay XmNenableThinThickn
resource: if True, the default is 1, otherwise 2.

Name Default

XmNborderWidth 0

XmNhighlightThickness dynamic

XmNlistSizePolicy XmVARIABLE

XmNnavigationType XmNONE

XmNrenderTable dynamic

XmNselectionPolicy XmBROWSE_SELECT

XmNspacing 0

XmNtraversalOn dynamic

XmNvisualPolicy XmVARIABLE
640 Motif Reference Manual

Motif and Xt Widget Classes XmComboBox

t is
d

Widget Hierarchy
The ComboBox creates the text field with the name Text, and the scrolled lis
named List. If the ComboBox is of a drop down type, an XmGrabShell name
GrabShell is created as parent to the scrolled list.

Translations
The translations for ComboBox include those of XmManager.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmManager XmNsensitive Core

XmNbottomShadowPixmap XmManager XmNshadowThickness XmManager

XmNchildren Composite XmNstringDirection XmManager

XmNcolormap Core XmNtopShadowColor XmManager

XmNdepth Core XmNtopShadowPixmap XmManager

XmNdestroyCallback Core XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNwidth Core

XmNhighlightPixmap XmManager XmNx Core

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core

Event Action

BSelect Press CBArmAndDropDownList()

BSelect Release CBDisarm()
Motif Reference Manual 641

XmComboBox Motif and Xt Widget Classes

on

xt
se-

se-

 is
-

ComboBox places the following translations upon the list:

ComboBox places the following translations upon the text field:

Action Routines
ComboBox defines the following action routines:

CBArmAndDropDownList()
If the mouse is over the drawn arrow button, draws the arrow butt
as though selected, and posts the drop-down list.

CBDisarm()
Draws the arrow button in unselected state.

CBDropDownList()
Posts the drop-down list

CBFocusIn()
Draws focus highlighting around the ComboBox widget.

CBFocusOut()
Erases focus highlighting around the ComboBox widget. If the te
field has changed, invokes the list of callbacks specified by XmN
lectionCallback.

CBCancel()
Pops down the drop-down list, and draws the arrow button in un
lected state.

CBActivate()
Fetches the value from the text field. If the XmNcomboBoxType
XmCOMBO_BOX, invokes the list of callbacks specified by XmN
defaultActionCallback for the internal list, passing the text field

Event Action

KDown CBDropDownList()

KUp CBDropDownList()

KCancel CBCancel()

KActivate CBActivate()

MShift KBeginData CBListAction(ListBeginData)

MShift KEndData CBListAction(ListEndData)

KPageUp CBListAction(ListPrevPage)

KPageDown CBListAction(ListNextPage)

Event Action

<FocusOut> CBTextFocusOut()
642 Motif Reference Manual

Motif and Xt Widget Classes XmComboBox

of
,

ge,

to
he
value as the selected item within the callback data. Regardless
XmNcomboBoxType, if the value matches an item within the list
the list item is selected, otherwise all list items are deselected.
Lastly, the list of callbacks specified by XmNselectionCallback is
invoked.

CBListAction(type)
A generic action to perform operations on the internal list. The
action type may be one of Up, Down, ListPrevPage, ListNextPa
ListBeginData, or ListEndData. The types Up and Down simply
select the relevant item in the list in the required direction relative
the currently selected item. The remaining types directly invoke t
ListPrevPage, ListNextPage, ListBeginData, or ListEndData
actions of the list. The types Up and Down differ from the corre-
sponding List actions in that the ComboBox actions will wrap
around the items in the internal list.

CBTextFocusOut()
Turns off text field cursor blinking.

See Also
XmComboBoxAddItem(1), XmComboBoxDeletePos (1),
XmComboBoxSelectItem (1), XmComboBoxSetItem (1),
XmComboBoxUpdate(1), XmCreateObject (1), Composite (2),
Constraint (2), Core (2), XmManager(2).
Motif Reference Manual 643

XmCommand Motif and Xt Widget Classes

nd
Name
XmCommand widget class – a composite widget for command entry.

Synopsis

Public Header:
<Xm/Command.h>

Class Name:
XmCommand

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmBulletinBoard→
XmSelectionBox→ XmCommand

Class Pointer:
xmCommandWidgetClass

Instantiation:
widget =XmCreateCommand (parent, name,...)
or
widget =XtCreateWidget (name, xmCommandWidgetClass,...)

Functions/Macros:
XmCommandAppendValue(), XmCommandError(), XmCommandGetCh-
ild (),
XmCommandSetValue(), XmCreateCommand(), XmIsCommand()

Description
Command is a composite widget that handles command entry by providing a
prompt, a command input field, and a history list region. Many of the Comma
widget’s new resources are in fact renamed resources from SelectionBox.

New Resources
Command defines the following resources:

Name Class Type Default Access

XmNcommand XmCTextString XmString NULL CSG

XmNhistoryItems XmCItems XmStringTable NULL CSG

XmNhistoryItemCount XmCItemCount int 0 CSG

XmNhistoryMaxItems XmCMaxItems int 100 CSG

XmNhistoryVisibleItemCount XmCVisibleItemCount int dynamic CSG

XmNpromptString XmCPromptString XmString dynamic CSG
644 Motif Reference Manual

Motif and Xt Widget Classes XmCommand

N-
 the

he

ous
XmNcommand
The text currently displayed on the command line. Synonymous with the Xm
textString resource in SelectionBox. XmNcommand can be changed using
routinesXmCommandSetValue() andXmCommandAppendValue().

XmNhistoryItems
The items in the history list. Synonymous with the XmNlistItems resource in
SelectionBox. A call toXtGetValues () returns the actual list items (not a
copy), so don’t have your application free these items.

XmNhistoryItemCount
The number of strings in XmNhistoryItems. Synonymous with the XmNlist-
ItemCount resource in SelectionBox.

XmNhistoryMaxItems
The history list’s maximum number of items. When this number is reached, t
first history item is removed before the new command is added to the list.

XmNhistoryVisibleItemCount
The number of history list commands that will display at one time. Synonym
with the XmNvisibleItemCount resource in SelectionBox.

XmNpromptString
The command-line prompt. Synonymous with the XmNselectionLabelString
resource in SelectionBox.

Callback Resources
Command defines the following callback resources:

XmNcommandChangedCallback
List of callbacks that are called when the value of the command changes.

XmNcommandEnteredCallback
List of callbacks that are called when a command is entered in the widget.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /*the reason that the callback was called */
XEvent *event; /*points to event structure that triggered callback*/
XmString value; /*the string contained in the command area */
int length; /* the size of this string */

} XmCommandCallbackStruct;

Callback Reason Constant

XmNcommandEnteredCallback XmCR_COMMAND_ENTERED

XmNcommandChangedCallback XmCR_COMMAND_CHANGED
Motif Reference Manual 645

XmCommand Motif and Xt Widget Classes

abet-
t val-
pe

der-
us
1 if
Inherited Resources
Command inherits the resources shown below. The resources are listed alph
ically, along with the superclass that defines them. Command sets the defaul
ues of XmNautoUnmanage and XmNdefaultPosition to False, XmNdialogTy
to XmDIALOG_COMMAND, and XmNlistLabelString to NULL. In versions of
Motif prior to 2.1.10, XmNresizePolicy is reset to XmRESIZE_NONE.

In Motif 2.1.10 and later, it is reset to XmRESIZE_ANY: this undocumented
change is a bug which persists in Motif 2.1.20. The default value of XmNbor
Width is reset to 0 by Manager. BulletinBoard sets the value of XmNinitialFoc
to XmNdefaultButton and resets the default XmNshadowThickness from 0 to
the Command widget is a child of a DialogShell.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNlistItemCount XmSelectionBox

XmNallowOverlap XmBulletinBoard XmNlistItems XmSelectionBox

XmNancestorSensitive Core XmNlistLabelString XmSelectionBox

XmNapplyCallback XmSelectionBox XmNlistVisibleItemCount XmSelectionBox

XmNapplyLabelString XmSelectionBox XmNmapCallback XmBulletinBoard

XmNautoUnmanage XmBulletinBoard XmNmappedWhenManaged Core

XmNbackground Core XmNmarginHeight XmBulletinBoard

XmNbackgroundPixmap Core XmNmarginWidth XmBulletinBoard

XmNborderColor Core XmNminimizeButtons XmSelectionBox

XmNborderPixmap Core XmNmustMatch XmSelectionBox

XmNborderWidth Core XmNnavigationType XmManager

XmNbottomShadowColor XmManager XmNnoMatchCallback XmSelectionBox

XmNbottomShadowPixmap XmManager XmNnoResize XmBulletinBoard

XmNbuttonFontList XmBulletinBoard XmNnumChildren Composite

XmNbuttonRenderTable XmBulletinBoard XmNokCallback XmSelectionBox

XmNcancelButton XmBulletinBoard XmNokLabelString XmSelectionBox

XmNcancelCallback XmSelectionBox XmNpopupHandlerCallback XmManager

XmNcancelLabelString XmSelectionBox XmNresizePolicy XmBulletinBoard

XmNchildren Composite XmNscreen Core

XmNchildPlacement XmSelectionBox XmNselectionLabelString XmSelectionBox

XmNcolormap Core XmNsensitive Core

XmNdefaultButton XmBulletinBoard XmNshadowThickness XmManager

XmNdefaultPosition XmBulletinBoard XmNshadowType XmBulletinBoard

XmNdepth Core XmNstringDirection XmManager
646 Motif Reference Manual

Motif and Xt Widget Classes XmCommand

m-
i-

s,
Translations
The translations for Command are inherited from XmSelectionBox.

Action Routines
Command defines the following action routines:

SelectionBoxUpOrDown(flag)
Selects a command from the history list, replaces the current co
mand-line text with this list item, and invokes the callbacks spec
fied by XmNcommandChangedCallback. The value of flag
determines which history list command is selected. With a flag
value of 0, 1, 2, or 3, this action routine selects the list’s previou
next, first, or last item, respectively.

Additional Behavior
Command has the following additional behavior:

MAny KCancel
The event is passed to the parent if it is a manager widget.

XmNdestroyCallback Core XmNtextAccelerators XmSelectionBox

XmNdialogStyle XmBulletinBoard XmNtextColumns XmSelectionBox

XmNdialogTitle XmBulletinBoard XmNtextFontList XmBulletinBoard

XmNdialogType XmSelectionBox XmNtextRenderTable XmBulletinBoard

XmNfocusCallback XmBulletinBoard XmNtextString XmSelectionBox

XmNforeground XmManager XmNtextTranslations XmBulletinBoard

XmNheight Core XmNtopShadowColor XmManager

XmNhelpCallback XmManager XmNtopShadowPixmap XmManager

XmNhelpLabelString XmSelectionBox XmNtranslations Core

XmNhighlightColor XmManager XmNtraversalOn XmManager

XmNhighlightPixmap XmManager XmNunitType XmManager

XmNinitialFocus XmManager XmNunmapCallback XmBulletinBoard

XmNinitialResourcesPersistent Core XmNuserData XmManager

XmNinsertPosition Composite XmNwidth Core

XmNlabelFontList XmBulletinBoard XmNx Core

XmNlabelRenderTable XmBulletinBoard XmNy Core

XmNlayoutDirection XmManager

Resource Inherited From Resource Inherited From
Motif Reference Manual 647

XmCommand Motif and Xt Widget Classes

 the

ll-

-

KActivate
In the Text widget, invokes the XmNactivateCallback callbacks,
appends the text to the history list, and invokes the XmNcom-
mandEnteredCallback callbacks.

<Key>
In the Text widget, any keystroke that changes text invokes the
XmNcommandChangedCallback callbacks.

KActivate or <DoubleClick>
In the List widget, invokes the XmNdefaultActionCallback call-
backs, appends the selected item to the history list, and invokes
XmNcommandEnteredCallback callbacks.

<FocusIn>
Invokes the XmNfocusCallback callbacks.

<MapWindow>
If the widget is a child of a DialogShell, invokes the XmNmapCa
back callbacks when the widget is mapped.

<UnmapWindow>
If the widget is a child of a DialogShell, invokes the XmNunmap
Callback callbacks when the widget is unmapped.

See Also
XmCommandAppendValue(1), XmCommandError(1),
XmCommandGetChild (1), XmCommandSetValue(1),
XmCreateObject (1), Composite (2), Constraint (2), Core (2),
XmBulletinBoard (2), XmManager(2), XmSelectionBox (2).
648 Motif Reference Manual

Motif and Xt Widget Classes XmContainer

f a

on-

ner
lect-

, call-
nd
ainer
ner-

ed
Name
XmContainer widget class – a widget which controls the layout and selection o
set of items

Synopsis

Public Header:
<Xm/Container.h>

Class Name:
XmContainer

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmContainer

Class Pointer:
xmContainerWidgetClass

Instantiation:
widget =XmCreateContainer (parent, name,...)
or
widget =XtCreateWidget (name, xmContainerWidgetClass,...)

Functions/Macros:
XmContainerCopy (), XmContainerCopyLink (), XmContainerCut (),
XmContainerGetItemChild (), XmContainerPaste (), XmContain-
erPasteLink (), XmContainerRelayout (), XmContainerReorder (),
XmCreateContainer ()

Availability
Motif 2.0 and later.

Description
A Container is a constraint widget which controls the layout and selection of c
tainer items. Container is intended to provide an object-oriented view of the
world: an application object can be represented in the Container as a contai
item. The user can subsequently manipulate the item by moving, copying, se
ing, or deleting it, or perform drag and drop operations between applications
using the item. New items can be dropped into the Container. At each stage
backs indicate to the application the operation performed upon each item, a
hence the requested operation upon the object which it represents. The Cont
recognises as a container item any child widget which holds the XmQTcontai
Item trait. The IconGadget is the only standard Motif widget to hold this trait.

The Container provides three styles in which items can be displayed, specifi
through the XmNlayoutType resource. The resource can have the values
XmOUTLINE, XmDETAIL, or XmSPATIAL.
Motif Reference Manual 649

XmContainer Motif and Xt Widget Classes

ro-
her.
ar-

or
the
re

le
y of
ified
ead-
e

on-
f a
e
n-
ose

lec-

ing
es
the
c-

L.

er
r,
The XmOUTLINE layout style provides a tree view onto the items, and is app
priate when application objects exist in a parent/child relationship to each ot
The logical relationship between items is specified by setting the XmNentryP
ent constraint resource of an item to point to the logical parent. The order of
items within the tree depends upon the XmNpositionIndex constraint value f
each item. The Container draws connecting lines between items to indicate
relationships. The Container creates additional PushButtonGadgets which a
used for folding and unfolding portions of the tree.

The XmDETAIL layout style gives a tabular format, where each row of the tab
represents an object, each cell within the row possibly representing a propert
the object. The data attached to an object and displayed in the row is spec
through the XmNdetail resources of the associated container item. Column h
ings can be specified through the XmNdetailColumnHeading resources of th
Container.

The XmSPATIAL layout style provides generic layout, where the exact positi
ing of items is controlled through further resources. This can take the form o
grid layout, where items can span single or multiple cells of the grid, or a fre
format where items can be positioned at absolute x, y coordinates of the Co
tainer. At the simplest, the grid layout can be used to construct a general purp
icon box. The resources XmNspatialStyle, XmNspatialIncludeModel, and
XmNspatialSnapModel control the positioning of items.

The Container controls the way in which items are selected, and provides se
tion notification. The widget supports single, browse, multiple, and extended
selection. Selection of items within the Container can be performed by includ
them within a rubberband rectangle called a Marquee, which the user specifi
using the mouse. Alternatively, selection can be performed by simply swiping
mouse over an item. The style of selection is specified through the XmNsele
tionTechnique resource.

The user can only move container items if the XmNlayoutType is XmSPATIA

Traits
Container holds the XmQTtransfer, XmQTtraversalControl, and XmQTcontain
traits, and uses the XmQTscrollFrame, XmQTcontainerItem, XmQTnavigato
XmQTspecifyRenderTable, and XmQTpointIn traits.
650 Motif Reference Manual

Motif and Xt Widget Classes XmContainer

Name Access

XmNaut CSG

XmNcoll CSG

XmNdet CSG

XmNdet CSG

XmNdet CSG

XmNdet CSG

XmNdet CSG

XmNent CSG

XmNexp CSG

XmNfon CSG

XmNlarg CSG

XmNlarg CSG

XmNlayo CSG

XmNma CSG

XmNma CSG

XmNout T CSG

XmNout CSG

XmNout CSG

XmNout CSG

XmNprim CSG

XmNren CSG

XmNsele S CSG

XmNsele SG

XmNsele SG

XmNsele CSG

XmNsele CSG

XmNsma CSG

XmNsma CSG

XmNspa CSG

XmNspa CSG

XmNspa CSG

XmNspa CSG
New Resources
Container defines the following resources:

Class Type Default

omaticSelection XmCAutomaticSelection unsigned char XmAUTO_SELECT

apsedStatePixmap XmCCollapsedStatePixmap Pixmap dynamic

ailColumnHeading XmCDetailColumnHeading XmStringTable NULL

ailColumnHeadingCount XmCDetailColumnHeadingCount Cardinal 0

ailOrder XmCDetailOrder Cardinal * NULL

ailOrderCount XmCDetailOrderCount Cardinal 0

ailTabList XmCDetailTabList XmTabList NULL

ryViewType XmCEntryViewType unsigned char XmANY_ICON

andedStatePixmap XmCExpandedStatePixmap Pixmap dynamic

tList XmCFontList XmFontList dynamic

eCellHeight XmCCellHeight Dimension 0

eCellWidth XmCCellWidth Dimension 0

utType XmCLayoutType unsigned char XmSPATIAL

rginHeight XmCMarginHeight Dimension 0

rginWidth XmCMarginWidth Dimension 0

lineButtonPolicy XmCOutlineButtonPolicy unsigned char XmOUTLINE_BUTTON_PRESEN

lineColumnWidth XmCOutlineColumnWidth Dimension 0

lineIndentation XmCOutlineIndentation Dimension 40

lineLineStyle XmCOutlineLineStyle unsigned char XmSINGLE

aryOwnership XmCPrimaryOwnership unsigned char XmOWN_POSSIBLE_MULTIPLE

derTable XmCRenderTable XmRenderTable dynamic

ctColor XmCSelectColor Pixel XmREVERSED_GROUND_COLOR

ctedObjectCount XmCSelectedObjectCount int 0

ctedObjects XmCSelectedObjects WidgetList NULL

ctionPolicy XmCSelectionPolicy unsigned char XmEXTENDED_SELECT

ctionTechnique XmCSelectionTechnique unsigned char XmTOUCH_OVER

llCellHeight XmCCellHeight Dimension 0

llCellWidth XmCCellWidth Dimension 0

tialIncludeModel XmCSpatialIncludeModel unsigned char XmAPPEND

tialResizeModel XmCSpatialResizeModel unsigned char XmGROW_MINOR

tialSnapModel XmCSpatialSnapModel unsigned char XmNONE

tialStyle XmCSpatialStyle unsigned char XmGRID
Motif Reference Manual 651

XmContainer Motif and Xt Widget Classes

that
-

ical
as

d,

ut.

ing

hich

sso-

e. If

to
lt
e

E-

,

XmNautomaticSelection
Specifies whether selection callbacks are invoked immediately and each time
an item is selected, or whether callbacks are invoked when the user has com
pleted the selection action. Possible values:

XmAUTO_SELECT /*callbacks called immediately on selection*/
XmNO_AUTO_SELECT /*callbacks delayed until user action completed
*/

XmNcollapsedStatePixmap
Specifies the pixmap to display on the PushButtonGadget to indicate that log
child items are folded (hidden) within an XmOUTLINE layout. The resource h
no effect unless resource XmNoutlineButtonPolicy is
XmOUTLINE_BUTTON_PRESENT. Otherwise, if the resource is unspecifie
a default pixmap with an upwards pointing arrow is displayed.

XmNdetailColumnHeading
Specifies an XmString array to use as column headings in an XmDETAIL layo
No column headings are displayed if the value is NULL.

XmNdetailColumnHeadingCount
Specifies the length of the array associated with the XmNdetailColumnHead
resource.

XmNdetailOrder
Specifies an array of Cardinal values that represents which column, and in w
order, the detail data associated with container items is to be displayed. The
resource has no effect unless XmNlayoutType is XmDETAIL. If NULL, the
XmNdetailOrderCount resource is used to determine the column detail data a
ciated with each item.

XmNdetailOrderCount
Specifies the length of the array associated with the XmNdetailOrder resourc
XmNdetailOrder is NULL, and XmNdetailOrderCount is not zero, each con-
tainer item displays any detail information in order starting from column 1, up
the value of XmNdetailOrderCount. Otherwise, with a value of zero, a defau
algorithm inspects the XmQTcontainerItem trait of each item to determine th
columnar data.

XmNdetailTabList
Specifies an XmTabList which indicates the start of each column in an XmD
TAIL layout. If NULL, the Container calculates a default XmTabList.

XmNentryViewType
Specifies the view type for all Container children. If the value is XmANY_ICON
then the XmQTcontainerItem trait of each child specifies the individual view
type. Possible values:
652 Motif Reference Manual

Motif and Xt Widget Classes XmContainer

ical
out-

dis-

sub-
kes

dis-

 not

e-
-
ap
XmANY_ICON /* children use their own view type*/
XmLARGE_ICON /* all children forced to XmLARGE_ICON*/
XmSMALL_ICON /* all children forced to XmSMALL_ICON*/

XmNexpandedStatePixmap
Specifies the pixmap to display on the PushButtonGadget to indicate that log
child items are unfolded (displayed). The resource has no effect unless XmN
lineButtonPolicy is XmOUTLINE_BUTTON_PRESENT. Otherwise, if the
resource is unspecified, a default pixmap with a downwards pointing arrow is
played.

XmNfontList
The XmFontList is considered obsolete in Motif 2.0 and later, and has been
sumed into the XmRenderTable. Any specified XmNrenderTable resource ta
precedence.

XmNlargeCellHeight
Specifies the height of a cell when the Container is using a grid layout. The
resource is not used when XmNentryViewType is XmSMALL_ICON.

XmNlargeCellWidth
Specifies the width of a cell when the Container is using a grid layout. The
resource is not used when XmNentryViewType is XmSMALL_ICON.

XmNlayoutType
Specifies the way in which the Container lays out children. Possible values:

XmOUTLINE /* items are displayed in a tree arrangement */
XmSPATIAL /* items displayed according to XmNspatialStyle resource*/
XmDETAIL /* items displayed in tabular row/column format */

XmNmarginHeight
Specifies the spacing at the top and bottom of the Container widget.

XmNmarginWidth
Specifies the spacing at the left and right of the Container widget.

XmNoutlineButtonPolicy
Specifies whether a PushButtonGadget, used for folding/unfolding items, is
played with each container item that has logical children, specified by the
XmNentryParent resource. The resource has no effect if XmNspatialStyle is
XmOUTLINE. Possible values:

XmOUTLINE_BUTTON_ABSENT /*display fold/unfold buttons*/
XmOUTLINE_BUTTON_PRESENT /*no PushButtonGadget buttons*/

XmNoutlineColumnWidth
Specifies the width of the first column within an XmDETAIL layout, and the pr
ferred width of the Container within an XmOUTLINE layout. If zero, the Con
tainer will deduce a default value based upon the width of the widest item pixm
and the XmNoutlineIndentation resource.
Motif Reference Manual 653

XmContainer Motif and Xt Widget Classes

n

hen
:

LL,
,

tate.

 as

re-
XmNoutlineIndentation
Specifies an indentation for container items. The resource has no effect whe

XmNlayoutType1 is XmSPATIAL.

XmNoutlineLineStyle
Specifies whether to draw connecting lines between container items in an
XmOUTLINE or XmDETAIL layout. Possible values:

XmNO_LINE /* no line is drawn between items */
XmSINGLE /* a line one pixel wide connects items
*/

XmNprimaryOwnership
Specifies whether the Container takes possession of the primary selection w
the user makes a selection from the items within the widget. Possible values

XmOWN_NEVER /* never own the primary selection
*/
XmOWN_ALWAYS /* always own the primary selection
*/
XmOWN_MULTIPLE /* own if more than one item is selected
*/
XmOWN_POSSIBLE_MULTIPLE /*own if multiple selection possible
*/

XmNrenderTable
Specifies the render table that is used for all children of the Container. If NU
the nearest ancestor holding the XmQTspecifyRenderTable trait is searched
using the XmLABEL_FONTLIST value.

XmNselectColor
Specifies a color which container item children can use to indicate selected s
In addition to allocated Pixel values, the constant
XmDEFAULT_SELECT_COLOR specifies a color between the XmNback-
ground and XmNbottomShadowColor, XmHIGHLIGHT_COLOR makes the
select color the same as the XmNhighlightColor value, and
XmREVERSED_GROUND_COLORS makes the XmNselectColor the same
the XmNforeground, using the XmNbackground color to render any text.

XmNselectedObjectCount
Specifies the number of widgets in the array of selected container items, rep
sented by the XmNselectedObjects resource.

1.Erroneously listed as XmNlayoutStyle in 2nd Edition.
654 Motif Reference Manual

Motif and Xt Widget Classes XmContainer

ly

:

d

the

e

XmNselectedObjects
Specifies an array of widgets representing the set of container items current
selected.

XmNselectionPolicy
Specifies the way in which container items can be selected. Possible values

XmSINGLE_SELECT /*only one selected item permitted
*/
XmBROWSE_SELECT /*as above, except items are selected by
dragging*/
XmMULTIPLE_SELECT /* items in contiguous range are selecta-
ble */
XmEXTENDED_SELECT /*items in discontinuous range are selecta-
ble */

XmNselectionTechnique
Specifies the way in which items are selected. Possible values:

XmMARQUEE /* items must be wholly enclosed
within Marquee */ XmMARQUEE_EXTEND_START/*includes item
containing Marquee start coordinate */ XmMARQUEE_EXTEND_BOTH/*
includes items containing Marquee start/end coordinates*/ XmTOUCH_ONLY/*
select items between start and end location */
XmTOUCH_OVER /*select only items the mouse passes
through */

XmNsmallCellHeight
Specifies the height of a cell when the Container spatial style is XmGRID, an
the XmNentryViewType resource is XmSMALL_ICON.

XmNsmallCellWidth
Specifies the width of a cell when the Container spatial style is XmGRID, and
XmNentryViewType resource is XmSMALL_ICON.

XmNspatialIncludeModel
Specifies the layout of an item within a grid XmSPATIAL layout type, when th
item is managed. Possible values:

XmAPPEND /* place after the last occupied cell */
/* according to XmNlayoutDirection*/

XmCLOSEST /*place in the free cell*/
/* nearest the x, y coordinates of the item*/

XmFIRST_FIT /* place the item in the first free cell*/
/* according to XmNlayoutDirection*/
Motif Reference Manual 655

XmContainer Motif and Xt Widget Classes

ent
PA-

i-
ly,
ri-

-

lay-
ue
d-

-

lls

l

XmNspatialResizeModel
Specifies how the Container will attempt to resize itself when there is insuffici
space to contain a new item. The resource only has effect within a grid XmS
TIAL layout type. The definition of XmGROW_MAJOR and
XmGROW_MINOR depend upon the value of the XmNlayoutDirection
resource. The major dimension is width when the XmNlayoutDirection is hor
zontally oriented, and height when the direction is vertically oriented. Similar
the minor dimension is height when the XmNlayoutDirection is horizontally o
ented, and width when the direction is vertically oriented. Possible values:

XmGROW_BALANCED /* request both width and height from parent*/
XmGROW_MAJOR /*request growth in the major dimension*/
XmGROW_MINOR /* request growth in the minor dimension*/

XmNspatialSnapModel
Specifies how the Container will position an item within a cell, when the XmN
layoutType is XmSPATIAL. A value of XmSNAP_TO_GRID positions the item
at the upper left or upper right of the cell, depending upon the value of XmN
outDirection. A value of XmNONE positions the item depending upon the val
of XmNx, XmNy: if these fall outside the cell, then layout is performed accor
ing to the XmSNAP_TO_GRID method. A value of XmCENTER centers the
item.

XmNspatialStyle
Specifies the layout of container items, when the XmNlayoutType is XmSPA
TIAL. Possible values:

XmCELLS /* grid layout of same-sized cells. an item can occupy many ce
*/
XmGRID /* grid layout of same-sized cells. an item can occupy one cel
*/
XmNONE /* lay out according to XmNx, XmNy resources */

New Constraint Resources
Container defines the following constraint resources for its children:

Name Class Type Default Access

XmNentryParent XmCEntryParent Widget NULL CSG

XmNoutlineState XmCOutlineState unsigned char XmCOLLAPSED CSG

XmNpositionIndex XmCPositionIndex int XmLAST_POSITION CSG
656 Motif Reference Manual

Motif and Xt Widget Classes XmContainer

d
 If
al
 logi-

ed.

e of
XmNentryParent
Specifies a logical parent for the item. The root of a hierarchy has the value
NULL. Used when the XmNlayoutType is XmOUTLINE or XmDETAIL.

XmNoutlineState
Specifies whether to display logical child items when the XmNlayoutType is
XmOUTLINE or XmDETAIL. Possible values:

XmCOLLAPSED /* does not display child items*/
XmEXPANDED /* displays child items */

XmNpositionIndex
Specifies the order of the item within the Container, when XmNlayoutType is
XmOUTLINE or XmDETAIL. Items are firstly ordered by XmNentryParent, an
by XmNpositionIndex within those items sharing the same XmNentryParent.
unspecified, the highest such index for all other items sharing the same logic
parent is calculated, and then incremented. If no other item shares the same
cal parent, the default is zero.

Callback Resources
Container defines the following callback resources:

XmNconvertCallback
List of callbacks called when a request is made to convert a selection.

XmNdefaultActionCallback
List of callbacks called when an item is double-clicked, or KActivate is press

XmNdestinationCallback
List of callbacks called when the Container is the destination of a transfer.

XmNoutlineChangedCallback
List of callbacks called when a change is made to the XmNoutlineState valu
an item.

XmNselectionCallback
List of callbacks called when an item is selected.

Callback Reason Constant

XmNconvertCallback XmCR_OK

XmNdefaultActionCallback XmCR_DEFAULT_ACTION

XmNdestinationCallback XmCR_OK

XmNoutlineChangedCallback XmCR_COLLAPSED
XmCR_EXPANDED

XmNselectionCallback XmCR_SINGLE_SELECT
XmCR_BROWSE_SELECT
XmCR_MULTIPLE_SELECT
XmCR_EXTENDED_SELECT
Motif Reference Manual 657

XmContainer Motif and Xt Widget Classes

g

ist

mber
ates

of

m

all-

*/
*/
*/
Callback Structure
Each callback on the XmNoutlineChangedCallback list is passed the followin
structure:

typedef struct
int reason; /*the reason that the callback was called*/
XEvent *event; /*points to event that triggered callback*/
Widget item; /*container item associated with event*/
unsigned char new_outline_state; /*the requested state*/

} XmContainerOutlineCallbackStruct;

new_outline_state specifies an XmNoutlineState for item. The value may be
changed within the callback to force a particular state.

Each callback on the XmNselectionCallback and XmNdefaultActionCallback l
is passed the following structure:

typedef struct {
int reason; /*the reason that the callback was called*/
XEvent *event; /*points to event that triggered callback*/
WidgetList selected_items; /*the list of selected items */
int selected_item_count; /*the number of selected items */
unsigned char auto_selection_type; /*type of selection event*/

} XmContainerSelectCallbackStruct;

selected_items is the array of container items selected by the event. The nu
of such items is specified by selected_item_count. auto_selection_type indic
the type of automatic selection event. If XmNautomaticSelection is False,
auto_selection_type has the value XmAUTO_UNSET. Otherwise, the range
possible values is given by:

XmAUTO_BEGIN /* event is the beginning of automatic selection*/
XmAUTO_CANCEL /* current selection is cancelled */
XmAUTO_CHANGE /* current selection differs from initial selection*/
XmAUTO_MOTION /* current selection is caused by button drag*/
XmAUTO_NO_CHANGE /*current selection same as the initial selection*/

Convert callbacks are fully described within the sections covering the Unifor
Transfer Model. SeeXmTransfer(1) for more details. For quick reference, a
pointer to the following structure is passed to callbacks on the XmNconvertC
back list:

typedef struct {
int reason; /* reason that the callback is invoked
XEvent *event; /* points to event that triggered callback
Atom selection; /* requested conversion selection
658 Motif Reference Manual

Motif and Xt Widget Classes XmContainer

/
*/

/

/

/

*/

i-
 is

abeti-
Atom target; /* the conversion target */
XtPointer source_data; /* selection source information *
XtPointer location_data; /* information on data to be transferred
int flags; /* input status of the conversion */
XtPointer parm; /* parameter data for the target *
int parm_format; /* format of parameter data */
unsigned long parm_length; /* the number of elements *

/* in parameter data */
Atom parm_type; /* the type of the parameter data */
int status; /* output status of the conversion *
XtPointer value; /* returned conversion data */
Atom type; /* type of conversion data returned *
int format; /* format of the conversion data */
unsigned long length; /* number of elements in conversion data

} XmConvertCallbackStruct;

Destination callbacks are fully described within the sections covering the Un
form Transfer Model. For quick reference, a pointer to the following structure
passed to callbacks on the XmNdestinationCallback list:

typedef struct {
int reason; /*reason that the callback is invoked*/
XEvent *event; /*points to event that triggered callback*/
Atom selection; /*requested selection type, as an Atom*/
XtEnum operation; /*the type of transfer requested */
int flags; /* whether destination and source are same*/
XtPointer transfer_id; /*unique identifier for the request */
XtPointer destination_data; /*information about the destination */
XtPointer location_data; /*information about the data */
Time time; /* time when transfer operation started*/

} XmDestinationCallbackStruct;

Inherited Resources
Container inherits the resources shown below. The resources are listed alph
cally, along with the superclass that defines them.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite
Motif Reference Manual 659

XmContainer Motif and Xt Widget Classes

l

Widget Hierarchy

The PushButtonGadget children created by an outline style Container are al
named OutlineButton.

Translations
The translations for Container include those of XmManager.

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmManager XmNsensitive Core

XmNbottomShadowPixmap XmManager XmNshadowThickness XmManager

XmNchildren Composite XmNstringDirection XmManager

XmNcolormap Core XmNtopShadowColor XmManager

XmNdepth Core XmNtopShadowPixmap XmManager

XmNdestroyCallback Core XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNwidth Core

XmNhighlightPixmap XmManager XmNx Core

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core

Event Action

BSelect Press ContainerHandleBtn1Down(ContainerBeginSelect, Copy)

BToggle Press ContainerHandleBtn1Down(ContainerBeginToggle, Copy)

MLink BSelect Press ContainerHandleBtn1Down(ContainerNoop, Link)

BExtend Press ContainerHandleBtn1Down(ContainerBeginExtend Move)

BExtend Motion ContainerHandleBtn1Motion(ContainerButtonMotion)

BSelect Release ContainerHandleBtn1Up(ContainerEndSelect)

BToggle Release ContainerHandleBtn1Up(ContainerEndToggle)

BExtend Release ContainerHandleBtn1Up(ContainerEndExtend)

BTransfer Press ContainerHandleBtn2Down(ContainerStartTransfer, Copy)

MLink BTransfer Press ContainerHandleBtn2Down(ContainerStartTransfer, Link)

MMove BTransfer Press ContainerHandleBtn2Down(ContainerStartTransfer, Move)

BTransfer Motion ContainerHandleBtn2Motion(ContainerButtonMotion)

Resource Inherited From Resource Inherited From
660 Motif Reference Manual

Motif and Xt Widget Classes XmContainer

-

Action Routines
Container defines the following action routines:

ContainerActivate()
Calls the procedures associated with the XmNdefaultActionCall
back resource.

BTransfer Release ContainerHandleBtn2Up(ContainerEndTransfer)

MShift KPrimaryCopy ContainerPrimaryLink()

KPrimaryCopy ContainerPrimaryCopy()

KPrimaryCut ContainerPrimaryMove()

KCancel ContainerCancel()

KExtend ContainerExtend()

KSelect ContainerSelect()

KSelectAll ContainerSelectAll

KDeselectAll ContainerDeselectAll()

KAddMode ContainerToggleMode()

KActivate ContainerActivate()

MShift KBeginData ContainerExtendCursor(First)

MShift KEndData ContainerExtendCursor(Last)

KBeginData ContainerMoveCursor(First)

KEndData ContainerMoveCursor(Last)

MCtrl KLeft ContainerExpandOrCollapse(Left)

MCtrl KRight ContainerExpandOrCollapse(Right)

MShift KUp ContainerExtendCursor(Up)

MShift KDown ContainerExtendCursor(Down)

MShift KLeft ContainerExtendCursor(Left)

MShift KRight ContainerExtendCursor(Right)

KUp ContainerMoveCursor(Up)

KDown ContainerMoveCursor(Down)

KLeft ContainerMoveCursor(Left)

KRight ContainerMoveCursor(Right)

Event Action
Motif Reference Manual 661

XmContainer Motif and Xt Widget Classes

r

er,
ns.
d.

ci-

,
are
nd

m
lec-
on-

he
,
.
y

r

d
e
is
ContainerBeginExtend()
The action has no effect if the XmNlayoutType is XmSPATIAL, o
if the XmNselectionPolicy is either XmSINGLE_SELECT or
XmBROWSE_SELECT.

Otherwise, the location cursor is set to the object under the point
and if no object is there, or if there is no anchor, the action retur
Any items between the anchor and the location cursor are selecte
Finally, if automatic selection is enabled, the list of callbacks spe
fied by the XmNselectionCallback resource is invoked.

ContainerBeginSelect()
Single selection: if the object under the pointer is the anchor item
the selected state of the object is reversed. Otherwise, all items
deselected, the object at the pointer is made the anchor item, a
the location cursor is set to it.

Browse selection: if the object under the pointer is not the anchor
item, all items are deselected, the object is made the anchor ite
and selected, and the location cursor is set to it. If automatic se
tion is enabled, the list of callbacks specified by the XmNselecti
Callback resource is invoked.

Multiple selection: sets the anchor item to the object under the
pointer, and sets the location cursor to it. The selected state of t
item is reversed. If the selection technique is XmTOUCH_OVER
and the anchor item is NULL, the Marquee start point is initialized
If automatic selection is enabled, the list of callbacks specified b
the XmNselectionCallback resource is invoked.

Extended selection: as for multiple selection, except initially all
items are deselected.

ContainerBeginToggle()
The action has no effect if the XmNlayoutType is XmSPATIAL, o
if the XmNselectionPolicy is either XmSINGLE_SELECT or
XmBROWSE_SELECT.

Multiple or Extended selection: the anchor item is set to the object
under the pointer, and the location cursor is set to it. The selecte
state of the item is reversed. If automatic selection is enabled, th
list of callbacks specified by the XmNselectionCallback resource
invoked. Lastly, if XmNselectionTechnique is
XmMARQUEE_EXTEND_START or
XmMARQUEE_EXTEND_BOTH, the Marquee rectangle is
drawn around the item.
662 Motif Reference Manual

Motif and Xt Widget Classes XmContainer

m
to

the
e
lec-

pa-
m
te of

s

 If
he

-

,
any
se-
ContainerButtonMotion()
The action has no effect if XmNselectionPolicy is
XmSINGLE_SELECT.

Browse selection: if the action follows ContainerBeginExtend() or
ContainerBeginToggle() action, or if the pointer is over the current
anchor item, the routine simply returns. Otherwise, the selected
state of the anchor item is reversed, the selected state of any ite
under the pointer is also reversed, and the anchor item is reset
point to it.

Multiple and extended selection: if a previous action has initiated
the Marquee, the rectangle is redrawn around the start point and
current pointer location. The selected state of all items within th
Marquee are set to that of the anchor item. For non-Marquee se
tion, in a spatial layout the selected state of the item under the
pointer is reversed, and the anchor item is reset to it. In a non-s
tial layout, the selected state of all items between the anchor ite
and the item under the pointer are set to match the selected sta
the anchor item.

In all cases, if automatic selection is enabled, the list of callback
specified by the XmNselectionCallback resource is invoked.

ContainerCancel()
The selected state of all items reverts to the pre-selection state.
automatic selection is enabled, the list of callbacks specified by t
XmNselectionCallback resource is invoked.

ContainerDeselectAll()
All items are deselected, and the callbacks on the XmNselection
Callback list are invoked.

ContainerEndExtend()
The action has no effect if XmNlayoutType is XmSPATIAL.

Multiple or Extended selection: the callbacks specified by XmNse-
lectionCallback are invoked.

ContainerEndSelect()
Single selection: simply invokes the callbacks specified by the
XmNselectionCallback resource.

Browse selection: if the pointer is not over the current anchor item
the selected state of the current anchor, and the selected state of
item under the pointer are reversed. Callbacks specified by XmN
lectionCallback are invoked.
Motif Reference Manual 663

XmContainer Motif and Xt Widget Classes

-

s

m.

n

he
m.
Multiple and extended selection: similar to the ContainerButtonMo-
tion() action, except that the auto_selection_type element within
XmNselectionCallback procedures is XmAUTO_CHANGE or
XmAUTO_NO_CHANGE rather than XmAUTO_MOTION.

ContainerEndToggle()
The action has no effect if XmNselectionPolicy is
XmSINGLE_SELECT or XmBROWSE_SELECT.

Multiple or extended selection: the procedure directly invokes the
ContainerEndSelect() action.

ContainerEndTransfer()
If the current transfer operation is XmLINK, the ContainerPrima
ryLink() action is called. If the transfer operation is XmMOVE, the
procedure invokes ContainerPrimaryMove(). If the operation is
XmCOPY, the ContainerPrimaryCopy() action is called.

ContainerExpandOrCollapse(type)
The action has no effect if layout type is XmSPATIAL().

Otherwise, the outline state of the container item which has the
focus is changed. Possible values for type:

Collapse/*outline state set to XmCOLLAPSED*/
Expand/*outline state set to XmEXPANDED*/
Left/* depends upon layout direction*/
Right/* depends upon layout direction*/

If XmNlayoutDirection is XmLEFT_TO_RIGHT, Left is inter-
preted as XmCOLLAPSED, and Right as XmEXPANDED. This i
reversed if the layout direction is XmRIGHT_TO_LEFT.

ContainerExtend()
The action has no effect if layout type is XmSPATIAL(), or if
XmNselectionPolicy is XmSINGLE_SELECT or
XmBROWSE_SELECT.

Multiple selection: the selected state of all items between the
anchor item and the location cursor is set to that of the anchor ite
The callbacks specified by XmNselectionCallback are invoked.

Extended selection: in Normal mode, all items are deselected, the
any items between the anchor item and the location cursor are
selected. In Add mode, the selected state of all items between t
anchor item and the location cursor is set to that of the anchor ite
The callbacks specified by XmNselectionCallback are invoked.
664 Motif Reference Manual

Motif and Xt Widget Classes XmContainer

-

e

r
tai-

ter
th-
on-

s
e

.

er-
for
ContainerExtendCursor(type)
The action has no effect if layout type is XmSPATIAL(), or if
XmNselectionPolicy is XmSINGLE_SELECT or
XmBROWSE_SELECT.

The location cursor is moved. If type is Left, Right, Up, Down,
First, or Last, the cursor is moved one item in the specified direc
tion if possible (or to the first/last item).
Thereafter, the ContainerExtend() procedure is directly invoked.

ContainerHandleBtn1Down(string)
The XmDisplay resource XmNenableBtn1Transfer configures th
integration of selection and transfer operations on Button 1.

If XmNenableBtn1Transfer is not XmOFF, and the pointer is ove
an unselected item, the actions ContainerBeginSelect() and Con
nerEndSelect() are invoked in order to select the item. If thereaf
there is no selected item, the Marquee start point is initialized, o
erwise the action becomes a data transfer operation, and the C
tainerStartTransfer() action is invoked.

If XmNenableBtn1Transfer is XmOFF, and if no data transfer ha
been initialized, the action specified by string is invoked to initiat
selection. Possible values for string:

ContainerBeginSelect,Copy
ContainerBeginToggle,Copy
ContainerNoop,Link
ContainerBeginExtend,Move

ContainerHandleBtn1Motion(string)
If the XmDisplay XmNenableBtn1Transfer resource is not
XmOFF, and a selection is in progress, a drag action is initiated
Otherwise, the action as specified by string is invoked, typically
ContainerButtonMotion.

ContainerHandleBtn1Up(string)
If a Button1 transfer is in progress, the transfer is cancelled. Oth
wise, the action as specified by string is invoked. Possible values
string:

ContainerEndSelect
ContainerEndToggle
ContainerEndExtend
Motif Reference Manual 665

XmContainer Motif and Xt Widget Classes

is

n,
t.

ese-

.

es-
er
ck

ti-
r
ck

es-
er
ck
ContainerHandleBtn2Down(string)
If the XmDisplay XmNenableBtn1Transfer resource is
XmBUTTON2_ADJUST, the action ContainerBeginExtend is
directly invoked. Otherwise, the action as specified by string is
invoked. Possible values for string:

ContainerStartTransfer, Copy
ContainerStartTransfer, Link
ContainerStartTransfer, Move

ContainerHandleBtn2Motion(string)
If the XmDisplay XmNenableBtn1Transfer resource is not
XmBUTTON2_ADJUST, and a selection is in progress, a drag
action is initiated. Otherwise, the action as specified by string is
invoked, typically ContainerButtonMotion.

ContainerHandleBtn2Up(string)
If the XmDisplay XmNenableBtn1Transfer resource is
XmBUTTON2_ADJUST, the action directly invokes the Contain-
erEndExtend() action. Otherwise, the action as specified by string
invoked, typically ContainerEndTransfer.

ContainerMoveCursor(string)
Moves the location cursor to the container item in a given directio
if possible. Valid values of type: Up, Down, Left, Right, First, Las

If the number of selected items is greater than 1, all items are d
lected. The item at the location cursor is selected, and callbacks
associated with the XmNselectionCallback resource are invoked

ContainerPrimaryCopy()
Requests a primary selection copy to the Container. Any XmNd
tinationCallback procedures are invoked. By default, the Contain
performs no data transfer: the programmer must provide a callba
for the task.

ContainerPrimaryLink()
Requests a primary selection link to the Container. Any XmNdes
nationCallback procedures are invoked. By default, the Containe
performs no data transfer: the programmer must provide a callba
for the task.

ContainerPrimaryMove()
Requests a primary selection copy to the Container. Any XmNd
tinationCallback procedures are invoked. By default, the Contain
performs no data transfer: the programmer must provide a callba
666 Motif Reference Manual

Motif and Xt Widget Classes XmContainer

ll-
ar-

ts

ca-
.

e

ck

ts

k

y
s

e
em
ll
ype
for the task. Subsequently, the selection owner’s XmNconvertCa
back procedures are notified for the primary selection, with the t
get DELETE.

ContainerSelect()
Single or browse selection: deselects any selected item, and selec
the item at the location cursor.

Multiple selection: reverses the selected state of the item at the lo
tion cursor, and makes this the anchor for any further operations

Extended selection: in Normal mode, deselects all items, and
selects the item at the location cursor. In Add mode, reverses th
selected state of the item, which becomes the anchor for further
operations.

In each case, callbacks associated with the XmNselectionCallba
resource are invoked.

ContainerSelectAll()
Single or browse selection: deselects any selected item, and selec
the item at the location cursor.

Multiple or extended selection: selects all container items.

In all cases, callbacks associated with the XmNselectionCallbac
resource are invoked.

ContainerStartTransfer(type)
The action saves the value of the parameter type for reference b
later transfer operations. In XmSPATIAL layout, a DragContext i
created, and a transfer operation is initiated. By default, unless
overridden by a customized XmNconvertCallback procedure, if th
drop occurs within the Container, then any dragged unselected it
is moved to the pointer location, or if the item is selected, then a
selected items are relocated to the pointer. Possible values for t
are: Copy, Link, Move.

ContainerToggleMode()
Extended selection: toggles between Normal and Add mode.

Additional Behavior
Container has the following additional behavior:

<Double Click>
Calls the XmNdefaultActionCallback callbacks.
Motif Reference Manual 667

XmContainer Motif and Xt Widget Classes

he

<FocusIn>

If the keyboard focus policy is explicit, sets the focus and draws t
location cursor.

<FocusOut>
If the keyboard focus policy is explicit, removes the focus and
erases the location cursor.

See Also
XmContainerCopy (1), XmContainerCopyLink (1),
XmContainerCut (1), XmContainerGetItemChildren (1),
XmContainerPaste (1), XmContainerPasteLink (1),
XmContainerRelayout (1), XmContainerReorder (1),
XmCreateObject (1), XmTransfer (1), Composite (2), Constraint (2),
Core (2), XmIconGadget (2), XmManager(2).
668 Motif Reference Manual

Motif and Xt Widget Classes XmDialogShell

ep-
ia-
of

eti-
lt
nt
Name
XmDialogShell widget class – the Shell parent for dialog boxes.

Synopsis

Public Header:
<Xm/DialogS.h>

Class Name:
XmDialogShell

Class Hierarchy:
Core→ Composite→ Shell→ WMShell→ VendorShell→ TransientShell→
XmDialogShell

Class Pointer:
xmDialogShellWidgetClass

Instantiation:
widget =XmCreateDialogShell (parent, name,...)
or
widget =XtCreateWidget (name, xmDialogShellWidgetClass,...)

Functions/Macros:
XmCreateDialogShell (), XmIsDialogShell ()

Description
DialogShell is the parent for dialog boxes. A DialogShell cannot be iconified s
arately, but only when the main application shell is iconified. The child of a D
logShell is typically a subclass of BulletinBoard and much of the functionality
DialogShell is based on this assumption.

Traits
DialogShell uses the XmQTdialogShellSavvy trait.

New Resources
DialogShell does not define any new resources.

Inherited Resources
DialogShell inherits the following resources. The resources are listed alphab
cally, along with the superclass that defines them. DialogShell sets the defau
values of XmNdeleteResponse to XmUNMAP and XmNinput and XmNtransie
to True. The default value of XmNborderWidth is reset to 0 by VendorShell.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNmaxAspectX WMShell

XmNallowShellResize Shell XmNmaxAspectY WMShell
Motif Reference Manual 669

XmDialogShell Motif and Xt Widget Classes
XmNancestorSensitive Core XmNmaxHeight WMShell

XmNaudibleWarning VendorShell XmNmaxWIdth WMShell

XmNbackground Core XmNminAspectX WMShell

XmNbackgroundPixmap Core XmNminAspectY WMShell

XmNbaseHeight WMShell XmNminHeight WMShell

XmNbaseWidth WMShell XmNminWidth WMShell

XmNborderColor Core XmNmwmDecorations VendorShell

XmNborderPixmap Core XmNmwmFunctions VendorShell

XmNborderWidth Core XmNmwmInputMode VendorShell

XmNbuttonFontList VendorShell XmNmwmMenu VendorShell

XmNbuttonRenderTable VendorShell XmNnumChildren Composite

XmNchildren Composite XmNoverrideRedirect Shell

XmNcolormap Core XmNpopdownCalback Shell

XmNcreatePopupChildProc Shell XmNpopupCallback Shell

XmNdefaultFontList VendorShell XmNpreeditType VendorShell

XmNdeleteResponse VendorShell XmNsaveUnder Shell

XmNdepth Core XmNscreen Core

XmNdestroyCallback Core XmNsensitive Core

XmNgeometry Shell XmNshellUnitType VendorShell

XmNheight Core XmNtextFontList VendorShell

XmNheightInc WMShell XmNtextRenderTable VendorShell

XmNiconMask WMShell XmNtitle WMShell

XmNiconPixmap WMShell XmNtitleEncoding WMShell

XmNiconWindow WMShell XmNtransient WMShell

XmNinitialResourcesPersistent Core XmNtransientFor TransientShell

XmNinitialState WMShell XmNtranslations Core

XmNinput WMShell XmNvisual Shell

XmNinputMethod VendorShell XmNwaitForWm WMShell

XmNinputPolicy VendorShell XmNwidth Core

XmNinsertPosition Composite XmNwidthInc WMShell

XmNkeyboardFocusPolicy VendorShell XmNwindowGroup WMShell

XmNlabelFontList VendorShell XmNwinGravity WMShell

XmNlabelRenderTable VendorShell XmNwmTimeout WMShell

XmNlayoutDirection VendorShell XmNx Core

XmNmappedWhenManaged Core XmNy Core

Resource Inherited From Resource Inherited From
670 Motif Reference Manual

Motif and Xt Widget Classes XmDialogShell
See Also
XmCreateObject (1), Composite (2), Core (2), Shell (2),
TransientShell (2), VendorShell (2), WMShell (2),
XmBulletinBoardDialog (2), XmErrorDialog (2),
XmFileSelectionDialog (2), XmFormDialog (2),
XmInformationDialog (2), XmMessageDialog (2),
XmPromptDialog (2), XmQuestionDialog (2),
XmSelectionDialog (2), XmTemplateDialog (2),
XmWarningDialog (2), XmWorkingDialog (2).
Motif Reference Manual 671

XmDisplay Motif and Xt Widget Classes

n
tion

o

the
 han-
s
 in
r is
Name
XmDisplay widget class – an object to store display-specific information.

Synopsis

Public Header:
<Xm/Display.h>

Class Name:
XmDisplay

Class Hierarchy:
Core→ Composite→ Shell→ WMShell→ VendorShell→ TopLevelShell→
ApplicationShell→ XmDisplay

Class Pointer:
xmDisplayClass

Instantiation:
widget =XtAppInitialize (...)

Functions/Macros:
XmGetXmDisplay (), XmIsDisplay ()

Availability
Motif 1.2 and later.

Description
The Display object stores display-specific information for use by the toolkit. A
application has a Display object for each display it accesses. When an applica
creates its first shell on a display, typically by callingXtAppInitialize () or
XtAppCreateShell (), a Display object is created automatically. There is n
way to create a Display independently. The functionXmGetXmDisplay () can
be used to get the widget ID of the Display object.

The XmNdragInitiatorProtocolStyle and XmNdragReceiverProtocolStyle
resources specify the drag protocol for an application that performs drag and
drop operations. The two protocol styles are Dynamic and Preregister. Under
dynamic protocol, the initiator and receiver pass messages back and forth to
dle drag and drop visuals. Under the Preregister protocol, the initiator handle
drag and drop visuals by reading information that is preregistered and stored
properties. The actual protocol that is used by a specific initiator and receive
based on the requested protocol styles of the receiver and initiator:
672 Motif Reference Manual

Motif and Xt Widget Classes XmDisplay

gets
ich

e

Nam ccess

XmNd SG

XmNd SG

XmNd SG

XmNd ER SG

XmNe CG

XmNe CG

XmNe CG

XmNe CG

XmNe CG

XmNe CG

XmNe CG

XmNe CG

XmNe CG

XmNe CG

XmNm SG

XmNu SG
New Resources
Display defines the following resources:

XmNdefaultButtonEmphasis
In Motif 2.0 and later, specifies the manner in which button widgets and gad
which have the XmNshowAsDefault resource set are displayed. A button wh
is the default has a double border. If XmNdefaultButtonEmphasis is
XmINTERNAL_HIGHLIGHT, the location cursor is drawn between the doubl
border. Otherwise, with a value of XmEXTERNAL_HIGHLIGHT, the location

Drag Initiator Drag Receiver Protocol Style

Protocol Style Preregister Prefer Preregister Prefer Dynamic Dynamic

Preregister PREREGISTER PREREGISTER PREREGISTER DROP_ONLY

Prefer Preregister PREREGISTER PREREGISTER PREREGISTER DYNAMIC

Prefer Receiver PREREGISTER PREREGISTER DYNAMIC DYNAMIC

Prefer Dynamic PREREGISTER DYNAMIC DYNAMIC DYNAMIC

Dynamic DROP_ONLY DYNAMIC DYNAMIC DYNAMIC

e Class Type Default A

efaultButtonEmphasis XmCDefaultButtonEmphasis XtEnum XmEXTERNAL_HIGHLIGHT

efaultVirtualBindings XmCDefaultVirtualBindings String dynamic

ragInitiatorProtocolStyle XmCDragInitiatorProtocolStyle unsigned char XmDRAG_PREFER_RECEIVER

ragReceiverProtocolStyle XmCDragReceiverProtocolStyle unsigned char XmDRAG_PREFER_PREREGIST

nableBtn1Transfer XmCEnableBtn1Transfer XtEnum XmOFF

nableButtonTab XmCEnableButtonTab Boolean False

nableDragIcon XmCEnableDragIcon Boolean False

nableEtchedInMenu XmCEnableEtchedinMenu Boolean False

nableMultiKeyBindings XmCEnableMultiKeyBindings Boolean False

nableThinThickness XmCEnableThinThickness Boolean False

nableToggleColor XmCEnableToggleColor Boolean False

nableToggleVisual XmCEnableToggleVisual Boolean False

nableUnselectableDrag XmCEnableUnselectableDrag Boolean True

nableWarp XmCEnableWarp XtEnum True

otifVersion XmCMotifVersion int XmVersion C

serData XmCUserData XtPointer NULL C
Motif Reference Manual 673

XmDisplay Motif and Xt Widget Classes

 ini-

he
ible

y-
w

of
e
ld
cursor is drawn outside of the double border. An internal indication uses less
space for the button.

XmNdefaultVirtualBindings
In Motif 2.0 and later, specifies the default virtual bindings for the display.

XmNdragInitiatorProtocolStyle
The client’s drag and drop protocol requirements or preference when it is the
tiator of a drag and drop operation. Possible values:

XmDRAG_PREREGISTER /*can only use the preregister protocol*/
XmDRAG_DYNAMIC /* can only use the dynamic protocol*/
XmDRAG_NONE /* drag and drop is disabled */
XmDRAG_DROP_ONLY /*only supports dragging */
XmDRAG_PREFER_DYNAMIC /*supports both but prefers dynamic*/
XmDRAG_PREFER_PREREGISTER

/* supports both but prefers preregister */
XmDRAG_PREFER_RECEIVER /*supports both; prefers receiver’s */

/* protocol*/

XmNdragReceiverProtocolStyle
The client’s drag and drop protocol requirements or preference when it is the
receiver. Possible values:

XmDRAG_PREREGISTER /*can only use the preregister protocol*/
XmDRAG_DYNAMIC /* can only use the dynamic protocol*/
XmDRAG_NONE /* drag and drop is disabled */
XmDRAG_DROP_ONLY /*only supports dropping */
XmDRAG_PREFER_DYNAMIC /*supports both but prefers dynamic*/
XmDRAG_PREFER_PREREGISTER

 /* supports both but prefers preregister*/

XmNenableBtn1Transfer
In Motif 2.0 and later, configures selection and transfer actions for Button1. T
Container, Text, TextField, and List actions are affected by this resource. Poss
values:

XmOFF /* selection and transfer disabled for button 1*/
XmBUTTON2_TRANSFER /*selection on button 1, transfer on button 2*/
XmBUTTON2_ADJUST /*selection on button 1, adjust on button 2*/

XmNenableButtonTab
In Motif 2.0 and later, configures the action of the Tab key with respect to ke
board navigation. If True, KNextField and KPrevField will behave like an Arro
key, moving the focus between widgets within a Tab Group, until the boundary
a Tab group is reached, at which point a subsequent navigation will move th
focus into the next or previous Tab group. If False, KNextField and KPrevFie
move the focus to the next or previous tab group respectively.
674 Motif Reference Manual

Motif and Xt Widget Classes XmDisplay

p
the

ad-

fects
.

ase

ed
o
is 1,

t-
-

et.

tog-
a

,
ndi-
 dis-

tion
era-
XmNenableDragIcon
In Motif 2.0 and later, a set of alternative icons representing the drag and dro
default cursors is available. A value of True specifies that the newer icons are
default.

XmNenableEtchedInMenu
In Motif 2.0 and later, specifies the way in which buttons within menus are sh
owed when the widget is activated. The value False results in an etched out
appearance, True gives an etched in shadowing, which is consistent with the
appearance of activated buttons outside of a menu system. The resource af
PushButton, ToggleButton, CascadeButton widgets and gadget counterparts

XmNenableMultiKeyBindings
In Motif 2.1, merges an additional set of translations into the resource datab
which are compatible with CDE cancel translations.

XmNenableThinThickness
Introduced in Motif 1.2.5 to provide CDE style shadowing and highlighting, us
originally only by the ScrollBar. In Motif 2.1, the number of widgets sensitive t
the resource is considerably expanded. If True, the default shadow thickness
otherwise the default is 2.

XmNenableToggleColor
In Motif 2.0 and later, specifies how the default value of a toggle’s XmNselec
Color is determined. True means that the default is taken from the XmNhigh
lightColor value, False uses the XmNbackground. XmNenableToggleColor is
ignored if an explicit XmNselectColor is supplied to the toggle widget or gadg
The resource only takes effect if the indicator type of the toggle is
XmONE_OF_MANY or XmONE_OF_MANY_ROUND.

XmNenableToggleVisual
In Motif 2.0 and later, controls the default appearance of toggles. If False, a
gle with the indicator type of XmONE_OF_MANY is drawn as a diamond, and
toggle with indicator type XmN_OF_MANY is drawn square. If True, a toggle
within a radio box has the default indicator type XmONE_OF_MANY_ROUND
which is rendered as a circle. A toggle outside of a radio box has the default i
cator type XmN_OF_MANY, which is rendered square, and a check mark is
played when XmNindicatorOn is True.

XmNenableUnselectableDrag
In Motif 2.0 and later, specifies whether it is possible to initiate a drag opera
from Label, LabelGadget, or Scale widgets. The value True enables drag op
tions from the widgets.
Motif Reference Manual 675

XmDisplay Motif and Xt Widget Classes

er

h to

pt
el
if

d to
nc-

endi-
ck

the
XmNenableWarp
In Motif 2.0 and later, specifies if the application is permitted to warp the point
away from the user. The value True enables warping.

XmNmotifVersion
In Motif 2.0 and later, specifies the current version of Motif.

XmNuserData
In Motif 2.0 and later, specifies a pointer to data that the application can attac
the XmDisplay object. The resource is unused internally.

Callback Resources
In Motif 2.0 and later, Display defines the following callback resources:

XmNdragStartCallback
List of callbacks that are called when the procedureXmDragStart () is
invoked.

XmNnoFontCallback
List of callbacks that are called when an XmRendition object fails in an attem
to load a font. This may happen if the object is created with an XmNloadMod
of XmLOAD_IMMEDIATE, and the font cannot be loaded there and then, or
the XmNloadModel is XmLOAD_DEFERRED and a later attempt is made to
render a compound string using an unloadable font. A callback can be supplie
rectify the situation: it can find or specify an alternative font, and invoke the fu
tion XmRenditionUpdate () upon the rendition object.

XmNnoRenditionCallback
List of callbacks that are called when an attempt is made to render using a r
tion tag which does not match any entry within a given render table. A callba
can be supplied to rectify the problem: it can create a new rendition with the
problematic tag, and augment the render table.

Callback Structure
Each XmNnoFontCallback or XmNnoRenditionCallback procedure is passed
following structure:

typedef struct {
int reason; /*the reason that the callback was called*/
XEvent *event; /*points to event that triggered callback*/
XmRendition rendition; /*the rendition with a missing font */

Callback Reason Constant

XmNdragStartCallback XmCR_DRAG_START

XmNnoFontCallback XmCR_NO_FONT

XmNnoRenditionCallback XmCR_NO_RENDITION
676 Motif Reference Manual

Motif and Xt Widget Classes XmDisplay

mN-

c-

ser.
char *font_name; /*the font which is not loadable */
XmRenderTable render_table; /*the render table with a missing rendition*/
XmString tag; /*the tag of the missing rendition */

} XmDisplayCallbackStruct;

The render_table and tag elements are only applicable to callbacks on the X
noRenditionCallback list. rendition and font_name are valid only for XmNno-
FontCallback callbacks.

In addition, an XmNdragStartCallback procedure is passed the following stru
ture:

typedef struct {
int reason; /*the reason that the callback was called */
XEvent *event; /*points to event structure that triggered callback*/
Widget widget; /*the ID of the widget where the drag initiated*/
Boolean doit; /*do the action (True) or undo it (False) */

} XmDragStartCallbackStruct;

Inherited Resources
None of the resources inherited by Display can be set by the programmer or u

See Also
XmGetXmDisplay (1), ApplicationShell (2), Composite (2), Core (2),
Shell (2), TopLevelShell (2), VendorShell (2), WMShell (2),
XmScreen (2).
Motif Reference Manual 677

XmDragContext Motif and Xt Widget Classes

rag

a
et,

rag
iffer-
en the

en
rop
n.
n the
r or
col,
Name
XmDragContext widget class – an object used to store information about a d
transaction.

Synopsis

Public Header:
<Xm/DragDrop.h>

Class Name:
XmDragContext

Class Pointer:
xmDragContextClass

Class Hierarchy:
Core→ DragContext

Instantiation:
widget =XmDragStart (...)

Functions/Macros:
XmDragCancel (), XmDragStart ()

Availability
Motif 1.2 and later.

Description
The DragContext object stores information that the toolkit needs to process
drag transaction. An application does not explicitly create a DragContext widg
but instead initiates a drag and drop operation by callingXmDragStart (),
which initializes and returns a DragContext widget. The DragContext stores
information about the types of data and operations of the drag source, the d
icons that are used during the drag, and the callbacks that are called during d
ent parts of the drag. These characteristics can be specified as resources wh
DragContext is created usingXmDragStart ().

Each drag operation has a unique DragContext that is freed by the toolkit wh
the operation is complete. The initiating and receiving clients in a drag and d
operation both use the DragContext to keep track of the state of the operatio
The drag-over visual effects that are used during a drag operation depend o
drag protocol that is being used. Under the preregister protocol, either a curso
a pixmap can be used, since the server is grabbed. Under the dynamic proto
the X cursor is used.
678 Motif Reference Manual

Motif and Xt Widget Classes XmDragContext

l.

for-
 pro-
. If
ver-
-

s

New Resources
DragContext defines the following resources:

XmNblendModel
The combination of DragIcons that are blended to produce a drag-over visua
Possible values:

XmBLEND_ALL /* source, state, and operation*/
XmBLEND_STATE_SOURCE /*source and state */
XmBLEND_JUST_SOURCE /*source only */
XmBLEND_NONE /* no drag-over visual */

XmNclientData
The client data that is passed to the XmNconvertProc.

XmNconvertProc
A procedure of type XtConvertSelectionIncrProc that converts the data to the
mat(s) specified by the receiving client. The widget argument passed to this
cedure is the DragContext widget and the selection atom is _MOTIF_DROP
XmNincremental is False, the conversion procedure should process the con
sion atomically and ignore the max_length, client_data, and request_-id argu

Name Class Type Default Acces

XmNblendModel XmCBlendModel unsigned char XmBLEND_ALL CG

XmNclientData XmCClientData XtPointer NULL CSG

XmNconvertProc XmCConvertProc XtConvertSelectionIncrProc NULL CSG

XmNcursorBackground XmCCursorBackground Pixel dynamic CSG

XmNcursorForeground XmCCursorForeground Pixel dynamic CSG

XmNdragOperations XmCDragOperations unsigned char XmDROP_COPY |
 XmDROP_MOVE

C

XmNexportTargets XmCExportTargets Atom * NULL CSG

XmNincremental XmCIncremental Boolean False CSG

XmNinvalidCursorForeground XmCCursorForeground Pixel dynamic CSG

XmNnoneCursorForeground XmCCursorForeground Pixel dynamic CSG

XmNnumExportTargets XmCNumExportTargets Cardinal 0 CSG

XmNoperationCursorIcon XmCOperationCursorIcon Widget dynamic CSG

XmNsourceCursorIcon XmCSourceCursorIcon Widget dynamic CSG

XmNsourcePixmapIcon XmCSourcePixmapIcon Widget dynamic CSG

XmNstateCursorIcon XmCStateCursorIcon Pixel dynamic CSG

XmNvalidCursorForeground XmCCursorForeground Pixel dynamic CSG
Motif Reference Manual 679

XmDragContext Motif and Xt Widget Classes

ault

om-

e is

 is

e

If the
ments. Allocate any data returned by XmNconvertProc usingXtMalloc () and it
will be freed automatically by the toolkit after the transfer.

XmNcursorBackground
The background color of the cursor.

XmNcursorForeground
The foreground color of the cursor when the state icon is not blended. The def
value is the foreground color of the widget passed to XmDragStart().

XmNdragOperations
The valid operations for the drag. The value is a bit mask that is formed by c
bining one or more of these possible values:

XmDROP_COPY /*copy operations are valid*/
XmDROP_LINK /* link operations are valid*/
XmDROP_MOVE /*move operations are valid*/
XmDROP_NOOP /*no operations are valid*/

For Text and TextField widgets, the default value is XmDROP_COPY |
XmDROP_MOVE. For List widgets and Label and subclasses, the default is
XmDROP_COPY.

XmNexportTargets
The list of target atoms that the source data can be converted to.

XmNincremental
If True, the initiator uses the Xt incremental selection transfer mechanism. If
False (default), the initiator uses atomic transfer.

XmNinvalidCursorForeground
The foreground color of the cursor when the state is invalid. The default valu
the value of the XmNcursorForeground resource.

XmNnoneCursorForeground
The foreground color of the cursor when the state is none. The default value
the value of the XmNcursorForeground resource.

XmNnumExportTargets
The number of atoms in the XmNexportTargets list.

XmNoperationCursorIcon
The drag icon used to show the type of drag operation being performed. If th
value is NULL, the default Screen icons are used.

XmNsourceCursorIcon
The drag icon used to represent the source data under the dynamic protocol.
value is NULL, the default Screen icon is used.
680 Motif Reference Manual

Motif and Xt Widget Classes XmDragContext

col. If

 is

 a
XmNsourcePixmapIcon
The drag icon used to represent the source data under the preregister proto
the value is NULL, XmNsourceCursorIcon is used.

XmNstateCursorIcon
The drag icon used to show the state of a drop site. If the value is NULL, the
default Screen icons are used.

XmNvalidCursorForeground
The foreground color of the cursor when the state is valid. The default value
the value of the XmNcursorForeground resource.

Callback Resources
DragContext defines the following callback resources:

XmNdragDropFinishCallback
List of callbacks that are called when the entire transaction is finished.

XmNdragMotionCallback
List of callbacks that are called when the pointer moves during a drag.

XmNdropFinishCallback
List of callbacks that are called when the drop is finished.

XmNdropSiteEnterCallback
List of callbacks that are called when the pointer enters a drop site.

XmNdropSiteLeaveCallback
List of callbacks that are called when the pointer leaves a drop site.

XmNdropStartCallback
List of callbacks that are called when a drop is started.

XmNoperationChangedCallback
List of callbacks that are called when the user changes the operation during
drag.

Callback Reason Constant

XmNdragDropFinishCallback XmCR_DRAG_DROP_FINISH

XmNdragMotionCallback XmCR_DRAG_MOTION

XmNdropFinishCallback XmCR_DROP_FINISH

XmNdropSiteEnterCallback XmCR_DROP_SITE_ENTER

XmNdropSiteLeaveCallback XmCR_DROP_SITE_LEAVE

XmNdropStartCallback XmCR_DROP_START

XmNoperationChangedCallback XmCR_OPERATION_CHANGED

XmNtopLevelEnterCallback XmCR_TOP_LEVEL_ENTER

XmNtopLevelLeaveCallback XmCR_TOP_LEVEL_LEAVE
Motif Reference Manual 681

XmDragContext Motif and Xt Widget Classes

r

the
XmNtopLevelEnterCallback
List of callbacks that are called when the pointer enters a top-level window o
root window.

XmNtopLevelLeaveCallback
List of callbacks that are called when the pointer leaves a top-level window or
root window.

Callback Structure
The XmNdragDropFinishCallback is passed the following structure:

typedef struct {
int reason; /*the reason the callback was called*/
XEvent *event; /*event structure that triggered callback*/
Time timeStamp; /*time at which operation completed */

} XmDragDropFinishCallbackStruct, *XmDragDropFinishCallback;

The XmNdragMotionCallback is passed the following structure:

typedef struct {
int reason; /*reason the callback was called*/
XEvent *event; /*event that triggered callback*/
Time timeStamp; /*timestamp of logical event */
unsigned char operation; /*current operation */
unsigned char operations; /*supported operations */
unsigned char dropSiteStatus; /*valid, invalid, or none */
Position x; /*x-coordinate of pointer */
Position y; /*y-coordinate of pointer */

} XmDragMotionCallbackStruct, *XmDragMotionCallback;

The XmNdropFinishCallback is passed the following structure:

typedef struct {
int reason; /*reason the callback was called*/
XEvent *event; /*event that triggered callback*/
Time timeStamp; /*time at which drop completed */
unsigned char operation; /*current operation */
unsigned char operations; /*supported operations */
unsigned char dropSiteStatus; /*valid, invalid, or none */
unsigned char dropAction; /*drop, cancel, help, or interrupt*/
unsigned char completionStatus; /*success or failure */

} XmDropFinishCallbackStruct, *XmDropFinishCallback;
682 Motif Reference Manual

Motif and Xt Widget Classes XmDragContext

;

The XmNdropSiteEnterCallback is passed the following structure:

typedef struct {
int reason; /*reason the callback was called*/
XEvent *event; /*event that triggered callback*/
Time timeStamp; /*time of crossing event */
unsigned char operation; /*current operation */
unsigned char operations; /*supported operations */
unsigned char dropSiteStatus; /*valid, invalid, or none */
Position x; /*x-coordinate of pointer */
Position y; /*y-coordinate of pointer */

} XmDropSiteEnterCallbackStruct, *XmDropSiteEnterCallback;

The XmNdropSiteLeaveCallback is passed the following structure:

typedef struct {
int reason; /*reason the callback was called*/
XEvent *event; /*event that triggered callback*/
Time timeStamp; /*time of crossing event */

} XmDropSiteLeaveCallbackStruct, *XmDropSiteLeaveCallback;

The XmNdropStartCallback is passed the following structure:

typedef struct {
int reason; /*reason the callback was called*/
XEvent *event; /*event that triggered callback*/
Time timeStamp; /*time at which drag completed*/
unsigned char operation; /*current operation */
unsigned char operations; /*supported operations */
unsigned char dropSiteStatus; /*valid, invalid, or none */
unsigned char dropAction; /*drop, cancel, help, or interrupt*/
Position x; /*x-coordinate of pointer */
Position y; /*y-coordinate of pointer */

} XmDropStartCallbackStruct, *XmDropStartCallback;

The XmNoperationChangedCallback is passed the following structure:

typedef struct {
int reason; /*reason the callback was called*/
XEvent *event; /*event that triggered callback*/
Time timeStamp; /*timestamp of logical event */
unsigned char operation; /*current operation */
unsigned char operations; /*supported operations */
unsigned char dropSiteStatus; /*valid, invalid, or none */

} XmOperationChangedCallbackStruct, *XmOperationChangedCallback
Motif Reference Manual 683

XmDragContext Motif and Xt Widget Classes

rted
ra-

text
res
lue

p site

text
The XmNtopLevelEnterCallback is passed the following structure:

typedef struct {
int reason; /*reason callback was called*/
XEvent *event; /*event that triggered callback*/
Time timestamp; /*timestamp of logical event*/
Screen screen; /*screen of top-level window*/
Window window; /* window being entered */
Position x; /*x-coordinate of pointer */
Position y; /*y-coordinate of pointer */
unsigned char dragProtocolStyle; /*drag protocol of initiator */

} XmTopLevelEnterCallbackStruct, *XmTopLevelEnterCallback;

The XmNtopLevelLeaveCallback is passed the following structure:

typedef struct {
int reason; /*reason the callback was called*/
XEvent *event; /*event that triggered callback*/
Time timestamp; /*timestamp of logical event */
Screen screen; /*screen of top-level window */
Window window; /* window being left */

} XmTopLevelLeaveCallbackStruct, *XmTopLevelLeaveCallback;

The operations field in these structures specifies the set of operations suppo
for the data being dragged. The toolkit initializes the value based on the ope
tions field of the XmDragProcCallbackStruct, the XmNdropSiteOperations
resource of the DropSite, the XmNdragOperations resource of the DragCon
and the operation selected by the user. The operation field in these structu
specifies the current operation. The toolkit initializes the value based on the va
of the operation field of the XmDragProcCallbackStruct, operations, and the
XmNdropSiteOperations resource of the Drop Site.

The dropSiteStatus field in these structures specifies whether or not the dro
is valid. The toolkit initializes the value based on the XmNimportTargets
resource of the DropSite and the XmNexportTargets resource of the DragCon
and the location of the pointer. The possible values are
XmDROP_SITE_VALID, XmDROP_SITE_INVALID, and
XmNO_DROP_SITE.
684 Motif Reference Manual

Motif and Xt Widget Classes XmDragContext

the

 sta-
e of
e

beti-
ult
The dropAction field in these structures specifies the action associated with
drop. The possible values are XmDROP, XmDROP_CANCEL,

XmDROP_INTERRUPT, and XmDROP_HELP1. XmDROP_INTERRUPT is
unsupported and is interpreted as XmDROP_CANCEL.

The completionStatus field in the XmDropFinishCallbackStruct specifies the
tus of the drop transaction, which determines the drop visual effect. The valu
this field can be changed by the XmNdropFinishCallbackStruct. The possibl

values are XmDROP_SUCCESS2 and XmDROP_FAILURE3.

Inherited Resources
DragContext inherits the following resources. The resources are listed alpha
cally, along with the superclass that defines them. DragContext sets the defa
value of XmNborderWidth to 0.

1.Erroneously given as DROP_HELP in 1st and 2nd edition.

2.Erroneously given as XmSUCCESS in 1st and 2nd edition.

3.Erroneously given as XmFAILURE in 1st and 2nd edition.

Name Inherited From Name Inherited From

XmNaccelerators Core XmNheight Core

XmNancestorSensitive Core XmNinitialResourcesPersistent Core

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNscreen Core

XmNborderColor Core XmNsensitive Core

XmNborderPixmap Core XmNtranslations Core

XmNborderWidth Core XmNwidth Core

XmNcolormap Core XmNx Core

XmNdepth Core XmNy Core

XmNdestroyCallback Core
Motif Reference Manual 685

XmDragContext Motif and Xt Widget Classes

xt.

e
e

Translations

Action Routines
DragContext defines the following action routines:

CancelDrag()
Cancels the drag operation and frees the associated DragConte

DragMotion()
Drags the selected data as the pointer is moved.

FinishDrag()
Completes the drag operation and initiates the drop operation.

HelpDrag()
Starts a conditional drop that allows the receiving client to provid
help information to the user. The user can cancel or continue th
drop operation in response to this information.

See Also
XmDragCancel (1), XmDragStart (1), XmGetDragContext (1), Core (2),
XmDisplay (2), XmDragIcon (2), XmDropSite (2), XmDropTransfer (2),
XmScreen (2).

Event Action

BDrag Motion DragMotion()

BDrag Release FinishDrag()

KCancel CancelDrag()

KHelp HelpDrag()
686 Motif Reference Manual

Motif and Xt Widget Classes XmDragIcon

nd

rans-
d by
ith

rt of
can

N-
ifies
s
.

e

Name
XmDragIcon widget class – an object used to represent the data in a drag a
drop operation.

Synopsis

Public Header:
<Xm/DragDrop.h>

Class Name:
XmDragIcon

Class Pointer:
xmDragIconObjectClass

Class Hierarchy:
Object→ DragIcon

Instantiation:
widget =XmCreateDragIcon (...)

Functions/Macros:
XmCreateDragIcon (), XmIsDragIconObjectClass ()

Availability
Motif 1.2 and later.

Description
A DragIcon is an object that represents the source data in a drag and drop t
action. During a drag operation, the cursor changes into a visual that is create
combining the various DragIcons specified in the DragContext associated w
the operation. A DragIcon is created using theXmCreateDragIcon () function
or from entries in the resource database.

A drag-over visual can have both a static and a dynamic part. The static pa
the visual is the DragIcon that represents the source data. The dynamic parts
be DragIcons that change to indicate the type of operation that is being per-
formed and whether the pointer is over a valid or an invalid drop site. The Xm
blendModel resource of the DragContext for a drag and drop operation spec
which icons are blended to produce the drag-over visual. DragIcon resource
specify the relative positions of the operation and state icons if they are used
When a DragIcon is not specified, the default DragIcons from the appropriat
Screen object are used.
Motif Reference Manual 687

XmDragIcon Motif and Xt Widget Classes

tive
New Resources
DragIcon defines the following resources:

XmNattachment
The relative location on the source icon where the state or operation icon is
attached. Possible values:

XmATTACH_NORTH_WEST XmATTACH_NORTH
XmATTACH_NORTH_EAST XmATTACH_EAST
XmATTACH_SOUTH_EAST XmATTACH_SOUTH
XmATTACH_SOUTH_WEST XmATTACH_WEST
XmATTACH_CENTER XmATTACH_HOT

XmNdepth
The depth of the pixmap.

XmNheight
The height of the pixmap.

XmNhotX
The x-coordinate of the hotspot of the cursor.

XmNhotY
The y-coordinate of the hotspot of the cursor.

XmNmask
The mask for the DragIcon pixmap.

XmNoffsetX
The horizontal offset in pixels of the origin of the state or operation icon rela
to the attachment point on the source icon.

Name Class Type Default Access

XmNattachment XmCAttachment unsigned char XmATTACH_NORTH_WEST CSG

XmNdepth XmCDepth int 1 CSG

XmNheight XmCHeight Dimension 0 CSG

XmNhotX XmCHot Position 0 CSG

XmNhotY XmCHot Position 0 CSG

XmNmask XmCPixmap Pixmap XmUNSPECIFIED_PIXMAP CSG

XmNoffsetX XmCOffset Position 0 CSG

XmNoffsetY XmCOffset Position 0 CSG

XmNpixmap XmCPixmap Pixmap XmUNSPECIFIED_PIXMAP CSG

XmNwidth XmCWidth Dimension 0 CSG
688 Motif Reference Manual

Motif and Xt Widget Classes XmDragIcon

 to

XmNoffsetY

The vertical offset in pixels of the origin of the state or operation icon relative
the attachment point on the source icon.

XmNpixmap
The pixmap for the DragIcon.

XmNwidth
The width of the pixmap.

Inherited Resources
DragIcon inherits the following resource:

See Also
XmCreateObject (1), Object (2), XmDisplay (2), XmDragContext (2),
XmDropSite (2), XmDropTransfer (2), XmScreen (2).

Resource Inherited From

XmNdestroyCallback Object
Motif Reference Manual 689

XmDrawingArea Motif and Xt Widget Classes

-

es
 it
en.
tify
ents.

get.

t.
Name
XmDrawingArea widget class – a simple manager widget for interactive draw
ing.

Synopsis

Public Header:
<Xm/DrawingA.h>

Class Name:
XmDrawingArea

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmDrawingArea

Class Pointer:
xmDrawingAreaWidgetClass

Instantiation:
widget =XmCreateDrawingArea (parent, name,...)
or
widget =XtCreateWidget (name, xmDrawingAreaWidgetClass,...)

Functions/Macros:
XmCreateDrawingArea (), XmIsDrawingArea ()

Description
DrawingArea provides a blank canvas for interactive drawing. The widget do
not do any drawing of its own. Since DrawingArea is a subclass of Manager,
can provide simple geometry management of multiple widget or gadget childr
The widget does not define any behavior except for invoking callbacks that no
an application when it receives input events, exposure events, and resize ev

New Resources
DrawingArea defines the following resources:

XmNmarginHeight
The spacing between a DrawingArea’s top or bottom edge and any child wid

XmNmarginWidth
The spacing between a DrawingArea’s right or left edge and any child widge

Name Class Type Default Access

XmNmarginHeight XmCMarginHeight Dimension 10 CSG

XmNmarginWidth XmCMarginWidth Dimension 10 CSG

XmNresizePolicy XmCResizePolicy unsigned char XmRESIZE_ANY CSG
690 Motif Reference Manual

Motif and Xt Widget Classes XmDrawingArea

ade

ea

or

nt.

c-
XmNresizePolicy
How DrawingArea widgets are resized. Possible values:

XmRESIZE_NONE /*remain at fixed size */
XmRESIZE_GROW /*expand only */
XmRESIZE_ANY /* shrink or expand, as needed*/

Callback Resources
DrawingArea defines the following callback resources:

XmNconvertCallback
In Motif 2.0 and later, specifies the list of callbacks called when a request is m
to convert a selection.

XmNdestinationCallback
In Motif 2.0 and later, specifies the list of callbacks called when the DrawingAr
is the destination of a data transfer.

XmNexposeCallback
List of callbacks that are called when the DrawingArea receives an exposure
event.

XmNinputCallback
List of callbacks that are called when the DrawingArea receives a keyboard
mouse event.

XmNresizeCallback
List of callbacks that are called when the DrawingArea receives a resize eve

Callback Structure
Each expose, resize, and input callback function is passed the following stru
ture:

typedef struct {
int reason; /*the reason that the callback was called*/
XEvent *event; /*event structure that triggered callback;*/

/* for XmNresizeCallback, this is NULL */
Window window; /* the widget’s window */

} XmDrawingAreaCallbackStruct;

Callback Reason Constant

XmNconvertCallback XmCR_OK

XmNdestinationCallback XmCR_OK

XmNexposeCallback XmCR_EXPOSE

XmNinputCallback XmCR_INPUT

XmNresizeCallback XmCR_RESIZE
Motif Reference Manual 691

XmDrawingArea Motif and Xt Widget Classes

m

all-

/

/

*/

/

/

*/

i-

*/

*/

*/
Convert callbacks are fully described within the sections covering the Unifor
Transfer Model. SeeXmTransfer (1) for more details. For quick reference, a
pointer to the following structure is passed to callbacks on the XmNconvertC
back list:

typedef struct {
int reason; /* reason that the callback is invoked *
XEvent *event; /* points to event that triggered callback */
Atom selection; /* requested conversion selection *
Atom target; /* the conversion target */
XtPointer source_data; /* selection source information */
XtPointer location_data; /* information about data to be transferred
int flags; /* input status of the conversion */
XtPointer parm; /* parameter data for the target */
int parm_format; /* format of parameter data */
unsigned long parm_length; /* number of elements in */

/* parameter data */
Atom parm_type; /* the type of the parameter data *
int status; /* output status of the conversion */
XtPointer value; /* returned conversion data */
Atom type; /* type of conversion data returned *
int format; /* format of the conversion data */
unsigned long length; /* number of elements in conversion data

} XmConvertCallbackStruct;

Destination callbacks are fully described within the sections covering the Un
form Transfer Model. SeeXmTransfer (1) for more details. For quick refer-
ence, a pointer to the following structure is passed to callbacks on the
XmNdestinationCallback list:

typedef struct {
int reason; /* reason that the callback is invoked */
XEvent *event; /* points to event that triggered callback */
Atom selection; /* the requested selection type, as an Atom
XtEnum operation; /* the type of transfer requested */
int flags; /* whether destination and source are same
XtPointer transfer_id; /* unique identifier for the request */
XtPointer destination_data; /* information about the destination */
XtPointer location_data; /* information about the data */
Time time; /* the time when transfer operation started

} XmDestinationCallbackStruct;
692 Motif Reference Manual

Motif and Xt Widget Classes XmDrawingArea

beti-
bor-

 in

e

Inherited Resources
DrawingArea inherits the following resources. The resources are listed alpha
cally, along with the superclass that defines them. The default value of XmN
derWidth is reset to 0 by Manager.

Translations
The translations for DrawingArea include those of Manager. All of the events
the inherited translations except <BtnMotion>, <EnterWindow>, <LeaveWin-
dow>, <FocusIn>, and <FocusOut> call the DrawingAreaInput() action befor
calling the Manager actions.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmManager XmNsensitive Core

XmNbottomShadowPixmap XmManager XmNshadowThickness XmManager

XmNchildren Composite XmNstringDirection XmManager

XmNcolormap Core XmNtopShadowColor XmManager

XmNdepth Core XmNtopShadowPixmap XmManager

XmNdestroyCallback Core XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNwidth Core

XmNhighlightPixmap XmManager XmNx Core

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core
Motif Reference Manual 693

XmDrawingArea Motif and Xt Widget Classes

ci-
DrawingArea has the following additional translations:

Action Routines
DrawingArea defines the following action routines:

DrawingAreaInput()
When a widget child of a DrawingArea receives a keyboard or
mouse event, this action routine invokes the list of callbacks spe
fied by XmNinputCallback.

ManagerGadgetKeyInput()
When a gadget child of a DrawingArea receives a keyboard or
mouse event, this action routine processes the event.

Additional Behavior
DrawingArea has the following additional behavior:

<Expose>
Invokes the XmNexposeCallback callbacks.

<WidgetResize>
Invokes the XmNresizeCallback callbacks.

See Also
XmCreateObject (1), XmTransfer (1), Composite (2), Constraint (2),
Core (2), XmManager(2).

Event Action

MAny Bany Press DrawingAreaInput()

MAny Bany Release DrawingAreaInput()

Many KAny Press DrawingAreaInput()
ManagerGadgetKeyInput()

MAny KAny Release DrawingAreaInput()
694 Motif Reference Manual

Motif and Xt Widget Classes XmDrawnButton

a.

he
s can

ed
aits.

red.
Name
XmDrawnButton widget class – a button widget that provides a graphics are

Synopsis

Public Header:
<Xm/DrawnB.h>

Class Name:
XmDrawnButton

Class Hierarchy:
XmPrimitive → XmLabel→ XmDrawnButton

Class Pointer:
xmDrawnButtonWidgetClass

Instantiation:
widget =XmCreateDrawnButton (parent, name,...)
or
widget =XtCreateWidget (name, xmDrawnButtonWidgetClass,...)

Functions/Macros:
XmCreateDrawnButton (), XmIsDrawnButton ()

Description
DrawnButton is an empty widget window, surrounded by a shaded border. T
widget provides a graphics area that can act like a PushButton. The graphic
be dynamically updated by the application.

Traits
DrawnButton holds the XmQTactivatable trait, which is inherited by any deriv
classes, and uses the XmQTmenuSystem and XmQTspecifyRenderTable tr

New Resources
DrawnButton defines the following resources:

XmNmultiClick
A flag that determines whether successive button clicks are processed or igno
Possible values:

XmMULTICLICK_DISCARD /* ignore successive button clicks;*/
/* default value in a menu system*/

Name Class Type Default Access

XmNmultiClick XmCMultiClick unsigned char dynamic CSG

XmNpushButtonEnabled XmCPushButtonEnabled Boolean False CSG

XmNshadowType XmCShadowType unsigned char XmSHADOW_ETCHED_IN CSG
Motif Reference Manual 695

XmDrawnButton Motif and Xt Widget Classes

ue,
n

 of

ssed

.

XmMULTICLICK_KEEP /* count successive button clicks;*/
/* default value when not in a menu*/

XmNpushButtonEnabled
If False (default), the shadow drawing doesn’t appear three dimensional; if Tr
the shading provides a pushed in or raised appearance as for the PushButto
widget.

XmNshadowType
The style in which shadows are drawn. Possible values:

XmSHADOW_IN /* widget appears inset */
XmSHADOW_OUT /* widget appears outset */
XmSHADOW_ETCHED_IN /*double line; widget appears inset*/
XmSHADOW_ETCHED_OUT /*double line; widget appears raised*/

Callback Resources
DrawnButton defines the following callback resources:

XmNactivateCallback
List of callbacks that are called when BSelect is pressed and released inside
the widget.

XmNarmCallback
List of callbacks that are called when BSelect is pressed while the pointer is
inside the widget.

XmNdisarmCallback
List of callbacks that are called when BSelect is released after it has been pre
inside of the widget.

XmNexposeCallback
List of callbacks that are called when the widget receives an exposure event

XmNresizeCallback
List of callbacks that are called when the widget receives a resize event.

Callback Reason Constant

XmNactivateCallback XmCR_ACTIVATE

XmNarmCallback XmCR_ARM

XmNdisarmCallback XmCR_DISARM

XmNexposeCallback XmCR_EXPOSE

XmNresizeCallback XmCR_RESIZE
696 Motif Reference Manual

Motif and Xt Widget Classes XmDrawnButton

-

N-

beti-
alue

.1
ick-

pecial
Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /*the reason that the callback was called*/
XEvent *event; /*event structure that triggered callback*/
Window window; /* ID of window in which the event occurred*/
int click_count; /*number of multi-clicks */

} XmDrawnButtonCallbackStruct;

event is NULL for XmNresizeCallback and is sometimes NULL for XmNacti-
vateCallback.

click_count is meaningful only for XmNactivateCallback. Furthermore, if the
XmNmultiClick resource has the value XmMULTICLICK_KEEP, then XmNac
tivateCallback is called for each click, and the value ofclick_countis the number
of clicks that have occurred in the last sequence of multiple clicks. If the Xm
multiClick resource is set to XmMULTICLICK_DISCARD, thenclick_count
always has a value of 1.

Inherited Resources
DrawnButton inherits the following resources. The resources are listed alpha
cally, along with the superclass that defines them. DrawnButton sets default v

of XmNlabelString to XmUNSPECIFIED1. The default value of XmNborder-
Width is reset to 0 by Primitive. In Motif 2.0 and earlier, the default value of
XmNhighlightThickness and XmNshadowThickness are reset to 2. In Motif 2
and later, the default values depend upon the XmDisplay XmNenableThinTh
ness resource: if True, the default is 1, otherwise 2.

1.Given as “” in 1st and 2nd editions. This is imprecise. The XmLabel superclass treats XmUNSPECIFIED as a s
value, which maps to an empty XmString.

Resource Inherited From Resource Inherited From

XmNaccelerator XmLabel XmNlabelType XmLabel

XmNaccelerators Core XmNlayoutDirection XmPrimitive

XmNacceleratorText XmLabel XmNmappedWhenManaged Core

XmNalignment XmLabel XmNmarginBottom XmLabel

XmNancestorSensitive Core XmNmarginHeight XmLabel

XmNbackground Core XmNmarginLeft XmLabel

XmNbackgroundPixmap Core XmNmarginRight XmLabel

XmNborderColor Core XmNmarginTop XmLabel
Motif Reference Manual 697

XmDrawnButton Motif and Xt Widget Classes
Translations

XmNborderPixmap Core XmNmarginWidth XmLabel

XmNborderWidth Core XmNmnemonicCharSet XmLabel

XmNbottomShadowColor XmPrimitive XmNmnemonic XmLabel

XmNbottomShadowPixmap XmPrimitive XmNnavigationType XmPrimitive

XmNcolormap Core XmNpopupHandlerCallback XmPrimitive

XmNconvertCallback XmPrimitive XmNrecomputeSize XmLabel

XmNdepth Core XmNrenderTable XmLabel

XmNdestroyCallback Core XmNscreen Core

XmNfontList XmLabel XmNsensitive Core

XmNforeground XmPrimitive XmNshadowThickness XmPrimitive

XmNheight Core XmNstringDirection XmLabel

XmNhelpCallback XmPrimitive XmNtopShadowColor XmPrimitive

XmNhighlightColor XmPrimitive XmNtopShadowPixmap XmPrimitive

XmNhighlightOnEnter XmPrimitive XmNtranslations Core

XmNhighlightPixmap XmPrimitive XmNtraversalOn XmPrimitive

XmNhighlightThickness XmPrimitive XmNunitType XmPrimitive

XmNinitialResourcesPersistent Core XmNuserData XmPrimitive

XmNlabelInsensitivePixmap XmLabel XmNwidth Core

XmNlabelPixmap XmLabel XmNx Core

XmNlabelString XmLabel XmNy Core

Event Action

BSelect Press Arm()

MCtrl BSelect Press ButtonTakeFocus()

BSelect Click Activate()
Disarm()

BSelect Release Activate()
Disarm()

BSelect Press 2+ MultiArm()

BSelect Release 2+ MultiActivate()

KSelect ArmAndActivate()

KHelp Help()

Resource Inherited From Resource Inherited From
698 Motif Reference Manual

Motif and Xt Widget Classes XmDrawnButton

-
e.

d

d

r

all-

e

m.

-
o-

d
nd

e

Action Routines
DrawnButton defines the following action routines:

Activate()
Displays the DrawnButton as unselected if XmNpushButtonEna
bled is True or displays the shadow according to XmNshadowTyp
Invokes the list of callbacks specified by XmNactivateCallback.

Arm()
Displays the DrawnButton as selected if XmNpushButtonEnable
is True or displays the shadow according to XmNshadowType.
Invokes the list of callbacks specified by XmNarmCallback.

ArmAndActivate()
Displays the DrawnButton as selected if XmNpushButtonEnable
is True or displays the shadow according to XmNshadowType.
Invokes the list of callbacks specified by XmNarmCallback. Afte
doing this, the action routine displays the DrawnButton as unse-
lected if XmNpushButtonEnabled is True or displays the shadow
according to XmNshadowType and invokes the list of callbacks
specified by XmNactivateCallback and XmNdisarmCallback.

ButtonTakeFocus()
In Motif 2.0 and later, moves the current keyboard focus to the
DrawnButton, without activating the widget.

Disarm()
Displays the DrawnButton as unselected and invokes the list of c
backs specified by XmNdisarmCallback.

Help()
Invokes the list of callbacks specified by XmNhelpCallback. If th
DrawnButton doesn’t have any help callbacks, the Help() routine
invokes those associated with the nearest ancestor that has the

MultiActivate()
Increments the click_count member of XmDrawnButtonCallback
Struct, displays the DrawnButton as unselected if XmNpushButt
nEnabled is True or displays the shadow according to
XmNshadowType, and invokes the list of callbacks specified by
XmNactivateCallback and XmNdisarmCallback. This action rou-
tine takes effect only when the XmNmultiClick resource is set to
XmMULTICLICK_KEEP.

MultiArm()
Displays the DrawnButton as selected if XmNpushButtonEnable
is True or displays the shadow according to XmNshadowType, a
invokes the list of callbacks specified by XmNarmCallback. This
action routine takes effect only when the XmNmultiClick resourc
is set to XmMULTICLICK_KEEP.
Motif Reference Manual 699

XmDrawnButton Motif and Xt Widget Classes

d
Se-

-

Additional Behavior
DrawnButton has the following additional behavior:

<EnterWindow>
Displays the DrawnButton as selected if XmNpushButtonEnable
is True and the pointer leaves and re-enters the window while B
lect is pressed.

<LeaveWindow>
Displays the DrawnButton as unselected if XmNpushButtonEna
bled is True and the pointer leaves the window while BSelect is
pressed.

See Also
XmCreateObject (1), Core (2), XmLabel (2), XmPrimitive (2),
XmPushButton (2).
700 Motif Reference Manual

Motif and Xt Widget Classes XmDropSite

e.

rop

of
, the
en a
Drop-

hese

N ss

X

X

X

X G
Name
XmDropSite registry – an object that defines the characteristics of a drop sit

Synopsis

Public Header:
<Xm/DragDrop.h>

Class Hierarchy:
DropSite does not inherit from any widget class.

Instantiation:
XmDropSiteRegister (...)

Functions/Macros:
XmDropSiteConfigureStackingOrder (), XmDropSiteEndUp-
date (),
XmDropSiteQueryStackingOrder (), XmDropSiteRegister (),
XmDropSiteRetrieve (), XmDropSiteStartUpdate (),
XmDropSiteUpdate (), XmDropSiteUnregister ()

Availability
Motif 1.2 and later.

Description
An XmDropSite is an object that stores data about a drop site for drag and d
operations. A DropSite is associated with a particular widget or gadget in an
application. An application registers a widget or gadget as a DropSite using
XmDropSiteRegister (). The DropSite stores information about the shape
the drop site, the animation effects used when the pointer enters the drop site
types of data supported by the drop site, and the callback that is activated wh
drop occurs. These characteristics can be specified as resources when the
Site is created.

The functionsXmDropSiteUpdate () andXmDropSiteRetrieve () set and
get the drop site resources for a widget that is registered as a DropSite. Use t
routines instead ofXtSetValues () andXtGetValues ().

New Resources
DropSite defines the following resources:

ame Class Type Default Acce

mNanimationMask XmCAnimationMask Pixmap XmUNSPECIFIED_PIXMAP CSG

mNanimationPixmap XmCAnimationPixmap Pixmap XmUNSPECIFIED_PIXMAP CSG

mNanimationPixmapDepth XmCAnimationPixmapDepth int 0 CSG

mNanimationStyle XmCAnimationStyle unsigned char XmDRAG_UNDER_HIGHLIGHT CS
Motif Reference Manual 701

XmDropSite Motif and Xt Widget Classes

 site

is

y

X G

X

X

X

X

X G

X

N ss
XmNanimationMask
The mask for the XmNanimationPixmap when the animation style is
XmDRAG_UNDER_PIXMAP.

XmNanimationPixmap
The pixmap used for drag-under animation when the animation style is
XmDRAG_UNDER_PIXMAP.

XmNanimationPixmapDepth
The depth of the pixmap specified by XmNanimationPixmap.

XmNanimationStyle
The style of drag-under animation used when the pointer enters a valid drop
during a drag operation. Possible values:

XmDRAG_UNDER_HIGHLIGHT /* drop site highlighted */

XmDRAG_UNDER_SHADOW_OUT /*drop site shown with outset shadow*/

XmDRAG_UNDER_SHADOW_IN /*drop site shown with inset shadow*/

XmDRAG_UNDER_PIXMAP /*drop site displays pixmap */

XmDRAG_UNDER_NONE /*no animation effects unless in XmNdragProc*/

XmNdropRectangles
A list of rectangles that specify the shape of the drop site. When the value
NULL, the drop site is the entire widget.

XmNdropSiteActivity
Specifies the state of the drop site. Possible values:

XmDROP_SITE_ACTIVE /*participates in drop operations*/
XmDROP_SITE_INACTIVE /*does not participate in drop operations*/

XmNdropSiteOperations
The valid operations for a drop site. The value is a bit mask that is formed b
combining one or more of these possible values:

mNdropRectangles XmCDropRectangles XRectangle * dynamic CS

mNdropSiteActivity XmCDropSiteActivity unsigned char XmDROP_SITE_ACTIVE CSG

mNdropSiteOperations XmCDropSiteOperations unsigned char XmDROP_MOVE |
XmDROP_COPY

CSG

mNdropSiteType XmCDropSiteType unsigned char XmDROP_SITE_SIMPLE CG

mNimportTargets XmCImportTargets Atom * NULL CSG

mNnumDropRectangles XmCNumDropRectangles Cardinal 1 CS

mNnumImportTargets XmCNumImportTargets Cardinal 0 CSG

ame Class Type Default Acce
702 Motif Reference Manual

Motif and Xt Widget Classes XmDropSite

 or
to the
XmDROP_COPY /*copy operations are valid*/
XmDROP_LINK /* link operations are valid*/
XmDROP_MOVE /*move operations are valid*/
XmDROP_NOOP /*no operations are valid*/

XmNdropSiteType
The type of the drop site. Possible values:

XmDROP_SITE_SIMPLE /*no children are registered as drop sites*/
XmDROP_SITE_COMPOSITE /*has children registered as drop sites*/

XmNimportTargets
The list of target atoms that the drop site accepts.

XmNnumDropRectangles
The number of rectangles in the XmNdropRectangles list.

XmNnumImportTargets
The number of atoms in the XmNimportTargets list.

Callback Resources
DropSite defines the following callback resources:

XmNdragProc
The procedure that is called when the drop site receives a crossing, motion,
operation changed message under the dynamic protocol. The reason passed
procedure depends on the type of message that is received.

XmNdropProc
The procedure that is called when a drop operation occurs on the drop site.

Callback Structure
The XmNdragProc is passed the following structure:

typedef struct {
int reason; /*reason the callback was called */
XEvent *event; /*event that triggered callback */
Time timeStamp; /*timestamp of logical event */
Widget dragContext; /*DragContext associated with operation*/
Position x; /*x-coordinate of pointer */
Position y; /*y-coordinate of pointer */

Callback Reason Constant

XmNdragProc XmCR_DROP_SITE_ENTER_MESSAGE
XmCR_DROP_SITE_LEAVE_MESSAGE
XmCR_DROP_SITE_MOTION_MESSAGE
XmCR_OPERATION_CHANGED_MESSAGE

XmNdropProc XmCR_DROP_MESSAGE
Motif Reference Manual 703

XmDropSite Motif and Xt Widget Classes

nd

ll-

pera-
-
s in
nt’s

p site

n-

ted
N-
the
. The
p-
unsigned char dropSiteStatus; /*valid or invalid */
unsigned char operation; /*current operation */
unsigned char operations; /*supported operations */
Boolean animate; /*toolkit or receiver does animation*/

} XmDragProcCallbackStruct, *XmDragProcCallback;

The XmNdragProc can change the value of the dropSiteStatus, operation, a
operations fields in this structure. When the drag procedure completes, the
toolkit uses the resulting values to initialize the corresponding fields in the ca
back structure passed to the initiating client’s callbacks.

The XmNdropProc is passed the following structure:

typedef struct {
int reason; /*reason the callback was called */
XEvent *event; /*event that triggered callback */
Time timeStamp; /*timestamp of logical event */
Widget dragContext; /*DragContext associated with operation*/
Position x; /*x-coordinate of pointer */
Position y; /*y-coordinate of pointer */
unsigned char dropSiteStatus; /*valid or invalid */
unsigned char operation; /*current operation */
unsigned char operations; /*supported operations */
unsigned char dropAction; /*drop or help */

} XmDropProcCallbackStruct, *XmDropProcCallback;

The XmNdropProc can change the value of the dropSiteStatus, operation, o
tions, and dropAction fields in this structure. When the drop procedure com
pletes, the toolkit uses the resulting values to initialize the corresponding field
the XmDropProcCallbackStruct callback structure passed to the initiating clie
drop start callbacks.

The dropSiteStatus field in these structures specifies whether or not the dro
is valid. The toolkit initializes the value based on the XmNimportTargets
resource of the DropSite and the XmNexportTargets resource of the DragCo
text. The possible values are XmDROP_SITE_VALID and
XmDROP_SITE_INVALID.

The operations field in these structure specifies the set of operations suppor
for the data being dragged. The toolkit initializes the value based on the Xm
dragOperations resource of the DragContext and the operation selected by
user. The operation field in these structures specifies the current operation
toolkit initializes the value based on the value of operations and the XmNdro
SiteOperations resource.
704 Motif Reference Manual

Motif and Xt Widget Classes XmDropSite

lkit
lue

cts.

pos-
The animate field in the XmDragProcCallbackStruct specifies whether the too
or the receiving client handles the drag-under effects for the drop site. If the va
is True, the toolkit handles the effects based on the XmNanimationStyle
resource. Otherwise the receiver is responsible for providing drag-under effe

The dropAction field in the XmDropProcCallbackStruct specifies the action
associated with the drop, which is either a normal drop or a help action. The
sible values are XmDROP and XmDROP_HELP.

See Also
XmDropSiteConfigureStackingOrder (1),
XmDropSiteEndUpdate (1), XmDropSiteQueryStackingOrder (1),
XmDropSiteRegister (1), XmDropSiteRetrieve (1),
XmDropSiteStartUpdate (1), XmDropSiteUnregister (1),
XmDropSiteUpdate (1), XmDisplay (1), XmDragContext (1),
XmDragIcon (2), XmDropTransfer (2), XmScreen (2).
Motif Reference Manual 705

XmDropTransfer Motif and Xt Widget Classes

rop

ss a

sac-

tion.

ll-
ure

ter a
Name
XmDropTransfer widget class – an object used to store information about a d
transaction.

Synopsis

Public Header:
<Xm/DragDrop.h>

Class Name:
XmDropTransfer

Class Pointer:
xmDropTransferObjectClass

Class Hierarchy:
Object→ DropTransfer

Instantiation:
widget =XmDropTransferStart (...)

Functions/Macros:
XmDropTransferAdd (), XmDropTransferStart ()

Availability
Motif 1.2 and later.

Description
The XmDropTransfer object stores information that the toolkit needs to proce
drop transaction. An application does not explicitly create a DropTransfer
widget, but instead initiates a data transfer by callingXmDropTransfer-
Start (), which initializes and returns a DropTransfer widget. IfXmDrop-
TransferStart () is called within an XmNdropProc, the data transfer starts
after the callback returns. If no data needs to be transferred or the drop tran
tion is a failure, an application still needs to callXmDropTransferStart ()
with a failure status, so that the toolkit can complete the drag and drop opera

The XmNtransferProc resource specifies a procedure of type XtSelectionCa
backProc that handles transferring the requested selection data. This proced
performs in conjunction with the underlying Xt selection mechanisms and is
called for each type of data being transferred. Target types can be added af
transfer has started by calling theXmDropTransferAdd ().
706 Motif Reference Manual

Motif and Xt Widget Classes XmDropTransfer

the
 is

f

lec-
fer

e
ble

s

SG
New Resources
DropTransfer defines the following resources:

XmNdropTransfers
Pointer to an array of XmDropTransferEntryRec structures, which specifies
requested target data types for the source data. A XmDropTransferEntryRec
defined as follows:

typedef struct {
XtPointer client_data; /*any additional information necessary*/
Atom target; /*the selection target type */

} XmDropTransferEntryRec, *XmDropTransferEntry;

The drop transfer is done when all of the entries have been processed.

XmNincremental
If True, the receiver uses the Xt incremental selection transfer mechanism. I
False (default), the receiver uses atomic transfer.

XmNnumDropTransfers
The number of entries in XmNdropTransfers. The transfer is complete if the
value is set to 0 at any time.

XmNtransferProc
A procedure of type XtSelectionCallbackProc that provides the requested se
tion values. The widget argument passed to this procedure is the DropTrans
widget and the selection atom is _MOTIF_DROP.

XmNtransferStatus
The current status of the drop transfer. The receiving client updates this valu
when the transfer ends and the value is communicated to the initiator. Possi
values:

XmTRANSFER_SUCCESS XmTRANSFER_FAILURE

Name Class Type Default Acces

XmNdropTransfers XmCDropTransfers XmDropTransferEntryRec * NULL CG

XmNincremental XmCIncremental Boolean False CSG

XmNnumDropTransfers XmCNumDropTransfers Cardinal 0 CSG

XmNtransferProc XmCTransferProc XtSelectionCallbackProc NULL CSG

XmNtransferStatus XmCTransferStatus unsigned char XmTRANSFER_SUCCESS C
Motif Reference Manual 707

XmDropTransfer Motif and Xt Widget Classes
Inherited Resources
DropTransfer inherits the following resource:

See Also
XmDropTransferAdd (1), XmDropTransferStart (1),
XmTargetsAreCompatible (1), Object (2), XmDisplay (2),
XmDragContext (2), XmDragIcon (2), XmDropTransfer (2),
XmScreen (2).

Resource Inherited From

XmNdestroyCallback Object
708 Motif Reference Manual

Motif and Xt Widget Classes XmErrorDialog

Di-
 An
t as

, a
ns. By
ult
ns

ed
Name
XmErrorDialog – an unmanaged MessageBox as a child of a DialogShell.

Synopsis

Public Header:
<Xm/MessageB.h>

Instantiation:
widget =XmCreateErrorDialog (...)

Functions/Macros:
XmCreateErrorDialog (), XmMessageBoxGetChild ()

Description
An XmErrorDialog is a compound object created by a call to XmCreateError
alog() that an application can use to inform the user about any type of error.
ErrorDialog consists of a DialogShell with an unmanaged MessageBox widge
its child. The MessageBox resource XmNdialogType is set to
XmDIALOG_ERROR. An ErrorDialog includes four components: a symbol
message, three buttons, and a separator between the message and the butto
default, the symbol is an octagon with a diagonal slash. In Motif 1.2, the defa
button labels can be localized. In the C locale, and in Motif 1.1, the PushButto
are labelledOK , Cancel, andHelp by default.

Default Resource Values
An ErrorDialog sets the following default values for MessageBox resources:

Widget Hierarchy
When an ErrorDialog is created with a specified name, the DialogShell is nam
name_popup and the MessageBox is calledname.

See Also
XmCreateObject (1), XmMessageBoxGetChild (1),
XmDialogShell (2), XmMessageBox(2).

Name Default

XmNdialogType XmDIALOG_ERROR

XmNsymbolPixmap xm_error
Motif Reference Manual 709

XmFileSelectionBox Motif and Xt Widget Classes

erar-

ist,
o-

.1,

g

are
et
Name
XmFileSelectionBox widget class – a widget for selecting files.

Synopsis

Public Header:
<Xm/FileSB.h>

Class Name:
XmFileSelectionBox

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmBulletinBoard→
XmSelectionBox→ XmFileSelectionBox

Class Pointer:
xmFileSelectionBoxWidgetClass

Instantiation:
widget =XmCreateFileSelectionBox (parent, name,...)
or
widget =XtCreateWidget (name, xmFileSelectionBoxWidgetClass,...)

Functions/Macros:
XmCreateFileSelectionBox (), XmCreateFileSelectionDialog (),
XmFileSelectionBoxGetChild (), XmFileSelectionDoSearch (),
XmIsFileSelectionBox ()

Description
FileSelectionBox is a composite widget that is used to traverse a directory hi
chy and select files. FileSelectionBox provides a directory mask input field, a
scrollable list of subdirectories, a scrollable list of filenames, a filename input
field, and a group of four PushButtons. The names for the filter text, directory l
and directory list label are Text, DirList, and Dir respectively. The other comp
nents have the same names as the components in a SelectionBox.

In Motif 1.2, the button labels can be localized. In the C locale, and in Motif 1
the PushButtons are labelledOK , Filter , Cancel, andHelp by default.

You can customize a FileSelectionBox by removing existing children or addin
new children. UseXmFileSelectionBoxGetChild () to retrieve the widget
ID of an existing child and then unmanage the child. With Motif 1.2, multiple
widgets can be added as children of a FileSelectionBox. Additional children
added in the same way as for a SelectionBox. In Motif 1.1, only a single widg
can be added as a child of a FileSelectionBox. This child is placed below the
filename input field and acts as a work area.
710 Motif Reference Manual

Motif and Xt Widget Classes XmFileSelectionBox

d in
rce.

f
f

ith

ox
In Motif 2.0 and later, the search pattern and base directory can be displaye
two separate text fields, depending on the value of the XmNpathMode resou
If the value is XmPATH_MODE_FULL, the behavior is consistent with that o
Motif 1.2, and the filter text field (Text) contains the XmNdirMask resource. I
the value is XmPATH_MODE_RELATIVE, the XmNdirectory resource is dis-
played in an additional text field which has the nameDirText , with an accompa-
nying label namedDirL , and the filter text fieldText contains the XmNpattern
resource.

In some variants of CDE Motif, the directory pattern field may be replaced w
an XmComboBox, providing a validset of directory locations. If the resource
XmNenableFdbPickList is true, the FileSelectionBox creates an XmComboB

calledDirComboBox in place of theDirText field.1

Traits
FileSelectionBox uses the XmQTactivatable trait.

New Resources
FileSelectionBox defines the following resources:

1.XmNenableFdbPickList is implemented on Solaris 2.7 and above.

Name Class Type Default Access

XmNdirectory XmCDirectory XmString dynamic CSG

XmNdirectoryValid XmCDirectoryValid Boolean dynamic SG

XmNdirListItems XmCDirListItems XmStringTable dynamic SG

XmNdirListItemCount XmCDirListItemCount int dynamic SG

XmNdirListLabelString XmCDirListLabelString XmString dynamic CSG

XmNdirMask XmCDirMask XmString dynamic CSG

XmNdirSearchProc XmCDirSearchProc XmSearchProc default procedure CSG

XmNdirSpec XmCDirSpec XmString dynamic CSG

XmNdirTextLabelString XmCDirTextLabelString XmString NULL CSG

XmNfileFilterStyle XmCFileFilterStyle XtEnum XmFILTER_NONE SG

XmNfileListItems XmCItems XmStringTable dynamic SG

XmNfileListItemCount XmCItemCount int dynamic SG

XmNfileListLabelString XmCFileListLabelString XmString dynamic SG

XmNfileSearchProc XmCFileSearchProc XmSearchProc default procedure CSG

XmNfileTypeMask XmCFileTypeMask unsigned char XmFILE_REGULAR CSG

XmNfilterLabelString XmCFilterLabelString XmString dynamic CSG
Motif Reference Manual 711

XmFileSelectionBox Motif and Xt Widget Classes

s

d by
e to
to

ch
so

ec-

cto-

is

u-
lec-
XmNdirectory
The base directory that, in combination with XmNpattern, forms the directory
mask (the XmNdirMask resource). The directory mask determines which file
and directories to display.

XmNdirectoryValid
A resource that can be set only by the directory search procedure (as specifie
the XmNdirSearchProc resource). If the directory search procedure is unabl
search the directory that was passed to it, then it will set XmNdirectoryValid
False, and as a result, the file search procedure won’t be called.

XmNdirListItems
The items in the directory list. This resource is set only by the directory sear
procedure. A call to XtGetValues() returns the actual list items (not a copy),
don’t have your application free these items.

XmNdirListItemCount
The number of items in XmNdirListItems. This resource is set only by the dir
tory search procedure.

XmNdirListLabelString
The string that labels the directory list. In Motif 1.2, the default value is
locale-dependent. In the C locale, and in Motif 1.1, the default value is "Dire
ries".

XmNdirMask
The directory mask that determines which files and directories to display. Th
value combines the values of the resources XmNdirectory and XmNpattern.

XmNdirSearchProc
The procedure that performs directory searches. For most applications, the
default procedure works just fine. The call to this procedure contains two arg
ments: the widget ID of the FileSelectionBox and a pointer to an XmFileSe
tionBoxCallbackStruct.

XmNlistUpdated XmCListUpdated Boolean dynamic SG

XmNnoMatchString XmCNoMatchString XmString XmUNSPECIFIEDa CSG

XmNpathMode XmCPathMode XtEnum XmPATH_MODE_FULL CSG

XmNpattern XmCPattern XmString dynamic CSG

XmNqualifySearchDataProc XmCQualifySearchDataProc XmQualifyProc default procedure CSG

a.Strictly speaking, more correct than the " [] " given in the 1st and 2nd editions. If the value is XmUN-
SPECIFIED, it defaults to this expression.

Name Class Type Default Access
712 Motif Reference Manual

Motif and Xt Widget Classes XmFileSelectionBox

ng
es

-

any
.’

ec-

-
pro-

. In

lt pro-
the
ll-

or
XmNdirSpec
The complete specification of the file path. Synonymous with the XmNtextStri
resource in SelectionBox. It is the initial directory and file search that determin
the default value for this resource.

XmNdirTextLabelString
In Motif 2.0 and later, specifies the label for the directory text field when the
XmNpathMode resource is XmPATH_MODE_RELATIVE. The value is other
wise ignored.

XmNfileFilterStyle
In Motif 2.0 and later, controls the behaviour of the default file and directory
search procedures in the way in which hidden files are displayed. If enabled,
file or directory beginning with ’.’ is filtered out. The exception to the rule is “.
which is not filtered out in the directory search procedure. Possible values:

XmFILTER_NONE /* do not filter out any files or directories*/
XmFILTER_HIDDEN_FILES /*filter out file beginning with ’.’ */

XmNfileListItems
The items in the file list. Synonymous with the XmNlistItems resource in Sel
tionBox. This resource is set only by the file search procedure. A call toXtGet-
Values () returns the actual list items (not a copy), so don’t have your
application free these items.

XmNfileListItemCount
The number of items in XmNfileListItems. Synonymous with the XmNlistItem
Count resource in SelectionBox. This resource is set only by the file search
cedure.

XmNfileListLabelString
The string that labels the file list. Synonymous with the XmNlistLabelString
resource in SelectionBox. In Motif 1.2, the default value is locale-dependent
the C locale, and in Motif 1.1, the default value is "Files".

XmNfileSearchProc
The procedure that performs file searches. For most applications, the defau
cedure works just fine. The call to this procedure contains two arguments:
widget ID of the FileSelectionBox and a pointer to an XmFileSelectionBoxCa
backStruct.

XmNfileTypeMask
Determines whether the file list will display only regular files, only directories,
any type of file. Possible values are XmFILE_DIRECTORY,
XmFILE_REGULAR, and XmFILE_ANY_TYPE.
Motif Reference Manual 713

XmFileSelectionBox Motif and Xt Widget Classes

er.
tif

file

 in
fil-
tain-

d
el-

e is

ec-
h
 or

arch
ch
ure

dget
ct
uct
XmNfilterLabelString
The string that labels the field in which the directory mask is typed in by the us
In Motif 1.2, the default value is locale-dependent. In the C locale, and in Mo
1.1, the default value is "Filter".

XmNlistUpdated
A resource that can be set only by the directory search procedure or by the
search procedure. This resource is set to True if the directory or file list was
updated by a search procedure.

XmNnoMatchString
A string that displays in the file list when there are no filenames to display.

XmNpathMode
In Motif 2.0 and later, specifies the way in which the filter string is presented
the file selection box. The layout can either contain a single text field for the
ter, as specified by the XmNdirMask resource, or two separate text fields con
ing the XmNpattern and XmNdirectory resources. Possible values:

XmPATH_MODE_FULL /* single text field for XmNdirMask */
XmPATH_MODE_RELATIVE /* 2 text fields for XmNpattern/XmNdirectory*/

When XmNpathMode is XmPATH_MODE_RELATIVE, the text field associate
with the XmNpattern resource is labelled using the value of the XmNfilterLab
String resource, and the text field associated with the XmNdirectory resourc
labelled from the XmNdirTextLabelString value.

XmNpattern
The file search pattern that, in combination with XmNdirectory, forms the dir
tory mask (the XmNdirMask resource). The directory mask determines whic
files and directories to display. If the XmNpattern resource defaults to NULL
is empty, a pattern for matching all files will be used.

XmNqualifySearchDataProc
The procedure that generates a valid directory mask, base directory, and se
pattern to be used by XmNdirSearchProc and XmNfileSearchProc (the sear
procedures for directories and files). For most applications, the default proced
works just fine. The call to this procedure contains three arguments: the wi
ID of the FileSelectionBox, a pointer to an XmFileSelectionBoxCallbackStru
containing the input data, and a pointer to an XmFileSelectionBoxCallbackStr
that will contain the output data.
714 Motif Reference Manual

Motif and Xt Widget Classes XmFileSelectionBox

pha-
 the

us
1 if
Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /*reason that the callback was called*/
XEvent *event; /*event that triggered callback */
XmString value; /*current value of XmNdirSpec resource*/
int length; /* number of bytes in value member*/
XmString mask; /*current value of XmNdirMask resource*/
int mask_length; /*number of bytes in mask member */
XmString dir; /* current base directory */
int dir_length; /*number of bytes in dir member */
XmString pattern; /*current search pattern */
int pattern_length; /*number of bytes in pattern member*/

} XmFileSelectionBoxCallbackStruct;

Inherited Resources
FileSelectionBox inherits the following resources. The resources are listed al
betically, along with the superclass that defines them. FileSelectionBox sets
default values of XmNautoUnmanage to False and XmNdialogType to
XmDIALOG_FILE_SELECTION. It also sets the default values of XmNlist-
Items and XmNlistItemCount dynamically. The default value of XmNborder-
Width is reset to 0 by Manager. BulletinBoard sets the value of XmNinitialFoc
to XmNdefaultButton and resets the default XmNshadowThickness from 0 to
the FileSelectionBox is a child of a DialogShell.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNlistItemCount XmSelectionBox

XmNallowOverlap XmBulletinBoard XmNlistItems XmSelectionBox

XmNancestorSensitive Core XmNlistLabelString XmSelectionBox

XmNapplyCallback XmSelectionBox XmNlistVisibleItemCount XmSelectionBox

XmNapplyLabelString XmSelectionBox XmNmapCallback XmBulletinBoard

XmNautoUnmanage XmBulletinBoard XmNmappedWhenManaged Core

XmNbackground Core XmNmarginHeight XmBulletinBoard

XmNbackgroundPixmap Core XmNmarginWidth XmBulletinBoard

XmNborderColor Core XmNminimizeButtons XmSelectionBox

XmNborderPixmap Core XmNmustMatch XmSelectionBox

XmNborderWidth Core XmNnavigationType XmManager

XmNbottomShadowColor XmManager XmNnoMatchCallback XmSelectionBox

XmNbottomShadowPixmap XmManager XmNnoResize XmBulletinBoard
Motif Reference Manual 715

XmFileSelectionBox Motif and Xt Widget Classes
Translations
The translations for FileSelectionBox are inherited from SelectionBox.

XmNbuttonFontList XmBulletinBoard XmNnumChildren Composite

XmNbuttonRenderTable XmBulletinBoard XmNokCallback XmSelectionBox

XmNcancelButton XmBulletinBoard XmNokLabelString XmSelectionBox

XmNcancelCallback XmSelectionBox XmNpopupHandlerCallback XmManager

XmNcancelLabelString XmSelectionBox XmNresizePolicy XmBulletinBoard

XmNchildren Composite XmNscreen Core

XmNchildPlacement XmSelectionBox XmNselectionLabelString XmSelectionBox

XmNcolormap Core XmNsensitive Core

XmNdefaultButton XmBulletinBoard XmNshadowThickness XmManager

XmNdefaultPosition XmBulletinBoard XmNshadowType XmBulletinBoard

XmNdepth Core XmNstringDirection XmManager

XmNdestroyCallback Core XmNtextAccelerators XmSelectionBox

XmNdialogStyle XmBulletinBoard XmNtextColumns XmSelectionBox

XmNdialogTitle XmBulletinBoard XmNtextFontList XmBulletinBoard

XmNdialogType XmSelectionBox XmNtextRenderTable XmBulletinBoard

XmNfocusCallback XmBulletinBoard XmNtextString XmSelectionBox

XmNforeground XmManager XmNtextTranslations XmBulletinBoard

XmNheight Core XmNtopShadowColor XmManager

XmNhelpCallback XmManager XmNtopShadowPixmap XmManager

XmNhelpLabelString XmSelectionBox XmNtranslations Core

XmNhighlightColor XmManager XmNtraversalOn XmManager

XmNhighlightPixmap XmManager XmNunitType XmManager

XmNinitialFocus XmManager XmNunmapCallback XmBulletinBoard

XmNinitialResourcesPersistent Core XmNuserData XmManager

XmNinsertPosition Composite XmNwidth Core

XmNlabelFontList XmBulletinBoard XmNx Core

XmNlabelRenderTable XmBulletinBoard XmNy Core

XmNlayoutDirection XmManager

Resource Inherited From Resource Inherited From
716 Motif Reference Manual

Motif and Xt Widget Classes XmFileSelectionBox

 the
e
e

y
2,

he

 the
n
or
is
-

l-

te-
e

-

Action Routines
FileSelectionBox defines the following action routines:

SelectionBoxUpOrDown(flag)
Replaces the selection text or the filter text, depending on which
one has the keyboard focus. That is, this action replaces either:
text string in the selection area with an item from the file list, or th
text string in the directory mask (filter) area with an item from th
directory list.
The value of flag determines which file list item or which director
list item is selected as the replacement string. A flag value of 0, 1,
or 3 selects the previous, next, first, or last item, respectively, of t
appropriate list.

SelectionBoxRestore()
Replaces the selection text or the filter text, depending on which
one has the keyboard focus. That is, this action replaces either:
text string in the selection area with the currently selected item i
the file list (clearing the selection area if no list item is selected),
the text string in the filter area with a new directory mask (which
formed by combining the values of the XmNdirectory and XmN-
pattern resources).

Additional Behavior
FileSelectionBox has the following additional behavior:

MAny KCancel
If the Cancel button is sensitive, invokes its XmNactivateCallback
callbacks. If there is noCancel button, the event is passed to the
parent if it is a manager.

KActivate
In the filename text input area, first invokes the XmNactivateCal
back callbacks for the text and then invokes either the XmNno-
MatchCallback or the XmNokCallback callbacks based on the
value of XmNmustMatch.

In the directory mask text input area, first invokes the XmNactiva
Callback callbacks for the text and then starts a directory and fil
search and invokes the XmNapplyCallback callbacks.

In the directory list, invokes the XmNdefaultActionCallback call-
back, begins a directory and file search, and invokes the XmNap
plyCallback callbacks.
Motif Reference Manual 717

XmFileSelectionBox Motif and Xt Widget Classes

us,

ed

r-

rop

l-

l-
the
In the file list, invokes XmNdefaultActionCallback and XmNok-
Callback callbacks.

When neither of these areas nor any button has the keyboard foc
it invokes the callbacks in either XmNnoMatchCallback or
XmNokCallback depending on the value of XmNmustMatch and
whether or not the selection text matches a file in the file list.

<DoubleClick>
In the directory or file list, has the same behavior as KActivate.

<Single Select> or <Browse Select>
In the directory list, composes a directory mask using the select
directory item and the current pattern. In the file list, uses the
selected file item to replace the selection text.

BTransfer
In Motif 1.2, in the file or directory list, starts a drag and drop ope
ation using the selected items in the list. If BTransfer is pressed
over an unselected item, only that item is used in the drag and d
operation.

<Apply Button Activated>
Starts a directory and file search and invokes the XmNapplyCal
back callbacks.

<Ok Button Activated>
Invokes either the XmNnoMatchCallback or XmNokCallback cal
backs based on the value of XmNmustMatch and whether or not
selection text matches a file in the file list.

<Cancel Button Activated>
Invokes the XmNcancelCallback callbacks.

<Help Button Activated>
Invokes the XmNhelpCallback callbacks.

See Also
XmCreateObject (1), XmFileSelectionBoxGetChild (1),
XmFileSelectionDoSearch (1), Composite (2), Constraint (2),
Core (2), XmBulletinBoard (2), XmFileSelectionDialog (2),
XmManager(2), XmSelectionBox (2).
718 Motif Reference Manual

Motif and Xt Widget Classes XmFileSelectionDialog

log

ate-
le

f
p of

ll is
Name
XmFileSelectionDialog – an unmanaged FileSelectionBox as a child of a Dia
Shell.

Synopsis

Public Header:
<Xm/FileSB.h>

Instantiation:
widget = XmCreateFileSelectionDialog(...)

Functions/Macros:
XmCreateFileSelectionBox (), XmFileSelectionBoxGetChild (),
XmCreateFileSelectionDialog (), XmFileSelectionDoSearch (),
XmIsFileSelectionBox ()

Description
An XmFileSelectionDialog is a compound object created by a call to XmCre
FileSelectionDialog() that an application can use to allow a user to select a fi
from a dialog box. A FileSelectionDialog consists of a DialogShell with an
unmanaged FileSelectionBox widget as its child. The SelectionBox resource
XmNdialogType is set to XmDIALOG_FILE_SELECTION.

A FileSelectionDialog provides a directory mask input field, a scrollable list o
subdirectories, a scrollable list of filenames, a filename input field, and a grou
four PushButtons. In Motif 1.2, the button labels can be localized. In the C
locale, and in Motif 1.1, the PushButtons are labelledOK , Filter , Cancel, and
Help by default.

Default Resource Values
A FileSelectionDialog sets the following default values for its resources:

Widget Hierarchy
When a FileSelectionDialog is created with a specified name, the DialogShe
named name_popup and the FileSelectionBox is calledname.

See Also
XmCreateObject (1), XmFileSelectionBoxGetChild (1),
XmFileSelectionDoSearch (1), XmFileSelectionBox (2),
XmDialogShell (2).

Name Default

XmNdialogType XmDIALOG_FILE_SELECTION
Motif Reference Manual 719

XmForm Motif and Xt Widget Classes

out

o

-
r

e of
in
Name
XmForm widget class – a container widget that constrains its children.

Synopsis

Public Header:
<Xm/Form.h>

Class Name:
XmForm

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmBulletinBoard→
XmForm

Class Pointer:
xmFormWidgetClass

Instantiation:
widget =XmCreateForm (parent, name,...)
or
widget =XtCreateWidget (name, xmFormWidgetClass,...)

Functions/Macros:
XmCreateForm (), XmCreateFormDialog (), XmIsForm ()

Description
Form is a container widget that constrains its children so as to define their lay
when the Form is resized. Constraints on the children of a Form specify the
attachments for each of the four sides of a child. Children may be attached t
each other, to edges of the Form, or to relative positions within the Form.

New Resources
Form defines the following resources:

XmNfractionBase
The denominator part of the fraction that describes a child’s relative position
within a Form. The numerator of this fraction is one of the four positional con
straint resources: XmNbottomPosition, XmNleftPosition, XmNrightPosition, o
XmNtopPosition. For example, suppose you use the default XmNfractionBas
100. Then, if you specify XmNtopPosition as 30, the top of the child will rema

Name Class Type Default Access

XmNfractionBase XmCMaxValue int 100 CSG

XmNhorizontalSpacing XmCSpacing Dimension 0 CSG

XmNrubberPositioning XmCRubberPositioning Boolean False CSG

XmNverticalSpacing XmCSpacing Dimension 0 CSG
720 Motif Reference Manual

Motif and Xt Widget Classes XmForm

the

ild
the

.
t,

her
osi-
ned
invariably attached to a location that is 30/100 (or 30 percent) from the top of
Form. (In other words, resizing the Form’s height might change the absolute
position of the child’s top, but not its position relative to the top of the Form.)
Similarly, a value of 50 for XmNleftPosition ensures that the left side of the ch
is attached 50/100 from the left of the Form (or in this case, halfway between
left and right side). Note that these fractions are implemented only when the
child’s corresponding attachment constraint is set to XmATTACH_POSITION
(The attachment constraints are XmNbottomAttachment, XmNleftAttachmen
XmNrightAttachment, and XmNtopAttachment.)

XmNhorizontalSpacing
The offset for right and left attachments.

XmNrubberPositioning
Defines the default behavior of a child’s top and left side, in the absence of ot
settings. If this resource is False (default), the child’s top and left sides are p
tioned using absolute values. If True, the child’s top and left sides are positio
relative to the size of the Form.

XmNverticalSpacing
The offset for top and bottom attachments.

New Constraint Resources
Form defines the following constraint resources for its children:

Name Class Type Default Access

XmNbottomAttachment XmCAttachment unsigned char XmATTACH_NONE CSG

XmNbottomOffset XmCOffset int 0 CSG

XmNbottomPosition XmCAttachment int 0 CSG

XmNbottomWidget XmCWidget Widget NULL CSG

XmNleftAttachment XmCAttachment unsigned char XmATTACH_NONE CSG

XmNleftOffset XmCOffset int 0 CSG

XmNleftPosition XmCAttachment int 0 CSG

XmNleftWidget XmCWidget Widget NULL CSG

XmNresizable XmCBoolean Boolean True CSG

XmNrightAttachment XmCAttachment unsigned char XmATTACH_NONE CSG

XmNrightOffset XmCOffset int 0 CSG

XmNrightPosition XmCAttachment int 0 CSG

XmNrightWidget XmCWidget Widget NULL CSG

XmNtopAttachment XmCAttachment unsigned char XmATTACH_NONE CSG

XmNtopOffset XmCOffset int 0 CSG
Motif Reference Manual 721

XmForm Motif and Xt Widget Classes

-
h-

 the

/

 Off-
dent.

t-
t

e bot-
e to

ets
XmNbottomAttachment
The method of attachment for the child’s bottom side. Each of the four attach
ment resources (XmNtopAttachment, XmNbottomAttachment, XmNleftAttac
ment, and XmNrightAttachment) has the following possible values. The
comments below refer to a corresponding edge (top, bottom, left, or right) of
child widget within the Form.

XmATTACH_NONE /* remains unattached */
XmATTACH_FORM /* attached to same edge of Form */
XmATTACH_OPPOSITE_FORM /*attached to other edge of Form */
XmATTACH_WIDGET /* abuts an adjacent widget */
XmATTACH_OPPOSITE_WIDGET /*attached to other edge of adjacent *

/* widget */
XmATTACH_POSITION /* relative to a dimension of Form */
XmATTACH_SELF /* relative to its current position and*/

/* to Form */

XmNbottomOffset
The distance between the child’s bottom side and the object it’s attached to.
sets are absolute. Offsets are of type int and may not be resolution-indepen

XmNbottomPosition
Used in conjunction with XmNfractionBase to calculate the position of the bo
tom of a child, relative to the bottom of the Form. This resource has no effec
unless the child’s XmNbottomAttachment resource is set to
XmATTACH_POSITION. (See XmNfractionBase for details.)

XmNbottomWidget
The name of the widget or gadget that serves as the attachment point for th
tom of the child. To use this resource, set the XmNbottomAttachment resourc
either XmATTACH_WIDGET or XmATTACH_OPPOSITE_WIDGET.

XmNleftAttachment
The method of attachment for the child’s left side.

XmNleftOffset
The distance between the child’s left side and the object it’s attached to. Offs
are absolute. Offsets are of type int and may not be resolution-independent.

XmNtopPosition XmCAttachment int 0 CSG

XmNtopWidget XmCWidget Widget NULL CSG

Name Class Type Default Access
722 Motif Reference Manual

Motif and Xt Widget Classes XmForm

ft
ct

e left
to

hat
t
size
ch-
er

sets
t.

ht
fect

right
 to

sets

of
e

XmNleftPosition
Used in conjunction with XmNfractionBase to calculate the position of the le
side of a child, relative to the left side of the Form. This resource has no effe
unless the child’s XmNleftAttachment resource is set to
XmATTACH_POSITION. (See XmNfractionBase for details.)

XmNleftWidget
The name of the widget or gadget that serves as the attachment point for th
side of the child. To use this resource, set the XmNleftAttachment resource
either XmATTACH_WIDGET or XmATTACH_OPPOSITE_WIDGET.

XmNresizable
If True (default), a child’s resize request is accepted by the Form, provided t
the child isn’t constrained by its attachments. That is, if both the left and righ
sides of a child are attached, or if both the top and bottom are attached, the re
request fails, whereas if the child has only one horizontal or one vertical atta
ment, the resize request is granted. If this resource is False, the child is nev
resized.

XmNrightAttachment
The method of attachment for the child’s right side.

XmNrightOffset
The distance between the child’s right side and the object it’s attached to. Off
are absolute. Offsets are of type int and may not be resolution-independen

XmNrightPosition
Used in conjunction with XmNfractionBase to calculate the position of the rig
side of a child, relative to the right side of the Form. This resource has no ef
unless the child’s XmNrightAttachment resource is set to
XmATTACH_POSITION. (See XmNfractionBase for details.)

XmNrightWidget
The name of the widget or gadget that serves as the attachment point for the
side of the child. To use this resource, set the XmNrightAttachment resource
either XmATTACH_WIDGET or XmATTACH_OPPOSITE_WIDGET.

XmNtopAttachment
The method of attachment for the child’s top side.

XmNtopOffset
The distance between the child’s top side and the object it’s attached to. Off
are absolute. Offsets are of type int and may not be resolution-independent.

XmNtopPosition
Used in conjunction with XmNfractionBase to calculate the position of the top
a child, relative to the top of the Form. This resource has no effect unless th
child’s XmNtopAttachment resource is set to XmATTACH_POSITION. (See
XmN-fraction-Base for details.)
Motif Reference Manual 723

XmForm Motif and Xt Widget Classes

e top
her

y,
mN-
r-
us
1 if
XmNtopWidget
The name of the widget or gadget that serves as the attachment point for th
of the child. To use this resource, set the XmNtopAttachment resource to eit
XmATTACH_WIDGET or XmATTACH_OPPOSITE_WIDGET.

Inherited Resources
Form inherits the following resources. The resources are listed alphabeticall
along with the superclass that defines them. Form sets the default values of X
marginWidth and XmN-margin-Height to 0. The default value of XmNborde
Width is reset to 0 by Manager. BulletinBoard sets the value of XmNinitialFoc
to XmNdefaultButton and resets the default XmNshadowThickness from 0 to
the Form widget is a child of DialogShell.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNlabelFontList XmBulletinBoard

XmNallowOverlap XmBulletinBoard XmNlabelRenderTable XmBulletinBoard

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNautoUnmanage XmBulletinBoard XmNmapCallback XmBulletinBoard

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNmarginHeight XmBulletinBoard

XmNborderColor Core XmNmarginWidth XmBulletinBoard

XmNborderPixmap Core XmNnavigationType XmManager

XmNborderWidth Core XmNnoResize XmBulletinBoard

XmNbottomShadowColor XmManager XmNnumChildren Composite

XmNbottomShadowPixmap XmManager XmNpopupHandlerCallback XmManager

XmNbuttonFontList XmBulletinBoard XmNresizePolicy XmBulletinBoard

XmNbuttonRenderTable XmBulletinBoard XmNscreen Core

XmNcancelButton XmBulletinBoard XmNsensitive Core

XmNchildren Composite XmNshadowThickness XmManager

XmNcolormap Core XmNshadowType XmBulletinBoard

XmNdefaultButton XmBulletinBoard XmNstringDirection XmManager

XmNdefaultPosition XmBulletinBoard XmNtextFontList XmBulletinBoard

XmNdepth Core XmNtextRenderTable XmBulletinBoard

XmNdestroyCallback Core XmNtextTranslations XmBulletinBoard

XmNdialogStyle XmBulletinBoard XmNtopShadowColor XmManager

XmNdialogTitle XmBulletinBoard XmNtopShadowPixmap XmManager

XmNfocusCallback XmBulletinBoard XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager
724 Motif Reference Manual

Motif and Xt Widget Classes XmForm
Translations
The translations for Form are inherited from XmBulletinBoard.

See Also
XmCreateObject (1), Composite (2), Constraint (2), Core (2),
XmBulletinBoard (2), XmFormDialog (2), XmManager(2).

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNunmapCallback XmBulletinBoard

XmNhighlightColor XmManager XmNuserData XmManager

XmNhighlightPixmap XmManager XmNwidth Core

XmNinitialFocus XmManager XmNx Core

XmNinitialResourcesPersistent Core XmNy Core

XmNinsertPosition Composite

Resource Inherited From Resource Inherited From
Motif Reference Manual 725

XmFormDialog Motif and Xt Widget Classes

f a
oes
nts

ed
Name
XmFormDialog – an unmanaged Form as a child of a DialogShell.

Synopsis

Public Header:
<Xm/Form.h>

Instantiation:
widget = XmCreateFormDialog(...)

Functions/Macros:
XmCreateFormDialog ()

Description
An XmFormDialog is a compound object created by a call toXmCreateForm-
Dialog () that is useful for creating custom dialogs. A FormDialog consists o
DialogShell with an unmanaged Form widget as its child. The FormDialog d
not contain any labels, buttons, or other dialog components; these compone
are added by the application.

Widget Hierarchy
When a FormDialog is created with a specified name, the DialogShell is nam
name_popup and the Form is calledname.

See Also
XmCreateObject (1), XmDialogShell (2), XmForm(2).
726 Motif Reference Manual

Motif and Xt Widget Classes XmFrame

ngle

er
nce

and

dow
Name
XmFrame widget class – a manager widget that places a border around a si
child.

Synopsis

Public Header:
<Xm/Frame.h>

Class Name:
XmFrame

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmFrame

Class Pointer:
xmFrameWidgetClass

Instantiation:
widget =XmCreateFrame (parent, name,...)
or
widget =XtCreateWidget (name, xmFrameWidgetClass,...)

Functions/Macros:
XmCreateFrame (), XmIsFrame ()

Description
Frame is a simple subclass of Manager that places a three-dimensional bord
around a single child. Frame is used to provide the typical Motif-style appeara
for widget classes that do not have a visible frame, such as RowColumn.

As of Motif 1.2, a Frame can have two children: a work area child and a title
child. The widget uses constraint resources to indicate the type of each child
to specify the alignment of the title child.

New Resources
Frame defines the following resources:

XmNmarginHeight
The spacing between the top or bottom of a Frame widget’s child and the sha
of the Frame widget.

Name Class Type Default Access

XmNmarginHeight XmCMarginHeight Dimension 0 CSG

XmNmarginWidth XmCMarginWidth Dimension CSG

XmNshadowType XmCShadowType unsigned char dynamic CSG
Motif Reference Manual 727

XmFrame Motif and Xt Widget Classes

n:

ible

e is
the

Nam cess

XmN SG

XmN SG

XmN CSG

XmN SG

XmN CSG
XmNmarginWidth
The spacing between the right or left side of a Frame widget’s child and the
shadow of the Frame widget.

XmNshadowType
The style in which Frame widgets are drawn. Possible values:

XmSHADOW_IN /* widget appears inset */
XmSHADOW_OUT /* widget appears outset */
XmSHADOW_ETCHED_IN /*double line; widget appears inset*/
XmSHADOW_ETCHED_OUT /*double line; widget appears raised*/

New Constraint Resources
As of Motif 1.2, Frame defines the following constraint resources for its childre

XmNchildType
The type of the child. Frame supports one title and one work area child. Poss
values:

XmFRAME_TITLE_CHILD /* child is the title */
XmFRAME_WORKAREA_CHILD /* child is the work area*/
XmFRAME_GENERIC_CHILD /*child is ignored */

From Motif 2.0 and later, the XmNchildType resource is deprecated, and the
XmNframeChildType resource is the preferred method.

XmNchildHorizontalAlignment
The alignment (left to right) for a Frame’s title. Possible values are:

XmALIGNMENT_BEGINNING
XmALIGNMENT_CENTER
XmALIGNMENT_END

XmNchildHorizontalSpacing
The minimum distance between the title text and the Frame shadow. The titl
clipped to maintain this distance. The value of XmNmarginWidth is used as
default value.

e Class Type Default Ac

childType XmCChildType unsigned char XmFRAME_WORKAREA_CHILD C

childHorizontalAlignment XmCChildHorizontalAlignment unsigned char XmALIGNMENT_BEGINNING C

childHorizontalSpacing XmCChildHorizontalSpacing Dimension dynamic

childVerticalAlignment XmCChildVerticalAlignment unsigned char XmALIGNMENT_CENTER C

frameChildType XmCFrameChildType unsigned char XmFRAME_WORKAREA_CHILD
728 Motif Reference Manual

Motif and Xt Widget Classes XmFrame

ssi-

t
all

lly,

.

XmNchildVerticalAlignment
The alignment of the Frame’s title relative to the top shadow of the Frame. Po
ble values:

XmALIGNMENT_BASELINE_BOTTOM
XmALIGNMENT_BASELINE_TOP
XmALIGNMENT_WIDGET_TOP
XmALIGNMENT_CENTER
XmALIGNMENT_WIDGET_BOTTOM

XmNframeChildType
Introduced in Motif 2.0 as part of a rationalization in the naming of constrain
resources. The behavior of the XmNframeChildType resource is identical in
respects to the XmNchildType resource, which is now deprecated.

Inherited Resources
Frame inherits the following resources. The resources are listed alphabetica
along with the superclass that defines them. Frame sets the default value of
XmNshadowThickness to 1 if the Frame is a child of a Shell and 2 otherwise
The default value of XmNborderWidth is reset to 0 by Manager.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmManager XmNsensitive Core

XmNbottomShadowPixmap XmManager XmNshadowThickness XmManager

XmNchildren Composite XmNstringDirection XmManager

XmNcolormap Core XmNtopShadowColor XmManager

XmNdepth Core XmNtopShadowPixmap XmManager

XmNdestroyCallback Core XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNwidth Core

XmNhighlightPixmap XmManager XmNx Core
Motif Reference Manual 729

XmFrame Motif and Xt Widget Classes
Translations
The translations for Frame are inherited from XmManager.

See Also
XmCreateObject (1), Composite (2), Constraint (2), Core (2),
XmManager(2).

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core

Resource Inherited From Resource Inherited From
730 Motif Reference Manual

Motif and Xt Widget Classes XmGadget

are of

an-

.

t
fied

d

Name
XmGadget widget class – the fundamental class for windowless widgets.

Synopsis

Public Header:
<Xm/Xm.h>

Class Name:
XmGadget

Class Hierarchy:
Object→ RectObj→ XmGadget

Class Pointer:
xmGadgetClass

Instantiation:
Gadget is a meta-class and is not normally instantiated.

Functions/Macros:
XmIsGadget ()

Description
Gadget is a supporting superclass for other gadget classes. Gadget takes c
drawing and highlighting border shadows as well as managing traversal.

In versions of Motif prior to 2.0, a gadget is drawn using pixmap and color
resources taken from the Manager parent. Changing such a resource in a M
ager (for example, XmNforeground) also affects all gadget children. Gadgets
sharing the same parent therefore also share the same general appearance

In Motif 2.0 and later, the Gadget class supports independent appearance
resources. For example, Gadgets sharing the same parent can have differen
XmNforeground values. Where a particular appearance resource is unspeci
for a Gadget, the default value is taken from the Manager parent.

Traits
Gadget holds the XmQTspecifyLayoutDirection, XmQTaccessColors, and
XmQTspecifyUnitType traits, which are inherited by any derived classes, an
uses the XmQTspecifyUnhighlight trait.
Motif Reference Manual 731

XmGadget Motif and Xt Widget Classes

he

es.

N s

X

X G

X G

X SG

X

X

X G

X

X G

X

X G

X SG

X G

X SG

X G

X G

X

New Resources
Gadget defines the following resources:

XmNbackground
In Motif 2.0 and later, specifies the background color for the Gadget.

XmNbackgroundPixmap
In Motif 2.0 and later, specifies the background pixmap for tiling the Gadget. T
default is XmUNSPECIFIED_PIXMAP.

XmNbottomShadowColor
Specifies the color used in drawing the border shadow’s bottom and right sid

XmNbottomShadowPixmap
In Motif 2.0 and later, specifies the pixmap for drawing the bottom and right
sides of the Gadget border shadow.

ame Class Type Default Acces

mNbackground XmCBackground Pixel dynamic CSG

mNbackgroundPixmap XmCPixmap Pixmap XmUNSPECIFIED_PIXMAP CS

mNbottomShadowColor XmCBottomShadowColor Pixel dynamic CS

mNbottomShadowPixmap XmCBottomShadowPixmap Pixmap dynamic C

mNforeground XmCForeground Pixel dynamic CSG

mNhighlightColor XmCHighlightColor Pixel dynamic CSG

mNhighlightOnEnter XmCHighlightOnEnter Boolean False CS

mNhighlightPixmap XmCHighlightPixmap Pixmap dynamic CSG

mNhighlightThickness XmCHighlightThickness Dimension dynamic CS

mNlayoutDirection XmCLayoutDirection unsigned char dynamic CG

mNnavigationType XmCNavigationType unsigned char XmNONE CS

mNshadowThickness XmNShadowThickness Dimension dynamic C

mNtopShadowColor XmCTopShadowColor Pixel dynamic CS

mNtopShadowPixmap XmCTopShadowPixmap Pixmap dynamic C

mNtraversalOn XmCTraversalOn Boolean True CS

mNunitType XmCUnitType unsigned char dynamic CS

mNuserData XmCUserData XtPointer NULL CSG
732 Motif Reference Manual

Motif and Xt Widget Classes XmGadget

 cur-
focus

ec-

t is
-

le,
the
ay-

viga-

 In
n-
XmNforeground
In Motif 2.0 and later, specifies the foreground color for the Gadget.

XmNhighlightColor
Specifies the color used in drawing the highlighting rectangle.

XmNhighlightOnEnter
Determines whether to draw a gadget’s highlighting rectangle whenever the
sor moves into the gadget. This resource applies only when the shell has a
policy of XmPOINTER. If the XmNhighlightOnEnter resource is True, high-
lighting is drawn; if False (default), highlighting is not drawn.

XmNhighlightPixmap
In Motif 2.0 and later, specifies the pixmap used for drawing the highlighting r
tangle.

XmNhighlightThickness
The thickness of the highlighting rectangle. In Motif 2.0 and earlier, the defaul
2. In Motif 2.1 and later, the default depends upon the XmDisplay XmNenab
leThinThickness resource: if True, the default is 1, otherwise 2.

XmNlayoutDirection
In Motif 2.0 and later, specifies the direction in which components (for examp
strings) of the Gadget are laid out. If unspecified, the value is inherited from
Manager parent, or from the nearest ancestor which has the XmQTspecifyL
outDirection trait. Possible values:

XmLEFT_TO_RIGHT XmRIGHT_TO_LEFT

XmNnavigationType
Determines the way in which gadgets are to be traversed during keyboard na
tion. Possible values:

XmNONE /* exclude from keyboard navigation*/
/* (default for non-shell parent) */

XmTAB_GROUP /*include in keyboard navigation */
/* (default when parent is a shell) */

XmSTICKY_TAB_GROUP /*include in keyboard navigation, even if*/
/* XmAddTabGroup() was called */

XmEXCLUSIVE_TAB_GROUP /*application defines order of navigation*/

XmNshadowThickness
The thickness of the shadow border. In Motif 2.0 and earlier, the default is 2.
Motif 2.1 and later, the default depends upon the XmDisplay XmNenableThi
Thickness resource: if True, the default is 1, otherwise 2.

XmNtopShadowColor
Specifies the color used in drawing the border shadow’s top and left sides.
Motif Reference Manual 733

XmGadget Motif and Xt Widget Classes

w’s

r
lude

 the

 is
XmNtopShadowPixmap
In Motif 2.0 and later, specifies the pixmap used in drawing the border shado
top and left sides.

XmNtraversalOn
If True (default), traversal of this gadget is made possible.

XmNunitType
The measurement units to use in resources that specify a size or position--fo
example, any resources of data type Dimension (whose names generally inc
one of the words "Margin" or "Thickness"). For a gadget whose parent is a
XmManager subclass, the default value is copied from this parent (provided
value hasn’t been explicitly set by the application); otherwise, the default is
XmPIXELS. Possible values:

XmPIXELS Xm100TH_POINTS
Xm100TH_MILLIMETERS Xm100TH_FONT_UNITS
Xm1000TH_INCHES
XmINCHES (2.0)
XmPOINTS (2.0)
XmFONT_UNITS (2.0)

XmNuserData
A pointer to data that the application can attach to the gadget. This resource
unused internally.

Callback Resources
Gadget defines the following callback resources:

XmNhelpCallback
List of callbacks that are called when help is requested.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /*the reason that the callback was called*/
XEvent *event; /*event structure that triggered callback*/

} XmAnyCallbackStruct;

Callback Reason Constant

XmNhelpCallback XmCR_HELP
734 Motif Reference Manual

Motif and Xt Widget Classes XmGadget

ally,
 of

ehav-
get
get.
Inherited Resources
Gadget inherits the following resources. The resources are listed alphabetic
along with the superclass that defines them. Gadget resets the default value
XmNborderWidth from 1 to 0.

Behavior
Since Gadgets cannot have translations associated with them, a Gadget’s b
ior is controlled by the XmManager widget that contains the Gadget. If a Gad
has the keyboard focus, the XmManager handles passing events to the Gad

See Also
Object (2), RectObj (2), XmManager(2), XmScreen (2).

Name Inherited From

XmNancestorSensitive RectObj

XmNborderWidth RectObj

XmNdestroyCallback Object

XmNheight RectObj

XmNsensitive RectObj

XmNwidth RectObj

XmNx RectObj

XmNy RectObj
Motif Reference Manual 735

XmGrabShell Motif and Xt Widget Classes

ter

s
its

lic

G

Name
XmGrabShell widget class – a popup shell that grabs the keyboard and poin
when mapped

Synopsis

Public Header:
<Xm/GrabShell.h>

Class Name:
XmGrabShell

Class Hierarchy:
Core→ Composite→ Shell→ WMShell→ VendorShell→ XmGrabShell

Class Pointer:
xmGrabShellWidgetClass

Instantiation:
widget =XmCreateGrabShell (parent, name,...)
or

widget =XtCreatePopupShell 1 (name, xmGrabShellWidgetClass,...)
Functions/Macros:

XmCreateGrabShell (), XmIsGrabShell ()

Availability
Motif 2.0 and later.

Description
GrabShell is a shell widget which grabs the pointer and keyboard when it is
mapped. The purpose of this is to provide a popup which immediately direct
focus to its child. The ComboBox widget utilizes this feature in implementing
popup List.

Although GrabShell is an internal widget used by the ComboBox, it has a pub
interface, and is therefore available for use.

New Resources
GrabShell defines the following resources:

1.More precise than XtCreateWidget as given in 2nd edition.

Name Class Type Default Access

XmNbottomShadowColor XmCBottomShadowColor Pixel dynamic CSG

XmNbottomShadowPixmap XmCBottomShadowPixmap Pixmap XmUNSPECIFIED_PIXMAP CS
736 Motif Reference Manual

Motif and Xt Widget Classes XmGrabShell

ly if

ted.

e

abeti-
w-

G

G

XmNbottomShadowColor
The color used in drawing the border shadow’s bottom and right sides, but on
XmNbottomShadowPixmap is NULL.

XmNbottomShadowPixmap
The pixmap used in drawing the border shadow’s bottom and right sides.

XmNgrabStyle

Controls the further processing of pointer events once the grab has been initia
Possible values:

GrabModeSync GrabModeAsync

Refer to Xlib documentation onXGrabKeyboard () andXGrabPointer ()
for more information.

XmNownerEvents
Specifies whether pointer or keyboard events are reported normally within th
application, or only to the GrabShell window. Refer to Xlib documentation on
XGrabKeyboard () andXGrabPointer () for more information.

XmNshadowThickness
The thickness of the shadow border.

XmNtopShadowColor
The color used in drawing the border shadow’s top and left sides, but only if
XmNtopShadowPixmap is NULL.

XmNtopShadowPixmap
The pixmap used in drawing the border shadow’s top and left sides.

Inherited Resources
GrabShell inherits the resources shown below. The resources are listed alph
cally, along with the superclass that defines them. GrabShell resets XmNallo
ShellResize to True, XmNoverrideRedirect to True, XmNtransient to True,
XmNwaitForWm to False, and XmNsaveUnder to False.

XmNgrabStyle XmCGrabStyle int GrabModeAsync CSG

XmNownerEvents XmCOwnerEvents Boolean False CSG

XmNshadowThickness XmCShadowThickness Dimension 2 CS

XmNtopShadowColor XmCTopShadowColor Pixel dynamic CSG

XmNtopShadowPixmap XmCTopShadowPixmap Pixmap dynamic CS

Name Class Type Default Access
Motif Reference Manual 737

XmGrabShell Motif and Xt Widget Classes
Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNmaxAspectX WMShell

XmNallowShellResize Shell XmNmaxAspectY WMShell

XmNancestorSensitive Core XmNmaxHeight WMShell

XmNaudibleWarning VendorShell XmNmaxWIdth WMShell

XmNbackground Core XmNminAspectX WMShell

XmNbackgroundPixmap Core XmNminAspectY WMShell

XmNbaseHeight WMShell XmNminHeight WMShell

XmNbaseWidth WMShell XmNminWidth WMShell

XmNborderColor Core XmNmwmDecorations VendorShell

XmNborderPixmap Core XmNmwmFunctions VendorShell

XmNborderWidth Core XmNmwmInputMode VendorShell

XmNbuttonFontList VendorShell XmNmwmMenu VendorShell

XmNbuttonRenderTable VendorShell XmNnumChildren Composite

XmNchildren Composite XmNoverrideRedirect Shell

XmNcolormap Core XmNpopdownCalback Shell

XmNcreatePopupChildProc Shell XmNpopupCallback Shell

XmNdefaultFontList VendorShell XmNpreeditType VendorShell

XmNdeleteResponse VendorShell XmNsaveUnder Shell

XmNdepth Core XmNscreen Core

XmNdestroyCallback Core XmNsensitive Core

XmNgeometry Shell XmNshellUnitType VendorShell

XmNheight Core XmNtextFontList VendorShell

XmNheightInc WMShell XmNtextRenderTable VendorShell

XmNiconMask WMShell XmNtitle WMShell

XmNiconPixmap WMShell XmNtitleEncoding WMShell

XmNiconWindow WMShell XmNtransient WMShell

XmNinitialResourcesPersistent Core XmNtranslations Core

XmNinitialState WMShell XmNvisual Shell

XmNinput WMShell XmNwaitForWm WMShell

XmNinputMethod VendorShell XmNwidth Core

XmNinputPolicy VendorShell XmNwidthInc WMShell

XmNinsertPosition Composite XmNwindowGroup WMShell

XmNkeyboardFocusPolicy VendorShell XmNwinGravity WMShell
738 Motif Reference Manual

Motif and Xt Widget Classes XmGrabShell

r-
ab-

rab-
ner.
Translations
The translations for GrabShell include those of WMShell.

Action Routines
GrabShell defines the following action routines:

GrabShellBtnDown()
If the event occurs outside the coordinates of the GrabShell, the
widget is popped up, otherwise the event is ignored.

GrabShellBtnUp()
If the event occurs within the time specified by the multi-click inte
val of the display, the action ignores the event. Otherwise, the Gr
Shell is popped down.

GrabShellPopdown()
Grabs placed upon the pointer and keyboard are released, the G
Shell is unmapped, and the focus is reverted to the previous ow

See Also
XmCreateObject (1), Composite (2), Core (2), Shell (2),
VendorShell (2), WMShell (2)

XmNlabelFontList VendorShell XmNwmTimeout WMShell

XmNlabelRenderTable VendorShell XmNx Core

XmNlayoutDirection VendorShell XmNy Core

XmNmappedWhenManaged Core

Event Action

BSelect Press GrabShellBtnDown()

BSelect Release GrabShellBtnUp()

Resource Inherited From Resource Inherited From
Motif Reference Manual 739

XmIconGadget Motif and Xt Widget Classes

p

on
r
The

et
ind.
rray
on
t.

and
n
po-
Name
XmIconGadget widget class – a gadget for displaying both text and a pixma

Synopsis

Public Header:
<Xm/IconG.h>

Class Name:
XmIconGadget

Class Hierarchy:
Object→ RectObj→ XmGadget→ XmIconGadget

Class Pointer:
xmIconGadgetClass

Instantiation:
widget =XmCreateIconGadget (parent, name,...)
or
widget =XtCreateWidget (name, xmIconGadgetClass,...)

Functions/Macros:
XmCreateIconGadget(), XmIsIconGadget ()

Availability
Motif 2.0 and later.

Description
IconGadget is a gadget which can display both textual and pixmap informati
simultaneously. The textual data can be either centered below the pixmap, o
placed to the side, depending upon the value of the XmNviewType resource.
value XmLARGE_ICON centers below, and XmSMALL_ICON horizontally
aligns, the pixmap and textual information.

IconGadget is intended for use with the Container, which lays out IconGadg
children in various styles, in order to represent application objects of some k
In addition to the textual labelling, an IconGadget can be associated with an a
of detail information, which presumably represents attributes of the applicati
object, and which the Container parent can lay out relative to the IconGadge

By default, the IconGadget will use its widget name for the XmNlabelString
resource. To display only an image, specify the appropriate pixmap resource,
set the XmNlabelString resource to XmUNSPECIFIED. Alternatively, apply a
XmNlabelString resource which specifies a compound string with no text com
nent.
740 Motif Reference Manual

Motif and Xt Widget Classes XmIconGadget

QT-

a.
Traits
IconGadget holds the XmQTcontainerItem, XmQTcareParentVisual, XmQT-
pointIn, and XmQTaccessColors traits, and uses the XmQTcontainer and Xm
specifyRenderTable traits. The XmQTpointIn trait is undocumented.

New Resources
IconGadget defines the following resources:

XmNalignment
In Motif 2.1, specifies the horizontal alignment of the textual and pixmap dat
Possible values:

XmALIGNMENT_BEGINNING
XmALIGNMENT_CENTER
XmALIGNMENT_END

Name Class Type Default Access

XmNalignment XmCAlignment unsigned char XmALIGNMENT_CENTER CSG

XmNdetail XmCDetail XmStringTable NULL CSG

XmNdetailCount XmCDetailCount Cardinal 0 CSG

XmNfontList XmCFontList XmFontList NULL CSG

XmNlabelString XmCLabelString XmString dynamic CSG

XmNlargeIconMask XmCIconMask Pixmap XmUNSPECIFIED_PIXMAP CSG

XmNlargeIconPixmap XmCIconPixmap Pixmap XmUNSPECIFIED_PIXMAP CSG

XmNmarginHeight XmCMarginHeight Dimension 2 CSG

XmNmarginWidth XmCMarginWidth Dimension 2 CSG

XmNrenderTable XmCRenderTable XmRenderTable dynamic CSG

XmNsmallIconMask XmCIconMask Pixmap XmUNSPECIFIED_PIXMAP CSG

XmNsmallIconPixmap XmCIconPixmap Pixmap XmUNSPECIFIED_PIXMAP CSG

XmNspacing XmCSpacing Dimension 4 CSG

XmNviewType XmCViewType unsigned char XmLARGE_ICON CSG

XmNvisualEmphasis XmCVisualEmphasis unsigned char XmNOT_SELECTED CSG
Motif Reference Manual 741

XmIconGadget Motif and Xt Widget Classes

sso-

 the
erTa-
d as

get.

s

an-

ec-

the
ch

om-
XmNdetail
Specifies an array of compound strings, representing the detail information a
ciated with the IconGadget.

XmNdetailCount
Specifies the number of compound strings in XmNdetail.

XmNfontList
Specifies the font list associated with the IconGadget. In Motif 2.0 and later,
XmFontList is an obsolete data type, and has been replaced by the XmRend
ble. The resource is maintained for backwards compatibility but implemente
a render table. Any specified XmNrenderTable resource takes priority.

XmNlabelString
The compound string representing the textual data for labelling the IconGad
If unspecified, the value is constructed out of the name of the gadget.

XmNlargeIconMask
Specifies the icon mask used when XmNviewType is XmLARGE_ICON. Thi
resource must be a bitmap (a pixmap of depth 1).

XmNlargeIconPixmap
Specifies the pixmap used when XmNviewType is XmLARGE_ICON.

XmNmarginHeight
In Motif 2.1, specifies the vertical distance in pixels between the highlight rect
gle and the IconGadget contents.

XmNmarginWidth
In Motif 2.1, specifies the horizontal distance in pixels between the highlight r
tangle and the IconGadget contents.

XmNrenderTable
Specifies the XmRenderTable used for displaying textual data associated with
IconGadget. If unspecified, the value is taken from the nearest ancestor whi
holds the XmQTspecifyRenderTable trait, using the
XmLABEL_RENDER_TABLE value of any ancestor so found.

XmNsmallIconMask
Specifies the icon mask used when XmNviewType is XmSMALL_ICON. This
resource must be a bitmap (a pixmap of depth 1).

XmNsmallIconPixmap
Specifies the pixmap used when XmNviewType is XmSMALL_ICON.

XmNspacing
In Motif 2.1, specifies the distance in pixels between the textual and pixmap c
ponents of the IconGadget.
742 Motif Reference Manual

Motif and Xt Widget Classes XmIconGadget

on-

d
pe

lor
te.

eti-
XmNviewType
Specifies the IconGadget layout style. If the parent of the IconGadget is a C
tainer, the view type is overridden by the value of the XmNentryViewType
resource of the parent if the value is not XmANY_ICON. If XmNviewType is
XmLARGE_ICON, the pixmap specified by XmNlargeIconPixmap is displaye
above the textual label, with the text centered upon the pixmap. If XmNviewTy
is XmSMALL_ICON, the label is displayed either to the left or the right of the
pixmap, depending upon the XmNlayoutDirection resource.

XmNvisualEmphasis
Specifies whether the IconGadget is displayed in normal or selected state.

If the value is XmSELECTED, the gadget is rendered using the XmNselectCo
resource of the Container parent. XmNOT_SELECTED displays in normal sta

Inherited Resources
IconGadget inherits the following resources. The resources are listed alphab
cally, along with the superclass that defines them.

See Also
XtCreateObject(1), Object (2), RectObj (2), XmGadget(2).

Resource Inherited From Resource Inherited From

XmNancestorSensitive RectObj XmNhighlightThickness XmGadget

XmNbackground XmGadget XmNlayoutDirection XmGadget

XmNbackgroundPixmap XmGadget XmNnavigationType XmGadget

XmNbottomShadowColor XmGadget XmNsensitive RectObj

XmNbottomShadowPixmap XmGadget XmNshadowThickness XmGadget

XmNborderWidth RectObj XmNtopShadowColor XmGadget

XmNdestroyCallback Object XmNtopShadowPixmap XmGadget

XmNforeground XmGadget XmNtraversalOn XmGadget

XmNheight RectObj XmNunitType XmGadget

XmNhelpCallback XmGadget XmNuserData XmGadget

XmNhighlightColor XmGadget XmNwidth RectObj

XmNhighlightOnEnter XmGadget XmNx RectObj

XmNhighlightPixmap XmGadget XmNy RectObj
Motif Reference Manual 743

XmInformationDialog Motif and Xt Widget Classes

ell.

In-
a-

 is

 the

sh-

ll is
Name
XmInformationDialog – an unmanaged MessageBox as a child of a DialogSh

Synopsis

Public Header:
<Xm/MessageB.h>

Instantiation:
widget =XmCreateInformationDialog (...)

Functions/Macros:
XmCreateInformationDialog (), XmMessageBoxGetChild ()

Description
An XmInformationDialog is a compound object created by a call to XmCreate
formationDialog() that an application can use to provide the user with inform
tion. An InformationDialog consists of a DialogShell with an unmanaged
MessageBox widget as its child. The MessageBox resource XmNdialogType
set to XmDIALOG_INFORMATION. An InformationDialog includes four
components: a symbol, a message, three buttons, and a separator between
message and the buttons. By default, the symbol is a lowercasei. In Motif 1.2, the
default button labels can be localized. In the C locale, and in Motif 1.1, the Pu
Buttons are labelledOK , Cancel, andHelp by default.

Default Resource Values
An InformationDialog sets the following default values for MessageBox
resources:

Widget Hierarchy
When an InformationDialog is created with a specified name, the DialogShe
named name_popupand the MessageBox is calledname.

See Also
XmCreateObject (1), XmMessageBoxGetChild (1),
XmDialogShell (2), XmMessageBox(2).

Name Default

XmNdialogType XmDIALOG_INFORMATION

XmNsymbolPixmap xm_informationa

a.Erroneously given as Xm_information in 2nd edition.
744 Motif Reference Manual

Motif and Xt Widget Classes XmLabel

ca-
t

Sys-

is

Na ess

Xm

Xm G

Xm G

Xm

Xm SG

Xm G
Name
XmLabel widget class – a simple widget that displays a non-editable label.

Synopsis

Public Header:
<Xm/Label.h>

Class Name:
XmLabel

Class Hierarchy:
Core→ XmPrimitive→ XmLabel

Class Pointer:
xmLabelWidgetClass

Instantiation:
widget =XmCreateLabel (parent, name,...)
or
widget =XtCreateWidget (name, xmLabelWidgetClass,...)

Functions/Macros:
XmCreateLabel (), XmIsLabel ()

Description
Label provides a text string or a pixmap for labelling other widgets in an appli
tion. Label is also a superclass for the various button widgets. Label does no
accept any button or key events, but it does receive enter and leave events.

Traits
Label holds the XmQTmenuSavvy, XmQTtransfer, and XmQTaccessTextual
traits, which are inherited by any derived classes, and uses the XmQTmenu
tem and XmQTspecifyRenderTable traits.

New Resources
Label defines the following resources, where the access for every resource
CSG:

me Class Type Default Acc

Naccelerator XmCAccelerator String NULL CSG

NacceleratorText XmCAcceleratorText XmString NULL CS

Nalignment XmCAlignment unsigned char dynamic CS

NfontList XmCFontList XmFontList dynamic CSG

NlabelInsensitivePixmap XmCLabelInsensitivePixmap Pixmap XmUNSPECIFIED_PIXMAP C

NlabelPixmap XmCLabelPixmap Pixmap XmUNSPECIFIED_PIXMAP CS
Motif Reference Manual 745

XmLabel Motif and Xt Widget Classes

use
sla-

t

t
 set-
rce

Xm G

Xm G

Xm G

Xm G

Xm

Xm

Xm

Xm

Xm

Xm SG

Xm SG

Xm SG

Xm G

Na ess
XmNaccelerator
A string that describes a button widget’s accelerator (the modifiers and key to
as a shortcut in selecting the button). The string’s format is like that of a tran
tion but allows only a single key press event to be specified.

XmNacceleratorText
The text that is displayed for an accelerator.

XmNalignment
The alignment (left to right) for a label’s text or pixmap. Possible values are
XmALIGNMENT_BEGINNING, XmALIGNMENT_CENTER, and
XmALIGNMENT_END. In Motif 2.0 and later, the interpretation of alignmen
depends upon the value of any inherited XmNlayoutDirection resource.

XmNfontList
The font list used for the widget’s text. From Motif 2.0 and later, the XmfontLis
is an obsolete data type, and the Rendition Table is the preferred method of
ting appearance. Although maintained for backwards compatibility, the resou
is implemented through a render table. Any XmNrenderTable resource takes
precedence.

XmNlabelInsensitivePixmap
The pixmap label for an insensitive button (when XmNlabelType is XmPIX-
MAP).

XmNlabelPixmap
The pixmap used when XmNlabelType is XmPIXMAP.

NlabelString XmCLabelString XmString dynamic CS

NlabelType XmCLabelType unsigned char XmSTRING CS

NmarginBottom XmCMarginBottom Dimension 0 CS

NmarginHeight XmCMarginHeight Dimension 2 CS

NmarginLeft XmCMarginLeft Dimension 0 CSG

NmarginRight XmCMarginRight Dimension 0 CSG

NmarginTop XmCMarginTop Dimension 0 CSG

NmarginWidth XmCMarginWidth Dimension 2 CSG

Nmnemonic XmCMnemonic KeySym NULL CSG

NmnemonicCharSet XmCMnemonicCharSet String XmFONTLIST_DEFAULT_TAG C

NrecomputeSize XmCRecomputeSize Boolean True C

NrenderTable XmCRenderTable XmRenderTable dynamic C

NstringDirection XmCStringDirection XmStringDirection dynamic CS

me Class Type Default Acc
746 Motif Reference Manual

Motif and Xt Widget Classes XmLabel

ce
ing

rgin.

w.

ng,

p

rait,
-
rait.

N-
val-
XmNlabelString
The compound string used when XmNlabelType is XmSTRING. If this resour
is NULL, the application uses the widget’s name (converted to compound str
format).

XmNlabelType
The type of label (either string or pixmap). Possible values:

XmPIXMAP /* use XmNlabelPixmap or XmNlabelInsensitivePixmap */
XmSTRING /* use XmNlabelString */

XmNmarginTop, XmNmarginBottom,

XmNmarginLeft, XmNmarginRight
The amount of space between one side of the label text and the nearest ma

XmNmarginHeight, XmNmarginWidth
The spacing between one side of the label and the nearest edge of a shado

XmNmnemonic
A keysym that gives the user another way to select a button. In the label stri
the first character matching this keysym will be underlined.

XmNmnemonicCharSet
The character set for the label’s mnemonic.

XmNrecomputeSize
If True (default), the Label widget changes its size so that the string or pixma
fits exactly.

XmNrenderTable
In Motif 2.0 and later, specifies the render table for the Label. If NULL, this is
inherited from the nearest ancestor that has the XmQTspecifyRenderTable t
taking the XmLABEL_RENDER_TABLE value from the ancestor. The Bullet
inBoard, VendorShell, and MenuShell widgets and derived classes set this t

XmNstringDirection
In Motif 2.0 and later, XmNstringDirection is superseded by the inherited Xm
layoutDirection resource. The direction in which to draw the string. Possible
ues are:

XmSTRING_DIRECTION_L_TO_R
XmSTRING_DIRECTION_R_TO_L
XmDEFAULT_DIRECTION

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /*set to XmCR_HELP */
XEvent *event; /*points to event that triggered callback*/

} XmAnyCallbackStruct;
Motif Reference Manual 747

XmLabel Motif and Xt Widget Classes

ly,

n

Inherited Resources
Label inherits the following resources. The resources are listed alphabetical
along with the superclass that defines them. Label sets the default values of
XmNhighlightThickness and XmNshadowThickness to 0 and XmNtraversalO
to False. The default value of XmNborderWidth is reset to 0 by Primitive.

Translations

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNhighlightThickness XmPrimitive

XmNancestorSensitive Core XmNinitialResourcesPersistent Core

XmNbackground Core XmNlayoutDirection XmPrimitive

XmNbackgroundPixmap Core XmNmappedWhenManaged Core

XmNborderColor Core XmNnavigationType XmPrimitive

XmNborderPixmap Core XmNpopupHandlerCallback XmPrimitive

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmPrimitive XmNsensitive Core

XmNbottomShadowPixmap XmPrimitive XmNshadowThickness XmPrimitive

XmNcolormap Core XmNtopShadowColor XmPrimitive

XmNconvertCallback XmPrimitive XmNtopShadowPixmap XmPrimitive

XmNdepth Core XmNtranslations Core

XmNdestroyCallback Core XmNtraversalOn XmPrimitive

XmNforeground XmPrimitive XmNunitType XmPrimitive

XmNheight Core XmNuserData XmPrimitive

XmNhelpCallback XmPrimitive XmNwidth Core

XmNhighlightColor XmPrimitive XmNx Core

XmNhighlightOnEnter XmPrimitive XmNy Core

XmNhighlightPixmap XmPrimitive

Event Action

BTransfer Press ProcessDrag()

KHelp Help()
748 Motif Reference Manual

Motif and Xt Widget Classes XmLabel

cks

e
 in

nd

t
the
.

e
rst

es-

t
ur-
ther-
re

Bar
For subclasses of Label:

Action Routines
Label defines the following action routines:

Help()
Unposts menus, restores keyboard focus, and invokes the callba
from XmNhelpCallback, if there are any.

MenuEscape()
Unposts the menu, disarms the associated CascadeButton, and
restores keyboard focus.

MenuTraverseDown()
In a MenuBar, if the current menu item has a submenu, posts th
submenu, disarms the current menu item, and arms the first item
the submenu. In a menu pane, disarms the current menu item a
arms the item below it, wrapping around to the top if necessary.

MenuTraverseLeft()
In a MenuBar, disarms the current menu item and arms the nex
item to the left, wrapping if necessary. In a menu pane, disarms
current item and arms the item to the left if there is such an item
Otherwise, unposts the current submenu and, if that submenu is
attached to a MenuBar item, traverses to the MenuBar item to th
left (wrapping if necessary), posts the submenu, and arms the fi
item in the submenu. In a PopupMenu or a torn-off menu pane,
traverses to the menu item to the left, wrapping to the right if nec
sary.

MenuTraverseRight()
In a MenuBar, disarms the current menu item and arms the nex
item to the right, wrapping if necessary. In a menu pane, if the c
rent item is a CascadeButton, posts the associated submenu. O
wise, disarms the current item and arms the item to the right if the
is such an item or unposts all submenus, traverses to the Menu

Event Action

KLeft MenuTraverseLeft()

KRight MenuTraverseRight()

KUp MenuTraverseUp()

KDown MenuTraverseDown()

MAny KCancel MenuEscape()
Motif Reference Manual 749

XmLabel Motif and Xt Widget Classes

d
f
the

em

ts
-

e.
item to the right (wrapping if necessary), posts the submenu, an
arms the first item in the submenu. In a PopupMenu or a torn-of
menu pane, traverses to the menu item to the right, wrapping to
left if necessary.

MenuTraverseUp()
In a menu pane, disarms the current menu item and arms the it
above it, wrapping around to the bottom if necessary.

ProcessDrag()
In Motif 1.2, initiates a drag and drop operation using the conten
of the Label. In Motif 2.0 and later, this indirectly invokes any pro
cedures specified by the inherited XmNconvertCallback resourc

See Also
XmCreateObject (1), Core (2), XmPrimitive (2).
750 Motif Reference Manual

Motif and Xt Widget Classes XmLabelGadget

mN-
p,

ger

ual,
by
i-

e the
Name
XmLabelGadget widget class – a simple gadget that displays a non-editable
label.

Synopsis

Public Header:
<Xm/LabelG.h>

Class Name:
XmLabelGadget

Class Hierarchy:
Object→ RectObj→ XmGadget→ XmLabelGadget

Class Pointer:
xmLabelGadgetClass

Instantiation:
widget =XmCreateLabelGadget (parent, name,...)
or
widget =XtCreateWidget (name, xmLabelGadgetClass,...)

Functions/Macros:
XmCreateLabelGadget (), XmOptionLabelGadget (), XmIsLabel-
Gadget ()

Description
LabelGadget is the gadget variant of Label.

In Motif 2.0, the LabelGadget cached resource set is expanded to include X
foreground, XmNbackground, XmNtopShadowColor, XmNtopShadowPixma
XmNbottomShadowColor, XmNbottomShadowPixmap, XmNhighlightColor
and XmNhighlightPixmap resources. LabelGadgets sharing the same Mana
parent can therefore have independent appearance.

Traits
LabelGadget holds the XmQTmenuSavvy, XmQTtransfer, XmQTaccessText
XmQTcareParentVisual, and XmQTaccessColors traits, which are inherited
any derived classes, and uses the traits XmQTmenuSystem and XmQTspec
fyRenderTable.

New Resources
LabelGadget’s new resources, callback resources, and callback structure ar
same as those for Label.
Motif Reference Manual 751

XmLabelGadget Motif and Xt Widget Classes

beti-
ault

by

ow-
Inherited Resources
LabelGadget inherits the following resources. The resources are listed alpha
cally, along with the superclass that defines them. LabelGadget sets the def
values of XmNhighlightThickness and XmNshadowThickness to 0 (zero) and
XmNtraversalOn to False. The default value of XmNborderWidth is reset to 0
Gadget.

Behavior
As a Gadget subclass, LabelGadget has no translations associated with it. H
ever, LabelGadget behavior corresponds to the action routines of the Label
widget. See the Label action routines for more information.

For subclasses of LabelGadget:

Resource Inherited From Resource Inherited From

XmNancestorSensitive RectObj XmNhighlightThickness XmGadget

XmNbackground XmGadget XmNlayoutDirection XmGadget

XmNbackgroundPixmap XmGadget XmNnavigationType XmGadget

XmNbottomShadowColor XmGadget XmNsensitive RectObj

XmNbottomShadowPixmap XmGadget XmNshadowThickness XmGadget

XmNborderWidth RectObj XmNtopShadowColor XmGadget

XmNdestroyCallback Object XmNtopShadowPixmap XmGadget

XmNforeground XmGadget XmNtraversalOn XmGadget

XmNheight RectObj XmNunitType XmGadget

XmNhelpCallback XmGadget XmNuserData XmGadget

XmNhighlightColor XmGadget XmNwidth RectObj

XmNhighlightOnEnter XmGadget XmNx RectObj

XmNhighlightPixmap XmGadget XmNy RectObj

Behavior Equivalent Label Action

BTransfer Press ProcessDrag()

KHelp Help()

Behavior Equivalent Label Action

KLeft MenuTraverseLeft()

KRight MenuTraverseRight()

KUp MenuTraverseUp()
752 Motif Reference Manual

Motif and Xt Widget Classes XmLabelGadget
See Also
XmCreateObject (1), XmOptionLabelGadget (1), Object (2),
RectObj (2), XmGadget(2), XmLabel (2).

KDown MenuTraverseDown()

MAny KCancel MenuEscape()

Behavior Equivalent Label Action
Motif Reference Manual 753

XmList Motif and Xt Widget Classes

s.

s,
lect,

s on
ct
ingle
ter.
tton
state
cted
n

rd
oard
s
om
e

er
Name
XmList widget class – a widget that allows a user to select from a list of choice

Synopsis

Public Header:
<Xm/List.h>

Class Name:
XmList

Class Hierarchy:
Core→ XmPrimitive→ XmList

Class Pointer:
xmListWidgetClass

Instantiation:
widget =XmCreateList (parent, name,...)
or
widget =XtCreateWidget (name, xmListWidgetClass,...)

Functions/Macros:
XmCreateList (), XmCreateScrolledList (), XmList ... routines,
XmIsList ()

Description
List provides a list of choices from which a user can select one or more item
based on the selection policy. List supports four selection policies: single se
browse select, multiple select, and extended select.

In single select mode, only one item can be selected at a time; a button pres
an item selects it and deselects the previously selected item. In browse sele
mode, only one item can be selected at a time; a button press works as in s
select mode and, additionally, a button drag moves the selection with the poin
In multiple select mode, any number of items can be selected at a time; a bu
press toggles the selection state of an item and does not change the selection
of any other items. In extended select mode, any number of items can be sele
at a time; discontinuous ranges of items can be selected by combining butto
presses and button drags.

Selections can be made by using either the pointer or the keyboard. Keyboa
selection has two modes: normal mode and add mode. In normal mode, keyb
navigation operations affect the selection; the item with the keyboard focus i
always selected. In add mode, keyboard navigation operations are distinct fr
selection operations; the item with the keyboard focus can be disjoint from th
selection. Browse select operates in normal mode; single select and multiple
select operate in add mode; extended select can be made to operate in eith
754 Motif Reference Manual

Motif and Xt Widget Classes XmList

hed

a-
ms in
d

nd
mode. Normal mode uses a solid location cursor while add mode uses a das
location cursor.

In Motif 1.2 and later, List is a supported drag source for drag and drop oper
tions. BTransfer Press starts a drag and drop operation using the selected ite
the List. If BTransfer is pressed over an unselected item, that item is dragge
instead of the selected items.

Traits
List holds the XmQTtransfer trait, which is inherited by any derived classes, a
uses the XmQTnavigator, XmQTscrollFrame and XmQTspecifyRenderTable
traits.

New Resources
List defines the following resources:

Name Class Type Default Access

XmNautomaticSelection XmCAutomaticSelection XtEnum XmNO_AUTO_SELECT CSG

XmNdoubleClickInterval XmCDoubleClickInterval int dynamic CSG

XmNfontList XmCFontList XmFontList dynamic CSG

XmNhorizontalScrollBar XmCHorizontalScrollBar Widget NULL G

XmNitemCount XmCItemCount int 0 CSG

XmNitems XmCItems XmStringTable NULL CSG

XmNlistMarginHeight XmCListMarginHeight Dimension 0 CSG

XmNlistMarginWidth XmCListMarginWidth Dimension 0 CSG

XmNlistSizePolicy XmCListSizePolicy unsigned char XmVARIABLE CSG

XmNlistSpacing XmCListSpacing Dimension 0 CSG

XmNmatchBehavior XmCMatchBehavior unsigned char XmQUICK_NAVIGATE CSG

XmNprimaryOwnership XmCPrimaryOwnership unsigned char XmOWN_NEVER CSG

XmNrenderTable XmCRenderTable XmRenderTable dynamic CSG

XmNscrollBarDisplayPolicy XmCScrollBarDisplayPolicy unsigned char XmAS_NEEDED CSG

XmNselectColor XmCSelectColor Pixel dynamic CSG

XmNselectedItemCount XmCSelectedItemCount int 0 CSG

XmNselectedItems XmCSelectedItems XmStringTable NULL CSG

XmNselectedPositionCount XmCSelectedPositionCount int 0 CSG

XmNselectedPositions XmCSelectedPositions int * NULL CSG

XmNselectionMode XmCSelectionMode unsigned char XmNORMAL_MODE CSG

XmNselectionPolicy XmCSelectionPolicy unsigned char XmBROWSE_SELECT CSG

XmNstringDirection XmCStringDirection XmStringDirection dynamic CSG
Motif Reference Manual 755

XmList Motif and Xt Widget Classes

T

all-

ra-

e
 is

nce.

r

tem

t
y),

in
XmNautomaticSelection
If True (and the widget’s XmNselectionPolicy is either XmBROWSE_SELEC
or XmEXTENDED_SELECT), then this resource calls XmNsingleSelection-
Callback whenever the user moves into a new item.

If False, then the user must release the mouse button before any selection c
backs are called.

From Motif 2.0, the resource has changed type from a Boolean to an enume
tion. Possible values of the enumerated type:

XmAUTO_SELECT /*enables automatic selection*/
XmNO_AUTO_SELECT /*disables automatic selection*/

XmNdoubleClickInterval
The time span (in milliseconds) within which two button clicks must occur to b
considered a double click rather than two single clicks. By default, this value
the multiclick time of the display.

XmNfontList
The font list used for the widget’s items. From Motif 2.0 and later, the
XmfontList is considered obsolete, and the Rendition Table is the preferred
method of setting appearance. Any XmNrenderTable value will take precede

XmNhorizontalScrollBar
When the List is part of a ScrolledList, specifies the widget ID of the ScrollBa
created by the List to perform horizontal scrolling.

XmNitemCount
The total number of items. The widget updates this resource every time a list i
is added or removed.

XmNitems
A pointer to an array of compound strings. The compound strings are the lis
items to display. A call to XtGetValues() returns the actual list items (not a cop
so don’t have your application free these items.

XmNlistMarginHeight

XmNlistMarginWidth
The height or width of the margin between the border of the List and the items
the list.

XmNtopItemPosition XmCTopItemPosition int 1 CSG

XmNverticalScrollBar XmCVerticalScrollBar Widget NULL G

XmNvisibleItemCount XmCVisibleItemCount int dynamic CSG

Name Class Type Default Access
756 Motif Reference Manual

Motif and Xt Widget Classes XmList

:

 the
e

e

the
ing

s an

ble
XmNlistSizePolicy
The method for resizing the widget when a list item exceeds the width of the
work area. This resizing policy must be set at creation time. Possible values

XmVARIABLE /* grow to fit; don’t add ScrollBar */
XmCONSTANT /* don’t grow to fit; add ScrollBar */
XmRESIZE_IF_POSSIBLE /*grow or shrink; add ScrollBar if too large*/

XmNlistSpacing
The spacing between items.

XmNmatchBehavior
In Motif 2.0 and later, specifies whether the widget navigates to items within
List by matching keyboard input against the first character of each item. If th
value is XmNONE, no matching is performed. If the value is
XmQUICK_NAVIGATE, any characters typed when the List has the focus ar
compared against the first character of each item. If a match is found, the
matched list item is automatically made the current item. Subsequently typing
same character progresses cyclically through the list to find any further match
item.

XmNprimaryOwnership
Specifies how the list interacts with the primary selection when a user select
item from the list. Possible values:

XmOWN_NEVER /* never take ownership of the primary selection*/
XmOWN_ALWAYS /* always take ownership of the selection */
XmOWN_MULTIPLE /* take ownership if more than one item selected*/
XmOWN_POSSIBLE_MULTIPLE /*take ownership if selection policy */

/* is multiple or extended */

XmNrenderTable
In Motif 2.0 and later, specifies the render table for the list. If unspecified, the
value of the resource is inherited from the nearest ancestor which holds the
XmQTspecifyRenderTable trait, using the XmTEXT_RENDER_TABLE value
of the ancestor so found. This resource, together with the XmNvisibleItem-
Count resource, is used to calculate the List widget’s height.

XmNscrollBarDisplayPolicy
Determines when to display vertical scrollbars in a ScrolledList widget. Possi
values:

XmSTATIC /* vertical ScrollBar always displays*/
XmAS_NEEDED /*add ScrollBar when list is too large*/
Motif Reference Manual 757

XmList Motif and Xt Widget Classes

ted

 as

the

the

n
ct

-

XmNselectColor
In Motif 2.0 and later, specifies the color used to draw the background of selec
items. In addition to allocated Pixel values, the constant
XmDEFAULT_SELECT_COLOR specifies a color between the XmNback-
ground and XmNbottomShadowColor, XmHIGHLIGHT_COLOR makes the
select color the same as the XmNhighlightColor value, and
XmREVERSED_GROUND_COLORS makes the XmNselectColor the same
the XmNforeground, using the XmNbackground color to render any text.

XmNselectedItemCount
The number of items in the list of selected items.

XmNselectedItems
A pointer to an array of compound strings. The compound strings represent
currently selected list items. A call toXtGetValues () returns the actual list
items (not a copy), so don’t have your application free these items.

XmNselectedPositionCount
In Motif 2.0 and later, specifies the number of positions in the list of selected
positions.

XmNselectedPositions
In Motif 2.0 and later, specifies a pointer to an array of integers, representing
currently selected list positions. A call toXtGetValues () returns the actual list
position array, so don’t free the array in application code. Compare with
XmListGetSelectedPos () which returns a copy of the selected position
array which should be freed after use.

XmNselectionMode
In Motif 2.0 and later, specifies the effect which keyboard navigation has upo
selection. If the value is XmNORMAL_MODE, navigation operations can sele
the item under the location cursor, deselecting any other items. In
XmADD_MODE, navigation operations have no effect on selection. For
XmNORMAL_MODE, the selection policy must be browse or extended selec
tion, and for XmADD_MODE, the policy must not be browse.

XmNselectionPolicy
Determines the effect of a selection action. Possible values:

XmSINGLE_SELECT
XmBROWSE_SELECT
XmMULTIPLE_SELECT
XmEXTENDED_SELECT
758 Motif Reference Manual

Motif and Xt Widget Classes XmList

b-

tDi-

t

r

the

ue
XmNstringDirection
The direction in which to draw the string. Possible values are:

XmSTRING_DIRECTION_L_TO_R
XmSTRING_DIRECTION_R_TO_L
XmDEFAULT_DIRECTION

In Motif 2.0 and later, the XmNstringDirection resource is obsolete, being su
sumed into the XmNlayoutDirection resource. If the XmNlayoutDirection is
NULL, and the XmNstringDirection is XmDEFAULT_DIRECTION, the value
will be taken from the nearest ancestor which holds the XmQTspecifyLayou
rection trait. Manager, MenuShell, and VendorShell support this trait.

XmNtopItemPosition
The position of the first item that will be visible in the list. Calling theXmList-
SetPos () routine is the same as setting this resource. In both cases, the firs
position is specified as 1 and the last position is specified as 0.

XmNverticalScrollBar
When the List is part of a ScrolledList, specifies the widget ID of the ScrollBa
created by the List to perform vertical scrolling.

XmNvisibleItemCount
The number of items to display in the work area of the list. This value affects
widget’s height. In Motif 1.2 and later, the default value of this resource is
dynamic and based on the height of the List, while in Motif 1.1, the default val
is 1.

Callback Resources
List defines the following callback resources:

XmNbrowseSelectionCallback
List of callbacks that are called when a list item is selected using the browse
selection policy.

Callback Reason Constant

XmNbrowseSelectionCallback XmCR_BROWSE_SELECT

XmNdefaultActionCallback XmCR_DEFAULT_ACTION

XmNdestinationCallback XmCR_OK

XmNextendedSelectionCallback XmCR_EXTENDED_SELECT

XmNmultipleSelectionCallback XmCR_MULTIPLE_SELECT

XmNsingleSelectionCallback XmCR_SINGLE_SELECT
Motif Reference Manual 759

XmList Motif and Xt Widget Classes

is

per-

ed

lec-

e
ular
XmNdefaultActionCallback
List of callbacks that are called when a list item is double clicked or KActivate
pressed.

XmNdestinationCallback
List of callbacks that are called when the List is the destination of a transfer o
ation.

XmNextendedSelectionCallback
List of callbacks that are called when list items are selected using the extend
selection policy.

XmNmultipleSelectionCallback
List of callbacks that are called when a list item is selected using the multiple
selection policy.

XmNsingleSelectionCallback
List of callbacks that are called when a list item is selected using the single se
tion policy.

Callback Structure
Each selection callback function is passed the structure below; however, som
structure members might be unused because they aren’t meaningful for partic
callback reasons.

typedef struct {
int reason; /*reason that callback was called*/
XEvent *event; /*event that triggered callback*/
XmString item; /*item most recently selected at*/

/* the time event occurred */
int item_length; /*number of bytes in item member*/
int item_position; /*item’s position in XmNitems array*/
XmString *selected_items; /*list of items selected at time*/

/* event occurred */
int selected_item_count; /*number of items in selected_items*/
int *selected_item_positions; /*array of integers that mark */

/* selected items */
char selection_type; /*type of the most recent selection*/
char auto_selection_type; /*the type of automatic selection*/

} XmListCallbackStruct;

The structure membersevent, item, item_length, anditem_position are valid for
any value ofreason.

The structure membersselected_items, selected_item_count, and
selected_item_positions are valid when thereason field has a value of
XmCR_MULTIPLE_SELECT or XmCR_EXTENDED_SELECT.
760 Motif Reference Manual

Motif and Xt Widget Classes XmList

wn

he

de.

si-

i-

*/

*/
The structure memberselection_type is valid only when thereason field is
XmCR_EXTENDED_SELECT.

The structure memberauto_selection_type is valid only when the resource
XmNautomaticSelection is XmAUTO_SELECT, and has the value
XmAUTO_UNSET otherwise.

For the strings pointed to byitem andselected_items, as well as for the integers
pointed to byselected_item_positions, storage is overwritten each time the call-
back is invoked. Applications that need to save this data should make their o
copies of it.

selected_item_positionsis an integer array. The elements of the array indicate t
positions of each selected item within the List widget’s XmNitems array.

selection_typespecifies what kind of extended selection was most recently ma
One of three values is possible:

XmINITIAL /* selection was the initial selection */
XmMODIFICATION /* selection changed an existing selection */
XmADDITION /* selection added non-adjacent items to */

/* existing selection*/

auto_selection_typespecifies at what point within the selection the user is. Pos
ble values:

XmAUTO_UNSET
XmAUTO_BEGIN
XmAUTO_MOTION
XmAUTO_CANCEL
XmAUTO_NO_CHANGE
XmAUTO_CHANGE

Destination callbacks are fully described within the sections covering the Un
form Transfer Model. SeeXmTransfer (s1) for more details. For quick refer-
ence, a pointer to the following structure is passed to callbacks on the
XmNdestinationCallback list:

typedef struct {
int reason; /* reason that the callback is invoked */
XEvent *event; /* event that triggered callback */
Atom selection; /* requested selection type, as an Atom
XtEnum operation; /* type of transfer requested */
int flags; /* whether destination and source are same
Motif Reference Manual 761

XmList Motif and Xt Widget Classes

 */

N-
i-
XtPointer transfer_id; /* unique identifier for the request */
XtPointer destination_data; /* information about the destination
XtPointer location_data; /* information about the data */
Time time; /* time when transfer operation started */

} XmDestinationCallbackStruct;

Inherited Resources
List inherits the following resources. The resources are listed alphabetically,
along with the superclass that defines them. List sets the default value of Xm
navigationType to XmTAB_GROUP, and sets the default value of XmNlayoutD
rection. XmDEFAULT_DIRECTION. The default value of XmNborderWidth is
reset to 0 by Primitive.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNhighlightThickness XmPrimitive

XmNancestorSensitive Core XmNinitialResourcesPersistent Core

XmNbackground Core XmNlayoutDirection XmPrimitive

XmNbackgroundPixmap Core XmNmappedWhenManaged Core

XmNborderColor Core XmNnavigationType XmPrimitive

XmNborderPixmap Core XmNpopupHandlerCallback XmPrimitive

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmPrimitive XmNsensitive Core

XmNbottomShadowPixmap XmPrimitive XmNshadowThickness XmPrimitive

XmNcolormap Core XmNtopShadowColor XmPrimitive

XmNconvertCallback XmPrimitive XmNtopShadowPixmap XmPrimitive

XmNdepth Core XmNtranslations Core

XmNdestroyCallback Core XmNtraversalOn XmPrimitive

XmNforeground XmPrimitive XmNunitType XmPrimitive

XmNheight Core XmNuserData XmPrimitive

XmNhelpCallback XmPrimitive XmNwidth Core

XmNhighlightColor XmPrimitive XmNx Core

XmNhighlightOnEnter XmPrimitive XmNy Core

XmNhighlightPixmap XmPrimitive
762 Motif Reference Manual

Motif and Xt Widget Classes XmList

he
Translations

In addition, the translations of List are modified when the
XmNenableBtn1Transfer() resource of the XmDisplay object is not XmOFF. T
following translations apply under these circumstances:

Event Action Event Action

BSelect Press ListBeginSelect() KPageRight ListRightPage()

BSelect Motion ListButtonMotion() KAny ListQuickNavigate()

BSelect Release ListEndSelect() KBeginLine ListBeginLine()

BExtend Press ListBeginExtend() KEndLine ListEndLine()

BExtend Motion ListButtonMotion() KBeginData ListBeginData()

BExtend Release ListEndExtend() MShift KBeginData ListBeginDataExtend()

BToggle Press ListBeginToggle() KEndData ListEndData()

BToggleMotion ListButtonMotion() MShift KEndData ListEndDataExtend()

BToggle Release ListEndToggle() KAddMode ListAddMode()

BTransfer Press ListProcessDrag() KActivate ListKbdActivate()

KUp ListPrevItem() KCopy Press ListCopyToClipboard()

MShift KUp ListExtendPrevItem() KSelectPress ListKbdBeginSelect()

KDown ListNextItem() KSelect Release ListKbdEndSelect()

MShift KDown ListExtendNextItem() KExtend Press ListKbdBeginExtend()

KLeft ListLeftChar() KExtend Release ListKbdEndExtend()

MCtrl KLeft ListLeftPage() Many KCancel ListKbdCancel()

KRight ListRightChar KSelectAll ListKbdSelectAll()

MCtrl KRight ListRightPage() KDeselectAll ListKbdDeSelectAll()

KPageUp ListPrevPage KHelp PrimitiveHelp()

KPageDown ListNextPage() KNextField PrimitiveNextTabGroup()

KPageLeft ListLeftPage() KPrevField PrimitivePrevTabGroup()

Event Action

BSelect Press ListProcessBtn1(ListBeginSelect)

BSelect Motion ListProcessBtn1(ListButtonMotion)

BSelect Release ListProcessBtn1(ListEndSelect)
Motif Reference Manual 763

XmList Motif and Xt Widget Classes

with
ave
s

ing
y
l-

om
eci-

ts

lec-
Action Routines
List defines the action routines below. The current selection always appears
its foreground and background colors reversed. Note that many List actions h
different effects depending on the selection policy and also that some action
apply only for a particular selection policy.

ListAddMode()
Turns add mode on or off.

ListBeginData()
Moves the cursor to the first list item. If keyboard selection is in
normal mode, this action also selects the first item after deselect
any earlier selection and invokes the callbacks specified either b
XmNbrowseSelectionCallback or by XmNextendedSelectionCal
back (as dictated by the selection policy).

ListBeginDataExtend()
Multiple selection: moves the cursor to the first list item.

Extended selection: moves the cursor to the first list item, cancels
any current extended selection, selects (or deselects) all items fr
the first item to the current anchor, and invokes the callbacks sp
fied by XmNextendedSelectionCallback.

ListBeginExtend()
Extended selection: cancels any current extended selection, selec
(or deselects) all items from the pointer location to the current
anchor, and invokes the callbacks specified by XmNextendedSe
tionCallback (if the XmNautomaticSelection resource is True).

ListBeginLine()
Scrolls the List’s viewing area horizontally to its beginning.

BExtend Press ListProcessBtn1(ListBeginExtend)

BExtend Release ListProcessBtn1(ListEndExtend)

BToggle Press ListProcessBtn1(ListBeginToggle)

BToggle Release ListProcessBtn1(ListEndToggle)

BTransfer Press ListProcessBtn2(ListBeginExtend)

BTransfer Motion ListProcessBtn2(ListButtonMotion)

BTransfer Release ListProcessBtn2(ListEndExtend)

Event Action
764 Motif Reference Manual

Motif and Xt Widget Classes XmList

er

t-
y

,

ct-
r,
all-

or
d,

t-
l-

ts

o-

t,

he
h a
ListBeginSelect()
Single selection: selects or deselects the item under the pointer aft
deselecting any previous selection.

Browse selection: selects the item under the pointer after deselec
ing any previous selection and invokes the callbacks specified b
XmNbrowseSelectionCallback if the XmNautomaticSelection
resource is True.

Multiple selection: selects or deselects the item under the pointer
leaving previous selections unaffected.

Extended selection: selects the item under the pointer after desele
ing any previous selection, marks this item as the current ancho
and invokes the callbacks specified by XmNextendedSelectionC
back if the XmNautomaticSelection resource is True.

ListBeginToggle()
Extended selection: keeps the current selection but shifts the anch
to the item under the pointer. This item’s selection state is toggle
and if XmNautomaticSelection is True, the extended selection call-
backs are invoked.

ListButtonMotion()
Browse selection: selects the item under the pointer after deselec
ing any previous selection and invokes the browse selection cal
backs if XmNautomaticSelection is True and the pointer moved
over a new item.

Extended selection: cancels any current extended selection, selec
(or deselects) all items from the pointer location to the current
anchor, and invokes the extended selection callbacks if XmNaut
maticSelection is True and the pointer moved over a new item.

In addition, when the pointer moves outside a ScrolledList widge
the list scrolls in sync with the pointer motion.

ListCopyToClipboard()
In Motif 1.2 and later, this action copies the selected list items to t
clipboard. The items are copied as a single compound string, wit
new line between each item.
Motif Reference Manual 765

XmList Motif and Xt Widget Classes

ting
se

om
lec-

-
l-

pri-

t
on

-
l-
ListEndData()
Moves the cursor to the last list item. If keyboard selection is in
normal mode, this action also selects the last item after deselec
any earlier selection and invokes the appropriate callbacks (brow
selection or extended selection).

ListEndDataExtend()
Multiple selection: moves the cursor to the last list item.

Extended selection: moves the cursor to the last list item, cancels
any current extended selection, selects (or deselects) all items fr
the last item to the current anchor, and invokes the extended se
tion callbacks.

ListEndExtend()
Extended selection: moves the cursor to the last item whose selec
tion state was switched, and invokes the extended selection cal
backs if XmNautomaticSelection isFalse.

ListEndLine()
Scrolls the List’s viewing area horizontally to its beginning.

ListEndSelect()
Single selection or multiple selection: moves the cursor to the last
item whose selection state was switched, and invokes the appro
ate selection callbacks.

Browse selection or extended selection: same as above, except tha
the appropriate callbacks are called only if XmNautomaticSelecti
is False.

ListEndToggle()
Extended selection: moves the cursor to the last item whose selec
tion state was switched, and invokes the extended selection cal
backs if XmNautomaticSelection is False.

ListExtendNextItem()
ListExtendPrevItem()

Extended selection: adds the next/previous item to an extended
selection and invokes the extended selection callbacks.

ListKbdActivate()
Invokes the default action callbacks.
766 Motif Reference Manual

Motif and Xt Widget Classes XmList

d

or.

d

ny

v-

s
ent
ec-

e

ks.
on
es.

-

ListKbdBeginExtend()
This action is the keyboard’s complement to the mouse-activate
ListBeginExtend() action.

Extended selection: cancels any current extended selection and
selects (or deselects) all items from the cursor to the current anch

ListKbdBeginSelect()
This action is the keyboard’s complement to the mouse-activate
ListBeginSelect() action.

Single selection: selects or deselects the item at the cursor after
deselecting any previous selection.

Browse selection: selects the item at the cursor after deselecting a
previous selection and invokes the browse selection callbacks if
XmNautomaticSelection is True.

Multiple selection: selects or deselects the item at the cursor, lea
ing previous selections unaffected.

Extended selection: shifts the anchor to the item at the cursor. In
normal mode, this item is selected after any previous selection i
deselected; in add mode, this item’s state is toggled, and the curr
selection remains unaffected. This action calls the extended sel
tion callbacks if XmNautomaticSelection is True.

ListKbdCancel()
Extended selection:cancels an extended selection and restores th
items to their previous selection state.

ListKbdDeSelectAll()
Deselects all list items and calls the appropriate selection callbac
This action applies to all selection modes except browse selecti
because this mode requires one item to remain selected at all tim
In extended selection with keyboard Normal Mode and an XmN
keyboardFocusPolicy of XmEXPLICIT, the item at the cursor
remains selected after this action is applied.

ListKbdEndExtend()
Extended selection: calls the extended selection callbacks if
XmNautomaticSelection is False.

ListKbdEndSelect()
Single selection or multiple selection: calls the appropriate selec-
tion callbacks. If XmNautomaticSelection is False, this action
applies under any of the four selection policies.
Motif Reference Manual 767

XmList Motif and Xt Widget Classes

-

x-

n
line.

n
c-
ListKbdSelectAll()
Single selection or browse selection: selects the item at the cursor
and calls the appropriate selection callbacks.

Multiple selection or extended selection: selects all list items and
calls the appropriate selection callbacks.

ListLeftChar()
ListLeftPage()

Scrolls the list either one character or one page to the left.

ListNextItem()
Moves the cursor to the next list item and has the following addi
tional operations:

Browse selection: selects this item, deselects any previously
selected item(s), and calls the browse selection callbacks.

Extended selection: in normal mode, selects this item and moves
the anchor there, deselects any previously selected item(s), and
calls the extended selection callbacks. In add mode, neither the
selection nor the anchor is affected.

ListNextPage()
Moves the cursor by scrolling the list to the list item at the top of
the next page and has the same additional operations as ListNe
tItem().

ListPrevItem()
Same as ListNextItem(), going back one item instead.

ListPrevPage() Same as ListNextPage(), going back one page instead.

ListProcessDrag()
In Motif 1.2 and later, this action initiates a drag and drop operatio
using the selected items, where each item is separated by a new
If BTransfer is pressed over an unselected item, only that item is
used in the drag and drop operation.

ListProcessBtn1(string)
In Motif 2.0 and later, the XmDisplay resource
XmNenableBtn1Transfer configures the integration of selection
and transfer operations on Button 1.

If XmNenableBtn1Transfer is XmOFF, if no data transfer has bee
initialised, the action specified by string is invoked to initiate sele
tion. Possible values for string are:
768 Motif Reference Manual

Motif and Xt Widget Classes XmList

-

i-

r

.

us
ListBeginExtend
ListEndExtend
ListButtonMotion
ListBeginSelect
ListEndSelect
ListBeginToggle
ListEndToggle

ListProcessBtn2(string)
In Motif 2.0 and later, if the XmDisplay resource
XmNenableBtn1Transfer has the value
XmBUTTON2_TRANSFER, the actions for extending List selec
tion are bound to Button 2, and data transfer is initiated. If the
resource has the value XmBUTTON2_ADJUST, the action spec
fied by string is invoked to extend selection. Possible values for
string are:

ListBeginExtend
ListEndExtend
ListButtonMotion

ListQuickNavigate()
In Motif 2.0 and later, navigates to an item if XmNmatchBehavio
is XmQUICK_NAVIGATE.

ListRightChar()
ListRightPage() Scrolls the list either one character or one page to the right

ListScrollCursorVertically()
Makes the item with the keyboard focus visible.

PrimitiveHelp()
Calls the help callbacks for this widget.

PrimitiveNextTabGroup()
PrimitivePrevTabGroup()

Moves the keyboard focus to the beginning of the next or previo
tab group, wrapping around if necessary.
Motif Reference Manual 769

XmList Motif and Xt Widget Classes

he
Additional Behavior
List has the following additional behavior:

<Double Click>
Calls the XmNdefaultActionCallback callbacks.

<FocusIn>
If the keyboard focus policy is explicit, sets the focus and draws t
location cursor.

<FocusOut>
If the keyboard focus policy is explicit, removes the focus and
erases the location cursor.

See Also
XmCreateObject (s1),XmListAddItem (s1),
XmListAddItemUnselected (s1),XmListDeleteAllItems (s1),
XmListDeleteItem (s1),XmListDeleteItemsPos (s1),
XmListDeletePos (s1),XmListDeletePositions (s1),
XmListDeselectAllItems (s1),XmListDeselectItem (s1),
XmListDeselectPos (s1),XmListGetKbdItemPos (s1),
XmListGetMatchPos (s1),XmListGetSelectedPos (s1),
XmListItemExists (s1),XmListItemPos (s1),
XmListPosSelected (s1),XmListPosToBounds (s1),
XmListReplaceItems (s1),XmListReplaceItemsPos (s1),
XmListReplaceItemsPosUnselected (s1),
XmListReplaceItemsUnselected (s1),
XmListReplacePositions (1), XmListSelectItem (1),
XmListSelectPos (1), XmListSetAddMode (1),
XmListSetBottomItem (1), XmListSetBottomPos (1),
XmListSetHorizPos (1), XmListSetItem (1),
XmListSetKbdItemPos (1), XmListSetPos (1),
XmListUpdateSelectedList (1), XmListYToPos (1), Core (2),
XmDisplay (2). XmPrimitive (2), XmTransfer (1).
770 Motif Reference Manual

Motif and Xt Widget Classes XmMainWindow

’s

n
and
tal
nec-

r

;

-
hild

ll-

ork-
nt
Name
XmMainWindow widget class – the standard layout widget for an application
primary window.

Synopsis

Public Header:
<Xm/MainW.h>

Class Name:
XmMainWindow

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmScrolledWindow→
XmMainWindow

Class Pointer:
xmMainWindowWidgetClass

Instantiation:
widget =XmCreateMainWindow (parent, name,...)
or
widget =XtCreateWidget (name, xmMainWindowWidgetClass,...)

Functions/Macros:
XmCreateMainWindow (), XmMainWindowSep1(),
XmMainWindowSep2(), XmMainWindowSep3(), XmMainWindowSetAr-
eas (), XmIsMainWindow ()

Description
MainWindow provides the standard appearance for the primary window of a
application. MainWindow supports five standard areas: a MenuBar, a comm
window, a work region, a message window, and two ScrollBars (one horizon
and one vertical). An application can use as many or as few of these areas as
essary; they are all optional. A MainWindow can also display three Separato
widgets for dividing one area from another.

Each of the MainWindow regions is associated with a MainWindow resource
XmMainWindowSetAreas () sets the associated resources. If an application
does not callXmMainWindowSetAreas (), the widget may still set some of the
standard regions. When a MenuBar child is added to a MainWindow, if XmN
menuBar has not been set, it is set to the MenuBar child. When a Command c
is added to a MainWindow, if XmNcommand has not been set, it is set to the
Command child. If ScrollBars are added as children, the XmNhorizontalScro
Bar and XmNverticalScrollBar resources may be set if they have not already
been specified. Any child that is not one of these types is used for the XmNw
Window. If you want to be certain about which widgets are used for the differe
regions, it is wise to callXmMainWindowSetAreas () explicitly.
Motif Reference Manual 771

XmMainWindow Motif and Xt Widget Classes

er-

N ss

X

X G

X

X

X

X

X G
Traits
MainWindow uses the XmQTmenuSystem trait.

New Resources
MainWindow defines the following resources:

XmNcommandWindow
The widget ID of the command window child.

XmNcommandWindowLocation
One of two positions for the command window. Possible values:

XmCOMMAND_ABOVE_WORKSPACE /*default; appears below menu bar*/
XmCOMMAND_BELOW_WORKSPACE /*appears between work and */

 /* message windows */

XmNmainWindowMarginHeight
The margin on the top and bottom of the MainWindow widget. This resource
overrides the corresponding margin resource in the ScrolledWindow widget.

XmNmainWindowMarginWidth
The margin on the right and left of the MainWindow widget. This resource ov
rides the corresponding margin resource in the ScrolledWindow widget.

XmNmenuBar
The widget ID of the menu bar child.

XmNmessageWindow
The widget ID of the message window child.

XmNshowSeparator
If True, separators are displayed between components of the MainWindow
widget. If False (default), separators are not displayed.

ame Class Type Default Acce

mNcommandWindow XmCCommandWindow Widget NULL CSG

mNcommandWindowLocation XmCCommandWindowLocation unsigned char XmCOMMAND_ABOVE_WORKSPACE C

mNmainWindowMarginHeight XmCMainWindowMarginHeight Dimension 0 CSG

mNmainWindowMarginWidth XmCMainWindowMarginWidth Dimension 0 CSG

mNmenuBar XmCMenuBar Widget NULL CSG

mNmessageWindow XmCMessageWindow Widget NULL CSG

mNshowSeparator XmCShowSeparator Boolean False CS
772 Motif Reference Manual

Motif and Xt Widget Classes XmMainWindow

bet-
or-
Inherited Resources
MainWindow inherits the following resources. The resources are listed alpha
ically, along with the superclass that defines them. The default value of XmNb
derWidth is reset to 0 by XmManager.

Translations
The translations for MainWindow are inherited from ScrolledWindow.

See Also
XmCreateObject(1), XmMainWindowSep(1), XmMainWindowSetAreas(1),
Composite(2), Constraint(2), Core(2), XmManager(2), XmScrolledWindow(2).

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNnavigationType XmManager

XmNancestorSensitive Core XmNnumChildren Composite

XmNautoDragModel XmScrolledWindow XmNpopupHandlerCallback XmManager

XmNbackground Core XmNscreen Core

XmNbackgroundPixmap Core XmNscrollBarDisplayPolicy XmScrolledWindow

XmNborderColor Core XmNscrollBarPlacement XmScrolledWindow

XmNborderPixmap Core XmNscrolledWindowMarginHeight XmScrolledWindow

XmNborderWidth Core XmNscrolledWindowMarginWidth XmScrolledWindow

XmNbottomShadowColor XmManager XmNscrollingPolicy XmScrolledWindow

XmNbottomShadowPixmap XmManager XmNsensitive Core

XmNchildren Composite XmNshadowThickness XmManager

XmNclipWindow XmScrolledWindow XmNspacing XmScrolledWindow

XmNcolormap Core XmNstringDirection XmManager

XmNdepth Core XmNtopShadowColor XmManager

XmNdestroyCallback Core XmNtopShadowPixmap XmManager

XmNforeground XmManager XmNtranslations Core

XmNheight Core XmNtraversalOn XmManager

XmNhelpCallback XmManager XmNtraverseObscuredCallback XmScrolledWindow

XmNhighlightColor XmManager XmNunitType XmManager

XmNhighlightPixmap XmManager XmNuserData XmManager

XmNhorizontalScrollBar XmScrolledWindow XmNverticalScrollBar XmScrolledWindow

XmNinitialFocus XmManager XmNvisualPolicy XmScrolledWindow

XmNinitialResourcesPersistent Core XmNwidth Core

XmNinsertPosition Composite XmNworkWindow XmScrolledWindow

XmNlayoutDirection XmManager XmNx Core

XmNmappedWhenManaged Core XmNy Core
Motif Reference Manual 773

XmManager Motif and Xt Widget Classes

ge

ger
and

and
ed,
te
 the
ed,
nd
st.

e
lor

r
ler
e
e in

s
cur-
Name
XmManager widget class – the fundamental class for Motif widgets that mana
children.

Synopsis

Public Header:
<Xm/Xm.h>

Class Name:
XmManager

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager

Class Pointer:
xmManagerWidgetClass

Instantiation:
Manager is a meta-class and is not normally instantiated.

Functions/Macros:
XmIsManager ()

Description
Manager is a superclass for Motif widget classes that contain children. Mana
supports geometry management by providing resources for visual shadows
highlights and for keyboard traversal mechanisms.

The default values of the color resources for the foreground, background, top
bottom shadows, and highlighting are set dynamically. If no colors are specifi
they are generated automatically. On a monochrome system, black and whi
colors are selected. On a color system, four colors are selected that provide
appropriate shading for the 3-D visuals. When the background color is specifi
the shadow colors are selected to provide the appropriate 3-D appearance a
foreground and highlight colors are selected to provide the necessary contra
The colors are generated when the widget is created; usingXtSetValues () to
change the background does not change the other colors. With Motif 1.2, us
XmChangeColor () to change the associated colors when the background co
is changed.

In Motif 2.0 and later, the way in which popup menus are posted for particula
widgets is rationalized by including within Manager and Primitive popup hand
callback resources. When a popup menu is created, an event handler may b
automatically installed upon the parent Manager to catch posting events. Onc
receipt of the posting event, the Manager’s XmNpopupHandlerCallback list i
invoked in order to determine which of the various popup menus available is
774 Motif Reference Manual

Motif and Xt Widget Classes XmManager

on

ly if

t-

N s

X

X G

X

X

X

X

X

a

X

X G

X

X

X G

X

X

X

rently required. Whether the handlers are automatically installed depends up
the value of the XmNpopupEnabled resource of the menus concerned.

Traits
Manager holds the XmNspecifyLayoutDirection, XmNspecifyUnitType, and
XmNaccessColors traits, which are inherited by any derived classes.

New Resources
Manager defines the following resources:

XmNbottomShadowColor
The color used in drawing the border shadow’s bottom and right sides, but on
XmNbottomShadowPixmap is NULL.

XmNbottomShadowPixmap
The pixmap used in drawing the border shadow’s bottom and right sides.

XmNforeground
The foreground color used by Manager widgets.

XmNhighlightColor
The color used in drawing the highlighting rectangle, but only if XmNhighligh
Pixmap is XmUNSPECIFIED_PIXMAP.

ame Class Type Default Acces

mNbottomShadowColor XmCBottomShadowColor Pixel dynamic CSG

mNbottomShadowPixmap XmCBottomShadowPixmap Pixmap XmUNSPECIFIED_PIXMAP CS

mNforeground XmCForeground Pixel dynamic CSG

mNhighlightColor XmCHighlightColor Pixel dynamic CSG

mNhighlightPixmap XmCHighlightPixmap Pixmap dynamic CSG

mNinitialFocus XmCInitialFocus Widget NULL CSG

mNlayoutDirection XmCLayoutDirection XmDirection dynamic CGa

.Erroneously given as CSG in 2nd edition.

mNnavigationType XmCNavigationType XmNavigationType XmTAB_GROUP CSG

mNshadowThickness XmCShadowThickness Dimension 0 CS

mNstringDirection XmCStringDirection XmStringDirection dynamic CG

mNtopShadowColor XmCTopShadowColor Pixel dynamic CSG

mNtopShadowPixmap XmCTopShadowPixmap Pixmap dynamic CS

mNtraversalOn XmCTraversalOn Boolean True CSG

mNunitType XmCUnitType unsigned char dynamic CSG

mNuserData XmCUserData XtPointer NULL CSG
Motif Reference Manual 775

XmManager Motif and Xt Widget Classes

en
r the

n-
stor
n-

 a

b-
XmNhighlightPixmap
The pixmap used in drawing the highlighting rectangle.

XmNinitialFocus
In Motif 1.2, the widget ID of the widget that receives the keyboard focus wh
the manager is a child of a shell and the shell receives the keyboard focus fo
first time.

XmNlayoutDirection
In Motif 2.0 and later, specifies the direction in which components of the Ma
ager are laid out. If unspecified, the value is inherited from the nearest ance
holding the XmQTspecifyLayoutDirection trait. Manager, MenuShell, and Ve
dorShell hold this trait. Possible values:

XmLEFT_TO_RIGHT XmRIGHT_TO_LEFT
XmBOTTOM_TO_TOP XmTOP_TO_BOTTOM
XmBOTTOM_TO_TOP_LEFT_TO_RIGHT
XmBOTTOM_TO_TOP_RIGHT_TO_LEFT
XmTOP_TO_BOTTOM_LEFT_TO_RIGHT
XmTOP_TO_BOTTOM_RIGHT_TO_LEFT
XmLEFT_TO_RIGHT_BOTTOM_TO_TOP
XmRIGHT_TO_LEFT_BOTTOM_TO_TOP
XmLEFT_TO_RIGHT_TOP_TO_BOTTOM
XmRIGHT_TO_LEFT_TOP_TO_BOTTOM

XmNnavigationType
Determines the way in which a Manager widget is traversed during keyboard
navigation. Possible values:

XmNONE /* exclude from keyboard navigation */
XmTAB_GROUP /*include in keyboard navigation */
XmSTICKY_TAB_GROUP /*include in keyboard navigation, */

/* even if XmAddTabGroup() was called */
XmEXCLUSIVE_TAB_GROUP /*application defines order of navigation*/

XmNshadowThickness
The thickness of the shadow border. This resource is dynamically set to 1 in
top-level window and 0 otherwise.

XmNstringDirection
The direction in which to draw the string. Possible values are:

XmSTRING_DIRECTION_L_TO_R
XmSTRING_DIRECTION_R_TO_L
XmSTRING_DIRECTION_DEFAULT

In Motif 2.0 and later, the XmNstringDirection resource is obsolete, and is su
sumed into the XmNlayoutDirection resource. If the XmNlayoutDirection is
776 Motif Reference Manual

Motif and Xt Widget Classes XmManager

cify-

y if

r
 one
s
r, the
itly
:

 is
NULL, and the XmNstringDirection is XmSTRING_DIRECTION_DEFAULT,
the value will be taken from the nearest ancestor which holds the XmQTspe
LayoutDirection trait. Manager itself, MenuShell, and VendorShell hold this
trait.

XmNtopShadowColor
The color used in drawing the border shadow’s top and left sides. (Used onl
XmNtopShadowPixmap is NULL.)

XmNtopShadowPixmap
The pixmap used in drawing the border shadow’s top and left sides.

XmNtraversalOn
If True (default), traversal of this widget is made possible.

XmNunitType
The measurement units to use in resources that specify a size or position--fo
example, any resources of type Dimension (whose names generally include
of the words "Margin", "Height", "Width", "Thickness", or "Spacing"), as well a
the offset resources defined by Form. For a widget whose parent is a manage
default value is copied from this parent (provided the value hasn’t been explic
set by the application); otherwise, the default is XmPIXELS. Possible values

XmPIXELS
Xm100TH_POINTS
Xm100TH_MILLIMETERS
Xm100TH_FONT_UNITS
Xm1000TH_INCHES
XmINCHES (2.0)
XmPOINTS (2.0)
XmFONT_UNITS (2.0)

XmNuserData
A pointer to data that the application can attach to the widget. This resource
unused internally.
Motif Reference Manual 777

XmManager Motif and Xt Widget Classes

h

sed

er-
Callback Resources
Manager defines the following callback resources:

XmNhelpCallback
List of callbacks that are called when help is requested.

XmNpopupHandlerCallback
In Motif 2.0 and later, the list of callbacks invoked in order to determine whic
popup menu to display.

Callback Structure
With the exception of a popup handler callback, each callback function is pas
the following structure:

typedef struct {
int reason; /*set to XmCR_HELP */
XEvent *event; /*event structure that triggered callback*/

} XmAnyCallbackStruct;

A popup handler callback is passed a pointer to the following structure:

typedef struct {
int reason; /*the reason the callback is invoked*/
XEvent *event; /*event structure that triggered callback*/
Widget menuToPost; /*the menu to post */
Boolean postIt; /*whether to continue posting */
Widget target; /*the manager descendant issuing request*/

} XmPopupHandlerCallbackStruct;

reason is either XmCR_POST1 or XmCR_REPOST2. XmCR_POST is the
normal menu post request. XmCR_REPOST is called when the menu is
unposted because of event replay.

menuToPostis the suggested menu to be posted. Alter the element if a diff
ent menu is required.

Callback Reason Constant

XmNhelpCallback XmCR_HELP

XmNpopupHandlerCallback XmCR_POST
XmCR_REPOST

1.Erroneously given as XmPOST in 2nd edition.

2.Erroneously given as XmREPOST in 2nd edition.
778 Motif Reference Manual

Motif and Xt Widget Classes XmManager

ce
,

the
,

ally,
e of
postIt is a flag indicating whether the posting operation is to continue on
the callback has finished. The default value is True if reason is XmPOST
otherwise False.

target is the widget or gadget which the Manager believes best describes
source of the posting event. The algorithm performs a recursive descent
matching the received event against the location of managed children.

Inherited Resources
Manager inherits the following resources. The resources are listed alphabetic
along with the superclass that defines them. Manager resets the default valu
XmNborderWidth from 1 to 0.

Translations
For Manager widgets that have gadget children:

Name Inherited From Name Inherited From

XmNaccelerators Core XmNheight Core

XmNancestorSensitive Core XmNinsertPosition Composite

XmNbackground Core XmNinitialResourcesPersistent Core

XmNbackgroundPixmap Core XmNmappedWhenManaged Core

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNscreen Core

XmNborderWidth Core XmNsensitive Core

XmNchildren Composite XmNtranslations Core

XmNcolormap Core XmNwidth Core

XmNdepth Core XmNx Core

XmNdestroyCallback Core XmNy Core

Event Action

BAny Motion ManagerGadgetButtonMotion()

BSelect Press ManagerGadgetArm()

BSelect Click ManagerGadgetActivate()

BSelect Release ManagerGadgetActivate()

BSelect Press 2+ ManagerGadgetMultiArm()
Motif Reference Manual 779

XmManager Motif and Xt Widget Classes

key-

ts

s,
the
Action Routines
The action routines for a Manager widget affect the gadget child that has the
board focus. The descriptions below refer to the gadget that has the focus.

ManagerGadgetActivate()
Activates the gadget.

ManagerGadgetArm()
Arms the gadget.

ManagerGadgetButtonMotion()
Triggers the mouse motion event that the gadget received.

ManagerGadgetDrag()
In Motif 1.2, initiates a drag and drop operation using the conten
of a gadget’s label.

ManagerGadgetHelp()
Invokes the list of callbacks specified by the gadget’s XmNhelp-
Callback resource. If the gadget doesn’t have any help callback
the ManagerGadgetHelp() routine invokes those associated with
nearest ancestor that has them.

ManagerGadgetKeyInput()
Triggers the keyboard event that the gadget received.

BSelect Release 2+ ManagerGadgetMultiActivate

BTransfer Press ManagerGadgetDrag()

KActivate ManagerParentActivate() (1.2)

KCancel ManagerParentCancel()

KPrevField ManagerGadgetPrevTabGroup()

KNextField ManagerGadgetNextTabGroup()

KUp ManagerGadgetTraverseUp()

KDown ManagerGadgetTraverseDown()

KLeft ManagerGadgetTraverseLeft()

KRight ManagerGadgetTraverseRight()

KSelect ManagerGadgetSelect()

KBeginLine ManagerGadgetTraverseHome()

KHelp ManagerGadgetHelp(),
ManagerGadgetSelect() (1.2)

KAny ManagerGadgetKeyInput()

Event Action
780 Motif Reference Manual

Motif and Xt Widget Classes XmManager

ing

 of

n-

n-
ManagerGadgetMultiActivate()
Processes a multiple click of the mouse.

ManagerGadgetMultiArm()
Processes a multiple press of the mouse button.

ManagerGadgetNextTabGroup()
ManagerGadgetPrevTabGroup()

Traverses to the beginning of the next/previous tab group, wrapp
if necessary.

ManagerGadgetSelect()
Arms and activates the gadget.

ManagerGadgetTraverseDown()
ManagerGadgetTraverseUp()

Within the same tab group, descends/ascends to the item
below/above the gadget, wrapping if necessary.

ManagerGadgetTraverseHome()
Changes the focus to the first item in the tab group.

ManagerGadgetTraverseLeft()
ManagerGadgetTraverseRight()

Within the same tab group, traverses to the item on the left/right
the gadget, wrapping if necessary.

ManagerGadgetTraverseNext()
ManagerGadgetTraversePrev()

Within the same tab group, traverses to the next/previous item,
wrapping if necessary.

ManagerParentActivate()
In Motif 1.2, passes the KActivate event to the parent if it is a ma
ager.

ManagerParentCancel()
In Motif 1.2, passes the KCancel event to the parent if it is a ma
ager.
Motif Reference Manual 781

XmManager Motif and Xt Widget Classes

the

ves
Additional Behavior
Manager has the following additional behavior:

<FocusIn>
If the event occurs in a gadget, highlights the gadget and gives it
focus under the explicit keyboard focus policy.

<FocusOut>
If the event occurs in a gadget, unhighlights the gadget and remo
the focus under the explicit keyboard focus policy.

See Also
Composite (2), Constraint (2), Core(2), XmGadget(2).
782 Motif Reference Manual

Motif and Xt Widget Classes XmMenuBar

for
u-
d to

But-

t to

ut-
to

The

y the
Name
XmMenuBar – a type of RowColumn widget used as a menu bar.

Synopsis

Public Header:
<Xm/RowColumn.h>

Class Name:
XmRowColumn

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmRowColumn

Class Pointer:
xmRowColumnWidgetClass

Instantiation:
widget =XmCreateMenuBar (parent, name,...)

Functions/Macros:
XmCreateMenuBar (), XmCreateSimpleMenuBar (), XmVaCreateSim-
pleMenuBar (), XmIsRowColumn()

Description
An XmMenuBar is an instance of a RowColumn widget that is normally used
constructing a pulldown menu system. An application typically places a Men
Bar across the top of the main application window. CascadeButtons are adde
the MenuBar and pulldown menus are associated with each of the Cascade
tons.

MenuBar is a RowColumn widget whose XmNrowColumnType resource is se
XmMENU_BAR. The XmNentryClass resource is set to xmCascadeButton-
WidgetClass and XmNisHomogeneous is set to True, so that only CascadeB
tons can be added to the widget. The XmNmenuAccelerator resource is set
KMenuBar and XmNmenuPost is set to BSelect Press. The XmNmenuHelp-
Widget resource can be set to specify the CascadeButton for the Help menu.
XmNorientation resource is set to XmHORIZONTAL.

A MenuBar can be created usingXmCreateMenuBar (). In this case, the Men-
uBar does not automatically contain any CascadeButtons; they are added b
application.
Motif Reference Manual 783

XmMenuBar Motif and Xt Widget Classes

 chil-
n of

et is
e

A MenuBar can also be created byXmCreateSimpleMenuBar (), which auto-
matically creates the MenuBar with the specified CascadeButtonGadgets as
dren. This routine uses the RowColumn resources associated with the creatio
simple menus. For a MenuBar, the only type allowed in the XmNbuttonType
resource is XmCASCADEBUTTON. The name of each CascadeButtonGadg
button_n, wheren is the number of the button, ranging from 0 to 1 less than th
number of buttons in the MenuBar.

Default Resource Values
A MenuBar sets the following default values for RowColumn resources:

See Also
XmCreateObject (1), XmVaCreateSimpleMenuBar (1),
XmCascadeButton (2), XmRowColumn(2).

Name Default

XmNentryClass xmCascadeButtonWidgetClass

XmNisHomogenous True

XmNmenuAccelerator KMenuBar

XmNmenuPost BSelect Press

XmNorientation XmHORIZONTAL

XmNrowColumnType XmMENU_BAR
784 Motif Reference Manual

Motif and Xt Widget Classes XmMenuShell

l-

p or
hell
rou-

for

ar.
pec-
n

rT-
en-
Name
XmMenuShell widget class – a shell widget meant to contain popup and pul
down menu panes.

Synopsis

Public Header:
<Xm/MenuShell.h>

Class Name:
XmMenuShell

Class Hierarchy:
Core→ Composite→ Shell→ OverrideShell→ XmMenuShell

Class Pointer:
xmMenuShellWidgetClass

Instantiation:
widget =XmCreateMenuShell (parent, name,...)
or
widget =XtCreateWidget (name, xmMenuShellWidgetClass,...)

Functions/Macros:
XmCreateMenuShell (), XmCreatePopupMenu (), XmCreatePull-
downMenu(),
XmIsMenuShell ()

Description
MenuShell is a subclass of OverrideShell that is meant to contain only popu
pulldown menu panes. Most application writers do not need to create MenuS
widgets explicitly because they are created automatically by the convenience
tines XmCreatePopupMenu() and XmCreatePulldownMenu().

If you do not use the convenience functions and create your own MenuShell
widgets, the type of menu system being built determines the parent to specify
the MenuShell. For a top-level popup menu, specify the widget from which it
will pop up. For a pulldown menu pane from the menu bar, specify the menu b
For a pulldown menu pane from another pulldown menu or a popup menu, s
ify the menu pane from which it is pulled down. For pulldown menu in an optio
menu, specify the option menu’s parent.

Traits
MenuShell holds the XmQTspecifyLayoutDirection and XmQTspecifyRende
able traits, which are inherited by any derived classes, and uses the XmQTm
uSystem and XmQTspecifyRenderTable traits.
Motif Reference Manual 785

XmMenuShell Motif and Xt Widget Classes

0
the
will

the
T-

ll

s

 the
ill

 the
T-

ets
New Resources
MenuShell defines the following resource:

XmNbuttonFontList
The font list used for the button children of the MenuShell widget. In Motif 2.
and later, the XmfontList is considered obsolete, and the Rendition Table is
preferred method of setting appearance. Any XmNbuttonRenderTable value
take precedence.

XmNbuttonRenderTable
Specifies the render table used for button children of the MenuShell widget. If
value is NULL, this will be inherited from the nearest ancestor with the XmQ
specifyRenderTable trait, taking the XmBUTTON_RENDER_TABLE value
from the ancestor so found. The BulletinBoard, VendorShell, and MenuShe
widgets and derived classes set this trait.

XmNdefaultFontList
The default font list for the children of the MenuShell widget. This resource i
obsolete in Motif 1.2.

XmNlabelFontList
The font list used for the label children of the MenuShell widget. In Motif 2.0
and later, the XmFontList is considered obsolete, and the Rendition Table is
preferred method of setting appearance. Any XmNlabelRenderTable value w
take precedence.

XmNlabelRenderTable
Specifies the render table used for label children of the MenuShell widget. If
value is NULL, this will be inherited from the nearest ancestor with the XmQ
specifyRenderTable trait, taking the XmLABEL_RENDER_TABLE value from
the ancestor so found. The BulletinBoard, VendorShell, and MenuShell widg
and derived classes set this trait.

Name Class Type Default Access

XmNbuttonFontList XmCButtonFontList XmFontList dynamic CSG

XmNbuttonRenderTable XmCButtonRenderTable XmRenderTable dynamic CSG

XmNdefaultFontList XmCDefaultFontList XmFontList dynamic CG

XmNlabelFontList XmCLabelFontList XmFontList dynamic CSG

XmNlabelRenderTable XmCLabelRenderTable XmRenderTable dynamic CSG

XmNlayoutDirection XmCLayoutDirection XmDirection dynamic CGa

a.Erroneously given as CSG in 2nd edition.
786 Motif Reference Manual

Motif and Xt Widget Classes XmMenuShell

 the

ti-
lt
lt
-

XmNlayoutDirection
In Motif 2.0 and later, specifies the default direction in which descendants of
MenuShell are laid out.

XmLEFT_TO_RIGHT
XmRIGHT_TO_LEFT
XmBOTTOM_TO_TOP
XmTOP_TO_BOTTOM
XmBOTTOM_TO_TOP_LEFT_TO_RIGHT
XmBOTTOM_TO_TOP_RIGHT_TO_LEFT
XmTOP_TO_BOTTOM_LEFT_TO_RIGHT
XmTOP_TO_BOTTOM_RIGHT_TO_LEFT
XmLEFT_TO_RIGHT_BOTTOM_TO_TOP
XmRIGHT_TO_LEFT_BOTTOM_TO_TOP
XmLEFT_TO_RIGHT_TOP_TO_BOTTOM
XmRIGHT_TO_LEFT_TOP_TO_BOTTOM

Inherited Resources
MenuShell inherits the following resources. The resources are listed alphabe
cally, along with the superclass that defines them. MenuShell sets the defau
value of XmNallowShellResize to True and XmNborderWidth to 0. The defau
values of XmNoverrideRedirect and XmNsaveUnder are set to True by Over
rideShell.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinitialResourcesPersistent Core

XmNallowShellResize Shell XmNinsertPosition Composite

XmNancestorSensitive Core XmNmappedWhenManaged Core

XmNbackground Core XmNnumChildren Composite

XmNbackgroundPixmap Core XmNoverrideRedirect Shell

XmNborderColor Core XmNpopdownCalback Shell

XmNborderPixmap Core XmNpopupCallback Shell

XmNborderWidth Core XmNsaveUnder Shell

XmNchildren Composite XmNscreen Core

XmNcolormap Core XmNsensitive Core

XmNcreatePopupChildProc Shell XmNtranslations Core

XmNdepth Core XmNvisual Shell

XmNdestroyCallback Core XmNwidth Core

XmNgeometry Shell XmNx Core

XmNheight Core XmNy Core
Motif Reference Manual 787

XmMenuShell Motif and Xt Widget Classes

ed
the
Translations

Action Routines
MenuShell defines the following action routines:

ClearTraversal()
Shuts off keyboard traversal within this menu, turns on mouse
traversal, and unposts any submenus that this menu posted.

MenuShellPopdownDone()
Unposts the menu tree and restores the previous focus.

MenuShellPopdownOne()
Like MenuShellPopdownDone() except that it unposts only one
level of the menu tree. In a top-level pulldown menu pane attach
to a menu bar, this action routine disarms the cascade button and
menu bar.

See Also
XmCreateObject (1), Composite (2), Core (2), OverrideShell (2),
Shell (2), XmRowColumn(2).

Event Action

BSelect Press ClearTraversal()

BSelect Release MenuShellPopdownDone()
788 Motif Reference Manual

Motif and Xt Widget Classes XmMessageBox

ge

alog
con-
etween
dgets
can
bol

led

ew

ed at
Name
XmMessageBox widget class – a composite widget used for creating messa
dialogs.

Synopsis

Public Header:
<Xm/MessageB.h>

Class Name:
XmMessageBox

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmBulletinBoard→
XmMessageBox

Class Pointer:
xmMessageBoxWidgetClass

Instantiation:
widget =XmCreateMessageBox (parent, name,...)
or
widget =XtCreateWidget (name, xmMessageBoxWidgetClass,...)

Functions/Macros:
XmCreateErrorDialog (), XmCreateInformationDialog (), XmCre-
ateMessageBox (),
XmCreateMessageDialog (), XmCreateQuestionDialog (),
XmCreateTemplateDialog (), XmCreateWarningDialog (),
XmCreateWorkingDialog (), XmIsMessageBox (), XmMessage-
BoxGetChild ()

Description
MessageBox is composite widget that is used for creating simple message di
boxes, which normally present transient messages. A MessageBox usually
tains a message symbol, a message, three PushButtons, and a separator b
the message and the buttons. The names of the symbol and the separator ga
are Symbol and Separator. In Motif 1.2, the default symbols and button labels
be localized. The XmNdialogType resource controls the type of message sym
that is displayed. In the C locale, and in Motif 1.1, the PushButtons are label
OK , Cancel, andHelp by default.

You can customize a MessageBox by removing existing children or adding n
children. UseXmMessageBoxGetChild () to retrieve the widget ID of an

existing child and then unmanage the child1. With Motif 1.2, multiple widgets
can be added as children of a MessageBox. If a menu bar is added, it is plac
the top of the window. Any buttons are placed after theOK button. Any addi-
Motif Reference Manual 789

XmMessageBox Motif and Xt Widget Classes

get
sage

ing
il-

el"

p-
tional children are placed below the message. In Motif 1.1, only a single wid
can be added as a child of a MessageBox. This child is placed below the mes
and acts as a work area.

In Motif 1.2 and later, a XmNdialogType of XmDIALOG_TEMPLATE create a
TemplateDialog which contains nothing but a separator by default. Specify
callback, label string, or pixmap symbol resources causes the appropriate ch
dren of the MessageBox to be created.

Traits
MessageBox uses the XmQTactivatable trait.

New Resources
MessageBox defines the following resources:

XmNcancelLabelString
The string that labels theCancel button. In Motif 1.2, the default value is
locale-dependent. In the C locale, and in Motif 1.1, the default value is "Canc.

XmNdefaultButtonType
Specifies which PushButton provides the default action. Possible values:

XmDIALOG_CANCEL_BUTTON
XmDIALOG_OK_BUTTON
XmDIALOG_HELP_BUTTON

1. From Motif 2.0 onwards, useXtNameToWidget (): the various toolkit GetChild() routines are considered de
recated.

Name Class Type Default Access

XmNcancelLabelString XmCCancelLabelString XmString dynamic CSG

XmNdefaultButtonType XmCDefaultButtonType unsigned char XmDIALOG_OK_BUTTON CSG

XmNdialogType XmCDialogType unsigned char XmDIALOG_MESSAGE CSG

XmNhelpLabelString XmCHelpLabelString XmString dynamic CSG

XmNmessageAlignment XmCAlignment unsigned char XmALIGNMENT_BEGINNING CSG

XmNmessageString XmCMessageString XmString ““a

a.Strictly speaking, NULL, which is internally mapped through the empty string.

CSG

XmNminimizeButtons XmCMinimizeButtons Boolean False CSG

XmNokLabelString XmCOkLabelString XmString dynamic CSG

XmNsymbolPixmap XmCPixmap Pixmap dynamic CSG
790 Motif Reference Manual

Motif and Xt Widget Classes XmMessageBox

hat

"

tton
ize.
XmNdialogType
The type of MessageBox dialog, which also indicates the message symbol t
displays by default. Possible values:

XmDIALOG_ERROR XmDIALOG_TEMPLATE (1.2)
XmDIALOG_INFORMATION XmDIALOG_WARNING
XmDIALOG_MESSAGE XmDIALOG_WORKING
XmDIALOG_QUESTION

XmNhelpLabelString
The string that labels theHelp button. In Motif 1.2, the default value is
locale-dependent. In the C locale, and in Motif 1.1, the default value is "Help.

XmNmessageAlignment
The type of alignment for the message label. Possible values:

XmALIGNMENT_BEGINNING
XmALIGNMENT_CENTER
XmALIGNMENT_END

XmNmessageString
The string to use as the message label.

XmNminimizeButtons
If False (default), all buttons are standardized to be as wide as the widest bu
and as high as the highest button. If True, buttons will keep their preferred s

XmNokLabelString
The string that labels theOK button. In Motif 1.2, the default value is
locale-dependent. In the C locale, and in Motif 1.1, the default value is "OK".

XmNsymbolPixmap
The pixmap label to use as the message symbol.

Callback Resources
MessageBox defines the following callback resources:

XmNcancelCallback
List of callbacks that are called when the user selects theCancel button.

XmNokCallback
List of callbacks that are called when the user selects theOK button.

Callback Reason Constant

XmNcancelCallback XmCR_CANCEL

XmNokCallback XmCR_OK
Motif Reference Manual 791

XmMessageBox Motif and Xt Widget Classes

beti-
bor-
Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /*the reason that the callback was called*/
XEvent *event; /*event structure that triggered callback*/

} XmAnyCallbackStruct;

Inherited Resources
MessageBox inherits the following resources. The resources are listed alpha
cally, along with the superclass that defines them. The default value of XmN
derWidth is reset to 0 by XmManager. BulletinBoard sets the value of
XmNinitialFocus to XmNdefaultButton and resets the default XmNshad-
owThickness from 0 to 1 if the MessageBox is a child of a DialogShell.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNlabelFontList XmBulletinBoard

XmNallowOverlap XmBulletinBoard XmNlabelRenderTable XmBulletinBoard

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNautoUnmanage XmBulletinBoard XmNmapCallback XmBulletinBoard

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNmarginHeight XmBulletinBoard

XmNborderColor Core XmNmarginWidth XmBulletinBoard

XmNborderPixmap Core XmNnavigationType XmManager

XmNborderWidth Core XmNnoResize XmBulletinBoard

XmNbottomShadowColor XmManager XmNnumChildren Composite

XmNbottomShadowPixmap XmManager XmNpopupHandlerCallback XmManager

XmNbuttonFontList XmBulletinBoard XmNresizePolicy XmBulletinBoard

XmNbuttonRenderTable XmBulletinBoard XmNscreen Core

XmNcancelButton XmBulletinBoard XmNsensitive Core

XmNchildren Composite XmNshadowThickness XmManager

XmNcolormap Core XmNshadowType XmBulletinBoard

XmNdefaultButton XmBulletinBoard XmNstringDirection XmManager

XmNdefaultPosition XmBulletinBoard XmNtextFontList XmBulletinBoard

XmNdepth Core XmNtextRenderTable XmBulletinBoard

XmNdestroyCallback Core XmNtextTranslations XmBulletinBoard

XmNdialogStyle XmBulletinBoard XmNtopShadowColor XmManager

XmNdialogTitle XmBulletinBoard XmNtopShadowPixmap XmManager
792 Motif Reference Manual

Motif and Xt Widget Classes XmMessageBox

-

Translations
The translations for MessageBox include those from XmManager.

Additional Behavior
MessageBox has the following additional behavior:

MAny KCancel
For a sensitiveCancel button, invokes the callbacks in XmNacti-
vateCallback.

KActivate
For the button that has keyboard focus, or the default button,
invokes the callbacks in XmNactivateCallback.

<OK Button Activated>
Invokes the callbacks for XmNokCallback.

<Cancel Button Activated>
Invokes the callbacks for XmNcancelCallback.

<Help Button Activated>
Invokes the callbacks for XmNhelpCallback.

<FocusIn>
Invokes the callbacks for XmNfocusCallback.

<Map>
Invokes the callbacks for XmNmapCallback if the parent is a Dia
logShell.

<Unmap>
Invokes the callbacks for XmNunmapCallback if the parent is a
DialogShell.

XmNfocusCallback XmBulletinBoard XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNunmapCallback XmBulletinBoard

XmNhighlightColor XmManager XmNuserData XmManager

XmNhighlightPixmap XmManager XmNwidth Core

XmNinitialFocus XmManager XmNx Core

XmNinitialResourcesPersistent Core XmNy Core

XmNinsertPosition Composite

Resource Inherited From Resource Inherited From
Motif Reference Manual 793

XmMessageBox Motif and Xt Widget Classes
See Also
XmCreateObject (1), XmMessageBoxGetChild (1), Composite (2),
Constraint (2), Core (2), XmBulletinBoard (2), XmErrorDialog (2),
XmInformationDialog (2), XmManager(2), XmQuestionDialog (2),
XmTemplateDialog (2), XmWarningDialog (2), XmWorkingDialog (2).
794 Motif Reference Manual

Motif and Xt Widget Classes XmMessageDialog

ser.
x

-
e but-
be

s:
Name
XmMessageDialog – an unmanaged MessageBox as a child of DialogShell.

Synopsis

Public Header:
<Xm/MessageB.h>

Instantiation:
widget = XmCreateMessageDialog (parent, name,...)

Functions/Macros:
XmCreateMessageDialog (), XmMessageBoxGetChild ()

Description
An XmMessageDialog is a compound object created by a call toXmCreate-
MessageDialog () that an application can use to present a message to the u
A MessageDialog consists of a DialogShell with an unmanaged MessageBo
widget as its child. The MessageBox resource XmNdialogType is set to
XmDIALOG_MESSAGE. A MessageDialog includes four components: a sym
bol, a message, three buttons, and a separator between the message and th
tons. By default, there is no symbol. In Motif 1.2, the default button labels can
localized. In the C locale, and in Motif 1.1, the PushButtons are labelledOK ,
Cancel, andHelp by default.

Default Resource Values
A MessageDialog sets the following default values for MessageBox resource

Widget Hierarchy
When a MessageDialog is created with a specified name, the DialogShell is
named name_popup and the MessageBox is calledname.

See Also
XmCreateObject (1), XmMessageBoxGetChild (1),
XmDialogShell (2), XmMessageBox(2).

Name Default

XmNdialogType XmDIALOG_MESSAGE
Motif Reference Manual 795

XmNotebook Motif and Xt Widget Classes

e

. It
n
ng

hich
e
. A
ge to

ov-
ot

ddi-
Name
XmNotebook widget class – a constraint widget which lays out its children lik
pages in a book

Synopsis

Public Header:
<Xm/Notebook.h>

Class Name:
XmNotebook

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmNotebook

Class Pointer:
xmNotebookWidgetClass

Instantiation:
widget =XmCreateNotebook (parent, name,...)
or
widget =XtCreateWidget (name, xmNotebookWidgetClass,...)

Functions/Macros:
XmNotebookGetPageInfo (), XmCreateNotebook (), XmIsNotebook ()

Availability
Motif 2.0 and later.

Description
Notebook is a constraint widget that organises its children into logical pages
lays itself out so that the stack of logical pages look like the pages of an ope
notebook. The Notebook has visuals to simulate book binding and overlappi
(back) page edges. Only one page is visible at any time.

The Notebook can be divided in sections and sub-sections by creating tabs w
are displayed along the edge of the Notebook pages. A major tab divides th
Notebook into sections, within each section there may be further minor tabs
tab is associated with a page, so that activating a tab causes the relevant pa
be displayed within the Notebook. The Notebook automatically creates a tab
scroller, consisting of a set of four ArrowButtonGadgets. These are used for m
ing backwards and forwards between the major and minor tabs, when it is n
possible to display all the tabs.

A status area can be associated with a page, and this is used for providing a
tional information, typically the page number.
796 Motif Reference Manual

Motif and Xt Widget Classes XmNotebook

d for
of
ted

ller.

s, a
oller,
as

-
d
t if

child
s)
-

ropri-
an
r

be

st-
as a

r
d,

e set
d by
In addition to associating tabs with pages, a page scroller can also be create
moving between pages of the Notebook. This can be any preferred method
navigating between the pages. If, however, there is no page scroller associa
with the Notebook when it is realized, the Notebook creates a default page
scroller, consisting of a SpinBox. The Notebook only requires one page scro

A fully programmed Notebook therefore consists of pages, tabs, status area
page scroller, and a tab scroller. The programmer does not create the tab scr
and only optionally provides an alternative page scroller. Tabs and status are
are also optional.

An application adds a page to the Notebook by creating a child with the con
straint resource XmNnotebookChildType set to XmPAGE. Any widget derive
from RectObj may form a page of the Notebook. The default behavior is tha
XmNnotebookChildType is unspecified (XmNONE), the child forms a page,
with the following exceptions: a child with the XmQTactivatable trait (Arrow-
Button, DrawnButton, PushButton, and derived classes) is set up as a tab; a
with the XmQTaccessTextual trait (Label, Text, TextField, and derived classe
becomes a status area; a child with the XmQTnavigator trait (ScrollBar, Spin
Box, and derivatives) is made into a page scroller.

Pages are ordered by setting the constraint resource XmNpageNumber app
ately for each child of type XmPAGE. A tab is attached to a page by adding
appropriate widget to the Notebook with XmNnotebookChildType set to eithe
XmMAJOR_TAB or XmMINOR_TAB, and with the XmNpageNumber con-
straint resource set to that of the relevant page. Similarly, a status area can
attached to a page by adding the child with XmNnotebookChildType set to
XmSTATUS_AREA, and again appropriately setting XmNpageNumber to the
relevant page.

The resources XmNcurrentPageNumber, XmNfirstPageNumber, and XmNla
PageNumber control the range of pages which may be displayed. If a child h
XmNpageNumber constraint value which falls outside of the bounds set by
XmNfirstPageNumber and XmNlastPageNumber, either the bounds must be
altered to encompass the page constraint, or the page number itself must be
altered, before the Notebook will display the child. The XmNlastPageNumbe
resource is dynamically maintained as the highest XmNpageNumber supplie
unless the application itself changes the value of XmNlastPageNumber. Onc
by the application, the XmNlastPageNumber resource is no longer maintaine
the Notebook, even if higher XmNpageNumber values are set.
Motif Reference Manual 797

XmNotebook Motif and Xt Widget Classes

ber is
um-
st-

mN-
e-

he
aps
ys a
the
cre-
 tab

ing
rder,
r in

es
d

N ss

Xm SG

Xm SG

Xm SG

Xm CSG

Xm G

Xm G

Xm G

Xm

Xm SG
When a child page is managed and no XmNpageNumber has been explicitly
assigned, the Notebook automatically assigns a number. The assigned num
the smallest unused number which is not less than either the XmNfirstPageN
ber or the previous automatically allocated number. This may exceed XmNla
PageNumber. If XmNfirstPageNumber exceeds XmNlastPageNumber, the
behavior of the Notebook is undefined. The default value of the constraint X
pageNumber is XmUNSPECIFIED_PAGE_NUMBER, which causes the Not
book to automatically assign a number.

Pages may be assigned duplicate XmNpageNumber values, in which case t
Notebook displays the child which is most recently managed. There may be g
in the assigned page numbering scheme, in which case the Notebook displa
blank background, unless the application dynamically provides feedback into
background whilst processing a XmNpageChangedCallback. It is possible to
ate a tab for an empty slot by assigning an XmNpageNumber constraint to a
child, for which there is no corresponding XmPAGE child.

The ConstraintSetValues method of the Notebook sorts children into ascend
logical page number order. Logical page numbers may be assigned in any o
provided that the programmer does not rely anywhere upon the particular orde
which children are added.

Traits
Notebook holds the XmQTscrollFrame, XmQTtraversalControl, and XmQT-
specifyUnhighlight traits, which are inherited by any derived classes, and us
the XmQTscrollFrame, XmQTactivatable, XmQTnavigator, XmQTjoinSide, an
XmQTaccessTextual traits.

New Resources
Notebook defines the following resources:

ame Class Type Default Acce

NbackPageBackground XmCBackPageBackground Pixel dynamic C

NbackPageForeground XmCBackPageForeground Pixel dynamic C

NbackPageNumber XmCBackPageNumber Cardinal 2 C

NbackPagePlacement XmCBackPagePlacement unsigned char XmBOTTOM_RIGHT

NbackPageSize XmCBackPageSize Dimension 8 CS

NbindingPixmap XmCBindingPixmap Pixmap XmUNSPECIFIED_PIXMAP CS

NbindingType XmCBindingType unsigned char XmSPIRAL CS

NbindingWidth XmCBindingWidth Dimension 25 CSG

NcurrentPageNumber XmCCurrentPageNumber int XmUNSPECIFIED_PAGE_NUMBER C
798 Motif Reference Manual

Motif and Xt Widget Classes XmNotebook

ges.

upon

N-

Xm G

Xm G

Xm SG

Xm

Xm

Xm SG

Xm G

Xm G

Xm G

N ss
XmNbackPageBackground
Specifies the background color for drawing the back (overlapped) pages.

XmNbackPageForeground
Specifies the foreground color for drawing the back (overlapped) pages.

XmNbackPageNumber
Specifies the number of lines to draw to represent the back (overlapped) pa
The minimum value is 1, the maximum is half the XmNbackPageSize value.

XmNbackPagePlacement
Specifies where to draw the back (overlapped) pages. The default depends
the XmNlayoutDirection of the Notebook parent widget, and the Notebook
XmNorientation. Possible values:

XmBOTTOM_RIGHT /* lines drawn to bottom and right*/
XmBOTTOM_LEFT /* lines drawn to bottom and left*/
XmTOP_RIGHT /*lines drawn to top and right*/
XmTOP_LEFT /*lines drawn to top and left */

XmNbackPageSize
Specifies the thickness, in pixels, of the back page rendering.

XmNbindingPixmap
Specifies the pixmap for drawing the binding. The value is only used if the Xm
bindingType is XmPIXMAP or XmPIXMAP_OVERLAP_ONLY.

XmNbindingType
Specifies the type of binding. Possible values:

XmNONE XmSOLID
XmSPIRAL XmPIXMAP
XmPIXMAP_OVERLAP_ONLY

A value of XmNONE displays no binding.

NfirstPageNumber XmCFirstPageNumber int 1 CS

NframeBackground XmCFrameBackground Pixel dynamic CS

NframeShadowThickness XmCShadowThickness Dimension dynamic C

NinnerMarginHeight XmCInnerMarginHeight Dimension 0 CSG

NinnerMarginWidth XmCInnerMarginWidth Dimension 0 CSG

NlastPageNumber XmCLastPageNumber int XmUNSPECIFIED_PAGE_NUMBER C

NmajorTabSpacing XmCMajorTabSpacing Dimension 3 CS

NminorTabSpacing XmCMinorTabSpacing Dimension 3 CS

Norientation XmCOrientation unsigned char XmHORIZONTAL CS

ame Class Type Default Acce
Motif Reference Manual 799

XmNotebook Motif and Xt Widget Classes

ges

e
ges
ea
dth.

p
ap

the
 of

h,

lue
not
Num-

the
e
ge-

age

e

The value XmSOLID draws a solid binding using the foreground color of the
widget. The binding is contained within the area of a frame containing the pa
of the Notebook, and curtailed by the value of XmNbindingWidth.

The value XmSPIRAL draws a spiral binding using the foreground color of th
widget. The binding is contained within the area of a frame containing the pa
of the Notebook, and curtailed by the value of XmNbindingWidth, and by an ar
outside the frame of the pages also bounded by the value of XmNbindingWi

The value XmPIXMAP draws a binding using the value of XmNbindingPixma
as a tile or stipple, depending upon the depth of the supplied pixmap. A pixm
of depth 1 is used as a stipple, and tiled otherwise. The foreground color of
Notebook is used when stippling. The size of the binding drawn is the larger
XmNbindingWidth and the width of the pixmap.

The value XmPIXMAP_OVERLAP_ONLY is similar to XmPIXMAP, except
that the size of the binding is bounded only by the value of XmNbindingWidt
and not the width of the pixmap.

XmNbindingWidth
Specifies the width, in pixels, of the Notebook binding area.

XmNcurrentPageNumber
Specifies the page number of the currently visible page. Initially set to the va
of XmNfirstPageNumber, the XmNcurrentPageNumber is constrained to be
be less than the XmNfirstPageNumber and not to exceed the XmNlastPage
ber.

XmNfirstPageNumber
Specifies the page number of the first logical page that may be displayed in
Notebook. Any child with an XmNpageNumber less than this value cannot b
displayed until such time as either the XmNfirstPageNumber, or the XmNpa
Number of the given child itself, is suitably altered.

XmNframeBackground
Specifies the background color for the Notebook frame.

XmNframeShadowThickness
Specifies the shadow thickness around the Notebook frame. In Motif 2.0 the
default is 2. In Motif 2.1 and later, the default depends upon the XmDisplay
XmNenableThinThickness resource: if True, the default is 1, otherwise 2.

XmNinnerMarginHeight
Specifies the margin on the top and bottom sides of page, status area, and p
scroller children.

XmNinnerMarginWidth
Specifies the margin on the left and right sides of page, status area, and pag
scroller children.
800 Motif Reference Manual

Motif and Xt Widget Classes XmNotebook

the
ot
pa-
ber
mmer
the

s

a

XmNlastPageNumber
Specifies the page number of the last logical page that may be displayed in
Notebook. Any child with an XmNpageNumber in excess of this value may n
be displayed until such time as either the XmNlastPageNumber, or the XmN
geNumber of the given child itself, is suitably altered. The XmNlastPageNum
is automatically set by the Notebook as pages are added, unless the progra
directly changes the value: once modified, the Notebook no longer maintains
last page reference, and the programmer must continue to set the value as
required.

XmNmajorTabSpacing
Specifies the spacing between major tabs. If XmNframeShadowThickness
exceeds the value of the spacing, then the shadow thickness is used.

XmNminorTabSpacing
Specifies the spacing between minor tabs. If XmNframeShadowThickness
exceeds the value of the spacing, then the shadow thickness is used.

XmNorientation
Specifies the orientation of the Notebook. Possible values:

XmHORIZONTAL /* binding on left or right side*/
XmVERTICAL /* binding on top or bottom side*/

New Constraint Resources
Notebook defines the following constraint resources for its children:

XmNnotebookChildType
Specifies the child type of the Notebook. Possible values:

XmPAGE /* the child is a page */
XmMAJOR_TAB /* the child is a major tab */
XmMINOR_TAB /* the child is a minor page*/
XmSTATUS_AREA /* the child is a status area*/
XmPAGE_SCROLLER /*the child is a page scroller*/

Name Class Type Default Acces

XmNnotebookChildType XmCNotebookChildType unsigned char XmNONE CGa

.Erroneously listed as CSG in 2nd edition.

XmNpageNumber XmCPageNumber int XmUNSPECIFIED_PAGE_NUMBER CSG

XmNresizable XmCResizable Boolean True CSG
Motif Reference Manual 801

XmNotebook Motif and Xt Widget Classes

ild is
ok

he
and
E.
XmNpageNumber
Specifies a logical page number associated with a child of the Notebook. If
unspecified, the Notebook assigns the next unallocated number when the ch
managed. The assigned number is calculated to be not less than the Notebo
XmNfirstPageNumber.

XmNresizable
Specifies whether any child resize request is processed by the Notebook.

Callback Resources
Notebook defines the following callback resources:

XmNpageChangedCallback
List of callbacks called when the current logical page number is initialized or
changed.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /*the reason that the callback was called*/
XEvent *event; /*points to event structure */

/* that triggered callback */
int page_number; /*current page number */
Widget page_widget; /*widget associated with current page number*/
int prev_page_number; /*previous current logical page number */
Widget prev_page_widget; /*widget associated with previous */

/* current logical page number */
} XmNotebookCallbackStruct;

The structure members page_number, page_widget, prev_page_number,
prev_page_widget are valid for any value of reason.

reason specifies the cause of callback invocation. At Notebook initialization, t
page changed callback list is called in order to set up the first current page,
thereason structure member in this instance will have the value XmCR_NON

Callback Reason Constant

XmNpageChangedCallback XmCR_NONE
XmCR_PAGE_SCROLLER_INCREMENT
XmCR_PAGE_SCROLLER_DECREMENT
XmCR_MAJOR_TAB
XmCR_MINOR_TAB
802 Motif Reference Manual

Motif and Xt Widget Classes XmNotebook

-
 the

n.

is

-

k.
th
Thereafter, if a tab child is activated, thereason member has the value
XmCR_MAJOR_TAB or XmCR_MINOR_TAB, depending upon the XmNnote
bookChildType resource of the selected tab. If the page scroller is activated,
reason field is either XmCR_PAGE_SCROLLER_INCREMENT or
XmCR_PAGE_SCROLLER_DECREMENT, depending upon the scroller actio
Thereason member is also XmCR_NONE if the XmNcurrentPageNumber
resource is changed throughXtSetValues ().

page_number specifies the new logical page number.

page_widgetspecifies the widget which has the new logical page number. This
NULL if no page widget with an XmNpageNumber value equal topage_number
is found.

prev_page_number specifies the current logical page number. At Notebook ini
tialization, the value is XmUNSPECIFIED_PAGE_NUMBER.

prev_page_widget specifies the currently displayed page child of the Noteboo
This is NULL at Notebook initialization, and where there is no page widget wi
an XmNpageNumber value equal toprev_page_number.
Motif Reference Manual 803

XmNotebook Motif and Xt Widget Classes

abeti-

e-
Inherited Resources
Notebook inherits the resources shown below. The resources are listed alph
cally, along with the superclass that defines them.

Translations
The translations for Notebook include those of XmManager. In addition, Not
book places the following accelerators upon Tab children:

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmManager XmNsensitive Core

XmNbottomShadowPixmap XmManager XmNshadowThickness XmManager

XmNchildren Composite XmNstringDirection XmManager

XmNcolormap Core XmNtopShadowColor XmManager

XmNdepth Core XmNtopShadowPixmap XmManager

XmNdestroyCallback Core XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNwidth Core

XmNhighlightPixmap XmManager XmNx Core

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core

Event Action

KBeginLine TraverseTab(Home)

KEndLine TraverseTab(End)

KLeft TraverseTab(Previous)

KRight TraverseTab(Next)

KUp TraverseTab(Previous)

KDown TraverseTab(Next)
804 Motif Reference Manual

Motif and Xt Widget Classes XmNotebook

bs
vi-

nu
 of a
n-

ption-
eBut-
ith
Action Routines
Notebook defines the following action routines:

TraverseTab(type)
A generic action to move the focus between major and minor ta
in the Notebook. The action type may be one of Home, End, Pre
ous, or Next.

See Also
XmNotebookGetPageInfo (1), XmCreateObject (1),
Composite (2), Constraint (2), Core (2), RectObj (2), XmManager(2).

Name
XmOptionMenu – a type of RowColumn widget used as an option menu.

Synopsis

Public Header:
<Xm/RowColumn.h>

Class Name:
XmRowColumn

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmRowColumn

Class Pointer:
xmRowColumnWidgetClass

Instantiation:
widget = XmCreateOptionMenu (parent, name,...)

Functions/Macros:
XmCreateOptionMenu (), XmCreateSimpleOptionMenu (),
XmVaCreateSimpleOptionMenu (), XmIsRowColumn(), XmOption-
ButtonGadget (),
XmOptionLabelGadget ()

Description
An OptionMenu is an instance of a RowColumn widget that is used as a me
that allows a user to select one of several choices. An OptionMenu consists
label, a selection area, and pulldown menu pane. When you create an Optio
Menu, you must supply the pulldown menu pane via the XmNsubMenuId
resource. The menu pane must already exist and it must be a child of the O
Menu’s parent. The label (a LabelGadget) and the selection area (a Cascad
tonGadget) are created by the OptionMenu. You can specify the label string w
the XmNlabelString resource.
Motif Reference Manual 805

XmNotebook Motif and Xt Widget Classes

is
I-

ea.
n
of the
mN-
u is
es

d by

h
il-
n of
-
-

r of

para-

the
OptionMenu is a RowColumn widget whose XmNrowColumnType resource
set to XmMENU_OPTION. The XmNorientation resource defaults to XmHOR
ZONTAL, which means that the label is displayed to the left of the selection ar
If the resource is set to XmVERTICAL, the label is placed above the selectio
area. The selection area posts the menu pane, as well as displays the label
current selection. The XmNmenuPost resource is set to BSelect Press. The X
menuHistory resource can be used to specify which item in the pulldown men
the current choice. The XmNmnemonic and XmNmnemonicCharSet resourc
can be set to specify a mnemonic for the OptionMenu.

An OptionMenu can be created usingXmCreateOptionMenu (). In this case,
the OptionMenu does not automatically create its submenu; it must be adde
the application.

An OptionMenu can also be created by XmCreateSimpleOptionMenu(), whic
automatically creates the OptionMenu and its submenu with the specified ch
dren. This routine uses the RowColumn resources associated with the creatio
simple menus. For an OptionMenu, the only types allowed in the XmNbutton
Type resource are XmCASCADEBUTTON, XmPUSHBUTTON, XmSEPARA
TOR, and XmDOUBLE_SEPARATOR. The name of each button is button_n,
wheren is the number of the button, ranging from 0 to 1 less than the numbe
buttons in the submenu. The name of each separator is separator_n, wheren is
the number of the separator, ranging from 0 to 1 less than the number of se
tors in the submenu.

Default Resource Values
An OptionMenu sets the following default values for RowColumn resources:

Widget Hierarchy
When an OptionMenu is created, the LabelGadget is named OptionLabel and
CascadeButtonGadget is named OptionButton.

See Also
XmCreateObject (1), XmOptionButtonGadget (1),
XmOptionLabelGadget (1), XmVaCreateSimpleOptionMenu (1),
XmCascadeButtonGadget (2), XmLabelGadget (2), XmRowColumn(2).

Name Default

XmNmenuPost BSelect Press

XmNorientation XmHORIZONTAL

XmNrowColumnType XmMENU_OPTION
806 Motif Reference Manual

Motif and Xt Widget Classes XmOptionMenu

sists

Id
ption-
eBut-
ith

is
I-

ea.
n
of the
mN-
u is
es
Name
XmOptionMenu – a type of RowColumn widget used as an option menu.

Synopsis

Public Header:
<Xm/RowColumn.h>

Class Name:
XmRowColumn

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmRowColumn

Class Pointer:
xmRowColumnWidgetClass

Instantiation:
widget = XmCreateOptionMenu (parent, name,...)

Functions/Macros:
XmCreateOptionMenu (), XmCreateSimpleOptionMenu (),
XmVaCreateSimpleOptionMenu (), XmIsRowColumn(), XmOption-
ButtonGadget (),
XmOptionLabelGadget ()

Description
An XmOptionMenu is an instance of a RowColumn widget that is used as a
menu that allows a user to select one of several choices. An OptionMenu con
of a label, a selection area, and pulldown menu pane. When you create an
OptionMenu, you must supply the pulldown menu pane via the XmNsubMenu
resource. The menu pane must already exist and it must be a child of the O
Menu’s parent. The label (a LabelGadget) and the selection area (a Cascad
tonGadget) are created by the OptionMenu. You can specify the label string w
the XmNlabelString resource.

OptionMenu is a RowColumn widget whose XmNrowColumnType resource
set to XmMENU_OPTION. The XmNorientation resource defaults to XmHOR
ZONTAL, which means that the label is displayed to the left of the selection ar
If the resource is set to XmVERTICAL, the label is placed above the selectio
area. The selection area posts the menu pane, as well as displays the label
current selection. The XmNmenuPost resource is set to BSelect Press. The X
menuHistory resource can be used to specify which item in the pulldown men
the current choice. The XmNmnemonic and XmNmnemonicCharSet resourc
can be set to specify a mnemonic for the OptionMenu.
Motif Reference Manual 807

XmOptionMenu Motif and Xt Widget Classes

d by

h
il-
n of
-
-

r of

para-

the
An OptionMenu can be created usingXmCreateOptionMenu (). In this case,
the OptionMenu does not automatically create its submenu; it must be adde
the application.

An OptionMenu can also be created by XmCreateSimpleOptionMenu(), whic
automatically creates the OptionMenu and its submenu with the specified ch
dren. This routine uses the RowColumn resources associated with the creatio
simple menus. For an OptionMenu, the only types allowed in the XmNbutton
Type resource are XmCASCADEBUTTON, XmPUSHBUTTON, XmSEPARA
TOR, and XmDOUBLE_SEPARATOR. The name of each button is button_n,
wheren is the number of the button, ranging from 0 to 1 less than the numbe
buttons in the submenu. The name of each separator is separator_n, wheren is
the number of the separator, ranging from 0 to 1 less than the number of se
tors in the submenu.

Default Resource Values
An OptionMenu sets the following default values for RowColumn resources:

Widget Hierarchy
When an OptionMenu is created, the LabelGadget is named OptionLabel and
CascadeButtonGadget is named OptionButton.

See Also
XmCreateObject (1), XmOptionButtonGadget (1),
XmOptionLabelGadget (1), XmVaCreateSimpleOptionMenu (1),
XmCascadeButtonGadget (2), XmLabelGadget (2), XmRowColumn(2).

Name Default

XmNmenuPost BSelect Press

XmNorientation XmHORIZONTAL

XmNrowColumnType XmMENU_OPTION
808 Motif Reference Manual

Motif and Xt Widget Classes XmPanedWindow

il-
to

nd
 a

or-

ght.
Name
XmPanedWindow widget class – a constraint widget that tiles its children.

Synopsis

Public Header:
<Xm/PanedW.h>

Class Name:
XmPanedWindow

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmPanedWindow

Class Pointer:
xmPanedWindowWidgetClass

Instantiation:
widget =XmCreatePanedWindow (parent, name,...)
or
widget =XtCreateWidget (name, xmPanedWindowWidgetClass,...)

Functions/Macros:
XmCreatePanedWindow (), XmIsPanedWindow ()

Description
PanedWindow is a constraint widget that tiles its children. In Motif 1.1, the ch
dren are laid out vertically from top to bottom, in the order that they are added
the PanedWindow. In Motif 1.2, the position of each child is controlled by the
XmNpositionIndex resource. A PanedWindow is as wide as its widest child a
all children are made that width. Users can adjust the height of a pane using
sash that appears below the corresponding pane.

In Motif 2.0 and later, the PanedWindow may be oriented either vertically or h
izontally. When the XmNorientation resource is set to XmHORIZONTAL, the
PanedWindow is as tall as its tallest child, and all children are made that hei
The sash in this orientation is used to control the width of the pane.

New Resources
PanedWindow defines the following resources:

Name Class Type Default Access

XmNmarginHeight XmCMarginHeight Dimension 3 CSG

XmNmarginWidth XmCMarginWidth Dimension 3 CSG

XmNorientation XmCOrientation unsigned char XmVERTICAL CSG

XmNrefigureMode XmCBoolean Boolean True CSG

XmNsashHeight XmCSashHeight Dimension 10 CSG
Motif Reference Manual 809

XmPanedWindow Motif and Xt Widget Classes

hild

ild

dent
val-
-

the
w.

ne.
XmNmarginHeight
The spacing between a PanedWindow widget’s top or bottom edge and any c
widget.

XmNmarginWidth
The spacing between a PanedWindow widget’s right or left edge and any ch
widget.

XmNorientation
In Motif 2.0 and later, the orientation of the PanedWindow. Possible values:

XmHORIZONTAL
XmVERTICAL

XmNrefigureMode
If True (default), children are reset to their appropriate positions following a
change in the PanedWindow widget.

XmNsashHeight

XmNsashWidth
The height and width of the sash.

XmNsashIndent
If the PanedWindow orientation is XmVERTICAL, the resource specifies the
horizontal position of the sash along each pane. Positive values specify the in
from the left edge; negative values, from the right edge (assuming the default
ues of XmNstringDirection and XmNlayoutDirection). Similarly, in an XmHOR
IZONTAL PanedWindow, it specifies the vertical position of the sash, positive
values being calculated from the top edge, negative values from the bottom. If
value is too large, the sash is placed flush with the edge of the PanedWindo

XmNsashShadowThickness
The thickness of shadows drawn on each sash. In Motif 2.0 and earlier, the
default is 2. In Motif 2.1 and later, the default depends upon the XmDisplay
XmNenableThinThickness resource: if True, the default is 1, otherwise 2.

XmNseparatorOn
If True, the widget places a Separator or SeparatorGadget between each pa

XmNspacing
The distance between each child pane.

XmNsashIndent XmCSashIndent Position -10 CSG

XmNsashShadowThickness XmCShadowThickness Dimension dynamic CSG

XmNsashWidth XmCSashWidth Dimension 10 CSG

XmNseparatorOn XmCSeparatorOn Boolean True CSG

XmNspacing XmCSpacing Dimension 8 CSG

Name Class Type Default Access
810 Motif Reference Manual

Motif and Xt Widget Classes XmPanedWindow

rom
ge a

an

t

ild.
 the
New Constraint Resources
PanedWindow defines the following constraint resources for its children:

XmNallowResize
If False (default), the PanedWindow widget always refuses resize requests f
its children. If True, the PanedWindow widget tries to grant requests to chan
child’s height.

XmNpaneMaximum

XmNpaneMinimum
The values of a pane’s maximum and minimum dimensions for resizing. You c
prevent a sash from being drawn by setting these values to be equal.

XmNpositionIndex
In Motif 1.2, the position of the widget in the PanedWindow’s list of children, no
including sashes. A value of 0 indicates the beginning of the list, while
XmLAST_POSITION places the child at the end of the list.

XmNskipAdjust
If False (default), the PanedWindow widget automatically resizes this pane ch
If True, resizing is not automatic, and the PanedWindow may choose to skip
adjustment of this pane.

Name Class Type Default Access

XmNallowResize XmCBoolean Boolean False CSG

XmNpaneMaximum XmCPaneMaximum Dimension 1000 CSG

XmNpaneMinimum XmCPaneMinimum Dimension 1 CSG

XmNpositionIndex XmCPositionIndex short XmLAST_POSITION CSG

XmNskipAdjust XmCBoolean Boolean False CSG
Motif Reference Manual 811

XmPanedWindow Motif and Xt Widget Classes

abet-
fault
is

s
ame
ternal
Inherited Resources
PanedWindow inherits the following resources. The resources are listed alph
ically, along with the superclass that defines them. PanedWindow sets the de
value of XmNshadowThickness to 2. The default value of XmNborderWidth
reset to 0 by Manager.

Widget Hierarchy
The sash children of a PanedWindow are created using a private widget clas
called XmSash, derived from XmPrimitive. Each instance of a sash has the n
Sash. The appearance of the sash can be configured using these names in ex
resource files.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmManager XmNsensitive Core

XmNbottomShadowPixmap XmManager XmNshadowThickness XmManager

XmNchildren Composite XmNstringDirection XmManager

XmNcolormap Core XmNtopShadowColor XmManager

XmNdepth Core XmNtopShadowPixmap XmManager

XmNdestroyCallback Core XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNwidth Core

XmNhighlightPixmap XmManager XmNx Core

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core
812 Motif Reference Manual

Motif and Xt Widget Classes XmPanedWindow

ns-

e
e

m.

f a

ists
Translations
The translations for PanedWindow are inherited from Manager. Additional tra
lations are defined for sashes within a PanedWindow widget:

Action Routines
PanedWindow defines the following action routines:

Help()
Invokes the list of callbacks specified by XmNhelpCallback. If th
PanedWindow doesn’t have any help callbacks, the Help() routin
invokes those associated with the nearest ancestor that has the

NextTabGroup()
Traverses to the next tab group. Normally a tab group consists o
pane and its sash.

PrevTabGroup()
Traverses to the previous tab group. Normally a tab group cons
of a pane and its sash.

Event Action

BSelect Press SashAction(Start)

BSelect Motion SashAction(Move)

BSelect Release SashAction(Commit)

BTransfer Press SashAction(Start)

BTransfer Motion SashAction(Move)

BTransfer Release SashAction(Commit)

KHelp Help()

KUp SashAction(Key,DefaultIncr,Up)

MCtrl KUp SashAction(Key,LargeIncr,Up)

KDown SashAction(Key,DefaultIncr,Down)

MCtrl KDown SashAction(Key,LargeIncr,Down)

KLeft SashAction(Key,DefaultIncr,Left)

MCtrl KLeft SashAction(Key,LargeIncr,Left)

KRight SashAction(Key,DefaultIncr,Right)

MCtrl KRight SashAction(Key,LargeIncr,Right)

KNextField NextTabGroup()

KPrevField PrevTabGroup()
Motif Reference Manual 813

XmPanedWindow Motif and Xt Widget Classes

ey-

n
.

SashAction(action)
Controls the interactive placement of the sash using the mouse.
action can have one of three values:

StartBegins the placement operation.
MoveCauses the sash to move as the mouse moves.
CommitEnds the placement operation.

SashAction(Key,increment,direction)
Controls the placement of the sash when it is moved using the k
board. increment is either DefaultIncr, which moves the sash’s
position by one line or LargeIncr, which moves the sash’s positio
by one viewing region. direction is either Up, Down, Left, or Right

Additional Behavior
PanedWindow has the following additional behavior:

<FocusIn>
Highlights the sash and gives it keyboard focus.

<FocusOut>
Unhighlights the sash and removes its keyboard focus.

See Also
XmCreateObject (1), Composite (2), Constraint (2), Core (2),
XmManager(2).
814 Motif Reference Manual

Motif and Xt Widget Classes XmParseMapping

rse

ble,

rn or
r to

le,

ext.
n of

-
t at
, and

h
 set-
itu-
es
Name
XmParseMapping data type – an opaque type representing an entry in a pa
table

Synopsis

Public Header:
<Xm/Xm.h>

Functions/Macros:
XmParseMappingCreate (), XmParseMappingFree (), XmParseMap-
pingGetValues (),
XmParseMappingSetValues (),

Availability
Motif 2.0 and later.

Description
XmParseMapping is an opaque data type representing an entry in a parse ta
which is used for table-driven parsing of strings and compound strings.

A parse mapping consists of a match pattern, and either a substitution patte
parse procedure, which can be used by string manipulation functions in orde
compare against and subsequently transform text.

An XmParseTable is simply an array of parse mappings.XmParseMap-
pingCreate () creates a parse mapping, for subsequent use in a parse tab
using a resource style parameter list. The parse table can be passed to
XmStringParseText (), for example, in order to filter or modify an input
string. In the parse process, a pointer is initialized to the head of some input t
The parse table is inspected from top to bottom, comparing the match patter
each parse mapping entry with the value at the input pointer. Where a corre
spondence is found, the parse mapping is used to supply transformed outpu
that point in the parsing process. The input pointer is subsequently advanced
the process is reiterated.

The implementation of XmParseMapping is that of a pseudo widget: althoug
not a real widget, the object has resources and a resource style interface for
ting and fetching values of the mapping, principally the match pattern, subst
tion pattern, and parse procedure. Resources of the object are set and fetch
through the proceduresXmParseMappingGetValues () andXmParseMap-
pingSetValues () respectively.
Motif Reference Manual 815

XmParseMapping Motif and Xt Widget Classes

e

 val-

re is
es

rn is a
New Resources
ParseMapping defines the following resources:

XmNclientData
Specifies application data passed to the parse procedure associated with th
XmNinvokeParseProc resource.

XmNincludeStatus
Specifies the way in which the result of the mapping is constructed. Possible
ues:

XmINSERT /* concatenate XmNsubstitute value to output */
/* parsing is continued */

XmINVOKE /* result determined by XmNinvokeParseProc */
XmTERMINATE /* concatenate XmNsubstitute value to output */

/* parsing is terminated */

XmNinvokeParseProc
Specifies a procedure for determining the result of the mapping. The procedu
only used if XmNincludeStatus is XmINVOKE. An XmParseProc routine plac
the result of the mapping into the address specified by itsstr_include parameter,
and returns either XmINSERT or XmTERMINATE, depending upon whether
parsing is to continue. A full description of the format of an XmParseProc is
given below.

XmNpattern
Specifies a pattern to be matched against the input being parsed. The patte
maximum of one character.

Name Type Default Access

XmNclientData XtPointer NULL CSG

XmNincludeStatus XmIncludeStatus XmINSERTa

a.Erroneously given as XmInsert in 2nd edition.

CSG

XmNinvokeParseProc XmParseProc NULL CSG

XmNpattern XtPointer NULL CSG

XmNpatternType XmTextType XmCHARSET_TEXT CSG

XmNsubstitute XmString NULL CSG
816 Motif Reference Manual

Motif and Xt Widget Classes XmParseMapping

ble

ars-

ap-
XmNpatternType
The type of the value specified as value for the resource XmNpattern. Possi
values:

XmMULTIBYTE_TEXT
XmWIDECHAR_TEXT
XmCHARSET_TEXT

XmNsubstitute
Specifies a compound string to be added to the result of the parse process.

Procedures
The XmParseProc has the following format:

typedef XmIncludeStatus (*XmParseProc) (XtPointer *,
XtPointer,
XmTextType,
XmStringTag,
XmParseMapping,
int,
XmString *,
XtPointer)

XtPointer *in_out; /*text being parsed */
XtPointer text_end; /*pointer to end of the text */
XmTextType type; /*type of text */
XmStringTag locale_tag; /*type to be used for the result */
XmParseMapping entry; /*parse mapping triggering callback*/
int pattern_length; /*number of bytes in input text */
XmString *str_include; /*returned result of the parse */
XtPointer call_data; /*application data */

in_out initially points to the current location within the text being parsed. The
pointer can be changed in order to reset the location from which to continue p
ing after the callback finishes.

text_end points to the end of the in_out string. A parse procedure can set the
value of the element to indicate where the parse is to continue from after the m
ping has been applied to the input.

typeis the type of the textin_out, and the type of thelocale_tagto be used in cre-
ating the return compound string.type is one of XmCHARSET_TEXT,
XmMULTIBYTE_TEXT, or XmWIDECHAR_TEXT.
Motif Reference Manual 817

XmParseMapping Motif and Xt Widget Classes

re-

r-

ss

tring
locale_tagspecifies the tag to be used in creating the result. If NULL, the tag c
ated depends upon the value oftype. If type is XmCHARSET_TEXT, a charset
string tag is created from the value XmSTRING_DEFAULT_CHARSET. Othe
wise, a locale string tag is created from the value
_MOTIF_DEFAULT_LOCALE.

entry points to the XmParseMapping object which triggered the callback.

pattern_length is the number of bytes in the input text remaining at the addre
specified byin_out.

str_include is an address where the parse procedure supplies a compound s
which is to be inserted into the result of the parse process.

call_data is a pointer to application data passed through by the string parsing
functions which invoke the callback.

See Also
XmParseMappingCreate (1), XmParseMappingFree (1),
XmParseMappingGetValues (1), XmParseMappingSetValues (1),
XmParseTableFree (1), XmStringParseText (1),
XmStringUnparse (1).
818 Motif Reference Manual

Motif and Xt Widget Classes XmPopupMenu

.

r
ntain
orre-

is
nu
e
for a
nc-

d by
ct

ces

_
r of

rs in
Name
XmPopupMenu – a type of RowColumn widget used as a popup menu pane

Synopsis

Public Header:
<Xm/RowColumn.h>

Instantiation:
widget = XmCreatePopupMenu (parent, name,...)

Functions/Macros:
XmCreatePopupMenu (), XmCreateSimplePopupMenu (),
XmMenuPosition (), XmVaCreateSimplePopupMenu ()

Description
An XmPopupMenu is the first menu pane in a popup menu system. All othe
menu panes in the menu system are pulldown panes. A PopupMenu can co
Labels, Separators, PushButtons, ToggleButtons, CascadeButtons, or the c
sponding Gadget equivalents.

A PopupMenu is a RowColumn widget whose XmNrowColumnType resource
set to XmMENU_POPUP. The XmNmenuAccelerator resource is set to KMe
and XmNmenuPost is set to BMenu Press. The XmNpopupEnabled resourc
controls whether or not keyboard accelerators and mnemonics are enabled
PopupMenu. A PopupMenu needs to be the child of a MenuShell widget to fu
tion properly. UseXmMenuPosition () to place a PopupMenu.

A PopupMenu can be created usingXmCreatePopupMenu (). In this case, the
PopupMenu does not automatically contain any components; they are adde
the application. The PopupMenu created by this routine is a compound obje
consisting of a MenuShell widget and a RowColumn child.

A PopupMenu can also be created byXmCreateSimplePopupMenu (),
which automatically creates the PopupMenu with the specified children and
makes it the child of a MenuShell. This routine uses the RowColumn resour
associated with the creation of simple menus. For a PopupMenu, any type is
allowed in the XmNbuttonType resource. The name of each button is buttonn,
wheren is the number of the button, ranging from 0 to 1 less than the numbe
buttons in the menu. The name of each separator is separator_n, wheren is the
number of the separator, ranging from 0 to 1 less than the number of separato
the menu. The name of each title is label_n, where n is the number of the title,
ranging from 0 to 1 less than the number of titles in the menu.
Motif Reference Manual 819

XmPopupMenu Motif and Xt Widget Classes

he
es,

led

ed
In Motif 2.0 and later, the support for automatic popup menus is extended. T
Manager and Primitive classes contain XmNpopupHandlerCallback resourc
and the RowColumn installs event handlers which simplifies the posting and
choice of a popup menu to display. These are installed if the XmNpopupEnab
resource is set to XmPOPUP_AUTOMATIC or
XmPOPUP_AUTOMATIC_RECURSIVE.

Default Resource Values
A PopupMenu sets the following default values for RowColumn resources:

Widget Hierarchy
When a PopupMenu is created with a specified name, the MenuShell is nam
popup_name and the RowColumn is calledname.

See Also
XmCreateObject (1), XmMenuPosition (1),
XmVaCreateSimplePopupMenu (1), XmMenuShell (2),
XmRowColumn(2).

Name Default

XmNmenuAccelerator KMenu

XmNmenuPost BMenu Press

XmNpopupEnabled XmPOPUP_KEYBOARD

XmNrowColumnType XmMENU_POPUP
820 Motif Reference Manual

Motif and Xt Widget Classes XmPrintShell

-
es
reen
ces
a

eth-
ugh

ur-
l-

rom

t
 as
Name
XmPrintShell widget class – a Shell interfacing onto the Xp printing facilities

Synopsis

Public Headers:
<Xm/Print.h>

Class Name:
XmPrintShell

Class Hierarchy:
Core→ Composite→ Shell→ WMShell→ VendorShell→ TopLevelShell→
ApplicationShell→ XmPrintShell

Class Pointer:
xmPrintShellWidgetClass

Instantiation:
widget =XmPrintSetup (...)
or
widget =XtCreatePopupShell (name, xmPrintShellWidgetClass,...)

Functions/Macros:
XmPrintSetup (), XmPrintToFile (), XmPrintPopupPDM (),
XmRedisplayWidget (), XmIsPrintShell ()

Availability
Motif 2.1 and later.

Description
PrintShell is a Shell widget which interfaces to the X11R6 X Print (Xp) exten
sions in order to print out a widget hierarchy. The X Printing Architecture reus
the code which renders the contents and visuals of a widget on the video sc
in order to print the widget hierarchy. The technique involves creating instan
of requisite widgets within the X Print Server by adding the hierarchy below
PrintShell, and configuring the widgets with suitable resources: the expose m
ods of the widgets perform the printing. The PrintShell itself is created thro
XmPrintSetup (), which returns an XmPrintShell widget after establishing a
connection to an X Print Server. The PrintShell provides resources for config
ing an XPrint connection and for specifying printer attributes. In addition, cal
back resources are available for handling any pagination. If no XPrint
connection can be established, PrintShell behaves like an ApplicationShell, f
which it is derived.

The Print model allows for either synchronous or asynchronous printing.XmRe-
displayWidget () provides synchronous printing by forcing a widget to prin
itself directly. Asynchronous printing is performed through widget exposure
Motif Reference Manual 821

XmPrintShell Motif and Xt Widget Classes

t-

tion

ant

ta to

on is
s a

g tile
a result of events generated by the X Print Server and dispatched to the Prin
Shell: the programmer callsXpStartJob () to initialize the printing process;
XmNstartJobCallback, XmNpageSetupCallback, and XmNendJobCallback
resources of the PrintShell specify callbacks to provide asynchronous notifica
at critical points in the printing task.

Whether printing synchronously or asynchronously, an application creates a
widget hierarchy on the PrintShell suitable for the required output. What is me
by suitable in this context is application and widget specific: typically, a Text
widget is created under the PrintShell, and resources are set to contain the da
print. It may be appropriate to turn off highlighting or blinking cursors in the
Text, or to set the background white. This depends upon whether the intenti
to print out just the content of the widget, or whether the programmer intend
screen shot which involves the widget visuals.

As a related topic, the procedureXmPrintSetupPDM () requests that a print
dialog manager (PDM) is started. The status of the connection to the PDM is
monitored by specifying a procedure for the XmNpdmNotificationCallback
resource of the PrintShell. Lastly, an additional printing interface is available
through the functionXmPrintToFile (), which fetches the data on the Print
Server, and sends this to a file.

New Resources
PrintShell defines the following resources:

XmNdefaultPixmapResolution
Indicates the resolution in dots per inch used for scaling image files read by
descendants of the widget. In general, the resource is not used when readin
pixmaps (XmNbackgroundPixmap, (XmNbottomShadowPixmap, or similar).

XmNmaxX

XmNmaxY

XmNminX

XmNminY

Name Class Type Default Access

XmNdefaultPixmapResolution XmCDefaultPixmapResolution unsigned short 100 CSG

XmNmaxX XmCMaxX Dimension dynamic G

XmNmaxY XmCMaxY Dimension dynamic G

XmNminX XmCMinX Dimension dynamic G

XmNminY XmCMinY Dimension dynamic G
822 Motif Reference Manual

Motif and Xt Widget Classes XmPrintShell

hell

r

d-
Specifies the image area of the page in the current print context. The PrintS
maintains the values to reflect change in resolution or other attributes.

Callback Resources
PrintShell defines the following callback resources:

XmNendJobCallback
Specifies the list of callbacks called to control the end of rendering.

XmNpageSetupCallback
Specifies the list of callbacks called to control page layout.

XmNpdmNotificationCallback
Specifies the list of callbacks called in notification of the Print Dialog Manage
(PDM) status.

XmNstartJobCallback
Specifies the list of callbacks called to control the start of rendering.

Callback Structure
Each callback is passed a pointer to the following structure:

typedef struct {
int reason; /*reason that the callback is invoked */
XEvent *event; /*event structure that triggered callback*/
XPContext context; /*X Print Context */
Boolean last_page; /*whether this is the last page */
XtPointer detail; /*PDM selection */

} XmPrintShellCallbackStruct;

reason specifies the cause of the callback invocation. The value is
XmCR_START_JOB for any callback on the XmNstartJobCallback list,
XmCR_END_JOB for XmNendJobCallback procedures, and
XmCR_PAGE_SETUP for XmNpageSetupCallback routines. When a XmNp

Callback Reason Constant

XmNendJobCallback XmCR_END_JOB

XmNpageSetupCallback XmCR_PAGE_SETUP

XmNpdmNotificationCallback XmCR_PDM_NONE
XmCR_PDM_UP
XmCR_PDM_START_ERROR
XmCR_PDM_START_VXAUTH
XmCR_PDM_START_PXAUTH
XmCR_PDM_OK
XmCR_PDM_CANCEL
XmCR_PDM_EXIT_ERROR

XmNstartJobCallback XmCR_START_JOB
Motif Reference Manual 823

XmPrintShell Motif and Xt Widget Classes

nd
rint-
all-

ni-
all-

ins

ti-
bor-
mNotificationCallback procedure is invoked,reason indicates the status of the
PDM connection. Possible values:

XmCR_PDM_CANCEL /*PDM exited with CANCEL status */
XmCR_PDM_EXIT_ERROR /*PDM exited with ERROR status */
XmCR_PDM_NONE /*No PDM available on the display */
XmCR_PDM_OK /*PDM exited with OK status */
XmCR_PDM_START_ERROR /*PDM cannot start */
XmCR_PDM_START_VXAUTH /*PDM cannot connect to video display*/
XmCR_PDM_START_PXAUTH /*PDM cannot connect to print display*/
XmCR_PDM_UP /*PDM is running */

context is an opaque handle representing the connection to the Print Server.

last_pageis only of relevance within an XmNpageSetupCallback procedure, a
it is a flag whereby the application indicates that this is the last page of the p
ing task. The value is initially set to False by the toolkit, and the application c
back should set the value True as required. Thereafter, the
XmNpageSetupCallback procedures are invoked once more with the value i
tially True, by way of return notification, and subsequently the XmNendJobC
back procedures are called.

detail is only used by XmNpdmNotificationCallback procedures, and it conta
an Atom representing the selection used in connecting to the PDM. Thereason

element is XmCR_PDM_NONE1 when detail is set.

Inherited Resources
PrintShell inherits the following resources. The resources are listed alphabe
cally, along with the superclass that defines them. The default value of XmN
derWidth is reset to 0 by VendorShell.

1.Erroneously given as XmPDM_NONE in 2nd edition.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNlayoutDirection VendorShell

XmNallowShellResize Shell XmNmappedWhenManaged Core

XmNancestorSensitive Core XmNmaxAspectX WMShell

XmNargc ApplicationShell XmNmaxAspectY WMShell

XmNargv ApplicationShell XmNmaxHeight WMShell

XmNaudibleWarning VendorShell XmNmaxWIdth WMShell

XmNbackground Core XmNminAspectX WMShell

XmNbackgroundPixmap Core XmNminAspectY WMShell
824 Motif Reference Manual

Motif and Xt Widget Classes XmPrintShell
XmNbaseHeight WMShell XmNminHeight WMShell

XmNbaseWidth WMShell XmNminWidth WMShell

XmNborderColor Core XmNmwmDecorations VendorShell

XmNborderPixmap Core XmNmwmFunctions VendorShell

XmNborderWidth Core XmNmwmInputMode VendorShell

XmNbuttonFontList VendorShell XmNmwmMenu VendorShell

XmNbuttonRenderTable VendorShell XmNnumChildren Composite

XmNchildren Composite XmNoverrideRedirect Shell

XmNcolormap Core XmNpopdownCalback Shell

XmNcreatePopupChildProc Shell XmNpopupCallback Shell

XmNdefaultFontList VendorShell XmNpreeditType VendorShell

XmNdeleteResponse VendorShell XmNsaveUnder Shell

XmNdepth Core XmNscreen Core

XmNdestroyCallback Core XmNsensitive Core

XmNgeometry Shell XmNshellUnitType VendorShell

XmNheight Core XmNtextFontList VendorShell

XmNheightInc WMShell XmNtextRenderTable VendorShell

XmNiconic TopLevelShell XmNtitle WMShell

XmNiconMask WMShell XmNtitleEncoding WMShell

XmNiconName TopLevelShell XmNtransient WMShell

XmNiconNameEncoding TopLevelShell XmNtranslations Core

XmNiconPixmap WMShell XmNuseAsyncGeometry VendorShell

XmNiconWindow WMShell XmNunitType VendorShell

XmNinitialResourcesPersistent Core XmNvisual Shell

XmNinitialState WMShell XmNwaitForWm WMShell

XmNinput WMShell XmNwidth Core

XmNinputMethod VendorShell XmNwidthInc WMShell

XmNinputPolicy VendorShell XmNwindowGroup WMShell

XmNinsertPosition Composite XmNwinGravity WMShell

XmNkeyboardFocusPolicy VendorShell XmNwmTimeout WMShell

XmNlabelFontList VendorShell XmNx Core

XmNlabelRenderTable VendorShell XmNy Core

Resource Inherited From Resource Inherited From
Motif Reference Manual 825

XmPrintShell Motif and Xt Widget Classes
See Also
XmGetScaledPixmap (1), XmPrintPopupPDM (1), XmPrintToFile (1),
XmPrintSetup (1), XmRedisplayWidget (1), ApplicationShell (2),
Composite (2), Core (2), Shell (2), TopLevelShell (2),
VendorShell (2), WMShell (2).
826 Motif Reference Manual

Motif and Xt Widget Classes XmPromptDialog

.

mp-

get

ged
itly
. In

:

ed
Name
XmPromptDialog – an unmanaged SelectionBox as a child of a Dialog Shell

Synopsis

Public Header:
<Xm/SelectioB.h>

Instantiation:
widget = XmCreatePromptDialog(...)

Functions/Macros:
XmCreatePromptDialog (), XmSelectionBoxGetChild (), XmIsSe-
lectionBox ()

Description
An XmPromptDialog is a compound object created by a call to XmCreatePro
tDialog() that an application can use to prompt the user for textual input. A
PromptDialog consists of a DialogShell with an unmanaged SelectionBox wid
as its child. The SelectionBox resource XmNdialogType is set to
XmDIALOG_PROMPT.

A PromptDialog contains a message, a region for text input, and three mana
buttons. A fourth button is created but not managed; you can manage it explic
if necessary. In Motif 1.2 and later, the default button labels can be localized
the C locale, and in Motif 1.1, the PushButtons are labelledOK , Apply, Cancel,
andHelp by default. TheApply button is the unmanaged button.

Default Resource Values
A PromptDialog sets the following default values for SelectionBox resources

Widget Hierarchy
When a PromptDialog is created with a specified name, the DialogShell is nam
name_popup and the SelectionBox is calledname.

See Also
XmCreateObject (1), XmSelectionBoxGetChild (1),
XmDialogShell (2), XmSelectionBox (2).

Name Default

XmNdialogType XmDIALOG_PROMPT

XmNlistLabelString NULL

XmNlistVisibleItemCount 0
Motif Reference Manual 827

XmPulldownMenu Motif and Xt Widget Classes

s,
oci-
ton.
 Cas-

ey

il-
n
u,
n is
e

f sep-
Name
XmPulldownMenu – a type of RowColumn used as a pulldown menu pane.

Synopsis

Public Header:
<Xm/RowColumn.h>

Instantiation:
widget = XmCreatePulldownMenu (parent, name,...)

Functions/Macros:
XmCreatePulldownMenu (), XmCreateSimplePulldownMenu (),
XmVaCreateSimplePulldownMenu ()

Description
An XmPulldownMenu is a menu pane for all types of pulldown menu system
including menus off of a menu bar, cascading submenus, and the menu ass
ated with an option menu. A PulldownMenu is associated with a CascadeBut
A PulldownMenu can contain Separators, PushButtons, ToggleButtons, and
cadeButtons.

A PulldownMenu is a RowColumn widget whose XmNrowColumnType
resource is set to XmMENU_PULLDOWN. A PulldownMenu needs to be the
child of a MenuShell widget to function properly.

A PulldownMenu can be created usingXmCreatePulldownMenu (). In this
case, the PulldownMenu does not automatically contain any components; th
are added by the application. The PulldownMenu created by this routine is a
compound object consisting of a MenuShell widget and a RowColumn child.

A PulldownMenu can also be created byXmCreateSimplePulldown-
Menu(), which automatically creates the PulldownMenu with the specified ch
dren and makes it the child of a MenuShell. This routine uses the RowColum
resources associated with the creation of simple menus. For a PulldownMen
any type is allowed in the XmNbuttonType resource. The name of each butto
button_n, wheren is the number of the button, ranging from 0 to 1 less than th
number of buttons in the menu. The name of each separator is separator_n, where
n is the number of the separator, ranging from 0 to 1 less than the number o
arators in the menu. The name of each title is label_n, wheren is the number of
the title, ranging from 0 to 1 less than the number of titles in the menu.
828 Motif Reference Manual

Motif and Xt Widget Classes XmPulldownMenu

:

ed
Default Resource Values
A PulldownMenu sets the following default values for RowColumn resources

Widget Hierarchy
When a PulldownMenu is created with a specified name, the MenuShell is nam
popup_name and the RowColumn is calledname.

See Also
XmCreateObject (1), XmVaCreateSimplePulldownMenu (1),
XmCascadeButton (2), XmMenuShell (2), XmRowColumn(2).

Name Default

XmNrowColumnType XmMENU_PULLDOWNa

a.Erroneously given as XmMENU_POPUP in 2nd edition.
Motif Reference Manual 829

XmPushButton Motif and Xt Widget Classes

d.

vent
n
e

aised

able

Nam ccess

XmNa SG

XmNa CSG

XmNd CSG

XmNfi SG

XmNm SG

XmNs CSG
Name
XmPushButton widget class – a widget that starts an operation when it is presse

Synopsis

Public Header:
<Xm/PushB.h>

Class Name:
XmPushButton

Class Hierarchy:
Core→ XmPrimitive→ XmLabel→ XmPushButton

Class Pointer:
xmPushButtonWidgetClass

Instantiation:
widget =XmCreatePushButton (parent, name,...)
or
widget =XtCreateWidget (name, xmPushButtonWidgetClass,...)

Functions/Macros:
XmCreatePushButton (), XmIsPushButton ()

Description
A PushButton is a widget which, when pressed by the user, issues a logical e
to the application. A PushButton displays a text or pixmap label. It invokes a
application callback when it is clicked on with the mouse. The shading of th
PushButton changes to make it appear either pressed in when selected or r
when unselected.

Traits
PushButton holds the XmQTactivatable, XmQTtakesDefault, XmQT-
careParentVisual and XmQTmenuSavvy traits, which are inherited by any
derived classes, and uses the XmQTmenuSystem and XmQTspecifyRenderT
traits.

New Resources
PushButton defines the following resources:

e Class Type Default A

rmColor XmCArmColor Pixel dynamic C

rmPixmap XmCArmPixmap Pixmap XmUNSPECIFIED_PIXMAP

efaultButtonShadowThickness XmCDefaultButtonShadowThickness Dimension dynamic

llOnArm XmCFillOnArm Boolean True C

ultiClick XmCMultiClick unsigned char dynamic C

howAsDefault XmCShowAsDefault Dimension 0
830 Motif Reference Manual

Motif and Xt Widget Classes XmPushButton

lt
. For

l-

el-
.

e
es
e is

red.

ult-
that

de-
ult
sh-
dow.
XmNarmColor
The color with which the armed button is filled. For a color display, the defau
color is a shade between the bottom shadow color and the background color
a monochrome display, the default is the foreground color, and label text is
switched to the background color. This resource is in effect only when XmNfi
lOnArm is set to True.

XmNarmPixmap
The pixmap that identifies the button when it is armed (and when its XmNlab
Type is XmPIXMAP). For a PushButton in a menu, this resource is disabled

XmNdefaultButtonShadowThickness
The width of the shadow used to indicate a default PushButton.

XmNfillOnArm
If True (default), the PushButton widget fills the button (when armed) with th
color specified by XmNarmColor. If False, the PushButton widget only switch
the top and bottom shadow colors. For a PushButton in a menu, this resourc
disabled (and assumed to be False).

XmNmultiClick
A flag that determines whether successive button clicks are processed or igno
Possible values:

XmMULTICLICK_DISCARD /* ignore successive button clicks; */
/* default value in a menu system */

XmMULTICLICK_KEEP /* count successive button clicks; */
/* default value when not in a menu */

XmNshowAsDefault
Indicates the default PushButton by displaying a shadow. (In a menu, this
resource is disabled.) This resource works in different ways:

If the width of the shadow is already specified through the resource XmNdefa
ButtonShadowThickness, then XmNshowAsDefault behaves like a Boolean:
is, with a value of 0, no shadow is displayed; with a value greater than 0, a
shadow is displayed.

If the width of the shadow has not been specified through the resource XmN
faultButtonShadowThickness (i.e., it has a value of 0), then XmNshowAsDefa
performs double duty: that is, a value greater than 0 says to highlight the Pu
Button as the default button and to use this value as the thickness of the sha
Motif Reference Manual 831

XmPushButton Motif and Xt Widget Classes

 the

ssed

/

-

ul-

eti-
ult

m-

f
lt
Callback Resources
PushButton defines the following callback resources:

XmNactivateCallback
List of callbacks that are called when BSelect is pressed and released inside
widget.

XmNarmCallback
List of callbacks that are called when BSelect is pressed while the pointer is
inside the widget.

XmNdisarmCallback
List of callbacks that are called when BSelect is released after it has been pre
inside the widget.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /* the reason that the callback was called *
XEvent *event; /* event structure that triggered callback */
int click_count; /* number of multi-clicks */

} XmPushButtonCallbackStruct;

click_count is meaningful only for XmNactivateCallback. Furthermore, if the
XmN-multiClick resource isset toXmMULTICLICK_KEEP, thenXmN-activate-
Callback is called for each click, and the value ofclick_count is the number of
clicks that have occurred in the last sequence of multiple clicks. If the XmNm
tiClick resource is set to XmMULTICLICK_DISCARD, thenclick_countalways
has a value of 1.

Inherited Resources
PushButton inherits the following resources. The resources are listed alphab
cally, along with the superclass that defines them. PushButton sets the defa
values of XmNmarginBottom, XmNmarginLeft, XmNmarginRight, and XmN-
marginTop dynamically based on the value of XmNshowAsDefault. If XmNar
Pixmap is specified but XmNlabelPixmap is not, the default value of
XmNlabelPixmap is set to the value of XmNarmPixmap. The default value o
XmNborderWidth is reset to 0 by Primitive. In Motif 2.0 and earlier, the defau

Callback Reason Constant

XmNactivateCallback XmCR_ACTIVATE

XmNarmCallback XmCR_ARM

XmNdisarmCallback XmCR_DISARM
832 Motif Reference Manual

Motif and Xt Widget Classes XmPushButton

 In
values of XmNhighlightThickness and XmNshadowThickness are reset to 2.
Motif 2.1, the default values depend upon the XmDisplay XmNenableThin-
Thickness resource: if True the default is 1, otherwise 2.

Resource Inherited From Resource Inherited From

XmNaccelerator XmLabel XmNlabelType XmLabel

XmNaccelerators Core XmNlayoutDirection XmPrimitive

XmNacceleratorText XmLabel XmNmappedWhenManaged Core

XmNalignment XmLabel XmNmarginBottom XmLabel

XmNancestorSensitive Core XmNmarginHeight XmLabel

XmNbackground Core XmNmarginLeft XmLabel

XmNbackgroundPixmap Core XmNmarginRight XmLabel

XmNborderColor Core XmNmarginTop XmLabel

XmNborderPixmap Core XmNmarginWidth XmLabel

XmNborderWidth Core XmNmnemonicCharSet XmLabel

XmNbottomShadowColor XmPrimitive XmNmnemonic XmLabel

XmNbottomShadowPixmap XmPrimitive XmNnavigationType XmPrimitive

XmNcolormap Core XmNpopupHandlerCallback XmPrimitive

XmNconvertCallback XmPrimitive XmNrecomputeSize XmLabel

XmNdepth Core XmNrenderTable XmLabel

XmNdestroyCallback Core XmNscreen Core

XmNfontList XmLabel XmNsensitive Core

XmNforeground XmPrimitive XmNshadowThickness XmPrimitive

XmNheight Core XmNstringDirection XmLabel

XmNhelpCallback XmPrimitive XmNtopShadowColor XmPrimitive

XmNhighlightColor XmPrimitive XmNtopShadowPixmap XmPrimitive

XmNhighlightOnEnter XmPrimitive XmNtranslations Core

XmNhighlightPixmap XmPrimitive XmNtraversalOn XmPrimitive

XmNhighlightThickness XmPrimitive XmNunitType XmPrimitive

XmNinitialResourcesPersistent Core XmNuserData XmPrimitive

XmNlabelInsensitivePixmap XmLabel XmNwidth Core

XmNlabelPixmap XmLabel XmNx Core

XmNlabelString XmLabel XmNy Core
Motif Reference Manual 833

XmPushButton Motif and Xt Widget Classes

l-
ce
Translations
For PushButtons outside a Menu System:

For PushButtons in a Menu System:

Action Routines
PushButton defines the following action routines:

Activate()
Displays the PushButton as unarmed, and invokes the list of cal
backs specified by XmNactivateCallback. The button’s appearan
may depend on the values of the resources XmNfillOnArm and
XmNlabelPixmap.

Event Action

MCtrl BSelect Press ButtonTakeFocus()

BSelect Press Arm()

BSelect Click Activate()
Disarm()

BSelect Release Activate()
Disarm()

BSelect Press 2+ MultiArm()

BSelect Release 2+ MultiActivate()
Disarm()

BTransfer Press ProcessDrag()

KSelect ArmAndActivate()

KHelp Help()

Event Action

MCtrl BSelect Press MenuButtonTakeFocus()

BSelect Press BtnDown()

BMenu Press BtnDown()

BMenu Release BtnUp()

KActivate ArmAndActivate()

KSelect ArmAndActivate()

MAny KCancel MenuShellPopdownOne() (1.2)

MAny KCancel MenuEscape (2.0)
834 Motif Reference Manual

Motif and Xt Widget Classes XmPushButton

ks

u

rces
is
-
s

ll-

al,
 not
.

kes
se

us,
Arm()
Displays the PushButton as armed, and invokes the list of callbac
specified by XmNarmCallback. The button’s appearance may
depend on the values of the resources XmNarmColor and
XmNarmPixmap.

ArmAndActivate()
When the PushButton is in a menu, this action unposts the men
hierarchy and invokes the callbacks specified by the resources
XmNarmCallback, XmNactivateCallback, and finally, XmNdis-
armCallback.

When the PushButton is not in a menu, this action displays the
PushButton as armed (as determined by the values of the resou
XmNarmColor and XmNarmPixmap) and (assuming the button
not yet armed) invokes the list of callbacks specified by XmNarm
Callback. After this occurs, the action displays the PushButton a
unarmed and invokes the callbacks specified in XmNactivateCa
back and XmNdisarmCallback.

BtnDown()
Unposts any menus that were posted by the parent menu of the
PushButton, changes from keyboard traversal to mouse travers
displays the PushButton as armed, and (assuming the button is
yet armed) invokes the callbacks specified by XmNarmCallback

BtnUp()
Unposts the menu hierarchy, activates the PushButton, and invo
first the callbacks specified by XmNactivateCallback and then tho
specified by XmNdisarmCallback.

ButtonTakeFocus()
In Motif 2.0 and later, moves the current keyboard focus to the
PushButton, without activating the widget.

Disarm()
Invokes the callbacks specified by XmNdisarmCallback.

Help()
Unposts the menu hierarchy, restores the previous keyboard foc
and invokes the callbacks specified by the XmNhelpCallback
resource.

MenuButtonTakeFocus()
In Motif 2.0 and later, moves the current keyboard focus to the
PushButton, without activating the widget.
Motif Reference Manual 835

XmPushButton Motif and Xt Widget Classes

e
b

rms

-
tain-

d by
s
se

ct

rces

he
MenuShellPopdownOne()
In Motif 1.2 and earlier, unposts the current menu and (unless th
menu is a pulldown submenu) restores keyboard focus to the ta
group or widget that previously had it. In a top-level pulldown
menu pane attached to a menu bar, this action routine also disa
the cascade button and the menu bar.

MenuEscape()
In Motif 2.0 and later, invokes the popdownOne method of the
MenuShell class, which unposts the current menu, restores key
board focus, and ungrabs the pointer where necessary. Any con
ing menu row column is disarmed.

MultiActivate()
Increments the click_count member of the XmPushButtonCall-
backStruct, displays the PushButton as unarmed (as determine
the resources XmNfillOnArm and XmNlabelPixmap), and invoke
first the callbacks specified by XmNactivateCallback and then tho
specified by XmNdisarmCallback. This action routine takes effe
only when the XmNmultiClick resource is set to
XmMULTICLICK_KEEP.

MultiArm()
Displays the PushButton as armed (as determined by the resou
XmNarmColor and XmNarmPixmap) and invokes the list of call-
backs specified by XmNarmCallback. This action routine takes
effect only when the XmNmultiClick resource is set to
XmMULTICLICK_KEEP.

ProcessDrag()
In Motif 1.2 and later, initiates a drag and drop operation using t
label of the PushButton.

Additional Behavior
PushButton has the following additional behavior:

<EnterWindow>
Displays the PushButton as armed.

<LeaveWindow>
Displays the PushButton as unarmed.

See Also
XmCreateObject (1), Core (2), XmLabel (2), XmPrimitive (2).
836 Motif Reference Manual

Motif and Xt Widget Classes XmPushButtonGadget

 it is

ure

T-
Name
XmPushButtonGadget widget class – a gadget that starts an operation when
pressed.

Synopsis

Public Header:
<Xm/PushBG.h>

Class Name:
XmPushButtonGadget

Class Hierarchy:
Object→ RectObj→ XmGadget→ XmLabelGadget→ XmPushButtonGadget

Class Pointer:
xmPushButtonGadgetClass

Instantiation:
widget =XmCreatePushButtonGadget (parent, name,...)
or
widget =XtCreateWidget (name, xmPushButtonGadgetClass,...)

Functions/Macros:
XmCreatePushButtonGadget (), XmIsPushButtonGadget ()

Description
PushButtonGadget is the gadget variant of PushButton.

PushButtonGadget’s new resources, callback resources, and callback struct
are the same as those for PushButton.

Traits
PushButtonGadget holds the XmQTactivatable, XmQTmenuSavvy, and XmQ
takesDefault traits, which are inherited by any derived classes, and uses the
XmQTmenuSystem and XmQTspecifyRenderTable traits.
Motif Reference Manual 837

XmPushButtonGadget Motif and Xt Widget Classes

get

e-

t

Inherited Resources
PushButtonGadget inherits the following resources. The resources are listed
alphabetically, along with the superclass that defines them. PushButtonGad
sets the default values of XmNmarginBottom, XmNmarginLeft, XmNmargin-
Right, and XmNmarginTop dynamically based on the value of XmNshowAsD
fault. If XmNarmPixmap is specified but XmNlabelPixmap is not, the default
value of XmNlabelPixmap is set to the value of XmNarmPixmap. The defaul
value of XmNborderWidth is reset to 0 by Gadget.

Resource Inherited From Resource Inherited From

XmNancestorSensitive RectObj XmNhighlightThickness XmGadget

XmNbackground XmGadget XmNlayoutDirection XmGadget

XmNbackgroundPixmap XmGadget XmNnavigationType XmGadget

XmNbottomShadowColor XmGadget XmNsensitive RectObj

XmNbottomShadowPixmap XmGadget XmNshadowThickness XmGadget

XmNborderWidth RectObj XmNtopShadowColor XmGadget

XmNdestroyCallback Object XmNtopShadowPixmap XmGadget

XmNforeground XmGadget XmNtraversalOn XmGadget

XmNheight RectObj XmNunitType XmGadget

XmNhelpCallback XmGadget XmNuserData XmGadget

XmNhighlightColor XmGadget XmNwidth RectObj

XmNhighlightOnEnter XmGadget XmNx RectObj

XmNhighlightPixmap XmGadget XmNy RectObj
838 Motif Reference Manual

Motif and Xt Widget Classes XmPushButtonGadget

th it.
 the
.

are

ly.
Behavior
As a gadget subclass, PushButtonGadget has no translations associated wi
However, PushButtonGadget behavior corresponds to the action routines of
PushButton widget. See the PushButton action routines for more information

For PushButtonGadgets outside of a menu system, the following translations
defined:

For PushButtonGadgets inside a menu system:

PushButtonGadget has additional behavior associated with <Enter> and
<Leave>, which draw the shadow in the armed or unarmed state, respective

See Also
XmCreateObject (1), Object (2), RectObj (2), XmGadget(2),
XmLabelGadget (2), XmPushButton (2).

Event Action

MCtrl BSelect Press ButtonTakeFocus()

BSelect Press Arm()

BSelect Click Activate()
Disarm()

BSelect Release Activate()
Disarm()

BSelect Press 2+ MultiArm()

BSelect Release 2+ MultiActivate()
Disarm()

BTransfer Press ProcessDrag()

KSelect ArmAndActivate()

KHelp Help()

Event Action

MCtrl BSelect Press MenuButtonTakeFocus()

BSelect Press BtnDown()

BMenu Press BtnDown()

BMenu Release BtnUp()

KActivate ArmAndActivate()

KSelect ArmAndActivate()

MAny KCancel MenuShellPopdownOne() (1.2)

MAny KCancel MenuEscape (2.0)
Motif Reference Manual 839

XmQuestionDialog Motif and Xt Widget Classes

ll.

A
ild.
N.

ons,
ol is a
 C

s:
Name
XmQuestionDialog – an unmanaged MessageBox as a child of a DialogShe

Synopsis

Public Header:
<Xm/MessageB.h>

Instantiation:
widget =XmCreateQuestionDialog (parent, name,...)

Functions/Macros:
XmCreateQuestionDialog (), XmMessageBoxGetChild ()

Description
An XmQuestionDialog is a compound object created by a call toXmCreate-
QuestionDialog () that an application can use to ask the user a question.
QuestionDialog consists of a DialogShell with a MessageBox widget as its ch
The MessageBox resource XmNdialogType is set to XmDIALOG_QUESTIO

A QuestionDialog includes four components: a symbol, a message, three butt
and a separator between the message and the buttons. By default, the symb
question mark. In Motif 1.2, the default button labels can be localized. In the
locale, and in Motif 1.1, the PushButtons are labelledOK , Cancel, andHelp by
default.

Default Resource Values
A QuestionDialog sets the following default values for MessageBox resource

Widget Hierarchy
When a QuestionDialog is created with a specified name, the DialogShell is
named name_popup and the MessageBox is calledname.

See Also
XmCreateObject (1), XmMessageBoxGetChild (1),
XmDialogShell (2), XmMessageBox(2).

Name Default

XmNdialogType XmDIALOG_QUESTION

XmNsymbolPixmap xm_question
840 Motif Reference Manual

Motif and Xt Widget Classes XmRadioBox

-
adi-

el-

et
-
he
di-
us

s

ues.
g-
Name
XmRadioBox – a RowColumn that contains ToggleButtons.

Synopsis

Public Header:
<Xm/RowColumn.h>

Class Name:
XmRowColumn

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmRowColumn

Class Pointer:
xmRowColumnWidgetClass

Instantiation:
widget =XmCreateRadioBox (parent, name,...)

Functions/Macros:
XmCreateRadioBox (), XmCreateSimpleRadioBox (),
XmVaCreateSimpleRadioBox (), XmIsRowColumn()

Description
An XmRadioBox is an instance of a RowColumn widget that contains Toggle
ButtonGadgets, only one of which can be selected at a given time. When a R
oBox is created withXmCreateRadioBox (): it does not automatically
contain ToggleButtonGadget children; they are added by the application dev
oper. A RadioBox can also be created by a call to
XmCreateSimpleRadioBox (), which automatically creates the specified
ToggleButtonGadget widgets as children.

A RadioBox is a RowColumn widget with its XmNrowColumnType resource s
to XmWORK_AREA, XmNpacking set to XmPACK_COLUMN, and XmNradi
oAlwaysOne set to True, which means that one button is always selected. T
XmNradioBehavior resource is set to True. The XmNmenuHistory resource in
cates the last ToggleButtonGadget that was selected. The XmNisHomogeno
resource is set to True and XmNentryClass is set to ToggleButtonGadget, to
ensure that only ToggleButtonGadgets are added as children. RadioBox set
XmNvisibleWhenOff to True and XmNindicatorType to XmONE_OF_MANY
for all of its ToggleButtonGadget children.

A RadioBox can be created by making a RowColumn with these resource val
When it is created in this way, a RadioBox does not automatically contain To
gleButtonGadget children; they are added by the application.
Motif Reference Manual 841

XmRadioBox Motif and Xt Widget Classes

i-
mn
only
e

A RadioBox can also be created by a call to XmCreateSimpleRadioBox() or
XmVaCreateSimpleRadioBox(). These routines automatically create the Rad
oBox with ToggleButtonGadgets as children. The routines use the RowColu
resources associated with the creation of simple menus. For a RadioBox, the
type allowed in the XmNbuttonType resource is XmRADIOBUTTON. The nam
of each ToggleButtonGadget is button_n, wheren is the number of the button,
ranging from 0 to 1 less than the number of buttons in the RadioBox.

Default Resource Values
A RadioBox sets the following default values for its resources:

See Also
XmCreateObject (1), XmVaCreateSimpleRadioBox (1),
XmRowColumn(2), XmToggleButtonGadget (2).

Name Default

XmNentryClass xmToggleButtonGadgetClassa

a.Erroneously given as xmToggleButtonWidgetClass in 1st
and 2nd editions

XmNisHomogenous True

XmNnavigationType XmTAB_GROUP

XmNradioAlwaysOne True

XmNradioBehavior True

XmNrowColumnType XmWORK_AREA

XmNtraversalOn True
842 Motif Reference Manual

Motif and Xt Widget Classes XmRendition

able

tag
 as

ot a
and

di-
ble,

ing
nce,
nd

 pre-
evi-
Name
XmRendition data type – an opaque type representing an entry in a render t

Synopsis

Public Header:
<Xm/Xm.h>

Instantiation:
rendition = XmRenditionCreate (....)

Functions/Macros:
XmRenditionCreate (), XmRenditionFree (), XmRenditionRe-
trieve (),
XmRenditionUpdate ().

Availability
Motif 2.0 and later.

Description
XmRendition is an opaque data type used for rendering XmStrings.

A rendition consists of two parts: an XmStringTag, which is matched against
elements within a compound string to be rendered, and rendering data such
color, font, line style.

The implementation of XmRendition is through a pseudo widget: although n
true widget, the object has resources and a resource style interface for setting
fetching values of the rendition. The object is created byXmRenditionCre-
ate (), resources are fetched usingXmRenditionRetrieve (), and set
throughXmRenditionUpdate (), and finally deallocated byXmRendition-
Free (). Typically, a rendition forms an entry within a render table, and a ren
tion is merged into an existing render table, or used as the basis for a new ta
through the functionXmRenderTableAddRenditions (). Compound
strings are rendered by successively matching tags within the compound str
with tags associated with entries in a render table. Where there is an equivale
that rendition is used to display the corresponding component of the compou
string.

Resources within a rendition may have the value XmAS_IS, either explicitly
assigned or as an implicit default. Where the value is XmAS_IS, the value is
taken from the previous rendition used to render the compound string. If the
vious rendition also has the value XmAS_IS, then the rendition before the pr
ous one is inspected, and so on. A default value is provided if no previous
renditions supply a resource value.
Motif Reference Manual 843

XmRendition Motif and Xt Widget Classes

idg-
 table
eir
gh

er
t of a

 (a
n

-

.

Renditions, and the render tables to which they belong, are sharply across w
ets, and are reference counted. In the general case, widgets inherit a render
from the nearest ancestor which holds the XmQTspecifyRenderTable trait if th
own render table is unspecified. It is important to deallocate a rendition throu
XmRenditionFree (), rather than directly invokingXtFree (), in order to
maintain the reference count.

New Resources
XmRendition defines the following resources:

XmNfont
Specifies the font for the rendition. If specified, XmNloadModel is forced to
XmLOAD_IMMEDIATE. Otherwise, the rendition automatically sets the value
of the resource when the font associated with XmNfontName is loaded, eith
because the rendition is used to render a compound string, or as a side effec
XmRenditionUpdate() call.

XmNfontName
Specifies either the name of a font, or a comma-separated list of font names
font set). Each name is assumed to be in standard X Logical Font Descriptio
(XLFD) format. If both XmNfontName and XmNfont are specified for a rendi
tion, the XmNfont resource takes precedence.

XmNfontType
Specifies whether the font associated with the rendition is a font or a fontset
Possible values:

XmFONT_IS_FONT XmFONT_IS_FONTSET

Name Class Type Default Access

XmNfont XmCFont XtPointer XmAS_IS CSG

XmNfontName XmCFontName String XmAS_IS CSG

XmNfontType XmCFontType XmFontType XmAS_IS CSG

XmNloadModel XmCLoadModel unsigned char XmAS_IS CSG

XmNrenditionBackground XmCRenditionBackground Pixel XmUNSPECIFIED_PIXEL CSG

XmNrenditionForeground XmCRenditionForeground Pixel XmUNSPECIFIED_PIXEL CSG

XmNstrikethruType XmCStrikethruType unsigned char XmAS_IS CSG

XmNtabList XmCTabList XmTabList XmAS_IS CSG

XmNtag XmCTag XmStringTag ““ C

XmNunderlineType XmCUnderlineType unsigned char XmAS_IS CSG
844 Motif Reference Manual

Motif and Xt Widget Classes XmRendition

e is
:

om-

is
re-
ng
XmNloadModel
Specifies whether the font or fontset indicated by the XmNfontName resourc
loaded when the rendition is created, or when first required. Possible values

XmLOAD_IMMEDIATE /* load on rendition create*/
XmLOAD_DEFERRED /*load when font is required*/

XmNrenditionBackground
Specifies the background color for the rendition.

XmNrenditionForeground
Specifies the foreground color for the rendition.

XmNstrikethruType
Specifies a line type for striking through a text segment. Possible values:

XmDOUBLE_DASHED_LINE XmDOUBLE_LINE
XmSINGLE_DASHED_LINE XmSINGLE_LINE
XmNO_LINE

XmNtabList
Specifies the tab list which specifies how compound strings containing tab c
ponents are laid out in columns.

XmNtag
Specifies a tag which is used in matching against XmStringTag components
within compound strings, or in matching against other renditions. The value
taken from the tag parameter of the XmRenditionCreate() procedure which c
ates the rendition object. The value NULL is not valid, although the empty stri
"" is.

XmNunderlineType
Specifies a line type for underlining a text segment. Possible values:

XmDOUBLE_DASHED_LINE XmDOUBLE_LINE
XmNO_LINE XmSINGLE_DASHED_LINE
XmSINGLE_LINE

See Also
XmRenditionCreate (1), XmRenditionFree (1),
XmRenditionRetrieve (1), XmRenditionUpdate (1),
XmRenderTableAddRenditions (1), XmRenderTableCopy (1),
XmRenderTableFree (1), XmRenderTableGetRendition (1),
XmRenderTableGetRenditions (1), XmRenderTableGetTags (1),
XmRenderTableRemoveRenditions (1).
Motif Reference Manual 845

XmRowColumn Motif and Xt Widget Classes

n

are

Pop-
w-

 on
e. A
Name
XmRowColumn widget class – a manager widget that arranges its children i
rows and columns.

Synopsis

Public Header:
<Xm/RowColumn.h>

Class Name:
XmRowColumn

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmRowColumn

Class Pointer:
xmRowColumnWidgetClass

Instantiation:
widget =XmCreateRowColumn (parent, name,...)
or
widget =XtCreateWidget (name, xmRowColumnWidgetClass,...)

Functions/Macros:
XmCreateMenuBar (), XmCreateOptionMenu (), XmCreatePopup-
Menu(),
XmCreatePulldownMenu (), XmCreateRadioBox (), XmCreateRow-
Column (),
XmCreateSimpleCheckBox (), XmCreateSimpleMenuBar (),
XmCreateSimpleOptionMenu (), XmCreateSimplePopupMenu (),
XmCreateSimplePulldownMenu (), XmCreateSimpleRadioBox (),
XmCreateWorkArea (), XmIsRowColumn(), XmVaCreateSimpleCh-
eckBox (),
XmVaCreateSimpleMenuBar (), XmVaCreateSimpleOptionMenu (),
XmVaCreateSimplePopupMenu (), XmVaCreateSimplePulldown-
Menu(),
XmVaCreateSimpleRadioBox ()

Description
RowColumn provides an area in which children belonging to any widget type
displayed in rows and columns. RowColumn is a general-purpose manager
widget class that can be configured into many layouts, such as a MenuBar,
upMenu, PulldownMenu, OptionMenu, CheckBox, or RadioBox. Many of Ro
Column’s resources pertain only to a specific layout type.

In Motif 1.2 and later, a RowColumn that is configured as a PopupMenu or a
PulldownMenu supports tear off menus. When a menu is torn off, it remains
the screen after a selection is made so that additional selections can be mad
846 Motif Reference Manual

Motif and Xt Widget Classes XmRowColumn

u. A
f a
fol-
-

and
XmN-
nu to
ost-

s.
menu pane that can be torn off contains a tear-off button at the top of the men
tear-off button is a button that has a Separator-like appearance. The name o
tear-off button in a menu pane is TearOffControl. An application can set the
lowing resources for a tear-off button: XmNbackground, XmNbackgroundPix
map, XmNbottomShadowColor, XmNforeground, XmNheight, XmNmargin,
XmNseparatorType, XmNshadowThickness, and XmNtopShadowColor.

In Motif 2.0 and later, the mechanisms whereby pulldown menus are selected
posted have been rationalized. The Manager and Primitive classes support
popupHandlerCallback resources which can be used to choose a popup me
display in a given context. In addition, the RowColumn provides automatic p
ing of popups through extensions to the XmNpopupEnabled resource.

Traits
RowColumn holds the XmQTmenuSystem trait, which is inherited by any
derived class, and uses the XmQTmenuSystem and XmQTmenuSavvy trait

New Resources

RowColumn defines the following resources:

Name Class Type Default Access

XmNadjustLast XmCAdjustLast Boolean True CSG

XmNadjustMargin XmCAdjustMargin Boolean True CSG

XmNentryAlignment XmCAlignment unsigned char XmALIGNMENT_BEGINNING CSG

XmNentryBorder XmCEntryBorder Dimension 0 CSG

XmNentryClass XmCEntryClass WidgetClass dynamic CSG

XmNentryVerticalAlignment XmCVerticalAlignment unsigned char XmALIGNMENT_CENTER CSG

XmNisAligned XmCIsAligned Boolean True CSG

XmNisHomogeneous XmCIsHomogenous Boolean dynamic CSG

XmNlabelString XmCXmString XmString NULL C

XmNmarginHeight XmCMarginHeight Dimension dynamic CSG

XmNmarginWidth XmCMarginWidth Dimension dynamic CSG

XmNmenuAccelerator XmCAccelerators String dynamic CSG

XmNmenuHelpWidget XmCMenuWidget Widget NULL CSG

XmNmenuHistory XmCMenuWidget Widget NULL CSG

XmNmenuPost XmCMenuPost String NULL CSG

XmNmnemonic XmCMnemonic KeySym NULL CSG

XmNmnemonicCharSet XmCMnemonicCharSet String XmFONTLIST_DEFAULT_TAG CSG

XmNnumColumns XmCNumColumns short 1 CSG
Motif Reference Manual 847

XmRowColumn Motif and Xt Widget Classes

ed

bel
ol-

-

N-
XmNadjustLast
If True (default), the last row (or column) in the RowColumn widget is expand
so as to be flush with the edge.

XmNadjustMargin
If True (default), text in each row (or column) will align with other text in its row
(or column). This is done by forcing the margin resources (defined by the La
widget) to have the same value. For example, in a horizontally-oriented RowC
umn widget, all items will have the same value for XmNmarginTop and XmN
marginBottom; in a vertically-oriented RowColumn widget, all items will have
the same value for XmNmarginLeft and XmNmarginRight.

XmNentryAlignment
When XmNisAligned is True, this resource tells RowColumn children how to
align. The children must be subclasses of XmLabel or XmLabelGadget. If Xm
rowColumnType is XmMENU_OPTION, the resource is forced to
XmALIGNMENT_CENTER and cannot be changed. Possible values:

XmALIGNMENT_BEGINNING
XmALIGNMENT_CENTER
XmALIGNMENT_END

XmNentryBorder
The border width of a RowColumn widget’s children.

XmNorientation XmCOrientation unsigned char dynamic CSG

XmNpacking XmCPacking unsigned char dynamic CSG

XmNpopupEnabled XmCPopupEnabled XtEnum XmPOPUP_KEYBOARD CSG

XmNradioAlwaysOne XmCRadioAlwaysOne Boolean True CSG

XmNradioBehavior XmCRadioBehavior Boolean False CSG

XmNresizeHeight XmCResizeHeight Boolean True CSG

XmNresizeWidth XmCResizeWidth Boolean True CSG

XmNrowColumnType XmCRowColumnType unsigned char XmWORK_AREA CG

XmNspacing XmCSpacing Dimension dynamic CSG

XmNsubMenuId XmCMenuWidget Widget NULL CSG

XmNtearOffModel XmCTearOffModel unsigned char XmTEAR_OFF_DISABLED CSG

XmNtearOffTitle XmCTearOffTitle XmString NULL CSG

XmNwhichButton XmCWhichButton unsigned int dynamic CSG

Name Class Type Default Access
848 Motif Reference Manual

Motif and Xt Widget Classes XmRowColumn

d to
ous
ly

il-
o

t-
ossi-

xt,
a-

ane

e
Radi-

. In
dg-
XmNentryClass
The widget (or gadget) class to which children must belong when being adde
a RowColumn widget. This resource is used only when the XmNisHomogene
resource is set to True. XmNentryClass ensures that a MenuBar will have on
cascade button children and that a RadioBox will have only toggle button ch
dren (or gadget variants of each class). XmNentryClass can have one of tw
default values. For a MenuBar, the default value is xmCascadeButtonWidge
Class. For a RadioBox, the default value is xmToggleButtonGadgetClass. P
ble values:

xmToggleButtonGadgetClass /*XmWORK_AREA with */
/* XmNradioBehavior True */

xmCascadeButtonWidgetClass /*XmMENU_BAR */

XmNentryVerticalAlignment
In Motif 1.2 and later, specifies how children that are subclasses of Label, Te
and TextField are aligned vertically. The resource has no effect if XmNorient
tion is XmVERTICAL or XmNpacking is XmPACK_TIGHT. Possible values:

XmALIGNMENT_BASELINE_BOTTOM
XmALIGNMENT_BASELINE_TOP
XmALIGNMENT_CONTENTS_BOTTOM
XmALIGNMENT_CENTER
XmALIGNMENT_CONTENTS_TOP

XmNisAligned
If True, enable the alignment specified in the XmNentryAlignment resource.
Alignment is ignored in a label whose parent is a popup or pulldown MenuP
(for example, in an OptionMenu).

XmNisHomogeneous
If True, enforce the condition that all RowColumn children belong to the sam
class (the class specified by the XmNentryClass resource). When creating a
oBox or a MenuBar, the default value of this resource is True; otherwise, it’s
False.

XmNlabelString
A label used only in option menus. A text string displays next to the selection
area. By default, there is no label.

XmNmarginHeight

XmNmarginWidth
The spacing between an edge of the RowColumn widget and its nearest child
popup and pulldown menus, the default is 0; in other types of RowColumn wi
ets, the default is 3 pixels.
Motif Reference Manual 849

Motif and Xt Widget Classes

nly

e
he
ent
s)

This

ntly

t of
r
gle

n X
of

r

ing

s on

is
.

XmNmenuAccelerator
A pointer to a string that specifies an accelerator (keyboard shortcut) for use o
in RowColumn widgets of type XmMENU_POPUP or XmMENU_BAR. In a
popup menu, typing the accelerator posts the menu; in a menu bar, typing th
accelerator highlights the first item and enables traversal in the menu bar. T
string’s format is like that of a translation but allows only a single key press ev
to be specified. The default value of this resource is KMenu (for popup menu
and KMenuBar (for menu bars).

XmNmenuHelpWidget
The widget ID of the CascadeButton widget that serves as the Help button.
resource is meaningful only in RowColumn widgets of type XmMENU_BAR.

XmNmenuHistory
The widget ID of the most recently activated menu entry. Since the most rece
activated menu entry is also the choice that displays in an OptionMenu, this
resource is useful for indicating the current selection in a RowColumn widge
type XmMENU_OPTION. In a RowColumn widget whose XmNradioBehavio
resource is set to True, the XmNmenuHistory resource indicates the last tog
button to change from unselected to selected.

XmNmenuPost
The string that describes the event for posting a menu. The value specifies a
event using translation table syntax. The default value depends on the type
RowColumn widget: for XmMENU_POPUP, the default is <Btn3Down>; for
XmMENU_OPTION, XmMENU_BAR, and XmWORK_AREA, the default is
<Btn1Down>; for XmMENU_PULLDOWN, this resource isn’t meaningful.

XmNmnemonic
The keysym of the key to press (in combination with the MAlt modifier) in orde
to post the pulldown menu associated with an option menu. This resource is
meaningful only in option menus. In the label string, the first character match
this keysym will be underlined.

XmNmnemonicCharSet
The character set for the option menu’s mnemonic. The default value depend
the current language environment.

XmNnumColumns
The number of columns (in a vertically-oriented RowColumn widget) or the
number of rows (in a horizontally-oriented RowColumn widget). This resource
meaningful only when the XmNpacking resource is set to XmPACK_COLUMN
Motif Reference Manual 850

Motif and Xt Widget Classes

n

up

pup
ur
e.

nu

 a
e

.

num
has

tif
sists
XmNorientation
The direction for laying out the rows and columns of children of a RowColum
widget. For all RowColumn widgets except a MenuBar, the default value is
XmVERTICAL. Possible values:

XmVERTICAL /* top-to-bottom creation */
XmHORIZONTAL /* left-to-right creation */

XmNpacking
The method of spacing the items placed within a RowColumn widget. The
default value is XmPACK_COLUMN for a RadioBox, and XmPACK_TIGHT
for other types of RowColumn widget. Possible values:

XmPACK_TIGHT /* give each box minimum sizing */
XmPACK_COLUMN /* pad boxes to align if needed */
XmPACK_NONE /* widget accommodates placement */

XmNpopupEnabled
If True (default), keyboard shortcuts are in effect for popup menus. Set this
resource to False if you want to disable accelerators and mnemonics in pop
menus.

In Motif 2.0 and later, the resource changes type from Boolean to XtEnum in
order to support the range of values required for the enhanced automatic po
mechanisms. The value XmPOPUP_DISABLED is equivalent to the behavio
described above for False, and XmPOPUP_KEYBOARD is equivalent to Tru
In addition, XmPOPUP_AUTOMATIC adds event handlers for automatic me
popup, and enables the keyboard for the menu.
XmPOPUP_AUTOMATIC_RECURSIVE is similar, except that the search for
popup menu in a given context is not restricted to immediate children, and th
most specific popup to display may be found in the parent of a target widget

The new enumeration erroneously has the generic representation type XmRE
rather than a putative XmRPopupEnabled, and an enumeration for the values
not been installed within the standard representation types. Hence as of Mo
2.0, the type cannot be properly specified in a resource file. The problem per
in Motif 2.1.30.

Only True (XmPOPUP_KEYBOARD) and False (XmPOPUP_DISABLED)
work in the resource file.
Motif Reference Manual 851

Motif and Xt Widget Classes

.
gle

t
mN-
king

rce
lts
the

 If

ter

et.

w-

file
XmNradioAlwaysOne
This resource is effective only when the XmNradioBehavior resource is True
XmNradioAlwaysOne, when set to True (default), ensures that one of the tog
buttons is always selected. Once this button is selected, clicking on it will no
deselect it; it can be deselected only by selecting another toggle button. If X
radioAlwaysOne is False, a selected toggle button can be deselected by clic
on it or by selecting another button.

XmNradioBehavior
If True, the RowColumn widget acts like a RadioBox by setting two of the
resources for its toggle button children. Namely, the XmNindicatorType resou
defaults to XmONE_OF_MANY, and the XmNvisibleWhenOff resource defau
to True. The default value of the XmNradioBehavior resource is False, unless
RowColumn widget was created with theXmCreateRadioBox () routine.

XmNresizeHeight

XmNresizeWidth
If True (default), the widget requests a new height or width when necessary.
False, no resize requests are made.

XmNrowColumnType
The type of RowColumn widget to create. You can’t change this resource af
it’s set. Convenience routines create a RowColumn widget of the appropriate
type. Possible values:

XmWORK_AREA XmMENU_PULLDOWN
XmMENU_BAR XmMENU_OPTION
XmMENU_POPUP

XmNspacing
The horizontal and vertical spacing between children in the RowColumn widg
For RowColumn widgets of type XmOPTION_MENU or XmWORK_AREA,
the default value is 3 pixels; for other RowColumn types, the default is 0.

XmNsubMenuId
The widget ID for the pulldown menu pane to be associated with an Option-
Menu. This resource is meaningful only in RowColumn widgets of type
XmMENU_OPTION.

XmNtearOffModel
In Motif 1.2 and later, specifies whether tear-off behavior is enabled for a Ro
Column with XmN-row-ColumnType set to XmMENU_PULLDOWN or
XmMENU_POPUP. In Motif 1.2, this resource cannot be set from a resource
unless a converter is installed by calling the functionXmRepTypeInstall-
TearOffModelConverter (). Possible values:

XmTEAR_OFF_DISABLED XmTEAR_OFF_ENABLED
Motif Reference Manual 852

Motif and Xt Widget Classes

tained

s

l

In Motif 2.0 and later, the converter is automatically installed, andXmRepTy-
peInstallTearOffModelConverter () is obsolete.

XmNtearOffTitle
In Motif 2.0 and later, specifies the title of the TearOff shell.

XmNwhichButton
This resource has been superseded by the XmNmenuPost resource but is re
for compatibility with older releases of Motif.

New Constraint Resources
RowColumn defines the following constraint resources for its children:

XmNpositionIndex
In Motif 1.2 and later, specifies the position of the widget in the RowColumn’
list of children. A value of 0 indicates the beginning of the list, while
XmLAST_POSITION places the child at the end of the list.

Simple Menu Creation Resources
The following resources are used with the simple menu creation routines. Al
resources have access C (create-only):

Name Class Type Default Access

XmNpositionIndex XmCPositionIndex short XmLAST_POSITION CSG

Name Class Type Default

XmNbuttonAccelerators XmCButtonAccelerators StringTable NULL

XmNbuttonAcceleratorText XmCButtonAcceleratorText XmStringTable NULL

XmNbuttonCount XmCButtonCount int 0

XmNbuttonMnemonicCharSets XmCButtonMnemonicCharSets XmStringCharSetTable NULL

XmNbuttonMnemonics XmCButtonMnemonics XmKeySymTable NULL

XmNbuttons XmCButtons XmStringTable NULL

XmNbuttonSet XmCButtonSet int 1

XmNbuttonType XmCButtonType XmButtonTypeTable NULL

XmNoptionLabel XmCOptionLabel XmString NULL

XmNoptionMnemonic XmCOptionMnemonic KeySym NULL

XmNpostFromButton XmCPostFromButton int -1

XmNsimpleCallback XmCCallback XtCallbackProc NULL
Motif Reference Manual 853

Motif and Xt Widget Classes

nd

ons.

ains

e

he

n

ach
ated
er
d

r

ll-
cified
XmNbuttonAccelerators
A list of accelerators, containing one item for each created title, separator, a
button.

XmNbuttonAcceleratorText
A list of compound strings that represent the accelerators for the created butt
The list contains one item for each created title, separator, and button.

XmNbuttonCount
The number of titles, separators, and menu buttons to create.

XmNbuttonMnemonicCharSets
A list of character sets to use for displaying button mnemonics. The list cont
an item for each created title, separator, and button.

XmNbuttonMnemonics
A list of mnemonics associated with the buttons created. The list contains on
item for each created title, separator, and button.

XmNbuttons
A list of compound strings that will serve as labels for the created buttons. T
list contains one item for each created title, separator, and button.

XmNbuttonSet
The numeric position of the button to be initially set within a RadioBox or withi
an OptionMenu’s pulldown submenu. The first button is specified as 0.

XmNbuttonType
A list of button types for the created buttons. The list contains one item for e
created title, separator, and button. If this resource is not set, the buttons cre
will be CascadeButtonGadgets in a MenuBar and PushButtonGadgets in oth
types of RowColumn widget. The XmNbuttonType resource is an enumerate
type whose possible values are:

XmPUSHBUTTON XmCASCADEBUTTON
XmDOUBLE_SEPARATOR XmCHECKBUTTON
XmRADIOBUTTON XmSEPARATOR
XmTITLE

XmNoptionLabel
A compound string with which to label the left side of an option menu.

XmNoptionMnemonic
The keysym of the key to press (in combination with the MAlt modifier) in orde
to post the pulldown menu associated with an option menu.

XmNpostFromButton
The numeric position of the cascade button (in the parent) from which the pu
down submenu is attached and subsequently posted. The first button is spe
as 0.
Motif Reference Manual 854

Motif and Xt Widget Classes

 the

N-
But-

mn

off.

acti-

mn
XmNsimpleCallback
List of callbacks that are called when a button is pressed or when its value
changes. For PushButtons and CascadeButtons, the callbacks are added to
XmNactivateCallback and for ToggleButtons they are added to the XmNval-
ueChangedCallback.

Callback Resources
RowColumn defines the following callback resources:

XmNentryCallback
List of callbacks that are called when any button is pressed or when its value
changes. When this resource is specified, the XmNactivateCallback and Xm
valueChangedCallback callbacks for all PushButtons, ToggleButtons, Drawn
tons, and CascadeButtons are disabled and instead call this callback. This
resource must be specified when the RowColumn is created.

XmNmapCallback
List of callbacks that are called when the window associated with a RowColu
is going to be mapped.

XmNtearOffMenuActivateCallback
List of callbacks that are called when a tear-off menu pane is going to be torn

XmNtearOffMenuDeactivateCallback
List of callbacks that are called when a torn-off menu pane is going to be de
vated.

XmNunmapCallback
List of callbacks that are called when the window associated with a RowColu
is going to be unmapped.

Callback Reason Constant

XmNentryCallback XmCR_ACTIVATE

XmNmapCallback XmCR_MAP

XmNtearOffMenuActivateCallback XmCR_TEAR_OFF_ACTIVATE

XmNtearOffMenuDeactivateCallback XmCR_TEAR_OFF_DEACTIVATE

XmNunmapCallback XmCR_UNMAP
Motif Reference Manual 855

Motif and Xt Widget Classes

he

beti-
ow-

rce:
 is
e
N-

nde-
is
Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /*the reason that the callback was called*/
XEvent *event; /*event structure that triggered callback*/
Widget widget; /*ID of activated RowColumn item */
char *data; /*value of application’s client data */
char *callbackstruct; /*created when item is activated */

} XmRowColumnCallbackStruct;

The structure memberswidget, data, andcallbackstruct are meaningful only
when the callbackreason is XmCR_ACTIVATE; otherwise, these structure
members are set to NULL.

callbackstructpoints to a structure that is created by the activation callback of t
RowColumn item.

Inherited Resources
RowColumn inherits the following resources. The resources are listed alpha
cally, along with the superclass that defines them. In Motif 2.0 and earlier, R
Column sets the default value of XmNshadowThickness to 2 if
XmN-rowColumnType is XmMENU_BAR, XmMENU_POPUP, or
XmMENU_PULLDOWN; the resource is undefined when XmNrowColumn-
Type is XmMENU_OPTION or XmWORK_AREA. In Motif 2.1 and later, the
default value depends upon the XmDisplay XmNenableThinThickness resou
if True the default is 1, otherwise 2. The default value of XmNnavigationType
set to XmTAB_GROUP for a work area and XmNONE for an option menu; th
resource is undefined for the other row column types. The default value of Xm
traversalOn is set to True for a work area or an option menu; the resource is u
fined for the other row column types. The default value of XmNborderWidth
reset to 0 by XmManager.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmManager XmNsensitive Core
Motif Reference Manual 856

Motif and Xt Widget Classes

sla-
s-

g:

nu
Translations
The value of the XmN-rowColumnType resource determines the available tran
tions. When XmNrowColumnType is XmWORK_AREA, RowColumn’s tran
lations are inherited from XmManager. When XmNrowColumnType is
XmMENU_OPTION, RowColumn’s translations are the traversal, KActivate,
and KCancel translations inherited from XmManager, as well as the followin

When XmNrowColumnType is XmMENU_BAR, XmMENU_PULLDOWN, or
XmMENU_POPUP, RowColumn has the following translations (in PopupMe
systems, BMenu performs the BSelect actions as well):

XmNbottomShadowPixmap XmManager XmNshadowThickness XmManager

XmNchildren Composite XmNstringDirection XmManager

XmNcolormap Core XmNtopShadowColor XmManager

XmNdepth Core XmNtopShadowPixmap XmManager

XmNdestroyCallback Core XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNwidth Core

XmNhighlightPixmap XmManager XmNx Core

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core

Event Action

BSelect Press MenuBtnDown()

BSelect Release MenuBtnUp()

KSelect ManagerGadgetSelect()

KHelp Help()

Event Action

BSelect Press MenuBtnDown()

BSelect Release MenuBtnUp()

KActivate ManagerGadgetSelect()

KSelect ManagerGadgetSelect()

Many KCancel MenuGadgetEscape()

Resource Inherited From Resource Inherited From
Motif Reference Manual 857

Motif and Xt Widget Classes

e.

 For
et

ted
the

cti-
tion
enu.

ub-
evi-

lso

ar,
e

is-
g

Action Routines
RowColumn defines the following action routines:

Help()
Invokes any callbacks specified by the XmNhelpCallback resourc

ManagerGadgetSelect()
Arms and activates the gadget child (in a menu) that has focus.
a CascadeButtonGadget, its submenu is posted; for other gadg
children, the menu hierarchy is unposted.

MenuBtnDown()
In a gadget child (in a menu), unposts any menus that were pos
by the gadget’s parent menu, turns mouse traversal on, and arms
gadget. If the child is a CascadeButtonGadget, its submenu is
posted.

MenuBtnUp()
In a gadget child (in a menu), unposts the menu hierarchy and a
vates the gadget. If the child is a CascadeButtonGadget, this ac
posts the submenu and turns on keyboard traversal in the subm

MenuGadgetEscape()
Unposts the current menu and (unless the menu is a pulldown s
menu) restores keyboard focus to the tab group or widget that pr
ously had it (assuming an explicit focus policy). In a top-level
pulldown menu pane attached to a menu bar, this action routine a
disarms the cascade button and the menu bar.

MenuGadgetTraverseDown()
When the current menu item has a submenu and is in a MenuB
disarms the current menu item, posts the submenu, and arms th
first item in it. When the current menu item is in a menu pane, d
arms the current menu item and arms the item below it, wrappin
around to the top if necessary.

KHelp Help()

KLeft MenuGadgetTraverseLeft()

KRight MenuGadgetTraverseRight()

KUp MenuGadgetTraverseUp()

KDown MenuGadgetTraverseDown()

Event Action
Motif Reference Manual 858

Motif and Xt Widget Classes

m
ht
is

and
nu

es-

m
ft
is

 item

t,

-

e

 In
sets

ard
,
ns
nu
MenuGadgetTraverseLeft()
If the current menu item is in a MenuBar, disarms the current ite
and arms the MenuBar item to the left, wrapping around to the rig
if necessary. When the current item is in a menu pane, if the item
not at the left edge of the pane, disarms the current menu item
arms the item to its left. If the item is at the left edge of a subme
attached to the MenuBar, unposts the submenu, traverses to the
MenuBar item to the left, and posts its submenu, wrapping if nec
sary.

MenuGadgetTraverseRight()
If the current menu item is in a MenuBar, disarms the current ite
and arms the MenuBar item to the right, wrapping around to the le
if necessary. When the current item is in a menu pane, if the item
a CascadeButton, posts the associated submenu. If the current
is not at the right edge of the pane, disarms the current item and
arms the item to the right, wrapping if necessary. Otherwise,
unposts all submenus, traverses to the MenuBar item to the righ
and posts its submenu, wrapping if necessary.

MenuGadgetTraverseUp()
Disarms the current menu item and arms the item above it, wrap
ping around to the bottom if necessary.

Additional Behavior
RowColumn has additional menu behavior:

KMenuBar
In a menu bar or in any menu pane cascaded from it, unposts th
menu tree and (under an explicit focus policy) returns keyboard
focus to the tab group that had it before entering the menu tree.
other non-popup menu panes, turns on keyboard traversal and
the focus to the first menu bar item.

KMenu
Pops up the menu associated with the component with the keybo
focus and turns on keyboard traversal. In a popup menu system
unposts the menu tree and (under an explicit focus policy) retur
keyboard focus to the tab group that had it before entering the me
tree.
Motif Reference Manual 859

Motif and Xt Widget Classes
See Also
XmCreateObject (1), XmGetMenuCursor (1),
XmGetPostedFromWidget (1), XmGetTearOffControl (1),
XmMenuPosition (1), XmOptionButtonGadget (1),
XmOptionLabelGadget (1),
XmRepTypeInstallTearOffModelConverter (1),
XmSetMenuCursor (1), XmVaCreateSimpleCheckBox (1),
XmVaCreateSimpleMenuBar (1),
XmVaCreateSimpleOptionMenu (1),
XmVaCreateSimplePopupMenu (1),
XmVaCreateSimplePulldownMenu (1),
XmVaCreateSimpleRadioBox (1), Composite (2), Constraint (2),
Core (2), XmCascadeButton (2), XmCheckBox(2), XmManager(2),
XmMenuBar(2), XmOptionMenu (2), XmPopupMenu(2),
XmPulldownMenu (2), XmRadioBox (2).
Motif Reference Manual 860

Motif and Xt Widget Classes

e of

the
The
a
lly

the
od-
ut
e()

s,
Name
XmScale widget class – a manager widget that allows selection from a rang
values.

Synopsis

Public Header:
<Xm/Scale.h>

Class Name:
XmScale

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmScale

Class Pointer:
xmScaleWidgetClass

Instantiation:
widget =XmCreateScale (parent, name,...)
or
widget =XtCreateWidget (name, xmScaleWidgetClass,...)

Functions/Macros:
XmCreateScale (), XmIsScale (), XmScaleGetValue (), XmScaleSet-
Value (),
XmScaleSetTicks ()

Description
A Scale displays a value from a range of values and allows a user to adjust
value. A Scale consists of a narrow, rectangular trough that contains a slider.
slider’s position marks the current value within the range of values. Scale is
manager widget that orients its children along its axis. These children, typica
labels, can be used as tick marks.

If the Scale is an input-output type, a user can change the value by moving
slider. An output-only Scale displays a value but does not allow the user to m
ify it. In Motif 2.0 and later, the XmNeditable resource controls the input-outp
type of the Scale; in Motif 1.2 and earlier, the programmer calls XtSetSensitiv
or changes the inherited XmNsensitive resource to set the editable state.

In Motif 2.0 and later, the Scale supports tick marks directly through the
XmScaleSetTicks() routine.

Traits
Scale holds the XmQTtransfer trait, which is inherited by any derived classe
and uses the XmQTspecifyRenderTable trait.
Motif Reference Manual 861

Motif and Xt Widget Classes

e
pec-
is

-

New Resources
Scale defines the following resources:

XmNdecimalPoints
A positive integer that determines how the slider’s value will be displayed. Th
decimal point in the slider’s value gets shifted to the right, and this resource s
ifies the number of decimal places to shift. For example, if the slider’s value

5678, then setting the XmNdecimalPoints1 resource to 2 causes the widget to dis
play the value as 56.78.

Name Class Type Default Access

XmNdecimalPoints XmCDecimalPoints short 0 CSG

XmNeditable XmCEditable Boolean dynamic CSG

XmNfontList XmCFontList XmFontList dynamic CSG

XmNhighlightOnEnter XmCHighlightOnEnter Boolean False CSG

XmNhighlightThickness XmCHighlightThickness Dimension dynamic CSG

XmNmaximum XmCMaximum int 100 CSG

XmNminimum XmCMinimum int 0 CSG

XmNorientation XmCOrientation unsigned char XmVERTICAL CSG

XmNprocessingDirection XmCProcessingDirection unsigned char dynamic CSG

XmNrenderTable XmCRenderTable XmRenderTable dynamic CSG

XmNscaleHeight XmCScaleHeight Dimension 0 CSG

XmNscaleMultiple XmCScaleMultiple int dynamic CSG

XmNscaleWidth XmCScaleWidth Dimension 0 CSG

XmNshowArrows XmCShowArrows XtEnum XmNONE CSG

XmNshowValue XmCShowValue XtEnum XmNONE CSG

XmNsliderMark XmCSliderMark XtEnum dynamic CSG

XmNsliderSize XmCSliderSize int dynamic CSG

XmNsliderVisual XmCSliderVisual XtEnum dynamic CSG

XmNslidingMode XmCSlidingMode XtEnum XmSLIDER CSG

XmNtitleString XmCTitleString XmString NULL CSG

XmNvalue XmCValue int dynamic CSG

1.Erroneously given as XmdecimalPoints in 1st and 2nd editions.
Motif Reference Manual 862

Motif and Xt Widget Classes

e
e is

 for
he

e
 a

t is
-

um

.

XmNeditable
In Motif 2.0 and later, specifies whether the Scale responds to user input. Th
default depends upon the value of the XmNslidingMode resource. If the valu
XmSLIDER, the default is True, and for the value XmTHERMOMETER the
default is False.

XmNfontList
The font list used by the widget for the title. In Motif 2.0 and later, the
XmFontList is obsolete, and is replaced by the XmRenderTable. Maintained
backwards compatibility, any specified render table takes precedence over t
font list.

XmNhighlightOnEnter
Determines whether to draw the widget’s highlighting rectangle whenever th
cursor moves into the widget. This resource applies only when the shell has
focus policy of XmPOINTER. If the XmNhighlightOnEnter resource is True,
highlighting is drawn; if False (default), highlighting is not drawn.

XmNhighlightThickness
The thickness of the highlighting rectangle. In Motif 2.0 and earlier, the defaul
2. In Motif 2.1 and later, the default depends upon the XmDisplay XmNenab
leThinThickness resource: if True, the default is 1, otherwise 2.

XmNmaximum

XmNminimum
The maximum/minimum value of the slider.

XmNorientation
The direction in which the scale is displayed. Possible values:

XmVERTICAL /* top-to-bottom creation */
XmHORIZONTAL /* left-to-right creation */

XmNprocessingDirection
Determines the position at which to display the slider’s maximum and minim
values, with respect to the slider. Possible values:

XmMAX_ON_TOP /* scale increases toward top */
XmMAX_ON_BOTTOM /* scale increases toward bottom*/
XmMAX_ON_LEFT /* scale increases toward left */
XmMAX_ON_RIGHT /* scale increases toward right*/

For vertically-oriented Scale widgets, the default value is XmMAX_ON_TOP
For horizontally-oriented Scale widgets, the default value is usually
XmMAX_ON_RIGHT (depending on the value of the XmNstringDirection
resource).
Motif Reference Manual 863

Motif and Xt Widget Classes

ext

ent.

ch

alue
er,
t to
dja-
he

nds
In Motif 2.0 and later, the XmNstringDirection resource is obsolete, and the
default depends upon the XmNlayoutDirection value.

XmNrenderTable
In Motif 2.0 and later, specifies the XmRenderTable to use for both the title t
string and the label displaying the current Scale value. If NULL, the value is
found from the nearest ancestor holding the XmQTspecifyRenderTable trait,
using the XmLABEL_RENDER_TABLE value of the ancestor.

XmNscaleHeight

XmNscaleWidth
The height or width of the slider area.

XmNscaleMultiple
The distance to move the slider when the user moves it by a multiple increm
The default value is calculated as (XmNmaximum – XmNminimum) / 10.

XmNshowArrows
In Motif 2.0 and later, specifies whether and how arrows are displayed on ea
end of the Scale. Possible values:

XmEACH_SIDE /* arrow at both ends */
XmMAX_SIDE /* arrows at maximum end */
XmMIN_SIDE /* arrows at minimum end */
XmNONE /* arrows at neither end */

XmNshowValue
In Motif 1.2 and earlier, a Boolean value which specifies whether the current
scale value is displayed on an adjacent label. If True, the Scale displays the v
beside the slider. If False, the value label isn’t displayed. In Motif 2.0 and lat
the type of the resource changes to an enumeration. XmNONE is equivalen
False, and does not display a value. XmNEAR_BORDER places the value a
cent to the border of the Scale, and XmNEAR_SLIDER places the value at t
slider.

XmNsliderMark
In Motif 2.0 and later, specifies the appearance of the slider. The default depe
upon the value of the XmNslidingMode resource. If the sliding mode is
XmSLIDER, the default is XmETCHED_LINE. With a mode of XmTHER-
MOMETER, the default is XmNONE if the scale is editable, otherwise
XmROUND_MARK. Possible values:

XmETCHED_LINE /* drawn as an etched line */
XmNONE /* drawn as a foreground rectangle */
XmROUND_MARK /* drawn as a shadowed circle */
XmTHUMB_MARK /* three etched lines in foregrounded rectangle*/
Motif Reference Manual 864

Motif and Xt Widget Classes

f the

r-

al-

alue
XmNsliderSize
In Motif 2.0 and later, an undocumented resource which represents the size o
slider in pixels.

XmNsliderVisual
In Motif 2.0 and later, specifies the color of the slider visual. The default is
XmTROUGH_COLOR when the sliding model is XmTHERMOMETER, othe
wise XmSHADOWED_BACKGROUND. Possible values:

XmBACKGROUND_COLOR /*visual in background color */
XmFOREGROUND_COLOR /*visual in foreground color */
XmSHADOWED_BACKGROUND /*visual in background, with shadow*/
XmTROUGH_COLOR /*visual in trough color */

XmNslidingMode
In Motif 2.0 and later, specifies the way in which the slider moves. Possible v
ues:

XmSLIDER /* slider moves freely between each end */
XmTHERMOMETER /* slider anchored to one end */

XmNtitleString
The text string that appears as the title in the Scale widget.

XmNvalue
The current position of the slider along the scale. This resource must have a v
between the values of XmNminimum and XmNmaximum.

Callback Resources
Scale defines the following callback resources:

XmNconvertCallback
In Motif 2.0 and later, specifies a list of callbacks called when the slider is
requested to convert a selection as part of a data transfer operation.

XmNdragCallback
List of callbacks that are called when the slider is being dragged.

XmNvalueChangedCallback
List of callbacks that are called when the position of the slider has changed.

Callback Reason Constant

XmNconvertCallback XmCR_OK

XmNdragCallback XmCR_DRAG

XmNvalueChangedCallback XmCR_VALUE_CHANGED
Motif Reference Manual 865

Motif and Xt Widget Classes

m

all-

/

/
 */

*/
/

 */

ture:
Callback Structure
Convert callbacks are fully described within the sections covering the Unifor
Transfer Model. SeeXmTransfer (1) for more details. For quick reference, a
pointer to the following structure is passed to callbacks on the XmNconvertC
back list:

typedef struct {
int reason; /* the reason that the callback is invoked */
XEvent *event; /* points to event that triggered callback */
Atom selection; /* selection for which conversion is requested *
Atom target; /* the conversion target */
XtPointer source_data; /* selection source information *
XtPointer location_data; /* information about data to be transferred
int flags; /* input status of the conversion */
XtPointer parm; /* parameter data for the target */
int parm_format; /* format of parameter data */
unsigned long parm_length; /* number of elements in parameter data
Atom parm_type; /* the type of the parameter data *
int status; /* output status of the conversion */
XtPointer value; /* returned conversion data */
Atom type; /* type of conversion data returned */
int format; /* format of the conversion data */
unsigned long length; /* number of elements in the conversion data
} XmConvertCallbackStruct;

Each drag and value changed callback function is passed the following struc

typedef struct {
int reason; /*the reason that the callback was called*/
XEvent *event; /*event structure that triggered callback*/
int value; /* new value of the slider */

} XmScaleCallbackStruct;
Motif Reference Manual 866

Motif and Xt Widget Classes

ly,
ult

e
by
Inherited Resources
Scale inherits the following resources. The resources are listed alphabetical
along with the superclass that defines them. In Motif 2.0 and earlier, the defa
value of XmNshadowThickness is reset to 2. In Motif 2.1, the default value
depends upon the XmDisplay XmNenableThinThickness resource: if True th
default is 1, otherwise 2. The default value of XmNborderWidth is reset to 0
XmManager.

Translations
Scale does not define any new translations.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmManager XmNsensitive Core

XmNbottomShadowPixmap XmManager XmNshadowThickness XmManager

XmNchildren Composite XmNstringDirection XmManager

XmNcolormap Core XmNtopShadowColor XmManager

XmNdepth Core XmNtopShadowPixmap XmManager

XmNdestroyCallback Core XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNwidth Core

XmNhighlightPixmap XmManager XmNx Core

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core
Motif Reference Manual 867

Motif and Xt Widget Classes

the

r
on
-

e

e
re

the
all-
r
ion

nd

he

t
the
he

re-
Behavior
Scale has the following behavior:

BSelect Press or BTransfer Press
In the trough between the slider and an end of the Scale, moves
slider by one multiple increment in the direction of the end of the
Scale. Calls the XmNvalueChangedCallback callbacks. Whethe
the value of the Scale is incremented or decremented depends
the value of XmNprocessingDirection. In the slider, starts interac
tive dragging of the slider.

BSelect Motion or BTransfer Motion
If the button press occurred within the slider, the slider tracks th
pointer and calls the XmNdragCallback callbacks.

BSelect Release or BTransfer Release
If the button press occurs within the slider and the position of th
slider has changed, the XmNvalueChangedCallback callbacks a
invoked.

MCtrl BSelect Press
In the trough between the slider and an end of the Scale, moves
slider to that end of the Scale and calls the XmNvalueChangedC
back callbacks. Whether the value of the Scale is incremented o
decremented depends on the value of the XmNprocessingDirect
resource.

KUp
KDown

In a vertical Scale, moves the slider up or down one increment a
calls the XmN-value-Changed-Callback callbacks. Whether the
value of the Scale is incremented or decremented depends on t
value of the XmN-processing-Direction resource.

KLeft
KRight

In a horizontal Scale, moves the slider left or right one incremen
and calls the XmNvalue-Changed-Callback callbacks. Whether
value of the Scale is incremented or decremented depends on t
value of the XmN-processing-Direction resource.

MCtrl KUp or KPageUp
MCtrl KDown or KPageDown

In a vertical Scale, moves the slider up or down one multiple inc
ment and calls the XmNvalueChangedCallback callbacks.
Motif Reference Manual 868

Motif and Xt Widget Classes

N-

N-

s

e
ed
Whether the value of the Scale is incremented or decremented
depends on the value of the XmNprocessingDirection resource.

MCtrl KLeft or KPageLeft
MCtrl KRight or KPageRight

In a horizontal Scale, moves the slider left or right one multiple
increment and calls the XmNvalueChangedCallback callbacks.
Whether the value of the Scale is incremented or decremented
depends on the value of the XmNprocessingDirection resource.

KBeginLine or KBeginData
Moves the slider to the Scale’s minimum value and calls the Xm
valueChangedCallback callbacks.

KEndLine or KEndData
Moves the slider to the Scale’s maximum value and calls the Xm
valueChangedCallback callbacks.

KNextField
KPrevField

Moves the keyboard focus to the first item in the next or previou
tab group, wrapping if necessary.

KHelp
Invokes the list of callbacks specified by XmNhelpCallback. If th
Scale does not have any help callbacks, invokes those associat
with the nearest ancestor that has them.

See Also
XmCreateObject (1), XmScaleGetValue (1), XmScaleSetValue (1),
XmScaleSetTicks (1), XmTransfer (1), Composite (2),
Constraint (2), Core (2), XmManager(2).
Motif Reference Manual 869

Motif and Xt Widget Classes

.

n
plica-

o

Na ess

Xm SG

Xm G

Xm SG

Xm

Xm SG

Xm G

Xm G

Xm SG
Name
XmScreen widget class – an object used to store screen-specific information

Synopsis

Public Header:
<Xm/Screen.h>

Class Name:
XmScreen

Class Pointer:
xmScreenClass

Class Hierarchy:
Core→ XmScreen

Instantiation:
widget =XtAppInitialize (...)

Functions/Macros:
XmGetXmScreen(), XmIsScreen ()

Availability
Motif 1.2 and later.

Description
The Screen object stores screen-specific information for use by the toolkit. A
application has a Screen object for each screen that it accesses. When an ap
tion creates its first shell on a screen, typically by callingXtAppInitialize ()
or XtAppCreateShell (), a Screen object is created automatically. There is n
way to create a Screen independently. The functionXmGetXmScreen() can be
used to get the widget ID of the Screen object.

New Resources
Screen defines the following resources:

me Class Type Default Acc

NbitmapConversionModel XmCBitmapConversionModel XtEnum XmMATCH_DEPTH C

NcolorAllocationProc XmCColorAllocationProc XmAllocColorProc NULL CS

NcolorCalculationProc XmCColorCalculationProc XmScreenColorProc NULL C

NdarkThreshold XmCDarkThreshold int dynamic C

NdefaultCopyCursorIcon XmCDefaultCopyCursorIcon Widget NULL C

NdefaultInvalidCursorIcon XmCDefaultInvalidCursorIcon Widget NULL CS

NdefaultLinkCursorIcon XmCDefaultLinkCursorIcon Widget NULL CS

NdefaultMoveCursorIcon XmCDefaultMoveCursorIcon Widget NULL C
Motif Reference Manual 870

Motif and Xt Widget Classes

-
e

-
this

ing
s on
lor
ce-

ark"

ault

Xm SG

Xm SG

Xm G

Xm

Xm

Xm G

Xm C

Xm

Xm

Xm SG

Xm CSG

Xm

Xm G

Xm G

a.Er

Na ess
XmNbitmapConversionModel
In Motif 2.0 and later, specifies the way in which Xpm and Xbm files are con
verted to a pixmap. If the value is XmMATCH_DEPTH, the pixmap has the sam
depth as the widget to which it is associated. If the value is
XmMATCH_DYNAMIC, Xbm files are converted to a pixmap of depth 1.

XmNcolorAllocationProc
In Motif 2.0 and later, specifies an XmAllocColorProc procedure used for allo
cating color on the particular screen associated with the XmScreen object. If
is NULL, the default procedureXAllocColor() is used.

XmNcolorCalculationProc
In Motif 2.0 and later, specifies an XmScreenColorProc procedure for calculat
the default foreground, background, top shadow, bottom shadow, select color
the particular screen associated with the XmScreen object. If this is NULL, co
is calculated using a default screen-independent procedure. The default pro
dure can be changed byXmSetColorCalculation ().

XmNdarkThreshold
The level of perceived brightness (between 0 and 100) that is treated as a "d
background color when computing default shadow and select colors.

XmNdefaultCopyCursorIcon
The DragIcon used during a copy operation. When the value is NULL, a def
system icon is used.

NdefaultNoneCursorIcon XmCDefaultNoneCursorIcon Widget NULL C

NdefaultSourceCursorIcon XmCDefaultSourceCursorIcon Widget NULL C

NdefaultValidCursorIcon XmCDefaultValidCursorIcon Widget NULL CS

Nfont XmCFont XFontStruct * NULL CSG

NforegroundThreshold XmCForegroundThreshold int dynamic C

NhorizontalFontUnit XmCHorizontalFontUnit int dynamic CS

NinsensitiveStippleBitmap XmCInsensitiveStippleBitmap Pixmap 50_foreground

NlightThreshold XmCLightThreshold int dynamic C

NmenuCursor XmCCursor Cursora arrow C

NmoveOpaque XmCMoveOpaque Boolean False C

NunpostBehavior XmCUnpostBehavior unsigned char XmUNPOST_AND_REPLAY

NuseColorObject XmCUseColorObject Boolean False C

NuserData XmCUserData XtPointer NULL CS

NverticalFontUnit XmCVerticalFontUnit int dynamic CS

roneously given as String in 1st and 2nd editions. The default is the arrow Cursor (XC_arrow).

me Class Type Default Acc
Motif Reference Manual 871

Motif and Xt Widget Classes

lue

lt

ult

 is

d by

e is

ti-

een

val-

si-

ight"
XmNdefaultInvalidCursorIcon
The DragIcon used when the pointer is over an invalid drop site. When the va
is NULL, a default system icon is used.

XmNdefaultLinkCursorIcon
The DragIcon used during a link operation. When the value is NULL, a defau
system icon is used.

XmNdefaultMoveCursorIcon
The DragIcon used during a move operation. When the value is NULL, a defa
system icon is used.

XmNdefaultNoneCursorIcon
The DragIcon used when the pointer is not over a drop site. When the value
NULL, a default system icon is used.

XmNdefaultSourceCursorIcon
The bitmap used as a cursor when an XmNsourceCursorIcon is not provide
the DragContext. When the value is NULL, a default system icon is used.

XmNdefaultValidCursorIcon
The DragIcon used when the pointer is over a valid drop site. When the valu
NULL, a default system icon is used.

XmNfont
The font used in computing values for XmNhorizontalFontUnit and XmN-ver
calFontUnit.

XmNforegroundThreshold
The level of perceived brightness (between 0 and 100) that distinguishes betw
a "dark" and "light" background when computing the default foreground and
highlight colors.

XmNhorizontalFontUnit
The horizontal component of the font units that are used to convert geometry
ues when XmNshellUnitType or XmNunitType is set to
Xm100TH_FONT_UNITS. If a value is not specified, the default is computed
from the XmNfont resource.

XmNinsensitiveStippleBitmap
In Motif 2.0 and later, specifies a default stipple for drawing widgets in insen
tive state. Mostly used within the graphics contexts of Gadgets.

XmNlightThreshold
The level of perceived brightness (between 0 and 100) that is treated as a "l
background color when computing default shadow and select colors.

XmNmenuCursor
The cursor that is used when the application posts a menu. Possible values
include all of the cursors in the X cursor font.
Motif Reference Manual 872

Motif and Xt Widget Classes

e
ta-

f the

ts,
fer-

h to

lues

 to
re

the
XmNmoveOpaque
If False (default), an operation that moves a window displays an outline of th
window during the operation. If True, a move operation displays a represen
tion of the window.

XmNunpostBehavior
The behavior of a posted menu when the pointer button is pressed outside o
menu. Possible values:

XmUNPOST_AND_REPLAY /* unposts the menu hierarchy and
replays event */
XmUNPOST /* unposts the menu hierar-
chy */

XmNuseColorObject
In Motif 2.0 and later, specifies whether colors are shareable between widge
and whether an alteration to a color dynamically changes all widgets which re
ence the color.

XmNuserData
In Motif 2.0 and later, specifies a pointer to data that the application can attac
the structure representing the screen. The resource is unused internally.

XmNverticalFontUnit
The vertical component of the font units that are used to convert geometry va
when XmNshellUnitType or XmNunitType is set to Xm100TH_FONT_UNITS

or XmFONT_UNITS1. If a value is not specified, the default is computed from
the XmNfont resource.

Procedures
The XmScreenColorProc has the following syntax:

typedef void (*XmScreenColorProc) (Screen *, XColor *, XColor *, XColor *,
XColor *, XColor *)

Screen *screen; /*the screen */
XColor *bg_color; /* specifies the background color*/
XColor *fg_color; /* returns the foreground color*/
XColor *sel_color; /*returns the select color*/
XColor *ts_color; /* returns the top shadow color*/
XColor *bs_color; /*returns the bottom shadow color*/

An XmScreenColorProc takes six arguments. The first argument is a pointer
the screen. The second argument, bg_color, is a pointer to an XColor structu
that specifies the background color. The red, green, blue, and pixel fields in

1.Erroneously given as Xm_FONT_UNITS in 2nd edition.
Motif Reference Manual 873

Motif and Xt Widget Classes

lor
ed,

r to
or is

ctu-
structure contain valid values. The rest of the arguments are pointers to XCo
structures for the colors that are to be calculated. The procedure fills in the r
green, and blue fields in these structures.

The XmAllocColorProc has the following syntax:

typedef void (*XmAllocColorProc) (Display *, Colormap, XColor *)

Display *display; /*connection to X server */
Colormap colormap; /*a colormap in which to allocate color*/
XColor *bs_color; /*specifies and returns allocated color*/

An XmAllocColorProc takes three arguments. The first argument is a pointe
the Display connection. The second argument is the Colormap where the col
to be allocated. The third argument is a pointer to an XColor structure for the
color that is to be allocated. The programmer fills in the red, green, and blue
fields in the structure to the required values, and the procedure returns the a
ally allocated values into the same fields.

Inherited Resources
None of the resources inherited by Screen are applicable.

See Also
XmGetXmScreen(1), XmSetColorCalculation (1), Core (2),
XmDisplay (2).
Motif Reference Manual 874

Motif and Xt Widget Classes

g
ally
 the
ion.
roll
ag
at
e

Name
XmScrollBar widget class – a widget to control the scrolling of the viewing area
in another widget.

Synopsis

Public Header:
<Xm/ScrollBar.h>

Class Name:
XmScrollBar

Class Hierarchy:
Core→ XmPrimitive→ XmScrollBar

Class Pointer:
xmScrollBarWidgetClass

Instantiation:
widget =XmCreateScrollBar (parent, name,...)
or
widget =XtCreateWidget (name, xmScrollBarWidgetClass,...)

Functions/Macros:
XmCreateScrollBar (), XmIsScrollBar (), XmScrollBarGetVal-
ues (),
XmScrollBarSetValues ()

Description
A ScrollBar allows users to reposition data that is too large to fit in the viewin
window. Although a ScrollBar can be used as a standalone widget, it is norm
used in a ScrolledWindow. A ScrollBar consists of a rectangular strip, called
scroll region or trough, and two arrows placed on either end of the scroll reg
Within the scroll region is a smaller, movable rectangle called the slider. To sc
the data, users can click on one of the arrows, click in the scroll region, or dr
the slider. The application typically sets the XmNsliderSize resource such th
the size of the slider relative to the size of the scroll region corresponds to th
percentage of total data that is currently displayed.

Traits
ScrollBar holds the XmQTnavigator trait, which is inherited by any derived
classes.
Motif Reference Manual 875

Motif and Xt Widget Classes

he
e is

ent.

con-
New Resources
ScrollBar defines the following resources:

XmNeditable
In Motif 2.0 and later, specifies whether the ScrollBar responds to user input. T
default depends upon the value of the XmNslidingMode resource. If the valu
XmSLIDER, the default is True, and for the value XmTHERMOMETER the
default is False.

XmNincrement
The amount the value changes due to the user’s moving the slider one increm

XmNinitialDelay
The number of milliseconds a button must remain pressed before triggering
tinuous slider movement.

XmNmaximum

XmNminimum
The maximum/minimum value of the slider.

Name Class Type Default Access

XmNeditable XmCEditable Boolean dynamic CSG

XmNincrement XmCIncrement int 1 CSG

XmNinitialDelay XmCInitialDelay int 250 CSG

XmNmaximum XmCMaximum int dynamic CSG

XmNminimum XmCMinimum int 0 CSG

XmNorientation XmCOrientation unsigned char XmVERTICAL CSG

XmNpageIncrement XmCPageIncrement int 10 C

XmNprocessingDirection XmCProcessingDirection unsigned char dynamic CSG

XmNrepeatDelay XmCRepeatDelay int 50 CSG

XmNshowArrows XmCShowArrows XtEnum XmEACH_SIDE CSG

XmNsliderMark XmCSliderMark XtEnum dynamic CSG

XmNsliderSize XmCSliderSize int dynamic CSG

XmNsliderVisual XmCSliderVisual XtEnum dynamica

a.Erroneously given as XmSHADOWED_BACKGROUND in 2nd edition.

CSG

XmNslidingMode XmCSlidingMode XtEnum XmSLIDER CSG

XmNsnapBackMultiple XmCSnapBackMultiple unsigned short 65535 CSG

XmNtroughColor XmCTroughColor Pixel dynamic CSG

XmNvalue XmCValue int dynamic CSG
Motif Reference Manual 876

Motif and Xt Widget Classes

incre-

um

 fur-

 dis-

nds
XmNorientation
The direction in which the scale is displayed. Possible values:

XmVERTICAL /* top-to-bottom creation*/
XmHORIZONTAL /* left-to-right creation*/

XmNpageIncrement
The amount the value changes due to the user’s moving the slider one page
ment.

XmNprocessingDirection
Determines the position at which to display the slider’s maximum and minim
values, with respect to the slider. Possible values:

XmMAX_ON_TOP /* scale increases toward top*/
XmMAX_ON_BOTTOM /* scale increases toward bottom*/
XmMAX_ON_LEFT /* scale increases toward left*/
XmMAX_ON_RIGHT /* scale increases toward right*/

For vertically oriented ScrollBar widgets, the default value is
XmMAX_ON_TOP. For horizontally oriented ScrollBar widgets, the default
value is usually XmMAX_ON_RIGHT (depending on the value of the XmN-
stringDirection resource).

XmNrepeatDelay
The number of milliseconds a button must remain pressed before continuing
ther slider motions, once the XmNinitialDelay time has been triggered.

XmNshowArrows
In Motif 1.2 and earlier, a Boolean value which indicates whether arrows are
played. If True, arrows are displayed; if False, they are not.

In Motif 2.0 and later, the resource is represented by an enumerated type: if
XmEACH_SIDE, arrows are displayed at each end of the ScrollBar,

XmMAX_SIDE displays both1 arrows at the end where the maximum value is

displayed, XmMIN_SIDE displays both2 arrows at the minimum value end, and
XmNONE does not display any arrows.

XmNsliderMark
In Motif 2.0 and later, specifies the appearance of the slider. The default depe
upon the value of the XmNslidingMode resource. If the sliding mode is
XmSLIDER, the default is XmETCHED_LINE. With a mode of XmTHER-
MOMETER, the default is XmNONE if the scale is editable, otherwise
XmROUND_MARK. Possible values:

1.Erroneously given asone arrow in 2nd edition.

2.Erroneously given asone arrow in 2nd edition
Motif Reference Manual 877

Motif and Xt Widget Classes

–

r-

al-

roll-
the
eas-

ro)
llBar,
 in

he
XmETCHED_LINE /* drawn as an etched line */
XmNONE /* drawn as a foreground rectangle */
XmROUND_MARK /* drawn as a shadowed circle */
XmTHUMB_MARK /* three etched lines in foregrounded rectangle*/

XmNsliderSize
The slider’s length. The length ranges from 1 to the value of XmNmaximum
 XmNminimum. By default, the value is computed to be:

(XmNmaximum – XmNminimum) / 10.

XmNsliderVisual
In Motif 2.0 and later, specifies the color of the slider visual. The default is
XmTROUGH_COLOR when the sliding model is XmTHERMOMETER, othe
wise XmSHADOWED_BACKGROUND. Possible values:

XmBACKGROUND_COLOR /*visual in background color */
XmFOREGROUND_COLOR /*visual in foreground color */
XmSHADOWED_BACKGROUND /*visual in background, with shadow*/
XmTROUGH_COLOR /*visual in trough color */

XmNslidingMode
In Motif 2.0 and later, specifies the way in which the slider moves. Possible v
ues:

XmSLIDER /* slider moves freely between each end */
XmTHERMOMETER /*slider anchored to one end */

XmNsnapBackMultiple
In Motif 2.0 and later, specifies a distance, which if exceeded, causes the Sc
Bar to snap back to its original settings. The resource comes into effect when
user drags the mouse outside the bounds of the ScrollBar. The resource is m
ured in terms of multiples of the ScrollBar width. For example, the value 0 (ze
causes the slider to snap back as soon as the pointer moves outside the Scro
the value 1 snaps back at one ScrollBar width, etc. The default is very large,
order to disable snap back even if the size of the screen is abnormal.

XmNtroughColor
The color of the slider’s trough.

XmNvalue
The slider’s position. The position ranges from the value of XmNminimum to t
value of (XmNmaximum – XmNsliderSize).
Motif Reference Manual 878

Motif and Xt Widget Classes

one

s

one

one

one

lue

ue

all-
orts
Callback Resources
ScrollBar defines the following callback resources:

XmNdecrementCallback
List of callbacks that are called when the value of the ScrollBar decreases by
increment.

XmNdragCallback
List of callbacks that are called for each change in position when the slider i
being dragged.

XmNincrementCallback
List of callbacks that are called when the value of the ScrollBar increases by
increment.

XmNpageDecrementCallback
List of callbacks that are called when the value of the ScrollBar decreases by
page increment.

XmNpageIncrementCallback
List of callbacks that are called when the value of the ScrollBar increases by
page increment.

XmNtoBottomCallback
List of callbacks that are called when the slider is moved to the maximum va
of the ScrollBar.

XmNtoTopCallback
List of callbacks that are called when the slider is moved to the minimum val
of the ScrollBar.

XmNvalueChangedCallback
List of callbacks that are called at the end of a slider drag operation. These c
backs are also called in place of each of the other ScrollBar callbacks that rep
a value change when the callback resource is NULL.

Callback Reason Constant

XmNdecrementCallback XmCR_DECREMENT

XmNdragCallback XmCR_DRAG

XmNincrementCallback XmCR_INCREMENT

XmNpageDecrementCallback XmCR_PAGE_DECREMENT

XmNpageIncrementCallback XmCR_PAGE_INCREMENT

XmNtoBottomCallback XmCR_TO_BOTTOM

XmNtoTopCallback XmCR_TO_TOP

XmNvalueChangedCallback XmCR_VALUE_CHANGED
Motif Reference Manual 879

Motif and Xt Widget Classes

zon-

i-

of

is
ll-

ab-
Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /*the reason that the callback was called*/
XEvent *event; /*event structure that triggered callback*/
int value; /* value of the slider’s new location */
int pixel; /* coordinate where selection occurred*/

} XmScrollBarCallbackStruct;

pixel is meaningful only when the callbackreason is XmCR_TO_TOP or
XmCR_TO_BOTTOM. Thepixel member specifies the location at which the
mouse button selection occurred, giving the x-coordinate in the case of a hori
tal ScrollBar and the y-coordinate in the case of a vertical ScrollBar.

Inherited Resources
ScrollBar inherits the following resources. The resources are listed alphabet
cally, along with the superclass that defines them. XmNnavigationType to
XmSTICKY_TAB_GROUP, and XmN-traversalOn to False. The default value
XmNborderWidth is reset to 0 by Manager.

In versions of Motif prior to 2.0, the default value of XmNhighlightThickness
reset to zero by the ScrollBar. In Motif 2.0, the default is reset to 2 if the Scro
Bar’s parent is a ScrolledWindow, zero otherwise. In Motif 2.1, if the XmNen
leThinThickness resource of XmDisplay is True, the default is 1 if the
ScrollBar’s parent is a ScrolledWindow, zero otherwise.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNhighlightThickness XmPrimitive

XmNancestorSensitive Core XmNinitialResourcesPersistent Core

XmNbackground Core XmNlayoutDirection XmPrimitive

XmNbackgroundPixmap Core XmNmappedWhenManaged Core

XmNborderColor Core XmNnavigationType XmPrimitive

XmNborderPixmap Core XmNpopupHandlerCallback XmPrimitive

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmPrimitive XmNsensitive Core

XmNbottomShadowPixmap XmPrimitive XmNshadowThickness XmPrimitive

XmNcolormap Core XmNtopShadowColor XmPrimitive

XmNconvertCallback XmPrimitive XmNtopShadowPixmap XmPrimitive

XmNdepth Core XmNtranslations Core

XmNdestroyCallback Core XmNtraversalOn XmPrimitive
Motif Reference Manual 880

Motif and Xt Widget Classes

:

Translations
The translations for ScrollBar include those from Primitive, plus the following

XmNforeground XmPrimitive XmNunitType XmPrimitive

XmNheight Core XmNuserData XmPrimitive

XmNhelpCallback XmPrimitive XmNwidth Core

XmNhighlightColor XmPrimitive XmNx Core

XmNhighlightOnEnter XmPrimitive XmNy Core

XmNhighlightPixmap XmPrimitive

Event Action

BSelect Press Select()

BSelect Release Release()

BSelect Press Moved Moved()

BTransfer Press Select()

BTransfer Release Release()

BTransfer Press Moved Moved()

MCtrl BSelect Press TopOrBottom()

MCtrl BSelect Release Release()

KUp IncrementUpOrLeft(0)

MCtrl KUp PageUpOrLeft(0)

KDown IncrementDownOrRight(0)

MCtrl KDown PageDownOrRight(0)

KLeft IncrementUpOrLeft(1)

MCtrl KLeft PageUpOrLeft(1)

KRight IncrementDownOrRight(1)

MCtrl KRight PageDownOrRight(1)

KPageUp PageUpOrLeft(0)

KPageDown PageDownOrRight(0)

KPageLeft PageUpOrLeft(1)

KPageRight PageDownOrRight(1)

KBeingLine TopOrBottom()

KEndLine TopOrBottom()

KBeginData TopOrBottom()

KEndData TopOrBottom()

Resource Inherited From Resource Inherited From
Motif Reference Manual 881

Motif and Xt Widget Classes

s

r.

i-
ks
-

er.
ith
.

to
g-
Action Routines
ScrollBar defines the following action routines:

CancelDrag()
In Motif 1.2 and later, cancels the scrolling operation and return
the slider to its previous location if the event happened during a
drag. Otherwise, passes the event to the parent if it is a manage

IncrementDownOrRight(flag):
Moves the slider by one increment--downward if flag is 0; to the
right if flag is 1. Depending on the value of the XmNprocessingD
rection resource, the slider’s movement invokes the list of callbac
specified by either the XmNincrementCallback or the XmNdecre
mentCallback resource (or XmNvalueChangedCallback if the
appropriate callback resource is NULL).

IncrementUpOrLeft(flag):
Same as IncrementDownOrRight except that the slider moves
upward if flag is 0 and to the left if flag is 1.

Moved()
This action applies when the mouse button is pressed in the slid
When this is done, moving the pointer moves the slider along w
it and also invokes the callbacks specified by XmNdragCallback

PageDownOrRight(flag):
Moves the slider by one page increment--downward if flag is 0;
the right if flag is 1. Depending on the value of the XmNprocessin
Direction resource, the slider’s movement invokes the callbacks
listed in either XmNpageIncrementCallback or XmNpageDecre-
mentCallback (or XmNvalueChangedCallback if the appropriate
callback resource is NULL).

PageUpOrLeft(flag):
Same as IncrementDownOrRight except that the slider moves
upward if flag is 0 and to the left if flag is 1.

KNextField PrimitiveNextTabGroup()

KPrevField PrimitivePrevTabGroup()

KActivate PrimitiveParentActivate()

KCancel CancelDrag()

KHelp PrimitiveHelp()

Event Action
Motif Reference Manual 882

Motif and Xt Widget Classes

e

m.

ing

n-

all-
e

he

se
ove-
f

is
he
PrimitiveHelp()
Invokes the list of callbacks specified by XmNhelpCallback. If th
ScrollBar doesn’t have any help callbacks, the Help() routine
invokes those associated with the nearest ancestor that has the

PrimitiveNextTabGroup()
PrimitivePrevTabGroup()

Traverses to the first item in the next/previous tab group, wrapp
if necessary.

PrimitiveParentActivate()
In Motif 1.2 and later, passes the event to the parent if it is a ma
ager.

Release()
If the Moved() action changes the slider’s position, then the
Release() action invokes the callbacks specified by XmNval-
ueChangedCallback.

Select()
The results of this action depend on the location in which its
applied: Within an arrow, this action is the same as Increment-
DownOrRight() or IncrementUpOrLeft()--incrementing or decre-
menting according to the value of the XmN-processingDirection
resource, and invoking the appropriate increment or decrement c
back. Within the scrolling area that lies between an arrow and th
slider, this action works like the page increment action rou-
tines--moving by one page increment according to the value of t
XmNprocessingDirection resource, and invoking the appropriate
page increment or page decrement callback. Within either of the
locations, keeping the button pressed repeats the incremental m
ment of the slider. This behavior is triggered when the duration o
the button press exceeds the value of the XmNinitialDelay
resource; the slider movement then repeats with a time interval
specified by the XmNrepeatDelay resource. Within the slider, th
action begins slider dragging, which is subsequently affected by t
actions Moved() and Release().
Motif Reference Manual 883

Motif and Xt Widget Classes

-

be
TopOrBottom()
Moves the slider to its minimum value and invokes the callbacks
specified by XmNtoTopCallback, or moves the slider to its maxi-
mum value and invokes the callbacks specified by XmNtoBottom
Callback. The direction of the slider’s movement depends on the
value of the XmNprocessingDirection resource. This action can
applied using either keyboard or mouse events.

See Also
XmCreateObject (1), XmScrollBarGetValues (1), Core (2),
XmPrimitive (2).
Motif Reference Manual 884

Motif and Xt Widget Classes

ll-
oll-

in-

-
t

s:
Name
XmScrolledList – a List as a child of a ScrolledWindow.

Synopsis

Public Header:
<Xm/List.h>

Instantiation:
widget = XmCreateScrolledList (parent, name,...)

Functions/Macros:
XmCreateScrolledList (), XmCreateScrolledWindow ()

Description
An XmScrolledList is a compound object created by a call to XmCreateScro
edList() that provides scroll bars for a list that is not visible all at once. A Scr
edList consists of a ScrolledWindow widget with a List widget as its child.

A ScrolledList automatically creates the necessary scroll bars. The ScrolledW
dow resource XmNscrollingPolicy is set to XmAPPLICATION_DEFINED and
XmNvisualPolicy is set to XmVARIABLE. The ScrolledWindow resource XmN
scrollBarDisplayPolicy is set to XmSTATIC, but no initial value is set for the Lis
XmNscrollBarDisplayPolicy resource.

Default Resource Values
A ScrolledList sets the following default values for ScrolledWindow resource

Widget Hierarchy
When a ScrolledList is created with a specified name, the ScrolledWindow is
named nameSW and the List is calledname. The horizontal and vertical scroll
bars are named HorScrollBar and VertScrollBar, respectively.

See Also
XmCreateObject (1), XmList (2), XmScrolledWindow (2).

Name Default

XmNscrollBarDisplayPolicy XmSTATIC

XmNscrollingPolicy XmAPPLICATION_DEFINED

XmNvisualPolicy XmVARIABLE
Motif Reference Manual 885

Motif and Xt Widget Classes

A
xt

in-

:

in-
Name
XmScrolledText – a Text widget as a child of a ScrolledWindow.

Synopsis

Public Header:
<Xm/Text.h>

Instantiation:
widget = XmCreateScrolledText (parent, name,...)

Functions/Macros:
XmCreateScrolledText (), XmCreateScrolledWindow ()

Description
An XmScrolledText is a compound object created by a call to XmCreate-
ScrolledText() that provides scroll bars for text that is not visible all at once.
ScrolledText object consists of a ScrolledWindow widget with a multi-line Te
widget as its child.

ScrolledText automatically creates the necessary scroll bars. The ScrolledW
dow resource XmNscrollingPolicy is set to XmAPPLICATION_DEFINED,
XmNvisualPolicy is set to XmVARIABLE and XmNscrollBarDisplayPolicy is
set to XmSTATIC.

Default Resource Values
ScrolledText sets the following default values for ScrolledWindow resources

Widget Hierarchy
When a ScrolledText object is created with a specified name, the ScrolledW
dow is named nameSW and the Text widget is calledname. The horizontal and
vertical scroll bars are named HorScrollBar and VertScrollBar respectively.

See Also
XmCreateObject (1), XmScrolledWindow (2), XmText (2).

Name Default

XmNscrollBarDisplayPolicy XmSTATIC

XmNscrollingPolicy XmAPPLICATION_DEFINED

XmNvisualPolicy XmVARIABLE
Motif Reference Manual 886

Motif and Xt Widget Classes

rs

l at
he
o-
up-

ert-

f

ren,
t if
for

d

Name
XmScrolledWindow widget class – a manager widget that provides scroll ba
for the data display.

Synopsis

Public Header:
<Xm/ScrolledW.h>

Class Name:
XmScrolledWindow

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmScrolledWindow

Class Pointer:
xmScrolledWindowWidgetClass

Instantiation:
widget = XmCreateScrolledWindow (parent, name,...)
or
widget = XtCreateWidget (name, xmScrolledWindowWidgetClass,...)

Functions/Macros:
XmCreateScrolledList (), XmCreateScrolledText (), XmCreate-
ScrolledWindow (),
XmIsScrolledWindow (), XmScrollVisible (), XmScrolledWin-
dowSetAreas ()

Description
ScrolledWindow provides a scrollable view of data that may not be visible al
once. ScrollBars allow a user to scroll the visible part of the window through t
larger display. A ScrolledWindow widget can be created so that it scrolls aut
matically without application intervention or so that an application provides s
port for all scrolling operations. When scrolling is handled automatically,
ScrolledWindow creates the scroll bars, which are named HorScrollBar and V
ScrollBar.

Each of the ScrolledWindow regions is associated with a ScrolledWindow
resource;XmScrolledWindowSetAreas () sets the associated resources. I
an application does not callXmScrolledWindowSetAreas (), the widget
may still set some of the standard regions. If ScrollBars are added as child
the XmNhorizontalScrollBar and XmNverticalScrollBar resources may be se
they have not already been specified. Any child that is not a ScrollBar is used
the XmNworkWindow. If you want to be certain about which widgets are use
for the different regions, it is wise to callXmScrolledWindowSetAreas ()
explicitly.
Motif Reference Manual 887

Motif and Xt Widget Classes

 val-

roll-

Nam ccess

XmNa

XmNc

XmNh CSG

XmNs CSG

XmNs CSG

XmNs CSG

XmNs CSG

XmNs CG

XmNs SG

XmNv SG

XmNv C

XmNw G
Traits
ScrolledWindow holds the XmQTscrollFrame trait, which is inherited by any
derived classes, and uses the XmQTnavigator trait.

New Resources
ScrolledWindow defines the following resources:

XmNautoDragModel
In Motif 2.0 and later, specified whether automatic drag is enabled. Possible
ues:

XmAUTO_DRAG_ENABLED XmAUTO_DRAG_DISABLED

XmNclipWindow
The widget ID of the clipping area. The clipping window exists only when the
XmNvisualPolicy resource is set to XmCONSTANT. The XmNclipWindow
resource cannot be set to a new value.

XmNhorizontalScrollBar
The widget ID of the horizontal ScrollBar.

XmNscrollBarDisplayPolicy
Controls the placement of ScrollBars, depending on the value of the XmNsc
ingPolicy resource. Possible values:

XmSTATIC /* vertical ScrollBar always displays */
XmAS_NEEDED /*add ScrollBar when view is clipped */

e Class Type Default A

utoDragModel XmCAutoDragModel XtEnum XmAUTO_DRAG_ENABLED G

lipWindow XmCClipWindow Widget dynamic G

orizontalScrollBar XmCHorizontalScrollBar Widget dynamic

crollBarDisplayPolicy XmCScrollBarDisplayPolicy unsigned char dynamic

crollBarPlacement XmCScrollBarPlacement unsigned char XmBOTTOM_RIGHT

crolledWindowMarginHeight XmCScrolledWindowMarginHeight Dimension 0

crolledWindowMarginWidth XmCScrolledWindowMarginWidth Dimension 0

crollingPolicy XmCScrollingPolicy unsigned char XmAPPLICATION_DEFINED

pacing XmCSpacing Dimension 4 C

erticalScrollBar XmCVerticalScrollBar Widget dynamic C

isualPolicy XmCVisualPolicy unsigned char dynamic

orkWindow XmCWorkWindow Widget NULL CS
Motif Reference Manual 888

Motif and Xt Widget Classes

ly
et

ill

of
ible

at
If XmNscrollingPolicy is set to XmAUTOMATIC, then XmNscrollBarDisplay-
Policy defaults to a value of XmAS_NEEDED, and ScrollBars are displayed on
when the workspace cannot fit within the clip area. If XmNscrollingPolicy is s
to XmAPPLICATION_DEFINED, then XmNscrollBarDisplayPolicy defaults to
(and must remain with) a value of XmSTATIC. This means that ScrollBars w
always be displayed.

XmNscrollBarPlacement
The positions of the ScrollBars relative to the work window. The default value
this resource depends on the value of the XmNstringDirection resource. Poss
values:

XmTOP_LEFT /*vertical ScrollBar on left; horizontal on top */
XmBOTTOM_LEFT /* vertical ScrollBar on left; horizontal on bottom*/
XmTOP_RIGHT /*vertical ScrollBar on right; horizontal on top */
XmBOTTOM_RIGHT /* vertical ScrollBar on right; horizontal on bottom*/

XmNscrolledWindowMarginHeight
The spacing at the top and bottom of the ScrolledWindow.

XmNscrolledWindowMarginWidth
The spacing at the right and left sides of the ScrolledWindow.

XmNscrollingPolicy
Determines how automatic scrolling occurs. Possible values:

XmAUTOMATIC /* ScrolledWindow handles scrolling */
XmAPPLICATION_DEFINED /* application handles scrolling */

XmNspacing
The distance between each ScrollBar and the work window.

XmNverticalScrollBar
The widget ID of the vertical ScrollBar.

XmNvisualPolicy
The visual layout policy of the ScrolledWindow. In Motif 2.0 and later, the
resource is obsolete, and the internal widget initialization functions ensure th
the policy is consistent. Possible values:

XmCONSTANT /* viewing area is clipped if needed; */
/* default when XmNscrollingPolicy is XmAUTOMATIC*/

XmVARIABLE /* layout grows or shrinks; default otherwise */

XmNworkWindow
The widget ID of the viewing area.
Motif Reference Manual 889

Motif and Xt Widget Classes

t or

es

e

Na

Xm
Callback Resources
ScrolledWindow defines the following callback resources:

XmNtraverseObscuredCallback
List of callbacks that are called when the keyboard focus is moved to a widge
gadget that is obscured from view.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /*reason that callback was called*/
XEvent *event; /*event that triggered callback*/
Widget traversal_destination; /*widget or gadget to traverse to*/
XmTraversalDirection direction; /*direction of traversal */

} XmTraverseObscuredCallbackStruct;

New Constraint Resources
In Motif 2.0 and later, ScrolledWindow defines the following constraint resourc
for its children:

XmNscrolledWindowChildType
Specifies the logical type of child of the ScrolledWindow. Possible values:

XmHOR_SCROLLBAR /*horizontal ScrollBar */
XmVERT_SCROLLBAR /*vertical ScrollBar */
XmSCROLL_HOR /*horizontal ScrollBar - horizontal scrolling only*/
XmSCROLL_VERT /*vertical ScrollBar - vertical scrolling only*/
XmWORK_AREA /* work area child */
XmCLIP_WINDOW /* XmClipWindow */
XmNO_SCROLL /*no child scrolling */

The values XmSCROLL_HOR, XmSCROLL_VERT, and XmNO_SCROLL ar
only valid if the scrolling policy is XmAUTOMATIC.

Callback Reason Constant

XmNtraverseObscuredCallback XmCR_OBSCURED_TRAVERSAL

me Class Type Default Access

NscrolledWindowChildType XmCScrolledWindowChildType unsigned char dynamic CG
Motif Reference Manual 890

Motif and Xt Widget Classes

pha-
the
N-

i-

ce

In
Inherited Resources
ScrolledWindow inherits the following resources. The resources are listed al
betically, along with the superclass that defines them. ScrolledWindow sets
default value of XmNshadowThickness dynamically. The default value of Xm
borderWidth is reset to 0 by XmManager.

Widget Hierarchy
When the ScrolledWindow has an XmNvisualPolicy of XmCONSTANT (the
XmNscrollingPolicy is XmAUTOMATIC) the ScrolledWindow creates an add
tional clip widget which is used as the parent of any added work window: the
additional widget acts as the logical viewport, and the XmNclipWindow resour
is set to the ID of this.

Before Motif 2.0, the clip widget has the name ScrolledWindowClipWindow.
Motif 2.0 and later, the name is changed to ClipWindow: any resources, and
XtNameToWidget() or similar code which relies upon the name should be
changed accordingly.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmManager XmNsensitive Core

XmNbottomShadowPixmap XmManager XmNshadowThickness XmManager

XmNchildren Composite XmNstringDirection XmManager

XmNcolormap Core XmNtopShadowColor XmManager

XmNdepth Core XmNtopShadowPixmap XmManager

XmNdestroyCallback Core XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNwidth Core

XmNhighlightPixmap XmManager XmNx Core

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core
Motif Reference Manual 891

Motif and Xt Widget Classes

g-
Translations
The translations for ScrolledWindow include those from Manager.

Additional Behavior
ScrolledWindow has the following additional behavior when the XmNscrollin
Policy resource is XmAUTOMATIC:

See Also
XmCreateObject (1), XmScrollVisible (1),
XmScrolledWindowSetAreas (1), Composite (2), Constraint (2),
Core (2), XmManager(2), XmScrollBar (2), XmScrolledList (2),
XmScrolledText (2).
Motif Reference Manual 892

Motif and Xt Widget Classes

-

es
 in
r the
ons.
elec-

le,

he

ew

red
Name
XmSelectionBox widget class – a widget for selecting one of a list of alterna
tives.

Synopsis

Public Header:
<Xm/SelectioB.h>

Class Name:
XmSelectionBox

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmBulletinBoard→
XmSelectionBox

Class Pointer:
xmSelectionBoxWidgetClass1

Instantiation:
widget =XmCreateSelectionBox (parent, name,...)
or
widget =XtCreateWidget (name, XmSelectionBoxWidgetClass,...)

Functions/Macros:
XmCreateSelectionBox (), XmCreateSelectionDialog (), XmCre-
atePromptDialog (),
XmIsSelectionBox (), XmSelectionBoxGetChild ()

Description
SelectionBox is a composite widget that displays a scrollable list of alternativ
from which the user can choose items. A SelectionBox contains a text field
which the user can enter a selection, the scrollable list of selections, labels fo
text field and the scrollable list, a separator, and a group of three or four butt
The names of these components in the SelectionBox are Items, ItemsList, S
tion, Text, and Separator, respectively.

In Motif 1.2 and later, the default button labels can be localized. In the C loca
and in Motif 1.1, the PushButtons are labelledOK , Apply, Cancel, andHelp by
default. TheApply button is created but not always managed. If the parent of t
SelectionBox is a DialogShell the button is managed, otherwise it is not.

You can customize a SelectionBox by removing existing children or adding n
children. UseXmSelectionBoxGetChild () to retrieve the widget ID of an
existing child and then unmanage the child. With Motif 1.2 and later, multiple
widgets can be added as children of a SelectionBox. The first child is conside

1.Erroneously given as XmSelectionBoxWidgetClass in 1st and 2nd editions.
Motif Reference Manual 893

Motif and Xt Widget Classes

ut-

ec-
a.

y"

n-

s

G

a work area and is placed based on the value of the XmNchildPlacement
resource. If a menu bar is added, it is placed at the top of the window. Any b
tons are placed after theOK button. Any additional children are placed below the
message. In Motif 1.1, only a single widget can be added as a child of a Sel
tionBox. This child is placed below the selection text and acts as a work are

Traits
SelectionBox uses the XmQTactivatable and XmQTaccessTextual traits.

New Resources
SelectionBox defines the following resources:

XmNapplyLabelString
The string that labels theApply button. In Motif 1.2 and later, the default value is
locale-dependent. In the C locale, and in Motif 1.1, the default value is "Appl.

XmNcancelLabelString
The string that labels theCancel button. In Motif 1.2 and later, the default value
is locale-dependent. In the C locale, and in Motif 1.1, the default value is "Ca
cel".

Name Class Type Default Acces

XmNapplyLabelString XmCApplyLabelString XmString dynamic CSG

XmNcancelLabelString XmCCancelLabelString XmString dynamic CSG

XmNchildPlacement XmCChildPlacement unsigned char XmPLACE_ABOVE_SELECTION CS

XmNdialogType XmCDialogType unsigned char dynamic CG

XmNhelpLabelString XmCHelpLabelString XmString dynamic CSG

XmNlistItems XmCItems XmStringTable NULL CSG

XmNlistItemCount XmCItemCount int 0 CSG

XmNlistLabelString XmCListLabelString XmString dynamic CSG

XmNlistVisibleItemCount XmCListVisibleItemCount int dynamic CSG

XmNminimizeButtons XmCMinimizeButtons Boolean False CSG

XmNmustMatch XmCMustMatch Boolean False CSG

XmNokLabelString XmCOkLabelString XmString dynamic CSG

XmNselectionLabelString XmCSelectionLabelString XmString dynamic C

XmNtextAccelerators XmCTextAccelerators XtAccelerators default CSG

XmNtextColumns XmCColumns short dynamic CSG

XmNtextString XmCTextString XmString dynamic CSG
Motif Reference Manual 894

Motif and Xt Widget Classes

ible

et

"

ist

he
if
otif

s a

tton
ize.
XmNchildPlacement
In Motif 1.2 and later, determines the placement of the work area child. Poss
values:

XmPLACE_ABOVE_SELECTION /*above the text area*/
XmPLACE_BELOW_SELECTION /*below the text area*/
XmPLACE_TOP /*above the list area*/

XmNdialogType
Determines which children of the SelectionBox widget will be initially created
and managed. Possible values:

XmDIALOG_WORK_AREA /* default, when parent isn’t a DialogShell*/
XmDIALOG_PROMPT /*all children except list and label */
XmDIALOG_SELECTION /*default, when parent is a DialogShell*/
XmDIALOG_COMMAND /* only list, selection label and text field*/
XmDIALOG_FILE_SELECTION /*all standard children */

Note that in Release 1.1, Command and FileSelectionBox are separate widg
classes, and they can no longer be created by setting XmNdialogType.

XmNhelpLabelString
The string that labels theHelp button. In Motif 1.2 and later, the default value is
locale-dependent. In the C locale, and in Motif 1.1, the default value is "Help.

XmNlistItems
The items in the SelectionBox list. A call to XtGetValues() returns the actual l
items (not a copy), so don’t have your application free these items.

XmNlistItemCount
The number of items in the SelectionBox list.

XmNlistLabelString
The string that labels the SelectionBox list. The default string is NULL when t
XmN-dialogType resource is set to XmDIALOG_PROMPT; otherwise, in Mot
1.2 and later, the default value is locale-dependent. In the C locale, and in M
1.1, the default value is "Items".

XmNlistVisibleItemCount
The number of items that appear in the SelectionBox list. The default value
depends on the height of the list. This resource has a value of 0 when the
XmNdialogType resource is set to XmDIALOG_PROMPT, and otherwise ha
default of 8.

XmNminimizeButtons
If False (default), all buttons are standardized to be as wide as the widest bu
and as high as the highest button. If True, buttons will keep their preferred s
Motif Reference Manual 895

Motif and Xt Widget Classes

ting
ed
one
h,
tch-
the

is
c-

nd-
urce
 in
XmNmustMatch
If True, the selection that a user types in the text edit field must match an exis
entry in the SelectionBox list. If False (default), the typed selection doesn’t ne
to match a list entry. (When the user activates the Ok button, the widget calls
of two lists of callbacks: if this resource is True but the selections don’t matc
then the SelectionBox widget calls the callbacks specified by the XmNnoMa
Callback resource; if this resource is False or if the selections do match, then
widget calls the callbacks specified by the XmNokCallback resource.)

XmNokLabelString
The string that labels theOk button. In Motif 1.2 and later, the default value is
locale-dependent. In the C locale, and in Motif 1.1, the default value is "OK".

XmNselectionLabelString
The string that labels the text edit field. In Motif 1.2 and later, the default value
locale-dependent. In the C locale, and in Motif 1.1, the default value is "Sele
tion".

XmNtextAccelerators
The translations to add to the SelectionBox’s Text widget child. The default bi
ings allow the up and down keys to be used in selecting list items. This reso
is meaningful only when the SelectionBox widget is using the default values
the XmN-accelerators resource.

XmNtextColumns
The number of columns in the Text widget.

XmNtextString
The text string that appears in the text edit selection field.

Callback Resources
SelectionBox defines the following callback resources:

XmNapplyCallback
List of callbacks that are called when theApply button is activated.

XmNcancelCallback
List of callbacks that are called when the Cancel button is activated.

Callback Reason Constant

XmNapplyCallback XmCR_APPLY

XmNcancelCallback XmCR_CANCEL

XmNnoMatchCallback XmCR_NO_MATCH

XmNokCallback XmCR_OK
Motif Reference Manual 896

Motif and Xt Widget Classes

rea

mN-

beti-
bor-

n,
is a
XmNnoMatchCallback
List of callbacks that are called when the user types a selection in the text a
that does not match an item in the list.

XmNokCallback
List of callbacks that are called when theOK button is activated. If XmNmust-
Match is True and the selection text does not match an item in the list, the X
noMatchCallback callbacks are called instead.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /*the reason that the callback was called*/
XEvent *event; /*event structure that triggered callback*/
XmString value; /*selection string that was either chosen*/

/* from the SelectionBox list or typed in*/
int length; /* number of bytes of value */

} XmSelectionBoxCallbackStruct;

Inherited Resources
SelectionBox inherits the following resources. The resources are listed alpha
cally, along with the superclass that defines them. The default value of XmN
derWidth is reset to 0 by XmManager. BulletinBoard sets the values of
XmNinitialFocus to the text entry area, XmN-defaultButton to the Cancel butto
and resets the default XmNshadowThickness from 0 to 1 if the SelectionBox
child of a DialogShell.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNlabelFontList XmBulletinBoard

XmNallowOverlap XmBulletinBoard XmNlabelRenderTable XmBulletinBoard

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNautoUnmanage XmBulletinBoard XmNmapCallback XmBulletinBoard

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNmarginHeight XmBulletinBoard

XmNborderColor Core XmNmarginWidth XmBulletinBoard

XmNborderPixmap Core XmNnavigationType XmManager

XmNborderWidth Core XmNnoResize XmBulletinBoard

XmNbottomShadowColor XmManager XmNnumChildren Composite

XmNbottomShadowPixmap XmManager XmNpopupHandlerCallback XmManager

XmNbuttonFontList XmBulletinBoard XmNresizePolicy XmBulletinBoard
Motif Reference Manual 897

Motif and Xt Widget Classes

t.

1,

n,

e
lec-

rs.
Translations
The translations for SelectionBox are inherited from BulletinBoard.

Action Routines
SelectionBox defines the following action routines:

SelectionBoxUpOrDown(flag):
This action applies when the location cursor is within the item lis
This action selects a list item from one of four possible positions
and uses this item to replace the selection text. A flag value of 0,
2, or 3 selects the previous, next, first, or last item, respectively.
These four action routines are respectively bound to KUp, KDow
KBeginData, and KEndData, which represent four of the default
accelerators in the XmNtextAccelerators resource.

SelectionBoxRestore()
Like SelectionBoxUpOrDown except that this action replaces th
selection text with the current list item. This action clears the se
tion text if no list item is currently selected. This action routine is
bound to KRestore, a default accelerator for XmNtextAccelerato

XmNbuttonRenderTable XmBulletinBoard XmNscreen Core

XmNcancelButton XmBulletinBoard XmNsensitive Core

XmNchildren Composite XmNshadowThickness XmManager

XmNcolormap Core XmNshadowType XmBulletinBoard

XmNdefaultButton XmBulletinBoard XmNstringDirection XmManager

XmNdefaultPosition XmBulletinBoard XmNtextFontList XmBulletinBoard

XmNdepth Core XmNtextRenderTable XmBulletinBoard

XmNdestroyCallback Core XmNtextTranslations XmBulletinBoard

XmNdialogStyle XmBulletinBoard XmNtopShadowColor XmManager

XmNdialogTitle XmBulletinBoard XmNtopShadowPixmap XmManager

XmNfocusCallback XmBulletinBoard XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNunmapCallback XmBulletinBoard

XmNhighlightColor XmManager XmNuserData XmManager

XmNhighlightPixmap XmManager XmNwidth Core

XmNinitialFocus XmManager XmNx Core

XmNinitialResourcesPersistent Core XmNy Core

XmNinsertPosition Composite

Resource Inherited From Resource Inherited From
Motif Reference Manual 898

Motif and Xt Widget Classes

n),

he

m

-

Additional Behavior
SelectionBox has the following additional behavior:

MAny KCancel
For a sensitiveCancel button, invokes the XmNactivateCallback
callbacks.

KActivate
For the button that has keyboard focus (or else the default butto
invokes the callbacks in XmNactivateCallback. In a List or Text
widget, this event calls the associated List or Text action before t
associated SelectionBox action.

<Ok Button Activated>
Invokes the XmNokCallback callback or the XmNnoMatchCall-
back if XmN-mustMatch is True and the text does not match an ite
in the list.

<Apply Button Activated>
Invokes the XmNapplyCallback callbacks.

<Cancel Button Activated>
Invokes the XmNcancelCallback callbacks.

<Help Button Activated>
Invokes the XmNhelpCallback callbacks.

<MapWindow>
Invokes the callbacks for XmNmapCallback if the parent is a Dia
logShell.

<UnmapWindow>
Invokes the callbacks for XmNunmapCallback if the parent is a
DialogShell.

See Also
XmCreateObject (1), XmSelectionBoxGetChild (1),
Composite (2), Constraint (2), Core (2), XmBulletinBoard (2),
XmManager(2), XmPromptDialog (2), XmSelectionDialog (2).
Motif Reference Manual 899

Motif and Xt Widget Classes

ell.

e-
n
n-
g-

r
ser
r

e C

es:
Name
XmSelectionDialog – an unmanaged SelectionBox as a child of a Dialog Sh

Synopsis

Public Header:
<Xm/SelectioB.h>

Instantiation:
widget = XmCreateSelectionDialog (parent, name,...)

Functions/Macros:
XmCreateSelectionBox (), XmCreateSelectionDialog (),
XmSelectionBoxGetChild ()

Description
An XmSelectionDialog is a compound object created by a call to XmCreateS
lectionDialog() that an application can use to allow a user to make a selectio
from a dialog box. A SelectionDialog consists of a DialogShell with an unma
aged SelectionBox widget as its child. The SelectionBox resource XmNdialo
Type is set to XmDIALOG_SELECTION.

A SelectionDialog displays a scrollable list of alternatives from which the use
can choose items. A SelectionDialog also contains a text field in which the u
can edit a selection, labels for the text field and for the scrollable list, and fou
buttons. In Motif 1.2 and later, the default button labels can be localized. In th
locale, and in Motif 1.1, the PushButtons are labelledOK , Apply, Cancel, and
Help by default.

Default Resource Values
A SelectionDialog sets the following default values for SelectionBox resourc

Widget Hierarchy
When a SelectionDialog is created with a specified name, the DialogShell is
named name_popup and the SelectionBox is calledname.

See Also
XmCreateObject (1), XmSelectionBoxGetChild (1),
XmDialogShell (2), XmSelectionBox (2).

Name Default

XmNdialogType XmDIALOG_SELECTION
Motif Reference Manual 900

Motif and Xt Widget Classes

gets

po-
 A
urce
E.

d

Name
XmSeparator widget class – a widget that draws a line to separate other wid
visually.

Synopsis

Public Header:
<Xm/Separator.h>

Class Name:
XmSeparator

Class Hierarchy:
Core→ XmPrimitive→ XmSeparator

Class Pointer:
xmSeparatorWidgetClass

Instantiation:
widget =XmCreateSeparator (parent, name,...)
or
widget =XtCreateWidget (name, xmSeparatorWidgetClass,...)

Functions/Macros:
XmCreateSeparator (), XmIsSeparator ()

Description
A Separator is a widget that draws a horizontal or vertical line between com
nents in an application. Several line styles are available for the Separator.
pixmap separator can also be made by specifying a pixmap for the Core reso
XmNbackgroundPixmap and then setting XmNseparatorType to XmNO_LIN

Traits
Separator holds the XmQTmenuSavvy trait, which is inherited by any derive
classes.
Motif Reference Manual 901

Motif and Xt Widget Classes

mar-
ver-
New Resources
Separator defines the following resources:

XmNmargin
The spacing on either end of the Separator. This would be the left and right
gins for a horizontally drawn Separator and the top and bottom margins for a
tically drawn Separator.

XmNorientation
The direction in which to display the Separator. Possible values:

XmVERTICAL /* top-to-bottom creation*/
XmHORIZONTAL /* left-to-right creation */

XmNseparatorType
The line style in which to draw the Separator. Possible values:

XmNO_LINE
XmSINGLE_DASHED_LINE
XmSHADOW_ETCHED_IN
XmSINGLE_LINE
XmDOUBLE_DASHED_LINE
XmSHADOW_ETCHED_OUT
XmDOUBLE_LINE

Name Class Type Default Access

XmNmargin XmCMargin Dimension 0 CSG

XmNorientation XmCOrientation unsigned char XmHORIZONTAL CSG

XmNseparatorType XmCSeparatorType unsigned char XmSHADOW_ETCHED_IN CSG
Motif Reference Manual 902

Motif and Xt Widget Classes

ti-
t val-
lue
Inherited Resources
Separator inherits the following resources. The resources are listed alphabe
cally, along with the superclass that defines them. Separator sets the defaul
ues of XmNhighlightThickness to 0 XmNtraversalOn to False. The default va
of XmNborderWidth is reset to 0 by Primitive.

See Also
XmCreateObject (1), Core (2), XmPrimitive (2).

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNhighlightThickness XmPrimitive

XmNancestorSensitive Core XmNinitialResourcesPersistent Core

XmNbackground Core XmNlayoutDirection XmPrimitive

XmNbackgroundPixmap Core XmNmappedWhenManaged Core

XmNborderColor Core XmNnavigationType XmPrimitive

XmNborderPixmap Core XmNpopupHandlerCallback XmPrimitive

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmPrimitive XmNsensitive Core

XmNbottomShadowPixmap XmPrimitive XmNshadowThickness XmPrimitive

XmNcolormap Core XmNtopShadowColor XmPrimitive

XmNconvertCallback XmPrimitive XmNtopShadowPixmap XmPrimitive

XmNdepth Core XmNtranslations Core

XmNdestroyCallback Core XmNtraversalOn XmPrimitive

XmNforeground XmPrimitive XmNunitType XmPrimitive

XmNheight Core XmNuserData XmPrimitive

XmNhelpCallback XmPrimitive XmNwidth Core

XmNhighlightColor XmPrimitive XmNx Core

XmNhighlightOnEnter XmPrimitive XmNy Core

XmNhighlightPixmap XmPrimitive
Motif Reference Manual 903

Motif and Xt Widget Classes

ther

d

lpha-
 the

.

Name
XmSeparatorGadget widget class – a gadget that draws a line to separate o
widgets visually.

Synopsis

Public Header:
<Xm/SeparatoG.h>

Class Name:
XmSeparatorGadget

Class Hierarchy:
Object→ RectObj→ XmGadget→ XmSeparatorGadget

Class Pointer:
xmSeparatorGadgetClass

Instantiation:
widget =XmCreateSeparatorGadget (parent, name,...)
or
widget =XtCreateWidget (name, xmSeparatorGadgetClass,...)

Functions/Macros:
XmCreateSeparatorGadget (), XmIsSeparatorGadget ()

Description
SeparatorGadget is the gadget variant of Separator. SeparatorGadget’s new
resources are the same as those for Separator.

Traits
SeparatorGadget holds the XmQTcareParentVisual, XmQTaccessColors, an
XmQTmenuSavvy traits, which are inherited by any derived class.

Inherited Resources
SeparatorGadget inherits the following resources. The resources are listed a
betically, along with the superclass that defines them. SeparatorGadget sets
default values of XmNhighlightThickness to 0 and XmNtraversalOn to False
The default value of XmNborderWidth is reset to 0 by Gadget.

Resource Inherited From Resource Inherited From

XmNancestorSensitive RectObj XmNhighlightThickness XmGadget

XmNbackground XmGadget XmNlayoutDirection XmGadget

XmNbackgroundPixmap XmGadget XmNnavigationType XmGadget

XmNbottomShadowColor XmGadget XmNsensitive RectObj

XmNbottomShadowPixmap XmGadget XmNshadowThickness XmGadget

XmNborderWidth RectObj XmNtopShadowColor XmGadget
Motif Reference Manual 904

Motif and Xt Widget Classes
See Also
XmCreateObject (1), Object (2), RectObj (2), XmGadget(2),
XmSeparator (2).

XmNdestroyCallback Object XmNtopShadowPixmap XmGadget

XmNforeground XmGadget XmNtraversalOn XmGadget

XmNheight RectObj XmNunitType XmGadget

XmNhelpCallback XmGadget XmNuserData XmGadget

XmNhighlightColor XmGadget XmNwidth RectObj

XmNhighlightOnEnter XmGadget XmNx RectObj

XmNhighlightPixmap XmGadget XmNy RectObj

Resource Inherited From Resource Inherited From
Motif Reference Manual 905

Motif and Xt Widget Classes

es

lue
ter-
Name
XmSimpleSpinBox widget class – a widget for cycling through a set of choic

Synopsis

Public Header:
<Xm/SSpinB.h>

Class Name:
XmSimpleSpinBox

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmSpinBox→ XmSim-
pleSpinBox

Class Pointer:
xmSimpleSpinBoxWidgetClass

Instantiation:
widget =XmCreateSimpleSpinBox (parent, name,...)
or
widget =XtCreateWidget (name, xmSimpleSpinBoxWidgetClass,...)

Functions/Macros:
XmSimpleSpinBoxAddItem (), XmSimpleSpinBoxDeletePos (),
XmSimpleSpinBoxSetItem (), XmCreateSimpleSpinBox ()

Availability
Motif 2.1 and later.

Description
A subclass of SpinBox which allows the user to increment or decrement the va
in a TextField, or to cycle through a set of values. The TextField is created in
nally by the widget.

The SimpleSpinBox may not be subclassed.

New Resources
SimpleSpinBox defines the following resources:

Name Class Type Default Access

XmNarrowSensitivity XmCArrowSensitivity unsigned char XmARROWS_SENSITIVE CSG

XmNcolumns XmCColumns short 20 CSG

XmNdecimalPoints XmCDecimalPoints short 0 CSG

XmNeditable XmCEditable Boolean True CSG

XmNincrementValue XmCIncrementValue int 1 CSG

XmNmaximumValue XmCMaximumValue int 10 CSG
Motif Reference Manual 906

Motif and Xt Widget Classes

l-

.

 Tex-

pin-

 has
XmNarrowSensitivity
Specifies the sensitivity of the arrows within the SimpleSpinBox. Possible va
ues:

XmARROWS_SENSITIVE /*both arrows sensitive */
XmARROWS_DECREMENT_SENSITIVE

/* increment arrowbutton insensitive*/
XmARROWS_INCREMENT_SENSITIVE

/* decrement arrowbutton insensitive*/
XmARROWS_INSENSITIVE /*both arrows insensitive */

XmNcolumns
Specifies the number of columns in the TextField.

XmNdecimalPoints
A positive integer that determines how the TextField’s value will be displayed
The decimal point in the TextField’s value gets shifted to the right, and this
resource specifies the number of decimal places to shift. For example, if the

tField’s value is 5678, then setting the XmNdecimalPoints1 resource to 2 causes
the widget to display the value as 56.78. The resource has no effect if XmNs
BoxChildType is not XmNUMERIC.

XmNeditable
Specifies whether the TextField accepts user input.

XmNincrementValue
Specifies the amount to increment the XmNposition resource. The resource
no effect if XmNspinBoxChildType is not XmNUMERIC.

XmNminimumValue XmCMinimumValue int 0 CSG

XmNnumValues XmCNumValues int 0 CSG

XmNposition XmCPosition int 0 CSG

XmNpositionType XmCPositionType unsigned char XmPOSITION_VALUE CG

XmNspinBoxChildType XmCSpinBoxChildType unsigned char XmString CSG

XmNtextField XmCTextField Widget dynamic G

XmNvalues XmCValues XmStringTable NULL CSG

XmNwrap XmCWrap Boolean True CSG

1.Erroneously given as XmdecimalPoints in 2nd edition.

Name Class Type Default Access
Motif Reference Manual 907

Motif and Xt Widget Classes

ype

rce.

e

y

ini-
ing
lue

s:

lue.

im-
XmNmaximumValue
Specifies the largest value. The resource has no effect if XmNspinBoxChildT
is not XmNUMERIC.

XmNminimumValue
Specifies the smallest value. The resource has no effect if XmNspinBox-
ChildType is not XmNUMERIC.

XmNnumValues
Specifies the number of items in the list determined by the XmNvalues resou
The resource has no effect if XmNspinBoxChildType is not XmSTRING.

XmNposition
Depends upon the value of the XmNpositionType and XmNspinBoxChildTyp
resources, and is used to calculate the current value of the SimpleSpinBox.

If XmNspinBoxChildType is XmSTRING, the position resource is used simpl
as an index into the XmNvalues array.

If XmNspinBoxChildType is XmNUMERIC and XmNpositionType is
XmPOSITION_VALUE, the position resource is used directly for the actual
value to display. The position value is bounded by XmNminimumValue and
XmNmaximumValue. When XmNpositionType is XmPOSITION_INDEX, the
position is interpreted as an index into a set of values, bounded by the XmNm
mumValue and XmNmaximumValue resource. A number is in the set depend
upon the XmNincrementValue resource: position zero corresponds to the va
XmNminimumValue, position n is the value given by:

XmNminimumValue + (n * XmNincrementValue)

XmNpositionType
Specifies how the XmNposition resource is to be interpreted. Possible value

XmPOSITION_INDEX /* position is an index into an array*/
XmPOSITION_VALUE /* position is a direct value */

XmNspinBoxChildType
Specifies the type of data to be displayed. Possible values:

XmNUMERIC /* value is defined by maximum, minimum, */
/* increment resources*/

XmSTRING /* value is defined by the values array */

XmNtextField
Specifies the text field created by the SimpleSpinBox to display the current va

XmNvalues
Specifies the array of compound strings forming the validset of items for the S
pleSpinBox. Only has effect if XmNspinBoxChildType is XmSTRING.

XmNwrap
Specifies whether the SpinBox wraps around the set of values.
Motif Reference Manual 908

Motif and Xt Widget Classes

sets
Inherited Resources
SimpleSpinBox inherits the resources shown below. The resources are listed
alphabetically, along with the superclass that defines them. SimpleSpinBox re
the default value of XmNshadowThickness to 1.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNarrowLayout XmSpinBox XmNmappedWhenManaged Core

XmNarrowOrientation XmSpinBox XmNmarginHeight XmSpinBox

XmNarrowSize XmSpinBox XmNmarginWidth XmSpinBox

XmNbackground Core XmNmodifyVerifyCallback XmSpinBox

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNrepeatDelat XmSpinBox

XmNbottomShadowColor XmManager XmNscreen Core

XmNbottomShadowPixmap XmManager XmNsensitive Core

XmNchildren Composite XmNshadowThickness XmManager

XmNcolormap Core XmNspacing XmSpinBox

XmNdefaultArrowSensitivity XmSpinBox XmNstringDirection XmManager

XmNdepth Core XmNtopShadowColor XmManager

XmNdestroyCallback Core XmNtopShadowPixmap XmManager

XmNdetailShadowThickness XmSpinBox XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNvalueChangedCallback XmSpinBox

XmNhighlightPixmap XmManager XmNwidth Core

XmNinitialDelay XmSpinBox XmNx Core

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core
Motif Reference Manual 909

Motif and Xt Widget Classes

cre-

Widget Hierarchy

When a SimpleSpinBox is created with a specified name, the automatically
ated TextField child is named name_TF.

Translations
The translations for SimpleSpinBox are those of SpinBox.

See Also
XmSimpleSpinBoxAddItem (1), XmSimpleSpinBoxDeletePos (1),
XmSimpleSpinBoxSetItem (1), XmCreateSimpleSpinBox (1),
Composite (2), Constraint (2), Core (2), XmManager(2),
XmSpinBox (2).
Motif Reference Manual 910

Motif and Xt Widget Classes

a

. At
ted

set
s.

ugh
eric
U-
d
G,

the
Name
XmSpinBox widget class – a composite widget which controls cycling through
set of choices

Synopsis

Public Header:
<Xm/SpinB.h>

Class Name:
XmSpinBox

Class Hierarchy:
Core→ Composite→ Constraint→ XmManager→ XmSpinBox

Class Pointer:
xmSpinBoxWidgetClass

Instantiation:
widget =XmCreateSpinBox (parent, name,...)
or
widget =XtCreateWidget (name, xmSpinBoxWidgetClass,...)

Functions/Macros:
XmSpinBoxValidatePosition (), XmCreateSpinBox ()

Availability
Motif 2.0 and later.

Description
SpinBox is a manager which allows the user to cycle through sets of choices
the minimum, the widget contains a single Text or TextField, which is associa
with a group of values. A pair of ArrowButtons are provided which, when
pressed, insert the next or previous group item into the Text.

SpinBox can control multiple traversable children, each possessing their own
of values. The ArrowButtons cycle the values of the child with the current focu

The values associated with any textual child of the SpinBox are specified thro
constraint resources. Logically, a textual child is considered to be either num
or string based, as specified by the XmNspinBoxChildType resource. If XmN
MERIC, a set of constraints control the current value, and place an upper an
lower bound upon the range through which the value may rotate. If XmSTRIN
an array of compound strings is specified for the child, and the ArrowButtons
cycle through the set of values by incrementing or decrementing an index into
array.
Motif Reference Manual 911

Motif and Xt Widget Classes

fied

ssi-

n
ent

s

The location of the ArrowButtons relative to the textual children is controlled
through the XmNarrowLayout resource, although this is affected by any speci
XmNlayoutDirection. The arrows automatically created by the SpinBox are
drawn, and not real widgets.

Traits
SpinBox holds the XmQTnavigator trait, which is inherited by any derived
classes, and uses the XmQTaccessTextual trait.

New Resources
SpinBox defines the following resources:

XmNarrowLayout
Specifies the location of the drawn arrows relative to the textual children. Po
ble values:

XmARROWS_BEGINNING /*both arrows placed vertically before text*/
XmARROWS_END /*both arrows placed vertically after text*/
XmARROWS_FLAT_BEGINNING /*both arrows placed horizontally before text*/
XmARROWS_FLAT_END /*both arrows placed horizontally after text*/
XmARROWS_SPLIT /*one arrow placed at each end */

The interpretation of beginning and end depends upon the XmNlayoutDirectio
resource inherited from XmManager. This also affects whether it is the increm
or decrement arrow which is to the left or right. If the layout direction is
XmLEFT_TO_RIGHT, the decrement arrow is to the left, and both
XmARROWS_BEGINNING and XmARROWS_FLAT_BEGINNING place
both arrows on the left of the Text. If the direction is XmRIGHT_TO_LEFT, it i
the increment arrow which is to the left, XmARROWS_END and
XmARROWS_FLAT_END which place both arrows on the left of the Text.

Name Class Type Default Access

XmNarrowLayout XmCArrowLayout unsigned char XmARROWS_END CSG

XmNarrowOrientation XmCArrowOrientation unsigned char XmARROWS_VERTICAL CSG

XmNarrowSize XmCArrowSize Dimension 16 CSG

XmNdefaultArrowSensitivity XmCDefaultArrowSensitivity unsigned char XmARROWS_SENSITIVE CSG

XmNdetailShadowThickness XmCDetailShadowThickness Dimension dynamic CSG

XmNinitialDelay XmCInitialDelay unsigned int 250 CSG

XmNmarginHeight XmCMarginHeight Dimension 2 CSG

XmNmarginWidth XmCMarginWidth Dimension 2 CSG

XmNrepeatDelat XmCRepeatDelay unsigned int 200 CSG

XmNspacing XmCSpacing Dimension 2 CSG
Motif Reference Manual 912

Motif and Xt Widget Classes

i-
s,

is

ons
rien-

e is
ld

alues
e
rce:

s to
he

hild,
.

hild,
d.
XmNarrowOrientation
In Motif 2.1, specifies whether arrows point vertically or horizontally. If the or
entation is XmARROWS_VERTICAL, the decrement arrow points downward
and the increment arrow points upwards. If orientation is
XmARROWS_HORIZONTAL, the decrement arrow points to the left, and the
increment arrow points to the right. This is reversed if the XmNlayoutDirection
XmRIGHT_TO_LEFT.

Note that this is not the same as the XmNarrowLayout resource, which positi
the components of the SpinBox relative to each other, whereas XmNarrowO
tation rotates an arrow within its given position.

XmNarrowSize
Specifies the width (and height) of the drawn arrows, measured in pixels.

XmNdefaultArrowSensitivity
Specifies the default sensitivity of the drawn arrows to user input. The resourc
overridden by the XmNarrowSensitivity constraint resource of the textual chi
which has the focus. Possible values:

XmARROWS_DECREMENT_SENSITIVE

/* only the decrement arrow accepts input*/
XmARROWS_INCREMENT_SENSITIVE

/* only the increment arrow accepts input*/
XmARROWS_INSENSITIVE /*both arrows are insensitive */
XmARROWS_SENSITIVE /*both arrows are sensitive */

XmNdetailShadowThickness
Specifies the thickness of the shadow used for drawing the arrow shapes. V
of 0, 1, or 2 are implemented. In Motif 2.0, the default value is 2. In Motif 2.1, th
default value depends upon the XmDisplay XmNenableThinThickness resou
if True the default is 1, otherwise 2.

XmNinitialDelay
Specifies the time interval in milliseconds (after pressing the mouse) which i
elapse before the SpinBox triggers automatic spinning. If the value is zero, t
value defaults to that specified by the XmNrepeatDelay resource.

XmNmarginWidth
Specifies the space between the left edge of the SpinBox and the leftmost c
and the space between the right edge of the SpinBox and the rightmost child

XmNmarginHeight
Specifies the space between the top edge of the SpinBox and the topmost c
and the space between the bottom edge of the SpinBox and the bottom chil
Motif Reference Manual 913

Motif and Xt Widget Classes

ich
eld

d. If

s.

N ss

X

X

X

X

X

X

X

X

X

X

X

XmNrepeatDelay
Specifies the time interval in milliseconds (when holding down the mouse) wh
is to elapse before the SpinBox triggers automatic spinning: with the mouse h
down, the SpinBox repeatedly spins until such time as the mouse is release
the value is zero, automatic spinning is disabled.

XmNspacing
Specifies the horizontal and vertical spacing between items in the SpinBox.

New Constraint Resources
SpinBox defines the following constraint resources for its children:

XmNarrowSensitivity
Specifies the sensitivity of the arrowbuttons. Possible values:

XmARROWS_DEFAULT_SENSITIVITY
/* inherit XmNdefaultArrowSensitivity */

XmARROWS_DECREMENT_SENSITIVE
/* only decrement arrow accepts input*/

XmARROWS_INCREMENT_SENSITIVE
/* only increment arrow accepts input*/

XmARROWS_INSENSITIVE /*both arrows are insensitive */
XmARROWS_SENSITIVE /*both arrows are sensitive */

XmNdecimalPoints
Specifies the number of decimal places used when displaying numeric value
The value is zero padded where necessary.

ame Class Type Default Acce

mNarrowSensitivity XmCArrowSensitivity unsigned char XmARROWS_DEFAULT_SENSITIVITY CSG

mNdecimalPoints XmCDecimalPoints short 0 CSG

mNincrementValue XmCIncrementValue int 1 CSG

mNmaximumValue XmCMaximumValue int 10 CSG

mNminimumValue XmCMinimumValue int 0 CSG

mNnumValues XmCNumValues int 0 CSG

mNposition XmCPosition int 0 CSG

mNpositionType XmCPositionType unsigned char XmPOSITION_VALUE CSG

mNspinBoxChildType XmCSpinBoxChildType unsigned char XmString CSG

mNvalues XmCValues XmStringTable NULL CSG

mNwrap XmCWrap Boolean True CSG
Motif Reference Manual 914

Motif and Xt Widget Classes

in-
only

sed

on-

,
IC,
lue
he
ini-

-

s:
XmNincrementValue
Specifies the amount to increment or decrement the numeric value in the Sp
Box text when the increment or decrement arrow is pressed. The resource is
used when the SpinBox type is XmNUMERIC.

XmNmaximumValue
Specifies the greatest value allowed in an XmNUMERIC SpinBox.

XmNminimumValue
Specifies the smallest value allowed in an XmNUMERIC SpinBox.

XmNnumValues
Specifies the number of values in the XmNvalues array. The resource is only u
when the SpinBox type is XmSTRING.

XmNposition
The interpretation of this resource depends upon the value of the XmNpositi
Type and XmNspinBoxChildType resources.

When XmNpositionType is XmPOSITION_INDEX, the position is interpreted
as an index into an array of values. If XmNspinBoxChildType is XmSTRING
these are defined by the XmNvalues resource. If the child type is XmNUMER
then the array of values is a set of numbers bounded by the XmNminimumVa
and XmNmaximumValue resource. A number is in the set depending upon t
XmNincrementValue resource: position zero corresponds to the value XmNm
mumValue, position n is the value given by:

XmNminimumValue + (n * XmNincrementValue)

When the XmNpositionType is XmPOSITION_VALUE and the XmNspinBox
ChildType is XmNUMERIC, the position is the actual value to display, and is
bounded by XmNminimumValue and XmNmaximumValue. If XmNspinBox-
ChildType is XmSTRING, position remains an index into the XmNvalues
resource array.

XmNpositionType
Specifies how the XmNposition resource is to be interpreted. Possible value

XmPOSITION_INDEX /*position is an index into an array */
XmPOSITION_VALUE /* position is a direct value */

XmNspinBoxChildType
Specifies the type of data to be displayed. Possible values:

XmNUMERIC /* choices defined by maximum, */
/* minimum, increment values */

XmSTRING /* choices defined by the values array */
Motif Reference Manual 915

Motif and Xt Widget Classes

-

osi-
 is
ent
na-
cir-
XmNvalues
Specifies the array of compound strings forming the set of items for the Sim
pleSpinBox. The resource only has effect if XmNspinBoxChildType is
XmSTRING.

XmNwrap
Specifies whether the SpinBox wraps around the set of values. If the current p
tion is at the maximum value, the increment arrow is pressed, and XmNwrap
True, the requested position becomes the minimum value. Similarly if the curr
position is at the minimum, and the decrement arrow is pressed with wrap e
bled, the requested position is at the maximum. If wrap is False in the given
cumstances, the bell is rung and the selection is unchanged.

Callback Resources
SpinBox defines the following callback resources:

XmNmodifyVerifyCallback
List of callbacks called before the SpinBox position is changed.

XmNvalueChangedCallback
List of callbacks called after the SpinBox position is changed.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /*the reason that the callback was called*/
XEvent *event; /*points to event that triggered callback*/
Widget widget; /*the textual child affected by callback*/
Boolean doit; /*whether to perform the changes */
int position; /* specifies the index of the next value*/
XmString value; /*specifies the next value */
Boolean crossed_boundary; /*whether the SpinBox has wrapped */

} XmSpinBoxCallbackStruct;

Callback Reason Constant

XmNmodifyVerifyCallback XmCR_SPIN_FIRST
XmCR_SPIN_LAST
XmCR_SPIN_NEXT
XmCR_SPIN_PRIOR

XmNvalueChangedCallback XmCR_OK
XmCR_SPIN_FIRST
XmCR_SPIN_LAST
XmCR_SPIN_NEXT
XmCR_SPIN_PRIOR
Motif Reference Manual 916

Motif and Xt Widget Classes

e
IC

xt

e is
o pre-
nt

si-
in

ram-

er
t

beti-
reason indicates why the callback is invoked. Ifreason is XmCR_SPIN_FIRST,
the SpinBox position is either XmNminimum, or the index of the first item in th
XmNvalues array, depending upon whether the SpinBox type is XmNUMER
or XmSTRING respectively. Ifreason is XmCR_SPIN_LAST, the position is
either XmNmaximum, or the index of the last item in the XmNvalues array. If
reason is XmCR_SPIN_NEXT, the increment arrow is armed. Ifreason is
XmCR_SPIN_PRIOR, the decrement arrow is armed. Ifreason is XmCR_OK,
an arrow is disarmed.

widgetis the ID of the textual component affected by the callback. This is the te
which has the current focus.

doit is a flag indicating whether the action is to be performed. The default valu
True, although a programmer may set the value False for whatever reason t
vent the item associated with position and value being displayed at the curre
instant.doit is only relevant to XmNmodifyVerifyCallback callbacks.

position is equivalent to the XmNposition resource, and specifies the next po
tion to display. An XmNmodifyVerifyCallback procedure may alter the value
order to force the SpinBox to display a particular item.

valuespecifies the new item to be displayed in widget.valueis a temporary com-
pound string which is freed after callback procedures are finished. The prog
mer should copyvalue if this is required outside of the callback procedures.

crossed_boundary1 specifies whether the SpinBox has crossed the upper or low
bound as specified by XmNminimum and XmNmaximum, or the first and las
compound string in the XmNvalues array.

Inherited Resources
SpinBox inherits the resources shown below. The resources are listed alpha
cally, along with the superclass that defines them.

1.Erroneously given as crossing_boundary in 2nd edition.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNscreen Core
Motif Reference Manual 917

Motif and Xt Widget Classes
Translations
The translations for SpinBox include those of XmManager.

XmNbottomShadowColor XmManager XmNsensitive Core

XmNbottomShadowPixmap XmManager XmNshadowThickness XmManager

XmNchildren Composite XmNstringDirection XmManager

XmNcolormap Core XmNtopShadowColor XmManager

XmNdepth Core XmNtopShadowPixmap XmManager

XmNdestroyCallback Core XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNwidth Core

XmNhighlightPixmap XmManager XmNx Core

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core

Event Action

BSelect Press SpinBArm()

BSelect Release SpinBDisarm()

<EnterWindow> SpinBEnter()

<LeaveWindow) SpinBLeave()

KUp SpinBPrior()

KDown SpinBNext()

KLeft SpinBLeft()

KRight SpinBRight()

KBeginData SpinBFirst()

KEndData SpinBLast()

Resource Inherited From Resource Inherited From
Motif Reference Manual 918

Motif and Xt Widget Classes

re
-

ed
N-
t of

ed
e

by
,

n
al-

the

N-
e

he

-
e

ill
he
Action Routines
SpinBox defines the following action routines:

SpinBArm()
Draws the arrow shape under the pointer in armed form. If the
XmNinitialDelay resource is specified, a timer is initialized to the
value of the initial delay period. If the mouse is not released befo
the timer expires, the SpinBox starts automatically selecting suc
cessive items in the SpinBox.XmNmodifyVerifyCallback proce-
dures are called with the position element adjusted to the select
value, depending upon the type of arrow, and subsequently Xm
valueChangedCallback procedures are called if the doit elemen
the XmSpinBoxCallbackStruct is still True after the modify verify
callbacks are finished. The position element of the structure is us
to determine the value which is inserted into the textual child of th
SpinBox which has the focus.

SpinBDisarm()
Draws the arrow shape in disarmed form. If any period specified
the XmNrepeatDelay or XmNinitialDelay periods have not expired
XmNmodifyVerifyCallback procedures are called with the positio
element adjusted to the required value, and subsequently XmNv
ueChangedCallback procedures are called if the doit element of
XmSpinBoxCallbackStruct is still True. The item as reflected by
the final value of the position element of the structure is inserted
into the current traversable text.

SpinBPrior()
Draws the decrement arrow in armed form, and invokes any Xm
modifyVerifyCallback procedures, with the position element of th
XmSpinBoxCallbackStruct suitably decremented, taking into
account possible wrapping. Thereafter, if the doit element is still
True, any XmNvalueChangedCallback procedures are invoked. T
item as reflected by the final value of the position element of the
structure is inserted into the current traversable text.

SpinBNext()
Draws the increment arrow in armed form, and invokes any XmN
modifyVerifyCallback procedures, with the position element of th
XmSpinBoxCallbackStruct suitably incremented, taking into
account possible wrapping. Thereafter, if the doit element is st
True, any XmNvalueChangedCallback procedures are invoked. T
item as reflected by the final value of the position element of the
structure is inserted into the current traversable text.
Motif Reference Manual 919

Motif and Xt Widget Classes

-
af-

s
is

-
i-

s
is

ch

s
ch
SpinBLeft()
If the XmNlayoutDirection is XmLEFT_TO_RIGHT, invokes the
SpinBPrior() action, otherwise invokes SpinBNext().

SpinBRight()
If the XmNlayoutDirection is XmLEFT_TO_RIGHT, invokes the
SpinBNext() action, otherwise invokes SpinBPrior().

SpinBFirst()
XmNmodifyVerifyCallback procedures are invoked with the posi
tion element of the XmSpinBoxCallbackStruct set to zero. There
ter, if the doit element is still True, any
XmNvalueChangedCallback procedures are invoked. The item a
reflected by the final value of the position element of the structure
inserted into the current traversable text.

SpinBLast()
XmNmodifyVerifyCallback procedures are invoked with the posi
tion element of the XmSpinBoxCallbackStruct set to the last pos
tion. Thereafter, if the doit element is still True, any
XmNvalueChangedCallback procedures are invoked. The item a
reflected by the final value of the position element of the structure
inserted into the current traversable text.

SpinBEnter()
If the containing shell has a focus policy of XmPOINTER, draws
the highlight border around the child traversable text widget whi
has the focus.

SpinBLeave()
If the containing shell has a focus policy of XmPOINTER, erase
the highlight border around the child traversable text widget whi
has the focus.

See Also
XmSpinBoxValidatePosition (1), XmCreateObject (1),
Composite (2), Constraint (2), Core (2), XmManager(2).
Motif Reference Manual 920

Motif and Xt Widget Classes

s-
ged
 is

a
 to
es-

ates
-

es:
Name
XmTemplateDialog – an unmanaged MessageBox as a child of DialogShell.

Synopsis

Public Header:
<Xm/MessageB.h>

Instantiation:
widget = XmCreateTemplateDialog (parent, name,...)

Functions/Macros:
XmCreateTemplateDialog (), XmMessageBoxGetChild ()

Description
An XmTemplateDialog is a compound object created by a call toXmCreate-
TemplateDialog () that an application can use to present a customized me
sage to the user. A TemplateDialog consists of a DialogShell with an unmana
MessageBox widget as its child. The MessageBox resource XmNdialogType
set to XmDIALOG_TEMPLATE. By default, a TemplateDialog includes only
separator. An application can create a customized dialog by adding children
the TemplateDialog. To create the standard components associated with a M
sageBox, an application needs only specify the label string and callback
resources for the desired buttons, and the TemplateDialog automatically cre
the relevant button. Setting either the XmNmessageString or XmNsymbolPix
map resource creates a message or a symbol Label.

Default Resource Values
A TemplateDialog sets the following default values for MessageBox resourc

Widget Hierarchy
When a TemplateDialog is created with a specified name, the DialogShell is
named name_popup and the MessageBox is calledname.

See Also
XmCreateObject (1), XmMessageBoxGetChild (1),
XmDialogShell (2), XmMessageBox(2).

Name Default

XmNdialogType XmDIALOG_TEMPLATE
Motif Reference Manual 921

Motif and Xt Widget Classes

g

ited
Name
XmText widget class – text-editing widget.

Synopsis

Public Header:
<Xm/Text.h>

Class Name:
XmText

Class Hierarchy:
Core→ XmPrimitive→ XmText

Class Pointer:
xmTextWidgetClass

Instantiation:
widget =XmCreateText (parent, name,...)
or
widget =XtCreateWidget (name, xmTextWidgetClass,...)

Functions/Macros:
XmCreateScrolledText (), XmCreateText (), XmIsText (), XmText...
routines

Description
A Text widget provides a text editor that allows text to be inserted, modified,
deleted, and selected. Text provides both single-line and multi-line text editin
capabilities.

Traits
Text holds the XmQTaccessTextual and XmQTtransfer traits, which are inher
in any derived classes, and uses the XmQTaccessTextual, XmQTspeci-
fyRenderTable, XmQTnavigator and XmQTscrollFrame traits.

New Resources
Text defines the following resources:

Name Class Type Default Access

XmNautoShowCursorPosition XmCAutoShowCursorPosition Boolean True CSG

XmNcursorPosition XmCCursorPosition XmTextPosition 0 CSG

XmNeditable XmCEditable Boolean True CSG

XmNeditMode XmCEditMode int see below CSG

XmNmarginHeight XmCMarginHeight Dimension 5 CSG

XmNmarginWidth XmCMarginWidth Dimension 5 CSG
Motif Reference Manual 922

Motif and Xt Widget Classes

that

rce
s 0.

ot

dges

rd.
urce
XmNautoShowCursorPosition
If True (default), the visible portion of the Text widget will always contain the
insert cursor. The Text widget will scroll its contents, if necessary, to ensure
the cursor remains visible.

XmNcursorPosition
The location at which to place the current insert cursor. Values for this resou
are relative to the beginning of the text; the first character position is defined a

XmNeditable
If True (default), the user is allowed to edit the text string; if False, the user is n
allowed to do so.

XmNeditMode
Determines which group of keyboard bindings to use. Possible values:

XmMULTI_LINE_EDIT /* key bindings for multi-line edits */
XmSINGLE_LINE_EDIT /* key bindings for single line edits (default) */

XmNmarginHeight

XmNmarginWidth
The spacing between the edges of the widget and the text. (Top and bottom e
for height; left and right for width.)

XmNmaxLength
The maximum length of the text string that a user can enter from the keyboa
This resource does not affect strings that are entered via the XmNvalue reso
or theXmTextSetString () routine.

XmNsource
A source that the Text widget uses for displaying text, thereby allowing Text
widgets to share the same text source.

XmNtotalLines
In Motif 2.1, specifies the number of lines within the Text widget buffer. The
value takes into account word wrapping.

XmNmaxLength XmCMaxLength int largest integer CSG

XmNsource XmCSource XmTextSource default source CSG

XmNtotalLines XmCTotalLines int 1 CG

XmNtopCharacter XmNtopCharacter XmTextPosition 0 CSG

XmNvalue XmCValue String ““ CSG

XmNvalueWcs XmCValueWcs wchar_t (Wchar_t *) ““ CSG

XmNverifyBell XmCVerifyBell Boolean dynamic CSG

Name Class Type Default Access
Motif Reference Manual 923

Motif and Xt Widget Classes

ition

-
e.

ces-
XmNtopCharacter
The location of the text to display at the top of the window. Values for this
resource are relative to the beginning of the text, with the first character pos
defined as 0.

XmNvalue
The string value to display in the Text widget, expressed as a char *. If XmN
value and XmNvalueWcs are both defined, XmNvalueWcs takes precedenc
UseXtSetValues () to copy string values to the internal buffer and use
XtGetValues () to return the value of the internal buffer.

XmNvalueWcs
In Motif 1.2, the string value to display in the Text widget, expressed as a
wchar_t *. If XmNvalue and XmNvalueWcs are both defined, XmNvalueWcs
takes precedence. UseXtSetValues () to copy string values to the internal
buffer and useXtGetValues () to return the value of the internal buffer. This
resource cannot be set in a resource file.

XmNverifyBell
If True, a bell will sound when a verification produces no action. The default
value depends upon the XmNaudibleWarning resource of any VendorShell an
tor.

Text Input Resources

XmNpendingDelete
If True (default), the Text widget’s pending delete mode is on, meaning that
selected text will be deleted as soon as the next text insertion occurs.

XmNselectionArray
The array of possible actions caused by multiple mouse clicks. UIL does not
define these values for the Text widget. Possible values:

XmSELECT_POSITION /*single-click; reset position of insert cursor*/
XmSELECT_WORD /*double-click; select a word */
XmSELECT_LINE /* triple-click; select a line */
XmSELECT_ALL /* quadruple-click; select all text */

XmNselectionArrayCount
The number of items in the array specified by XmNselectionArray.

Name Class Type Default Access

XmNpendingDelete XmCPendingDelete Boolean True CSG

XmNselectionArray XmCSelectionArray XtPointer default array CSG

XmNselectionArrayCount XmCSelectionArrayCount int 4 CSG

XmNselectThreshold XmCSelectThreshold int 5 CSG
Motif Reference Manual 924

Motif and Xt Widget Classes

in

le.

w.
no

.

 is
nd

he

t
ext
XmNselectThreshold
The number of pixels the insertion cursor must be dragged during selection
order to select the next character.

Text Output Resources

XmNblinkRate
The time in milliseconds that the cursor spends either being visible or invisib
A value of 0 prevents the cursor from blinking.

XmNcolumns
The number of character spaces that should fit horizontally in the text windo
The XmNwidth resource determines the default value of XmNcolumns, but if
width has been set, the default is 20. See also XmNrows.

XmNcursorPositionVisible
If True, the text cursor will be visible. In Motif 2.1, if the text widget has an
XmPrintShell as ancestor, the default is False. Otherwise the default is True

XmNfontList
The font list used for the widget’s text. In Motif 2.0 and later, the XmFontList
obsolete, and is subsumed into the XmRenderTable. If both a render table a
font list are specified, the render table takes precedence.

XmNrenderTable
In Motif 2.0 and later, specifies the render table for the Text. If unspecified, t
value of the resource is inherited from the nearest ancestor which holds the
XmQTspecifyRenderTable trait, using the XmTEXT_RENDER_TABLE value
of the ancestor so found.

XmNresizeHeight
If False (default), the Text widget will not expand vertically to fit all of the tex
(in other words, the widget will need to have scrollbars so that the rest of the t

Name Class Type Default Access

XmNblinkRate XmCBlinkRate int 500 CSG

XmNcolumns XmCColumns short dynamic CSG

XmNcursorPositionVisible XmCCursorPositionVisible Boolean dynamic CSG

XmNfontList XmCFontList XmFontList dynamic CSG

XmNrenderTable XmCRenderTable XmRenderTable dynamic CSG

XmNresizeHeight XmCResizeHeight Boolean False CSG

XmNresizeWidth XmCResizeWidth Boolean False CSG

XmNrows XmCRows short dynamic CSG

XmNwordWrap XmCWordWrap Boolean False CSG
Motif Reference Manual 925

Motif and Xt Widget Classes

ith
lled-

the

he
ght
dit-

h

ode

-

n-

his

her
can be scrolled into view). If True, the Text widget always begins its display w
the text at the beginning of the source. This resource has no effect in a Scro
Text widget whose XmNscrollVertical resource is set to True.

XmNresizeWidth
If False (default), the Text widget will not expand horizontally to fit its text. If
True, the widget tries to change its width. This resource has no effect when
XmNwordWrap resource is set to True.

XmNrows
The number of character spaces that should fit vertically in the text window. T
XmNheight resource determines the default value of XmNrows, but if no hei
has been set, the default is 1. This resource is meaningful only when XmNe
Mode is XmMULTI_LINE_EDIT. See also XmNcolumns.

XmNwordWrap
If False (default), does not break lines automatically between words (in whic
case text can disappear beyond the window’s edge). If True, breaks lines at
spaces, tabs, or newlines. This resource is meaningful only when XmNeditM
is XmMULTI_LINE_EDIT.

Scrolled Text Resources

XmNscrollHorizontal
If True, the Text widget adds a horizontal ScrollBar. The default is True; how
ever, the value changes to False if the widget is in a ScrolledWindow whose
XmNscrollingPolicy resource is set to XmAUTOMATIC. This resource is mea
ingful only when XmNeditMode is XmMULTI_LINE_EDIT.

XmNscrollLeftSide
If True, the vertical ScrollBar is placed to the left of the scrolled text window.
The default value depends on how the XmNstringDirection resource is set. T
resource is meaningful only when XmNeditMode is XmMULTI_LINE_EDIT
and when XmNscrollVertical is True.

XmNscrollTopSide
If True, the horizontal ScrollBar is placed above the scrolled text window, rat
than below by default.

Name Class Type Default Access

XmNscrollHorizontal XmCScroll Boolean True CG

XmNscrollLeftSide XmCScrollSide Boolean dynamic CG

XmNscrollTopSide XmCScrollSide Boolean False CG

XmNscrollVertical XmCScroll Boolean True CG
Motif Reference Manual 926

Motif and Xt Widget Classes

er,
-

acti-

s.

 pri-

 pri-

. If
-

XmNscrollVertical
If True, the Text widget adds a vertical ScrollBar. The default is True; howev
the value changes to False if the widget is in a ScrolledWindow whose XmN
scrollingPolicy resource is set to XmAUTOMATIC.

Callback Resources
Text defines the following callback resources:

XmNactivateCallback
List of callbacks that are called when the user causes the Text widget to be
vated.

XmNdestinationCallback
List of callbacks that are called when the Text is the destination of a transfer
operation.

XmNfocusCallback
List of callbacks that are called when the Text widget receives the input focu

XmNgainPrimaryCallback
List of callbacks that are called when the Text widget gains ownership of the
mary selection.

XmNlosePrimaryCallback
List of callbacks that are called when the Text widget loses ownership of the
mary selection.

XmNlosingFocusCallback
List of callbacks that are called when the Text widget loses the input focus.

XmNmodifyVerifyCallback
List of callbacks that are called before the value of the Text widget is changed
there are callbacks for both XmNmodifyVerifyCallback and XmNmodifyVerify
CallbackWcs, the XmNmodifyVerifyCallback callbacks are called first.

Callback Reason Constant

XmNactivateCallback XmCR_ACTIVATE

XmNdestinationCallback XmCR_OK

XmNfocusCallback XmCR_FOCUS

XmNgainPrimaryCallback XmCR_GAIN_PRIMARY

XmNlosePrimaryCallback XmCR_LOSE_PRIMARY

XmNlosingFocusCallback XmCR_LOSING_FOCUS

XmNmodifyVerifyCallback XmCR_MODIFYING_TEXT_VALUE

XmNmodifyVerifyCallbackWcs XmCR_MODIFYING_TEXT_VALUE

XmNmotionVerifyCallback XmCR_MOVING_INSERT_CURSOR

XmNvalueChangedCallback XmCR_VALUE_CHANGED
Motif Reference Manual 927

Motif and Xt Widget Classes

. If
-

ext

.

i-

/

*/

 */
/
*/

 is

ri-
XmNmodifyVerifyCallbackWcs
List of callbacks that are called before the value of the Text widget is changed
there are callbacks for both XmNmodifyVerifyCallback and XmNmodifyVerify
CallbackWcs, the XmNmodifyVerifyCallback callbacks are called first.

XmNmotionVerifyCallback
List of callbacks that are called before the insertion cursor is moved in the T
widget.

XmNvalueChangedCallback
List of callbacks that are called after the value of the Text widget is changed

Callback Structure
Destination callbacks are fully described within the sections covering the Un
form Transfer Model. SeeXmTransfer (1) for more details. For quick refer-
ence, a pointer to the following structure is passed to callbacks on the
XmNdestinationCallback list:

typedef struct {
int reason; /* the reason that the callback is invoked *
XEvent *event; /* points to event that triggered callback */
Atom selection; /* the requested selection type, as an Atom
XtEnum operation; /* the type of transfer requested */
int flags; /* whether destination and source are same */
XtPointer transfer_id; /* unique identifier for the request */
XtPointer destination_data; /* information about the destination
XtPointer location_data; /* information about the data *
Time time; /* time when the transfer operation started

} XmDestinationCallbackStruct;

With the exception of the above destination callback, each callback function
passed the following structure:

typedef struct {
int reason; /*the reason that the callback was called*/
XEvent *event; /*event structure that triggered callback*/

} XmAnyCallbackStruct;

In addition, the callback resources XmNlosingFocusCallback, XmNmodifyVe
fyCallback, and XmNmotionVerifyCallback reference the following structure:

typedef struct {
int reason; /*the reason that the callback was called*/
XEvent *event; /*points to event that triggered callback*/
Boolean doit; /*do the action (True) or undo it (False)*/
long currInsert; /*the insert cursor’s current position*/
Motif Reference Manual 928

Motif and Xt Widget Classes

as
k.

k.

be

g

fy-
long newInsert; /*desired new position of insert cursor*/
long startPos; /*start of text to change */
long endPos; /*end of text to change */
XmTextBlocktext; /*describes the text to insert */

} XmTextVerifyCallbackStruct, *XmTextVerifyPtr;

start_pos specifies the location at which to start modifying text.start_pos is
unused if the callback resource is XmNmotionVerifyCallback, and is the same
thecurrent_insertmember if the callback resource is XmNlosingFocusCallbac

end_pos specifies the location at which to stop modifying text (however, if no
text was modified,end_pos has the same value asstart_pos). end_pos is unused
if the callback resource is XmNmotionVerifyCallback, and is the same as the
current_insert member if the callback resource is XmNlosingFocusCallbac

textpoints to the structure below, which specifies information about the text to
inserted.

typedef struct {
char *ptr; /* pointer to the text to insert */
int length; /* length of this text */
XmTextFormat format; /*text format (e.g., FMT8BIT, FMT16BIT)*/

} XmTextBlockRec, *XmTextBlock;

The callback resource XmNmodifyVerifyCallbackWcs references the followin
structure:

typedef struct {
int reason; /*the reason that the callback was called*/
XEvent *event; /*structure that triggered callback */
Boolean doit; /*do the action (True) or undo it (False)*/
long current_insert; /*the insert cursor’s current position */
long new_insert; /*desired new position of insert cursor*/
long start_pos; /*start of text to change */
long end_pos; /*end of text to change */
XmTextBlockWcstext; /*describes the text to insert */

} XmTextVerifyCallbackStructWcs, *XmTextVerifyPtrWcs;

All of the fields in this structure are the same as the fields in the XmTextVeri
CallbackStruct except text, which points to the structure below and specifies
information about the text to be inserted.

typedef struct {
wchar_t *wcsptr; /*pointer to the text to insert */
int length; /* length of this text */

} XmTextBlockRecWcs, *XmTextBlockWcs;
Motif Reference Manual 929

Motif and Xt Widget Classes

,
mN-

g.
iron-
Inherited Resources
Text inherits the following resources. The resources are listed alphabetically
along with the superclass that defines them. Text sets the default value of X
navigationType to XmTAB_GROUP. The default value of XmNborderWidth is
reset to 0 by Primitive.

Translations
The translations for Text include those from Primitive, as well as the followin
(Note that some of the associated actions will be reversed for a language env
ment in which text is not read from left to right.)

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNhighlightThickness XmPrimitive

XmNancestorSensitive Core XmNinitialResourcesPersistent Core

XmNbackground Core XmNlayoutDirection XmPrimitive

XmNbackgroundPixmap Core XmNmappedWhenManaged Core

XmNborderColor Core XmNnavigationType XmPrimitive

XmNborderPixmap Core XmNpopupHandlerCallback XmPrimitive

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmPrimitive XmNsensitive Core

XmNbottomShadowPixmap XmPrimitive XmNshadowThickness XmPrimitive

XmNcolormap Core XmNtopShadowColor XmPrimitive

XmNconvertCallback XmPrimitive XmNtopShadowPixmap XmPrimitive

XmNdepth Core XmNtranslations Core

XmNdestroyCallback Core XmNtraversalOn XmPrimitive

XmNforeground XmPrimitive XmNunitType XmPrimitive

XmNheight Core XmNuserData XmPrimitive

XmNhelpCallback XmPrimitive XmNwidth Core

XmNhighlightColor XmPrimitive XmNx Core

XmNhighlightOnEnter XmPrimitive XmNy Core

XmNhighlightPixmap XmPrimitive

Event Action Event Action

BSelect Press grab-focus() MShift KPageDown next-page(extend)

BSelect Motion extend-adjust() KPageLeft page-left()

BSelect Release extend-end() KPageRight page-right()

BExtend Press extend-start() KBeginLine beginning-of-line()
Motif Reference Manual 930

Motif and Xt Widget Classes

r()
BExtend Mition extend-adjust() MShift KBeginLine beginning-of-line(extend)a

BExtend Release extend-end() KEndLine end-of-line

BToggle Press move-destination() MShift KEndLine end-of-line(extend)

BTransfer Press process-bdrag() (1.2)
secondary-start (1.1)

KBeginData beginning-of-file()

BTransfer Motion secondary-adjust() MShift KBeginData beginning-of-file(extend)

BTransfer Release copy-to() KEndData end-of-file()

MCtl BTransfer Press process-bdrag() (1.2)
secondary-start (1.1)

MShift KEndData end-of-file(extend)

MCtrl BTransfer Motion secondary-adjust() KTab process-tab()

MCtrl BTransfer Release copy-to() KNextField next-tab-group()

MAlt BTransfer Press process-bdrag() (1.2)
secondary-start (1.1)

KPrevField prev-tab-group()

MAlt BTransfer Motion secondary-adjust() KEnter process-return()

MAlt BTransfer Release copy-to() KActivate activate()

MShift BTransfer Press process-bdrag() KDelete delete-next-character()

MShift BTransfer Motion secondary-adjust() KBackSpace delete-previous-characte

MShift BTransfer Release move-to() KAddMode toggle-add-mode()

MAlt MCtrl BTransfer Release copy-to() KSpace self-insert()

MAlt MShift BTransfer Release move-to() MShift KSpace insert

KUp process-up() KSelect set-anchor()

MShift KUp process-shift-up() KExtend key-select()

MCtrl KUp backward-paragraph() MAny KCancel process-cancel()

MShift MCtrl KUp backward-paragraph(extend) KClear clear-selection()

KDown process-down() KSelectAll select-all()

MShift KDown process-shift-down() KDeselectAll deselect-all()

MCtrl KDown forward-paragraph() KCut cut-clipboard()

MShift MCtrl KDown forward-paragraph(extend) KCopy copy-clipboard()

KLeft backward-character() KPaste paste-clipboard()

MShift KLeft key-select(left) KPrimaryCut cut-primary()

MCtrl KLeft backward-word() KPrimaryCopy copy-primary()

MShift MCtrl KLeft backward-word(extend) KPrimaryPaste copy-primary()

KRight forward-character() KQuickCut quick-cut-set() (1.1)

MShift KRight key-select(right) KQuickCopy quick-copy-set() (1.1)

MCtrl KRight forward-word() KQuickPaste quick-copy-set() (1.1)

Event Action Event Action
Motif Reference Manual 931

Motif and Xt Widget Classes

h as

i-
no
ent,

ip-

a

ter

de

a
i-
nk

or
Action Routines
Text defines the action routines below. For actions that involve movement suc
next, previous, start, end, back, forward, etc., the actual cursor movement
depends on whether the layout direction is left-to-right or right-to-left. In add
tion, some actions accept an optional argument, extend. When applied with
argument, these actions move the cursor; when applied with the extend argum
these actions move the cursor but also extend the text selection. In all descr
tions, the term cursor refers to the insertion cursor.

activate()
Invokes the callbacks specified by XmNactivateCallback.

backward-character()
Moves the cursor back one character.

backward-paragraph(extend)
Moves the cursor back to the first non-blank character that follows
blank line (or back to the start of the text if there is no previous
blank line). If the cursor is already located at a non-blank charac
(i.e., if it’s already at the beginning of the paragraph), the cursor
moves to the start of the previous paragraph. (Multi-line edit mo
only.)

backward-word(extend)
Moves the cursor back to the first non-blank character that follows
blank character (or back to the start of the line if there is no prev
ous blank character). If the cursor is already located at a non-bla
character (i.e., if it’s already at the beginning of a word), the curs
moves to the start of the previous word.

beep()
Makes the terminal beep.

beginning-of-file(extend)
Moves the cursor to the start of the text.

beginning-of-line(extend)
Moves the cursor to the start of the line.

MShift MCtrl KRight formward-word(extend) KQuickExtend do-quick-action() (1.1)

KPageUp previous-page() KHelp Help()

MShift KPageUp previous-page(extend) KAny self-insert()

KPageDown next-page()

a.Erroneously given as beginning-of-file(extend) in 1st and 2nd editions.

Event Action Event Action
Motif Reference Manual 932

Motif and Xt Widget Classes

ely

r, if
lec-

e,

e,
ow-
 of

lud-
clear-selection()
Replaces each character (except a newline) with a space, effectiv
clearing the current selection.

copy-clipboard()
Copies the current text selection into the clipboard.

copy-primary()
Inserts a copy of the primary selection at the cursor location.

copy-to()
Inserts a copy of the secondary selection at the cursor location, o
there is no secondary selection, inserts a copy of the primary se
tion at the pointer location.

cut-clipboard()
Deletes the current selection and moves it to the clipboard.

cut-primary()
Deletes the primary selection and inserts it at the cursor.

delete-next-character()
delete-previous-character()

If the cursor is inside the selection and XmNpendingDelete is Tru
deletes the selection. Otherwise, deletes the character follow-
ing/preceding the cursor.

delete-next-word()
delete-previous-word()

If the cursor is inside the selection and XmNpendingDelete is Tru
deletes the selection. Otherwise, deletes from the character foll
ing/preceding the cursor to the next/previous space, tab, or end
line.

delete-selection()
Deletes the current selection.

delete-to-end-of-line()
Deletes forward from the character after the cursor up to and
including the end of the line.

delete-to-start-of-line()
Deletes back from the character before the cursor up to and inc
ing the beginning of the line.

deselect-all()
Deselects the current selection.
Motif Reference Manual 933

Motif and Xt Widget Classes

t
et.

per-

l-

he

 a
o

or
do-quick-action(0
In Motif 1.1, Ends a secondary selection and does the action tha
was started by either of the actions quick-copy-set or quick-cut-s

end-of-file(extend)
Moves the cursor to the end of the text.

end-of-line(extend)
Moves the cursor to the end of the line.

extend-adjust()
Selects text that is between the anchor and the pointer location,
while deselecting text that is outside this area. As a result of this
action, when the pointer moves past lines of text, these lines are
selected and the current line is selected up to the position of the
pointer.

extend-end()
Moves the cursor to the pointer location and ends the selection
formed by extend-adjust.

extend-start()
Adjusts the anchor in preparation for selecting text via the
extend-adjust action.

forward-character()
Moves the cursor forward one character.

forward-paragraph(extend)
Moves the cursor forward to the first non-blank character that fo
lows a blank line. If the cursor is already located at a non-blank
character (i.e., if it’s already at the beginning of the paragraph), t
cursor moves to the start of the next paragraph. (Multi-line edit
mode only.)

forward-word(extend)
Moves the cursor forward to the first blank character that follows
non-blank character (or forward to the end of the line if there is n
blank character to move to). If the cursor is already located at a
blank character (i.e., if it’s already at the end of a word), the curs
moves to the end of the next word.
Motif Reference Manual 934

Motif and Xt Widget Classes

ca-

e

m.

ext

e
is
h

,
ext

r.

lud-

ns
grab-focus()
Processes multi-clicks as defined in the XmNselectionArray
resource. By default, one click resets the cursor to the pointer lo
tion, two clicks select a word, three clicks select a line, and four
clicks select all of the text.

Help()
Invokes the list of callbacks specified by XmNhelpCallback. If th
Text widget doesn’t have any help callbacks, this action routine
invokes those associated with the nearest ancestor that has the

insert-string(text)
Inserts text at the cursor, or replaces the current selection with t
(when XmNpendingDelete is True).

key-select(direction)
Extends the selection and moves the cursor one character to th
right (when direction is right), one character to the left (direction
left). If no direction is specified, the selection is extended, althoug
the insertion cursor is not moved.

kill-next-character()
kill-next-word()
kill-previous-character()
kill-previous-word()

These four actions are similar to their delete action counterparts
but the kill actions have the added feature of storing the deleted t
in the cut buffer.

kill-selection()
Deletes the current selection and stores this text in the cut buffe

kill-to-end-of-line()
Deletes forward from the character after the cursor up to and
including the end of the line; stores this text in the cut buffer.

kill-to-start-of-line()
Deletes back from the character before the cursor up to and inc
ing the beginning of the line; stores this text in the cut buffer.

move-destination()
Moves the cursor to the pointer location, leaving existing selectio
unaffected.
Motif Reference Manual 935

Motif and Xt Widget Classes

f
nd

e,
ise,

e,
 the

e.

e,

nk
nd
move-to()
Deletes the secondary selection and inserts it at the cursor, or, i
there is no secondary selection, deletes the primary selection a
inserts it at the pointer location.

newline()
If the cursor is inside the selection and XmNpendingDelete is Tru
deletes the selection and inserts a newline at the cursor. Otherw
only inserts a newline at the cursor.

newline-and-backup()
If the cursor is inside the selection and XmNpendingDelete is Tru
deletes the selection, inserts a newline at the cursor and moves
cursor to the end of the previous line. Otherwise, only inserts a
newline and then moves the cursor to the end of the previous lin

newline-and-indent()
If the cursor is inside the selection and XmNpendingDelete is Tru
deletes the selection, inserts a newline at the cursor, and adds
blanks (as needed) so that the cursor aligns with the first non-bla
character in the previous line. Otherwise, only inserts a newline a
adds blanks (as needed) so that the cursor aligns with the first
non-blank character in the previous line.

next-line()
Places the cursor on the next line.

next-page(extend)
Moves the cursor one page forward.

next-tab-group()
Traverses to the next tab group.

page-left()
page-right()

Scrolls the visible area one page to the left or right.

paste-clipboard()
Pastes text from the clipboard to the position before the cursor.

prev-tab-group()
Traverses to the previous tab group.

previous-line()
Places the cursor on the previous line.
Motif Reference Manual 936

Motif and Xt Widget Classes

f
nd
ies
sor
iti-

re
te.

ja-
e

dit-

.

 a

y

y

previous-page(extend)
Moves the cursor one page backward.

process-bdrag()
In Motif 1.2, copies the current selection to the insertion cursor i
text is selected, the location cursor is outside of the selection, a
no motion is detected. Performs a secondary selection and cop
the selection to the position where text was last edited if the cur
is outside of the selection and motion is detected. Otherwise, in
ates a drag and drop operation using the current selection.

process-cancel()
Cancels the extend-adjust() or secondary-adjust() actions that a
currently being applied, restoring the selection to its previous sta

process-down()
process-up()

If XmNnavigationType is XmNONE, descends/ascends to the ad
cent widget in the tab group (single-line edit mode only). Moves th
cursor one line down/up (multi-line edit mode only).

process-home() Moves the cursor to the start of the line. (Similar to begin-
ning-of-line.)
process-return() Invokes the XmNactivateCallback callbacks (in single-line e
ing) or inserts a newline (in multi-line editing).

process-shift-down()
process-shift-up()

Moves the cursor one line down or up (in multi-line editing only)

process-tab()
Traverses to the next tab group (in single-line editing) or inserts
tab (in multi-line editing).

quick-copy-set()
In Motif 1.1, marks this text location as the start of the secondar
selection to use in quick copying.

quick-cut-set()
In Motif 1.1, marks this text location as the start of the secondar
selection to use in quick cutting.

redraw-display()
Redraws the text in the viewing window.

scroll-one-line-down()
scroll-one-line-up()

Scrolls the text region one line down or up.
Motif Reference Manual 937

Motif and Xt Widget Classes

or.

he

ts
ext

ns;

 a
n

ur-
n

secondary-adjust()
Extends the secondary selection to the location of the pointer.

secondary-notify()
Inserts a copy of the secondary selection at the destination curs

secondary-start()
In Motif 1.1, marks this text location as the start of a secondary
selection.

select-adjust()
Extends the selection via the multiple mouse clicks defined by t
XmNselectionArray resource.

select-all()
Selects all text.

select-end()
Ends the selection made using the select-adjust() action.

select-start()
Begins a text selection.

self-insert()
The basic method of inserting text. Typing at the keyboard inser
new text and (if XmNpendingDelete is True) replaces selected t
that the cursor is in.

set-anchor()
Changes the anchor point used when making extended selectio
changes the destination cursor used for secondary selections.

set-insertion-point()
Sets the position of the cursor.

set-selection-hint()
Sets the selection’s text source and the selection’s location.

toggle-add-mode()
Turns Add Mode either on or off.

toggle-overstrike()
Changes the text insertion mode. When a character is typed into
Text widget, by default it is inserted at the location of the insertio
cursor. In overstrike mode, an inserted character replaces the c
rent character that immediately follows the insertion cursor. Whe
the insertion cursor is at the end of a line in overstrike mode,
inserted characters are appended to the line.
Motif Reference Manual 938

Motif and Xt Widget Classes

,

e

traverse-home()
traverse-next()
traverse-prev()

Traverse within the tab group to the first widget, the next widget
and the previous widget, respectively.

unkill()
Restores the most recently deleted text to the cursor’s location.

Additional Behavior
Text has the following additional behavior:

<FocusIn>
Draws a solid insertion cursor and makes it blink.

<FocusOut>
Draws a stippled I-beam insertion cursor, unless the widget is th
destination of a data transfer.

See Also
XmCreateObject(1), XmTextClearSelection(1),
XmTextCopy(1), XmTextCut(1),
XmTextDisableRedisplay(1), XmTextEnableRedisplay(1),
XmTextFindString(1), XmTextFindStringWcs(1),
XmTextGetBaseline(1), XmTextGetCursorPosition(1),
XmTextGetEditable(1), XmTextGetInsertionPosition(1),
XmTextGetLastPosition(1), XmTextGetMaxLength(1),
XmTextGetSelection(1), XmTextGetSelectionPosition(1),
XmTextGetSelectionWcs(1), XmTextGetSource(1),
XmTextGetString(1), XmTextGetStringWcs(1),
XmTextGetSubstring(1), XmTextGetSubstringWcs(1),
XmTextGetTopCharacter(1), XmTextInsert(1),
XmTextInsertWcs(1), XmTextPaste(1), XmTextPosToXY(1),
XmTextRemove(1), XmTextReplace(1),
XmTextReplaceWcs(1), XmTextScroll(1),
XmTextSetAddMode(1), XmTextSetCursorPosition(1),
XmTextSetEditable(1), XmTextSetHighlight(1),
XmTextSetInsertionPosition(1), XmTextSetMaxLength(1),
XmTextSetSelection(1), XmTextSetSource(1),
XmTextSetString(1), XmTextSetStringWcs(1),
XmTextSetTopCharacter(1), XmTextShowPosition(1),
XmTextXYToPos(1), XmTransfer(1), Core(2),
XmRendition(2), XmPrimitive(2), XmPrinShell(2),
XmTextField(2).
Motif Reference Manual 939

Motif and Xt Widget Classes

nc-

T-
Name
XmTextField widget class – a single-line text-editing widget.

Synopsis

Public Header:
<Xm/TextF.h>

Class Name:
XmTextField

Class Hierarchy:
Core→ XmPrimitive→ XmTextField

Class Pointer:
xmTextFieldWidgetClass

Instantiation:
widget =XmCreateTextField (parent, name,...)
or
widget =XtCreateWidget (name, xmTextWidgetClass,...)

Functions/Macros:
XmCreateTextField (), XmIsTextField (), XmTextField... routines

Description
A TextField widget provides a single-line text editor that has a subset of the fu
tionality of the Text widget.

Traits
TextField holds the XmQTaccessTextual and XmQTtransfer traits, which are
inherited in any derived classes, and uses the XmQTaccessTextual and XmQ
specifyRenderTable traits.

New Resources
TextField defines the following resources:

Name Class Type Default Access

XmNblinkRate XmCBlinkRate int 500 CSG

XmNcolumns XmCColumns short dynamic CSG

XmNcursorPosition XmCCursorPosition XmTextPosition 0 CSG

XmNcursorPositionVisible XmCCursorPositionVisible Boolean dynamic CSG

XmNeditable XmCEditable Boolean True CSG

XmNfontList XmCFontList XmFontList dynamic CSG

XmNmarginHeight XmCMarginHeight Dimension 5 CSG

XmNmarginWidth XmCMarginWidth Dimension 5 CSG
Motif Reference Manual 940

Motif and Xt Widget Classes

le.

w.
no

rce
as

.

ot

 is
nd

dges
XmNblinkRate
The time in milliseconds that the cursor spends either being visible or invisib
A value of 0 prevents the cursor from blinking.

XmNcolumns
The number of character spaces that should fit horizontally in the text windo
The XmNwidth resource determines the default value of XmNcolumns, but if
width has been set, the default is 20.

XmNcursorPosition
The location at which to place the current insert cursor. Values for this resou
are relative to the beginning of the text, with the first character position defined
0.

XmNcursorPositionVisible
If True, the text cursor will be visible. In Motif 2.1, if the text field has an
XmPrintShell as ancestor, the default is False. Otherwise the default is True

XmNeditable
If True (default), the user is allowed to edit the text string; if False, the user is n
allowed to do so.

XmNfontList
The font list used for the widget’s text. In Motif 2.0 and later, the XmFontList
obsolete, and is subsumed into the XmRenderTable. If both a render table a
font list are specified, the render table takes precedence.

XmNmarginHeight

XmNmarginWidth
The spacing between the edges of the widget and the text. (Top and bottom e
for height; left and right for width.)

XmNmaxLength XmCMaxLength int largest integer CSG

XmNpendingDelete XmCPendingDelete Boolean True CSG

XmNrenderTable XmCRenderTable XmRenderTable dynamic CSG

XmNresizeWidth XmCResizeWidth Boolean False CSG

XmNselectionArray XmCSelectionArray XtPointer default array CSG

XmNselectionArrayCount XmCSelectionArrayCount int 3 CSG

XmNselectThreshold XmCSelectThreshold int 5 CSG

XmNvalue XmCValue String ““ CSG

XmNvalueWcs XmCValueWcs wchar_t (Wchar_t *) ““ CSG

XmNverifyBell XmCVerifyBell Boolean dynamic CSG

Name Class Type Default Access
Motif Reference Manual 941

Motif and Xt Widget Classes

rd.
e or

hat

ed,
the

t.

in

-

,
 the

r.
XmNmaxLength
The maximum length of the text string that a user can enter from the keyboa
This resource doesn’t affect strings that are entered via the XmNvalue resourc
theXmTextFieldSetString () routine.

XmNpendingDelete
If True (default), the TextField widget’s pending delete mode is on, meaning t
selected text will be deleted as soon as the next text insertion occurs.

XmNrenderTable
In Motif 2.0 and later, specifies the render table for the TextField. If unspecifi
the value of the resource is inherited from the nearest ancestor which holds
XmQTspecifyRenderTable trait, using the XmTEXT_RENDER_TABLE value
of the ancestor so found.

XmNresizeWidth
If False (default), the TextField widget will not expand horizontally to fit its tex
If True, the widget tries to change its width.

XmNselectionArray
The array of possible actions caused by multiple mouse clicks. UIL does not
define these values for the Text widget. Possible values:

XmSELECT_POSITION /*single-click; reset position of insert cursor*/
XmSELECT_WORD /*double-click; select a word */
XmSELECT_LINE /* triple-click; select a line */

XmNselectionArrayCount
The number of items in the array specified by XmNselectionArray.

XmNselectThreshold
The number of pixels the insertion cursor must be dragged during selection
order to select the next character.

XmNvalue
The string value to display in the TextField widget, expressed as a char *. If
XmNvalue and XmNvalueWcs are both defined, XmNvalueWcs takes prece
dence. Use XtSetValues() to copy string values to the internal buffer and use
XtGetValues() to return the value of the internal buffer.

XmNvalueWcs
In Motif 1.2 and later, the string value to display in the TextField widget,
expressed as a wchar_t *. If XmNvalue and XmNvalueWcs are both defined
XmNvalueWcs takes precedence. Use XtSetValues() to copy string values to
internal buffer and use XtGetValues() to return the value of the internal buffe
This resource cannot be set in a resource file.

XmNverifyBell
If True, a bell will sound when a verification produces no action.
Motif Reference Manual 942

Motif and Xt Widget Classes

lback

i-
alue
-

-

Callback Resources
TextField defines the same callback resources and references the same cal
structures as a single line Text widget.

Inherited Resources
TextField inherits the following resources. The resources are listed alphabet
cally, along with the superclass that defines them. TextField sets the default v
of XmNnavigationType to XmTAB_GROUP. The default value of XmNborder
Width is reset to 0 by Primitive.

Translations
TextField has the same translation as a Text widget whose XmNeditMode
resource is set to XmSINGLE_LINE_EDIT.

Action Routines
TextField defines the same action routines as a Text widget whose XmNedit
Mode resource is set to XmSINGLE_LINE_EDIT.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNhighlightThickness XmPrimitive

XmNancestorSensitive Core XmNinitialResourcesPersistent Core

XmNbackground Core XmNlayoutDirection XmPrimitive

XmNbackgroundPixmap Core XmNmappedWhenManaged Core

XmNborderColor Core XmNnavigationType XmPrimitive

XmNborderPixmap Core XmNpopupHandlerCallback XmPrimitive

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmPrimitive XmNsensitive Core

XmNbottomShadowPixmap XmPrimitive XmNshadowThickness XmPrimitive

XmNcolormap Core XmNtopShadowColor XmPrimitive

XmNconvertCallback XmPrimitive XmNtopShadowPixmap XmPrimitive

XmNdepth Core XmNtranslations Core

XmNdestroyCallback Core XmNtraversalOn XmPrimitive

XmNforeground XmPrimitive XmNunitType XmPrimitive

XmNheight Core XmNuserData XmPrimitive

XmNhelpCallback XmPrimitive XmNwidth Core

XmNhighlightColor XmPrimitive XmNx Core

XmNhighlightOnEnter XmPrimitive XmNy Core

XmNhighlightPixmap XmPrimitive
Motif Reference Manual 943

Motif and Xt Widget Classes
See Also
XmCreate Object (1), XmTextClearSelection(1),
XmTextCopy(1), XmTextCut(1), XmTextGetBaseline(1),
XmTextGetCursorPosition(1), XmTextGetEditable(1),
XmTextGetInsertionPosition(1),
XmTextGetLastPosition(1), XmTextGetMaxLength(1),
XmTextGetSelection(1), XmTextGetSelectionPosition(1),
XmTextGetSelectionWcs(1), XmTextGetString(1),
XmTextGetStringWcs(1), XmTextGetSubstring(1),
XmTextGetSubstringWcs(1), XmTextInsert(1),
XmTextInsertWcs(1), XmTextPaste(1), XmTextPosToXY(1),
XmTextRemove(1), XmTextReplace(1),
XmTextReplaceWcs(1), XmTextScroll(1),
XmTextSetAddMode(1), XmTextSetCursorPosition(1),
XmTextSetEditable(1), XmTextSetHighlight(1),
XmTextSetInsertionPosition(1), XmTextSetMaxLength(1),
XmTextSetSelection(1), XmTextSetSource(1),
XmTextSetString(1), XmTextSetStringWcs(1),
XmTextSetTopCharacter(1), XmTextShowPosition(1),
XmTextXYToPos(1), Core(2), XmPrimitive(2),
XmPrintShell(2), XmRendition(2), XmText(2).
Motif Reference Manual 944

Motif and Xt Widget Classes

ate.

lly
avior

 but-
ggle-

its
ped

or is

set,
e. If
set

aits.
Name
XmToggleButton widget class – a button widget that maintains a Boolean st

Synopsis

Public Header:
<Xm/ToggleB.h>

Class Name:
XmToggleButton

Class Hierarchy:
Core→ XmPrimitive→ XmLabel→ XmToggleButton

Class Pointer:
xmToggleButtonWidgetClass

Instantiation:
widget =XmCreateToggleButton (parent, name,...)
or
widget =XtCreateWidget (name, xmToggleButtonWidgetClass,...)

Functions/Macros:
XmCreateToggleButton (), XmToggleButtonGetState (),
XmToggleButtonSetState (), XmToggleButtonSetValue (), XmIs-
ToggleButton ()

Description
A ToggleButton is a button that is either set or unset. ToggleButtons are typica
used in groups, called RadioBoxes and CheckBoxes, depending on the beh
of the buttons. In a RadioBox, a ToggleButton displaysone-of-many behavior,
which means that only one button in the group can be set at a time. When a
ton is selected, the previously selected button is unset. In a CheckBox, a To
Button displaysn-of-many behavior, which means that any number of
ToggleButtons can be set at one time. ToggleButton uses an indicator to show
state; the shape of the indicator specifies the type of behavior. A diamond-sha
indicator is used for one-of-many ToggleButtons and a square-shaped indicat
used for n-of-many ToggleButtons.

In Motif 2.0 and later, a ToggleButton can have three possible states: set, un
and indeterminate, depending upon the value of the XmNtoggleMode resourc
the value is XmTOGGLE_BOOLEAN, the ToggleButton has the two states,
and unset. If the value is XmTOGGLE_INDETERMINATE, the ToggleButton
has three states.

Traits
ToggleButton uses the XmQTmenuSystem and XmQTspecifyRenderTable tr
Motif Reference Manual 945

Motif and Xt Widget Classes

 In
ds
1,

y
dow

e

e

.

New Resources
ToggleButton defines the following resources, all with CSG access:

XmNdetailShadowThickness
In Motif 2.0 and later, specifies the thickness of the shadow on the indicator.
Motif 2.0 the default value is 2. In Motif 2.1 and later, the default value depen
upon the XmDisplay XmNenableThinThickness resource: if True the default is
otherwise 2.

XmNfillOnSelect
If True, selection of this ToggleButton fills the indicator with the color given b
the XmNselectColor resource and switches the button’s top and bottom sha
colors.

If the ToggleButton is unselected, the top and bottom shadow colors are
switched. In Motif 2.0 and later, the indicator is filled with the color given by th
XmNunselectColor resource.

If the ToggleButton is in the indeterminate state as specified by the XmNset
resource, the indicator is half filled with the XmNselectColor and half with th
XmNunselectColor values.

If fill on select is False, only the top and bottom shadow colors are switched

Name Class Type Default

XmNdetailShadowThickness XmCDetailShadowThickness Dimension dynamic

XmNfillOnSelect XmCFillOnSelect Boolean dynamic

XmNindeterminate
InsensitivePixmap

XmCIndeterminate
InsensitivePixmap

Pixmap XmUNSPECIFIED_PIXMAP

XmNindeterminatePixmap XmCIndeterminatePixmap Pixmap XmUNSPECIFIED_PIXMAP

XmNindicatorOn XmCIndicatorOn unsigned char XmINDICATOR_FILL

XmNindicatorSize XmCIndicatorSize Dimension dynamic

XmNindicatorType XmCIndicatorType unsigned char dynamic

XmNselectColor XmCSelectColor Pixel dynamic

XmNselectInsensitivePixmap XmCSelectInsensitivePixmap Pixmap XmUNSPECIFIED_PIXMAP

XmNselectPixmap XmCSelectPixmap Pixmap XmUNSPECIFIED_PIXMAP

XmNset XmCSet unsigned char XmUNSET

XmNspacing XmCSpacing Dimension 4

XmNtoggleMode XmCToggleMode unsigned char XmTOGGLE_BOOLEAN

XmNunselectColor XmCUnselectColor Pixel dynamic

XmNvisibleWhenOff XmCVisibleWhenOff Boolean dynamic
Motif Reference Manual 946

Motif and Xt Widget Classes

n.

le
lab-

le
bel-

 If
e

e

e,

ing
When XmNindicatorOn is XmINDICATOR_NONE, XmNfillOnSelect is True,
and XmNset is XmSET, the background of the entire button is filled with the
XmNselectColor.

In Motif 1.2 and earlier, the default value is set to the value of XmNindicatorO
In Motif 2.0 and later, the default depends upon both XmNindicatorOn and
XmNindicatorType resources.

XmNindeterminateInsensitivePixmap
Specifies the pixmap to use if XmNset is XmINDETERMINATE and the Togg
is insensitive. The resource has no effect if the inherited Label resource XmN
elType is XmSTRING.

XmNindeterminatePixmap
Specifies the pixmap to use if XmNset is XmINDETERMINATE and the Togg
is sensitive. The resource has no effect if the inherited Label resource XmNla
Type is XmSTRING.

XmNindicatorOn
In Motif 1.2 and earlier, the resource is a Boolean value. If True (default), the
indicator is visible and its shadows are switched when the button is toggled.
False, the indicator is invisible and no space is set aside for it; in addition, th
shadows surrounding the button are switched when it is toggled.
In Motif 2.0 and later, the resource is an enumerated type, and it specifies th
type of indicator required. Possible values:

XmINDICATOR_NONE /* no indicator */
XmINDICATOR_FILL /* check box or box */
XmINDICATOR_BOX /* shadowed box, in Motif 2.1 */
XmINDICATOR_CHECK /* checkmark */
XmINDICATOR_CHECK_BOX /* checkmark enclosed in a box*/
XmINDICATOR_CROSS /*cross */
XmINDICATOR_CROSS_BOX /*cross enclosed in a box */

If the value of the XmDisplay object’s XmNenableToggleVisual resource is Tru
XmINDICATOR_FILL is equivalent to XmINDICATOR_CHECK_BOX, other-
wise XmINDICATOR_BOX.

XmNindicatorSize
The size of the indicator. This value changes if the size of the button’s text str
or pixmap changes.
Motif Reference Manual 947

Motif and Xt Widget Classes

ssi-

g

le-

tu-

lor

/

e-
urce
, it
ful

ted
ap.

 set
XmNindicatorType
Determines whether the indicator is drawn as a diamond (signifying a
one-of-many indicator) or as a square (signifying an n-of-many indicator). Po
ble values:

XmN_OF_MANY /* creates a square button */
XmONE_OF_MANY /* creates either round- or diamond-shaped button*/
XmONE_OF_MANY_ROUND /*creates a round-shaped button (2.0) */
XmONE_OF_MANY_DIAMOND /* creates a diamond-shaped button (2.1)*/

In Motif 2.0, the value XmONE_OF_MANY is diamond shaped. In Motif 2.1,
XmONE_OF_MANY produces either a diamond or a round shape, dependin
upon the value of the XmDisplay XmNenableToggleVisual resource. If this is
True, the shape is round. The default value is XmONE_OF_MANY for a Togg
Button in a RadioBox widget, and XmN_OF_MANY otherwise. This resource
only sets the indicator; it is RowColumn’s XmNradioBehavior resource that ac
ally enforces radioButton or checkButton behavior.

XmNselectColor
The color with which to fill the indicator when the button is selected. On a co
display, the default is a value between the background color and the bottom
shadow color; on a monochrome display, the default is the foreground color.

In Motif 2.0 and later, the following Pixel values are pre-defined for special
meaning:

XmDEFAULT_SELECT_COLOR /*a color between the background *
/* and bottom shadow */

XmREVERSED_GROUND_COLORS /*select is foreground, */
/* text drawn in background */

XmHIGHLIGHT_COLOR /* select color same as highlight color */

XmNselectInsensitivePixmap
The pixmap used for an insensitive ToggleButton when it’s selected. An uns
lected, insensitive ToggleButton uses the pixmap specified by the Label reso
XmNlabelInsensitivePixmap. However, if this Label resource wasn’t specified
is set to the value of XmNselectInsensitivePixmap. This resource is meaning
only when the Label resource XmNlabelType is set to XmPIXMAP.

XmNselectPixmap
The pixmap used for a (sensitive) ToggleButton when it’s selected. An unselec
ToggleButton uses the pixmap specified by the Label resource XmNlabelPixm
This resource is meaningful only when the Label resource XmNlabelType is
to XmPIXMAP.
Motif Reference Manual 948

Motif and Xt Widget Classes

lue.
ate,

T

ci-
ed.

ossi-

n

his
XmNset
The selection state of the button. In Motif 1.2 and earlier, a simple Boolean va
In Motif 2.0 and later, a Toggle can be in three states: on, off, and indetermin
and this resource is changed to an enumerated type. Possible values:

XmUNSET
XmSET
XmINDETERMINATE

If XmNtoggleMode is XmTOGGLE_INDETERMINATE, the Toggle cycles
between XmSET, XmINDETERMINATE, XmUNSET, and then back to XmSE
when pressed. If toggle mode is XmTOGGLE_BOOLEAN, the widget simply
cycles between XmSET and XmUNSET.

Note that not all versions of Motif 2.1 allow the enumerated values to be spe
fied in an external resource file. Version 2.1.30 sources have the problem fix

XmNspacing
The distance between the Toggle indicator and its label.

XmNtoggleMode
In Motif 2.0 and later, specifies whether the Toggle has two or three states. P
ble values:

XmTOGGLE_BOOLEAN /*two states */
XmTOGGLE_INDETERMINATE /* three states*/

XmNunselectColor
In Motif 2.0 and later, specifies a color for filling the indicator shape. The
resource behaves similarly to XmNselectColor, except that it is effective whe
XmNset is XmUNSET.

XmNvisibleWhenOff
If True, the Toggle indicator remains visible when the button is unselected. T
is the default behavior in a RadioBox. The default is False in a menu.

Callback Resources
ToggleButton defines the following callback resources:

XmNarmCallback
List of callbacks that are called when BSelect is pressed while the pointer is
inside the widget.

Callback Reason Constant

XmNarmCallback XmCR_ARM

XmNdisarmCallback XmCR_DISARM

XmNvalueChangedCallback XmCR_ACTIVATE
Motif Reference Manual 949

Motif and Xt Widget Classes

ssed

ed.

N-

abet-
fault

et

the
r-
XmNdisarmCallback
List of callbacks that are called when BSelect is released after it has been pre
inside the widget.

XmNvalueChangedCallback
List of callbacks that are called when the value of the ToggleButton is chang

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /*the reason that the callback was called*/
XEvent *event; /*points to event that triggered callback*/
int set; /* the state of the button */

} XmToggleButtonCallbackStruct;

setindicates the state of the Toggle, and is one of XmSET, XmUNSET, or XmI
DETERMINATE.

Inherited Resources
ToggleButton inherits the following resources. The resources are listed alph
ically, along with the superclass that defines them. ToggleButton sets the de
values of XmNmarginBottom, XmNmarginTop, XmNmarginWidth, and XmN-
shadowThickness dynamically. The default value of XmNborderWidth is res
to 0 by Primitive. In Motif 2.0 and earlier, the default value of XmNhighlight-
Thickness is reset to 2. In Motif 2.1 and later, the default value depends upon
XmDisplay XmNenableThinThickness resource: if True the default is 1, othe
wise 2.

Resource Inherited From Resource Inherited From

XmNaccelerator XmLabel XmNlabelType XmLabel

XmNaccelerators Core XmNlayoutDirection XmPrimitive

XmNacceleratorText XmLabel XmNmappedWhenManaged Core

XmNalignment XmLabel XmNmarginBottom XmLabel

XmNancestorSensitive Core XmNmarginHeight XmLabel

XmNbackground Core XmNmarginLeft XmLabel

XmNbackgroundPixmap Core XmNmarginRight XmLabel

XmNborderColor Core XmNmarginTop XmLabel

XmNborderPixmap Core XmNmarginWidth XmLabel

XmNborderWidth Core XmNmnemonicCharSet XmLabel

XmNbottomShadowColor XmPrimitive XmNmnemonic XmLabel

XmNbottomShadowPixmap XmPrimitive XmNnavigationType XmPrimitive
Motif Reference Manual 950

Motif and Xt Widget Classes

g-

g:
Translations
The translations for ToggleButton include those from Primitive. In addition, To
gleButtons that are not in a menu system have the following translations:

For ToggleButtons that are in a menu system, translations include the menu
traversal translations inherited from the Label widget, as well as the followin

XmNcolormap Core XmNpopupHandlerCallback XmPrimitive

XmNconvertCallback XmPrimitive XmNrecomputeSize XmLabel

XmNdepth Core XmNrenderTable XmLabel

XmNdestroyCallback Core XmNscreen Core

XmNfontList XmLabel XmNsensitive Core

XmNforeground XmPrimitive XmNshadowThickness XmPrimitive

XmNheight Core XmNstringDirection XmLabel

XmNhelpCallback XmPrimitive XmNtopShadowColor XmPrimitive

XmNhighlightColor XmPrimitive XmNtopShadowPixmap XmPrimitive

XmNhighlightOnEnter XmPrimitive XmNtranslations Core

XmNhighlightPixmap XmPrimitive XmNtraversalOn XmPrimitive

XmNhighlightThickness XmPrimitive XmNunitType XmPrimitive

XmNinitialResourcesPersistent Core XmNuserData XmPrimitive

XmNlabelInsensitivePixmap XmLabel XmNwidth Core

XmNlabelPixmap XmLabel XmNx Core

XmNlabelString XmLabel XmNy Core

Event Action

BTransfer Press ProcessDrag()

BSelect Press Arm()

MCtrl BSelect Press ButtonTakeFocus()

BSelect Release Select()
Disarm()

KHelp Help()

KSelect ArmAndActivate()

Event Action

MCtrl BSelect Press MenuButtonTakeFocus()

BSelect Press BtnDown()

Resource Inherited From Resource Inherited From
Motif Reference Manual 951

Motif and Xt Widget Classes

as

rs
indi-

so
r.

as

sts
ton

og-

ing
Action Routines
ToggleButton defines the following action routines:

Arm()
Sets the button if it was previously unset, unsets the button if it w
previously set, and invokes the callbacks specified by XmNarm-
Callback. Setting the button means displaying it so that it appea
selected. The selected state can be shown by: Highlighting the
cator so it appears pressed in. Filling in the indicator (using the
color given by XmNselectColor). Highlighting the button so it
appears pressed in. (This is done only if the indicator isn’t dis-
played). Drawing the button face using the pixmap given by
XmNselectPixmap.

The unselected state can be shown by: Highlighting the indicator
it appears raised. Filling in the indicator with the background colo
Highlighting the button so it appears raised. (This is done only if
the indicator isn’t displayed). Drawing the button face using the
pixmap given by XmNlabelPixmap.

ArmAndActivate()
Sets the button if it was previously unset, unsets the button if it w
previously set, and invokes the callbacks specified by XmNarm-
Callback (if the button isn’t yet armed), XmNvalueChangedCall-
back, and XmNdisarmCallback. Inside a menu, this action unpo
the menu hierarchy. Outside a menu, this action displays the but
as selected or unselected, as described for Arm().

BtnDown()
Unposts any menus that were posted by the parent menu of the T
gleButton, changes from keyboard traversal to mouse traversal,
draws a shadow to show the ToggleButton as armed, and (assum
the button is not yet armed) invokes the callbacks specified by
XmNarmCallback.

BSelect Release BtnUp()

KHelp Help()

KActivate ArmAndActivate()

KSelect ArmAndActivate()

MAny KCancel MenuShellPopdownOne()

Event Action
Motif Reference Manual 952

Motif and Xt Widget Classes

and
ck

g-

us,

g-

ub-
evi-
nu

f

s

BtnUp()
Unposts the menu hierarchy, changes the ToggleButton’s state,
invokes first the callbacks specified by XmNvalueChangedCallba
and then those specified by XmNdisarmCallback.

ButtonTakeFocus()
In Motif 2.0 and later, moves the current keyboard focus to the To
gleButton, without activating the widget.

Disarm()
Invokes the callbacks specified by XmNdisarmCallback.

Help()
Unposts the menu hierarchy, restores the previous keyboard foc
and invokes the callbacks specified by the XmNhelpCallback
resource.

MenuButtonTakeFocus()
In Motif 2.0 and later, moves the current keyboard focus to the To
gleButton, without activating the widget.

MenuShellPopdownOne()
Unposts the current menu and (unless the menu is a pulldown s
menu) restores keyboard focus to the tab group or widget that pr
ously had it. In a top-level pulldown menu pane attached to a me
bar, this action routine also disarms the cascade button and the
menu bar.

ProcessDrag()
In Motif 1.2, initiates a drag and drop operation using the label o
the ToggleButton.

Select()
Switches the state of the ToggleButton and invokes the callback
specified by the resource XmNvalueChangedCallback.

Additional Behavior
ToggleButton has the following additional behavior:

<EnterWindow>
Displays the ToggleButton as armed.

<LeaveWindow>
Displays the ToggleButton as unarmed.
Motif Reference Manual 953

Motif and Xt Widget Classes
See Also
XmCreateObject (1),XmToggleButtonGetState (1),
XmToggleButtonSetState (1), XmToggleButtonSetValue(1),
XmToggleButtonGetValue(1),Core (2),XmPrimitive (2),
XmLabel (2),XmCheckBox (2),XmRadioBox (2),XmRowColumn (2).
Motif Reference Manual 954

Motif and Xt Widget Classes

cture

d
l-
T-
Name
XmToggleButtonGadget widget class – a button gadget that maintains a Boolean
state.

Synopsis

Public Header:
<Xm/ToggleBG.h>

Class Name:
XmToggleButtonGadget

Class Hierarchy:
Object→ RectObj→ XmGadget→ XmLabelGadget→ XmToggleButton-
Gadget

Class Pointer:
xmToggleButtonGadgetClass

Instantiation:
widget =XmCreateToggleButtonGadget (parent, name,...)
or
widget =XtCreateWidget (name, xmToggleButtonGadgetClass,...)

Functions/Macros:
XmCreateToggleButtonGadget (), XmToggleButtonGadgetGet-
State (),
XmToggleButtonGadgetSetState (), XmToggleButtonGadgetSet-
Value (),
XmIsToggleButtonGadget ()

Description
ToggleButtonGadget is the gadget variant of ToggleButton.

ToggleButtonGadget’s new resources, callback resources, and callback stru
are the same as those for ToggleButton.

Traits
ToggleButtonGadget holds the XmQTcareParentVisual trait, which is inherite
in any derived classes, and clones the XmQTmenuSavvy trait from the Labe
Gadget class. In addition, the widget uses the XmQTmenuSystem and XmQ
specifyRenderTable traits.
Motif Reference Manual 955

Motif and Xt Widget Classes

ed
dget

or-

ith it.
f the
a-
Inherited Resources
ToggleButtonGadget inherits the following resources. The resources are list
alphabetically, along with the superclass that defines them. ToggleButtonGa

sets the default values of XmNmarginBottom1, XmNmarginTop, XmNmargin-
Width, and XmNshadowThickness dynamically. The default value of XmNb
derWidth is reset to 0 by Primitive.

Behavior
As a gadget subclass, ToggleButtonGadget has no translations associated w
However, ToggleButtonGadget behavior corresponds to the action routines o
ToggleButton widget. See the ToggleButton action routines for more inform
tion.

1.Erroneously given as XmNmarginBotton in 1st and 2nd editions.

Resource Inherited From Resource Inherited From

XmNancestorSensitive RectObj XmNhighlightThickness XmGadget

XmNbackground XmGadget XmNlayoutDirection XmGadget

XmNbackgroundPixmap XmGadget XmNnavigationType XmGadget

XmNbottomShadowColor XmGadget XmNsensitive RectObj

XmNbottomShadowPixmap XmGadget XmNshadowThickness XmGadget

XmNborderWidth RectObj XmNtopShadowColor XmGadget

XmNdestroyCallback Object XmNtopShadowPixmap XmGadget

XmNforeground XmGadget XmNtraversalOn XmGadget

XmNheight RectObj XmNunitType XmGadget

XmNhelpCallback XmGadget XmNuserData XmGadget

XmNhighlightColor XmGadget XmNwidth RectObj

XmNhighlightOnEnter XmGadget XmNx RectObj

XmNhighlightPixmap XmGadget XmNy RectObj

Event Action

BTransfer Press ProcessDrag()

BSelect Press Arm()
BtnDown() in a menu

BSelect Release Select(), Disarm()
BtnUp() in a menu

KActivate ArmAndActivate()

KSelect ArmAndActivate()
Motif Reference Manual 956

Motif and Xt Widget Classes

ly.

ToggleButtonGadget has additional behavior associated with <Enter> and
<Leave>, which draw the shadow in the armed or unarmed state, respective

See Also
XmCreateObject (1),XmToggleButtonGetState (1),
XmToggleButtonSetState (1), XmToggleButtonGadgetSetValue(1),
XmToggleButtonGadgetSetValue(1),Object (2),RectObj (2),
XmCheckBox (2),XmGadget (2),XmLabelGadget (2),XmRadioBox (2),
XmRowColumn (2),XmToggleButton (2).

KHelp Help()

MAny KCancel MenuShellPopdownOne()

MCtrl BSelect Press ButtonTakeFocus()
MenuButtonTakeFocus() in a menu

Event Action
Motif Reference Manual 957

Motif and Xt Widget Classes

l.

en-

Ndi-

ons,
ol is

 In

s:
Name
XmWarningDialog – an unmanaged MessageBox as a child of a DialogShel

Synopsis

Public Header:
<Xm/MessageB.h>

Instantiation:
widget = XmCreateWarningDialog (parent, name,...)

Functions/Macros:
XmCreateWarningDialog (), XmMessageBoxGetChild ()

Description
An XmWarningDialog is a compound object created by a call toXmCreate-
WarningDialog () that an application can use to warn the user about a pot
tially hazardous action. A WarningDialog consists of a DialogShell with an
unmanaged MessageBox widget as its child. The MessageBox resource Xm
alogType is set to XmDIALOG_WARNING.

A WarningDialog includes four components: a symbol, a message, three butt
and a separator between the message and the buttons. By default, the symb
an exclamation point. In Motif 1.2, the default button labels can be localized.
the C locale, and in Motif 1.1, the PushButtons are labelledOK , Cancel, and
Help by default.

Default Resource Values
A WarningDialog sets the following default values for MessageBox resource

Widget Hierarchy
When a WarningDialog is created with a specified name, the DialogShell is
named name_popup and the MessageBox is calledname.

See Also
XmCreateObject (1),XmMessageBoxGetChild (1),
XmDialogShell (2),XmMessageBox (2).

Name Default

XmNdialogType XmDIALOG_WARNING

XmNsymbolPixmap xm_warning
Motif Reference Manual 958

Motif and Xt Widget Classes

l.

nt
f a
ge-

ns,
ol is

s:
Name
XmWorkingDialog – an unmanaged MessageBox as a child of a DialogShel

Synopsis

Public Header:
<Xm/MessageB.h>

Instantiation:
widget = XmCreateWorkingDialog (parent, name,...)

Functions/Macros:
XmCreateWorkingDialog (), XmMessageBoxGetChild ()

Description
An XmWorkingDialog is a compound object created by a call toXmCreate-
WorkingDialog () that an application can use to warn the user that the curre
action is in progress, and likely to take some time. A WorkingDialog consists o
DialogShell with an unmanaged MessageBox widget as its child. The Messa

Box resource XmNdialogType is set to XmDIALOG_WORKING.1

A WorkingDialog includes four components: a symbol, a message, three butto
and a separator between the message and the buttons. By default, the symb
an hourglass. In Motif 1.2, the default button labels can be localized. In the C
locale, and in Motif 1.1, the PushButtons are labelledOK , Cancel, andHelp by
default.

Default Resource Values
A WorkingDialog sets the following default values for MessageBox resource

Widget Hierarchy
When a WorkingDialog is created with a specified name, the DialogShell is
named name_popup and the MessageBox is calledname.

See Also
XmCreateObject (1),XmMessageBoxGetChild (1),
XmDialogShell (2),XmMessageBox (2).

1.In the 1st and 2nd editions, this paragraph erroneously duplicated that of the XmWarningDialog description.

Name Default

XmNdialogType XmDIALOG_WORKING

XmNsymbolPixmap xm_working
Motif Reference Manual 959

Motif and Xt Widget Classes
Motif Reference Manual 960

tion 3,

argu-

on to

turn
pe,
-
-

this
of

e

i-

C-
n-

also
Section 3 - Mrm Functions

This page describes the format and contents of each reference page in Sec
which covers the Motif Resource Manager (Mrm) functions.

Name
Function – a brief description of the function.

Synopsis

This section shows the signature of the function: the names and types of the
ments, and the type of the return value. The header file<Mrm/MrmPublic.h>
declares all of the public Mrm functions.

Inputs
This subsection describes each of the function arguments that pass informati
the function.

Outputs
This subsection describes any of the function arguments that are used to re
information from the function. These arguments are always of some pointer ty
so you should use the C address-of operator (&) to pass the address of the varia
ble in which the function will store the return value. The names of these argu
ments are sometimes suffixed with_return to indicate that values are returned in
them. Some arguments both supply and return a value; they will be listed in
section and in the "Inputs" section above. Finally, note that because the list
function arguments is broken into "Input" and "Output" sections, they do not
always appear in the same order that they are passed to the function. See th
function signature for the actual calling order.

Returns
This subsection explains the return values of the function. Mrm functions typ
cally return one of the following values: MrmSUCCESS,
MrmPARTIAL_SUCCESS, MrmBAD_HIERARCHY, MrmNOT_FOUND,
MrmWRONG_TYPE, MrmNOT_VALID, MrmDISPLAY_NOT_OPENED, or
MrmFAILURE. To be safe, you should check the return value against MrmSU
CESS or MrmPARTIAL_SUCCESS, and then check for specific errors on no
success. When an error occurs, the functions callXtWarning () with a descrip-
tive error message.

Availability
This section appears for functions that were added in Motif 2.0 or later, and
for functions that are now superseded by other, preferred, functions.
Motif Reference Manual 961

Introduction Mrm Functions

d

ut

cor-

efs,

tion.

e sec-
Description
This section explains what the function does and describes its arguments an
return value. If you’ve used the function before and are just looking for a
refresher, this section and the synopsis above should be all you need.

Usage
This section appears for most functions and provides less formal information
about the function: when and how you might want to use it, things to watch o
for, and related functions that you might want to consider.

Example
This section provides an example of the use of the function. It also shows the
responding UIL code needed for the example.

Structures
This section shows the definition of any structures, enumerated types, typed
or symbolic constants used by the function.

Procedures
This section shows the syntax of any prototype procedures used by the func

See Also
This section refers you to related functions, UIL file format sections, and UIL
data types. The numbers in parentheses following each reference refer to th
tions of this book in which they are found.
962 Motif Reference Manual

Mrm Functions MrmCloseHierarchy

e
-

Name
MrmCloseHierarchy – close an Mrm hierarchy.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmCloseHierarchy (MrmHierarchyhierarchy)

Inputs
hierarchy Specifies an Mrm hierarchy obtained from a previous call to

MrmOpenHierarchy() or MrmOpenHierarchyPerDisplay().

Returns
MrmSUCCESS On success.
MrmBAD_HIERARCHY If hierarchy is NULL or does not point to a valid
Mrm hierarchy.
MrmFAILURE On failure.

Description
MrmCloseHierarchy () closes an Mrm hierarchy that has been previously
opened with a call toMrmOpenHierarchy () or MrmOpenHierarchyPer-
Display (). The UID files associated with thehierarchy are closed and the
memory used by thehierarchy is freed. However, as of Motif 1.2, the memory
used by Mrm to register any values or procedures withMrmRegisterNames-
InHierarchy () is not freed.

Usage
An application callsMrmCloseHierarchy () when it is done accessing an
Mrm hierarchy in order to free file descriptions and memory consumed by th
hierarchy. As of Motif 1.2, this function cannot fail; it always returns MrmSUC
CESS or MrmBAD_HIERARCHY.

Example
The following code fragment illustrates the use ofMrmCloseHierarchy ():

...
extern MrmHierarchy hierarchy; /* Previously opened Mrm hierarchy. */

if (MrmCloseHierarchy (hierarchy) != MrmSUCCESS)
error_handler();

hierarchy = NULL; /* Protect from future misuse. */
...

See Also
MrmOpenHierarchy (3), MrmOpenHierarchyPerDisplay (3).
Motif Reference Manual 963

MrmFetchBitmapLiteral Mrm Functions

y.

ed.

ci-
Name
MrmFetchBitmapLiteral – retrieve an exported bitmap from an Mrm hierarch

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmFetchBitmapLiteral1 (MrmHierarchyhierarchy,
String name,
Screen *screen,
Display *display,
Pixmap *pixmap,
Dimension *width,
Dimension *height)

Inputs
hierarchy Specifies an Mrm hierarchy obtained from a previous call to

MrmOpenHierarchy() or MrmOpenHierarchyPerDisplay().
name Specifies the name of an icon to retrieve as a bitmap.
screen Specifies the screen of the display on which the pixmap is creat
display Specifies the display on which the pixmap is created.

Outputs
pixmap Returns the specified bitmap as a pixmap of depth 1 on the spe

fied screen of the specified display.
width Returns the width of the pixmap.
height Returns the height of the pixmap.

Returns
MrmSUCCESS On success.
MrmBAD_HIERARCHY If hierarchy is NULL or does not point to a valid

Mrm hierarchy.
MrmNOT_FOUND If the icon is not found.
MrmWRONG_TYPE If the named value is not an icon.
MrmNOT_VALID If the icon uses a color table which contains

colors other than foreground- color and back-
ground- color.

MrmFAILURE On failure.

Availability
Motif 1.2 and later.

Description

1.Erroneously given as MrFetchBitmapLiteral in 1st edition.
964 Motif Reference Manual

Mrm Functions MrmFetchBitmapLiteral

xels
 are
ix-

le

ng

 an

*/

};
MrmFetchBitmapLiteral () retrieves the named icon and converts it to a
pixmap of depth 1 on the specifiedscreenof the specifieddisplay. The icon must
be defined as an exported value in a UIL source module. Foreground color pi
in the icon are set to 1 in the pixmap and background color pixels in the icon
set to 0 (zero) in the pixmap. The application is responsible for freeing the p
map usingXFreePixmap ().

Usage
An icon retrieved withMrmFetchBitmapLiteral () can only use the special
colors foreground color and background color in its color table. If the color tab
contains any other colors,MrmFetchBitmapLiteral () fails and returns
MrmNOT_VALID.

As of Motif 1.2, values of type xbitmapfile cannot be converted to a pixmap usi
this function. xbitmapfile values can only be retrieved usingMrmFetchIconL-
iteral ().

Example
The following UIL and C code fragments show the retrieval of a bitmap from
Mrm hierarchy:

UIL:
...
! Declare a cursor icon using the default color table.
 value

resize_down : exported icon (’********’,
“ ** ’,
 ’ ** ’,
’** ** **’,
’ ****** ’,
’ ** ’);

...

C:
...
extern MrmHierarchy hierarchy; /* Previously opened hierarchy.
extern Widget w; /* Previously created widget. */

Pixmap cursor_bits;
Dimension width, height;
Cardinal status;
static XColor white = { 0, ~0, ~0, ~0, DoRed | DoGreen | DoBlue
static XColor black = { 0, 0, 0, 0, DoRed | DoGreen | DoBlue };

/* Get the icon as a pixmap of depth 1. */
Motif Reference Manual 965

MrmFetchBitmapLiteral Mrm Functions

n
status = MrmFetchBitmapLiteral (hierarchy, "resize_down", XtScree
(w), XtDisplay (w), &cursor_bits,
&width, &height);

if (status != MrmSUCCESS)
error_handler();

else {
/* Create a cursor using the pixmap. */
cursor = XCreatePixmapCursor (XtDisplay (w), cursor_bits,

cursor_bits, &black, &white,
width/2, height-1);

/* Set the cursor in the widget. */
XDefineCursor (XtWindow (w), cursor);

}
...

See Also
MrmFetchIconLiteral (3), MrmFetchLiteral (3), value (5),
color_table (6), icon (6), xbitmapfile (6).
966 Motif Reference Manual

Mrm Functions MrmFetchColorLiteral

hy.

-

lue

,
sla-
Name
MrmFetchColorLiteral – retrieve an exported color value from an Mrm hierarc

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmFetchColorLiteral (MrmHierarchyhierarchy,
String name,
Display *display,
Colormap colormap,
Pixel *pixel)

Inputs
hierarchy Specifies an Mrm hierarchy obtained from a previous call to

MrmOpenHierarchy() or MrmOpenHierarchyPerDisplay().
name Specifies the name of the color to retrieve.
display Specifies the display.
colormap Specifies the colormap in which the color is allocated.

Outputs
pixel Returns a pixel value for the named color.

Returns
MrmSUCCESS On success.
MrmBAD_HIERARCHY If hierarchy is NULL or does not point to a valid

Mrm hierarchy.
MrmNOT_FOUND If the specified color is not found or cannot be allo

cated.
MrmWRONG_TYPE If the named value is not a color or rgb value.
MrmFAILURE On failure.

Description
MrmFetchColorLiteral () retrieves a named color value and attempts to
allocate a color cell containing it. The color must be defined as an exported va
in a UIL source module. The color cell is allocated withXAllocColor () if the
type of the value is rgb or with XAllocNamedColor if the type of the value is
color. Thecolormap argument is used as a parameter to these functions. Ifcolor-
map is NULL, Mrm uses the colormap returned by theDefaultColormap ()
macro.

Usage
If the color cannot be allocated because the specifiedcolormap is full, Mrm-
FetchColorLiteral () fails and returns MrmNOT_FOUND, not MrmFAIL-
URE. The OSF documentation claims that when a color cannot be allocated
black or white is substituted. This was not true of Motif 1.2 variants: this tran
Motif Reference Manual 967

MrmFetchColorLiteral Mrm Functions

,

m

tion did not take place, and you had to handle the error yourself. In Motif 2.1
however, MrmFetchColorLiteral() most certainly does substituteXBlackPix-
elOfScreen () if XAllocColor () fails; it does not useXWhitePixelOf-
Screen ().

Example
The following UIL and C code fragments show the retrieval of color values fro
an Mrm hierarchy:

UIL:
...
value
foreground : exported rgb (255, 167, 0);
background : exported color (’mutant ninja turtle’);
...

C:
Widget toplevel; /* Previously created widget. */
MrmHierarchy hierarchy; /* Previously opened Mrm hierarchy. */
Pixel foreground, background;
Cardinal status;
...
status = MrmFetchColorLiteral (hierarchy, "foreground", XtDisplay
(toplevel),

NULL, &foreground);
if (status != MrmSUCCESS)

error_handler();
status = MrmFetchColorLiteral (hierarchy, "background", XtDisplay
(toplevel),

NULL, &background);
if (status != MrmSUCCESS)

error_handler();
...

See Also
MrmFetchBitmapLiteral (3), MrmFetchIconLiteral (3),
MrmFetchLiteral (3), value (5), color (6), color_table (6), rgb (6).
968 Motif Reference Manual

Mrm Functions MrmFetchIconLiteral

re-

lay.

.

d

The
n

t-
ed
Name
MrmFetchIconLiteral – retrieve an exported icon from an Mrm hierarchy.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmFetchIconLiteral (MrmHierarchyhierarchy,
String name,
Screen *screen,
Display *display,
Pixel foreground,
Pixel background,
Pixmap *pixmap)

Inputs
hierarchy Specifies an Mrm hierarchy obtained from a previous call to

MrmOpenHierarchy() or MrmOpenHierarchyPerDisplay().
name Specifies the name of an icon or xbitmapfile to retrieve.
screen Specifies the screen of the display on which the pixmap is c

ated.
display Specifies the display.
foreground Specifies the foreground color to use for the pixmap.
background Specifies the background color to use for the pixmap.

Outputs
pixmap Returns a pixmap created on the specified screen and disp

Returns
MrmSUCCESS On success.
MrmBAD_HIERARCHY If hierarchy is NULL or does not point to a valid

Mrm hierarchy.
MrmNOT_FOUND If the specified icon or xbitmapfile is not found or a

color in the icon’s color table cannot be allocated
MrmWRONG_TYPE If the named value is not an icon or xbitmapfile

value.
MrmFAILURE On failure.

Description
MrmFetchIconLiteral () retrieves the named icon or xbitmapfile value an
attempts to convert it to a pixmap on the specifiedscreenof the display. The icon
or xbitmap-file must be defined as an exported value in a UIL source module.
foreground pixel argument is used as the color for foreground pixels in an ico
and pixels set to 1 in an xbitmapfile. Thebackground pixel argument is used as
the color for background pixels in an icon and pixels set to 0 (zero) in an xbi
mapfile. Additional colors used by an icon are allocated in the colormap return
Motif Reference Manual 969

MrmFetchIconLiteral Mrm Functions

g

 or

m

/

/

*/
by theDefaultColormap () macro. The application is responsible for freein
the pixmap usingXFreePixmap ().

Usage
If a color cannot be allocated because the specified colormap is full,MrmFet-
chIconLiteral () fails and returns MrmNOT_FOUND, not MrmFAILURE.
The OSF documentation claims that when a color cannot be allocated, black
while is substituted, but in Motif 1.2 this translation did not take place, so you
had to handle the error yourself. In Motif 2.1,XBlackPixelOfScreen () is
used as a substitute ifXAllocColor () fails; it does not use a corresponding
XWhitePixelOfScreen ().

Example
The following UIL and C code fragments illustrate the retrieval of a pixmap fro
an Mrm hierarchy:

UIL:
...
! Declare an icon using the default color table
value

box : exported icon (’****’,
’* *’,
’* *’,
’****’);

...

C:
extern MrmHierarchy hierarchy; /* Previously opened *

/* hierarchy. */
extern Widget drawing_area; /* Previously created *

/* widget. */
extern GC drawing_area_gc; /* Previously defined

/* graphics context. */
Pixel foreground, background;
Pixmap box_pixmap;
unsigned int box_width, box_height;
unsigned int dont_care;
Cardinal status;

/* Get values to use for pixmap foreground and background. */
XtVaGetValues (drawing_area, XmNforeground, &foreground,

XmNbackground, &background,
NULL);

/* Create the pixmap from the box icon in the hierarchy. */
970 Motif Reference Manual

Mrm Functions MrmFetchIconLiteral
status = MrmFetchIconLiteral (hierarchy, "box", XtScreen
(drawing_area),

XtDisplay (drawing_area), fore-
ground, background, &box_pixmap);

if (status != MrmSUCCESS)
error_handler();

else {
/* Get the size of the pixmap. */
XGetGeometry (XtDisplay (drawing_area), box_pixmap, (Window
*) &dont_care,

(int *) &dont_care, (int *) &dont_care,
&box_width, &box_height, &dont_care,
&dont_care);

/* Draw the box in the drawing area. */
XCopyArea (XtDisplay (drawing_area), box_pixmap, XtWindow

(drawing_area), drawing_area_gc, 0, 0,
box_width, box_height, 10, 10);

/* Free the pixmap. */
XFreePixmap (box_pixmap);

}

See Also
MrmFetchBitmapLiteral (3), MrmFetchColorLiteral (3),
MrmFetchLiteral (3), value (5), color (6), color_table (6),
icon (6), rgb (6), xbitmapfile (6).
Motif Reference Manual 971

MrmFetchLiteral Mrm Functions

ed
rce

nd
d the

-
val-

u

Name
MrmFetchLiteral – retrieve an exported value from an Mrm hierarchy.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmFetchLiteral (MrmHierarchy hierarchy,
String name,
Display *display,
XtPointer *value,
MrmCode *type)

Inputs
hierarchy Specifies an Mrm hierarchy obtained from a previous call to

MrmOpenHierarchy() or MrmOpenHierarchyPerDisplay().
name Specifies the name of the value to retrieve.
display Specifies the display.

Outputs
value Returns a pointer to the value with the specified name.
type Returns the type of the value retrieved.

Returns
MrmSUCCESS On success.
MrmBAD_HIERARCHY If hierarchy is NULL or does not point to a valid

Mrm hierarchy.
MrmNOT_FOUND If the specified value is not found.
MrmWRONG_TYPE If the type of the value specified cannot be con-

verted by this procedure.

Description
MrmFetchLiteral () retrieves the named value and its type from the specifi
Mrm hierarchy. The value must be defined as an exported value in a UIL sou
module. Thedisplayargument is used to convert values of type font, fontset, a
font_table. On success, this routine returns a pointer to the named value an
type of the value. The possible type values begin with MrmRtypeand are defined
in the include file<Mrm/MrmPublic.h>. The application is responsible for free
ing the returned value, except when it is a font or a fontset. font and fontset
ues are cached by Mrm and freed when the display is closed.

Usage
MrmFetchLiteral () cannot be used to retrieve values of certain types. Yo
should retrieve icon values withMrmFetchIconLiteral () or MrmFetch-
BitmapLiteral (), xbitmapfile values with MrmFetchIconLiteral(), and color
or rgb values withMrmFetchColorLiteral ().
972 Motif Reference Manual

Mrm Functions MrmFetchLiteral

ys-
 the

l()

*/
The storage allocated by Mrm for a boolean value is sizeof(int) not
sizeof(Boolean). Because sizeof(Boolean) is less than sizeof(int) on many s
tems, applications should use an int pointer rather than a Boolean pointer as
value argument when retrieving a boolean.

Example
The following UIL and C code fragments illustrate the use of MrmFetchLitera
to fetch various values from an Mrm hierarchy:

UIL:
...
value

int_val : 10;
string_val : ’okemo’;
...

C:
...
extern MrmHierarchy hierarchy; /* Previously opened hierarchy.
extern Display *display; /* Previously opened display. */
int *int_ptr;
String string;
MrmCode type;
Cardinal status;

status = MrmFetchLiteral (hierarchy, "int_val", display, (XtPointer *)
&int_ptr, &type);

if (status != MrmSUCCESS || type != MrmRtypeInteger)
error_handler();

else
printf ("Fetched integer %d\n", *int_ptr);

status = MrmFetchLiteral (hierarchy, "string_val", display, (XtPointer1 *)
&string, &type);

if (status != MrmSUCCESS || type != MrmRtypeCString)
error_handler();

else
printf ("Fetched string ’%s’\n", string);

...

1.Erroneously given as XtPoitner in 1st edition.
Motif Reference Manual 973

MrmFetchLiteral Mrm Functions
See Also
MrmFetchBitmapLiteral (3), MrmFetchColorLiteral (3),
MrmFetchIconLiteral (3), MrmFetchSetValues (3), value (5),
asciz_string_table (6), boolean (6), class_rec_name (6),
color (6), compound_string (6), compound_string_table (6),
float (6), font (6), font_table (6), fontset (6), icon (6), integer (6),
integer_table (6), keysym (6), rgb (6), single_float (6), string (6),
translation_table (6), wide_character (6), widget (6),
xbitmapfile (6).
974 Motif Reference Manual

Mrm Functions MrmFetchSetValues

hier-

l the

 are

ach
er.
e
s an

r,
Name
MrmFetchSetValues – set widget resources to values retrieved from an Mrm
archy.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmFetchSetValues (MrmHierarchy hierarchy,
Widget widget,
ArgList arg_list,
Cardinal num_args)

Inputs
hierarchy Specifies an Mrm hierarchy obtained from a previous call to

MrmOpenHierarchy() or MrmOpenHierarchyPerDisplay().
widget Specifies the object whose resources are modified.
arg_list Specifies an array of name/UID-value pairs to be set.
num_args Specifies the number of elements in arg_list.

Returns
MrmSUCCESS On success.
MrmPARTIAL_SUCCESS On partial success.
MrmBAD_HIERARCHY If hierarchy is NULL or does not point to a valid
Mrm hierarchy.
MrmFAILURE On failure.

Description
MrmFetchSetValues () sets the resources for an widget to named values
obtained from the specified Mrmhierarchy. If a named value is not found or
cannot be converted, the resource corresponding to that value is not set. If al
named values inarg_list are successfully retrieved,MrmFetchSetValues ()
returns MrmSUCCESS. If some values are successfully retrieved and others
not, MrmPARTIAL_SUCCESS is returned. If no values are successfully
retrieved, MrmFAILURE is returned. When at least one value is successfully
retrieved,XtSetValues () is called to modify the resources of object.

Usage
MrmFetchSetValues () sets the resources named in the name member of e
item inarg_list to the value from the Mrm hierarchy named by the value memb
This use differs fromXtSetValues (), in that value member contains the nam
of a value to retrieve, not the value itself. Each named value must be defined a
exported value in a UIL source module.

The conversion of certain types may require a display pointer, screen pointe
background color, or foreground color. When these values are needed, Mrm
Motif Reference Manual 975

MrmFetchSetValues Mrm Functions

or a
Mrm
for a
ified
. As
d in

han

/

 */

s));
obtains them from widget. If foreground and background colors are needed f
conversion and widget does not have a background or foreground resource,
uses black or white instead. If foreground and background colors are needed
conversion and the XmNbackground or XmNforeground resources are spec
in arg_list, they are used instead of the foreground and background of widget
a result, if both an icon and foreground and/or background values are specifie
the same argument list, the icon uses the colors specified in the list, rather t
the colors of the widget.

Example
The following UIL and C code fragments illustrate the use ofMrmFetchSet-
Values () to fetch a resource value from an Mrm hierarchy:

UIL:
...
value
! English language version of the confirm quit message:
confirm_quit_msg : ’Do you really want to quit?’;
...

C:
extern MrmHierarchy hierarchy; /* Previously opened Mrm *

/* hierarchy. */
extern Widget yes_no_dialog; /* Previously created yes/no

/* dialog. */

void DisplayConfirmQuit (void)
{

static Arg args[] = {
{ XmNmessageString, (XtArgVal) "confirm_quit_msg" }

};

/* Set the message string for confirm quit. */
MrmFetchSetValues (hierarchy, yes_no_dialog, args, XtNumber (arg
/* Make the dialog appear. */
XtManageChild (yes_no_dialog);

}

Structures
ArgList is defined as follows:

typedef struct {
String name;
XtArgVal value;

} Arg, *ArgList;
976 Motif Reference Manual

Mrm Functions MrmFetchSetValues
See Also
MrmFetchBitmapLiteral (3), MrmFetchColorLiteral (3),
MrmFetchIconLiteral (3), MrmFetchLiteral (3), value (5).
Motif Reference Manual 977

MrmFetchWidget Mrm Functions

te.

et.

UIL
ce
ter
any
ny-

e a
le
an-

visi-
Name
MrmFetchWidget – create the widget tree rooted at a named widget.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmFetchWidget (MrmHierarchy hierarchy,
 String name,
Widget parent,
Widget *widget,
MrmType *class)

Inputs
hierarchy Specifies an Mrm hierarchy obtained from a previous call to

MrmOpenHierarchy() or MrmOpenHierarchyPerDisplay().
name Specifies the name of the root widget of the widget tree to crea
parent Specifies the parent of the root widget.

Outputs
widget Returns the widget ID of the root widget.
class Returns the UID class code for the widget class of the root widg

Returns
MrmSUCCESS On success.
MrmBAD_HIERARCHY If hierarchy is NULL or does not point to a valid

 Mrm hierarchy.
MrmNOT_FOUND If the specified widget is not found.
MrmFAILURE On failure.

Description
MrmFetchWidget () creates the namedwidgetand recursively creates all of its
children. Each child is managed by Mrm, unless declared unmanaged in the
source module. The root widget should be defined as exported in a UIL sour
module. Mrm supports the MrmNcreateCallback, which if defined, is called af
a widget is created. The prototype of an MrmNcreateCallback is the same as
other Xt callback procedure. The call_data passed to the callback is an XmA
CallbackStruct.

Usage
Each successful call toMrmFetchWidget () results in the creation of a new
widget tree, even ifname has been fetched previously. As a result, you can us
widget tree definition from an Mrm hierarchy as a template for creating multip
instances of the same widget tree. The widget at the root of the tree is not m
aged by Mrm, so your application must manage this widget to make the tree
ble.
978 Motif Reference Manual

Mrm Functions MrmFetchWidget

ot.

in
ey
t

er-

/

is
In Motif 1.2 and earlier,MrmFetchWidget () returns MrmSUCCESS if the
root widget is retrieved successfully, even if one or more of its children are n
As of Motif 1.2.1, ifMrmFetchWidget () cannot find a child widget, it returns
MrmNOT_FOUND and does not create any widgets.

As of Motif 1.2, the possible MrmType values returned in class are not defined
any of the Mrm include files, although the OSF documentation claims that th
are defined in <Mrm/Mrm.h>. If you need to check the widget class of a widge
created withMrmFetchWidget (), useXtClass () or one of the XmIs*() mac-
ros.

Example
The following UIL and C code fragments illustrate the retrieval of a widget hi
archy from an Mrm hierarchy:

UIL:
...
! Define a simple widget tree, with form at the root.
object label : XmLabel { };
object button : XmPushButton { };
object form : exported XmForm {

controls {
XmLabel label;
XmPushButton button;

};
};
...

C:
extern Widget toplevel; /* Previously defined widget. */
extern MrmHierarchy hierarchy; /* Previously opened hierarchy. *
Widget form;
MrmType class;
Cardinal status;

status = MrmFetchWidget (hierarchy, "form", toplevel, &form, &class);

if (status != MrmSUCCESS)
error_handler();

...

Structures
The MrmNcreateCallback function is passed an XmAnyCallbackStruct, which
defined as follows:
Motif Reference Manual 979

MrmFetchWidget Mrm Functions
typedef struct {
int reason; /* MrmCR_CREATE */
XEvent *event; /* NULL */

} XmAnyCallbackStruct;

See Also
MrmFetchWidgetOverride (3), MrmOpenHierarchy (3),
MrmOpenHierarchyPerDisplay (3), object (5), widget (6).
980 Motif Reference Manual

Mrm Functions MrmFetchWidgetOverride

and

te.

) if

IL

h

Name
MrmFetchWidgetOverride – create the widget tree rooted at a named widget
override the resources set in the UID file.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmFetchWidgetOverride (MrmHierarchy hierarchy,
String name,
Widget parent,
String override_name,
ArgList arg_list,
Cardinal num_args,
Widget *widget,
MrmType *class)

Inputs
hierarchy Specifies an Mrm hierarchy obtained from a previous call to

MrmOpenHierarchy() or MrmOpenHierarchyPerDisplay().
name Specifies the name of the root widget of the widget tree to crea
parent Specifies the parent of the root widget.
override_name Specifies the name to use when creating the root widget. If

NULL, name is used.
arg_list Specifies an array of resource/value pairs to set on the root

widget when it is created. If NULL, no resources are set.
num_args Specifies the number of elements in arg_list. Must be 0 (zero

arg_list is NULL.

Outputs
widget Returns the widget ID of the root widget.
class Returns the UID class code for the widget class of the root
widget.

Returns
MrmSUCCESS On success.
MrmBAD_HIERARCHY If hierarchy is NULL or does not point to a valid

 Mrm hierarchy.
MrmNOT_FOUND If the specified widget is not found.
MrmFAILURE On failure.

Description
MrmFetchWidgetOverride () creates the namedwidget and recursively cre-
ates all of its children. The root widget should be defined as exported in a U
source module.arg_list is used to specify additional resource/value pairs that
override those specified in the widget definition in a UIL source module. Eac
Motif Reference Manual 981

MrmFetchWidgetOverride Mrm Functions

ule.
et

er Xt
ck-

l-
e
mber
f

ting
 is
 the

ot.

in
ey
t

er-

.";
child is managed by Mrm unless declared unmanaged in the UIL source mod
Mrm supports the MrmNcreateCallback, which if defined, is called after a widg
is created. The prototype of an MrmNcreateCallback is the same as any oth
callback procedure. The call_data passed to the callback is an XmAnyCallba
Struct.

Usage
MrmFetchWidgetOverride () allows an application to create a widget
defined in an Mrm hierarchy while specifying application-defined resource va
ues that can supplement or override those specified in the UIL definition. Th
function sets the resources of the root widget that are named in the name me
of each item inarg_list to value specified in the value member. The resource o
any children of the root widget are not affected.

Each successful call toMrmFetchWidgetOverride () results in the creation
of a new widget tree, even ifname has been fetched previously. As a result, you
can use a widget tree definition from an Mrm hierarchy as a template for crea
multiple instances of the same widget tree. The widget at the root of the tree
not managed by Mrm, so your application must manage this widget to make
tree visible.

In Motif 1.2 and earlier,MrmFetchWidget () returns MrmSUCCESS if the
root widget is retrieved successfully, even if one or more of its children are n
As of Motif 1.2.1, ifMrmFetchWidget () cannot find a child widget, it returns
MrmNOT_FOUND and does not create any widgets.

As of Motif 1.2, the possible MrmType values returned in class are not defined
any of the Mrm include files, although the OSF documentation claims that th
are defined in <Mrm/Mrm.h>. If you need to check the widget class of a widge
created withMrmFetchWidgetOverride (), useXtClass () or one of the
XmIs*() macros.

Example
The following UIL and C code fragments illustrate the retrieval of a widget hi

archy from an Mrm hierarchy using MrmFetchWidgetOverride()1:

UIL:
...
object error_dialog: exported XmErrorDialog {

arguments {
XmNmessageString = "If you can read this, file a bug report
XmNdialogStyle =
XmDIALOG_FULL_APPLICATION_MODAL;

1.Erroneously given as MwmFetchWidgetOverride() in 1st edition.
982 Motif Reference Manual

Mrm Functions MrmFetchWidgetOverride

*/

is
};
};
...

C:
extern Widget toplevel; /* Previously created widget. */
extern MrmHierarchy hierarchy; /* Previously opened hierarchy.

void display_error (String message)
{

Arg arg_list[1];
XmString s;
Cardinal status;
Widget error_dialog;
MrmType class;

s = XmStringCreateLocalized (message);
XtSetArg (arg_list[0], XmNmessageString, s);
status = MrmFetchWidgetOverride (hierarchy, "error_dialog",

toplevel, "error_dialog",
arg_list, 1, &error_dialog,
&class);

XmStringFree (s);

if (status != MrmSUCCESS)
handle_error();

else
XtManageChild (error_dialog);

}

Structures
ArgList is defined as follows:

typedef struct {
String name;
XtArgVal value;

} Arg, *ArgList;

The MrmNcreateCallback function is passed an XmAnyCallbackStruct, which
defined as follows:

typedef struct {
int reason; /* MrmCR_CREATE */
XEvent *event; /* NULL */

} XmAnyCallbackStruct;
Motif Reference Manual 983

MrmFetchWidgetOverride Mrm Functions
See Also
MrmFetchWidget (3), MrmOpenHierarchy (3),
MrmOpenHierarchyPerDisplay (3), object (5), widget (6).
984 Motif Reference Manual

Mrm Functions MrmInitialize

, and
Name
MrmInitialize – prepare the Mrm library for use.

Synopsis

#include <Mrm/MrmPublic.h>

void MrmInitialize (void)

Description
MrmInitialize () initializes the Mrm library. As part of the initialization, all
Motif widget classes are registered in the Mrm widget class database withMrm-
RegisterClass ().

Usage
Applications should callMrmInitialize () before the Xt Toolkit is initialized
and before calling any other Mrm functions. If the routine is not called before
MrmOpenHierarchyPerDisplay (), future calls toMrmFetchWidget ()
andMrmFetchWidgetOverride () will fail. Applications should only call
MrmInitialize () once.

Example
The following code fragment illustrates the use ofMrmInitialize (): 1

...
Widget toplevel;
XtAppContext app_context;
MrmHierarchy hierarchy;
Cardinal status;

XtSetLanguageProc (NULL, (XtLanguageProc) NULL, NULL);

MrmInitialize();

toplevel = XtVaOpenApplication (&app_context, "App", NULL, 0, (Cardi-
nal *) &argc, &argv, NULL, session-
ShellWidgetClass, NULL);

...

See Also
MrmFetchWidget (3), MrmFetchWidgetOverride (3),
MrmOpenHierarchy (3), MrmOpenHierarchyPerDisplay (3),
MrmRegisterClass (3).

1.From X11R6, XtAppInitialize() is marked as obsolete. The SessionShell is only available from X11R6 onwards
it replaces the deprecated ApplicationShell widget class.
Motif Reference Manual 985

MrmOpenHierarchy Mrm Functions

-

li-

eate
Name
MrmOpenHierarchy – open an Mrm hierarchy.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmOpenHierarchy (MrmCount num_files,
String file_name_list[],
MrmOsOpenParamPtr *os_params,
MrmHierarchy *hierarchy)

Inputs
num_files Specifies the number of files in file_name_list.
file_name_list Specifies an array of UID file names to associate with

 the hierarchy.
os_params Specifies operating system dependent settings.

Outputs
hierarchy Returns an open Mrm hierarchy consisting of the speci
fied files.

Returns
MrmSUCCESS On success.
MrmNOT_FOUND If one or more files cannot be opened.
MrmNOT_VALID If the version of Mrm is older than the

 version of any UID file.
MrmDISPLAY_NOT_OPENED If a display pointer cannot be found.
MrmFAILURE On failure.

Availability
In Motif 1.2,MrmOpenHierarchy () is obsolete. It has been superseded by
MrmOpenHierarchyPerDisplay ().

Description
MrmOpenHierarchy () opens an Mrm hierarchy consisting of one or more
UID files. This routine is similar toMrmOpenHierarchyPerDisplay (),
except that it does not take a display parameter.MrmOpenHierarchy () is
retained for compatibility with Motif 1.1 and should not be used in newer app
cations.

Usage
MrmOpenHierarchy () relies on the Motif widget library to locate a display
pointer. To ensure that a display pointer can be found, an application must cr
an ApplicationShell before callingMrmOpenHierarchy (). The display pointer
is used as a parameter toXtResolvePathname (), which locates the files in
986 Motif Reference Manual

Mrm Functions MrmOpenHierarchy

t

t is
file_name_list. If an application creates multiple ApplicationShells on differen
displays, the display pointer chosen by this routine is undefined.

See theMrmOpenHierarchyPerDisplay () manual page for a full explana-
tion of the process of opening an Mrm hierarchy, including the search path tha
used to find the UID files.

See Also
MrmCloseHierarchy (3), MrmOpenHierarchyPerDisplay (3).
Motif Reference Manual 987

MrmOpenHierarchyFromBuffer Mrm Functions

.

vi-

f a
Name
MrmOpenHierarchyFromBuffer – open an Mrm hierarchy from a buffer

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmOpenHierarchyFromBuffer (unsigned char *buffer, MrmHierarchy
*hierarchy_id)

Inputs
buffer Specifies a stream of bytes representing a UID file contents

Outputs
hierarchy_id Returns an open Mrm hierarchy.

Returns
MrmSUCCESS On Success.
MrmNOT_VALID If the version of Mrm is older than the data

contained within the buffer.
MrmDISPLAY_NOT_OPENED If a display pointer cannot be found.
MrmFAILURE On failure.

Availability
Motif 2.0 and later.

Description
MrmOpenHierarchyFromBuffer () opens an Mrm hierarchy using the
stream of data specified by buffer, which is presumably the contents of a pre
ously opened UID file loaded into memory. It could, however, be dynamically
constructed.

Usage
MrmOpenHierarchyFromBuffer () relies on the Motif widget library to
locate a display pointer using internal default values. A pointer is only found i
ApplicationShell has been created before callingMrmOpenHierarchyFrom-
Buffer ().

See Also
MrmOpenHierarchy (3), MrmOpenHierarchyPerDisplay (3),
MrmCloseHierarchy (3).
988 Motif Reference Manual

Mrm Functions MrmOpenHierarchyPerDisplay

hy.

 are
ier-

-
rchy

-

Name
MrmOpenHierarchyPerDisplay – open an Mrm hierarchy.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmOpenHierarchyPerDisplay (Display *display,
MrmCount num_files,
String file_name_list[],
MrmOsOpenParamPtros_params_list[],
MrmHierarchy *hierarchy)

Inputs
display Specifies the display.
num_files Specifies the number of files in file_name_list.
file_name_list Specifies an array of file names to associate with the hierarc
os_params_list Specifies an array of operating system dependent settings.

Outputs
hierarchy Returns an open Mrm hierarchy consisting of the

 specified files.

Returns
MrmSUCCESS On success.
MrmNOT_FOUND If one or more files cannot be opened.
MrmNOT_VALID If the version of Mrm is older than version

 of the any UID file.
MrmDISPLAY_NOT_OPENED If a display pointer cannot be found.
MrmFAILURE On failure.

Availability
Motif 1.2 and later.

Description
MrmOpenHierarchyPerDisplay () opens an Mrm hierarchy consisting of
one or more UID files. An Mrm hierarchy must be opened before any values
retrieved or widgets created with the MrmFetch*() routines. When an Mrm h
archy is successfully opened, each UID file specified infile_name_list is opened
and consumes a file descriptor. No files are opened if a value other than Mrm
SUCCESS is returned. The UID files are subsequently closed when the hiera
is closed withMrmCloseHierarchy (). As of Motif 1.2, settings in the
os_params_list parameter are only useful to the UIL compiler. Application pro
grams should always specify NULL for this argument.
Motif Reference Manual 989

Mrm Functions

as
d or

l

D-
c-

path
can

 for
he
Usage
The MrmFetch*() routines retrieve a named value or widget by searching the
UID files for a hierarchy in the order that they are specified infile_name_list. If a
named value or widget occurs in more than one of the UID files, the value is
retrieved from the file that occurs first in the array. Once an Mrm hierarchy h
been opened, the UID files associated with the hierarchy must not be modifie
deleted until the hierarchy is closed.

Files specified infile_name_list may be full or partial path names. When a file
name starts with a slash (/), it specifies a full path name andMrmOpenHierar-
chyPerDisplay () opens the file. Otherwise, the file name specifies a partia
path name which causesMrmOpenHierarchyPerDisplay () to look for the
file using a search path.

XtResolvePathname () is used to locate the file in the search path. The UI
PATH environment variable specified the search path for UID files. Each dire
tory in the search path can contain the substitution character %U; the partial
name specified by file_name_list is substituted for %U. In addition, the path
also use the substitution characters accepted byXtResolvePathname() . The
path is first searched with %S mapped to.uid. If the file is not found the path is
searched again with %S mapped to NULL.

If UIDPATH is not set,MrmOpenHierarchyPerDisplay () uses a default
search path. If the XAPPLRESDIR environment variable is set, the routine
searches the following path; the class name of the application is substituted
%N, the language string of the display argument is substituted for %L, and t
language component of the language string is substituted for %l.

$XAPPLRESDIR/%L/uid/%N/%U%S
$XAPPLRESDIR/%l/uid/%N/%U%S
$XAPPLRESDIR/uid/%N/%U%S
$XAPPLRESDIR/%L/uid/%U%S
$XAPPLRESDIR/%l/uid/%U%S
$XAPPLRESDIR/uid/%U%S
$HOME/uid/%U%S
$HOME/1%U%S
/usr/lib/X11/%L/uid/%N/%U%S
/usr/lib/X11/%l/uid/%N/%U%S
/usr/lib/X11/uid/%N/%U%S
/usr/lib/X11/%L/uid/%U%S
/usr/lib/X11/%l/uid/%U%S
/usr/lib/X11/uid/%U%S
/usr/include/X11/uid/%U%S
Motif Reference Manual 990

Mrm Functions

ths
11

, and
If XAPPLRESDIR is not set,MrmOpenHierarchyPerDisplay () searches
the same path, except that XAPPLRESDIR is replaced by HOME. These pa
are vendor-dependent and a vendor may use different directories for /usr/lib/X
and /usr/include/X11.

Example
The following code fragment illustrates the use ofMrmOpenHierarchyPer-

Display ():1

...
MrmHierarchy hierarchy;
XtAppContext app_context;
Widget toplevel;
String uid_files[] = { "/usr/lib/app/app", "strings" };
Cardinal status;

XtSetLanguageProc (NULL, NULL, NULL);

MrmInitialize();
toplevel = XtVaOpenApplication (&app_context, "App", NULL, 0, &argc,
 argv, NULL, sessionShellWidgetClass, NULL);

status = MrmOpenHierarchyPerDisplay (XtDisplay (toplevel),
XtNumber (uid_files), uid_files,
NULL, &hierarchy);

if (status != MrmSUCCESS)
error_handler();

...

See Also
MrmCloseHierarchy (3), MrmFetchBitmapLiteral (3),
MrmFetchColorLiteral (3), MrmFetchIconLiteral (3),
MrmFetchLiteral (3), MrmFetchWidget (3),
MrmFetchWidgetOverride (3).

1.From X11R6, XtAppInitialize() is marked as obsolete. The SessionShell is only available from X11R6 onwards
it replaces the deprecated ApplicationShell widget class.
Motif Reference Manual 991

Mrm Functions

et.

s
ences

2, a
Name
MrmRegisterClass – register a widget creation function for a non-Motif widg

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmRegisterClass (MrmType class_code,
String class_name,
String create_proc_name,
Widget (*create_proc) (Widget, char *,

ArgList, Cardinal),
WidgetClass widget_class)

Inputs
class_code This argument is obsolete and is ignored.
class_name This argument is obsolete and is ignored.
create_proc_name Specifies the case-sensitive name of the widget

 creation function.
create_proc Specifies a pointer to the widget creation procedure.
widget_class Specifies a pointer to the widget class record or NULL.

Returns
MrmSUCCESS On success.
MrmFAILURE On failure.

Description
MrmRegisterClass () supplies Mrm with information it needs to create a
user-defined widget, which is any widget that is not built into UIL and Mrm. A
user-defined widget cannot be created until its class is registered.

Usage
A user-defined widget is defined in a UIL source module by specifying the
create_proc_name in its declaration.create_proc_name must be all uppercase
characters when used in a UIL module compiled with case-insensitive name
because this setting causes the UIL compiler to store procedure name refer
in all uppercase characters.

If MrmRegisterClass () is called with aclass_name that has been registered
previously, the newcreate_proc andwidget_class replace the previous val-
ues. There is no way to unregister a previously registered class. As of Motif 1.
small amount of memory may be leaked when a class is registered multiple
times.
Motif Reference Manual 992

Mrm Functions

of

-

Thewidget_class argument allows Mrm to convert a class name specified in a
UIL class_rec_name literal into a widget class pointer. If NULL is specified, the
widget class pointer is not accessible with theclass_rec_name type.

Example
The following UIL and C code fragments illustrate the creation of an instance
the Athena panner widget from UIL. Like any other widget defined in a UIL
module, it is created with a call to MrmFetchWidget() orMrmFetchWidget-
Override ():

UIL:
...
procedure XawCreatePannerWidget;

object panner : user_defined procedure XawCreatePannerWidget { };
...

C:
 Widget XawCreatePannerWidget (Widget parent, String name, ArgList
 args, Cardinal num_args)
{

return XtCreateWidget (name, pannerWidgetClass, parent, args,
 num_args);

}
...
MrmRegisterClass (0, NULL,

"XawCreatePannerWidget",
XawCreatePannerWidget,
&pannerWidgetClass);

...

Procedures
The create_proc parameter has the following syntax:

Widget create_proc (Widgetparent, Stringname, ArgList args,

 Cardinalnum_args)

The procedure takes four arguments. The first,parent, is the parent of the widget
that is being created.name is the name of the widget. The last two arguments,
args andnum_args, specify the initial resource settings for the widget. The pro
cedure returns the widget ID of the newly created widget.

See Also
MrmInitialize (3), MrmFetchWidget (3),
MrmFetchWidgetOverride (3), object (5), class_rec_name (6).
Motif Reference Manual 993

Mrm Functions

 as
is
is-

vi-
here

 The
e is

tting
n all

res

d
ro-
epa-
ny

-

Name
MrmRegisterNames – register application-defined values and procedures.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmRegisterNames (MrmRegisterArgListname_list, MrmCount
count)

Inputs
name_list Specifies an array of name/value pairs to be registered
 with Mrm.
count Specifies the number of elements in name_list.

Returns
MrmSUCCESS On success.
MrmFAILURE On failure.

Description
MrmRegisterNames () registers an array of name/value pairs that are used
identifiers and procedures in a UIL source module. Names registered with th
routine are accessible from any open Mrm hierarchy. By contrast, names reg
tered withMrmRegisterNamesInHierarchy () are only accessible from
the hierarchy in which they are registered.

If MrmRegisterNames () is called with a name that has been registered pre
ously, the old value associated with the name is replaced by the new value. T
is no way to unregister a previously registered name.

Usage
The MrmRegisterArg structure consists of a name and an associated value.
case of name is significant. name must be in all uppercase characters if nam
used in a UIL module compiled with case-insensitive names, because this se
causes the UIL compiler to store procedure and identifier name references i
uppercase characters.

Thename_list array can contain names that represent both callback procedu
and identifier values. A procedure value inname_list should be a pointer to a
function of type XtCallbackProc. An identifier value is any application-define
value that is exactly sizeof (XtPointer). Mrm makes no distinction between p
cedures and identifiers, although an application may organize them in two s
rate arrays for clarity. A distinction is made in a UIL source module, where a
name used must be declared as either a procedure or an identifier.

Procedures and identifiers must be registered withMrmRegisterNames () or
MrmRegisterNamesInHierarchy () before an application attempts to cre
Motif Reference Manual 994

Mrm Functions

fer-
ate a widget that references them. Mrm converts a procedure or identifier re
ence to a value by first searching hierarchy-local names registered with
MrmRegisterNamesInHierarchy (). If the value is not found, the search
continues with global names registered withMrmRegisterNames ().

Example
The following UIL and C code fragments illustrate the use ofMrmRegister-
Names():

UIL:
...
identifier user_id;
procedure activate();

object button : XmPushButton {
callbacks {

XmNactivateCallback = procedure activate;
};

};
...

C:
...
extern XtCallbackProc activate;
int user_id = getuid();
MrmRegisterArg names[2];

names[0].name = “activate”;
names[0].value = (XtPointer) activate;
names[1].name = “user_id”;
names[1].value = (XtPointer) user_id;

MrmRegisterNames (names, XtNumber (names));
...

Structures
MrmRegisterArgList is defined as follows:

typedef struct {
String name; /* case-sensitive name */
XtPointer value; /* procedure/value to associate with name */

} MrmRegisterArg, *MrmRegisterArglist;

See Also
MrmRegisterNamesInHierarchy (3), identifier (5),procedure (5).
Motif Reference Manual 995

Mrm Functions

oce-

s
regis-

e
ly
uto-

 The
e is

tting
n all
Name
MrmRegisterNamesInHierarchy – register application-defined values and pr
dures for use in a specific UIL hierarchy.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmRegisterNamesInHierarchy (MrmHierarchy hierarchy,
MrmRegisterArgList name_list,
MrmCount count)

Inputs
hierarchy Specifies an Mrm hierarchy obtained from a previous call to

MrmOpenHierarchy() or MrmOpenHierarchyPerDisplay().
name_list Specifies an array of name/value pairs to be registered with

Mrm.
count Specifies the number elements in name_list.

Returns
MrmSUCCESS On success.
MrmFAILURE On failure.

Description
MrmRegisterNamesInHierarchy ()1 registers an array of name/value pair
that are used as identifiers and procedures in a UIL source module. Names
tered with this routine are accessible only within the specifiedhierarchy. By con-
trast, names registered withMrmRegisterNames () are accessible from any
open hierarchy.

If MrmRegisterNamesInHierarchy () is called with a name that has been
registered previously in the same hierarchy, the old value associated with th
name is replaced by the new value. There is no way to unregister a previous
registered name while the hierarchy is open. However, closing the hierarchy a
matically unregisters all names.

Usage
The MrmRegisterArg structure consists of a name and an associated value.
case of name is significant. name must be in all uppercase characters if nam
used in a UIL module compiled with case-insensitive names, because this se
causes the UIL compiler to store procedure and identifier name references i
uppercase characters.

1.Erroneously given as MrmRegisterNames() in 1st edition.
Motif Reference Manual 996

Mrm Functions

res

d
ro-
epa-
ny

-
fer-
Thename_list array can contain names that represent both callback procedu
and identifier values. A procedure value inname_list should be a pointer to a
function of type XtCallbackProc. An identifier value is any application-define
value that is exactly sizeof (XtPointer). Mrm makes no distinction between p
cedures and identifiers, although an application may orgranize them in two s
rate arrays for clarity. A distinction is made in a UIL source module, where a
name used must be declared as either a procedure or an identifier.

Procedures and identifiers must be registered withMrmRegisterNames () or
MrmRegisterNamesInHierarchy () before an application attempts to cre
ate a widget which references them. Mrm converts a procedure or identifier re
ence to a value by first searching hierarchy-local names registered with
MrmRegisterNamesInHierarchy (). If the value is not found, the search
continues with global names registered withMrmRegisterNames ().

Example
The following code fragment illustrates the use ofMrmRegisterNamesInH-
ierarchy ():

/* Open a hierarchy and register it’s file name list. */

Cardinal register_and_open (Display display, MrmCount count, String *files)
{

Cardinal status;
int *count = (int *) malloc ((unsigned) sizeof (int));
MrmRegisterArg names[2];
if (count == NULL)

return (MrmFAILURE);

names[0].name = “file_list”;
names[0].value = (XtPointer) file_list;
names[1].name = “file_count”;
names[1].value = (XtPointer) file_count;

status = MrmOpenHierarchyPerDisplay (display, count, files, NULL,

 &hierarchy);

if (status != MrmSUCCESS)
return (status);

status = MrmRegisterNamesInHierarchy (*hierarchy, names, XtNumber
(names));

return (status);
}

Motif Reference Manual 997

Mrm Functions

 */
Structures
MrmRegisterArgList is defined as follows:

typedef struct {
String name; /* case-sensitive name */
XtPointer value; /* procedure/value to associate with name

} MrmRegisterArg, *MrmRegisterArglist;

See Also
MrmRegisterNames (3), identifier (5), procedure (5).
Motif Reference Manual 998

tion 4,

ing

is
e

d

this
lts-

nt.

book
Section 4 - Mrm Clients

This page describes the format and contents of each reference page in Sec
which covers the Motif clients.

Name
Client – a brief description of the client.

Syntax
This section describes the command-line syntax for invoking the client. Anyth
in bold should be typed exactly as shown. Items initalics are parameters that
should be replaced by actual values when you enter the command. Anything
enclosed in brackets is optional.

Availability
This section appears for functions that were added in Motif 2.0 or later.

Description
This section explains the operation of the client. In some cases, additional
descriptive sections appear later on in the reference page.

Options
This section lists available command-line options.

Environment
If present, this section lists shell environment variables used by the client. Th
section does not list the DISPLAY and XENVIRONMENT variables, which ar
used by all clients. These variables are used as follows:

DISPLAY
To get the default display name (specifically, the host, server/display, an
screen). The DISPLAY variable typically has the form:

hostname:server.screen

XENVIRONMENT
To get the name of a resource file containing host-specific resources. If
variable is not set, the resource manager will look for a file called .Xdefau
hostname (wherehostname is the name of a particular host) in the user’s
home directory.

Bugs
If present, this section lists any problems that could arise when using the clie

See Also
This section refers you to related clients, functions, or widget classes. The
numbers in parentheses following each reference refer to the sections of the
in which they are found.
Motif Reference Manual 999

mwm Mrm Clients

-
d
is-

ace.

,

f

e

e -
ns

le.

ger

 If
the
s

Name
mwm – the Motif Window Manager (mwm).

Syntax
mwm [options]

Description
The Motif Window Manager,mwm, provides all of the standard window manage
ment functions. It allows you to move, resize, iconify/deiconify, maximize, an
close windows and icons, focus input to a window or icon, and refresh the d
play.mwm provides much of its functionality via a frame that (by default) is
placed around every window on the display. Themwm frame has the three-
dimensional appearance characteristic of the OSF/Motif graphical user interf

The rest of this reference page describes how to customizemwm. It does not pro-
vide information on usingmwm. For information on using the window manager
see Volume 3,X Window System User’s Guide, Motif Edition.

Options
-display [host]:server[.screen]

Specifies the name of the display on which to runmwm. host is the
hostname of the physical display,server specifies the server
number, andscreen specifies the screen number. Either or both o
thehost andscreen elements can be omitted. Ifhost is omitted, the
local display is assumed. Ifscreen is omitted, screen 0 is assumed
(and the period is unnecessary). The colon and (display)server are
necessary in all cases.

-multiscreen
Specifies thatmwm should manage all screens on the display. Th
default is to manage only screen 0. You can specify an alternate
screen by setting the DISPLAY environment variable or using th
display option. You can also specify that mwm manage all scree
by assigning a value of True to the multiScreen resource variab

-nameapp_name
Specifies the name under which resources for the window mana
should be found.

-screens screen_name[screen_name]...
Assigns resource names to the screensmwm is managing. (By
default, the screen number is used as thescreen_name.) If mwm is
managing a single screen, only the first name in the list is used.
mwm is managing multiple screens, the names are assigned to
screens in order, starting with screen 0. If there are more screen
1000 Motif Reference Manual

mwm Mrm Clients

d

his
it

the
rea
e
to

w in

in-

ni-
ng

the

t
lic-
d in
g

av-
ent.
than names, resources for the remaining screens will be retrieve
using the firstscreen_name.

-xrm resourcestring
Specifies a resource name and value to override any defaults. T
option is very useful for setting resources that do not have explic
command-line arguments.

Window Manager Components
Themwm window frame contains various components that perform different
functions. The title bar stretches across the top of the window and contains
title area and the minimize, maximize, and window menu buttons. The title a
displays the window title and can be used to move the window. The minimiz
button iconifies the window, while the maximize button enlarges the window
fill the entire screen. The window menu button posts theWindow Menu. The
resize border handles surround the window; they are used to resize the windo
a particular direction. A window can also have an optional matte decoration
between the client area and the window frame. The matte is not part of the w
dow frame and it has no functionality. At times,mwm uses dialog boxes or feed-
back windows to communicate with the user.

An icon is a small graphic representation of a window. When a window is ico
fied using the minimize button, it is replaced on the screen by its icon. Iconifyi
windows reduces clutter on the screen.mwmprovides a separate window, call the
icon box, that can hold icons. Using the icon box keeps icons from cluttering
screen.

By default,mwm uses an explicit keyboard selection policy, which means tha
once a window has the keyboard focus, it keeps it until another window is exp
itly given the focus. Windows can overlap, which means that they are arrange
a global stacking order on the screen. A window that is higher in the stackin
order obscures windows below it in the stacking order if they overlap. Each
application has its own local stacking order; transient windows remain above
their parents by default in the local stacking order.

Customization
Like any X application,mwmuses resources to control its appearance and beh
ior. The window manager builds its resource database just like any other X cli
Mwm is the resource class name formwm. You can place mwm resources in your
regular resource file (.Xdefaults) in your home directory or you can create a file
calledMwm (also in your home directory) formwm resources only. If you place
conflicting specifications in both files, the resources in.Xdefaults take prece-
dence.
1001 Motif Reference Manual

mwm Mrm Clients

 by

dow
onent
o-

ol-

iated

mpo-
nent,

 to
The default operation of the mouse, the keyboard, and menus inmwm is control-
led by a system-wide resource description file,system.mwmrc. This file describes
the contents of theWindow Menu andRoot Menu, as well as the key and button
combinations that manage windows. To modify the behavior ofmwm, you can
edit a copy of this file in your home directory. The version of the file in your
home directory should be called.mwmrc, unless you specify an alternate name
using the configFile resource.

An mwm resource description file is a standard text file. Items are separated
blanks, tabs, and newlines. A line that begins with an exclamation mark (!) or a
number sign (#) is treated as a comment. If a line ends with a backslash (\), the
subsequent line is considered a continuation of that line.

Component Appearance Resources
mwm provides some resources that specify the appearance of particular win
manager components, such as the window frame, menus, and icons. Comp
appearance resources can be specified for particular window manager comp
nents or all components. To specify a resource for all components, use the f
lowing syntax:

Mwm* resource_name: resource_value

The window manager components have the following resource names assoc
with them:

These resource names can be used to specify particular window manager co
nents in a resource specification. To specify a resource for a specific compo
use the following syntax:

Mwm*[component_name]* resource_name: resource_value

The title bar is a descendant of the client window frame, so you can use title
specify the appearance of the title bar separately from the rest of the window
frame. You can also specify resources for individual menus by usingmenu, fol-
lowed by the name of the menu.

Component ResourceName

Menu menu

Icon icon

Client window frame client

Feedback/dialog box feedback

Title bar title
1002 Motif Reference Manual

mwm Mrm Clients

er
 sys-

e

he

.

d on

e

 the

and
 spe-
The following component appearance resources apply to all window manag
components. Unless a default value is specified, the default varies based on
tem specifics such as the visual type of the screen:

background (class Background)
Specifies the background color.

backgroundPixmap (class BackgroundPixmap)
Specifies the background pixmap of themwm decoration when the
window does not have the input focus.

bottomShadowColor (class Foreground)
Specifies the color to be used for the lower and right bevels of th
window manager decoration.

bottomShadowPixmap (class BottomShadowPixmap)
Specifies the pixmap to be used for the lower and right bevels of t
window manager decoration.

fontList (class FontList)
Specifies the font to be used in the window manager decoration
The default is fixed.

foreground (class Foreground)
Specifies the foreground color.

saveUnder (class SaveUnder)
Specifies whether save unders are used formwmcomponents. The
default value is False, which means that save unders are not use
any window manager frames.

topShadowColor (class Background)
Specifies the color to be used for the upper and left bevels of th
window manager decoration.

topShadowPixmap (class TopShadowPixmap)
Specifies the pixmap to be used for the upper and left bevels of
window manager decoration.

The following component appearance resources apply to the window frame
icons. Unless a default value is specified, the default varies based on system
cifics such as the visual type of the screen:

activeBackground (class Background)
Specifies the background color of themwm decoration when the
window has the input focus.
1003 Motif Reference Manual

mwm Mrm Clients

e
focus

the
e
s
uld

se
activeBackgroundPixmap (class ActiveBackgroundPixmap)
Specifies the background pixmap of themwm decoration when the
window has the input focus.

activeBottomShadowColor (class Foreground)
Specifies the bottom shadow color of themwmdecoration when the
window has the input focus.

activeBottomShadowPixmap (class BottomShadowPixmap)
Specifies the bottom shadow pixmap of themwm decoration when
the window has the input focus.

activeForeground (class Foreground)
Specifies the foreground color of themwm decoration when the
window has the input focus.

activeTopShadowColor (class Background)
Specifies the top shadow color of themwm decoration when the
window has the input focus.

activeTopShadowPixmap (class TopShadowPixmap)
Specifies the top shadow Pixmap of themwm decoration when the
window has the input focus.

General Appearance and Behavior Resources
mwm also provides resources that control the appearance and behavior of th
window manager as a whole. These resources specify features such as the
policy, interactive window placement, and the icon box. To specify a general
appearance and behavior resource, use the following syntax:

Mwm* resource_name: resource_value

The following general appearance and behavior resources can be specified:

autoKeyFocus (class AutoKeyFocus)
If True (the default), when the focus window is withdrawn from
window management or is iconified, the focus bounces back to
window that previously had the focus. This resource is availabl
only when keyboardFocusPolicy is explicit. If False, the input focu
is not set automatically. autoKeyFocus and startupKeyFocus sho
both be True to work properly with tear-off menus.

autoRaiseDelay (class AutoRaiseDelay)
Specifies the amount of time (in milliseconds) thatmwm will wait
before raising a window after it receives the input focus. The
default is 500. This resource is available only when focusAutoRai
is True and the keyboardFocusPolicy is pointer.
1004 Motif Reference Manual

mwm Mrm Clients

t

the

d a

,
ly

:
-

to

-
t
-

bitmapDirectory (class BitmapDirectory)
Identifies the directory to be searched for bitmaps referenced by
mwm resources (if an absolute pathname to the bitmap file is no
given). The default is/usr/-include/-X11/-bitmaps, which is consid-
ered the standard location on many systems. Note, however, that
location of the bitmap directory may vary in different environ-
ments. If a bitmap is not found in the specified directory, XBM-
LANGPATH is searched.

clientAutoPlace (class ClientAutoPlace)
Specifies the location of a window when the user has not specifie
location. If True (the default), windows are positioned with the
upper-left corners of the frames offset horizontally and vertically
so that no two windows completely overlap. If False, the current
configured position of the window is used. In either case,mwm
attempts to place the windows totally on screen.

colormapFocusPolicy (class ColormapFocusPolicy)
Specifies the colormap focus policy. Takes three possible values
keyboard, pointer, and explicit. If keyboard (the default) is speci
fied, the input focus window has the colormap focus. If explicit is
specified, a colormap selection action is done on a client window
set the colormap focus to that window. If pointer is specified, the
client window containing the pointer has the colormap focus.

configFile (class ConfigFile)
Specifies the pathname for themwmstartup file. The default startup
file is.mwmrc.
mwm searches for the configuration file in the user’s home direc
tory. If the configFile resource is not specified or the file does no
exist,mwm defaults to an implementation-specific standard direc
tory (the default is/usr/lib/X11/system.mwmrc).

If the LANG environment variable is set,mwmlooks for the config-
uration file in a$LANG subdirectory first. For example, if the
LANG environment variable is set to Fr (for French),mwm
searches for the configuration file in the directory$HOME/Fr
before it looks in$HOME. Similarly, if the configFile resource is
not specified or the file does not exist,mwmdefaults to/usr/lib/X11/
$LANG/system.mwmrc before it reads/usr/lib/X11/system.mwmrc.

If the configFile pathname does not begin with ~/,mwmconsiders it
to be relative to the current working directory.
1005 Motif Reference Manual

mwm Mrm Clients

ed
om
f

-
-
 to
.

icu-
s
 a

on
pe
ca-

t),
deiconifyKeyFocus (class DeiconifyKeyFocus)
If True (the default), a window receives the input focus when it is
normalized (deiconified). This resource applies only when the
keyboardFocusPolicy is explicit.

doubleClickTime (class DoubleClickTime)
Specifies the maximum time (in milliseconds) between the two
clicks of a double click. The default is the display’s multi-click
time.

enableWarp (class EnableWarp)
If True (the default), causesmwm to warp the pointer to the center
of the selected window during resize and move operations invok
using keyboard accelerators. (The cursor symbol disappears fr
its current location and reappears at the center of the window.) I
False,mwm leaves the pointer at its original place on the screen,
unless the user explicitly moves it.

enforceKeyFocus (class EnforceKeyFocus)
If True (the default), the input focus is always explicitly set to
selected windows even if there is an indication that they are "glo
bally active" input windows. (An example of a globally active win
dow is a scrollbar that can be operated without setting the focus
that client.) If the resource explicitly set to globally active windows

iconAutoPlace (class IconAutoPlace)
Specifies whether the window manager arranges icons in a part
lar area of the screen or places each icon where the window wa
when it was iconified. If True (the default), icons are arranged in
particular area of the screen, determined by the iconPlacement
resource. If False, an icon is placed at the location of the window
when it is iconified.

iconClick (class IconClick)
If True (the default), theWindow Menu is displayed when the
pointer is clicked on an icon.

interactivePlacement (class InteractivePlacement)
If True, specifies that new windows are to be placed interactively
the screen using the pointer. When a client is run, the pointer sha
changes to an upper-left corner cursor; move the pointer to the lo
tion you want the window to appear and click the first button; the
window is displayed in the selected location. If False (the defaul
windows are placed according to the initial window configuration
attributes.
1006 Motif Reference Manual

mwm Mrm Clients

er
d,
h

e

ed

is
4.

e

r the
nt
the
ow

ts
in
ed
 the

he
keyboardFocusPolicy (class KeyboardFocusPolicy)
If explicit focus is specified (the default), placing the pointer on a
window (including the frame) or icon and pressing the first point
button focuses keyboard input on the client. If pointer is specifie
the keyboard input focus is directed to the client window on whic
the pointer rests (the pointer can also rest on the frame).

lowerOnIconify (class LowerOnIconify)
If True (the default), a window’s icon is placed on the bottom of th
stack when the window is iconified. If False, the icon is placed in
the stacking order at the same place as its associated window.

moveThreshold (class MoveThreshold)
Controls the sensitivity of dragging operations, such as those us
to move windows and icons on the display. Takes a value of the
number of pixels that the pointing device is moved while a button
held down before the move operation is initiated. The default is
This resource helps prevent a window or icon from moving when
you click or double click and inadvertently jostle the pointer whil
a button is down.

multiScreen (class MultiScreen)
If False (the default),mwm manages only a single screen. If True,
mwm manages all screens on the display.

passButtons (class PassButtons)
Specifies whether button press events are passed to clients afte
events are used to invoke a window manager function in the clie
context. If False (the default), button presses are not passed to
client. If True, button presses are passed to the client. The wind
manager function is done in either case.

passSelectButton (class PassSelectButton)
Specifies whether select button press events are passed to clien
after the events are used to invoke a window manager function
the client context. If True (the default), button presses are pass
to the client window. If False, button presses are not passed to
client. The window manager function is done in either case.

positionIsFrame (class PositionIsFrame)
Specifies howmwm should interpret window position information
from the WM_NORMAL_HINTS property and from configuration
requests. If True (the default), the information is interpreted as t
position of themwm client window frame. If False, it is interpreted
as being the position of the client area of the window.
1007 Motif Reference Manual

mwm Mrm Clients

e
 the
se,
he

his

 If
the

in-

r-
r

nds
nd-
er

;
L
tes
-

positionOnScreen (class PositionOnScreen)
If True (the default), specifies that windows should initially be
placed (if possible) so that they are not clipped by the edge of th
screen. If a window is larger than the size of the screen, at least
upper-left corner of the window is placed is on the screen. If Fal
windows are placed in the requested position even if totally off t
screen.

quitTimeout (class QuitTimeout)
Specifies the amount of time (in milliseconds) thatmwm will wait
for a client to update the WM_COMMAND property aftermwm
has sent the WM_SAVE_-YOURSELF message. The default is
1000. (See the f.kill function for additional information.)

raiseKeyFocus (class RaiseKeyFocus)
If True, specifies that a window raised by means of the
f.normalize_-and_raise function also receives the input focus. T
function is available only when the keyboardFocusPolicy is
explicit. The default is False.

screens (class Screens)
Assigns resource names to the screensmwmis managing. Ifmwmis
managing a single screen, only the first name in the list is used.
mwm is managing multiple screens, the names are assigned to
screens in order, starting with screen 0.

showFeedback (class ShowFeedback)
Specifies whethermwmfeedback windows and confirmation dialog
boxes are displayed. (Feedback windows are used to display: w
dow coordinates during interactive placement and subsequent
moves; and dimensions during resize operations. A typical confi
mation dialog is the window displayed to allow the user to allow o
cancel a window manager restart operation.)

showFeedback accepts a list of options, each of which correspo
to the type of feedback given in a particular circumstance. Depe
ing on the syntax in which the options are entered, you can eith
enable or disable a feedback option (as explained later).

The possible feedback options are: all, which specifies thatmwm
show all types of feedback (this is the default); behavior, which
specifies that feedback is displayed to confirm a behavior switch
kill, which specifies that feedback is displayed on receipt of a KIL
signal; move, which specifies that a box containing the coordina
of a window or icon is displayed during a move operation; place
1008 Motif Reference Manual

mwm Mrm Clients

of

n

n-
ses
ou
ce

he
),

w
ol-
be

een-

ens.
syn-
ment, which specifies that a box containing the position and size
a window is displayed during initial (interactive) placement; quit,
which specifies that a dialog box is displayed so that the user ca
confirm (or cancel) the procedure to quitmwm; resize, which speci-
fies that a box containing the window size is displayed during a
resize operation; restart, which displays a dialog box so that the
user can confirm (or cancel) anmwm restart procedure; the none
option specifies that no feedback is shown.

To limit feedback to particular cases, you can use one of two sy
taxes: with the first syntax, you disable feedback in specified ca
(all other default feedback is still used); with the second syntax, y
enable feedback only in specified cases. You supply this resour
with a list of options to be enabled or disabled. If the first item is
preceded by a minus sign, feedback is disabled for all options in t
list. If the first item is preceded by a plus sign (or no sign is used
feedback is enabled only for options in the list.

startupKeyFocus (class StartupKeyFocus)
If True (the default), the input focus is transferred to a window
when the window is mapped (i.e., initially managed by the windo
manager). This function is available only when keyboardFocusP
icy is explicit. startupKeyFocus and autoKeyFocus should both
True to work properly with tear-off menus.

wMenuButtonClick (class WMenuButtonClick)
If True (the default), a pointer button click on the window menu
button displays theWindow Menu and leaves it displayed.

wMenuButtonClick2 (class WMenuButtonClick2)
If True, double clicking on the window menu button removes the
client window, which means that f.kill is invoked.

Screen-Specific Resources
Somemwm resources can be applied on a per-screen basis. To specify a scr
specific resource, use the following syntax:

Mwm*screen_number*resource_name: resource_value

Screen-specific specifications take precedence over specifications for all scre
Screen-specific resources can be specified for all screens using the following
tax:

Mwm* resource_name: resource_value
1009 Motif Reference Manual

mwm Mrm Clients

ge-
ci-
p

he
y

n

t

ter

 is

.

al
cs.

ion
-
 a
buttonBindings (class ButtonBindings)
Identifies the set of button bindings to be used for window mana
ment functions; must correspond to a set of button bindings spe
fied in themwmstartup file. Button bindings specified in the startu
file are merged with built-in default bindings. The default is
DefaultButtonBindings.

cleanText (class CleanText)
Specifies whether text that appears inmwm title and feedback win-
dows is displayed over the existing background pattern. If True (t
default), text is drawn with a clear (no stipple) background. (Onl
the stippling in the area immediately around the text is cleared.)
This enhances readability, especially on monochrome systems
where a backgroundPixmap is specified. If False, text is drawn o
top of the existing background.

fadeNormalIcon (class FadeNormalIcon)
If True, an icon is greyed out when it has been normalized. The
default is False.

feedbackGeometry (class FeedbackGeometry)
Specifies the position of the small, rectangular feedback box tha
displays coordinate and size information during move and resize
operations. By default, the feedback window appears in the cen
of the screen. This resource takes the argument:

[=]±xoffset±yoffset

With the exception of the optional leading equal sign, this string
identical to the second portion of the standard geometry string.
Note that feedbackGeometry allows you to specify location only
The size of the feedback window is not configurable using this
resource. Available as ofmwm version 1.2 and later.

frameBorderWidth (class FrameBorderWidth)
Specifies the width in pixels of a window frame border, without
resize handles. (The border width includes the three-dimension
shadows.) The default is determined according to screen specifi

frameStyle
In Motif 2.0 and later, specifies the frame appearance of decorat
windows and borders: the value WmRECESSED makes the win
dow appear recessed into the border, the value WmSLAB gives
flat window and border.
1010 Motif Reference Manual

mwm Mrm Clients

s

-

e
-
al

e-
e

nd.

all
re
ll-

on-

n
of

he

e
):
h

ed
iconBoxGeometry (class IconBoxGeometry)
Specifies the initial position and size of the icon box. Takes as it
argument the standard geometry string:

widthxheight±xoff±yoff

wherewidth andheight are measured in icons. The default geome
try string is 6x1+0-0, which places an icon box six icons wide by
one icon high in the lower-left corner of the screen.

You can omit either the dimensions or the x and y offsets from th
geometry string and the defaults apply. If the offsets are not pro
vided, the iconPlacement resource is used to determine the initi
placement.

The actual screen size of the icon box depends on the iconImag
Maximum and iconDecoration resources, which specify icon siz
and padding. The default value for size is (6× icon_width + pad-
ding) wide by (1× icon_height + padding) high.

iconBoxName (class IconBoxName)
Specifies the name under which icon box resources are to be fou
The default is iconbox.

iconBoxSBDisplayPolicy (class IconBoxSBDisplayPolicy)
Specifies what scrollbars are displayed in the icon box. The
resource has three possible values: all, vertical, and horizontal. If
is specified (the default), both vertical and horizontal scrollbars a
displayed at all times. vertical specifies that a single vertical scro
bar is displayed and sets the orientation of the icon box to horiz
tal, regardless of the iconBoxGeometry specification. horizontal
specifies that a single horizontal scrollbar is displayed in the ico
box and sets the orientation of the icon box to vertical, regardless
the iconBoxGeometry specification.

iconBoxTitle (class IconBoxTitle)
Specifies the name to be used in the title area of the icon box. T
default is Icons.

iconDecoration (class IconDecoration)
Specifies how much icon decoration is used. The resource valu
takes four possible values (multiple values can also be supplied
label, which specifies that only the label is displayed; image, whic
specifies that only the image is displayed; and activelabel, which
specifies that a label (not truncated to the width of the icon) is us
when the icon has the focus.
1011 Motif Reference Manual

mwm Mrm Clients

d.
 is

nly
nt

re
s a
om
t.
een

a

 of
on
n

he

n,
of
The default decoration for icons in an icon box is label image,
which specifies that both the label and image parts are displaye
The default decoration for individual icons on the screen proper
activelabel label image.

iconImageMaximum (class IconImageMaximum)
Specifies the maximum size of the icon image. Takes a value of
widthxheight (e.g., 80×80). The maximum size supported is
128×128. The default is 50×50.

iconImageMinimum (class IconImageMinimum)
Specifies the minimum size of the icon image. Takes a value of
widthxheight (e.g., 36×48). The minimum size supported is 16×16
(which is also the default).

iconPlacement (class IconPlacement)
Specifies an icon placement scheme. Note that this resource is o
useful when useIconBox is False (the default). The iconPlaceme
resource takes a value of the syntax:

primary_layout secondary_layout [tight]

There are four possible layout policies. top specifies that icons a
placed from the top of the screen to the bottom, bottom specifie
bottom-to-top arrangement, left specifies that icons are placed fr
the left to the right, and right specifies a right-to-left arrangemen
The optional argument tight specifies that there is no space betw
icons.

Theprimary_layoutspecifies whether icons are placed in a row or
column and the direction of placement. Thesecondary_layoutspec-
ifies where to place new rows or columns. For example, a value
top right specifies that icons should be placed from top to bottom
the screen and that columns should be added from right to left o
the screen.

A horizontal (vertical) layout value should not be used for both t
primary_layoutand thesecondary_layout. For example, do not use
top for theprimary_layout and bottom for thesecondary_layout.

The default placement is left bottom (i.e., icons are placed left to
right on the screen, with the first row on the bottom of the scree
and new rows are added from the bottom of the screen to the top
the screen).
1012 Motif Reference Manual

mwm Mrm Clients

e
lt
is

een,
nd

-
ed
r-
lt-

o

er

e
al

ze
-

en

t-
ti-
iconPlacementMargin (class IconPlacementMargin)
Sets the distance from the edge of the screen at which icons ar
placed. The value should be greater than or equal to 0. A defau
value is used if an invalid distance is specified. The default value
equal to the space between icons as they are placed on the scr
which is based on maximizing the number of icons in each row a
column.

keyBindings (class KeyBindings)
Identifies the set of key bindings to be used for window manage
ment functions; must correspond to a set of key bindings specifi
in themwmstartup file. Note that key bindings specified in the sta
tup file replace the built-in default bindings. The default is Defau
KeyBindings.

limitResize (class LimitResize)
If True (the default), the user is not allowed to resize a window t
greater than the maximum size.

maximumMaximumSize (class MaximumMaximumSize)
Specifies the maximum size of a client window (as set by the us
or client). Takes a value ofwidthxheight (e.g., 1024x1024) where
widthandheightare in pixels. The default is twice the screen width
and height.

moveOpaque (class MoveOpaque)
If False (the default), when you move a window or icon, its outlin
is moved before it is redrawn in the new location. If True, the actu
(and thus, opaque) window or icon is moved. Available as ofmwm
version 1.2 and later.

resizeBorderWidth (class ResizeBorderWidth)
Specifies the width in pixels of a window frame border, with resi
handles. (The border width includes the three-dimensional shad
ows.) The default is determined according to screen specifics.

resizeCursors (class ResizeCursors)
If True (the default), the resize cursors are always displayed wh
the pointer is in the window resize border.

transientDecoration (class TransientDecoration)
Specifies the amount of decorationmwmputs on transient windows.
The decoration specification is exactly the same as for the clien
Decoration (client-specific) resource. Transient windows are iden
fied by the WM_TRANSIENT_FOR property, which is added by
1013 Motif Reference Manual

mwm Mrm Clients

is
or-
li-
uld
e

or
is

-
 be
t

l

ses
x:

ts.
yn-

ve an

ize
the client to indicate a relatively temporary window. The default
menu title, which specifies that transient windows have resize b
ders and a title bar with a window menu button. If the client app
cation also specifies which decorations the window manager sho
provide,mwm uses only those features that both the client and th
transientDecoration resource specify.

transientFunctions (class TransientFunctions)
Specifies which window management functions are applicable (
not applicable) to transient windows. The function specification
exactly the same as for the clientFunctions (client-specific)
resource. The default is -minimize maximize. If the client applica
tion also specifies which window management functions should
applicable,mwm provides only those functions that both the clien
and the transientFunctions resource specify.

useIconBox (class UseIconBox)
If True, icons are placed in an icon box. By default, the individua
icons are placed on the root window.

Client-Specific Resources
Somemwm resources can be set to apply to certain client applications or clas
of applications. To specify a client-specific resource, use the following synta

Mwm*client_name*resource_name: resource_value

Client-specific specifications take precedence over specifications for all clien
Client- specific resources can be specified for all clients using the following s
tax:

Mwm* resource_name: resource_value

The class name defaults can be used to specify resources for clients that ha
unknown name and class.

The following client-specific resources can be specified:

clientDecoration (class ClientDecoration)
Specifies the amount of window frame decoration. The default
frame is composed of several component parts: the title bar, res
handles, border, and the minimize, maximize, and window menu
buttons. You can limit the frame decoration for a client using the
clientDecoration resource.

clientDecoration accepts a list of options, each of which corre-
sponds to a part of the client frame. The options are: maximize,
1014 Motif Reference Manual

mwm Mrm Clients

l
ec-

o-
d,
, a

r-
:

nt-

is-
d),

re

ds
x-

e

a
t
u

t
d.
st
o

-
r

r-
minimize, menu, border, title, resize, all, which encompasses al
decorations previously listed, and none, which specifies that no d
orations are used.

Some decorations require the presence of others; if you specify
such a decoration, any decorations required with it are used aut
matically. Specifically, if any of the command buttons are specifie
a title bar is also used; if resize handles or a title bar is specified
border is also used.

By default, a client window has all decoration. To specify only ce
tain parts of the default frame, you can use one of two syntaxes
with the first syntax, you disable certain frame features; with the
second syntax, you enable only certain features. You supply clie
Decoration with a list of options to be enabled or disabled. If the
first item is preceded by a minus sign, the features in the list are d
abled. If the first item is preceded by a plus sign (or no sign is use
only those features listed are enabled.

clientFunctions (class ClientFunctions)
Specifies whether certainmwmfunctions can be invoked on a client
window. The only functions that can be controlled are those that a
executable using the pointer on the default window frame.
clientFunctions accepts a list of options, each of which correspon
to anmwmfunction. The options are: resize, move, minimize, ma
imize, close, all, which encompasses all of the previously listed
functions, and none, which specifies that no default functions ar
allowed.

By default, a client recognizes all functions. To limit the functions
client recognizes, you can use one of two syntaxes: with the firs
syntax, you disallow certain functions; with the second syntax, yo
allow only certain functions. You supply clientFunctions with a lis
of options (corresponding to functions) to be allowed or disallowe
If the first item is preceded by a minus sign, the functions in the li
are disallowed. If the first option is preceded by a plus sign (or n
sign is used), only those functions listed are allowed.
A less than obvious repercussion of disallowing a particular func
tion is that the client window frame is also altered to prevent you
invoking that function. For instance, if you disallow the f.resize
function for a client, the client’s frame does not include resize bo
ders. In addition, theSize item on theWindow Menu, which
invokes the f.resize function, no longer appears on the menu.
1015 Motif Reference Manual

mwm Mrm Clients

t

er-
er.
s-
lt
r,

age
e

he

t is

ult

es

he

 is
If the client application also specifies which window managemen
functions should be applicable,mwmprovides only those functions
that both the client and the clientFunctions resource specify.

focusAutoRaise (class FocusAutoRaise)
If True, a window is raised when it receives the input focus. Oth
wise, directing focus to a window does not affect the stacking ord
The default depends on the value assigned to the keyboardFocu
Policy resource. If the keyboardFocusPolicy is explicit, the defau
for focusAutoRaise is True. If the keyboardFocusPolicy is pointe
the default for focusAutoRaise is False.

iconImage (class IconImage)
Specifies the pathname of a bitmap file to be used as an icon im
for a client. The default is to display an icon image supplied by th
window manager. If the useClientIcon resource is set to True, an
icon image supplied by the client takes precedence over an icon
image supplied by the user.

iconImageBackground (class Background)
Specifies the background color of the icon image. The default is t
color specified by Mwm*background or Mwm*icon*background.

iconImageBottomShadowColor (class Foreground)
Specifies the bottom shadow color of the icon image. The defaul
the color specified by Mwm*icon*bottomShadowColor.

iconImageBottomShadowPixmap (class BottomShadowPixmap)
Specifies the bottom shadow pixmap of the icon image. The defa
is the pixmap specified by Mwm*icon*bottomShadowPixmap.

iconImageForeground (class Foreground)
Specifies the foreground color of the icon image. The default vari
based on the icon background.

iconImageTopShadowColor (class Background)
Specifies the top shadow color of the icon image. The default is t
color specified by Mwm*icon*topShadowColor.

iconImageTopShadowPixmap (class TopShadowPixmap)
Specifies the top shadow Pixmap of the icon image. The default
the pixmap specified by Mwm*icon*topShadowPixmap.
1016 Motif Reference Manual

mwm Mrm Clients

.

e
-

the

-

lor

lor

no

ze
i-

am-
s.
matteBackground (class Background)
Specifies the background color of the matte. The default is the
color specified by Mwm*background or Mwm*client*background
This resource is only relevant if matteWidth is positive.

matteBottomShadowColor (class Foreground)
Specifies the bottom shadow color of the matte. The default is th
color specified by Mwm*bottomShadowColor or Mwm*client*bot
tomShadowColor. This resource is only relevant if matteWidth is
positive.

matteBottomShadowPixmap (class BottomShadowPixmap)
Specifies the bottom shadow pixmap of the matte. The default is
pixmap specified by Mwm*bottomShadowPixmap or Mwm*cli-
ent*bottomShadowPixmap. This resource is only relevant if mat
teWidth is positive.

matteForeground (class Foreground)
Specifies the foreground color of the matte. The default is the co
specified by Mwm*foreground or Mwm*client*foreground. This
resource is only relevant if matteWidth is positive.

matteTopShadowColor (class Background)
Specifies the top shadow color of the matte. The default is the co
specified by Mwm*topShadowColor or Mwm*client*topShadow-
Color. This resource is only relevant if matteWidth is positive.

matteTopShadowPixmap (class TopShadowPixmap)
Specifies the top shadow pixmap of the matte. The default is the
pixmap specified by Mwm*topShadowPixmap or Mwm*cli-
ent*topShadowPixmap. This resource is only relevant if mat-
teWidth is positive.

matteWidth (class MatteWidth)
Specifies the width of the matte. The default is 0, which means
matte is used.

maximumClientSize (class MaximumClientSize)
Specifies how a window is to be maximized, either to a specific si
(widthxheight), or as much as possible in a certain direction (vert
cal or horizontal). If the value is of the formwidthxheight, the width
and height are interpreted in the units used by the client. For ex
ple,xterm measures width and height in font characters and line

If maximumClientSize is not specified, and the
WM_NORMAL_HINTS property is set, the default is obtained
1017 Motif Reference Manual

mwm Mrm Clients

ver

-

.

but-

y
 any
ed

unc-
 to

t be

he
an
from it. If WM_NORMAL_HINTS is not set, the default is the size
(including borders) that fills the screen.mwm also uses maximum-
MaximumSize to constrain the value in this case.

useClientIcon (class UseClientIcon)
If True, an icon image supplied by the client takes precedence o
an icon image supplied by the user. The default is False.

usePPosition (class UsePPosition)
Specifies whethermwm uses initial coordinates supplied by the cli
ent application. If True,mwm always uses the program specified
position. If False,mwm never uses the program specified position
The default is nonzero, which means thatmwm will use any pro-
gram specified position except 0,0. Available as ofmwm version
1.2 and later.

windowMenu (class WindowMenu)
Specifies a name for theWindow Menu (which must be defined in
the startup file). The default is DefaultWindowMenu.

Functions
mwm supports a number of functions that can be bound to different key and
ton combinations and assigned to menus in themwm resource description file
(system.mwmrc or.mwmrc). Most window manager functions can be used in ke
bindings, button bindings, and menus. The function descriptions below note
exceptions to this policy. Most window manager functions can also be specifi
for three contexts: root, window, and icon. The root context means that the f
tion is applied to the root window, window means that the function is applied
the selected client window, and icon means that the function is applied to the
selected icon. The function descriptions below note any functions that canno
used in all three contexts.

When a function is specified with the context icon | window and you invoke t
function from the icon box, the function applies to the icon box itself, rather th
to any of the icons it contains.

A function is treated as f.nop if it is not a valid function name, if it is specified
inappropriately, or if it is invoked in an invalid way.

mwm recognizes the following functions:

f.beep
Causes a beep from the keyboard.
1018 Motif Reference Manual

mwm Mrm Clients

 to
c-
e

ed

ri-

r

it;

c-

d it
-
-

-
ted.
f.circle_down [icon | window]
Causes the window or icon on the top of the stack to be lowered
the bottom of the stack. If the icon argument is specified, the fun
tion applies only to icons. If the window argument is specified, th
function applies only to windows.

f.circle_up [icon | window]
Causes the window or icon on the bottom of the stack to be rais
to the top. If the icon argument is specified, the function applies
only to icons. If the window argument is specified, the function
applies only to windows.

f.exec[command]
![command]

Executescommand using the shell specified by the MWMSHELL
environment variable. If MWMSHELL is not set, the command is
executed using the shell specified by the SHELL environment va
able; otherwise, the command is executed using/bin/sh.

f.focus_color
Sets the colormap focus to a client window. If this function is
invoked in the root context, the default colormap (specified by X fo
the screen wheremwm is running) is installed and there is no spe-
cific client window colormap focus. For the f.focus_color function
to work, the colormapFocusPolicy should be specified as explic
otherwise the function is treated as f.nop.

f.focus_key
Sets the input focus to a window or icon. For the f.focus_key fun
tion to work, the keyboardFocusPolicy should be specified as
explicit. If keyboardFocusPolicy is not explicit or if the function is
invoked in the root context, it is treated as f.nop.

f.kill
Terminates a client. It sends the WM_DELETE_WINDOW mes-
sage to the selected window if the client application has requeste
through the WM_PROTOCOLS property. The application is sup
posed to respond to the message by removing the indicated win
dow. If the WM_SAVE_YOURSELF protocol is set up and the
WM_DELETE_WINDOW protocol is not, the client is sent a mes
sage that indicates that the client needs to prepare to be termina
If the client does not have the WM_DELETE_WINDOW or
WM_SAVE_YOURSELF protocol set, the f.kill function causes a
client’s X connection to be terminated.
1019 Motif Reference Manual

mwm Mrm Clients

i-
s
t
d

ass
-
ll

-
-

ica-
e
r-

nc-

n

f.lower [-client | within | freeFamily]
Without arguments, lowers a window or icon to the bottom of the
stack. By default, the context in which the function is invoked ind
cates to the window or icon to lower. If an application window ha
one or more transient windows (e.g., dialog boxes), the transien
windows are lowered with the parent (within the global stack) an
remain on top of it. If the -clientargument is specified, the function
is invoked on the named client. client must be the instance or cl
name of a program. The within argument is used to lower a tran
sient window within the application’s local window hierarchy; a
transients remain above the parent window and that window
remains in the same position in the global window stack. In prac
tice, this function is only useful when there are two or more tran
sient windows and you want to shuffle them. The freeFamily
argument is used to lower a transient below its parent in the appl
tion’s local window hierarchy. Again, the parent is not moved in th
global window stack. However, if you use this function on the pa
ent, the entire family stack is lowered within the global stack.

f.maximize
Causes a window to be redisplayed at its maximum size. This fu
tion cannot be invoked in the context root or on a window that is
already maximized.

f.menumenu_name
Associates a cascading menu with a menu item or associates a
menu with a button or key binding. Themenu_name argument
specifies the menu.

f.minimize
Causes a window to be minimized (i.e., iconified). When no icon
box is being used, icons are placed on the bottom of the stack,
which is generally in the lower-left corner of the screen. If an ico
box is being used, icons are placed inside the box. This function
cannot be invoked in the context root or on an iconified window.

f.move
Allows you to move a window interactively, using the pointer.

f.next_cmap
Installs the next colormap in the list of colormaps for the window
with the colormap focus.
1020 Motif Reference Manual

mwm Mrm Clients

o
-

c-
an

c-
e

at

he

cy

s.
the

y

e
If
er-
f.next_key [icon | window | transient]
Without any arguments, this function advances the input focus t
the next window or icon in the stack. You can specify icon or win
dow to make the function apply only to icons or windows, respe
tively. Generally, the focus is moved to windows that do not have
associated secondary window that is application modal. If the
transient argument is specified, transient windows are also tra-
versed. Otherwise, if only window is specified, focus is moved to
the last window in a transient group to have the focus. For this fun
tion to work, keyboardFocusPolicy must be explicit; otherwise, th
function is treated as f.nop.

f.nop
Specifies no operation.

f.normalize
Causes a client window to be displayed at its normal size. This
function cannot be invoked in the context root or on a window th
is already at its normal size.

f.normalize_and_raise
Causes the client window to be displayed at its normal size and
raised to the top of the stack. This function cannot be invoked in t
context root or on a window that is already at its normal size.

f.pack_icons
Rearranges icons in an optimal fashion based on the layout poli
being used, either on the root window or in the icon box.

f.pass_keys
Toggles processing of key bindings for window manager function
When key binding processing is disabled, all keys are passed to
window with the keyboard input focus and no window manager
functions are invoked. If the f.pass_keys function is set up to be
invoked with a key binding, the binding can be used to toggle ke
binding processing.

f.post_wmenu
Displays theWindow Menu. If a key is used to display the menu
and a window menu button is present, the upper-left corner of th
menu is placed at the lower-left corner of the command button.
no window menu button is present, the menu is placed in the upp
left corner of the window.
1021 Motif Reference Manual

Mrm Clients

s

e

-
an

c-
e

ot

ck.

r
ws
n

f a

n

a-
o

w-
n-
f.prev_cmap
This function installs the previous colormap in the list of colormap
for the window with the colormap focus.

f.prev_key [icon | window | transient]
Without any arguments, this function moves the input focus to th
previous window or icon in the stack. You can specifyiconor win-
dow to make the function apply only to icons or windows, respec
tively. Generally, the focus is moved to windows that do not have
associated secondary window that is application modal. If the
transient argument is specified, transient windows are also tra-
versed. Otherwise, if onlywindow is specified, focus is moved to
the last window in a transient group to have the focus. For this fun
tion to work, keyboardFocusPolicy must be explicit; otherwise, th
function is treated as f.nop.

f.quit_mwm
Stops themwm window manager. Note that this function does not
stop the X server. This function cannot be invoked from a non-ro
menu.

f.raise [-client | within | freeFamily]
Without arguments, raises a window or icon to the top of the sta
By default, the context in which the function is invoked indicates
the window or icon to raise. If an application window has one o
more transient windows (e.g., dialog boxes), the transient windo
are raised with the parent (within the global stack) and remain o
top of it. If the -clientargument is specified, the function is invoked
on the named client. client must be the instance or class name o
program. Thewithin argument is used to raise a transient window
within the application’s local window hierarchy; all transients
remain above the parent window and that window remains in the
same position in the global window stack. In practice, this functio
is only useful when there are two or more transient windows and
you want to shuffle them.

ThefreeFamilyargument raises a transient to the top of the applic
tion’s local window hierarchy. The parent window is also raised t
the top of the global stack.

f.raise_lower [within | freeFamily]
Raises a primary application window to the top of the stack or lo
ers a window to the bottom of the stack, as appropriate to the co
text. The within argument is intended to raise a transient window
Motif Reference Manual 1022

Mrm Clients

lso
n-

ran-

e

e
ot
o
l

nt

k to
d,
-
in-
ot
ts

d
he
within the application’s local window hierarchy. All transients
remain above the parent window and the parent window should a
remain in the same position in the global window stack. If the tra
sient is not obscured by another window in the local stack, the t
sient window is lowered within the family. The preceding
paragraph describes how withinshould work. However, we have
found that the parent window does not always remain in the sam
position in the global window stack. The freeFamily argument
raises a transient to the top of the family stack and also raises th
parent window to the top of the global stack. If the transient is n
obscured by another window, this function lowers the transient t
the bottom of the family stack and lowers the family in the globa
stack.

f.refresh
Redraws all windows.

f.refresh_win
Redraws a single window.

f.resize
Allows you to resize a window interactively, using the pointer.

f.restart
Restarts themwmwindow manager. The function causes the curre
mwmprocess to be stopped and a newmwmprocess to be started. It
cannot be invoked from a non-root menu.

f.restore
Causes the client window to be displayed at its previous size. If
invoked on an icon, f.restore causes the icon to be converted bac
a window at its previous size. Thus, if the window was maximize
it is restored to this state. If the window was previously at its nor
mal size, it is restored to this state. If invoked on a maximized w
dow, the window is restored to its normal size. This function cann
be invoked in the context root or on a window that is already at i
normal size.

f.restore_and_raise
Causes the client window to be displayed at its previous size an
raised to the top of the stack. This function cannot be invoked in t
context root or on a window that is already at its normal size.
Motif Reference Manual 1023

Mrm Clients

ter-

reen

li-

.

c-
dia-
is

e

u

f.screen [next | prev | back | screen_number]
Causes the pointer to be warped to another screen, which is de
mined by one of four mutually exclusive parameters. Thenextargu-
ment means skip to the next managed screen,prevmeans skip back
to the previous managed screen, back means skip to the last sc
visited, andscreen_number specifies a particular screen. Screens
are numbered beginning at 0.

f.send_msgmessage_number
Sends a message of the type _MOTIF_WM_MESSAGES to a c
ent; the message type is indicated by themessage_number argu-
ment. The message is sent only if the client’s
_MOTIF_WM_MESSAGES property includesmessage_number. If
a menu item is set up to invoke f.send_msg and the
message_number is not included in the client’s
_MOTIF_WM_MESSAGES property, the menu item label is
greyed out, which indicates that it is not available for selection.

f.separator
Creates a divider line in a menu. Any associated label is ignored

f.set_behavior
Restartsmwm, toggling between the default behavior for the parti
ular system and the user’s custom environment. In any case, a
log box asks the user to confirm or cancel the action. By default th
function is invoked using the following key sequence: Shift Ctrl
Meta !.

f.title
Specifies the title of a menu. The title string is separated from th
menu items by a double divider line.

Event Specification
In order to specify button bindings, key bindings, and menu accelerators, yo
need to be able to specify events in themwm resource description file. Use the
following syntax to specify button events for button bindings:

[modifier_key...]<button_event>

The acceptable values formodifier_key are: Ctrl, Shift, Alt, Meta, Lock, Mod1,
Mod2, Mod3, Mod4, and Mod5.mwm considers Alt and Meta to be equivalent.
Motif Reference Manual 1024

Mrm Clients

cel-

that
gs

a

 to
xt-
,
 bor-
e.
xt

al-

trol
e

 The acceptable values forbutton_event are:

Btn1Down Btn2Down Btn3Down Btn4Down Btn5Down
Btn1Up Btn2Up Btn3Up Btn4Up Btn5Up
Btn1Click Btn2Click Btn3Click Btn4Click Btn5Click
Btn1Click2 Btn2Click2 Btn3Click2 Btn4Click2 Btn5Click2

Use the following syntax to specify key events for key bindings and menu ac
erators:

[modifier_key...]<Key>key_name

Any X11 keysym name is an acceptable value forkey_name.

Button Bindings
The buttonBindings resource specifies the name of a set of button bindings
control mouse behavior in mwm. You can create your own set of button bindin
or use one of the sets defined insystem.mwmrc:DefaultButtonBindings, Explicit-
ButtonBindings, or PointerButtonBindings. Use the following syntax to specify
set of button bindings:

Buttonsbutton_set_name
{

button context function
button context function
...
button context function

}

Thecontext specifies where the pointer must be located for the button binding
work. The context is also used for window manager functions that are conte
sensitive. The valid contexts for button bindings are root, window, icon, title
border, frame, and app. The title context refers to the title area of the frame.
der refers to the frame exclusive of the title bar. frame refers to the entire fram
The app context refers to the application window proper. The window conte
includes the application window and the frame. A context specification can
include multiple contexts; use a vertical bar (|) to separate multiple context v
ues.

Key Bindings
The keyBindings resource specifies the name of a set of key bindings that con
keyboard behavior inmwm. You can create your own set of key bindings or us
the default key bindings, DefaultKeyBindings, defined insystem.mwmrc.Use the
following syntax to specify a set of key bindings:
Motif Reference Manual 1025

Mrm Clients

o
xt-
or-
lent
al

se
enus

nal
at is

pre-
r

sed
of
g,
Keyskey_set_name
{

key context function
key context function
...
key context function

}

Thecontext specifies where the keyboard focus must be for the key binding t
work. The context is also used for window manager functions that are conte
sensitive. The valid contexts for key bindings are root, window, icon, title, b
der, frame, and app. The title, border, frame, and app contexts are all equiva
to window. A context specification can include multiple contexts; use a vertic
bar (|) to separate multiple context values.

Menus
The window manager functions f.post_wmenu and f.menu post menus. The
functions both take the name of a menu to post. You can create your own m
or use the default menus defined insystem.mwmrc: DefaultRootMenu and
DefaultWindowMenu. Use the following syntax to specify a menu:

Menumenu_name
{

label [mnemonic] [accelerator] function
label [mnemonic] [accelerator] function
...
label [mnemonic] [accelerator] function

}

Each line in a menu specification indicates the label for the menu item, optio
keyboard mnemonics and accelerators, and the window manager function th
performed.label can be a string or a bitmap file. If the string contains multiple
words, it must be enclosed in quotation marks. A bitmap file specification is
ceded by an at sign (@). A mnemonic is specified as _character. An accelerato
specification uses the key event specification syntax.

The context of a window manager function that is activated from a menu is ba
on how the menu is posted. If it is posted from a button binding, the context
the menu is the context of the button binding. If it is posted from a key bindin
the context of the menu is based on the location of the keyboard focus.
Motif Reference Manual 1026

Mrm Clients

les.

les.

nd
s

Environment
mwm uses the following environment variables:

HOME
The user’s home directory.

LANG
The language to be used for themwmmessage catalog and themwm
startup file.

XBMLANGPATH
Used to search for bitmap files.

XFILESEARCHPATH
Used to determine the location of system-wide class resource fi
If the LANG variable is set, the$LANG subdirectory is also
searched.

XUSERFILESEARCHPATH, XAPPLRESDIR
Used to determine the location of user-specific class resource fi
If the LANG variable is set, the$LANG subdirectory is also
searched.

MWMSHELL, SHELL
MWMSHELL specifies the shell to use when executing a comma
supplied as an argument to the f.exec function. If MWMSHELL i
not set, SHELL is used.

Files
/usr/lib/X11/$LANG/system.mwmrc
/usr/lib/X11/system.mwmrc
/usr/lib/X11/app-defaults/Mwm
$HOME/Mwm
$HOME/$LANG/.mwmrc
$HOME/.mwmrc
$HOME/.motifbind

See Also
XmIsMotifWMRunning (1), XmInstallImage (1), VendorShell (2),
xmbind (3)
Motif Reference Manual 1027

Mrm Clients

le
ption

uses

e or

e

ry
is
ts
ia-

is

y
ent
le
s-

ion.
Name
uil – the User Interface Language (UIL) compiler.

Syntax
uil [options] file

Description
Theuil command invokes the User Interface Language (UIL) compiler. If the fi
does not contain any errors, the compiler generates a User Interface Descri
(UID) file that contains a compiled form of the input file. UIL is a specification
language that can be used to describe the initial state of a user interface that
the OSF/Motif widget set, as well as other widgets. The user interface for an
application is created at run-time using the Motif Resource Manager (Mrm)
library; the interface is based on compiled interface descriptions stored in on
more UID files.

Options
-Ipathname

Specifies a search path for include files. By default, the current
directory and/usr/includeare searched. Path names may be relativ
or absolute. The paths specified with this option are searched in
order after the current directory and before/usr/include.

-m
When specified with the -v option, the UIL compiler includes
machine code in the listing file. The machine code provides bina
and text descriptions of the data that is stored in the UID file. Th
option is useful for determining exactly how the compiler interpre
a particular statement and how much storage is used for the var
bles, declarations, and assignments.

-o ofile
Specifies the name of the UID file to output. The default filename
a.uid. The customary suffix for UID files is .uid.

-s
Specifies that the UIL compiler set the locale before compiling an
files. Setting the locale determines the behavior of locale-depend
routines like character string operations. Although setting the loca
is an implementation-dependent operation, on ANSI-C-based sy
tems, the locale is set with the call:

setlocale (LC_ALL, ””)

See the setlocale() man page on your system for more informat
Motif Reference Manual 1028

Mrm Clients

-

-
 to

s
 The

is
-v lfile
Directs the UIL compiler to produce a listing of the compilation.
The file indicates the name of the output file. If this option is not
specified, the compiler does not generate a listing. On UNIX sys
tems, a filename of/dev/ttyusually causes the listing to be output on
the terminal whereuil was invoked.

-w
Directs the compiler to suppress warning and informational mes
sages and to print only error messages. The default behavior is
print error, warning and informational messages.

-wmdwfile
Specifies a compiled Widget Meta-Language (WML) description
file that is loaded in place of the default WML description. The
default WML description file contains a description of all of the
Motif widgets. This option is normally used to debug a WML
description file without rebuilding the UIL compiler.

Environment
The LANG environment variable affects the way that the UIL compiler parse
and generates compound strings, fonts, fontsets, and font tables (font lists).
exact effect is described by the UIL reference pages for these types.

Example
% uil -o myfile.uid -v /dev/tty myfile.uil
% uil -I/project/include/uil -o mainui.uid mainui.uil

Bugs
If the LANG environment variable is set to an invalid value and the -s option
specified, the UIL compiler crashes.

See Also
Uil (7).
Motif Reference Manual 1029

Mrm Clients

.

ise,
-

g
d
dor

arch

-

use
stom-
at is

epre-
nd
Name
xmbind – configure virtual key bindings.

Syntax
xmbind [options] [file]

Availability
Motif 1.2 and later.

Description
Thexmbindcommand configures the virtual key bindings for Motif applications
Since this action is performed bymwm on startup,xmbind is only needed when
mwm is not being used or when a user wants to change the bindings without
restartingmwm.

When a file is specified, its contents are used for the virtual bindings. Otherw
xmbind uses the.motifbind file in the user’s home directory. A sample specifica
tion is shown below:

osfBackSpace: <Key>BackSpace
osfInsert: <Key>InsertChar
osfDelete: <Key>DeleteChar

If xmbind cannot find the.motifbind file, it loads the default virtual bindings for
the server.xmbind searches for a vendor-specific set of bindings located usin
the file xmbind.alias. If this file exists in the user’s home directory, it is searche
for a pathname associated with the vendor string or the vendor string and ven
release. If the search is unsuccessful, Motif continues looking forxmbind.aliasin
the directory specified by XMBINDDIR or in/usr/lib/Xm/bindingsif the variable
is not set. If this file exists, it is searched for a pathname as before. If either se
locates a pathname and the file exists, the bindings in that file are used. An
xmbind.alias file contains lines of the following form:

"vendor_string[vendor_release]"bindings_file

If xmbindstill has not located any bindings, it loads fixed fallback default bind
ings.

The Motif toolkit uses a mechanism calledvirtual bindings to map one set of
keysyms to another set. This mapping permits widgets and applications to
one set of keysyms in translation tables; applications and users can then cu
ize the keysyms used in the translations based on the particular keyboard th
being used. Keysyms that can be used in this way are called osf keysyms. Motif
maintains a mapping between the osf keysyms and the actual keysyms that r
sent keys on a particular keyboard. See the Introduction to Section 2, Motif a
Xt Widget Classes, for more information about virtual bindings.
Motif Reference Manual 1030

Mrm Clients

f

Options
-display[host]:server[.screen]

Specifies the name of the display on which to runxmbind. hostis
the hostname of the physical display,server specifies the server
number, andscreen specifies the screen number. Either or both o
thehost andscreen elements can be omitted. Ifhost is omitted, the
local display is assumed. Ifscreen is omitted, screen 0 is assumed
(and the period is unnecessary). The colon and (display)server are
necessary in all cases.

Environment
The XMBINDDIR environment variable affects the way thatxmbindsearches for
vendor-specific default virtual bindings.

See Also
XmTranslateKey (1).
Motif Reference Manual 1031

Mrm Clients
Motif Reference Manual 1032

the UIL

ould
es and

that
of a set

ntax
inter-
irec-
ment.
f these
inter-

e sec-
he
r
g the

e over-
t con-

ters in
g of

gins
rsing

ed
 0 to 9,
h; they
ffects
rds
st, and

ot be
mes. In
pro-
Section 5 - UIL File Format

This page describes the format and contents of each reference page in Section 5, which covers
file format.

Name
Section – a brief description of the file section.

Syntax
This section describes the syntax for the section of the UIL file. Anything in constant width type sh
be typed exactly as shown. Items in italics are expressions that should be replaced by actual nam
values when you write a UIL file. Anything enclosed in brackets is optional. An ellipsis (...) means
the previous expression can be repeated multiple times and a vertical bar (|) means to select one
of choices.

Description
This section provides an overview of the particular section in the UIL module and it explains the sy
that is expected for the section. A UIL source file, also known as a UIL module, describes the user
face for an application. It consists of a module name, optional module settings, optional include d
tives, zero or more sections that describe all or part of a user interface, and an end module state
The module specifies the widgets used in the interface, as well as the resources and callbacks o
widgets. UIL gives you the ability to use variables, procedures, lists, and objects to describe the
face.

A major portion of a UIL module is the sections that describe the user interface. They are the valu
tion, for defining and declaring variables; the procedure section, for declaring callback routines; t
identifier section, for declaring values registered by the application at run-time; the list section, fo
defining lists of procedures, resources, callbacks, and widgets; and the object section, for definin
widgets, their resources, and the widget hier-archy.

In this section, we provide reference pages for each section of a UIL source file, as well as for th
all module structure and the include directive. Figure 5-1 shows an example of a UIL module tha
tains all of these sections.

UIL Syntax
Symbols and identifiers in a UIL module must be separated by whitespace or punctuation charac
order to be recognized by the UIL compiler. Like C, no other restrictions are placed on the formattin
a UIL module, although the maximum line length accepted by the compiler is 132 characters.

Comments in UIL can take two different forms: single-line and multi-line. A single-line comment
begins with a exclamation point (!) and continues to the end of the line. A multi-line comment be
with the characters /* and ends with the characters */. Since the UIL compiler suspends normal pa
within comments, they cannot be nested.

Values, identifiers, procedures, lists, and objects are declared or defined with programmer-assign
names. Names can be composed of upper and lowercase characters from A to Z, the digits from
and the underscore (_) and dollar sign ($) characters. Names may be up to 31 characters in lengt
cannot begin with a digit. The names option, which is described on the module reference page, a
the case sensitivity of names. The UIL compiler maintains a single name-space for all UIL keywo
and programmer-defined names. This means that the name of each value, identifier, procedure, li
object must be unique.

UIL Keywords
UIL keywords are categorized into reserved and unreserved keywords. Reserved keywords cann
redefined by the programmer, while unreserved keywords can be used as programmer-defined na
general, you should avoid redefining unreserved keywords because it can lead to confusion and
gramming errors. UIL uses the following reserved and unreserved keywords:
Motif Reference Manual 1033

Introduction UIL File Format
identifier

style_widget_list;

module StyleMenu

character_set = iso_latin1

objects = { XmSeparator = gadget ; }
module header

include file ‘appdefs.uih’; include direction

value

tear_off_mode : XmTEAR_OFF_ENABLED;

a_normal : imported string;

a_bold : imported string;

a_italic : imported string;

value section

identifier section

procedure

reset_all (any);

register_widget (any);

bold_changed (any);

italic_changed (any);

procedure section

list

style_menu_entries {

XmPushButton normal;

XmSeparator { };

XmToggleButton bold;

XmToggleButton italic;

};

register : callbacks {

MrmNCreateCallback = procedure register_widget (style_widget_list);

};

list section

object style_menu : XmPulldownMenu {

arguments {

XmNtearOffModel = tear_off_mode;

};

controls style_menu_entries;

}

object section

object normal : XmPushButton {

arguments {

XmNlabelString = a_normal;

};

callbacks {

XmNactivateCallback = procedure reset_all (style_widget_list);

};

};

...

end module; end module statement

Figure 5-1: A Sample UIL source file
1034 Motif Reference Manual

UIL File Format Introduction

 UIL

bers
.

Usage
This section provides less formal information about the section: how you might want to use it in a
module and things to watch out for.

Example
This section provides examples of the use of the section in a UIL module.

See Also
This section refers you to related functions, UIL file format sections, and UIL data types. The num
in parentheses following each reference refer to the sections of this book in which they are found

Type Reserved Keywords

General module, end, widget, gadget

Section and list name arguments, callbacks, controls, identifier, include, list, object, pro-
cedure, procedures, value

Storage classes exported, private

Boolean constants on, off, true, false

Type Unreserved Keywords

Resource names XmNaccelerators, XmNactivateCallback, et al.

Character set names iso_latin1, iso_greek, et al.

Enumerated values XmATTACH_FORM, XmSHADOW_ETCHED_IN, et al.

Widget class names XmPushButton, XmSeparator, et al.

Option names and values background, case_insensitive, case_sensitive, file,
foreground, imported, managed, names, objects, right_to_left, un-
managed, user_defined

Type names any, argument, asciz_table, asciz_string_table, boolean,
character_set, color, color_table, compound_string,
compound_string_table, float, font, font_table, fontset, icon, inte-
ger, integer_table, keysym, reason, rgb, single_float, string,
string_table, translation_table, wide_character,
xbitmapfile
Motif Reference Manual 1035

identifier UIL File Format

ion

passed
ction of
 literal
 as a

dless of
Name
identifier – run-time variable declaration section.

Syntax
identifier identifier_name;
[...]

Description
The identifier section contains variable declarations that are registered at run-time by the applicat
with MrmRegisterNames () or MrmRegisterNamesInHierarchy (). The section begins with
the UIL keywordidentifier, followed by a list of names separated by semicolons.

Usage
A value declared as an identifier can be assigned to a named variable in a value section, it can be
as the parameter to a callback procedure, or it can be assigned to a resource in the arguments se
an object definition. An identifier value cannot be used in an expression or as part of a complex
type definition. An identifier value does not have any type associated with it, so it can be passed
parameter to any callback that can take an argument or it can be assigned to any resource, regar
the type of parameter or resource expected.

Example
...
identifier

display_name;
highlight_color;

value
alias : display_name;

procedure
highlight (color);

object label : XmLabel {
arguments {

XmNlabelString : display_name;
}
callbacks {

XmNfocusInCallback = procedure highlight (highlight_color);
};

}
...

See Also
MrmRegisterNames (3), MrmRegisterNamesInHierarchy (3), procedure (5), object (5).
1036 Motif Reference Manual

UIL File Format include

pec-
clude

com-
arch-
and

as
 com-

sage

n

n place
sed for
t of an

are

l
 for
ystem
rip-
ce the

char-
Name
include – include file directive.

Syntax
include file ’file_name’;

Description
Theincludedirective tells the UIL compiler to suspend parsing of the current file and switch to the s
ified file. Parsing of the original file resumes after the end of the included file has been reached. In
directives may be nested, which means that an included file can contain include directives.

If an include file is specified an absolute pathname, which means that it begins with a slash (/), the
piler looks for the file in that specific location. Otherwise, the compiler tries to locate the file by se
ing in one or more directories. The directory that contains the UIL source file specified on the comm
line is searched first. (This directory may or may not be the same as the directory the compiler w
invoked from.) If the file is not found there, the compiler searches any directories specified on the
mand line with the -I option in the order that they were specified. Next, the compiler searches the/usr/
includedirectory. Finally, if the specified file cannot be found, the compiler generates an error mes
and exits.

When aninclude directive is encountered, the UIL compiler ends the current section. Therefore, a
include file must specifically use one of the section name keywords to begin a new section.

Usage
Include files are used to break up modules into more manageable pieces or to provide a commo
for definitions and declarations that are shared by several modules. Include files should not be u
defining strings. Strings should be defined in a separate UIL module and loaded at run-time as par
Mrm hierarchy. TheMrmOpenHierarchyPerDisplay () reference page explains how different
UID files can be loaded based on the LANG environment variable. String declarations, however,
suitable for placement in an include file.

A UIL module can include a maximum of 99 files. This is not a nesting limit, but a limit on the tota
number of files that can be included. Because the UIL compiler maintains an open file descriptor
each included file, even after it has been included, the limit may be less than 99 due to operating-s
imposed limits. If the UIL compiler tries to include a file and the maximum number of open file desc
tors have been used, the compiler prints an error and exits. If this situation occurs, you should redu
number of files included or increase the maximum number of open file descriptors.

If the string containing the include filename is missing a closing quotation mark, or if extraneous
acters precede or follow the string, the UIL compiler may generate many strange errors.

Example
Fromcallbacks.uih:

procedure
save();
save_as (string);
open (string);
select (integer_table);
quit();

Fromedit_window.uil:

module edit_window
! Include callback definitions
include file ’callbacks.uih’;
...
end module;

See Also
MrmOpenHierarchyPerDisplay (3), uil (4), module (5).
Motif Reference Manual 1037

list UIL File Format

 used
ist
item
 a list
tly in

 can-

ing

ct defi-

ck.
d by
id-

nt with
d by
Name
list - list definition section.

Syntax
list

list_name :
arguments {

argument_name = value_expression; | arguments arguments_list_name;
[...]

}; |
list_name :

callbacks {
reason_name = procedure procedure_name [([value_expression])]; |
reason_name = procedures {

procedure_name [([value_expression])];
[...]

}; |
reason_name = procedures procedure_list_name; | callbacks callbacks_list_name;
[...]

}; |
list_name :

controls {
[managed | unmanaged] object_class object_name; |
[managed | unmanaged]object_class[widget | gadget] { [attributes] }; |
[managed | unmanaged] user_defined procedure creation_procedure {[attributes] }; |
auto_created_object_name {[attributes] }; |
controls controls_list_name;
[...]

}; |
list_name :

procedures {
procedure_name [([value_expression])]; | procedures procedures_list_name;
[...]

};
[...]

Description
The list section is used to define lists of resources, callbacks, procedures, or controls that can be
when setting attributes of a widget defined in an object section. Each list definition consists of a l
name followed by a colon, a list type, and a list of items of that type separated by semicolons. Each
can be a single item (resource, callback, procedure, or widget) or a list of that type of item. When
contains another list, the result is the same as if the items in the included list were specified direc
the including list. The storage class of lists is limited to private. Unlike variables and objects, lists
not be exported, imported, or retrieved by an application at run-time.

The type of a list determines the type and the format of the items it contains. UIL allows the follow
types of lists:arguments, callbacks, controls, andprocedures. The format of the items in arguments,
callbacks, and controls lists is the same as the format for the corresponding subsection in an obje
nition. The exact syntax is described in theobject section reference page.

The procedures list type exists to allow the specification of a list of procedures for a single callba
Each routine in a procedures list is invoked by the specified callback. A procedures list is specifie
the symbolprocedures, followed by a list of procedures declared elsewhere in the module. An indiv
ual procedure is specified with the name of the procedure and an argument specification consiste
the routine’s declaration. The order in which routines in a procedures list are invoked is not specifie
1038 Motif Reference Manual

UIL File Format list

gister

bsec-
t of

on to
list.

below
list, the
 that
 infor-
-w com-
the Xt Intrinsics. If you need to have several procedures called in a particular order, you should re
a single callback that calls the procedures in that order.

Like many values in UIL, a list can be specified directly in the arguments, callbacks, or controls su
tion or as a callback procedures list. An inline list is specified by the type of the list, followed by a lis
items of that type.

Usage
A list can be used to group collections of resources, callbacks, and widget children that are comm
several object definitions. To specify more than one procedure for a single callback, you must use a
A simple style/behavior hierarchy can be specified by using nested list definitions, as the example
illustrates. If a resource or callback setting occurs more than once in an arguments or callbacks
last occurrence has precedence over earlier occurrences. This feature allows you to define a list
includes settings from another list but overrides some of the settings. The UIL compiler issues an
mational message about multiple occurrences, but the messages can be turned off by using the
piler option.

Example
...
! Declare procedures used below.
procedure

shift();
floor_it();
armed();
ready();

list
! Declare some lists to implement widget styles.
base_style : arguments {

! This list contains individual elements only.
XmNforeground = default_foreground;
XmNbackground = default_background;

};
button_style : arguments {

! Include another list in this list.
arguments base_style;
XmNfontList = font (’*helvetica-bold-r-normal-*-120-100-100*’);

};

! Declare a list of procedures to be set on an individual callback.
list

super_button_activate : procedures {
shift();
floor_it();

};
list

super_button_callbacks : callbacks {
XmNactivateCallback = procedures super_button_activate;
! Set the arm callback to an inline list of procedures.
XmNarmCallback = procedures {

armed();
ready();

};
};

object
super_button : XmPushButton {
Motif Reference Manual 1039

list UIL File Format
arguments {
! Use arguments in button_style list and add one of our own.
arguments button_style;
XmNarmColor = color (’yellow’);

};
callbacks super_button_callbacks;

};
...

See Also
object (5), procedure (5).
1040 Motif Reference Manual

UIL File Format module

y
ned
 addi-
or pro-
le
the

ntax

gnifi-
ram-
For
ols

low-

alues

ge for
 this
NG
es

should

tton,

y a
sted
 can
ject

rep-
ard
ew

by the
Name
module – module structure.

Syntax
module module_name

[names = [case_insensitive | case_sensitive]]
[character_set =character_set]
[objects = {widget_name = gadget | widget; [...] }]
[[include_directive] | [value_section] | [procedure_section] |

[identifier_section] | [list_section] | [object_section]]
[...]
end module;

Description
A UIL module must begin with the keyword module, followed by the name of the module. You ma
name a module anything you like, as long as it is a valid UIL identifier. The name of a module is defi
as a symbol in the compiler’s symbol table, and therefore may not be a UIL reserved keyword. In
tion, the name of the module cannot be used as the name of an object, variable, identifier, widget,
cedure elsewhere in the module. Option settings for the module are specified following the modu
statement. There are three different options that you can set: the case sensitivity of the module,
default character set, and the default object variant.

Thenamesoption specifies the case sensitivity of keywords and symbols in the UIL module. The sy
of this option is the keyword names, followed by eithercase_sensitive or case_insensitive. The default
is case_sensitive, which means that all keywords must be lowercase and the case of symbols is si
cant. Ifcase_insensitive is specified, keywords may be in upper, lower, or mixed case, and all prog
mer-defined values, procedures, identifiers, and objects are stored as uppercase in the UID file.
example, the three symbols JellyBean, jellybean, and JELLYBEAN are considered different symb
when names arecase_sensitive, but are considered the same symbol when names arecase_insensitive.
If this option is specified, it must be the first option after the module name and must be specified in
ercase only.

Thecharacter_set option specifies the character set used for compound_string, font, and fontset v
that are not defined with an explicit character set. The syntax of this option is the keyword
character_set, followed by the name of a built-in character set. (See the character_set reference pa
a list of the built-in character sets.) A user-defined character set cannot be used for this option. If
option is not specified, the default character set is determined from the codeset portion of the LA
environment variable if it is set, or XmFALLBACK_CHARSET otherwise. Setting this option overrid
the LANG environment variable and turns off localized string parsing specified by the -s compiler
option. When the character_set defaults to XmFALLBACK_CHARSET, the UIL compiler may use
ISO8859-1 as the character set, even if the value has been changed by the vendor. Therefore, you
specify a character set explicitly instead of relying on the value of XmFALLBACK_CHARSET.

Theobjectsoption specifies whether the widget or gadget variant is used by default for CascadeBu
Label, PushButton, Separator, and ToggleButton objects. The syntax of the option is the keyword
objects, followed by a list of object-specific settings. Like all lists in UIL, each setting is separated b
semicolon and enclosed by curly braces. Each object setting is the name of one of the classes li
above, followed by either widget or gadget. The default value for all of the classes is widget. You
override these settings when you define a specific object by adding widget or gadget after the ob
class name.

UIL also supports a version option setting, which consists of the string version, followed by a string
resenting the version of the module. This option is obsolete in Motif 1.2 and is retained for backw
compatibility. You may encounter this setting in older UIL source files but you should not use it in n
ones. The version string is stored in the UID file, but is not used by Mrm and cannot be accessed
Motif Reference Manual 1041

module UIL File Format

an

odule
laring
g val-
rces,

e

e fol-
m-
application. To make a version identifier that is accessible by the application through Mrm, you c
store a version value in an exported UIL variable.

The bulk of a UIL module is the sections that describe the user interface, which occur after the m
name and optional module settings. Briefly, the sections are the value section, for defining and dec
variables; the procedure section, for declaring callback routines; the identifier section, for declarin
ues registered by the application at run-time; the list section, for defining lists of procedures, resou
callbacks, or widgets; and the object section, for defining the widgets and their resources, and th
widget hierarchy. Each section is described completely in a separate reference page.

Every UIL module must end with the end module statement, which is simply the string end modul
lowed by a semicolon (;). A final newline is required after the end module statement or the UIL co
piler generates an error message stating that the line is too long.

Example
module print_panel

names = case_insensitive
character_set = iso_latin1
objects = { XmPushButton = gadget; }

! sections
...
end module;

See Also
identifier (5), include (5), list (5), object (5), procedure (5), value (5),
character_set (6), compound_string (6), font (6), fontset (6), font_table (6),
string (6).
1042 Motif Reference Manual

UIL File Format object

pplica-
s

 to
mTab-

dule.

ilt-in
s may
 either
d

Name
object – widget declaration and definition section.

Syntax
object object_name : imported object_type; or

object object_name :[exported | private]
object_type [widget | gadget] |
user_defined procedure creation_procedure

{ [
arguments {

arguments argument_list_name;|
argument_name = value_expression;
[...]

}; |
callbacks {

callbacks callback_list_name;|
reason_name = procedure procedure_name [([value_expression])]; |
reason_name = procedures {

procedure_name [([value_expression])];
[...]

}; |
reason_name = procedures procedures_list_name;
[...]

}; |
controls {

controls controls_list_name;|
[managed | unmanaged]object_class object_name; |
[managed | unmanaged]object_class[widget | gadget] { [attributes] }; |
[managed | unmanaged] user_defined procedure creation_procedure {[attributes] }; |
auto_created_object_name {[attributes] };
[...]

};
[...]]

};

Description
Theobject section is used to declare or define the objects that compose the user interface of an a
tion. These objects can be either widgets or gadgets and are created at run-time with the routineMrm-
FetchWidget () andMrmFetchWidgetOverride (). Both built-in Motif widgets and user-defined
widgets can be defined in an object section. In addition, in Motif 2.0 and later, the section is used
define special pseudo-objects which represent the XmRendition, XmRenderTable, XmTab, and X
List resource types.

An object declaration informs the UIL compiler about an object that is defined in another UIL mo
A declaration consists of the object name followed by a colon, the keywordimported, and the type of
the imported widget.

An object definition consists of an object name followed by a colon, an optional storage class, a bu
widget class name or used-defined creation procedure, and a list of attributes. An object’s attribute
include resource settings, callbacks, and a list of the object’s children. The storage class may be
private or exported. The default storage class isexported. Widgets defined as private are not prevente
from being retrieved directly with Mrm, but you can still declare widgets asprivateto indicate that they
should not be retrieved directly.
Motif Reference Manual 1043

object UIL File Format

 or
riants

IL
Push-

 string
ared
time

e is

t’s
resent,
subsec-
es.
-

lso
jects.

A list
ere in
-

idget’s
rma-

et in
t. It can
r-
efined
rces that

ch it
source

e UIL
atch

D file is
When defining an instance of a built-in widget, the name of a Motif class (such as XmPushButton
XmMessageDialog) follows the optional storage class. A class that has both widget and gadget va
can be followed bywidget or gadget to indicate which variant is used. The default variant is widget,
unless gadget is specified in theobjects setting in the UIL module header. For gadget variants, the U
compiler also allows the name Gadget to be appended directly to the widget class name (as in Xm
ButtonGadget). This syntax is inconsistent, however, so you should avoid using it.

When defining an instance of a user-defined widget, the optional storage class is followed by the
user_defined procedure and the name of a widget creation procedure. The procedure must be decl
in aproceduresection elsewhere in the module. It must also be registered by the application at run-
with MrmRegisterClass () before the widget is retrieved. The C prototype of a creation procedur
described in theMrmRegisterClass () manual page in Section 3,Mrm Functions.

The remainder of an object definition consists of three optional subsections that define the widge
resources, callbacks, and children. The subsections are enclosed by curly braces, which must be p
even when none of the subsections are specified. Each subsection consists of the name of the
tion followed by the name of a list defined in a list section or a list of items enclosed by curly brac
The arguments subsection specifies resource settings, thecallbacks subsection specifies callback proce
dures, and thecontrols section specifies child widgets. In Motif 2.0 and later, the controls section a
specifies XmTab and XmRendition constituents of the XmTabList and XmRenderTable pseudo-ob

Arguments
Theargumentssubsection, if present, specifies one or more resource settings and/or resource lists.
is specified with the symbol arguments, followed by the name of an arguments list defined elsewh
the module. Resource settings are of the formresourceName = value. The resource name may be built
in or user-defined. (See the argument reference page in Section 6,UIL Data Types, for information
about creating user-defined resource names.) If the same resource is set more than once in a w
arguments section, the last occurrence of the setting is used and the UIL compiler issues an info
tional message.

If the widget instance being defined is from a built-in Motif widget class, the predefined resources s
the arguments section must be valid for the widget class, but any user-defined resource can be se
be useful to set user-defined constraint resources on a built-in widget when it is the child of a use
defined constraint widget. If the widget instance being defined is a user-defined widget, any pred
or user-defined resources can be set in its arguments section. You should take care to set resou
are valid for user-defined widgets, as the UIL compiler is unable to detect invalid resources.

The UIL compiler normally verifies that the type of a value matches the type of the resource to whi
is assigned. Type checking is not possible, however, when a value is assigned to a user-defined re
of type any, or when a variable declared in an identifier section is assigned to a resource.

The type of a resource and the value assigned to it do not always have to be an exact match. Th
compiler automatically converts certain values to the appropriate type for a resource. If a type mism
occurs and a conversion cannot be performed, the compiler generates an error message and a UI
not generated. The table below summarizes the supported conversions:

Value Type Can be Assigned To

string compound_string

asciz_string_table compound_string_table

icon pixmap

xbitmapfile icon

rgb color

font font_list
1044 Motif Reference Manual

UIL File Format object

ically

n 6,
asso-

 A list
he
by an
ewhere

l
all-

ional

e mod-

et in
. There

 in the

d by
er Xt

 of
 A list
e
aged,
et
ur-

t
fini-
be ref-
well-
eci-

o-

the
If the
be

an
When a built-in array resource is specified in the arguments subsection, the UIL compiler automat
sets the associated count resource. All but one of the built-in arrays with associated counts are
XmStringTable resources; they are listed in the compound_string_table reference page in Sectio
UIL Data Types. The other resource is the Text and TextField resource XmNselectionArray and its
ciated count resource, XmNselectionArrayCount.

Callbacks
Thecallbacks subsection, if present, specifies one or more callback settings and/or callback lists.
is specified with the symbolcallbacks, followed by the name of a callback list defined elsewhere in t
module. A callback setting consists of the callback name, such as XmNactivateCallback, followed
equal sign (=) and either a single procedure name or the name of a list of procedures defined els
in the module. A single procedure is specified by the symbolprocedure followed by its name, and an
argument specification consistent with the procedure’s declaration. A list is specified by the symbopro-
cedures followed by the name of the list. If the same callback is set more than once in a widget’s c
backs section, the last occurrence of the setting is used and the UIL compiler issues an informat
message.

A procedure used in the callbacks section must be declared in a procedure section elsewhere in th
ule. It must also be registered by the application at run-time withMrmRegisterNames () or Mrm-
RegisterNamesInHierarchy () before any widgets that reference it are created.

If the widget instance being defined is from a built-in Motif widget class, the predefined callbacks s
the callbacks section must be valid for the widget class, but any user-defined callbacks can be set
should not be any need to set a user-defined callback on a built-in widget, however. If the widget
instance being defined is a user-defined widget, any built-in or user-defined callbacks can be set
callbacks section.

In addition to the standard Motif callbacks, Mrm supports the MrmNcreateCallback, which is calle
Mrm when a widget is created. The prototype of an MrmNcreateCallback is the same as any oth
callback procedure. Thecall_data passed to the callback is an XmAnyCallbackStruct.

Controls
Thecontrols subsection, if present, specifies a list of children. Each entry in the list may be a list
children, an object defined elsewhere, an object defined inline, or an automatically-created child.
is specified with the symbolcontrols followed by the name of a controls lists defined elsewhere in th
module. Specify an object defined elsewhere using an optional initial state of managed or unman
followed byuser_defined or a widget class and the name of the child widget. If the same child widg
occurs more than once in a widget’scontrols section, an instance of the child is created for each occ
rence.

An inline object definition is similar, but the name of the child widget is replaced by a set of widge
attributes. The name of the inline widget is automatically generated by the UIL compiler. Inline de
tions can be used to define widget instances that have few or no attributes and that do not need to
erenced by name. You may wish to avoid inline definitions, however, since the widget name is not
defined, which makes customization via X resources difficult. An automatically-created child is sp
fied by the name of the child followed by an attributes list. Appendix D,Table of UIL Objects, lists the
automatically-created children of the built-in Motif widgets. The ability to specify attributes for aut
matically-created children is only available in Motif 1.2 and later.

If the widget instance being defined is from a built-in Motif widget class, the children specified in
controlssection must be valid for the widget class, but any user-defined children can be specified.
widget instance being defined is a user-defined widget, any built-in or used-defined children can
specified in thecontrols section. The UIL compiler verifies that the children specified in the controls
section are allowable children for the widget being defined. Appendix D,Table of UIL Objects, lists the
valid children for each built-in widget class. Any children are allowed for user-defined widgets. If

fontset font_list

Value Type Can be Assigned To
Motif Reference Manual 1045

object UIL File Format

UID

lists
bject
n
he

f type

 of
or used
lties

llback
 it is

t
archy
lved,
 not

n
meter.
ull-
e
tton,
an also

on-
invalid child is specified in a widget’s controls section, the UIL compiler generates an error and no
file is produced.

From Motif 2.0 and later, the controls section can be used to specify constituent entries in an
XmRenderTable or XmTabList pseudo-object. For the XmRenderTable object, the controls section
a set of further objects of type XmRendition. For the XmTabList object, each listed control is an o
of type XmTab. The rendition and tab list objects are associated with one another by specifying a
XmTabList object as an XmNtabList value within the controls section of an XmRendition object. T
example given below clarifies the relationships.

Usage
A named widget can be specified as a value for a resource of typewidget, such as the Form constraint
resource XmNleftWidget, or as the argument of a callback procedure declared with a parameter o
any or widget. Prior to Motif 1.2.1, UIL does not allow the typewidget to be used as an argument type
in a procedure declaration. You can specify type any to work around this problem. Older versions
UIL may require the widget class name to precede a widget value that is assigned to a resource
as callback parameter. Since all versions of UIL accept this syntax, you can avoid potential difficu
by always using it.

Mrm places some restrictions on the widgets that can be assigned to a resource or used as a ca
parameter. The widget must be a member of the same hierarchy as the widget definition in which
used. A widget hierarchy includes the widget named in the call toMrmFetchWidget () or Mrm-
FetchWidgetOverride () and the widgets created in the widget tree below it. If a named widge
does not exist when a reference to it is encountered, Mrm waits until all of the widgets in the hier
have been created and tries to resolve the name again. If a widget reference still cannot be reso
Mrm does not set the specified resource or add the specified callback. As of Motif 1.2, Mrm does
generate a warning message when this situation occurs.

The advantage of this functionality is that, unlike in C, you do not have to worry about the creatio
order of a widget hierarchy when you are specifying a widget as a resource value or callback para
UIL also makes the creation of OptionMenus and MenuBars easier by allowing you to specify a P
downMenu as the child of an OptionMenu or CascadeButton. The XmNsubMenuId resource of th
object is automatically set to widget ID of the menu. When specified as the child of a CascadeBu
the menu is created as a child of the MenuBar that contains the button. As a convenience, you c
specify a PopupMenu as the child of any widget (but not gadget).

As of Motif 1.2, the UIL compiler does not support user-defined imported widgets. If you need to
import a user-defined widget, declare it with the type of a built-in widget that is a valid child for the c
text where the imported widget is used.

Example
...

object romulus : XmPushButton gadget {
callbacks {

XmNactivateCallback = procedure create_Rome();
};

};

object remus : imported XmPushButton;

object mars : XmForm {
arguments {

XmNbackground = color (’orange’);
};
controls {

! Define a couple of children.
XmPushButton romulus;
1046 Motif Reference Manual

UIL File Format object
unmanaged XmPushButton remus;
! Define an inline separator.
XmSeparator { };

};
};

object thing : user_defined procedure create_thing {
...

};

object scale : XmScale {
controls {

! Set the labelString on the automatically created label.
Xm_Title {

arguments {
XmNlabelString = ’Temperature’;
XmNrenderTable = rtable_1;

};
};

};
};

! Motif 2.0 and later: pseudo-objects for rendition
! XmRenderTable objects contain rendition objects as controls
object rtable_1 : XmRenderTable {

controls {
XmRendition rendition_1;

};
};

! XmRendition objects contain XmTabList objects as controls
! Note that XmNtag is not a supported argument:
! the tag is implicitly the object name
object rendition_1 : XmRendition {

arguments {
XmNfontName = "fixed";
XmNunderlineType = XmDOUBLE_LINE;

};
controls {

XmTabList tablist_1;
};

};

! XmTabList objects contain XmTab objects as controls
object tablist_1 : XmTabList {

controls {
XmTab tab1;
XmTab tab2;

};
};

object tab1 : XmTab {
arguments {

XmNtabValue = 1.75;
XmNunitType = XmCENTIMETERS;
XmNoffsetModel = XmABSOLUTE;

};
Motif Reference Manual 1047

object UIL File Format
};

object tab2 : XmTab {
arguments {

XmNtabValue = 2.0;
XmNunitType = XmCENTIMETERS;
XmNoffsetModel = XmRELATIVE;

};
};
...

See Also
MrmFetchWidget (3), MrmFetchWidgetOverride (3), MrmRegisterNames (3),
MrmRegisterNamesInHierarchy (3), list (5), procedure (5), value (5), any (6),
argument (6), compound_string_table (6), reason (6), widget (6).
1048 Motif Reference Manual

UIL File Format procedure

idget or
edure

ists are

ara-
ing an

f so, the
ation.
erform
n be

 must
 param-

he pro-
d, the
error
allback
n fault

e() and
ce,
ure
Name
procedure – procedure declaration section.

Syntax
procedureprocedure_name [([value_type])];
[...]

Description
The procedure section contains declarations of procedures that can be used as a callback for a w
as a user-defined widget creation function. Procedures can also be used in a procedure list; proc
lists are used to associate more than one callback procedure with a specific callback. Procedure l
described on the list reference page.

The procedure section begins with the UIL keyword procedure, followed by list of procedure decl
tions. Each declaration consists of the procedure name followed by optional parentheses enclos
optional parameter type. Valid type names are listed in the Introduction to *[cmtr06].

Usage
A procedure declaration can be used to specify whether a procedure expects a parameter, and i
type of the parameter. The UIL compiler verifies that a procedure reference conforms to its declar
If a procedure name is not followed by parentheses, the compiler does not count parameters or p
any type checking when the procedure is used. Zero arguments, or one argument of any type, ca
used in the reference.

If the procedure name is followed by an empty pair of parentheses, a reference to the procedure
contain zero arguments. User-defined widget creation functions should be declared as taking no
eters, although the UIL compiler does not enforce this rule.

If the procedure name is followed by a parenthesized type name or widget class, a reference to t
cedure must contain exactly one argument of the specified type or class. If the type any is specifie
reference can contain an argument of any type. Prior to Motif 1.2.1, the UIL compiler generates an
if a widget class name is specified as the type in a procedure declaration. If the parameter to a c
procedure is an imported value or an identifier that cannot be resolved at run-time, a segmentatio
may occur when the callback is called.

Because identifiers and procedures are registered in the same name space with MrmRegisterNam
MrmRegisterNamesInHierarchy(), it is possible to declare a value as a procedure in the UIL sour
even though the entry that is registered may not be a procedure. An attempt to call a non-proced
value usually causes an application to crash.

Example
...
procedure

exit();
print (string);
XawCreateForm();
popup (XmPopupMenu);

object form : user_defined procedure XawCreateForm { };

object quit : XmPushButton {
callbacks {

MrmNcreateCallback = procedure print (’Hello!’);
XmNactivateCallback = procedure exit();
XmNdestroyCallback = procedure print (’Goodbye!’);

};
};
Motif Reference Manual 1049

procedure UIL File Format
See Also
MrmFetchWidget (3), MrmFetchWidgetOverride (3), MrmRegisterNames (3),
MrmRegisterNamesInHierarchy (3), identifier (5), list (5), object (5).
1050 Motif Reference Manual

UIL File Format value

g a

sion, a

o it. Pri-
e defi-
her

odule
l
, the

 and
e

mplex
found
in for-

must
orted
 con-
Name
value – variable definition and declaration section.

Syntax
value value_name : [exported | private]value_expression | imported value_type;
[...]

Description
Thevalue section contains variable definitions and declarations. A variable is defined by assignin
value to it. A variable declaration is used to inform the UIL compiler of the existence of a variable
defined in another module. The value assigned to a variable may be an arithmetic or string expres
literal value, or another variable or identifier.

A value can be declared with a storage class ofprivate, exported, or imported. Values are private by
default. Private and exported values consist of a named variable and the value that is assigned t
vate values are only accessible within the module in which they are defined. An exported variabl
nition includes the symbolexported before the value assigned. Exported values are accessible in ot
modules and from the application, in addition to the module in which they are defined.

You can access an exported value in another module by declaring it as an imported value in the m
where you want to access it. Imported value declarations consist of a named variable, the symbo
imported, and the type of the variable. If an imported value is exported from more than one module
value from the module that occurs first in the array passed toMrmOpenHierarchyPerDisplay () is
used.

Values of all types can be declared as private; values of most types can be declared as exported
imported. The Introduction to Section 6,UIL Data Types, contains a table that summarizes the storag
classes that are allowed for each type.

Usage
Variables used in an expression can be forward referenced. However, the specification of some co
literals cannot contain forward-referenced values. The UIL compiler indicates a value cannot be
in these cases. Refer to the reference page for a type to see if its literal representation can conta
ward references.

Typically, the value of a variable used in an expression or in the specification of a complex literal
be accessible in the module in which it is used. As a result, in most cases you cannot use an imp
variable in an expression or complex value specification. If an imported value is used in an invalid
text, the UIL compiler issues an error message.

Example
...
! See individual type reference pages for additional examples.
value

version : exported 1002;
Soothsayer : ’Beware the ides of March.’;
ides : 15;
background : imported color;
...

See Also
MrmFetchBitmapLiteral (3), MrmFetchColorLiteral (3), MrmFetchIconLiteral (3),
MrmFetchSetValues (3), argument (6), asciz_string_table (6), boolean (6), color (6),
color_table (6), compound_string (6), compound_string_table (6), float (6),
font (6), fontset (6), font_table (6), icon (6), integer (6), integer_table (6),
keysym (6), reason (6), rgb (6), single_float (6), string (6), translation_table (6),
wide_character (6), xbitmapfile (6).
Motif Reference Manual 1051

value UIL File Format
1052 Motif Reference Manual

tion 6,

nt
that
sed

n be

rned

that

es
 val-

s-
tic

s

tring
Section 6 - UIL Data Types

This page describes the format and contents of each reference page in Sec
which covers each of the UIL data types.

Name
Type – a brief description of the data type.

Synopsis

Syntax:
The literal syntax for specifying a value of the data type. Anything in consta
width type should be typed exactly as shown. Items in italics are expressions
should be replaced by actual values when you specify a value. Anything enclo
in brackets is optional. An ellipsis (...) means that the previous expression ca
repeated multiple times and a vertical bar (|) means to select one of a set of
choices.

MrmType:
The Mrm value type that corresponds to the data type. These types are retu
by MrmFetchLiteral().

Availability
This section appears for data types that were added in Motif 2.0 or later.

Description
This section gives an overview of the data type. It explains the literal syntax
is used to specify a value of the type in a UIL module.

The UIL compiler supportsinteger, float, single_float, boolean, string,and
compound_stringexpressions in most contexts where a value of one of the typ
is expected. Expressions can include literal or named values, but any named
ues that are used must be declared private or exported because the result of an
expression cannot be computed if it contains an imported value.

The UIL compiler allows both string and arithmetic expressions. String expre
sions contain NULL-terminated strings and compound strings, while arithme
expressions can contain integer, float, single_float, and boolean values.

A string expression, consists of two or more string or compound_string value
concatenated with the string concatenation operator (&). The string and
compound_string reference sections contains more details and examples of s
concatenation.
Motif Reference Manual 1053

Introduction UIL Data Types

at,
s

ons
prec-
e-

uated

d

om-
the
An arithmetic expression consists of one or more boolean, integer, single_flo
or float values and one or more arithmetic operators. The following operation
can be used in arithmetic expressions:

When the UIL compiler evaluates an expression, higher precedence operati
are performed before those of lower precedence. Binary operations of equal
edence are evaluated from left to right, while unary operations of equal prec
dence are evaluated from right to left. You can change the default order of
evaluation by using parentheses to group subexpressions that should be eval
first. For example, in the expression 2+4*5, 4*5 is evaluated first, followed by
20+2. If the expression is written (2+4)*5, then 2+4 is evaluated first, followe
by 6*5.

The type of an expression is the type of its most complex operand. The UIL c
piler converts the value of the less complex type in an operation to a value of

Operator Type Operand Types Operation Precedence
~ unary boolean NOT 1 (highest)

integer One’s complement 1

- unary integer Negation 1

float Negation 1

+ unary integer None 1

float None 1

* binary integer Multiplication 2

float Multiplication 2

/ binary integer Division 2

float Division 2

+ binary integer Addition 3

float Addition 3

- binary integer Subtraction 3

float Subtraction 3

>> binary integer Shift right 4

<< binary integer Shift left 4

& binary boolean AND 5

integer Bitwise AND 5

| binary boolean OR 6

integer Bitwise OR 6

^ binary boolean XOR 6

integer Bitwise XOR 6 (lowest)
1054 Motif Reference Manual

UIL Data Types Introduction

ion
s-

cate-
, its
d
rac-
f an
ger,

sec-
 spec-
or
. The
to
le

Ty

an

ar

as

bo

ch

cla

co l

co

co

co
_c

co
_t

flo

fo
most complex type. The order of complexity for operands in a string express
is string followed by compound_-string. For operations in an arithmetic expre
sion, the order is boolean, integer, single_float, and float.

For example, if a string expression contains only strings, the type of the con
nated expression is string, but if it contains both strings and compound strings
type is compound_-string. The result of concatenating two NULL-terminate
strings is a NULL-terminated string, unless the two strings have different cha
ter sets or writing directions, in which case the result is a compound string. I
arithmetic expression contains only integers, the type of an expression is inte
but if it contains both integers and floats, its type is float.

The table below summarizes the valid uses of the types documented in this
tion. For each type, the table indicates the supported storage classes. It also
ifies whether or not values of the type can be specified literally and whether
not the type can be used for a procedure parameter and as an argument type
final column lists the Motif Resource Manager (Mrm) routine that can be used
fetch values of the type. If certain information is not relevant for a type, the tab
entry indicates that it is not applicable (NA).

pe

Supported Storage Classes
Literal
Value

Reason/
Parameter

Fetch
FunctionPrivate Exported Imported

y NA NA NA No Yes NA

gument Yes No No Yes No NA

ciz_table Yes Yes Yes Yes Yes MrmFetchLiteral

olean Yes Yes Yes Yes Yes MrmFetchLiteral

aracter_set NA NA NA Yes No NA

ss_rec_name Yes Yes Yes Yes Yes MrmFetchLiteral

lor Yes Yes Yes Yes Yes MrmFetchColorLitera

lor_table Yes No No Yes No NA

mpound_string Yes Yes Yes Yes Yes MrmFetchLiteral

mpound_string
omponent

Yes Yes Yes Yes Yes MrmFetchLiteral

mpound_string
able

Yes Yes Yes Yes Yes MrmFetchLiteral

at Yes Yes Yes Yes Yes MrmFetchLiteral

nt Yes Yes Yes Yes Yes MrmFetchLiteral
Motif Reference Manual 1055

Introduction UIL Data Types

ges.

f a
t be
r to

ent

ow

fo

fo

ico

int

int

ke

pix

re

rg l

sin

str

tra

wi

wi
de

xb

Ty
The UIL compiler may not generate errors when some of the types are used
incorrectly. These cases are documented in the individual type reference pa

As of Motif version 1.2, the UIL compiler does not support the assignment o
character_set value to a named variable. A built-in or literal character set mus
specified in all contexts in which a character set is expected. In addition, prio
Motif 1.2.1, UIL may generate an error if the type widget is used as an argum
or reason type. In this case, the type any can be used as a workaround.

Usage
This section provides less formal information about the data type: when and h
you might want to use it and things to watch out for.

Example
This section provides examples of the use of the type.

ntset Yes Yes Yes Yes Yes MrmFetchLiteral

nt_table Yes Yes Yes Yes Yes MrmFetchLiteral

n Yes Yes Yes Yes Yes MrmFetchIconLiteral,
MrmFetchBitmapLiteral

eger Yes Yes Yes Yes Yes MrmFetchLiteral

eger_table Yes Yes Yes Yes Yes MrmFetchLiteral

ysym Yes Yes Yes Yes Yes MrmFetchLiteral

map No No Yes No Yes NA

ason Yes No No Yes No NA

b Yes Yes Yes Yes Yes MrmFetchColorLitera

gle_float Yes Yes Yes Yes Yes MrmFetchLiteral

ing Yes Yes Yes Yes Yes MrmFetchLiteral

nslation_table Yes Yes Yes Yes Yes MrmFetchLiteral

de_character Yes Yes Yes Yes Yes MrmFetchLiteral

dget Yes Yes Yes Yes Yes MrmFetchWidget,
MrmFetchWidgetOverri

itmapfile Yes Yes Yes Yes Yes MrmFetchIconLiteral

pe

Supported Storage Classes
Literal
Value

Reason/
Parameter

Fetch
FunctionPrivate Exported Imported
1056 Motif Reference Manual

UIL Data Types Introduction

e

See Also
This section refers you to related functions, UIL file format sections, and UIL
data types. The numbers in parentheses following each reference refer to th
sections of this book in which they are found.
Motif Reference Manual 1057

any UIL Data Types

pro-
r or

ssed
en a
ler.

e
all-
Name
any – type checking suppression type.

Synopsis

Syntax:
any

MrmType:
MrmRtypeAny

Description
Theanytype is used to suppress type checking for values passed to callback
cedures or assigned to user-defined arguments. When a callback paramete
user defined-argument type is specified asany, the UIL compiler allows a value
of any type to be used. Because the typeany is only used to specify an expected
type in these two cases, it does not have a literal syntax and values of typeany
cannot be defined or declared.

Usage
Theany type specifier is used when values of more than one type can be pa
as a callback parameter or assigned to an argument. It can also be used wh
callback or argument expects a type that is not predefined by the UIL compi

Since no type checking is performed on callback parameters or arguments
declared as typeany, it is possible to specify a value that is not expected by th
callback or widget. You should use caution when specifying the value for a c
back or argument that uses the any type.

Example
...
! Define activate procedure that takes different arguments depending upon
! usage context. Context must be checked in C code before value is used.
procedure

activate (any);
! Define a resource that can be set to different types.
! Widget checks type field at run-time to determine value type.
value

XtNlabelValue : argument (’labelValue’, any);
XtNlabelType : argument (’labelType’, integer);

See Also
procedure (5), argument (6).
1058 Motif Reference Manual

UIL Data Types argument

me of
d to

IL
the

ey

 you
e

UIL
r

 The

of
d.
Name
argument – user-defined resource type.

Synopsis

Syntax:
argument (string_expression [, argument_type])

MrmType:
none

Description
An argument value represents a user-defined resource. Anargument is repre-
sented literally by the symbolargument, followed by a string expression that
evaluates to the name of the resource and an optional resource type. The na
the resource is assigned to the name member of the ArgList structure passe
XtSetValues (). The name is typically the name of a resource with the XmN
or XtN prefix removed. The type of the argument, if specified, is used by the U
compiler to perform type checking of assignments to the resource. If omitted,
type defaults to any.

Usage
A user-defined resource can be used in thearguments section of a UIL module,
for both built-in Motif widgets and user-defined widgets. While user-defined
arguments are typically assigned to a named variable in the value section, th
can also be specified literally in the arguments section of anobject definition. If
you are defining arguments for a widget or widget set that is not predefined,
should define them as named variables in a separate UIL module that can b
included by any module that uses the widget(s).

Arguments must be private values; they cannot be imported or exported. The
compiler allows imported and exported declarations, but it generates an erro
when the user-defined argument is used. Since argument values cannot be
exported, they cannot be retrieved by an application.

The argument type can only be used to define non-callback resource types.
reason type is used to specify user-defined callback resources.

Some versions of the UIL compiler may not allow the definition of arguments
type widget. If you encounter this problem, use the type any as a workaroun
The compiler may allow the definition of arguments of typeargumentor reason.
If arguments with these types are used, the actual value set as the widget’s
resource is undefined.
Motif Reference Manual 1059

argument UIL Data Types
Example
FromXaw/Tree.uih:

! Resource and definitions for the Athena Tree widget.
value

XtNautoReconfigure : argument (’autoReconfigure’, boolean);
XtNgravity : argument (’gravity’, integer);
NorthGravity : 2;
WestGravity : 4;
EastGravity : 6;
SouthGravity : 8;
! Use any type because compiler may not allow widget:
XtNtreeParent : argument (’treeParent’, any);

...

Frommy_module.uil:

include file ’Xaw/Tree.uih’;
object parent : XmPushButton { }
object child : XmPushButton {

arguments {
XtNtreeParent = parent;

};
};

object tree : procedure user_defined XawCreateTreeWidget {
arguments {

XtNautoReconfigure = false;
XtNgravity = NorthGravity;

};
controls {

XmPushButton parent;
XmPushButton child;

};
};

See Also
MrmRegisterClass (3), include (5), object (5), reason (6).
1060 Motif Reference Manual

UIL Data Types asciz_string_table

n

s.

rgu-
Name
asciz_string_table – array of NULL-terminated strings.

Synopsis

Syntax:
asciz_table (string_expression [, ...]) or
asciz_string_table (string_expression [, ...])

MrmType:
MrmRtypeChar8Vector

Description
An asciz_string_tablevalue represents an array of NULL-terminated strings. A
asciz_string_table is represented literally by the symbolasciz_table or
asciz_string_table, followed by a list of string expressions separated by comma
String variables in this list can be forward referenced.

Usage
There are no built-in Motif resources of typeasciz_string_table, so values of this
type are usually passed as callback parameters or retrieved withMrmFetchL-
iteral (). The typeasciz_string_table can be used as the type of an imported
value, as a parameter type in a procedure declaration, or as the type in an a
ment literal. Anasciz_string_table obtained by the application as a callback
parameter, a widget resource, or withMrmFetchLiteral () is NULL-termi-
nated.

Example
...
! Declare a procedure that expects an array of NULL-terminated strings.
procedure

set_names (asciz_table);

! Define a couple of asciz_tables
value

dwarfs : asciz_table (’Dopey’, ’Doc’, ’Sneezy’, ’Sleepy’, ’Happy’,
’Grumpy’, ’Bashful’);
numbers : asciz_string_table (one, two);
one : ’one’;
two : ’two’;
reindeer : imported asciz_string;

! Define some asciz_table resources.
value

XtNniceList : argument (’niceList’, asciz_table);
Motif Reference Manual 1061

asciz_string_table UIL Data Types
XtNnaughtyList : argument (’naughtyList’, asciz_table);

object doit : XmPushButton {
callbacks {

XmNactivateCallback = procedure set_names (dwarfs);
};

};
...

See Also
MrmFetchLiteral (3), procedure (5), argument (6),
compound_string (6), compound_string_table (6), string (6).
1062 Motif Reference Manual

UIL Data Types boolean

r to

am-

ys-
ving
Name
boolean – true/false type.

Synopsis

Syntax:
true | on | false | off

MrmType:
MrmRtypeBoolean

Description
Values of typebooleanmay be either true (on) or false (off). Abooleanvalue is
represented literally bytrue, false, on,or off. A boolean variable can be defined
in the value section by setting a named variable to one of these literal values o
another boolean variable.

Usage
The type namebooleancan be used as the type of an imported value, as a par
eter type in a procedure declaration, or as the type in anargument literal.

A boolean value can be explicitly converted to aninteger, float, orsingle_float
value by specifying the conversion type followed by theboolean value in paren-
theses.trueandonconvert to the value 1 or 1.0, whilefalseandoff convert to the
value 0 or 0.0.

The storage allocated by Mrm for aboolean value is sizeof(int) not
sizeof(Boolean). Because sizeof(Boolean) is less than sizeof(int) on many s
tems, you should use an int pointer rather than a Boolean pointer when retrie
a boolean value withMrmFetchLiteral ().

Example
...
procedure

set_sleepy_state (boolean);

value
map_flag : true;
one : integer (true);
zero : integer (false);
debug : imported boolean;
XtNtimed : argument (’timed’, boolean);

object sleep : XmPushButton {
arguments {

XmNmapWhenManaged = map_flag;
Motif Reference Manual 1063

boolean UIL Data Types
XmNtraversalOn = off;
};
callbacks {

XmNactivateCallback = procedure set_sleepy_state (true);
};

};
...

See Also
MrmFetchLiteral (3), procedure (5), argument (6), float (6),
integer (6), single_float (6).
1064 Motif Reference Manual

UIL Data Types character_set

ed

om
.

ing

t to

o

 a

or
rror.
Name
character_set – character set type for use with strings and font lists.

Synopsis

Syntax:
character_set (string_expression

[, right_to_left =boolean_expression]
[, sixteen_bit =boolean_expression])

MrmType:
none

Description
Thecharacter_set type represents a user-defined character set that can be us
when definingstrings, compound_strings, fonts, fontsets, andfont_tables. A
character set specifies the encoding that is used for character values. A
character_setis represented literally by the symbolcharacter_set, followed by a
string expression that names the character set and two optional properties.

If the right_to_left property of the character set for a string is set totrue, the
string is parsed and stored from right to left and compound strings created fr
the string have a direction component of XmSTRING_DIRECTION_R_TO_L
The default value of this property isfalse. The direction component used by a
compound_string can be specified independently of the parsing direction us
the compound_string literal syntax.

If the sixteen_bitproperty of the character set for a string is set totrue, the string
is interpreted as having double-byte characters. Strings with this property se
true must contain an even number of bytes or the UIL compiler generates an
error.

Usage
A character_set value is used to specify the character set forstring,
compound_string, font, fontset, andfont_table values. Theright_to_left and
sixteen_bit properties only apply to strings and compound strings and have n
effect on character sets specified for fonts and fontsets.

Unlike most of the UIL types, thecharacter_set type cannot be assigned to a
named variable in avalue section, or used as the type of an imported value, as
parameter type in aproceduredeclaration, or as the type in anargumentliteral. A
character set value can only be specified with thecharacter_set literal syntax.

If a font, fontset, or font_tablethat uses a user-defined character set is exported
used as a resource value, the UIL compiler may exit with a severe internal e
As a result, only the predefined character sets can be used withfont, fontset, and
Motif Reference Manual 1065

character_set UIL Data Types

se

na-

to a
font_listvalues. You can work around this problem by specifying values of the
types in an X resource file.

The UIL compiler may allow the use of string variables and the string concate
tion operator (&) in acharacter_set name specification. Although no errors are
generated, a string using such a character set may be incorrectly converted
compound_string value. To avoid this problem, you should always specify a
quoted string as the name in acharacter_set literal.

UIL defines a number of built-in character sets that you can use to definestring,
compound_string, font, fontset, andfont_table values. The following table sum-
marizes the built-in character sets:

UIL Name Character Set Parse Direction Writing Direction 16 Bit

iso_latin1 ISO8859-1 L to R L to R No

iso_latin2 ISO8859-2 L to R L to R No

iso_latin3 ISO8859-3 L to R L to R No

iso_latin4 ISO8859-4 L to R L to R No

iso_latin5 ISO8859-5 L to R L to R No

iso_cyrillic ISO8859-5 L to R L to R No

iso_arabic ISO8859-6 L to R L to R No

iso_arabic_lr ISO8859-6 L to R R to L No

iso_greek ISO8859-7 L to R L to R No

iso_hebrew ISO8859-8 R to L R to L No

iso_hebrew_lr ISO8859-8 L to R R to L No

jis_katakana JISX0201.1976-0 L to R L to R No

gb_hanzi GB2313.1980-0 L to R L to R Yes

gb_hanzi_gr GB2313.1980-1 L to R L to R Yes

jis_kanji JISX0208.1983-0 L to R L to R Yes

jis_kanji_gr JISX0208.1983-1 L to R L to R Yes

ksc_hangul KSC5601.1987-0 L to R L to R Yes

ksc_hangul_gr KSC5601.1987-1 L to R L to R Yes
1066 Motif Reference Manual

UIL Data Types character_set
Example
...
value

! Define font with user-defined character set.
big: font (’*times-medium-r-normal-*-240-75-75-*’,
character_set = character_set (’body’));
! Declare some strings with user-defined character sets.
player : #character_set (big) "Mookie Wilson";
hello : exported #iso_hebrew "\355\345\354\371\";
...

See Also
compound_string (6), font (6), fontset (6), font_table (6),
string (6).
Motif Reference Manual 1067

class_rec_name UIL Data Types

ame
nc-

the

d.

ral.
If a
n-
ide

D

Name
class_rec_name – widget class pointer type.

Synopsis

Syntax:
class_rec_name (string_expression)

MrmType:
MrmRtypeClassRecName

Description
Theclass_rec_name type represents a pointer to a widget class record. A
class_rec_name value is represented literally by the symbolclass_rec_name, fol-
lowed by a string that specifies the class name. The string can either be the n
of a class from a widget’s class definition or the name of a widget creation fu
tion registered withMrmRegisterClass (). The string is converted to a widget
class pointer at run-time by Mrm when aclass_rec_name value is referenced.
Mrm finds the widget class pointer corresponding to the name by searching
list of widgets registered withMrmRegisterClass (). This list includes the
built-in Motif widgets and any user-defined widgets that have been registere

Usage
The typeclass_rec_name can be used as the type of an imported value, as the
parameter type in a procedure declaration, or as the type in an argument lite
None of the built-in Motif widgets have a class_rec_name resource, however.
class_rec_name value is specified as a resource value for a widget and the co
version of the class name string to a widget class pointer fails at run-time (ins
a call toMrmFetchWidget (), MrmFetchWidgetOverride (), orMrm-
FetchSetValues ()), Mrm does not set the resource. IfMrmFetchLit-
eral () is used to retrieve the value and the conversion fails, MrmNOT_FOUN
is returned.

Example
...
value

pbclass : class_rec_name (’XmPushButton’);
...

See Also
MrmFetchSetValues (3), MrmFetchWidget (3),
MrmFetchWidgetOverride (3), MrmInitialize (3),
MrmRegisterClass (3), procedure (5), argument (6).
1068 Motif Reference Manual

UIL Data Types color

e
e
 is
olor

ase
ase

 type

.

re-

n
he

. In
Name
color – color specified as color name.

Synopsis

Syntax:
color (string_expression [foreground | background])

MrmType:
MrmRtypeColor

Description
A color value represents a named color. A color is represented literally by th
symbolcolor, followed by a string expression that evaluates to the color nam
and an optional foreground or background property to indicate how the color
displayed on a monochrome screen. Mrm converts the color name to an X C
at run-time withXAllocNamedColor () on a color display, or chooses black or
white on a monochrome display. The X server maintains a color name datab
that is used to map color names to RGB values. The text version of this datab
is typically in the file/usr/lib/x11/rgb.txt. See Volume One,Xlib Programming
Manual, and Volume Two,Xlib Reference Manual, for more information on color
allocation.

Usage
Thecolor type can be used as the type of an imported value, as a parameter
in a procedure declaration, or as the type in an argument literal. Anrgb value can
also be specified in any context that a color value is valid. There are several
built-in Motif color resources, such as XmNforeground and XmNbackground

The optionalforeground andbackground properties can be used to specify the
mapping of colors on a monochrome display or when a color allocation fails
because the colormap is full. Mrm dynamically determines the appropriate fo
ground or background color based on the context in which acolor value is used.

When acolor is used as a resource value for a widget (directly or indirectly in a
icon’scolor_table), the background and foreground colors are obtained from t
widget. When a color is retrieved for thecolor_table of an icon retrieved with
MrmFetchIconLiteral (), the background and foreground colors are sup-
plied by the application as arguments to the function.

If the foreground or background property is not specified, Mrm uses the Color
returned byXAllocNamedColor () on a monochrome display. When an allo-
cation fails on a color display and neither property is specified, black is used
addition, black is always used when an allocation on a color display fails in
Motif Reference Manual 1069

color UIL Data Types

a

MrmFetchColorLiteral (); the procedure does not take fallback back-
ground and foreground colors arguments.

As of Motif version 1.2.1, the color substitutions described above do not take
place. When a color allocation fails for a color specified directly or indirectly as
resource value, the resource is not set. If the allocation fails in a call toMrm-
FetchColorLiteral () or MrmFetchIconLiteral (),
MrmNOT_FOUND is returned.

Example
...
value

background : color (’chocolate mint’, background);
foreground : color (’whipped cream’, foreground);

object label: XmLabel {
arguments {

XmNbackground = color (’red’);
};

};
...

See Also
MrmFetchColorLiteral (3), MrmFetchIconLiteral (3),
MrmFetchSetValues (3), MrmFetchWidget (3),
MrmFetchWidgetOverride (3), color_table (6), icon (6), rgb (6).
1070 Motif Reference Manual

UIL Data Types color_table

es

th a

ruct

ral.

d at

ined

t
d by

r

Name
color_table – character-to-color mapping type.

Synopsis

Syntax:
color_table (color_expression = ’character’ [, ...])

MrmType:
none

Description
A color_tablevalue is used to define a mapping from color names or RGB valu
to the single characters that are used to represent pixel values in icons. A
color_table is represented literally by the symbolcolor_table, followed by a list
of mappings. Each mapping associates a previously-defined color value wi
single character. A color value can be a variable or a literal of typecolor or rgb,
the globalbackground color, or the symbolforeground color.

Usage
The sole purpose of acolor_table is to define colors that can be used in an icon
definition. Because the color mappings are needed at compile-time to const
an icon, acolor_table value must be private. The UIL compiler may allow an
imported or exportedcolor_table definition, but it generates an error when the
value is used. Unlike most other UIL types, acolor_table cannot be used as a
parameter type in a procedure declaration or as the type in an argument lite

Thecolor valuesbackground colorandforeground color can be used to map a
character to the background or foreground color. These colors are determine
run-time by Mrm, based on the context in which anicon is used. When anicon is
a resource value for a widget, the foreground and background colors are obta
from the widget. When anicon is retrieved by the application withMrmFetch-
IconLiteral (), the foreground and background colors are supplied by the
application as arguments to the function.

The colors in acolor_table are allocated at run-time by Mrm when an icon tha
uses the color table is retrieved as the value for a widget resource or retrieve
the application withMrmFetchIconLiteral (). See thecolor reference page
for a description of how Mrm allocates colors and what happens when a colo
allocation fails.

The UIL compiler may not perform type checking on the color values in a
color_table. If the compiler allows the use of a value that is not a color, it will
crash when thecolor_table is used.
Motif Reference Manual 1071

color_table UIL Data Types
Example
...
value

blue : color (’blue’);
yellow : rgb (65535,65535,0);
pallete : color_table (background color = ’ ’,

foreground color = ’*’,
color (’red’) = ’r’,
rgb (0,65535,0) = ’g’,
blue = ’b’,
yellow = ’y’);

plus : icon (color_table = pallete, ’brb’, ’rrr’, ’brb’);
...

See Also
MrmFetchIconLiteral (3), color (6), icon (6), rgb (6).
1072 Motif Reference Manual

UIL Data Types compound_string

a

ng is
t list

font,

on,

ce.

a
he

he

lse.
ral
Name
compound_string – Motif compound string type.

Synopsis

Syntax:
compound_string (string_expression

[, character_set =character_set]
[, right_to_left =boolean_expression]
[, separate =boolean_expression])

MrmType:
MrmRtypeCString

Description
A compound_stringvalue represents a Motif XmString. An XmString is the dat
type for a Motif compound string. The Motif toolkit uses compound strings,
rather than character strings, to represent most text values. A compound stri
composed of one or more segments, where each segment can contain a fon
element tag, a string direction, and a text component. The tag specifies the
and thus the character set, that is used to display the text component.

UIL-generatedcompound_strings can contain up to four components: a sin-
gle-byte, multi-byte, or wide-character string, a character set, a writing directi
and a separator. Like NULL-terminated strings,compound_strings can be con-
catenated with the concatenation operator (&). Acompound_stringis represented
literally by the symbolcompound_string, followed by a string expression and an
optional list of properties. The valid properties arecharacter_set, right_to_left,
andseparate. They may be specified in any order, but each may occur only on

The character_set property is used to establish the character set of the
compound_string. It can be set to one of the UIL built-in character sets or to
user-defined character set. If a character set is specified in the definition of t
string using the #character_set notation, it takes precedence over the
character_set property setting. If thecharacter_set property is omitted, the
default character set of the module is used.

Theright_to_left property is used to set the writing direction of the
compound_string. If theright_to_left property is omitted, the writing direction
defaults to that of the character set of thecompound_string.

When theseparateproperty is set to true, UIL adds a separator component to t
end of thecompound_string. Separators usually appear as line breaks when a
compound string is displayed. If omitted, the separate property defaults to fa
Newline characters present in the string expression of a compound string lite
are not converted to separators.
Motif Reference Manual 1073

compound_string UIL Data Types

r

sets
cter
ator

he

s a
Usage
When acompound_stringliteral contains a string expression consisting of two o
more concatenated strings, they are combined into a single component if the
character set and writing direction of each is the same. If any of the character
differ, each string is placed in a separate string component with its own chara
set and direction components. If the separate property is set to true, a separ
component is added to the end of the entire compound_string.

A compound_string with a character_set that differs from
XmFALLBACK_-CHARSET is only displayed correctly in a Motif widget if the
XmFontList of the widget includes an XFontStruct or an XFontSet entry for t
character_set.

The typecompound_stringcan also be used as the type of an imported value, a
parameter type in a procedure declaration, or as the type in anargument literal.

Example
...
procedure

set_label_string (compound_string);

value
ying : "Ying";
yang : #iso_latin1"Yang";
left : compound_string (ying, character_set=iso_latin1, separate=true);
right : compound_string (yang, right_to_left=true);
day : compound_string (’moon’ & ’ ’ & ’sun’);
other : imported compound_string;

lines : exported left & right;

object verse : XmLabel {
arguments {

XmNlabelString = lines;
};

};

value
XtNgraphicCaption : argument (’graphicCaption’, compound_string);

...

See Also
XmStringCreate (1), XmStringCreateLocalized (1),
character_set (6), compound_string_component (6),
compound_string_table (6), string (6).
1074 Motif Reference Manual

UIL Data Types compound_string_component

a

ted

t to
o-
quali-
ny

r

n
-
n be

g

Name
compound_string_component – Motif compound string component type.

Synopsis

Syntax:
compound_string_component (component_type [, { string | enumval }])

MrmType:
MrmRtypeCString

Availability
Motif 2.0 and later.

Description
A compound_string_componentvalue represents a compound string containing
single component. It is the UIL equivalent of the Motif functionXmString-
ComponentCreate (). The compound string so produced can be concatena
with other segments to create more complex compound strings. As for the
compound_string data type, the symbol & is the concatenation operator.

Thecomponent_typeparameter specifies the type of compound string segmen
be created. The value is one of the constants defined for the XmStringComp
nentType enumeration. Depending upon the type of the segment, a second
fying parameter may be required: the valid component types, together with a
extra argument is as follows:

Wherecomponent_type is XmSTRING_COMPONENT_DIRECTION,
compound_string_component is equivalent to the Motif functionXmString-
DirectionCreate (), and the XmStringDirection argument is as required fo
that function: XmSTRING_DIRECTION_L_TO_R,
XmSTRING_DIRECTION_R_TO_L, or
XmSTRING_DIRECTION_DEFAULT.

Usage
Thecompound_string_componentdata type can be used in an analogous fashio
to thecompound_string type. The differences lie in the degree of control in con
structing the compound strings: tab, separator, and rendition components ca
created. The components XmSTRING_COMPONENT_RENDITION_BEGIN
and XmSTRING_COMPONENT_RENDITION_END take as argument a strin
which is matched against a rendition tag within the current render table.
Motif Reference Manual 1075

compound_string_component UIL Data Types
Example
...
value

tab : compound_string_component
(XmSTRING_COMPONENT_TAB);

separator : compound_string_component
(XmSTRING_COMPONENT_SEPARATOR);

charset : compound_string_component
(XmSTRING_COMPONENT_CHARSET,
iso_latin1);

l_to_r_text : compound_string_component
(XmSTRING_COMPONENT_TEXT,
"left_to_right");

r_to_l_text : compound_string_component
(XmSTRING_COMPONENT_TEXT,
"tfel-ot-thgir");

r_to_l : compound_string_component
(XmSTRING_COMPONENT_DIRECTION,
XmSTRING_DIRECTION_R_TO_L);

l_to_r : compound_string_component
(XmSTRING_COMPONENT_DIRECTION,
XmSTRING_DIRECTION_L_TO_R);

cstring : r_to_l & charset & r_to_l_text & separator & l_to_r &
l_to_r_text;

object label: XmLabel {
arguments {

XmNlabelString = cstring;
}

};
...

See Also
XmStringComponentCreate (1), XmStringDirectionCreate (1),
compound_string (6), compound_string_table (6), string (6).
1076 Motif Reference Manual

UIL Data Types compound_string_table

s. A
t can

 tag
 com-

g

le
Name
compound_string_table – array of compound strings.

Synopsis

Syntax:
compound_string_table (string_expression [, ...]) or
string_table (string_expression [, ...])

MrmType:
MrmRtypeCStringVector

Description
A compound_string_table value represents an array of Motif XmStrings. An
XmString is the data type for a Motif compound string. The Motif toolkit uses
compound strings, rather than character strings, to represent most text value
compound string is composed of one or more segments, where each segmen
contain a font list element tag, a string direction, and a text component. The
specifies the font, and thus the character set, that is used to display the text
ponent.

A compound_string_table is represented literally by the symbol
compound_string_table or string_table, followed by a list ofstring or
compound_stringexpressions. The UIL compiler automatically converts a strin
expression to acompound_string.

Usage
A common use ofcompound_string_table values is to set resources of the type
XmStringTable in a UIL module or in the application withMrmFetchSetVal-
ues (). When acompound_string_table is assigned to a built-in XmStringTable
resource, UIL automatically sets the corresponding count resource. The tab
below lists the XmStringTable resources and their related count resources.

Widget XmStringTable Resource Related Resource

XmList XmNitems XmNitemCount

XmList XmNselectedItems XmNselectedItemCount

XmSelectionBox XmNlistItems XmNlistItemCount

XmCommand XmNhistoryItems XmNhistoryItemCount

XmFileSelectionBox XmNdirListItems XmNdirListItemCount

XmFileSelectionBox XmNfileListItems XmNfileListItemCount
Motif Reference Manual 1077

compound_string_table UIL Data Types

t are

rgu-

o
 in a
The associated count is not automatically set for compound_string_tables tha
assigned usingMrmFetchSetValues ().

The typecompound_string_table can also be used as the type of an imported
value, as a parameter type in a procedure declaration, or as the type in an a
ment literal. Acompound_string_table that is obtained by the application as a
callback parameter, a widget resource, or withMrmFetchLiteral () is
NULL-terminated.

If a compound_string_table contains a forward reference to acompound_string
value, all items in the list before that entry may be lost by the UIL compiler. T
avoid this problem, you should be sure to define all compound_strings used
compound_string_table before they are referenced.

Example
...
procedure

set_items (string_table);

value
fruit_list : string_table (’apple’, ’banana’, ’grape’);

object list : XmList {
arguments {

XmNitems = fruit_list;
};

};

value
XtNnameList : argument (’nameList’, compound_string_list);

...

See Also
character_set (6), compound_string (6),
compound_string_component (6), string (6).
1078 Motif Reference Manual

UIL Data Types float

t
cu-
e

at

itec-

res
eep-
ror

e in
Name
float – double-precision floating point type.

Synopsis

Syntax:
[+ | -]integer.integer [e [+ | -]integer]

MrmType:
MrmRtypeFloat

Description
A float value represents a negative or positive double-precision floating poin
number. Afloat is represented literally by an optional sign, one or more conse
tive digits which must include a decimal point, and an optional exponent. Th
UIL compiler usesatof () to convert literal float values to the architecture’s
internal representation.

A float can also be represented literally by the symbolfloat followed by a
boolean, integer, orsingle_floatexpression. The expression is converted to a flo
and can be used in any context that afloatvalue is valid. A float is formed from a
boolean by converting true and on to 1.0 and false and off to 0.0.

Usage
The allowable range of afloat value is determined by the size of a C double on
the machine where the UIL module is compiled. Since a double on most arch
tures is typically a minimum of four bytes, float values may safely range from
1.4013e-45 to 3.40282e+38 (positive or negative). Although many architectu
represent a double using eight bytes, you can ensure greater portability by k
ing float values within the four-byte range. The UIL compiler generates an er
if it encounters afloat outside of the machine’s representable range.

The typefloatcan be used as the type of an imported value, as a parameter typ
a procedure declaration, or as the type in an argument literal.

Example
...
! Declare some floating point values.
value

pi : 3.14159;
burn_rate : imported float;
one_point_oh : float (true);
ten_even : float (10);
Motif Reference Manual 1079

float UIL Data Types
! Declare a procedure which takes a float parameter.
procedure

set_temperature (float);

! Declare an argument of type float.
value

XtNorbitalVelocity : argument (’orbitalVelocity’, float);
...

See Also
boolean (6), integer (6), single_float (6).
1080 Motif Reference Manual

UIL Data Types font

es

nt

 or

rip-
ter

sed
IL

pe in

tead

. If
Name
font – XFontStruct type.

Synopsis

Syntax:
font (string_expression [, character_set =character_set])

MrmType:
MrmRtypeFont

Description
A font value represents an XFontStruct, which is an Xlib structure that specifi
font metric information. A font is represented literally by the symbol font, fol-
lowed by a string expression that evaluates to the name of the font and an
optional character_set. All parts of the string expression that make up the fo
name must be private to the UIL module. Thecharacter_set is associated with
the font if it appears in a font_table. Ifcharacter_set is not specified, it is deter-
mined from the codeset portion of the LANG environment variable if it is set,
XmFALLBACK_CHARSET otherwise.

The string expression that specifies the font name is an X Logical Font Desc
tion (XLFD) string. This string is stored in the UID file and used as a parame
to XLoadQueryFont () at run-time to load the font. See Volume One,Xlib Pro-
gramming Manual, and Volume Two,Xlib Reference Manual, for more informa-
tion on fonts.

Usage
You can use afont value to specify a font orfont_table resource. When a font is
assigned to afont_table resource, at run-time Mrm automatically creates an
XmFontList that contains only the specified font. A font value can also be u
as an element in font_table, although in this context it must be private to the U
module.

The font type can be used as the type of an imported value, as a parameter ty
a procedure declaration, or as the type in an argument literal.

In some versions of UIL, the default character_set is always ISO8859-1, ins
of being based on the LANG environment variable or
XmFALLBACK_CHARSET.

The UIL compiler may exit with a severe internal error if a user-defined
character_setis used in a font that is exported or specified as a resource value
this problem occurs in your version of UIL, only predefinedcharacter_setvalues
can be used infont, fontset, andfont_table values. The workaround is to specify
these problematic values in an X resource file.
Motif Reference Manual 1081

font UIL Data Types
Example
...
procedure

change_font (font);

value
title_font : font (’-*-helvetica-bold-r-nor-
mal-*-160-100-100-*-iso8859-1’);
family : ’courier’;
style : ’medium’;;
body_font : font (’-*-’ & family &’-’& style & ’-r-nor-
mal-*-120-100-100*-iso8859-1’);
kanjiFont : font (’-*-JISX0208.1983-1’, character_set = jis_kanji);
default_font : imported font;

value
XtNheadlineFont : argument (’headlineFont’, font);

object label: XmLabel {
arguments {

XmNfontList = title_font;
};

};
...

See Also
character_set (6), fontset (6), font_table (6).
1082 Motif Reference Manual

UIL Data Types font_table

 a

ng
ly.

errid-

eter

-

Name
font_table – Motif font list type.

Synopsis

Syntax:
font_table ([character_set =] font_expression [, ...])

MrmType:
MrmRtypeFontList

Description
A font_table value represents a Motif XmFontList. An XmFontList is a data
type that specifies the fonts that are in use. Each entry in a font list specifies
font or a font set and an associated tag. When a Motif compound string
(XmString) is displayed, the font list tag for the string is used to match the stri
with a font or a font set, so that the compound string is displayed appropriate

In UIL, a font_table is represented literally by the symbolfont_table, followed by
a list of one or morefont or fontset values. The elements of afont_table must be
defined as private values. The character_set of an entry in the list can be ov
den by preceding it with a predefined or user-definedcharacter_setand an equal
sign (=).

Usage
Thefont_table type can be used as the type of an imported value, as a param
type in a procedure declaration, or as the type in anargumentliteral. A font_table
is converted to an XmFontList at run-time by Mrm.

The UIL compiler may exit with a severe internal error if a user-defined
character_set is used in afont_table that is exported or specified as a resource
value. This situation can occur ifcharacter_set is specified directly or indirectly
in one of the entries. If this problem occurs in your version of UIL, only prede
finedcharacter_setvalues can be used infont, fontset, andfont_tablevalues. The
workaround is to specify these problematic values in an X resource file.

Example
...
procedure

switch_styles (font_table);

value
latin1 : font (’*-iso8859-1’, character_set = iso_latin1);
hebrew : font (’*-iso8859-8’, character_set = iso_hebrew);
list : font_table (latin1, hebrew);
Motif Reference Manual 1083

font_table UIL Data Types
value
XtNdefaultFonts : argument (’defaultFonts’, font_table);

object label: XmLabel {
arguments {

XmNfontList = list;
};

};
...

See Also
XmFontListAppendEntry (1), XmFontListEntryCreate (1),
XmFontListEntryLoad (1), character_set (6), font (6), fontset (6).
1084 Motif Reference Manual

UIL Data Types fontset

es
 is

 UIL

of X

ee

an
 pri-

type

ead

lue.

-

Name
fontset – XFontSet type.

Synopsis

Syntax:
fontset (string_expression [, ...] [, character_set =character_set])

MrmType:
MrmRtypeFontSet

Description
A fontset value represents an XFontSet, which is an Xlib structure that specifi
all of the fonts that are needed to display text in a particular locale. A fontset
represented literally by the symbolfontset, followed by a list of string expres-
sions that evaluate to font names and an optionalcharacter_set. All parts of the
string expressions that make up the list of font names must be private to the
module. Thecharacter_set is associated with the fontset if it appears in a
font_table. If character_set is not specified, it is determined from the codeset
portion of the LANG environment variable if it is set, or
XmFALLBACK_CHARSET otherwise.

The string expression that specifies the font name is a list or wildcarded set
Logical Font Description (XLFD) strings. This list is stored in the UID file and
used as a parameter to XCreateFontSet() at run-time to load the font set. S
Volume One,Xlib Programming Manual, and Volume Two,Xlib Reference Man-
ual, for more information on fonts.

Usage
You can use afontset value to specify afontset or font_table resource. When a
fontset is assigned to afont_table resource, at run-time Mrm automatically cre-
ates an XmFontList that contains only the specified fontset. A fontset value c
also be used as an element in font_table, although in this context it must be
vate to the UIL module.

Thefontsettype can be used as the type of an imported value, as a parameter
in a procedure declaration, or as the type in anargument literal.

In some versions of UIL, the default character set is always ISO8859-1, inst
of being based on the LANG environment variable or
XmFALLBACK_CHARSET.

The UIL compiler may exit with a severe internal error if a user-defined
character_setis used in a fontset that is exported or specified as a resource va
If this problem occurs in your version of UIL, only predefinedcharacter_set val-
ues can be used infont, fontset, andfont_tablevalues. The workaround is to spec
ify these problematic values in an X resource file.
Motif Reference Manual 1085

fontset UIL Data Types
Example
procedure

change_fontset (fontset);

value
japanese_font : fontset (’-misc-fixed-*-75-75-*’);
default_font : imported font;

value
XtNbodyFontSet : argument (’bodyFontSet’, fontset);

object label: XmLabel {
arguments {

XmNfontList = japanese_font;
};

};

See Also
character_set (6), font (6), font_table (6).
1086 Motif Reference Manual

UIL Data Types icon

al-

al-

ref-

al-

e

e in

ix-
n an

lor

is
Name
icon – multi-color rectangular pixmap type.

Synopsis

Syntax:
icon ([color_table =color_table_name ,] row [, ...])

MrmType:
MrmRtypeIconImage

Description
An icon value represents a multi-color rectangular pixmap, or array of pixel v
ues. An icon is represented literally by the symbolicon, followed by an optional
color_table specification and a list of strings that represent the rows of pixel v
ues in theicon.

If a color_table is specified, it must be a private value and cannot be forward
erenced. If acolor_table is not specified, the following default color_table is
used:

color_table (background_color = ’ ’, foreground color = ’*’)

Eachrow in theicon is a character expression that represents a row of pixel v
ues. Each character in therow represents a single pixel. All of the rows in the
icon must be the same length and must contain only characters defined in th
color_table for theicon. The UIL compiler generates an error if these rules are
violated.

Usage
The typeiconcan be used as the type of an imported value, as a parameter typ
a procedure declaration, or as the type in an argument literal. Anicon can be
retrieved by an application withMrmFetchIconLiteral () or MrmFetch-
BitmapLiteral ().

When anicon is specified as a resource value for a widget, the depth of the p
map created by Mrm at run-time is the same as the depth of the widget. Whe
icon is retrieved withMrmFetchIconLiteral (), the depth of the resulting
pixmap is the value returned from theDefaultDepthOfScreen () macro.
When anicon is retrieved withMrmFetchBitmapLiteral (), the depth of the
resulting pixmap is always one. Thecolor_table of anicon retrieved with this
function must only contain mappings for background color and foreground co
or the function fails and returns MrmNOT_FOUND.

The UIL compiler may not check the type of the value specified as the
color_table for anicon. If the compiler allows the specification of a value that
Motif Reference Manual 1087

icon UIL Data Types

er-

tion.

n

f

not acolor_table, it generates an error message when theicon is referenced. If no
reference to theicon occurs in the module, the compiler exits with a severe int
nal error.

If the row values in anicon literal do not consist entirely of string literals, the UIL
compiler may generate an error message or crash with a segmentation viola

If a named value is declared as an importedicon in one UIL module file, but
defined with a different type in another, an error is generated at run time whe
Mrm attempts to retrieve theicon. If you attempt to define a named variable with
the value of anicon variable, the UIL compiler may generate a large number o
errors that are seemingly unrelated to the assignment.

Example
...
value

! Define an icon that uses default color table and can be retrieved
! as a resource or with any of the fetch procedures including
! MrmFetchBitmapLiteral():
checker : icon (’* *’, ’ * ’, ’* *’);
! Define an icon that uses a custom color table which contains named
! colors. This icon cannot be retrieved with MrmFetchBitmapLiteral().
red_blue : color_table (color(’red’) = ’r’, color(’blue’) = ’b’);
plus : icon (color_table = red_blue, ’brb’, ’rrr’, ’brb’);
! Declare an argument of type icon.
XtNwmIcon : argument (’wmIcon’, icon);

! Declare a procedure taking an icon parameter.
procedure

display_icon (icon);

! Use an icon for a resource value
object label: XmLabel {

arguments {
XmNlabelType = XmPIXMAP;
XmNlabelPixmap = plus;

};
};
...

See Also
MrmFetchBitmapLiteral (3), MrmFetchIconLiteral (3),
MrmFetchSetValues (3), MrmFetchWidget (3),
MrmFetchWidgetOverride (3), color_table (6), pixmap (6),
xbitmapfile (6).
1088 Motif Reference Manual

UIL Data Types integer

n
chi-

type

re

rt) is
-
d
xi-
67
Name
integer – whole number type.

Synopsis

Syntax:
[+ | -]0-9[...]

MrmType:
MrmRtypeInteger

Description
An integer value represents a negative or positive whole number. Aninteger is
represented literally by an optional sign followed by one or more consecutive
digits.

An integer can also be represented literally by the symbolinteger followed by a
float, single_float, or booleanexpression. The expression is converted to aninte-
ger and can be used in any context that aninteger value is valid. Aninteger is
formed from afloat or single_float by truncating the fractional value. You can
add 0.5 to thefloat or single_float value if rounding is desired. If afloat or
single_float larger (smaller) than MAXINT (-MAXINT) is converted to aninte-
ger, the resulting value is MAXINT (MININT). Aninteger is formed from a
boolean by convertingtrue andon to 1 andfalse andoff to 0.

Usage
The allowable range of anintegervalue is determined by the size of an integer o
the machine where the UIL module is compiled. Since an integer on most ar
tectures is typically a minimum of four bytes,integer values may safely range
from -2147483647 (-MAXINT) to 2147483647 (MAXINT). You can ensure
greater portability by keepingintegervalues within the four-byte range. The UIL
compiler generates an error if it encounters aninteger outside of the machine’s
representable range.

The typeintegercan be used as the type of an imported value, as a parameter
in aprocedure declaration, or as the type in anargument literal.

Widget resources of type Position (short) and Dimension (unsigned short) a
specified asintegers in UIL. As a result, the UIL compiler does not generate an
error if an out-of-range value is assigned to such a resource. If the sizeof(sho
smaller than sizeof(int), part of the out-of-range value is truncated, which pro
duces an undefined result. The part truncated depends on the C compiler an
byte-ordering of the machine on which the UIL module is compiled. For ma
mum portability, Position values should be limited to the range -32768 to 327
and Dimension values should be limited to the range 0 to 65536.
Motif Reference Manual 1089

integer UIL Data Types

yte
.

The UIL compiler uses -MAXINT to MAXINT, not MININT to MAXINT, as the
allowable range for integers, which means that on an architecture with four-b
integers, the minimuminteger value allowed is -2147483647, not -2147483648
The value MININT can be used, however, by converting a float smaller than
-MAXINT to an integer.

Example
...
! Declare a procedure taking an integer value.
procedure

set_speed (integer);

! Define some integer variables.
value

meaning_of_life: 41;
the_question : imported integer;
half_life : meaning_of_life / 2;
ten : integer (10.75);
round_factor : 0.5;
eleven : integer (10.75 + round_factor);
one : integer (true);
! Generate MININT value by converting large negative float:
minint : integer (-3.0e30);

! Define an argument of type integer.
value

XtNsize : argument (’size’, integer);

object pb : XmPushButton {
arguments {

XmNleftOffset = -3;
};

};
...

See Also
boolean (6), float (6), integer_table (6), single_float (6).
1090 Motif Reference Manual

UIL Data Types integer_table

rep-

a

le-
e of

nt

the
ns as
Name
integer_table – array of integers.

Synopsis

Syntax:
integer_table (integer_expression [, ...])

MrmType:
MrmRtypeIntegerVector

Description
An integer_table1 value represents an array of integers. An integer_table is
resented literally by the symbolinteger_table, followed by a list of integer
expressions.

Usage
The type nameinteger_table can be used as the type of an imported value, as
parameter type in aproceduredeclaration, or as the type in anargumentliteral. In
Motif 1.2, the XmNselectionArray resource of the XmText and XmTextField
widgets is the only built-ininteger_tableresource. When the resource is set, UIL
automatically sets the XmNselectionArrayCount resource to the number of e
ments in the array. In Motif 2.0 and later, the XmNselectedPositions resourc
the List, and the XmNdetailOrder resource of the Container are also built-in
integer_tabletypes. The XmNselectedPositionCount and XmNdetailOrderCou
resources are automatically set by UIL respectively.

Unlike asciz_string_tableandcompound_string_tablevalues, aninteger_tableis
not NULL-terminated. As a result, you must either useinteger_tablevalues of a
set length, include the length explicitly, or use a value to indicate the end of
array. The application code that uses the values must use the same conventio
the UIL module.

Example
...
value

! Define table with known number of elements (12).
days: integer_table (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);
! Define table with length as first element.
grades : integer_table (5, 95, 87, 100, 92, 82);
! Define table with last element of MININT.
end_of_table : integer (3.0e-30);
ages : integer_table (25, 29, 29, 30, 32, end_of_table);

1.Erroneously given asinteger_type in 1st edition.
Motif Reference Manual 1091

integer_table UIL Data Types
! Declare a procedure taking an integer_table
procedure

compute_average (integer_table);

! Declare an argument taking an integer table
value

XtNdaysPerMonth : argument (’daysPerMonth’, integer_table);
...

See Also
integer (6).
1092 Motif Reference Manual

UIL Data Types keysym

nted

t be

as
e,

 at
ot
Name
keysym – character type.

Synopsis

Syntax:
keysym (string_literal)

MrmType:
MrmRtypeKeysym

Description
A keysymvalue is used to represent a single character. A keysym is represe
literally by the symbolkeysym, followed by a string value that contains exactly
one character. If the string is a variable, it can be forward referenced and mus
private to the UIL module.

Usage
A keysymvalue is typically used to specify a widget mnemonic resource, such
XmNmnemonic. Thekeysym type can be used as the type of an imported valu
as a parameter type in aprocedure declaration, or as the type in anargument lit-
eral.

When akeysym is retrieved by an application withMrmFetchLiteral (), the
value argument returned is the character value of thekeysym, not a pointer to the
value like many other types.

The UIL compiler may not generate an error if the string expression in akeysym
literal is more than one character long, but an error will be generated by Mrm
run-time. If an invalidkeysymis specified as a resource value, the resource is n
set. If the application attempts to retrieve an invalidkeysym with MrmFetchL-
iteral (), MrmNOT_FOUND is returned.

Example
...
procedure

set_keysym (keysym);

value
d_key : keysym (’d’);
XtNquitKey : argument (’quitKey’, keysym);

object the_button : XmPushButton
arguments {

XmNmnemonic = keysym (’b’);
};
Motif Reference Manual 1093

keysym UIL Data Types
};
...

See Also
MrmFetchLiteral (3).
1094 Motif Reference Manual

UIL Data Types pixmap

-

er

file.
Name
pixmap – generic icon or xbitmapfile type.

Synopsis

Syntax:
No literal syntax.

MrmType:
MrmRtypeIconImage or MrmRtypeXBitmapFile

Description
A pixmapvalue can be either aniconor xbitmapfile. In either case, the type spec
ifies an array of pixel values. Apixmap does not have its own literal representa-
tion; apixmapvalue is specified with either theiconor xbitmapfileliteral syntax.

Usage
The typepixmap can be used as the type of an imported value, as a paramet
type in aproceduredeclaration, or as the type in anargumentliteral. The purpose
of thepixmap type is to allow either anicon or anxbitmapfile value to be
imported, passed as a callback argument, or specified as a resource value.

Example
...
value

! Declare an imported pixmap that can be defined as an icon or xbitmap
stop_pixmap : imported pixmap;
! Declare an argument to which an icon or xbitmapfile can be assigned.
XtNstipplePixmap : argument (’stipplePixmap’, pixmap);

! Declare a procedure to which an icon or xbitmapfile can be passed.
procedure

print_pixmap (pixmap);
...

See Also
icon (6), xbitmapfile (6).
Motif Reference Manual 1095

UIL Data Types

iter-

for
-
an

u
e

UIL
r

u-
Name
reason – user-defined callback type.

Synopsis

Syntax:
reason (string_expression)

MrmType:
none

Description
A reason value represents a user-defined callback. A reason is represented l
ally by the symbolreason, followed by a string expression that evaluates to the
name of a callback. The name of thereason is assigned to the name member of
the ArgList structure passed toXtSetValues (). The name is typically the
name of a callback with the XmN or XtN prefix removed.

Usage
A user-defined callback can be used in the callbacks section of a UIL module
both built-in Motif widgets and user-defined widgets. While user-defined call
backs are typically assigned to a named variable in the value section, they c
also be specified literally in thearguments section of anobject definition. If you
are defining arguments for a widget or widget set which is not predefined, yo
should define them as named variables in a separate UIL module that can b
included by any module that uses the widget(s).

Reasons must be private values; they cannot be imported or exported. The
compiler allows imported and exported declarations, but it generates an erro
when the user-definedreason is used. Sincereason values cannot be exported,
they cannot be retrieved by an application.

Thereason type can only be used to define callback resource types. The arg
ment type is used to specify other user-defined resources.

Example
FromXaw/Panner.uih:

! Resources and definitions for the Athena Panner widget.
...
! Callback definitions
value

XtNreportCallback = reason (’XtNreportCallback’);
...
Motif Reference Manual 1096

UIL Data Types
Frommy_module.uil:

include file ’Xaw/Panner.uih’;

procedure
panner_report();

object panner : user_defined procedure XawCreatePanner {
callbacks {

XtNreportCallback = procedure panner_report();
};

};
...

See Also
MrmRegisterClass (3), include (5), object (5), argument (6).
Motif Reference Manual 1097

UIL Data Types

n

0

 call-

use

fied

ed.

ace.
n
l to

ot be
if an
e
ci-
om-
.

Name
rgb – color specified with the values of red, green, and blue components.

Synopsis

Syntax:
rgb (red_integer, green_integer, blue_integer)

MrmType:
MrmRtypeColor

Description
The typergb represents a color as a mixture of red, green, and blue values. A
rgb value is represented literally by the symbolrgb, followed by a list of three
integers that specify the red, green, and blue components of the color. The
amount of each color component can range from 0 (0 percent) to 65,535 (10
percent). Mrm allocates rgb values withXAllocColor (). See Volume 1,Xlib
Programming Manual, and Volume 2,Xlib Reference Manual, for more informa-
tion on color allocation.

Usage
An rgb value or literal can be used anywhere a color value is expected: as a
back argument, as a resource value, or in acolor_table. Unlike color values, it is
not possible to specify a foreground or background fallback forrgb values. For
this reason, and to maximize the number of shareable color cells, you should
named colors defined with the color type whenever possible.

If a color cannot be allocated, Mrm substitutes black, unless the color is speci
as the background color or foreground color in acolor_table and the foreground
color or background color is already black. In this situation, white is substitut

In Motif version 1.2.1, the color substitutions described above do not take pl
When a color allocation fails for an rgb value specified directly or indirectly (i
the color_table of an icon) the resource is not set. If the allocation fails in a cal
MrmFetchColorLiteral () or MrmFetchIconLiteral (),
MrmNOT_FOUND is returned. In Motif 2.1,XBlackPixelOfScreen () is
used whereXAllocColor () fails.

Note that the values that specify that red, green, and blue components cann
integer expressions. The UIL compiler, however, does not generate an error
integer expression is encountered; it silently replaces the expression with th
value 0. In addition, the UIL compiler does not report an error if an integer spe
fied for a color value is less than 0 or greater than 65,535. If any of the three c
ponents is out-of-range, the three values stored in the UID file are undefined
Motif Reference Manual 1098

UIL Data Types
Example
value

white : rgb (65535, 65535, 65535);
orange : exported rgb (65535, 32767, 0);
grape : imported rgb;
ctable : color_table (white = ’w, orange = ’o’, grape = ’g’);
....

object label : XmLabel {
arguments {

XmNforeground = rgb (0, 0, 32767);
XmNbackground = orange;

};
};

See Also
MrmFetchColorLiteral (3), MrmFetchIconLiteral (3),
MrmFetchSetValues (3), MrmFetchWidget (3),
MrmFetchWidgetOverride (3),
color (6), color_table (6), icon (6).
Motif Reference Manual 1099

UIL Data Types

d to

gest

eter

t
rchi-

re
Name
single_float – single-precision floating point type.

Synopsis

Syntax:
single_float (numeric_expression)

MrmType:
MrmRtypeSingleFloat

Description
A single_float value represents a negative or positive single-precision floating
point number. A single_float is represented literally by the symbolsingle_float,
followed by a boolean, float or integer expression. The expression is converte
asingle_float and can be used in any context in which asingle_float value is
valid. A single_float is formed from a boolean by converting true and on to 1.0
and false and off to 0.0. If a float expression is greater than (less than) the lar
(smallest) representable float, the resultingsingle_float is +infinity (-infinity).

Usage
The typesingle_floatcan be used as the type of an imported value, as a param
type in a procedure declaration, or as the type in an argument literal. A
single_float value is used to save space, as the storage used by asingle_float is
usually less than that used by a float.

The allowable range of asingle_float value is determined by the size of a C floa
on the machine where the UIL module is compiled. Since a float on most a
tectures is typically a minimum of four bytes,single_float values may safely
range from 1.4013e-45 to 3.40282e+38 (positive or negative). You can ensu
greater portability by keepingsingle_float values within the four-byte range.

Example
...
! Declare a procedure taking a single_float value.
procedure

sqrt (single_float);

value
avogadro : single_float (6.023e+23);
prime_rate : imported single_float;

! Define an argument of type single_float.
value

XtNarea : argument (’area’, single_float);
...
Motif Reference Manual 1100

UIL Data Types
See Also
boolean (6), float (6), integer (6).
Motif Reference Manual 1101

UIL Data Types

to
r.

eci-
side
 value
m-
ape

gs
Name
string – NULL-terminated character string type.

Synopsis

Syntax:
[#character_set] "character_expression" or
’character_expression’

MrmType:
MrmRtypeChar8

Description
A string value represents a NULL-terminated single-byte, multi-byte, or
wide-character string. Astring literal is represented by either a double or sin-
gle-quoted sequence of characters, that may be up to 2000 characters long.
Newer versions of UIL may allow even longer strings. The type of quotes used
delimit astring literal determines how the string is parsed by the UIL compile

Both double and single-quoted strings can directly contain characters with d
mal values in the range 32 to 126 and 160 to 255. Characters with values out
of the range can only be entered using the escape sequence \value\, where
represents the character code desired. To allow the easy specification of co
monly-used non-printing characters codes, UIL recognizes the following esc
sequences:

A double-quoted string consists of an optionalcharacter_set, followed by a
sequence of characters surrounded by a double quotes. Double-quoted strin
cannot span multiple lines, but may contain the \n escape sequence. If a

Character Meaning

\b Backspace

\f Formfeed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\\ Backslash

\’ Single quote

\” Double quote
Motif Reference Manual 1102

UIL Data Types

ign

he

nces
he

ingle
e
ext
ng.
. The

on
s
lly

ng
o or
 A

e.
as
r.
character_set is specified, it precedes the string and is indicated by a pound s
(#). Either a built-in or user-definedcharacter_set can be specified. If a
character_setis not specified, the default character set of the module is used. T
defaultcharacter_set can be specified with thecharacter_set option in the mod-
ule header of a UIL module. If this option is not set, the default is determined
from the codeset portion of the LANG environment variable if it is set, or
XmFALLBACK_CHARSET otherwise.

If the UIL compiler is invoked with the -s option, double-quoted strings are
parsed in the current locale. When UIL parses localized strings, escape seque
may be interpreted literally. You can avoid unexpected results by restricting t
use of escape sequences to single quoted strings.

A single-quoted string consists of a sequence of characters surrounded by s
quotes. Unlike double-quoted strings, single-quoted strings can span multipl
lines by using a backslash (\) to indicate that the string is continued on the n
line. The newline character following the backslash is not included in the stri
The \n escape sequence should be used if an embedded newline is desired
character_set of a single-quoted string defaults to the codeset portion of the
LANG environment variable if it is set, or XmFALLBACK_CHARSET other-
wise.

The parsing direction of either string variant is determined by thecharacter_set
of the string. A string that is parsed right-to-left is stored in the UID file in the
reverse order that it appeared in the UIL source module. The parsing directi
andcharacter_set writing direction determine the order of individual character
when a string is printed or displayed. The writing direction of a string is genera
the same as the parsing direction, unless explicitly overridden in a
compound_string literal. The order of the characters in escape sequences is
always the same, regardless of the parsing direction.

Usage
A single or double-quoted string value can be used anywhere a string or stri
expression is expected. A string expression can be a single string value or tw
more string values concatenated with the string concatentation operator (&).
string or string expression can also be used anywhere acompound_stringis
expected, since the UIL compiler automatically converts the string to a com-
pound string, with the character set determined by the rules described abov
(When determining the character set, the UIL compiler may use ISO8859-1
the fallback character set, even if the value has been changed by the vendo
Therefore, you should specify a character set explicitly instead of relying on
XmFALLBACK_CHARSET.)
Motif Reference Manual 1103

UIL Data Types

t
ral

type

’;
Any newline characters in a NULL-terminated string that is converted into a
compound_string are not converted into separator components to make a
multi-line compound string. If you need a multi-line compound string, it mus
be specified as a concatenated set of values using the compound_string lite
syntax with the separate property set to true.

The typestringcan be used as the type of an imported value, as a parameter
in aprocedure declaration, or as the type in anargument literal. String values
used in string expressions or incompound_string literals must be private to the
module in which they are used.

Example
...
procedure

tie_knot (string);

value
display : imported string;
skit_name : ’Unfrozen Caveman Lawyer’;
hello : #iso_hebrew"\237\229\236\249\";
quote : exported ’Quoth the Raven, ‘Nevermore.\’\n’;
concat : ’The Cat’ & ’ in the Hat’;
multi : ’All that we see or seem\nIs but a dream within a dream.
! Define a resource of type string.
XtNfilename : argument (’filename’, string);

object play : XmPushButton {
arguments {

! String automatically converted to XmString
XmNlabelString = skit_name;

};
};
...

See Also
asciz_string_table (6), character_set (6), compound_string (6),
compound_string_table (6).
Motif Reference Manual 1104

UIL Data Types

n
nt

y by

st be
ist of
te-
ID

s-
Name
translation_table – Xt translation table type.

Synopsis

Syntax:
translation_table ([‘#override‘ | ’#augment’ | ’#replace’]string_expression [,
...])

MrmType:
MrmRtypeTransTable

Description
A translation_tablevalue represents an X Toolkit translation table. A translatio
table is a list of translations, where each translation maps an event or an eve
sequence to an action name. In UIL, a translation_table is represented literall
the symboltranslation_table, followed by an optional directive and list of string
expressions that are interpreted as translations. If specified, the directive mu
one of #override, #augment, or #replace. The translations are specified as a l
string expressions, one per translation. The individual translations are conca
nated and separated with newline characters before they are stored in the U
file.

Usage
Thetranslation_table type can be used as the type of an imported value, as a
parameter type in aprocedure declaration, or as the type in anargument literal.

The syntax of atranslation_table is not verified by the UIL compiler. Instead,
Mrm converts a translation_table literal to an XtTranslations value with
XtParseTranslationTable () at run-time. Errors that occur when parsing
thetranslation_table are passed toXtWarning (). BecauseXtParseTrans-
lationTable () always returns a valid XtTranslations value, even when par
ing errors occur, the run-time conversion of atranslation_table cannot fail. See
Volume 4,X Toolkit Intrinsics Programming Manual, and Volume 5,X Toolkit
Intrinsics Reference Manual, for more information about translation tables.

Example
...
procedure

set_translations (translation_table);
exit();

value
XtNquickKeys : argument (’translations’, translation_table);
Motif Reference Manual 1105

UIL Data Types
value
quit_tt : translation_table (’#override’, ’<Key>q: ArmAndActivate()’);
other_tt : imported translation_table;

object quit : XmPushButton {
arguments {

XmNtranslations = quit_tt;
};
callbacks {

XmNactivateCallback = procedure exit();
};

};
...

See Also
MrmFetchLiteral (3).
Motif Reference Manual 1106

UIL Data Types

g C

r-

of
ale

l
t a

s a
ral.
Name
wide_character – wide-character string type.

Synopsis

Syntax:
wide_character (string_expression)

MrmType:
MrmRtypeWideCharacter

Description
A wide_charactervalue represents a wide-character string. The correspondin
type is wchar_t *. A wide_character literal is represented by the symbol
wide_character, followed by a string expression.

Usage
A wide_character literal is used to make the UIL compiler parse a regular cha
acter string as a wide-character string. Awide_characterstring is parsed with the
mbstowcs () function. The operation of this function depends on the setting
the locale. See the uil reference page for more information regarding the loc
setting. Thewide_character literal syntax may not work in early releases of
Motif 1.2. However, you can specify a wide-character string using the norma
UIL string syntax. The difference is that the UIL compiler does not verify tha
wide-character string specified in this way is properly formed.

The typewide_character can also be used as the type of an imported value, a
parameter type in a procedure declaration, or as the type in an argument lite

Example
...
procedure

print_wcs (wide_character);

value
wcs : wide_character (’\204\176\224\189\’);
name : imported wide_character;
XtNwideCharacterString : argument (’wideCharacterString’,
wide_character);

object text : XmText {
arguments {

XmNvalueWcs = wcs;
};

};
...
Motif Reference Manual 1107

UIL Data Types
See Also
uil (4), procedure (5), argument (6), string (6).
Motif Reference Manual 1108

UIL Data Types

a

or
me
 to

nt
t

et
f the
ce

er-

 as
Name
widget – widget type.

Synopsis

Syntax:
See the object section of the UIL file format reference page.

MrmType:
none

Description
Objects that are declared or defined in a UIL object section are of typewidget.
Values of typewidgetare the only UIL values that are not declared or defined in
value section. The literal representation of awidgetis described in the object sec-
tion of the UIL file format reference page.

Usage

The typewidgetcan be used as a parameter type in aproceduredeclaration or as
the type in anargumentliteral. When a widget is used as a callback parameter
resource value in the declaration of another widget, it must be part of the sa
hierarchy as that widget. A widget hierarchy is defined by the widget passed
MrmFetchWidget () or MrmFetchWidgetOverride () and it includes all
of the descendants of that widget. If you need to specify a widget in a differe
hierarchy as a callback parameter, you can use the string name of the widge
instead and convert it to a widget pointer in the callback withXtNameToW-
idget ().

Widgets can be forward referenced. If Mrm encounters a reference to a widg
that has not been created in the current hierarchy, it creates the remainder o
hierarchy and makes another attempt to resolve the reference. If the referen
cannot be resolved at that point, Mrm does not add the callback or set the
resource for which the widget is specified. As of Motif 1.2, Mrm does not gen
ate a warning when a widget reference cannot be resolved.

Prior to Motif 1.2.1, the UIL compiler generates an error when widget is used
aprocedure parameter or type in anargument literal. To work around this prob-
lem, you can use the typeany.

Example
...
value

! Declare Athena tree widget constraint argument.
XtNtreeParent : argument (’treeParent’, widget);
Motif Reference Manual 1109

UIL Data Types
procedure
manage (widget);

object
button1 : XmPushButton {

callbacks {
XmNactivateCallback = manage (button3);

}
arguments {

XmNbottomAttachment = XmATTACH_FORM;
XmNbottomOffset = 40;
XmNrightAttachment = XmATTACH_WIDGET;
XmNrightWidget = button1;

};
};
button2 : XmPushButton { };
button3 : XmPushButton {

arguments {
XmNbottomAttachment = XmATTACH_FORM;

};
};
form : XmForm {

controls {
XmPushButton button1;
XmPushButton button2;
unmanaged XmPushButton button3;

};
};

...

See Also
MrmFetchWidget (3), MrmFetchWidgetOverride (3), object (5),
procedure (5), argument (6).
Motif Reference Manual 1110

UIL Data Types

bit-

ing

eter

s

he
hen

X
ified
Name
xbitmapfile – X bitmap file type.

Synopsis

Syntax:
xbitmapfile (string_expression)

MrmType:
MrmRtypeXBitmapFile

Description
An xbitmapfilevalue represents a file that contains a bitmap in the standard X
map file format. An xbitmapfile literal is represented by the symbolxbitmapfile,
followed by a string expression that evaluates to the name of the file contain
the bitmap. The X bitmap is loaded at run-time by Mrm usingXmGetPixmap-
ByDepth (). See Volume 1,Xlib Programming Manual, for more information
about the X bitmap file format.

Usage
The typexbitmapfilecan be used as the type of an imported value, as a param
type in a procedure declaration, or as the type in an argument literal. Anxbitmap-
file value can be retrieved by an application withMrmFetchIconLiteral ().
TheMrmFetchBitmapLiteral () procedure cannot be used to retrieve value
of thexbitmapfile type.

When anxbitmapfileis specified as a resource value for a widget, the depth of t
pixmap created by Mrm at run-time is the same as the depth of the widget. W
anxbitmapfile is retrieved withMrmFetchIconLiteral (), the depth of the
resulting pixmap is the value returned from theDefaultDepthOfScreen ()
macro.

The UIL compiler stores the specified file name in the UID output file, not the
bitmap to which the name refers. The compiler does not verify that the spec
file exists. If anxbitmapfile specified as a resource cannot be loaded, the
resource is not set. If MrmFetchIconLiteral fails to load anxbitmapfile,
MrmNOT_FOUND is returned.

Example
...
! Declare a bitmap of the most challenging ski slope in the Northeast.
value

goat: xbitmapfile (’goat.xbm’);
Motif Reference Manual 1111

UIL Data Types
object scary : XmLabel {
arguments {

XmNlabelType = XmPIXMAP;
XmNlabelPixmap = goat;

};
};
...

See Also
XmGetPixmapByDepth (2), MrmFetchBitmapLiteral (3),
MrmFetchIconLiteral (3), MrmFetchWidget (3),
MrmFetchWidgetOverride (3), icon (6), pixmap (6).
Motif Reference Manual 1112

tion 7,

argu-

on to

turn
pe,
-
-

this
of

e

d

ut
Section 7 - UIL Functions

This page describes the format and contents of each reference page in Sec
which covers the User Interface Language (UIL) functions.

Name
Function – a brief description of the function.

Synopsis

This section shows the signature of the function: the names and types of the
ments, and the type of the return value. The header file<uil/UilDef.h> declares
both of the public UIL functions.

Inputs
This subsection describes each of the function arguments that pass informati
the function.

Outputs
This subsection describes any of the function arguments that are used to re
information from the function. These arguments are always of some pointer ty
so you should use the C address-of operator (&) to pass the address of the varia
ble in which the function will store the return value. The names of these argu
ments are sometimes suffixed with_return to indicate that values are returned in
them. Some arguments both supply and return a value; they will be listed in
section and in the "Inputs" section above. Finally, note that because the list
function arguments is broken into "Input" and "Output" sections, they do not
always appear in the same order that they are passed to the function. See th
function signature for the actual calling order.

Returns
This subsection explains the return value of the function, if any.

Description
This section explains what the function does and describes its arguments an
return value. If you’ve used the function before and are just looking for a
refresher, this section and the synopsis above should be all you need.

Usage
This section appears for most functions and provides less formal information
about the function: when and how you might want to use it, things to watch o
for, and related functions that you might want to consider.

Example
This section provides an example of the use of the function.
Motif Reference Manual 1113

UIL Functions

efs,

tion.

e
ook
Structures
This section shows the definition of any structures, enumerated types, typed
or symbolic constants used by the function.

Procedures
This section shows the syntax of any prototype procedures used by the func

See Also
This section refers you to related functions, clients, and UIL data types. Th
numbers in parentheses following each reference refer to the sections of this b
in which they are found.
1114 Motif Reference Manual

UIL Functions Uil

g
r.

g

.

-

ing

n in
s.

e

Name
Uil – call the UIL compiler from an application.

Synopsis

#include <uil/UilDef.h>

Uil_status_type Uil (Uil_command_type *command_desc,
Uil_compile_desc_type *compile_desc,
Uil_continue_type (*message_cb)(),
char *message_data,
Uil_continue_type (*status_cb)(),
char *status_data)

Inputs
command_desc Specifies a structure containing the compilation options.
message_cb Specifies a callback function that is called when error, warnin

and informational messages are generated by the compile
message_data Specifies data that is passed to the message_cb function.
status_cb Specifies a callback function that is called periodically durin

the compilation to indicate progress.
status_data Specifies data that is passed to the status_cb function.

Outputs
compile_desc Returns a structure containing the results of the compilation

Returns
Uil_k_success_status on success and if no problems are detected,
Uil_k_info_status on success and if informational messages are generated,
Uil_k_warning_status on success and if warning messages are generated,
Uil_k_error_status on failure and if error messages are generated, and
Uil_k_severe_status on failure and if the compilation stopped prematurely.

Description
Uil () invokes the UIL compiler from within an application. Options for the com
piler, including the input, output and listing files, are provided in the
command_descargument. The calling application can supply a message handl
function inmessage_cb that displays compiler messages in an application-
defined manner. The application can also supply a status-monitoring functio
status_cb. This function is called periodically by the compiler to report progres
Upon completion, theUil () function fills in thecompile_desc structure with
information about the compilation and returns the status of the compilation.

Usage
An application that callsUil () is responsible for allocating thecommand_desc
andcompile_desc arguments. The application must initialize all members of th
Motif Reference Manual 1115

Uil UIL Functions

ges

ages

pi-
s

the

E
ain
command_desc structure. Members of thecompile_desc structure are set by the
compiler. If theparse_tree_flag in command_desc is set, the compiler returns a
pointer to the root of the parse tree in theparse_tree_root field of the
compile_desc. This parse table cannot be freed by the calling application.
Therefore, you should not set theparse_tree_flagunless you plan to use the parse
tree. To limit memory consumption, if you set theparse_tree_flag, invoke the
Uil () routine once and exit soon thereafter.

An application can specify a function for handling compiler generated messa
in themessage_cb argument. You can specify NULL for this argument if you
want to use the default message handling routine. This routine prints all mess
to stderr. If you specify a function, the value ofmessage_datais passed to each
invocation of the function.

An application can also specify a function for monitoring the status of the com
lation in thestatus_cbargument. You can specify NULL to indicate that no statu
function should be called. If you specify a function, the value ofstatus_data is
passed to each invocation of the function. In addition to monitoring progress,
function can also be used to process X events in an X application.

TheUil () function installs signal handlers for SIGBUS, SIGSYS, and SIGFP
with no regard for application installed handlers. These installed handlers rem
set after the function returns, so you may wish to change them.

Applications that call theUil () function must be linked with the UIL library,
libUil.a, in addition to the Mrm, Motif, Xt, and X libraries.

Structures
TheUil_command_type is defined as follows:

typedef struct {
char *source_file; /*name of UIL source file */
char *resource_file; /*name of UID output file */
char *listing_file; /* name of listing file */
unsigned int include_dir_count; /*length of include_dir array*/
char **include_dir; /*array of include file directories*/
unsigned int listing_file_flag : 1; /*write listing file flag */
unsigned int resource_file_flag : 1; /*write UID file flag */
unsigned int machine_code_flag : 1; /*write machine code flag */
unsigned int report_info_msg_flag : 1; /*report informational mes-
sages */
unsigned int report_warn_msg_flag : 1; /*report warning messages */
unsigned int parse_tree_flag : 1; /*generate parse tree flag */
unsigned int issue_summary : 1; /*write diagnostic summary flag*/
unsigned int status_update_delay; /*delay between status_cb calls*/
1116 Motif Reference Manual

UIL Functions Uil

D

-
vely.

e

e

at

/

rated
char *database; /*WML database filename */
unsigned int database_flag : 1; /*read WML database flag */
unsigned int use_setlocale_flag : 1; /*parse strings in locale flag */

} Uil_command_type;

Uil_command_type describes the compilation options for theUil () routine.
source_file is the name of the UIL module to compile.resource_file is the name
of the UID file that is output ifresource_file_flagis set.listing_fileis the name of
the compilation listing file that is output iflisting_file_flag is set. Setting
machine_code_flagcauses the compiler to output a binary description of the UI
file when a listing is generated.

include_dir specifies an array ofinclude_dir_count directory names that the
compiler searches for UIL include files. If set,report_info_msg_flag,
report_warn_msg_flag, andissue_summarycause the compiler to generate infor
mational messages, warning messages, and a summary message, respecti

If parse_tree_flag is set, it instructs the compiler to return a pointer to the pars
tree of the module in thecompile_desc structure.status_update_delay specifies
how many status check points must be passed before thestatus_cb callback is
called. If the field is set to zero, the function is called at every check point.

use_setlocale_flagdirects the UIL compiler to parse double-quoted strings in th
current locale. (See the UIL string type man page for more information.)data-
basespecifies the name of a Widget Meta-Language (WML) description file th
the compiler loads ifdatabase_flag is set.

TheUil_compile_desc_type is defined as follows:

typedef struct _Uil_comp_desc {
unsigned int compiler_version; /* UIL compiler version */
unsigned int data_version; /* UIL structures version */
char *parse_tree_root; /* parse tree for module */
unsigned int message_count[]; /* status messages counts *

} Uil_compile_desc_type;

Uil_compile_desc_type describes the return data for theUil () routine.
compiler_version specifies the version of the UIL compiler, whiledata_version
specifies the version of the structures used by the compiler. Ifparse_tree_flag is
set in thecommand_desc argument,parse_tree_root contains a pointer to a com-
piler-generated parse tree if the compilation succeeds.message_countis an array
of integers that contains the number of each type of compiler message gene
by the routine. Valid indices to the array are Uil_k_info_status,
Uil_k_warning_status, Uil_k_error_status, and Uil_k_severe_status.
Motif Reference Manual 1117

Uil UIL Functions

IL

the

and
g is

t of
ila-

ine

f
y are

-

Procedures
A message_cb function has the following syntax:

Uil_continue_type *message_cb (char *message_data,
int message_number,
int severity,
char *message_string,
char *source_text,
char *column_string,
char *location_string,
int message_count[])

A message_cbfunction takes eight arguments. The first argument,message_data,
is the value of themessage_data argument passed to theUil () function.
message_number is the internal index of the message, which is used by the U
compiler.severity specifies the severity of the message, which is one of
Uil_k_info_status, Uil_k_warning_status, Uil_k_error_status, or
Uil_k_severe_status.

message_string is a string describing the problem.source_text is a copy of the
source line to which the message refers, with a tab character prepended. If
source line is not available,source_text is the empty string.column_string is a
string that consists of a leading tab character followed by zero or more spaces
an * (asterisk) in the same column as the problem in the source line. This strin
suitable for printing beneathmessage_string to indicate the location of the prob-
lem. If the column that contains the error or the source line is not available,
column_string is the empty string.

location_stringdescribes the location where the problem occurred. The forma
this string is "\t\t line: %d file: %s" if both source and column number are ava
ble, or if no column number is available. If the column number, but no source l
is available, the format is "\t\t line: %d position: %d file: %s". If the location is
unavailable, the value oflocation_string is the empty string. If an application
does not specify amessage_cb routine, the compiler printssource_text,
column_string, message_string, andlocation_string in that order.

message_count is an array of integers that contains the number of each type o
compiler message generated by the routine so far. Valid indices to the arra
Uil_k_info_status, Uil_k_warning_status, Uil_k_error_status, and
Uil_k_severe_status.

A message_cbfunction should return Uil_k_continue if the compilation can con
tinue or Uil_k_terminate if the compilation should be terminated.
1118 Motif Reference Manual

UIL Functions Uil

hat
for

ly

put

f
y are
A status_cb function has the following format:

Uil_continue_type *status_cb (char *status_data,
int percent_complete,
int lines_processed,
char *current_file,
int message_count[])

A status_cbfunction takes five parameters. The first argument,status_data, is the
value of thestatus_data argument passed to theUil () function.
percent_complete specifies an estimate of the percentage of the compilation t
has been completed. The value of this field falls within a fixed range of values
each step of the compilation. The value ranges from 0 to 50 whilesource_file is
being parsed, from 60 to 80 while theresource_fileis written, and from 80 to 100
while thelisting_file is generated. Some versions of the UIL compiler may on
report percent-complete values on the boundaries of these ranges.
lines_processed indicates the number of lines that have been read from the in
file.

When the UIL compiler is invoked, it parses thesource_file, writes the
resource_file, and then generates thelisting_file, based on the settings of the
command_descargument. Thecurrent_filefield changes to reflect the file that the
compiler is accessing.

message_count is an array of integers that contains the number of each type o
compiler message generated by the routine so far. Valid indices to the arra
Uil_k_info_status, Uil_k_warning_status, Uil_k_error_status, and
Uil_k_severe_status.

A status_cb function should return Uil_k_continue if the compilation can con-
tinue or Uil_k_terminate if the compilation should be terminated.

The frequency with which the compiler calls thestatus_cb function at check
points is based on the value ofstatus_update_delay field incommand_desc. A
check point occurs every time a symbol is found during the parsing of
source_file, every time an element is written to theresource_file, and every time a
line is written to thelisting_file.

Example
The following routines illustrate the use of theUil () routine in a very basic way:

#include <uil/UilDef.h>
#include <stdio.h>

static char *last_current_file;
static char *status_string_list[Uil_k_max_status] = { NULL };
Motif Reference Manual 1119

Uil UIL Functions

)

Uil_continue_type message_cb (char *message_data,
int message_number,
int severity,
char *message_string,
char *line_text,
char *error_col_string,
char *line_and_file_string,
int *message_count)

{
if (*line_text != ’ ’)

puts (line_text);
if (*error_col_string != ’ ’)

puts (error_col_string);
if (*message_string != ’ ’)

printf ("%s: %s\n", status_string_list[severity], message_string);
if (*line_and_file_string != ’ ’)

puts (line_and_file_string);

return (Uil_k_continue);
}

Uil_continue_type status_cb (char *status_data,
int percent_complete,
int lines_processed,
char *current_file,
int *message_count)

{
if (last_current_file == NULL || strcmp (last_current_file, current_file) != 0
{

fprintf (stderr, "Working on file %s...\n", current_file);
last_current_file = current_file;

}

return (Uil_k_continue);
}

Uil_compile_desc_type * compile (char *filename)
{

Uil_command_type command_desc;
static Uil_compile_desc_type compile_desc;
Uil_status_type status;

if (status_string_list[Uil_k_success_status] == NULL) {
status_string_list[Uil_k_success_status] = "Success";
1120 Motif Reference Manual

UIL Functions Uil
status_string_list[Uil_k_info_status] = "Informational";
status_string_list[Uil_k_warning_status] = "Warning";
status_string_list[Uil_k_error_status] = "Error";
status_string_list[Uil_k_severe_status] = "Severe Error";

}
command_desc.source_file = filename;
command_desc.resource_file = "a.uid";
command_desc.listing_file = "uil.lst";
command_desc.include_dir_count = 0;
command_desc.include_dir = NULL;
command_desc.listing_file_flag = TRUE;
command_desc.resource_file_flag = TRUE;
command_desc.machine_code_flag = FALSE;
command_desc.report_info_msg_flag = TRUE;
command_desc.report_warn_msg_flag = TRUE;
command_desc.parse_tree_flag = FALSE;
command_desc.issue_summary = TRUE;
command_desc.status_update_delay = 0;
command_desc.database = NULL;
command_desc.database_flag = FALSE;
command_desc.use_setlocale_flag = FALSE;

last_current_file = NULL;

status = Uil (&command_desc, &compile_desc, message_cb, NULL,
status_cb, NULL);

if (status == Uil_k_error_status || status == Uil_k_severe_status)
return (NULL);

return (&compile_desc);
}

int main (int argc, char **argv)
{

Uil_compile_desc_type *compile_desc;

if (argc != 2) {
printf ("usage: Uil filename\n");
exit (1);

}

compile_desc = compile (argv[1]);

if (compile_desc != NULL)
fprintf (stderr, "Compilation Successful.\n");
Motif Reference Manual 1121

Uil UIL Functions
else
fprintf (stderr, "Compilation Failed.\n");

}

See Also
uil (4), string (6), UilDumpSymbolTable (7).
1122 Motif Reference Manual

UIL Functions UilDumpSymbolTable

-

la-
e

f
ite

le
Name
UilDumpSymbolTable – produce a listing of a UIL symbol table.

Synopsis

#include <uil/UilDef.h>

void UilDumpSymbolTable (sym_entry_type *parse_tree_root)

Inputs
parse_tree_root Specifies a pointer to the root entry of a symbol table.

Description
UilDumpSymbolTable () prints a listing of the symbols parsed in a UIL mod
ule to stdout. A parse tree is generated by a call toUil (). If the parse_tree_flag
of theUil_command_type structure passed to the routine is set and the compi
tion is successful, theUil () routine returns a pointer to the root of the parse tre
in theparse_tree_root member of theUil_compile_desc_type structure. If the
compilation is unsuccessful, theparse_tree_root field is set to NULL.

Usage
UilDumpSymbolTable () generates a listing of the internal representation o
UIL structures and symbols, which is really only useful for people who are qu
familiar with the internals of the UIL compiler. The -m option of theuil com-
mand, or themachine_code_flag option of theUil () routine, generates far more
useful information for most users of UIL.

Instead of callingUilDumpSymbolTable (), an application can examine the
parse tree directly. The structures used in the parse tree are defined in the fi
<uil/UilSymDef.h> and definitions of constants used in the structures are in <uil/
UilDBDef.h>. Both of these files are included by <uil/UilDef.h>.

The parse table generated by theUil () routine cannot be freed by the calling
application. Therefore, you should not set theparse_tree_flag unless you plan to
use the parse tree. To limit memory consumption, if you set theparse_tree_flag,
invoke theUil () routine once and exit soon thereafter.

See Also
uil (4).
Uil (7).
Motif Reference Manual 1123

UIL Functions
Motif Reference Manual 1124

m

But-

ut-

er-

ard

rd

at
Appendix A - Function Summaries

This quick reference is intended to help you find and use the right function for a

particular task. It organises the Section 1 and Section 3 reference pages into two lists:

• List of functions and macros by groups.
• Alphabetical list of functions and macros

The first column indicates which section to find the routines in; the required Section is

given in brackets after the function name.

A.1 Group Listing with Brief Descriptions

Atoms
XmGetAtomName(1) Get the string representation of an Ato
XmInternAtom(1) Return an Atom for a given property

name string

CascadeButton
XmCascadeButtonGadgetHighlight(1) Set the highlight state of a Cascade

tonGadget
XmCascadeButtonHighlight(1) Set the highlight state of a CascadeB

ton

Clipboard
XmClipboardBeginCopy(1) Set up storage for a clipboard copy op

ation
XmClipboardCancelCopy(1) Cancel a copy operation to the clipbo
XmClipboardCopy(1) Copy a data item to temporary storage

for later copying to the clipboard
XmClipboardCopyByName(1) Copy as data item passed by name
XmClipboardEndCopy(1) End a copy operation to the clipboard
XmClipboardEndRetrieve(1) End a copy operation from the clipboa
XmClipboardInquireCount(1) Get the number of data item formats

available on the clipboard
XmClipboardInquireFormat(1) Get the specified clipboard data form

name
XmClipboardInquireLength(1) Get the length of the data item on the

clipboard
Motif Reference Manual 1125

Appendix A: Function Summaries

D

ata

d
er-

p-

ult

w

ult

n

a

-

nd
XmClipboardInquirePendingItems(1) Get a list of pending data ID/private I
pairs

XmClipboardLock(1) Lock the clipboard
XmClopboardRegisterFormat(1) Register a new format for clipboard d

items
XmClipboardRetrieve(1) Retrieve a data item from the clipboar
XmClipboardStartCopy(1) Set up storage for a clipboard copy op

ation
XmClipboardStartRetrieve(1) Start a clipboard retrieval operation
XmClipboardUndoCopy(1) Remove the last item copied to the cli

board
XmClipboardUnlock(1) Unlock the clipboard
XmClipboardWithdrawFormat(1) Indicate that an application does not

want to supply a data item any longer

Colors
XmChangeColor(1) Update the colors of a widget
XmGetColorCalculation(1) Get the procedure that calculates defa

widget colors
XmGetColors(1) Get the foreground, select, and shado

colors for a widget
XmSetColorCalculation(1) Set the procedure that calculates defa

widget colors

ComboBox
XmComboBoxAddItem(1) Add a compound string to the Com-

boBox List
XmComboBoxDeletePos(1) Delete an item at the specified positio

from a ComboBox List
XmComboBoxSelectItem(1) Select an item from a ComboBox List
XmComboBoxSetItem(1) Select and make visible an item from

ComboBox List
XmComboBoxUpdate(1) Update the ComboBox List after

changes to component widgets

Command
XmCommandAppendValue(1) Append a compound string to a Com

mand widget
XmCommandError(1) Display an error message in a Comma

widget
1126 Motif Reference Manual

Appendix A: Function Summaries

 to

at

for-

nd

t

d
,

ent

nt

 a
XmCommandGetChild(1) Get the specified child of a Command
widget

XmCommandSetValue(1) Replace the Command string

Compound Strings
XmCvtByteStreamToXmString() Convert a byte stream to a compound

string
XmCvtCTToXmString(1) Convert compound text to a compound

string
XmCvtTextPropertyToXmStringTable(1) Convert an XTextProperty to a

compound string table
XmCvtXmStringTableToTextProperty(1) Convert a compound string table

an XTextProperty
XmCvtXmStringToByteStream(1) Convert a compound string to byte

stream format
XmCvtXmStringToCT(1) Convert a compound string to com-

pound text
XmMapSegmentEncoding(1) Get the compound text encoding form

for a font list element tag
XmRegisterSegmentEncoding(1) Register a compound text encoding

mat for a font list element tag
XmStringBaseline(1) Get the baseline spacing for a compou

string
XmStringByteCompare(1) Compare two compound strings byte-

by-byte
XmStringByteStreamLength(1) Calculate the length of a byte stream
XmStringCompare(1) Compare two compound strings
XmStringComponentCreate(1) Create a compound string componen
XmStringConcat(1) Concatenate two compound strings
XmStringConcatAndFree(1) Create a new compound string forme

by concatenating two compound strings
freeing the two strings afterwards

XmStringCopy(1) Copy a compound string
XmStringCreate(1) Create a compound string
XmStringCreateLocalized(1) Create a compound string in the curr

locale
XmStringCreateLtoR(1) Create a compound string
XmStringCreateSimple(1) Create a compound string in the curre

language environment
XmStringDirectionCreate(1) Create a compound string containing

direction component
Motif Reference Manual 1127

Appendix A: Function Summaries

n

r-

d

g

g

-

d

d

nd
XmStringDirectionToDirection(1) Convert a string direction to a directio
XmStringDraw(1) Draw a compound string
XmStringDrawImage(1) Draw a compound string
XmStringDrawUnderline(1) Draw a compound string with an unde

lined sub-string
XmStringEmpty(1) Determine whether there are any text

components in a compound string
XmStringExtent(1) Get the smallest rectangle enclosing a

compound string
XmStringFree(1) Free the memory used by a compoun

string
XmStringFreeContext(1) Free a compound string context
XmStringGenerate(1) Generate a compound string
XmStringGetLtoR(1) Get a text segment from a compound

string
XmStringGetNextComponent(1) Retrieves information about the next

compound string component
XmStringGetNextSegment(1) Retrieves information about the next

compound string component
XmStringGetNextTriple(1) Retrieve information about the next

compound string segment
XmStringHasSubstring(1) Determine whether a compound strin

contains a sub-string
XmStringHeight(1) Get the line height of a compound strin
XmStringInitContext(1) Create a compound string context
XmStringIsVoid(1) Determine whether there are valid seg

ments in a compound string
XmStringLength(1) Get the length of a compound string
XmStringLineCount(1) Get the number of lines in a compoun

string
XmStringNConcat(1) Concatenate a specified portion of a

compound string to another compound
string

XmStringNCopy(1) Copy a specified portion of a compoun
string

XmStringParseText(1) Convert a string to a compound string
XmStringPeekNextComponent(1) Returns the type of the next compou

string component
XmStringPutRendition(1) Add rendition components to a com-

pound string
XmStringSegmentCreate(1) Create a compound string segment
1128 Motif Reference Manual

Appendix A: Function Summaries

 a

-

ng

o

-

n
n

XmStringSeparatorCreate(1) Create a compound string containing
separator component

XmStringTableParseStringArray(1) Convert an array of strings into a com
pound string table

XmStringTableProposeTabList(1) Create a Tab list for a compound stri
XmStringTableToXmString(1) Convert a compound string table to a

compound string
XmStringTableUnparse(1) Convert a compound string table to a

string
XmStringToXmStringTable(1) Convert a compound string to a com-

pound string table
XmStringUnparse(1) Convert a compound string to a string
XmStringWidth(1) Return the width of a compound string

Container
XmContainerCopy(1) Copy the Container primary selection t

the clipboard
XmContainerCopyLink(1) Copy links to the Container primary

selection into the clipboard
XmContainerCut(1) Cuts the Container primary selection

onto the clipboard
XmContainerGetItemChild(1) Find the children of a Container item
XmContainerPaste(1) Pastes the clipboard selection into a

Container
XmContainerPasteLink(1) Copies links from the clipboard selec

tion into a Container
XmContainerRelayout(1) Force relayout of a Container widget
XmContainerReorder(1) Reorder children of a Container

Cursors
XmGetMenuCursor(1) Get the current menu cursor
XmSetMenuCursor(1) Set the current menu cursor

Direction
XmDirectionMatch(1) Compare two directions
XmDirectionMatchPartial(1) Partially compare two directions
XmDirectionToStringDirection(1) Convert a direction to a string directio
XmStringDirectionToDirection(1) Convert a string direction to a directio
Motif Reference Manual 1129

Appendix A: Function Summaries

 site

p

er-

p

n-
Display
XmGetXmDisplay(1) Get the XmDisplay object for the Dis-

play
XmUpdateDisplay(1) Update the display

Drag and Drop
XmDragCancel(1) Cancel a drag operation
XmDragStart(1) Start a drag operation
XmDropSiteConfigureStackingOrder(1)Change the stacking order of a drop
XmDropSideEndUpdate(1) End an update of multiple drop site

operations
XmDropSiteQueryStackingOrder(1) Get the stacking order of a drop site
XmDropSiteRegister(1) Register a widget as a drop site
XmDropSiteRetrieve(1) Get the resource values of a drop site
XmDropSiteStartUpdate(1) Start an update of multiple drop site

operations
XmDropSiteUnregister(1) Remove a drop site
XmDropSiteUpdate(1) Change the resource values for a dro

site
XmDropTransferAdd(1) Add drop transfer entries to a drop op

ation
XmDropTransferStart(1) Start a drop operation
XmGetDragContext(1) Get information about a drag-and-dro

operation
XmTargetsAreCompatible(1) Determine whether or not the target

types of a drag source and a drop site
match

FileSelectionBox
XmFileSelectionBoxGetChild(1) Get a specified child of a FileSelectio

Box widget
XmFileSelectionDoSearch(1) Start a directory search

Font Lists
XmFontListAdd(1) Create a new font list
XmFontListAppendEntry(1) Append a font entry to a font list
XmFontListCopy(1) Copy a font list
XmFontListCreate(1) Create a new font list
XmFontListCreate_r(1) Create a new font list in a thread-safe

manner
1130 Motif Reference Manual

Appendix A: Function Summaries

d-

t

n

t

t

t

g

n

rd

t

XmFontListEntryCreate(1) Create a new font list entry
XmFontListEntryCreate_r(1) Create a new font list entry in a threa

safe manner
XmFontListEntryFree(1) Free the memory used by a font list

entry
XmFontListEntryGetFont(1) Get the font information from a font lis

entry
XmFontListEntryGetTag(1) Get the tag of a font list entry
XmFontListEntryLoad(1) Load a font or create a font set, and the

create a font list entry
XmFontListFree(1) Free the memory used by a font list
XmFontListFreeFontContext(1) Free a font context
XmFontListGetNextFont(1) Retrieve information about the next fon

list element
XmFontListInitFontContext(1) Create a font context
XmFontListNextEntry(1) Retrieve the next font list entry in a fon

list
XmFontListRemoveEntry(1) Remove a font list entry from a font lis
XmSetFontUnit(1) Set the font unit values
XmSetFontUnits(1) Set the font unit values

Keyboard Handling
XmTranslateKey(1) Convert a KeyCode to a KeySym usin

the default translator

Keyboard Traversal
XmAddTabGroup(1) Add a widget to a tab group list
XmGetDestination(1) Get the current destination widget
XmGetFocusWidget(1) Get the widget that has the keyboard

focus
XmGetTabGroup(1) Get the tab group for a widget
XmGetVisibility(1) Determine whether or not a widget is

visible
XmIsTraversable(1) Determine whether or not a widget ca

receive the keyboard focus
XmProcessTraversal(1) Set the widget which has the keyboa

focus
XmRemoveTabGroup(1) Remove a widget from a tab group lis
Motif Reference Manual 1131

Appendix A: Function Summaries

t

t

g

si-

m

n

Input Methods
XmImCloseXIM(1) Close all input contexts associated with

the input method
XmImFreeXIC(1) Free an input context
XmImGetXIC(1) Create an input context for a widget
XmImGetXIM(1) Retrieve the input method for a widget
XmImMbLookupString(1) Retrieve a compound string from an

input method
XmImMbResetIC(1) Reset an input context
XmImRegister(1) Register an input context for a widget
XmImSetFocusValues(1) Set the values and focus for an input

context
XmImSetValues(1) Set the values for an input context
XmImSetXIC(1) Register a widget with an existing inpu

context
XmImUnregister(1) Unregister the input context for a widge
XmImUnsetFocus(1) Unset focus for an input context
XmImVaSetFocusValues(1) Set the values and focus for an input

context
XmImVaSetValues(1) Set the values for an input context

List
XmListAddItem(1) Add an item to a List
XmListAddItems(1) Add items to a List
XmListAddItemUnselected(1) Add an item to a List, without selectin

the item
XmListAddItemsUnselected(1) Add items to a List, without selecting

the items
XmListDeleteAllItems(1) Delete all of the items from a List
XmListDeleteItem(1) Delete an item from a List
XmListDeleteItems(1) Delete items from a List
XmListDeleteItemsPos(1) Delete items starting at a specified po

tion from a List
XmListDeletePos(1) Delete an item at a specified position

from a List
XmListDeletePositions(1) Delete items at specified positions fro

a List
XmListDeselectAllItems(1) Deselect all items in a List
XmListDeselectPos(1) Deselect an item at a specified positio

in a List
1132 Motif Reference Manual

Appendix A: Function Summaries

e

t
t

i-

t

n a

in a

ns

in

n

in

List
i-
XmListGetKbdItemPos(1) Get the position of the item that has th
location cursor in a List

XmListGetMatchPos(1) Get all occurrences of an item in a Lis
XmListItemExists(1) Determine if a specified item is in a Lis
XmListItemPos(1) Determine the position of an item in a

List
XmListPosSelected(1) Check if the item at the specified pos

tion in the List is selected
XmListPosToBounds(1) Return the bounding box of the item a

the specified position in a List
XmListReplaceItems(1) Replace specified items in a List
XmListReplaceItemsPos(1) Replace items at specified positions i

List
XmListReplaceItemsPosUnselected(1) Replace items at specified positions

List, without selecting the replacement
items

XmListReplaceItemsUnselected(1) Replace items in the List, without
selecting the replacement items

XmListReplacePositions(1) Replace items at the specified positio
in a List

XmListSelectedPos(1) Get the positions of the selected items
a List

XmListSelectItem(1) Select a specified item in a List
XmListSelectPos(1) Select the item at the specified positio

in a List
XmListSetAddMode(1) Set add mode in a List
XmListSetBottomItem(1) Set the last visible item in a List
XmListSetBottomPos(1) Set the last visible position in a List
XmListSetHorizPos(1) Set the horizontal position of a List
XmListSetItem(1) Set the first visible item in a List
XmListSetKbdItemPos(1) Set the position of the location cursor

a List
XmListSetPos(1) Set the first visible position in a List
XmListUpdateSelectedList(1) Update the set of selected items in a
XmListYToPos(1) Get the position of the item at the spec

fied y-coordinate in a List

MainWindow
XmMainWindowSep1(1) Get the widget ID of the first MainWin-

dow Separator
Motif Reference Manual 1133

Appendix A: Function Summaries

-

nu

ge-

ed

ed

ed
n

XmMainWindowSep2(1) Get the widget ID of the second Main-
Window Separator

XmMainWindowSep3(1) Get the widget ID of the third MainWin
dow Separator

XmMainWindowSetAreas(1) Specify the children for a MainWindow

Menus
XmGetPostedFromWidget(1) Get the widget that posted a menu
XmGetTearOffControl(1) Get the tear-off control for a Menu
XmMenuPosition(1) Position a popup menu
XmOptionButtonGadget(1) Get the CascadeButtonGadget in an

OptionMenu
XmOptionLabelGadget(1) Get the LabelGadget in an OptionMe
XmRemoveFromPostFromList(1) Make a menu inaccessible from a

widget

MessageBox
XmMessageBoxGetChild(1) Retrieve a specified child of a Messa

Box widget

Mrm Functions
MrmCloseHierarchy(3) Close an Mrm hierarchy
MrmFetchBitmapLiteral(3) Retrieve an exported bitmap from an

Mrm hierarchy
MrmFetchColorLiteral(3) Retrieve an exported color value from

an Mrm hierarchy
MrmFetchIconLiteral(3) Retrieve an exported icon from an Mrm

hierarchy
MrmFetchLiteral(3) Retrieve an exported value from an Mrm

hierarchy
MrmFetchSetValues(3) Set widget resources to values retriev

from an Mrm hierarchy
MrmFetchWidget(3) Create the widget tree rooted at a nam

widget
MrmFetchWidgetOverride(3) Create the widget tree rooted at a nam

widget, and override the resources set i
the UID file

MrmInitialize(3) Prepare the Mrm library for use
MrmOpenHierarchy(3) Open an Mrm hierarchy
MrmOpenHierarchyFromBuffer(3) Open an Mrm hierarchy
1134 Motif Reference Manual

Appendix A: Function Summaries

 a

nd

nd

ap-

ng

bject
ble

ci-

he
MrmOpenHierarchyPerDisplay(3) Open an Mrm hierarchy
MrmRegisterClass(3) Register a widget creation routine for

non-Motif component
MrmRegisterNames(3) Register application-defined values a

procedures
MrmRegisterNamesInHierarchy(3) Register application-defined values a

procedures for use in a specific UIL
hierarchy

Notebook
XmNotebookGetPageInfo(1) Return information about a Notebook

page

Parse Mapping
XmParseMappingCreate(1) Create a parse mapping
XmParseMappingFree(1) Free the memory used by a parse m

ping
XmParseMappingGetValues(1) Fetch resources from a parse mappi

object
XmParseMappingSetValues(1) Set resources for a parse mapping o
XmParseTableFree(1) Free the memory used by a parse ta

Pixmaps
XmDestroyPixmap(1) Remove a pixmap from the pixmap

cache
XmGetPixmap(1) Create and return a pixmap
XmGetPixmapByDepth(1) Create and return a pixmap of the spe

fied depth
XmGetScaledPixmap(1) Create and return a scaled pixmap
XmInsiallImage(1) Install an image in the image cache
XmUninstallImage(1) Remove an image from the image cac

Print
XmPrintPopupPDM(1) Notify the Print Display Manager
XmPrintSetup(1) Create a PrintShell widget
XmPrintToFile(1) Save X print Server data to file
XmRedisplayWidget(1) Force widget exposure for printing
Motif Reference Manual 1135

Appendix A: Function Summaries

r

-

ol

to-

nto

p-

ble
ren-

ren-

ci-
Protocols
XmActivateProtocol(1) Activate a protocol
XmActivateWMProtocol(1) Activate the XA_WM_PROTOCOLS

protocol
XmAddProtocolCallback(1) Add client callbacks to a protocol
XmAddProtocols(1) Add protocols to the protocol manage
XmAddWMProtocolCallback(1) Add client callbacks to an

XA_WM_PROTOCOLS protocol
XmAddWMProtocols(1) Add the XA_WM_PROTOCOLS proto

col to the protocol manager
XmDeactivateProtocol(1) Deactivate a protocol
XmDeactivateWMProtocol(1) Deactivate the XA_WM_PROTOCOLS

protocol
XmRemoveProtocolCallback(1) Remove client callback from a protoc
XmRemoveProtocols(1) Remove protocols from the protocol

manager
XmRemoveWMProtocolCallback(1) Remove client callbacks from the

XA_WM_PROTOCOLS protocol
XmRemoveWMProtocols(1) Remove the XA_WM_PROTOCOLS

protocol from the protocol manager
XmSetProtocolHooks(1) Set prehooks and posthooks for a pro

col
XmSetWMProtocolHooks(1) Set prehooks and posthooks for the

XA_WM_PROTOCOLS protocol

Render Tables and Renditions
XmRenderTableAddRenditions(1) Add renditions to a render table
XmRenderTableCopy(1) Copy a render table
XmRenderTableCvtFromProp(1) Convert from a string representation i

a render table
XmRenderTableCvtToProp(1) Convert a render table into a string re

resentation
XmRenderTableFree(1) Free the memory used by a render ta
XmRenderTableGetRendition(1) Search a render table for a matching

dition
XmRenderTableGetRenditions(1) Search a render table for a matching

ditions
XmRenderTableGetTags(1) Fetch the list of rendition tags from a

render table
XmRenderTableRemoveRenditions(1) Copy a render table, excluding spe

fied renditions
1136 Motif Reference Manual

Appendix A: Function Summaries

ly

re-

-

ta-

es

ce

t

t

XmRenditionCreate(1) Create a rendition object
XmRenditionFree(1) Free the memory used by a rendition

object
XmRenditionRetrieve(1) Fetch rendition object resources
XmRenditionUpdate(1) Set rendition object resources

Resolution Independence
XmConvertUnits(1) Convert a value to a specified unit type

Resource Conversion
XmConvertStringToUnits(1) Convert a string to an integer, optional

translating the units
XmCvtStringToUnitType(1) Convert a string to a unit-type value
XmRepTypeAddReverse(1) Install the reverse converter for a rep

sentation type
XmRepTypeGetId(1) Get the ID number of a representation

type
XmRepTypeGetNameList(1) Get the list of value names for a repre

sentation type
XmRepTypeGetRecord(1) Get the information about a represen

tion type
XmRepTypeGetRegistered(1) Get the registered representation typ
XmRepTypeInstallTearOffModelConverter(1)

Install the resource converter for
XmNtearOffModel

XmRepTypeRegister(1) Register a representation type resour
XmRepTypeValidValue(1) Determine the validity of a numerical

value for a representation type

Scale
XmScaleGetValue(1) Get the slider value for a Scale widge
XmScaleSetTicks(1) Set tick marks for a Scale widget
XmScaleSetValue(1) Set the slider value for a Scale widge

Screen
XmGetXmScreen(1) Get the XmScreen object for a screen
Motif Reference Manual 1137

Appendix A: Function Summaries

e

x

bs
ci-
ScrollBar
XmScrollBarGetValues(1) Get information about the current stat

of a ScrollBar
XmScrollBarSetValues(1) Set the current state of a ScrollBar

widget

ScrolledWindow
XmScrolledWindowSetAreas(1) Set the children for a ScrolledWindow
XmScrollVisible(1) Make an obscured child of a Scrolled-

Window visible

SelectionBox
XmSelectionBoxGetChild(1) Get the specified child of a Selection-

Box widget

SpinBox
XmSimpleSpinBoxAddItem(1) Add an item to a SimpleSpinBox
XmSimpleSpinBoxDeletePos(1) Delete an item at a specified position

from a SimpleSpinBox
XmSimpleSpinBoxSetItem(1) Set an item in a SimpleSpinBox
XmSpinBoxValidatePosition(1) Validate the current value of a SpinBo

Tab Lists
XmTabCreate(1) Create a tab (XmTab) object
XmTabFree(1) Free the memory used by an XmTab

object
XmTabGetValues(1) Fetch the value of an XmTab object

XmTabListCopy(1)1 Copy a tab list object
XmTabListFree(1) Free the memory used by a tab list
XmTabListGetTab(1) Retrieve a tab from a tab list
XmTabListInsertTabs(1) Insert tabs into a tab list
XmTabListRemoveTabs(1) Copy a tab list, excluding specified ta
XmTabListReplacePositions(1) Copy a tab list, replacing tabs at spe

fied positions
XmTabListTabCount(1) Count the number of tabs in a tab list
XmTabSetValue(1) Set the value of a tab object

1.Erroneously given as XmTabListTabCopy() in 2nd edition
1138 Motif Reference Manual

Appendix A: Function Summaries

r

r

ion
ri-

er

r-

n

Text
XmTextClearSelection(1) Clear the primary selection
XmTextCopy(1) Copy the primary selection to the clip-

board
XmTextCopyLink(1) Copy links from the primary selection to

the clipboard
XmTextCut(1) Copy the primary selection to the clip-

board, and remove the selected text
XmTextDisableRedisplay(1) Prevent visual update
XmTextEnableRedisplay(1) Allow visual update
XmTextFindString(1) Find the beginning position of a text

string
XmTextFindStringWcs(1) Find the beginning position of a wide-

character text string
XmTextGetBaseline(1) Get the position of the baseline
XmTextGetCenterline(1) Get the height of vertical text
XmTextGetCursorPosition(1) Get the position of the location curso
XmTextGetEditable(1) Get the edit permission state
XmTextGetInsertionPosition(1) Get the position of the insertion curso
XmTextGetLastPosition(1) Get the position of the last character
XmTextGetMaxLength(1) Get the maximum possible length of a

text string
XmTextGetSelection(1) Get the value of the primary selection
XmTextGetSelectionPosition(1) Get the position of the primary select
XmTextGetSelectionWcs(1) Get the wide-character value of the p

mary selection
XmTextGetSource(1) Get the text source
XmTextGetString(1) Get the text string
XmTextGetStringWcs(1) Get the wide-character text string
XmTextGetSubstring(1) Get a copy of part of the text string
XmTextGetSubstringWcs(1) Get a copy of part of the wide-charact

text string
XmTextGetTopCharacter(1) Get the position of the first visible cha

acter
XmTextInsert(1) Insert a string into the text string
XmTextInsertWcs(1) Insert a wide-character string into the

text string
XmTextPaste(1) Insert the clipboard selection
XmTextPasteLink(1) Insert links from the clipboard selectio
XmTextPosToXY(1) Get the x, y coordinates of a character

position
Motif Reference Manual 1139

Appendix A: Function Summaries

xt

r

r-

-

,

r

r

tion
XmTextRermove(1) Delete the primary selection
XmTextReplace(1) Replace part of the text string
XmTextReplaceWcs(1) Replace part of the wide-character te

string
XmTextScroll(1) Scroll the text
XmTextSetAddMode(1) Set the add mode state
XmTextSetCursorPosition(1) Set the position of the location cursor
XmTextSetEditable(1) Set the edit permission state
XmTextSetHighlight(1) Highlight part of the text string
XmTextSetInsertionPosition(1) Set the position of the insertion curso
XmTextSetMaxLength(1) Set the maximum possible length of a

text string
XmTextSetSelection(1) Set the value of the primary selection
XmTextSetSource(1) Set the text source
XmTextSetString(1) Set the text string
XmTextSetStringWcs(1) Set the wide-character text string
XmTextSetTopCharacter(1) Set the position of the first visible cha

acter
XmTextShowPosition(1) Scroll the text so that a specified posi

tion is visible
XmTextXYToPos(1) Get the character position for a given x

y coordinate

TextField
XmTextFieldClearSelection(1) Clear the primary selection
XmTextFieldCopy(1) Copy the primary selection to the clip-

board
XmTextFieldCopyLink(1) Copy links from the primary selection to

the clipboard
XmTextFieldCut(1) Copy the primary selection to the clip-

board, and remove the selected text
XmTextFieldGetBaseline(1) Get the position of the baseline
XmTextFieldGetCursorPosition(1) Get the position of the location curso
XmTextFieldGetEditable(1) Get the edit permission state
XmTextFieldGetInsertionPosition(1) Get the position of the insertion curso
XmTextFieldGetLastPosition(1) Get the position of the last character
XmTextFieldGetMaxLength(1) Get the maximum possible length of a

text string
XmTextFieldGetSelection(1) Get the value of the primary selection
XmTextFieldGetSelectionPosition(1) Get the position of the primary selec
1140 Motif Reference Manual

Appendix A: Function Summaries

ri-

ter

ar-

n
r

xt

r

r

-

x,

et
et
et
XmTextFieldGetSelectionWcs(1) Get the wide-character value of the p
mary selection

XmTextFieldGetString(1) Get the text string
XmTextFieldGetStringWcs(1) Get the wide-character text string
XmTextFieldGetSubstring(1) Get a copy of part of the text string
XmTextFieldGetSubstringWcs(1) Get a copy of part of the wide-charac

text string
XmTextFieldGetTopCharacter(1) Get the position of the first visible ch

acter
XmTextFieldInsert(1) Insert a string into the text string
XmTextFieldInsertWcs(1) Insert a wide-character string into the

text string
XmTextFieldPaste(1) Insert the clipboard selection
XmTextFieldPasteLink(1) Insert links from the clipboard selectio
XmTextFieldPosToXY(1) Get the x, y coordinates of a characte

position
XmTextFieldRermove(1) Delete the primary selection
XmTextFieldReplace(1) Replace part of the text string
XmTextFieldReplaceWcs(1) Replace part of the wide-character te

string
XmTextFieldSetAddMode(1) Set the add mode state
XmTextFieldSetCursorPosition(1) Set the position of the location curso
XmTextFieldSetEditable(1) Set the edit permission state
XmTextFieldSetHighlight(1) Highlight part of the text string
XmTextFieldSetInsertionPosition(1) Set the position of the insertion curso
XmTextFieldSetMaxLength(1) Set the maximum possible length of a

text string
XmTextFieldSetSelection(1) Set the value of the primary selection
XmTextFieldSetSource(1) Set the text source
XmTextFieldSetString(1) Set the text string
XmTextFieldSetStringWcs(1) Set the wide-character text string
XmTextFieldShowPosition(1) Scroll the text so that a specified posi

tion is visible
XmTextFieldXYToPos(1) Get the character position for a given

y coordinate

ToggleButton
XmToggleButtonGadgetGetState(1) Get the state of a ToggleButtonGadg
XmToggleButtonGadgetSetState(1) Set the state of a ToggleButtonGadg
XmToggleButtonGadgetSetValue(1) Set the value of a ToggleButtonGadg
XmToggleButtonGetState(1) Get the state of a ToggleButton
Motif Reference Manual 1141

Appendix A: Function Summaries

a-

t

t

ect

 data
d

nd
XmToggleButtonSetState(1) Set the state of a ToggleButton
XmToggleButtonSetValue(1) Set the value of a ToggleButton

Uniform Transfer Model
XmTransferDone(1) Complete a data transfer operation
XmTransferSendRequest(1) Send a multiple transfer request
XmTransferSetParameters(1) Set parameters for the next transfer

operation
XmTransferStartRequest(1) Initiate a multiple transfer batch oper

tion
XmTransferValue(1) Transfer data to a destination

Widget Class
XmIsObject(1) Determine whether a widget is a sub-

class of a given class

Widget Creation
XmCreateObject(1) Create an instance of a particular widge

class or compound object
XmPrintSetup(1) Create a PrintShell widget
XmVaCreateSimpleCheckBox(1) Create a CheckBox compound objec
XmVaCreateSimpleMenuBar(1) Create a MenuBar compound object
XmVaCreateSimpleOptionMenu(1) Create an OptionMenu compound

object
XmVaCreateSimplePopupMenu(1) Create a PopupMenu compound obj

as the child of a MenuShell
XmVaCreateSimplePulldownMenu(1) Create a PulldownMenu compound

object as the child of a MenuShell
XmVaCreateSimpleRadioBox(1) Create a RadioBox compound object

Widget Internals
XmGetSecondaryResourceData(1) Retrieve secondary widget resource
XmResolveAllPartOffset(1) Ensure upward-compatible widgets an

applications
XmResolvePartOffsets(1) Ensure upward-compatible widgets a

applications
1142 Motif Reference Manual

Appendix A: Function Summaries

ed

ed

ed
n

Widget Layout
XmObjectAtPoint(1) Determine the child nearest to a point

coordinate
XmWidgetGetBaselines(1) Get the positions of the baselines in a

widget
XmWidgetGetDisplayRect(1) Get the display rectangle for a widget

Widget Selection
XmTrackingEvent(1) Allow for modal selection of a compo-

nent
XmTrackingLocate(1) Allow for modal selection of a compo-

nent

Window Manager
XmIsMotifWMRunning(1) Check whether the Motif Window Man-

ager (mwm) is running

A.2 Alphabetical Listing
MrmCloseHierarchy(3) Close an Mrm hierarchy
MrmFetchBitmapLiteral(3) Retrieve an exported bitmap from an

Mrm hierarchy
MrmFetchColorLiteral(3) Retrieve an exported color value from

an Mrm hierarchy
MrmFetchIconLiteral(3) Retrieve an exported icon from an Mrm

hierarchy
MrmFetchLiteral(3) Retrieve an exported value from an Mrm

hierarchy
MrmFetchSetValues(3) Set widget resources to values retriev

from an Mrm hierarchy
MrmFetchWidget(3) Create the widget tree rooted at a nam

widget
MrmFetchWidgetOverride(3) Create the widget tree rooted at a nam

widget, and override the resources set i
the UID file

MrmInitialize(3) Prepare the Mrm library for use
MrmOpenHierarchy(3) Open an Mrm hierarchy
MrmOpenHierarchyFromBuffer(3) Open an Mrm hierarchy
MrmOpenHierarchyPerDisplay(3) Open an Mrm hierarchy
Motif Reference Manual 1143

Appendix A: Function Summaries

 a

nd

nd

r

-

ut-

ut-

er-

ard

rd

at

D

d
er-
MrmRegisterClass(3) Register a widget creation routine for
non-Motif component

MrmRegisterNames(3) Register application-defined values a
procedures

MrmRegisterNamesInHierarchy(3) Register application-defined values a
procedures for use in a specific UIL
hierarchy

XmActivateProtocol(1) Activate a protocol
XmActivateWMProtocol(1) Activate the XA_WM_PROTOCOLS

protocol
XmAddProtocolCallback(1) Add client callbacks to a protocol
XmAddProtocols(1) Add protocols to the protocol manage
XmAddTabGroup(1) Add a widget to a tab group list
XmAddWMProtocolCallback(1) Add client callbacks to an

XA_WM_PROTOCOLS protocol
XmAddWMProtocols(1) Add the XA_WM_PROTOCOLS proto

col to the protocol manager
XmCascadeButtonGadgetHighlight(1) Set the highlight state of a CascadeB

tonGadget
XmCascadeButtonHighlight(1) Set the highlight state of a CascadeB

ton
XmChangeColor(1) Update the colors of a widget
XmClipboardBeginCopy(1) Set up storage for a clipboard copy op

ation
XmClipboardCancelCopy(1) Cancel a copy operation to the clipbo
XmClipboardCopy(1) Copy a data item to temporary storage

for later copying to the clipboard
XmClipboardCopyByName(1) Copy as data item passed by name
XmClipboardEndCopy(1) End a copy operation to the clipboard
XmClipboardEndRetrieve(1) End a copy operation from the clipboa
XmClipboardInquireCount(1) Get the number of data item formats

available on the clipboard
XmClipboardInquireFormat(1) Get the specified clipboard data form

name
XmClipboardInquireLength(1) Get the length of the data item on the

clipboard
XmClipboardInquirePendingItems(1) Get a list of pending data ID/private I

pairs
XmClipboardLock(1) Lock the clipboard
XmClipboardRetrieve(1) Retrieve a data item from the clipboar
XmClipboardStartCopy(1) Set up storage for a clipboard copy op

ation
1144 Motif Reference Manual

Appendix A: Function Summaries

p-

ata

n

a

-

nd

o

-

ly

et
XmClipboardStartRetrieve(1) Start a clipboard retrieval operation
XmClipboardUndoCopy(1) Remove the last item copied to the cli

board
XmClipboardUnlock(1) Unlock the clipboard
XmClipboardWithdrawFormat(1) Indicate that an application does not

want to supply a data item any longer
XmClopboardRegisterFormat(1) Register a new format for clipboard d

items
XmComboBoxAddItem(1) Add a compound string to the Com-

boBox List
XmComboBoxDeletePos(1) Delete an item at the specified positio

from a ComboBox List
XmComboBoxSelectItem(1) Select an item from a ComboBox List
XmComboBoxSetItem(1) Select and make visible an item from

ComboBox List
XmComboBoxUpdate(1) Update the ComboBox List after

changes to component widgets
XmCommandAppendValue(1) Append a compound string to a Com

mand widget
XmCommandError(1) Display an error message in a Comma

widget
XmCommandGetChild(1) Get the specified child of a Command

widget
XmCommandSetValue(1) Replace the Command string
XmContainerCopy(1) Copy the Container primary selection t

the clipboard
XmContainerCopyLink(1) Copy links to the Container primary

selection into the clipboard
XmContainerCut(1) Cuts the Container primary selection

onto the clipboard
XmContainerGetItemChild(1) Find the children of a Container item
XmContainerPaste(1) Pastes the clipboard selection into a

Container
XmContainerPasteLink(1) Copies links from the clipboard selec

tion into a Container
XmContainerRelayout(1) Force relayout of a Container widget
XmContainerReorder(1) Reorder children of a Container
XmConvertStringToUnits(1) Convert a string to an integer, optional

translating the units
XmConvertUnits(1) Convert a value to a specified unit type
XmCreateObject(1) Create an instance of a particular widg

class or compound object
Motif Reference Manual 1145

Appendix A: Function Summaries

n

n

 site

p

er-

n-
XmCvtByteStreamToXmString() Convert a byte stream to a compound
string

XmCvtCTToXmString(1) Convert compound text to a compound
string

XmCvtStringToUnitType(1) Convert a string to a unit-type value
XmCvtTextPropertyToXmStringTable(1)Convert an XTextProperty to a com-

pound string table
XmCvtXmStringTableToTextProperty(1)Convert a compound string table to a

XTextProperty
XmCvtXmStringToByteStream(1) Convert a compound string to byte

stream format
XmCvtXmStringToCT(1) Convert a compound string to com-

pound text
XmDeactivateProtocol(1) Deactivate a protocol
XmDeactivateWMProtocol(1) Deactivate the XA_WM_PROTOCOLS

protocol
XmDestroyPixmap(1) Remove a pixmap from the pixmap

cache
XmDirectionMatch(1) Compare two directions
XmDirectionMatchPartial(1) Partially compare two directions
XmDirectionToStringDirection(1) Convert a direction to a string directio
XmDragCancel(1) Cancel a drag operation
XmDragStart(1) Start a drag operation
XmDropSideEndUpdate(1) End an update of multiple drop site

operations
XmDropSiteConfigureStackingOrder(1)Change the stacking order of a drop
XmDropSiteQueryStackingOrder(1) Get the stacking order of a drop site
XmDropSiteRegister(1) Register a widget as a drop site
XmDropSiteRetrieve(1) Get the resource values of a drop site
XmDropSiteStartUpdate(1) Start an update of multiple drop site

operations
XmDropSiteUnregister(1) Remove a drop site
XmDropSiteUpdate(1) Change the resource values for a dro

site
XmDropTransferAdd(1) Add drop transfer entries to a drop op

ation
XmDropTransferStart(1) Start a drop operation
XmFileSelectionBoxGetChild(1) Get a specified child of a FileSelectio

Box widget
XmFileSelectionDoSearch(1) Start a directory search
XmFontListAdd(1) Create a new font list
XmFontListAppendEntry(1) Append a font entry to a font list
1146 Motif Reference Manual

Appendix A: Function Summaries

d-

t

n

t

t

t
m
ult

w

p

ci-

 data
XmFontListCopy(1) Copy a font list
XmFontListCreate(1) Create a new font list
XmFontListCreate_r(1) Create a new font list in a thread-safe

manner
XmFontListEntryCreate(1) Create a new font list entry
XmFontListEntryCreate_r(1) Create a new font list entry in a threa

safe manner
XmFontListEntryFree(1) Free the memory used by a font list

entry
XmFontListEntryGetFont(1) Get the font information from a font lis

entry
XmFontListEntryGetTag(1) Get the tag of a font list entry
XmFontListEntryLoad(1) Load a font or create a font set, and the

create a font list entry
XmFontListFree(1) Free the memory used by a font list
XmFontListFreeFontContext(1) Free a font context
XmFontListGetNextFont(1) Retrieve information about the next fon

list element
XmFontListInitFontContext(1) Create a font context
XmFontListNextEntry(1) Retrieve the next font list entry in a fon

list
XmFontListRemoveEntry(1) Remove a font list entry from a font lis
XmGetAtomName(1) Get the string representation of an Ato
XmGetColorCalculation(1) Get the procedure that calculates defa

widget colors
XmGetColors(1) Get the foreground, select, and shado

colors for a widget
XmGetDestination(1) Get the current destination widget
XmGetDragContext(1) Get information about a drag-and-dro

operation
XmGetFocusWidget(1) Get the widget that has the keyboard

focus
XmGetMenuCursor(1) Get the current menu cursor
XmGetPixmap(1) Create and return a pixmap
XmGetPixmapByDepth(1) Create and return a pixmap of the spe

fied depth
XmGetPostedFromWidget(1) Get the widget that posted a menu
XmGetScaledPixmap(1) Create and return a scaled pixmap
XmGetSecondaryResourceData(1) Retrieve secondary widget resource
XmGetTabGroup(1) Get the tab group for a widget
XmGetTearOffControl(1) Get the tear-off control for a Menu
Motif Reference Manual 1147

Appendix A: Function Summaries

t

t

n

g

XmGetVisibility(1) Determine whether or not a widget is
visible

XmGetXmDisplay(1) Get the XmDisplay object for the Dis-
play

XmGetXmScreen(1) Get the XmScreen object for a screen
XmImCloseXIM(1) Close all input contexts associated with

the input method
XmImFreeXIC(1) Free an input context
XmImGetXIC(1) Create an input context for a widget
XmImGetXIM(1) Retrieve the input method for a widget
XmImMbLookupString(1) Retrieve a compound string from an

input method
XmImMbResetIC(1) Reset an input context
XmImRegister(1) Register an input context for a widget
XmImSetFocusValues(1) Set the values and focus for an input

context
XmImSetValues(1) Set the values for an input context
XmImSetXIC(1) Register a widget with an existing inpu

context
XmImUnregister(1) Unregister the input context for a widge
XmImUnsetFocus(1) Unset focus for an input context
XmImVaSetFocusValues(1) Set the values and focus for an input

context
XmImVaSetValues(1) Set the values for an input context
XmInsiallImage(1) Install an image in the image cache
XmInternAtom(1) Return an Atom for a given property

name string
XmIsMotifWMRunning(1) Check whether the Motif Window Man-

ager (mwm) is run- ning
XmIsObject(1) Determine whether a widget is a sub-

class of a given class
XmIsTraversable(1) Determine whether or not a widget ca

receive the keyboard focus
XmListAddItem(1) Add an item to a List
XmListAddItemUnselected(1) Add an item to a List, without selectin

the item
XmListAddItems(1) Add items to a List
XmListAddItemsUnselected(1) Add items to a List, without selecting

the items
XmListDeleteAllItems(1) Delete all of the items from a List
XmListDeleteItem(1) Delete an item from a List
XmListDeleteItems(1) Delete items from a List
1148 Motif Reference Manual

Appendix A: Function Summaries

si-

m

n

e

t
t

i-

t

n a

in a

ns

n

in

in
XmListDeleteItemsPos(1) Delete items starting at a specified po
tion from a List

XmListDeletePos(1) Delete an item at a specified position
from a List

XmListDeletePositions(1) Delete items at specified positions fro
a List

XmListDeselectAllItems(1) Deselect all items in a List
XmListDeselectPos(1) Deselect an item at a specified positio

in a List
XmListGetKbdItemPos(1) Get the position of the item that has th

location cursor in a List
XmListGetMatchPos(1) Get all occurrences of an item in a Lis
XmListItemExists(1) Determine if a specified item is in a Lis
XmListItemPos(1) Determine the position of an item in a

List
XmListPosSelected(1) Check if the item at the specified pos

tion in the List is selected
XmListPosToBounds(1) Return the bounding box of the item a

the specified position in a List
XmListReplaceItems(1) Replace specified items in a List
XmListReplaceItemsPos(1) Replace items at specified positions i

List
XmListReplaceItemsPosUnselected(1) Replace items at specified positions

List, without selecting the replacement
items

XmListReplaceItemsUnselected(1) Replace items in the List, without
selecting the replacement items

XmListReplacePositions(1) Replace items at the specified positio
in a List

XmListSelectItem(1) Select a specified item in a List
XmListSelectPos(1) Select the item at the specified positio

in a List
XmListSelectedPos(1) Get the positions of the selected items

a List
XmListSetAddMode(1) Set add mode in a List
XmListSetBottomItem(1) Set the last visible item in a List
XmListSetBottomPos(1) Set the last visible position in a List
XmListSetHorizPos(1) Set the horizontal position of a List
XmListSetItem(1) Set the first visible item in a List
XmListSetKbdItemPos(1) Set the position of the location cursor

a List
XmListSetPos(1) Set the first visible position in a List
Motif Reference Manual 1149

Appendix A: Function Summaries

List
i-

-

at

ge-

nu

ap-

ng

bject
ble

rd

for-

ol
XmListUpdateSelectedList(1) Update the set of selected items in a
XmListYToPos(1) Get the position of the item at the spec

fied y-coordinate in a List
XmMainWindowSep1(1) Get the widget ID of the first MainWin-

dow Separator
XmMainWindowSep2(1) Get the widget ID of the second Main-

Window Separator
XmMainWindowSep3(1) Get the widget ID of the third MainWin

dow Separator
XmMainWindowSetAreas(1) Specify the children for a MainWindow
XmMapSegmentEncoding(1) Get the compound text encoding form

for a font list element tag
XmMenuPosition(1) Position a popup menu
XmMessageBoxGetChild(1) Retrieve a specified child of a Messa

Box widget
XmNotebookGetPageInfo(1) Return information about a Notebook

page
XmObjectAtPoint(1) Determine the child nearest to a point

coordinate
XmOptionButtonGadget(1) Get the CascadeButtonGadget in an

OptionMenu
XmOptionLabelGadget(1) Get the LabelGadget in an OptionMe
XmParseMappingCreate(1) Create a parse mapping
XmParseMappingFree(1) Free the memory used by a parse m

ping
XmParseMappingGetValues(1) Fetch resources from a parse mappi

object
XmParseMappingSetValues(1) Set resources for a parse mapping o
XmParseTableFree(1) Free the memory used by a parse ta
XmPrintPopupPDM(1) Notify the Print Display Manager
XmPrintSetup(1) Create a PrintShell widget
XmPrintSetup(1) Create a PrintShell widget
XmPrintToFile(1) Save X print Server data to file
XmProcessTraversal(1) Set the widget which has the keyboa

focus
XmRedisplayWidget(1) Force widget exposure for printing
XmRegisterSegmentEncoding(1) Register a compound text encoding

mat for a font list element tag
XmRemoveFromPostFromList(1) Make a menu inaccessible from a

widget
XmRemoveProtocolCallback(1) Remove client callback from a protoc
1150 Motif Reference Manual

Appendix A: Function Summaries

t

nto

p-

ble
ren-

ren-

ified

re-

-

ta-

es

ce
XmRemoveProtocols(1) Remove protocols from the protocol
manager

XmRemoveTabGroup(1) Remove a widget from a tab group lis
XmRemoveWMProtocolCallback(1) Remove client callbacks from the

XA_WM_PROTOCOLS protocol
XmRemoveWMProtocols(1) Remove the XA_WM_PROTOCOLS

protocol from the protocol manager
XmRenderTableAddRenditions(1) Add renditions to a render table
XmRenderTableCopy(1) Copy a render table
XmRenderTableCvtFromProp(1) Convert from a string representation i

a render table
XmRenderTableCvtToProp(1) Convert a render table into a string re

resentation
XmRenderTableFree(1) Free the memory used by a render ta
XmRenderTableGetRendition(1) Search a render table for a matching

dition
XmRenderTableGetRenditions(1) Search a render table for a matching

ditions
XmRenderTableGetTags(1) Fetch the list of rendition tags from a

render table
XmRenderTableRemoveRenditions(1) Copy a render table, excluding spec

renditions
XmRenditionCreate(1) Create a rendition object
XmRenditionFree(1) Free the memory used by a rendition

object
XmRenditionRetrieve(1) Fetch rendition object resources
XmRenditionUpdate(1) Set rendition object resources
XmRepTypeAddReverse(1) Install the reverse converter for a rep

sentation type
XmRepTypeGetId(1) Get the ID number of a representation

type
XmRepTypeGetNameList(1) Get the list of value names for a repre

sentation type
XmRepTypeGetRecord(1) Get the information about a represen

tion type
XmRepTypeGetRegistered(1) Get the registered representation typ
XmRepTypeInstallTearOffModelConverter(1)

Install the resource converter for
XmNtearOffModel

XmRepTypeRegister(1) Register a representation type resour
XmRepTypeValidValue(1) Determine the validity of a numerical

value for a representation type
Motif Reference Manual 1151

Appendix A: Function Summaries

d

nd

t

t
e

ult

to-

x
nd

t

d
,

XmResolveAllPartOffset(1) Ensure upward-compatible widgets an
applications

XmResolvePartOffsets(1) Ensure upward-compatible widgets a
applications

XmScaleGetValue(1) Get the slider value for a Scale widge
XmScaleSetTicks(1) Set tick marks for a Scale widget
XmScaleSetValue(1) Set the slider value for a Scale widge
XmScrollBarGetValues(1) Get information about the current stat

of a ScrollBar
XmScrollBarSetValues(1) Set the current state of a ScrollBar

widget
XmScrollVisible(1) Make an obscured child of a Scrolled-

Window visible
XmScrolledWindowSetAreas(1) Set the children for a ScrolledWindow
XmSelectionBoxGetChild(1) Get the specified child of a Selection-

Box widget
XmSetColorCalculation(1) Set the procedure that calculates defa

widget colors
XmSetFontUnit(1) Set the font unit values
XmSetFontUnits(1) Set the font unit values
XmSetMenuCursor(1) Set the current menu cursor
XmSetProtocolHooks(1) Set prehooks and posthooks for a pro

col
XmSetWMProtocolHooks(1) Set prehooks and posthooks for the

XA_WM_PROTOCOLS protocol
XmSimpleSpinBoxAddItem(1) Add an item to a SimpleSpinBox
XmSimpleSpinBoxDeletePos(1) Delete an item at a specified position

from a SimpleSpinBox
XmSimpleSpinBoxSetItem(1) Set an item in a SimpleSpinBox
XmSpinBoxValidatePosition(1) Validate the current value of a SpinBo
XmStringBaseline(1) Get the baseline spacing for a compou

string
XmStringByteCompare(1) Compare two compound strings byte-

by-byte
XmStringByteStreamLength(1) Calculate the length of a byte stream
XmStringCompare(1) Compare two compound strings
XmStringComponentCreate(1) Create a compound string componen
XmStringConcat(1) Concatenate two compound strings
XmStringConcatAndFree(1) Create a new compound string forme

by concatenating two compound strings
freeing the two strings afterwards

XmStringCopy(1) Copy a compound string
1152 Motif Reference Manual

Appendix A: Function Summaries

ent

nt

 a

n
n

r-

d

g

g

-

d

XmStringCreate(1) Create a compound string
XmStringCreateLocalized(1) Create a compound string in the curr

locale
XmStringCreateLtoR(1) Create a compound string
XmStringCreateSimple(1) Create a compound string in the curre

language environment
XmStringDirectionCreate(1) Create a compound string containing

direction component
XmStringDirectionToDirection(1) Convert a string direction to a directio
XmStringDirectionToDirection(1) Convert a string direction to a directio
XmStringDraw(1) Draw a compound string
XmStringDrawImage(1) Draw a compound string
XmStringDrawUnderline(1) Draw a compound string with an unde

lined sub-string
XmStringEmpty(1) Determine whether there are any text

components in a compound string
XmStringExtent(1) Get the smallest rectangle enclosing a

compound string
XmStringFree(1) Free the memory used by a compoun

string
XmStringFreeContext(1) Free a compound string context
XmStringGenerate(1) Generate a compound string
XmStringGetLtoR(1) Get a text segment from a compound

string
XmStringGetNextComponent(1) Retrieves information about the next

compound string component
XmStringGetNextSegment(1) Retrieves information about the next

compound string component
XmStringGetNextTriple(1) Retrieve information about the next

compound string segment
XmStringHasSubstring(1) Determine whether a compound strin

contains a sub-string
XmStringHeight(1) Get the line height of a compound strin
XmStringInitContext(1) Create a compound string context
XmStringIsVoid(1) Determine whether there are valid seg

ments in a compound string
XmStringLength(1) Get the length of a compound string
XmStringLineCount(1) Get the number of lines in a compoun

string
XmStringNConcat(1) Concatenate a specified portion of a

compound string to another compound
string
Motif Reference Manual 1153

Appendix A: Function Summaries

d

nd

 a

-

ng

bs
ci-
XmStringNCopy(1) Copy a specified portion of a compoun
string

XmStringParseText(1) Convert a string to a compound string
XmStringPeekNextComponent(1) Returns the type of the next compou

string component
XmStringPutRendition(1) Add rendition components to a com-

pound string
XmStringSegmentCreate(1) Create a compound string segment
XmStringSeparatorCreate(1) Create a compound string containing

separator component
XmStringTableParseStringArray(1) Convert an array of strings into a com

pound string table
XmStringTableProposeTabList(1) Create a Tab list for a compound stri
XmStringTableToXmString(1) Convert a compound string table to a

compound string
XmStringTableUnparse(1) Convert a compound string table to a

string
XmStringToXmStringTable(1) Convert a compound string to a com-

pound string table
XmStringUnparse(1) Convert a compound string to a string
XmStringWidth(1) Return the width of a compound string
XmTabCreate(1) Create a tab (XmTab) object
XmTabFree(1) Free the memory used by an XmTab

object
XmTabGetValues(1) Fetch the value of an XmTab object
XmTabListCopy(1) Copy a tab list object
XmTabListFree(1) Free the memory used by a tab list
XmTabListGetTab(1) Retrieve a tab from a tab list
XmTabListInsertTabs(1) Insert tabs into a tab list
XmTabListRemoveTabs(1) Copy a tab list, excluding specified ta
XmTabListReplacePositions(1) Copy a tab list, replacing tabs at spe

fied positions
XmTabListTabCount(1) Count the number of tabs in a tab list
XmTabSetValue(1) Set the value of a tab object
XmTargetsAreCompatible(1) Determine whether or not the target

types of a drag source and a drop site
match

XmTextClearSelection(1) Clear the primary selection
XmTextCopy(1) Copy the primary selection to the clip-

board
XmTextCopyLink(1) Copy links from the primary selection to

the clipboard
1154 Motif Reference Manual

Appendix A: Function Summaries

r

r

tion
ri-

ter

ar-

n
r

xt

r

XmTextCut(1) Copy the primary selection to the clip-
board, and remove the selected text

XmTextDisableRedisplay(1) Prevent visual update
XmTextEnableRedisplay(1) Allow visual update
XmTextFieldClearSelection(1) Clear the primary selection
XmTextFieldCopy(1) Copy the primary selection to the clip-

board
XmTextFieldCopyLink(1) Copy links from the primary selection to

the clipboard
XmTextFieldCut(1) Copy the primary selection to the clip-

board, and remove the selected text
XmTextFieldGetBaseline(1) Get the position of the baseline
XmTextFieldGetCursorPosition(1) Get the position of the location curso
XmTextFieldGetEditable(1) Get the edit permission state
XmTextFieldGetInsertionPosition(1) Get the position of the insertion curso
XmTextFieldGetLastPosition(1) Get the position of the last character
XmTextFieldGetMaxLength(1) Get the maximum possible length of a

text string
XmTextFieldGetSelection(1) Get the value of the primary selection
XmTextFieldGetSelectionPosition(1) Get the position of the primary selec
XmTextFieldGetSelectionWcs(1) Get the wide-character value of the p

mary selection
XmTextFieldGetString(1) Get the text string
XmTextFieldGetStringWcs(1) Get the wide-character text string
XmTextFieldGetSubstring(1) Get a copy of part of the text string
XmTextFieldGetSubstringWcs(1) Get a copy of part of the wide-charac

text string
XmTextFieldGetTopCharacter(1) Get the position of the first visible ch

acter
XmTextFieldInsert(1) Insert a string into the text string
XmTextFieldInsertWcs(1) Insert a wide-character string into the

text string
XmTextFieldPaste(1) Insert the clipboard selection
XmTextFieldPasteLink(1) Insert links from the clipboard selectio
XmTextFieldPosToXY(1) Get the x, y coordinates of a characte

position
XmTextFieldReplace(1) Replace part of the text string
XmTextFieldReplaceWcs(1) Replace part of the wide-character te

string
XmTextFieldRermove(1) Delete the primary selection
XmTextFieldSetAddMode(1) Set the add mode state
XmTextFieldSetCursorPosition(1) Set the position of the location curso
Motif Reference Manual 1155

Appendix A: Function Summaries

r

-

x,

r

r

ion
ri-

er

r-

n

XmTextFieldSetEditable(1) Set the edit permission state
XmTextFieldSetHighlight(1) Highlight part of the text string
XmTextFieldSetInsertionPosition(1) Set the position of the insertion curso
XmTextFieldSetMaxLength(1) Set the maximum possible length of a

text string
XmTextFieldSetSelection(1) Set the value of the primary selection
XmTextFieldSetSource(1) Set the text source
XmTextFieldSetString(1) Set the text string
XmTextFieldSetStringWcs(1) Set the wide-character text string
XmTextFieldShowPosition(1) Scroll the text so that a specified posi

tion is visible
XmTextFieldXYToPos(1) Get the character position for a given

y coordinate
XmTextFindString(1) Find the beginning position of a text

string
XmTextFindStringWcs(1) Find the beginning position of a wide-

character text string
XmTextGetBaseline(1) Get the position of the baseline
XmTextGetCenterline(1) Get the height of vertical text
XmTextGetCursorPosition(1) Get the position of the location curso
XmTextGetEditable(1) Get the edit permission state
XmTextGetInsertionPosition(1) Get the position of the insertion curso
XmTextGetLastPosition(1) Get the position of the last character
XmTextGetMaxLength(1) Get the maximum possible length of a

text string
XmTextGetSelection(1) Get the value of the primary selection
XmTextGetSelectionPosition(1) Get the position of the primary select
XmTextGetSelectionWcs(1) Get the wide-character value of the p

mary selection
XmTextGetSource(1) Get the text source
XmTextGetString(1) Get the text string
XmTextGetStringWcs(1) Get the wide-character text string
XmTextGetSubstring(1) Get a copy of part of the text string
XmTextGetSubstringWcs(1) Get a copy of part of the wide-charact

text string
XmTextGetTopCharacter(1) Get the position of the first visible cha

acter
XmTextInsert(1) Insert a string into the text string
XmTextInsertWcs(1) Insert a wide-character string into the

text string
XmTextPaste(1) Insert the clipboard selection
XmTextPasteLink(1) Insert links from the clipboard selectio
1156 Motif Reference Manual

Appendix A: Function Summaries

xt

r

r-

-

,

et
et
et

a-
XmTextPosToXY(1) Get the x, y coordinates of a character
position

XmTextReplace(1) Replace part of the text string
XmTextReplaceWcs(1) Replace part of the wide-character te

string
XmTextRermove(1) Delete the primary selection
XmTextScroll(1) Scroll the text
XmTextSetAddMode(1) Set the add mode state
XmTextSetCursorPosition(1) Set the position of the location cursor
XmTextSetEditable(1) Set the edit permission state
XmTextSetHighlight(1) Highlight part of the text string
XmTextSetInsertionPosition(1) Set the position of the insertion curso
XmTextSetMaxLength(1) Set the maximum possible length of a

text string
XmTextSetSelection(1) Set the value of the primary selection
XmTextSetSource(1) Set the text source
XmTextSetString(1) Set the text string
XmTextSetStringWcs(1) Set the wide-character text string
XmTextSetTopCharacter(1) Set the position of the first visible cha

acter
XmTextShowPosition(1) Scroll the text so that a specified posi

tion is visible
XmTextXYToPos(1) Get the character position for a given x

y coordinate
XmToggleButtonGadgetGetState(1) Get the state of a ToggleButtonGadg
XmToggleButtonGadgetSetState(1) Set the state of a ToggleButtonGadg
XmToggleButtonGadgetSetValue(1) Set the value of a ToggleButtonGadg
XmToggleButtonGetState(1) Get the state of a ToggleButton
XmToggleButtonSetState(1) Set the state of a ToggleButton
XmToggleButtonSetValue(1) Set the value of a ToggleButton
XmTrackingEvent(1) Allow for modal selection of a compo-

nent
XmTrackingLocate(1) Allow for modal selection of a compo-

nent
XmTransferDone(1) Complete a data transfer operation
XmTransferSendRequest(1) Send a multiple transfer request
XmTransferSetParameters(1) Set parameters for the next transfer

operation
XmTransferStartRequest(1) Initiate a multiple transfer batch oper

tion
XmTransferValue(1) Transfer data to a destination
Motif Reference Manual 1157

Appendix A: Function Summaries

g

he

t

ect
XmTranslateKey(1) Convert a KeyCode to a KeySym usin
the default translator

XmUninstallImage(1) Remove an image from the image cac
XmUpdateDisplay(1) Update the display
XmVaCreateSimpleCheckBox(1) Create a CheckBox compound objec
XmVaCreateSimpleMenuBar(1) Create a MenuBar compound object
XmVaCreateSimpleOptionMenu(1) Create an OptionMenu compound

object
XmVaCreateSimplePopupMenu(1) Create a PopupMenu compound obj

as the child of a MenuShell
XmVaCreateSimplePulldownMenu(1) Create a PulldownMenu compound

object as the child of a MenuShell
XmVaCreateSimpleRadioBox(1) Create a RadioBox compound object
XmWidgetGetBaselines(1) Get the positions of the baselines in a

widget
XmWidgetGetDisplayRect(1) Get the display rectangle for a widget
1158 Motif Reference Manual

es in
d
ader

as
le,
er
n

t is

f

rge

g
ede-

n
h

Appendix B - Data Types

This appendix summarizes the data types used as arguments or return valu
Motif toolkit and Motif Resource Manager functions. Xt and Xlib data types use
by the routines are included. For each data type, the description states the he
file that defines the type. Data types (which include simple typedefs as well
structures and enums) are listed alphabetically. Defined symbols (for examp
constants used to specify the value of a mask or a field in a structure) or oth
data types used only to set structure members are listed with the data type i
which they are used.

ArgList
An ArgList is used for setting resources in calls to widget creation routines. I
defined as follows in <X11/Intrinsic.h>:

typedef struct {
String name;
XtArgVal value;

} Arg, *ArgList;

The namefield istypically a defined constant of the formXtNresourcenamefrom
either <X11/Stringdefs.h> or a widget public header file. It identifies the name o
the argument to be set. The value field isan XtArgVal, a system-dependent type-
def chosen to be large enough to hold a pointer to a function. It is often not la
enough to hold a float or double.

Atom
To optimize communication with the server, a property is referenced by strin
name only once, and subsequently by a unique integer ID called an Atom. Pr
fined atoms are defined in <X11/Xatom.h> using defined symbols beginning with
XA_; other atoms can be obtained from the server by calling the Xlib functio
XInternAtom (). The Motif toolkit supports an atom-caching mechanism wit
XmInternAtom (). Atoms are used by the Motif protocol routines.

Boolean
A typedef from <X11/Intrinsic.h> used to indicate True (1) or False (0). Use
either the symbols TRUE or FALSE, defined in <X11/Intrinsic.h> or True or
False, defined in <X11/Xlib.h>.

Cardinal
A typedef from <X11/Intrinsic.h> used to specify any unsigned integer value.

Colormap
An XID (server resource ID) from <X11/X.h> that identifies a Colormap resource
maintained by the server.XmGetColors () andMrmFetchColorLiteral ()
use Colormap values.
Motif Reference Manual 1159

Appendix B: Data Types

in

ram-
tif

r
i-

se
ey-

er,

are
Cursor
A typedef in <X11/X.h> for an XID (server resource ID) that identifies a cursor
resource maintained by the server. A Cursor is used to set the menu cursor
Motif. XmTrackingEvent () andXmTrackingLocate () also have a Cursor
parameter.

Dimension
A typedef from <X11/Intrinsic.h> used to specify an unsigned short quantity,
typically used for window sizes.

Display
A structure defined in <X11/Xlib.h> that contains information about the display
the program is running on. Display structure fields should not be accessed
directly; Xlib provides a number of macros to return essential values. In Xt, a
pointer to the current Display is returned by a call toXtDisplay (). The Motif
clipboard routines and string drawing routines, among others, use Display pa
eters. This data type should not be confused with the XmDisplay widget in Mo
1.2 and later.

GC
A graphics context, which is defined in <X11/Xlib.h>. A GC is a pointer to a
structure that contains a copy of the settings in a server resource. The serve
resource, in turn, contains information about how to interpret a graphics prim
tive. A pointer to a structure of this type is returned by the Xlib callXCre-
ateGC () or the Xt callXtGetGC (). Motif string drawing routines use GC
parameters. The members of this structure should not be accessed directly.

KeyCode
A server-dependent code that describes a key that has been pressed. AKeyCodeis
defined as an unsigned character in <X11/X.h>. XmTranslateKey () takes a
KeyCode argument.

KeySym
A portable representation of the symbol on the cap of a key. The Motif toolkit u
both virtual keysyms (osfkeysyms) and actual keysyms. The toolkit maps osfk
syms to actual keysyms. IndividualKeySyms are symbols defined in <X11/key-
symdef.h>. The keycode-to-keysym lookup tables are maintained by the serv
and hence aKeySymis actually anXID. XmVaCreateSimpleOptionMenu ()
andXmTranslateKey () takeKeySymarguments.

Modifiers
Any bitmask that describes modifier keys. The Modifiers type and its values
defined as follows in <X11/Intrinsic.h> and <X11/X.h>:

typedef unsigned int Modifiers;
1160 Motif Reference Manual

Appendix B: Data Types

r-

th

re
#define ShiftMask (1<<0)
#define LockMask (1<<1)
#define ControlMask (1<<2)
#define Mod1Mask (1<<3)
#define Mod2Mask (1<<4)
#define Mod3Mask (1<<5)
#define Mod4Mask (1<<6)
#define Mod5Mask (1<<7)

XmTranslateKey () takes an argument of type Modifiers.

MrmCode
Indicates the type of a value returned byMrmFetchLiteral (). Codes are pre-
fixed with MrmRtype and are defined in<Mrm/MrmPublic.h>.

MrmCount
A typedef in <Mrm/MrmPublic.h> for specifying a count of items.

MrmHierarchy
A pointer to an Mrm hierarchy opened withMrmOpenHierarchy () or MrmO-
penHierarchyPerDisplay (). The type is defined in<Mrm/MrmPublic.h>.
The functions associate one or more UID files with the hierarchy. An MrmHie
archy is a required argument of most of the Mrm functions.

MrmOsOpenParamPtr
A structure of operating system-dependent settings used as an argument to
MrmOpenHierarchy () andMrmOpenHierarchyPerDisplay () and
defined in <Mrm/MrmPublic.h>.As of Motif 1.2, the settings are only useful to
the UIL compiler.

MrmRegisterArg
See MrmRegisterArgList.

MrmRegisterArgList
A type used for registering application-defined procedures and identifiers wi
MrmRegisterNames () andMrmRegisterNamesInHierarchy (). It is
defined as follows in <Mrm/MrmPublic.h>:

typedef struct {
String name; /* case-sensitive name */
XtPointer value; /* value/procedure to associate with name */

} MrmRegisterArg, *MrmRegisterArglist;

MrmType
Indicates the class of a widget created withMrmFetchWidget () or Mrm-
FetchWidgetOverride (). As of Motif 1.2, the types are not defined in any
of the Mrm include files, although the OSF documentation states that they a
defined in <Mrm/Mrm.h>.
Motif Reference Manual 1161

Appendix B: Data Types

up

he
-

s,
ight,
 rou-

d
val-

ich
 Dis-

ould
Pixel
An unsigned long integer (defined in <X11/Intrinsic.h>) that serves as a look
key to a Colormap. If the visual type is PseudoColor, it is implemented as an
index to a Colormap; for DirectColor, the RGB values are directly coded into t
Pixel value. The Motif pixmap and color routines, as well as some Mrm func
tions, use Pixel values.

Pixmap
An XID (server resource ID) that represents a two-dimensional array of pixel
used as an offscreen drawable. that is, a drawable with a specified width, he
and depth (number of planes), but no screen coordinates. The Motif pixmap
tines, as well as some Mrm functions, use Pixmap parameters.

Position
A typedef from <X11/Intrinsic.h> used to specify a short quantity used for x- an
y-coordinates. The Motif string drawing routines, among others, use Position
ues.

Screen
A structure that describes the characteristics of a screen (one or more of wh
make up a display). A pointer to a list of these structures is a member of the
play structure. A pointer to a structure of this type is returned byXtScreen ()
andXGetWindowAttributes (). The Motif pixmap routines, among others,
as well as some of the Mrm functions, use Screen values. This data type sh
not be confused with the Screen object in Motif 1.2.
1162 Motif Reference Manual

Appendix B: Data Types

*/
/

/
/

/

/

mil-
struc-

n.

oard.
s

typedef struct {
XExtData *ext_data; /* hook for extension to hang data
struct _XDisplay *display; /* back pointer to display structure *
Window root; /* root window ID */
int width; /* width of screen */
int height; /* height of screen */
int mwidth; /* width in millimeters */
int mheight; /* height in millimeters */
int ndepths; /* number of depths possible *
Depth *depths; /* list of allowable depths on screen*
int root_depth; /* bits per pixel */
Visual *root_visual; /* root visual */
GC default_gc; /* GC for the root visual */
Colormap cmap; /* default Colormap */
unsigned long white_pixel;
unsigned long black_pixel; /* white and black pixel values *
int max_maps; /* max Colormaps */
int min_maps; /* min Colormaps */
int backing_store; /* Never, WhenMapped, Always *
Bool save_unders;
long root_input_mask; /* initial root input mask */

} Screen;

String
A typedef for char *.

StringTable
A pointer to a list of Strings.

Time
A typedef for an unsigned long value (defined in<X11/X.h>) that contains a time
value in milliseconds. The constant CurrentTime is interpreted as the time in
liseconds since the server was started. The Time data type is used in event
tures and as an argument to some Motif clipboard, drag and drop, and text
selection routines.

Visual
A structure that defines a way of using color resources on a particular scree

VoidProc
The prototype for the procedure that copies data passed by name to the clipb
XmClipboardBeginCopy () specifies a procedure of this type. It is defined a
follows in <Xm/CutPaste.h>:

typedef void (*VoidProc) (Widget widget, int *data_id, int *private_id,
int *reason)
Motif Reference Manual 1163

Appendix B: Data Types

d

-
hree
them

ter.

ri-
get
get-

lass

n

h

t is
nch.

is
VoidProc takes four arguments. The first argument, widget, is the widget passed
to the callback routine, which is the same widget as passed toXmClipboard-
BeginCopy (). The data_id argument is the ID of the data item that is returne
by XmClipboardCopy () and private_id is the private data passed to XmClip-
boardCopy(). The reason argument takes the value
XmCR_CLIPBOARD_DATA_REQUEST, which indicates that the data must be
copied to the clipboard, or XmCR_CLIPBOARD_DATA_DELETE, which indi
cates that the client can delete the data from the clipboard. Although the last t
parameters are pointers to integers, the values are read-only and changing
has no effect.

Widget
A structure returned by calls to create a widget, such asXtAppInitialize (),
XtCreateWidget (), andXtCreateManagedWidget (), as well as the
Motif widget creation routines. The members of this structure should not be
accessed directly from applications; they should regard it as an opaque poin
Type Widget is actually a pointer to a widget instance structure. Widget code
accesses instance variables from this structure.

WidgetClass
A pointer to the widget class structure, used to identify the widget class in va
ous routines that create widgets or that return information about widgets. Wid
class names have the form nameWidgetClass, with the exception of the wid
precursor classes, Object and RectObj, which have the class pointers objectC
and rectObjClass, respectively.

WidgetList
A pointer to a list of Widgets.

Window
A resource maintained by the server, and known on the client side only by a
integer ID. In Xt, a widget’s window can be returned by theXtWindow () macro.
Given the window, the corresponding widget can be returned byXtWindow-
ToWidget (). Conversely, given a widget, the window can be deduced throug
XtWindowOfObject (). The Motif clipboard and string drawing routines use
Window values.

XEvent
A union of all thirty event structures. The first member is always the type, so i
possible to branch on the type, and do event-specific processing in each bra
BothXmDragStart () andXmTrackingEvent () take XEvent parameters.
An XButtonPressedEvent, which is one of the event structures in the union,
used byXmMenuPosition ().
1164 Motif Reference Manual

Appendix B: Data Types

tif

ed

*/

/
/
*/

/
/

r*/
*/
\

/

*/

/
/

*/
XFontSet
Specifies all of the fonts needed to display text in a particular locale. The Mo
font list entry routines can use XFontSet values.

XFontStruct
Specifies metric information (in pixels) for an entire font. This structure (defin
in <X11/Xlib.h>) is filled by means of the Xlib routinesXLoadQueryFont ()
andXQueryFont (). XListFontsWithInfo () also fills it, but with metric
information for the entire font only, not for each character. Some of the Motif
font list routines use XFontStructs.

typedef struct {
XExtData *ext_data; /* hook for extension to hang data
Font fid; /* font ID for this font */
unsigned direction; /* direction the font is painted *
unsigned min_char_or_byte2; /* first character *
unsigned max_char_or_byte2; /* last character
unsigned min_byte1; /* first row that exists */
unsigned max_byte1; /* last row that exists *
Bool all_chars_exist; /* flag if all characters have *

/* nonzero size */
unsigned default_char; /* char to print for undefined characte
int n_properties; /* how many properties there are
XFontProp *properties; /* pointer to array of additional *

/* properties */
XCharStruct min_bounds; /* minimum bounds over all *

/* existing char */
XCharStruct max_bounds; /* maximum bounds over all

/* existing char */
XCharStruct *per_char; /* first_char to last_char information *
int ascent; /* logical extent of largest character *

/* above baseline */
int descent; /* logical descent of largest character

/* below baseline */
} XFontStruct;

Thedirection member is specified by one of the following constants from <X11/
X.h>:

FontLeftToRight FontRightToLeft FontChange
Motif Reference Manual 1165

Appendix B: Data Types

sed

pth
XImage
Describes an area of the screen. This structure (defined in <X11/Xlib.h>) is u
by XmInstallImage () andXmUninstallImage ().

typedef struct _XImage {
int width, height; /* size of image in pixels */
int xoffset; /* number of pixels offset in X direction
*/
int format; /* XYBitmap, XYPixmap, ZPixmap*/
char *data; /* pointer to image data */
int byte_order; /* data byte order: LSBFirst, MSBFirst
*/
int bitmap_unit; /* quant. of scan line 8, 16, 32 */
int bitmap_bit_order; /* LSBFirst, MSBFirst */
int bitmap_pad; /* 8, 16, 32 */
int depth; /* depth of image */
int bytes_per_line; /* accelerator to next line */
int bits_per_pixel; /* bits per pixel (ZPixmap only) */
unsigned long red_mask; /* bits in z arrangement */
unsigned long green_mask;
unsigned long blue_mask;
char *obdata; /* hook for object routines to hang on
*/
struct funcs { /* image manipulation routines
*/

struct _XImage *(*create_image)(void);
int (*destroy_image)(struct XImage *);
unsigned long (*get_pixel)(struct XImage *, int, int);
int (*put_pixel)(struct XImage *, int, int, unsigned int,

unsigned int);
struct _XImage *(*sub_image)(struct XImage *, int, int, unsigned

int, unsigned int);
int (*add_pixel)(struct XImage *, long);

} f;
} XImage;

The format member is specified by one of the following constants defined in
<X11/X.h>:

XYBitmap /* depth 1, XYFormat */
XYPixmap /* pixmap viewed as stack of planes; depth == drawable de
*/
ZPixmap /* pixels in scan-line order; depth == drawable depth */
1166 Motif Reference Manual

Appendix B: Data Types

d
l-

o
lor

as

*/
*/
/

byte_order and bitmap_bit_order are specified by either LSBFirst or MSBFirst,
which are defined in <X11/X.h>.

XRectangle
Specifies a rectangle. This structure (defined in<X11/Xlib.h>) is used by the
Motif string drawing routines andXmGetDisplayRect ().

typedef struct {
short x, y;
unsigned short width, height;

} XRectangle;

XmAllocColorProc
The prototype for the per-screen color allocation procedure which is specifie
through the XmScreen resource XmNcolorAllocationProc. It is defined as fo
lows in <Xm/Screen.h>:

typedef void (*XmAllocColorProc)(Display *display;

/* connection to the X server */
Colormap colormap;
/* Colormap in which to allocate color */
XColor *color)
/* color to allocate */

An XmAllocColorProc takes three arguments. The first display argument is the
connection to the X server. The second argument is the Colormap in which t
allocate the required color. The third color argument is where the required co
is specified and returned.

XmAnyCallbackStruct
The generic Motif callback structure. It is defined as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* event structure that triggered callback */

} XmAnyCallbackStruct;

XmArrowButtonCallbackStruct
The callback structure passed to ArrowButton callback routines. It is defined
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* the reason that the callback was called
XEvent *event; /* event structure that triggered callback
int click_count; /* number of clicks in multi-click sequence *

} XmArrowButtonCallbackStruct;
Motif Reference Manual 1167

Appendix B: Data Types

 crea-

lue,
are
ce-
XmButtonType
An enumerated type that specifies the type of button used in a simple menu
tion routine. The valid values for the type are:

XmPUSHBUTTON XmTOGGLEBUTTON
XmRADIOBUTTON XmCHECKBUTTON
XmCASCADEBUTTON XmTITLE
XmSEPARATOR XmDOUBLE_SEPARATOR

XmButtonTypeTable
A pointer to a list of XmButtonType values.

XmClipboardPendingList
A structure used in calls toXmClipboardInquirePendingItems () to
specify a data_id/private_id pair. It is defined as follows in<Xm/CutPaste.h>:

typedef struct {
long DataId;
long PrivateId;

} XmClipboardPendingRec, *XmClipboardPendingList;

XmColorProc
The prototype for the color calculation procedure used byXmGetColorCal-
culation () andXmSetColorCalculation (). It is defined as follows in
<Xm/Xm.h>:

typedef void (*XmColorProc)(

XColor *bg_color, /* specifies the background color
*/

XColor *fg_color, /* returns the foreground color
*/

XColor *sel_color, /* returns the select color
*/

XColor *ts_color, /* returns the top shadow color
*/

XColor *bs_color) /* returns the bottom shadow color
*/

An XmColorProc takes five arguments. The first argument,bg_color, is a pointer
to an XColor structure that specifies the background color. The red, green, b
and pixel fields in the structure contain valid values. The rest of the arguments
pointers to XColor structures for the colors that are to be calculated. The pro
dure fills in the red, green, and blue fields in these structures.
1168 Motif Reference Manual

Appendix B: Data Types

s

*/

ned

ned

/

*/
XmComboBoxCallbackStruct
The callback structure passed to ComboBox callback routines. It is defined a
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that the callback was called
XEvent *event; /* event that triggered callback */
XmString item_or_text; /* the selected item */
int item_position; /* the index of the item in the list */

} XmComboBoxCallbackStruct;

XmCommandCallbackStruct
The callback structure passed to Command widget callback routines. It is defi
as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* event structure that triggered callback */
XmString value; /* the string contained in the command area */
int length; /* the size of this string */

} XmCommandCallbackStruct;

XmContainerOutlineCallbackStruct
The callback structure passed to Container Outline callback routines. It is defi
as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called *
XEvent *event; /* event that triggered callback */
Widget item; /* container item associated */

/* with event */
unsigned char new_outline_state; /* the requested state

} XmContainerOutlineCallbackStruct;
Motif Reference Manual 1169

Appendix B: Data Types

ned

*/

*/

ts

/

*/

*/
*/

/
/

*/
*/
/
/
/

*/
XmContainerSelectCallbackStruct
The callback structure passed to Container Select callback routines. It is defi
as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called
XEvent *event; /* event that triggered callback */
WidgetList selected_items; /* the list of selected items */
int selected_item_count; /* the number of selected items
unsigned char auto_selection_type; /* type of selection event */

} XmContainerSelectCallbackStruct;

XmConvertCallbackStruct
The callback structure passed to the XmNconvertCallback routines of widge
when they are asked to convert a selection. It is defined as follows in <Xm/Trans-
fer.h>:

typedef struct {
int reason; /* reason that callback is invoked *
XEvent *event; /* event that triggered callback */
Atom selection; /* requested conversion selection
Atom target; /* the conversion target */
XtPointer source_data; /* selection source information
XtPointer location_data; /* information on data to be transferred
int flags; /* input status of the conversion */
XtPointer parm; /* parameter data for the target *
int parm_format; /* format of parameter data *
unsigned long parm_length; /* number of elements in parameter data
Atom parm_type; /* the type of the parameter data
int status; /* output status of the conversion *
XtPointer value; /* returned conversion data *
Atom type; /* type of conversion data returned *
int format; /* format of the conversion data */
unsigned long length; /* number of elements in conversion data

} XmConvertCallbackStruct;
1170 Motif Reference Manual

Appendix B: Data Types

oard.
s

o

-
hree
o

dg-

/

*/
*/
e*/
/
*/
/
/

XmCutPasteProc
The prototype for the procedure that copies data passed by name to the clipb
XmClipboardStartCopy () specifies a procedure of this type. It is defined a
follows in <Xm/CutPaste.h>:

typedef void (*XmCutPasteProc) (Widget widget, long *data_id, long
*private_id, int *reason)

An XmCutPasteProc takes four arguments. The first argument,widget, is the
widget passed to the callback routine, which is the same widget as passed t
XmClipboardBeginCopy (). The data_idargument is the ID of the data item
that is returned byXmClipboardCopy () and private_id is the private data
passed toXmClipboardCopy (). The reason argument takes the value
XmCR_CLIPBOARD_DATA_REQUEST, which indicates that the data must be
copied to the clipboard, or XmCR_CLIPBOARD_DATA_DELETE, which indi
cates that the client can delete the data from the clipboard. Although the last t
parameters are pointers, the values are read-only and changing them has n
effect.

XmDestinationCallbackStruct
The callback structure passed to the XmNdestinationCallback routines of wi
ets when they are the destination of a data transfer. It is defined as follows in
<Xm/Transfer.h>:

typedef struct {
int reason; /* reason that callback is invoked *
XEvent *event; /* event that triggered callback */
Atom selection; /* requested selection type, as an Atom
XtEnum operation; /* the type of transfer requested
int flags; /* whether destination and source are sam
XtPointer transfer_id; /* unique identifier for the request *
XtPointer destination_data; /* information about the destination
XtPointer location_data; /* information about the data *
Time time; /* time when transfer operation started *

} XmDestinationCallbackStruct;
Motif Reference Manual 1171

Appendix B: Data Types

o-
ype

en-

d

on

-

XmDirection
An enumerated type that specifies a direction, used either in laying out comp
nents of a widget, or in rendering compound strings. The valid values for the t
are:

XmRIGHT_TO_LEFT_TOP_TO_BOTTOM
XmLEFT_TO_RIGHT_TOP_TO_BOTTOM
XmRIGHT_TO_LEFT_BOTTOM_TO_TOP
XmLEFT_TO_RIGHT_BOTTOM_TO_TOP
XmRIGHT_TO_LEFT
XmLEFT_TO_RIGHT
XmTOP_TO_BOTTOM_RIGHT_TO_LEFT
XmBOTTOM_TO_TOP_RIGHT_TO_LEFT
XmTOP_TO_BOTTOM_LEFT_TO_RIGHT
XmBOTTOM_TO_TOP_LEFT_TO_RIGHT
XmTOP_TO_BOTTOM
XmBOTTOM_TO_TOP
XmDEFAULT_DIRECTION

XmDisplayCallbackStruct
The callback structure passed to Display XmNnoFontCallback and XmNnoR
ditionCallback callback routines. It is defined as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that the callback was calle
*/
XEvent *event; /* event that triggered callback */
XmRendition rendition; /* rendition with a missing font */
char *font_name; /* font which is not loadable */
XmRenderTable render_table; /* render table with missing renditi
*/
XmString tag; /* tag of the missing rendition */

} XmDisplayCallbackStruct;

XmDragDropFininshCallbackStruct
The callback structure passed to the XmNdragDropFinishCallback of a Drag
Context object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* the reason the callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* time at which operation completed */

} XmDragDropFinishCallbackStruct, *XmDragDropFinishCallback;
1172 Motif Reference Manual

Appendix B: Data Types

text

*/

/
*/
*/

d as

*/

*/

/
/
*/
*/

d as

*/
/

XmDragMotionCallbackStruct
The callback structure passed to the XmNdragMotionCallback of a DragCon
object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason the callback was called
XEvent *event; /* event that triggered callback */
Time timeStamp; /* timestamp of logical event */
unsigned char operation; /* current operation *
unsigned char operations; /* supported operations
unsigned char dropSiteStatus; /* valid, invalid, or none
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */

} XmDragMotionCallbackStruct, *XmDragMotionCallback;

XmDragProcCallbackStruct
The callback structure passed to the XmNdragProc of a drop site. It is define
follows in <Xm/DropSMgr.h>:

typedef struct {
int reason; /* reason the callback was called
XEvent *event; /* event that triggered callback */
Time timeStamp; /* timestamp of logical event */
Widget dragContext; /* DragContext widget associated

/* with operation */
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */
unsigned char dropSiteStatus; /* valid or invalid *
unsigned char operation; /* current operation *
unsigned char operations; /* supported operations
Boolean animate; /* toolkit or receiver does animation

} XmDragProcCallbackStruct, *XmDragProcCallback;

XmDrawingAreaCallbackStruct
The callback structure passed to DrawingArea callback routines. It is define
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that the callback was called
XEvent *event; /* event that triggered callback; *

/* for XmNresizeCallback, this is NULL */
Window window; /* the widget’s window */

} XmDrawingAreaCallbackStruct;
Motif Reference Manual 1173

Appendix B: Data Types

d as

*/

ext

*/

/
/
*/
*/
*/
*/

d as

/

*/

/
/
*/
XmDrawnButtonCallbackStruct
The callback structure passed to DrawnButton callback routines. It is define
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that the callback was called
XEvent *event; /* event that triggered callback */
Window window; /* ID of window in which event occurred */
int click_count; /* number of multi-clicks */

} XmDrawnButtonCallbackStruct;

XmDropFinishCallbackStruct
The callback structure passed to the XmNdropFinishCallback of a DragCont
object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason the callback was called
XEvent *event; /* event that triggered callback */
Time timeStamp; /* time at which drop completed *
unsigned char operation; /* current operation *
unsigned char operations; /* supported operations
unsigned char dropSiteStatus; /* valid, invalid, or none
unsigned char dropAction; /* drop, cancel, help, or interrupt
unsigned char completionStatus; /* success or failure

} XmDropFinishCallbackStruct, *XmDropFinishCallback;

XmDropProcCallbackStruct
The callback structure passed to the XmNdropProc of a drop site. It is define
follows in <Xm/DropSMgr.h>:

typedef struct {
int reason; /* reason callback was called *
XEvent *event; /* event that triggered callback */
Time timeStamp; /* timestamp of logical event */
Widget dragContext; /* DragContext widget associated

/* with operation */
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */
unsigned char dropSiteStatus; /* valid or invalid *
unsigned char operation; /* current operation *
unsigned char operations; /* supported operations
unsigned char dropAction; /* drop or help */

} XmDropProcCallbackStruct, *XmDropProcCallback;
1174 Motif Reference Manual

Appendix B: Data Types

on-

/

/
*/
*/

on-

/

xt

/

/
/
*/
*/
*/
XmDropSiteEnterCallbackStruct
The callback structure passed to the XmNdropSiteEnterCallback of a DragC
text object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason the callback was called *
XEvent *event; /* event that triggered callback */
Time timeStamp; /* time of crossing event */
unsigned char operation; /* current operation *
unsigned char operations; /* supported operations
unsigned char dropSiteStatus; /* valid, invalid, or none
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */

} XmDropSiteEnterCallbackStruct, *XmDropSiteEnterCallback;

XmDropSiteLeaveCallbackStruct
The callback structure passed to the XmNdropSiteLeaveCallback of a DragC
text object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason callback was called *
XEvent *event; /* event that triggered callback */
Time timeStamp; /* time of crossing event */

} XmDropSiteLeaveCallbackStruct, *XmDropSiteLeaveCallback;

XmDropStartCallbackStruct
The callback structure passed to the XmNdropStartCallback of a DragConte
object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason callback was called *
XEvent *event; /* event that triggered callback */
Time timeStamp; /* time at which drag completed *
unsigned char operation; /* current operation *
unsigned char operations; /* supported operations
unsigned char dropSiteStatus; /* valid, invalid, or none
unsigned char dropAction; /* drop, cancel, help, or interrupt
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */
Window window; /* internal: not documented */
Atom icchandle; /* internal: not documented */

} XmDropStartCallbackStruct, *XmDropStartCallback;
Motif Reference Manual 1175

Appendix B: Data Types

ned

*/
/
/
/
/
*/

/
*/

ies
y a

,
nsists
eci-
ont
 is
so

ng
XmDropTransferEntryRec
A structure that specifies the targets of a drop operation for a Drop Transfer
object. It is defined as follows in<Xm/DropTrans.h>:

typedef struct {
XtPointer client_data; /* data passed to the transfer proc */
Atom target; /* target format of the transfer */

} XmDropTransferEntryRec, *XmDropTransferEntry;

XmDropTransferEntry
See XmDropTransferEntryRec.

XmFileSelectionBoxCallbackStruct
The callback structure passed to FileSelectionBox callback routines. It is defi
as follows in<Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called
XEvent *event; /* event that triggered callback *
XmString value; /* current value of XmNdirSpec resource *
int length; /* number of bytes in value member *
XmString mask; /* current value of XmNdirMask resource *
int mask_length; /* number of bytes in mask member
XmString dir; /* current base directory */
int dir_length; /* number of bytes in dir member */
XmString pattern; /* current search pattern *
int pattern_length; /* number of bytes in pattern member

} XmFileSelectionBoxCallbackStruct;

XmFontContext
A typedef for a font list context that lets an application access the font list entr
and font list tags in a font list. This data type is an opaque structure returned b
call toXmFontListInitFontContext (), and is used in subsequent calls to
XmFontListGetNextEntry (), XmFontListGetNextFont () and
XmFontListFreeFontContext ().

XmFontList
A font list contains entries that describe the fonts that are in use. In Motif 1.1
each entry associates a font and a character set. In Motif 1.2, each entry co
of a XmFontListEntry and an associated tag, where the XmFontListEntry sp
fies a font or a font set. XmFontList is an opaque data type used in calls to f
list routines and string manipulation routines. When a Motif compound string
displayed, the font list tag is used to match the string with a font or font set,
that the compound string is displayed appropriately. The font list tag
XmFONTLIST_DEFAULT_TAG causes compound strings to be displayed usi
the font for the current locale.
1176 Motif Reference Manual

Appendix B: Data Types

t and
t:

a

h a
p-

by
pat-

nt

r
ble

is
To specify a font list in a resource file, use the following syntax:

resource_spec: font_entry [, font_entry] ...

The value specification consists of at least one font list entry, with multiple
entries separated by commas. Each font_entry specifies a font or a font se
an optional font list entry tag. Use the following syntax to specify a single fon

font_name [= font_list_entry_tag]

To specify the optional tag for a single font, separate the font_name and the
font_list_entry_tag by an equal sign (=). Use the following syntax to specify
font set:

font_name [; font_name] ... : [font_list_entry_tag]

Separate multiple font_names with semicolons and end the specification wit
colon, followed by the optional tag. A font_name is an X Logical Font Descri
tion (XLFD) string. If a font_list_entry_tag is not specified for an entry,
XmFONTLIST_DEFAULT_TAG is used.

In Motif 2.0 and later, the XmFontList is considered obsolete, and is replaced
the XmRenderTable. The XmFontList type is maintained for backwards com
ibility, and is implemented through a render table.

XmFontListEntry
In Motif 1.2, a font list entry is an element of an XmFontList that specifies a fo
or a font set. Each XmFontListEntry is associated with a font list entry tag.
XmFontListEntry is an opaque type.

In Motif 2.0 and later, the XmFontList and XmFontListEntry are considered
obsolete, and are replaced by the XmRenderTable and XmRendition object
respectively. The XmFontList and XmFontListEntry types are maintained fo
backwards compatibility, and are implemented directly through the render ta
and rendition object.

XmFontType
An enumerated type that specifies the type of entry in a XmFontListEntry. It
defined as follows in <Xm/Xm.h>:

typedef enum {
XmFONT_IS_FONT, /* specifies a font */
XmFONT_IS_FONTSET /* specifies a font set */

} XmFontType;
Motif Reference Manual 1177

Appendix B: Data Types

are

d
. Var-

/

/

XmHighlightMode
An enumerated type that defines the kind of text highlighting that results from
calls toXmTextSetHighlight () andXmTextFieldSetHighlight (). It
is defined as follows in <Xm/Xm.h>:

typedef enum {
XmHIGHLIGHT_NORMAL, /* no highlighting */
XmHIGHLIGHT_SELECTED, /* highlight in reverse video */
XmHIGHLIGHT_SECONDARY_SELECTED

/* highlight by underlining */
XmSEE_DETAIL /* unused except by abortive */

/* Motif 2.0 CSText widget */
} XmHighlightMode;

XmICCEncodingStyle
An enumerated type which specifies the way in which compound string tables
converted to and from a text property. It is defined as follows in<Xm/Xm.h>:

typedef enum {
XmSTYLE_STRING = XStringStyle,
XmSTYLE_COMPOUND_TEXT = XCompoundTextStyle,
XmSTYLE_TEXT = XTextStyle,
XmSTYLE_STANDARD_ICC_TEXT = XStdICCTextStyle,
XmSTYLE_LOCALE = 32,
XmSTYLE_COMPOUND_STRING

} XmICCEncodingStyle;

XmIncludeStatus
A typedef for unsigned char that is used to define the way in which compoun
strings are parsed when a ParseMapping object is applied to an input stream
iables of this type can have the following values:

XmINSERT /* concatenate XmNsubstitute value to output *
/* parsing is continued */

XmINVOKE /* result determined by XmNinvokeParseProc *
XmTERMINATE /* concatenate XmNsubstitute value to output */

/* parsing is terminated */

XmKeySymTable
A pointer to a list of KeySyms.
1178 Motif Reference Manual

Appendix B: Data Types

fol-

*/

/

/

*/

/

/

/

*/

 for
ount,

gers
all-
wn

e the

ade.

/
/

XmListCallbackStruct
The callback structure passed to List widget callback routines. It is defined as
lows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called
XEvent *event; /* event that triggered callback */
XmString item; /* item most recently selected at *

/* the time event occurred */
int item_length; /* number of bytes in item member*
int item_position; /* item position in XmNitems array*/
XmString *selected_items; /* list of items selected at the

/* time event occurred */
int selected_item_count; /* number of items in *

/* selected_items */
int *selected_item_positions; /* array of integers marking *

/* selected items */
char selection_type; /* type of the most recent *

/* selection */
char auto_selection_type; /* 2.0 or later: automatic

/* selection type */
} XmListCallbackStruct;

The structure members event, item, item_length, and item_position are valid
any value of reason. The structure members selected_items, selected_item_c
and selected_item_ positions are valid when the reason field has a value of
XmCR_MULTIPLE_SELECT or XmCR_EXTENDED_SELECT. The structure
member selection_type is valid only when the reason field is
XmCR_EXTENDED_SELECT.

For the strings pointed to by item and selected_items, as well as for the inte
pointed to by selected_item_positions, storage is overwritten each time the c
back is invoked. Applications that need to save this data should make their o
copies of it.

selected_item_positions is an integer array. The elements of the array indicat
positions of each selected item within the List widget’s XmNitems array.

selection_type specifies what kind of extended selection was most recently m
One of three values is possible, defined in <Xm/List.h>:

XmINITIAL /* selection was the initial selection */
XmMODIFICATION /* selection changed an existing selection *
XmADDITION /* selection added non-adjacent items to an *

/* existing selection */
Motif Reference Manual 1179

Appendix B: Data Types

ossi-

to a

d

/

/
/

*/
/

auto_selection_type specifies at what point within the selection the user is. P
ble values, defined in<Xm/Xm.h>:

XmAUTO_UNSET XmAUTO_BEGIN
XmAUTO_MOTION XmAUTO_CANCEL
XmAUTO_NO_CHANGE XmAUTO_CHANGE

XmMergeMode
An enumerated type that specifies the way in which renditions are merged in
render table. The valid values for the type are:

XmSKIP XmMERGE_REPLACE
XmMERGE_OLD XmMERGE_NEW
XmDUPLICATE

XmDUPLICATE is an internal value used in mapping XmFontList and
XmFontListEntry types to the render table types of Motif 2.0 and later.

XmNavigationType
An enumerated type that specifies the type of keyboard navigation associate
with a widget. The valid values for the type are:

XmNONE XmTAB_GROUP
XmSTICKY_TAB_GROUP XmEXCLUSIVE_TAB_GROUP

XmNotebookCallbackStruct
The callback structure passed to Notebook selection callback routines. It is
defined as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called *
XEvent *event; /* points to event structure */

/* that triggered callback */
int page_number; /* current logical page number *
Widget page_widget; /* widget associated with *

/* current logical page number */
int prev_page_number; /* previous logical page number
Widget prev_page_widget; /* widget associated with *

/* previous logical page number */
} XmNotebookCallbackStruct;
1180 Motif Reference Manual

Appendix B: Data Types

in

/

*/
/

fsets,

rag-

/

/
*/
*/

 in
ts
call
d

XmNotebookPageInfo
Specifies a structure passed to the functionXmNotebookGetPageInfo () in
order to retrieve information about a Notebook page. It is defined as follows
<Xm/Notebook.h>:

typedef struct {
int page_number; /* logical page number *
Widget page_widget; /* widget ID of a page child */
Widget status_area_widget; /* widget ID of a status area child
Widget major_tab_widget; /* widget ID of a major tab child *
Widget minor_tab_widget; /* widget ID of a minor tab child */

} XmNotebookPageInfo;

XmOffset
A long integer that represents the units used in calculating the offsets into a
widget’s instance data. The type is used internally to Motif. See also XmOff-
setPtr.

XmOffsetModel
An enumerated type that specifies whether tabs are calculated at absolute of
or relative to the previous tab. The valid values for the type are:

XmABSOLUTE XmRELATIVE

XmOffsetPtr
A pointer to an XmOffset value, which is returned by a calls toXmRe-
solveAllPartOffsets () andXmResolvePartOffsets ().

XmOperationChangedCallbackStruct
The callback structure passed to the XmNoperationChangedCallback of a D
Context object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason callback was called *
XEvent *event; /* event that triggered callback */
Time timeStamp; /* timestamp of logical event */
unsigned char operation; /* current operation *
unsigned char operations; /* supported operations
unsigned char dropSiteStatus; /* valid, invalid, or none

} XmOperationChangedCallbackStruct, *XmOperationChangedCallback;

XmParseMapping
A typedef for a parse mapping object that lets an application control the way
which an input stream of bytes is converted into the components or segmen
within a compound string. This data type is an opaque structure returned by a
to XmParseMappingCreate (), and is placed into an XmParseTable and use
in subsequent calls to the string manipulation routines:XmStringParse-
Motif Reference Manual 1181

Appendix B: Data Types

nd

h

am

as
Text (), XmStringTableParseStringArray (), andXmStringTable-
Unparse (), andXmStringUnparse ().

XmParseModel
An enumerated type which specifies how non-text components of a compou
string are unparsed. It is defined as follows in <Xm/Xm.h>:

typedef enum {
XmOUTPUT_ALL,
XmOUTPUT_BETWEEN,
XmOUTPUT_BEGINNING,
XmOUTPUT_END,
XmOUTPUT_BOTH

} XmParseModel;

This data type is used in calls to the following compound string routines:
XmStringTableUnparse (), andXmStringUnparse ().

XmParseProc
A procedure within an XmParseMapping object for controlling the way in whic
an input stream is parsed into a compound string. It is defined as follows in<Xm/
Xm.h>:

typedef XmIncludeStatus (*XmParseProc) (XtPointer *in_out,
XtPointer text_end,
XmTextType type,
XmStringTag locale_tag,
XmParseMapping entry,
int pattern_length,
XmString *str_include,
XtPointer call_data);

XmParseTable
A typedef for an array of parse mapping objects, used for parsing an input stre
into a compound strings.

typedef XmParseMapping *XmParseTable;

XmPushButtonCallbackStruct
The callback structure passed to PushButton callback routines. It is defined
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
int click_count; /* number of multi-clicks */

} XmPushButtonCallbackStruct;
1182 Motif Reference Manual

Appendix B: Data Types

d as

*/

/
/
*/

 fol-

ory
ce-

ifies

r

Se-

that

lates
d by
-

XmPopupHandlerCallbackStruct
The callback structure passed to Popup Handler callback routines. It is define
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* the reason the callback is invoked
XEvent *event; /* event that triggered callback */
Widget menuToPost; /* the menu to post *
Boolean postIt; /* whether to continue posting *
Widget target; /* manager descendant issuing request

} XmPopupHandlerCallbackStruct;

XmPrintShellCallbackStruct
The callback structure passed to PrintShell callback routines. It is defined as
lows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that the callback is invoked */
XEvent *event; /* event that triggered the callback */
XPContext context; /* X Print Context */
Boolean last_page; /* whether this is the last page */
XtPointer detail; /* PDM selection */

} XmPrintShellCallbackStruct;

XmQualifyProc
The prototype for the qualification procedure that produces a qualified direct
mask, base directory, and search pattern for the directory and file search pro
dures in a FileSelectionBox. The XmNqualifySearchDataProc resource spec
a procedure of this type, which is defined as follows in <Xm/FileSB.h>:

typedef void (*XmQualifyProc) (Widget widget, XtPointer input_data, XtPointe
output_data)

An XmQualifyProc takes three arguments. The first argument, widget, is the
FileSelectionBox widget. The input_data argument is a pointer to an XmFile
lectionBoxCallbackStruct that contains input data to be qualified. The
output_data argument is a pointer to an XmFileSelectionBoxCallbackStruct
is to be filled in by the qualification procedure.

XmRendition
An opaque data structure, implemented as a pseudo-widget, which encapsu
the resources required to render a compound string. This data type is returne
a call toXmRenditionCreate (), and is used in subsequent calls to the follow
ing routines:XmRenderTableAddRenditions (), XmRenditionFree (),
XmRenditionRetrieve (), XmRenditionUpdate ().
Motif Reference Manual 1183

Appendix B: Data Types

o
f a

enta-
s in

*/
/

*/
*/
*/

/

n
pe

by

*/

*/
XmRenderTable
An opaque data structure, representing a list of XmRendition objects, used t
render compound strings. Typically used as the XmNrenderTable resource o
widget, the type us used in calls to the following routines:XmRenderTable-
Copy(), XmRenderTableFree (), XmRenderTableGetRendition (),
XmRenderTableGetRenditions (), XmRenderTableGetTags (),
XmRenderTableRemoveRenditions ().

XmRepTypeEntry
A pointer to a representation type entry structure which contains information
about the value names and values for an enumerated type. The Motif repres
tion type manager routines use values of this type, which is defined as follow
<Xm/RepType.h>:

typedef struct {
String rep_type_name; /* name of representation type
String *value_names; /* array of value names *
unsigned char *values; /* array of numeric values
unsigned char num_values; /* number of values
Boolean reverse_installed; /* reverse converter installed flag
XmRepTypeId rep_type_id; /* representation type ID *

} XmRepTypeEntryRec, *XmRepTypeEntry, XmRepTypeListRec,
*XmRepTypeList;

XmRepTypeId
An unsigned short that specifies the identification number of a representatio
type registered with the representation type manager. The representation ty
manager routines use values of this type.

XmRepTypeList
See XmRepTypeEntry.

XmRowColumnCallbackStruct
The callback structure passed to RowColumn callback routines. It is only used
map and unmap callbacks, and is defined as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called
XEvent *event; /* event that triggered callback */
Widget widget; /* ID of activated RowColumn item */
char *data; /* value of application’s client data */
char *callbackstruct; /* created when item is activated

} XmRowColumnCallbackStruct;

widget, data, and callbackstruct are set to NULL.
1184 Motif Reference Manual

Appendix B: Data Types

 as

ed
ol-

/
/

/

to a
ture
the
lor
ed,

 fol-
XmScaleCallbackStruct
The callback structure passed to Scale widget callback routines. It is defined
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
int value; /* new value of the slider */

} XmScaleCallbackStruct;

XmScreenColorProc
The prototype for the per-screen color calculation procedure which is specifi
through the XmScreen resource XmNcolorCalculationProc. It is defined as f
lows in <Xm/Screen.h>:

typedef void (*XmScreenColorProc)(

Screen *screen, /* screen of top-level window *
XColor *bg_color, /* specifies the background color *
XColor *fg_color, /* returns the foreground color */
XColor *sel_color, /* returns the select color */
XColor *ts_color, /* returns the top shadow color */
XColor *bs_color) /* returns the bottom shadow color *

An XmScreenColorProc takes six arguments. The first argument is a pointer
screen object. The second argument, bg_color, is a pointer to an XColor struc
that specifies the background color. The red, green, blue, and pixel fields in
structure contain valid values. The rest of the arguments are pointers to XCo
structures for the colors that are to be calculated. The procedure fills in the r
green, and blue fields in these structures.

XmScrollBarCallbackStruct
The callback structure passed to ScrollBar callback routines. It is defined as
lows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
int value; /* value of the slider’s new location */
int pixel; /* coordinate where selection occurred */

} XmScrollBarCallbackStruct;
Motif Reference Manual 1185

Appendix B: Data Types

 a
s

Se-
ch.

 with

d as

*/

*/

sfer

esti-
XmSearchProc
The prototype for a search procedure that searches the directories or files in
FileSelectionBox. The XmNdirSearchProc and XmNfileSearchProc resource
specify procedures of this type, which is defined as follows in <Xm/FileSB.h>:

typedef void (*XmSearchProc) (Widget widget, XtPointer search_data)

An XmSearchProc takes two arguments. The first argument, widget, is the
FileSelectionBox widget. The search_data argument is a pointer to an XmFile
lectionBoxCallbackStruct that contains the information for performing a sear

XmSecondaryResourceData
A structure that specifies information about secondary resources associated
a widget class.XmGetSecondaryResourceData () returns an array of these
values. The type is defined as follows in <Xm/Xm.h>:

typedef struct {
XmResourceBaseProc base_proc;
XtPointer client_data;
String name;
String res_class;
XtResourceList resources;
Cardinal num_resources;

} XmSecondaryResourceDataRec, *XmSecondaryResourceData;

XmSelectionBoxCallbackStruct
The callback structure passed to SelectionBox callback routines. It is define
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called
XEvent *event; /* event that triggered callback */
XmString value; /* selection string that was either chosen

/* from the SelectionBox list or typed in */
int length; /* number of bytes of value */

} XmSelectionBoxCallbackStruct;

XmSelectionCallbackStruct
The callback structure passed to routines which are responsible for data tran
from the primary selection. The functionXmTransferValue () takes as its
third parameter a procedure which is responsible for inserting data into the d
1186 Motif Reference Manual

Appendix B: Data Types

s

*/

*
*/

*/
/

/

*/
*/

/

fol-

*/
/
/
/
/

s
t list

ag
nt
n
ave
nation. The procedure receives a pointer to an XmSelectionCallbackStruct a
callback data when invoked. It is defined as follows in <Xm/Transfer.h>:

typedef struct {
int reason; /* reason the callback was invoked
XEvent *event; /* event which triggered callback */
Atom selection; /* selection that has been converted
Atom target; /* target for which conversion requested
Atom type; /* type of the selection value */
XtPointer transfer_id; /* unique identifier for transfer operation
int flags; /* unused: pass constant *

/* XmSELECTION_DEFAULT */
int remaining; /* number of transfers remaining in *

/* operation */
XtPointer value; /* the data transferred in this request
unsigned long length; /* the number of elements in the value
int format; /* size of each element in the value *

} XmSelectionCallbackStruct;

XmSpinBoxCallbackStruct
The callback structure passed to SpinBox callback routines. It is defined as
lows in <Xm/Xm.h>:

typedef struct {
int reason; /* the reason that the callback was called
XEvent *event; /* points to event that triggered callback *
Widget widget; /* the textual child affected by callback *
Boolean doit; /* whether to perform the changes *
int position; /* specifies the index of the next value *
XmString value; /* specifies the next value */
Boolean crossed_boundary; /* whether the SpinBox has wrapped
*/

} XmSpinBoxCallbackStruct;

XmString
The data type for Motif compound strings. In Motif 1.2, a compound string i
composed of one or more segments, where each segment can contain a fon
element tag, a string direction, and a text component. The font list element t
XmFONTLIST_DEFAULT_TAG specifies a text segment encoded in the curre
locale. In Motif 1.1, compound strings use character set identifiers rather tha
font list element tags. The character set identifier for a compound string can h
the value XmSTRING_DEFAULT_CHARSET, which takes the character set
from the current language environment, but this value may be removed from
future versions of Motif.
Motif Reference Manual 1187

Appendix B: Data Types

tring
rs:

nt
of

/

XmStringCharSet
A typedef for char * that is used to define the character set of a compound s
in Motif 1.1. Variables of this type can have the following values, among othe

XmSTRING_ISO8859_1
XmSTRING_OS_CHARSET
XmSTRING_DEFAULT_CHARSET

XmSTRING_DEFAULT_CHARSET specifies the character set from the curre
language environment, but this value may be removed from future versions
Motif.

XmStringCharSetTable
A pointer to a list of XmStringCharSets.

XmStringComponentType
An unsigned char value that specifies the type of component in a compound
string segment. Values of this type are returned by calls toXmStringGet-
NextComponent () andXmStringPeekNextComponent (). The valid val-
ues for the type are:

XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
/* font list element tag component */
/* obsolete in Motif 2.0 */

XmSTRING_COMPONENT_CHARSET
/* character set identifier component; */
/* obsolete in Motif 1.2 */

XmSTRING_COMPONENT_TEXT /* text component */
XmSTRING_COMPONENT_LOCALE_TEXT

/* locale-encoded text component */
XmSTRING_COMPONENT_DIRECTION

/* direction component */
XmSTRING_COMPONENT_SEPARATOR

/* separator component */
XmSTRING_COMPONENT_END /* last component in string *
XmSTRING_COMPONENT_UNKNOWN

/* unknown component */
XmSTRING_COMPONENT_LOCALE

/* the locale specifier */
XmSTRING_COMPONENT_WIDECHAR_TEXT

/* widechar text component */
XmSTRING_COMPONENT_LAYOUT_PUSH

/* stacked layout direction */
XmSTRING_COMPONENT_LAYOUT_POP

/* unstacked layout component */
1188 Motif Reference Manual

Appendix B: Data Types

/

 or

ing

s.

or
low-

ns.
XmSTRING_COMPONENT_RENDITION_BEGIN
/* beginning of rendition */

XmSTRING_COMPONENT_RENDITION_END
/* end of rendition */

XmSTRING_COMPONENT_TAG /* charset/font list tag component *
XmSTRING_COMPONENT_TAB /* tab component */

XmStringContext
A typedef for a string context that lets an application access the components
segments within a compound string. This data type is an opaque structure
returned by a call toXmStringInitContext (), and is used in subsequent
calls to the four other string context routines:XmStringFreeContext (),
XmStringGetNextSegment (), XmStringGetNextComponent (), and
XmStringPeekNextComponent ().

XmStringDirection
An unsigned char used for determining the direction in which a compound str
is displayed. The type is used in calls toXmStringDirectionCreate () and
XmStringSegmentCreate (). The valid values for the type are:

XmSTRING_DIRECTION_L_TO_R
XmSTRING_DIRECTION_R_TO_L
XmSTRING_DIRECTION_DEFAULT

XmStringTable
An opaque typedef for XmString * that is used for arrays of compound string

XmStringTag
A typedef for char * that is used to specify the tag which identifies components
segments within a compound string. This data type is used in calls to the fol
ing compound string routines:XmRenderTableCopy (), XmRenderTa-
bleGetRendition (), XmRenderTableGetRenditions (),
XmRenderTableGetTags (), XmRenderTableRemoveRenditions (),
XmRenditionCreate (), XmRenditionRetrieve (), XmStringGener-
ate (), XmStringParseText (), XmStringPutRendition (),
XmStringTableParseStringArray (), XmStringTableUnparse (),
andXmStringUnparse ().

XmTab
Specifies a tab stop, which is used to lay out compound strings within a colum
This data type is an opaque structure returned by a call toXmTabCreate (), and
is used in calls to the following tab routines:XmTabGetValues (), XmTab-
Free (), XmTabListInsertTabs ()
Motif Reference Manual 1189

Appendix B: Data Types

in a

ld
of

for-

ion

d in
XmTabList
Specifies a list of tab stops, which are used to lay out compound strings with
columns. This data type is an opaque structure returned by a call toXmTabLis-
tInsertTabs (), and is used in calls to the following tab routines:XmTab-
ListReplacePositions (), XmTabListRemoveTabs (),
XmTabListGetTab (), XmTabListTabCount (), XmTabListCopy (),
XmTabListFree (), andXmTabListInsertTabs ().

XmTextBlockRec
A structure that specifies information about a block of text in a Text or TextFie
widget. The text field in an XmTextVerifyCallbackStruct points to a structure
this type, which is defined as follows in <Xm/Xm.h>:

typedef struct {
char *ptr; /* pointer to the text to insert */
int length; /* length of this text */
XmTextFormat format; /* text format (e.g., FMT8BIT, FMT16BIT) */

} XmTextBlockRec, *XmTextBlock;

XmTextBlockRecWcs
A structure that specifies information about a block of text in wide-character
mat in a Text or TextField widget. The text field in an XmTextVerifyCallback-
StructWcs points to a structure of this type, which is defined as follows in <Xm/
Xm.h>:

typedef struct {
wchar_t *wcsptr; /* pointer to text to insert */
int length; /* length of this text */

} XmTextBlockRecWcs, *XmTextBlockWcs;

XmTextDirection
An enumerated type that specifies the search direction in calls toXmTextFind-
String () andXmTextFindStringWcs (). It is defined as follows in <Xm/
Xm.h>:

typedef enum {
XmTEXT_FORWARD, /* search forward */
XmTEXT_BACKWARD /* search backward */

} XmTextDirection;

XmTextPosition
A long integer, used by Text and TextField routines for determining the posit
of a character inside the text string.

XmTextSource
A pointer to an opaque structure that specifies a text source. The type is use
calls toXmTextGetSource () andXmTextSetSource ().
1190 Motif Reference Manual

Appendix B: Data Types

ut

er-
t-

/

*/

k

sed if
XmTextType
An enumerated type which specifies the type of data contained within an inp
stream. It is defined as follows in <Xm/Xm.h>:

typedef enum {
XmCHARSET_TEXT,
XmMULTIBYTE_TEXT,
XmWIDECHAR_TEXT,
XmNO_TEXT

} XmTextType;

This data type is used in calls to the following compound string routines:
XmParseMappingGetValues (), XmParseMappingSetValues (),
XmStringGenerate (), XmStringParseText (), XmStringTa-
bleParseStringArray (), XmStringTableUnparse (), andXmStrin-
gUnparse ().

XmTextVerifyCallbackStruct
The callback structure passed to the XmNlosingFocusCallback, XmNmodifyV
ifyCallback, and XmNmotionVerifyCallback callback routines of Text and Tex
Field widgets. It is defined as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
Boolean doit; /* do the action (True) or undo it (False) *
long currInsert; /* the insert cursor’s current position */
long newInsert; /* desired new position of insert cursor
long startPos; /* start of text to change */
long endPos; /* end of text to change */
XmTextBlock text; /* describes the text to insert */

} XmTextVerifyCallbackStruct, *XmTextVerifyPtr;

start_pos specifies the location at which to start modifying text. start_pos is
unused if the callback resource is XmNmotionVerifyCallback, and is the same as
the current_insertmember if the callback resource is XmNlosingFocusCallbac.

end_pos specifies the location at which to stop modifying text (however, if no
text was modified, end_pos has the same value as start_pos). end_pos is unu
the callback resource is XmNmotionVerifyCallback, and is the same as the
current_insert member if the callback resource is XmNlosingFocusCallback.
Motif Reference Manual 1191

Appendix B: Data Types

nd

*/

/
/
*/
/
/
/

fy-

d as

lues
XmTextVerifyCallbackStructWcs
The callback structure passed to the XmNmodifyVerifyCallbackWcs of Text a
TextField widgets. It is defined as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called
XEvent *event; /* event that triggered callback */
Boolean doit; /* do the action (True) or undo it (False)*
long currInsert; /* the insert cursor’s current position *
long newInsert; /* desired new position of insert cursor
long startPos; /* start of text to change *
long endPos; /* end of text to change *
XmTextBlockWcs text; /* describes the text to insert *

} XmTextVerifyCallbackStructWcs, *XmTextVerifyPtrWcs;

All of the fields in this structure are the same as the fields in the XmTextVeri
CallbackStruct except text, which points to a XmTextBlockRecWcs structure.

XmToggleButtonCallbackStruct
The callback structure passed to ToggleButton callback routines. It is define
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
int set; /* selection state of the toggle */

} XmToggleButtonCallbackStruct;

XmToggleButtonState
An enumerated type that specifies the state of a ToggleButton. The valid va
for the type are:

XmUNSET XmSET XmINDETERMINATE
1192 Motif Reference Manual

Appendix B: Data Types

on-

/

/

*/

on-
XmTopLevelEnterCallbackStruct
The callback structure passed to the XmNtopLevelEnterCallback of a DragC
text object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason callback was called *
XEvent *event; /* event that triggered callback */
Time timestamp; /* timestamp of logical event */
Screen screen; /* screen of top-level window *
Window window; /* window being entered */
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */
unsigned char dragProtocolStyle; /* drag protocol of initiator
Atom iccHandle; /* internal: not documented */

} XmTopLevelEnterCallbackStruct, *XmTopLevelEnterCallback;

XmTopLevelLeaveCallbackStruct
The callback structure passed to the XmNtopLevelLeaveCallback of a DragC
text object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason callback was called */
XEvent *event; /* event that triggered callback */
Time timestamp; /* timestamp of logical event */
Screen screen; /* screen of top-level window */
Window window; /* window being left */

} XmTopLevelLeaveCallbackStruct, *XmTopLevelLeaveCallback;
Motif Reference Manual 1193

Appendix B: Data Types

e

*/
XmTransferStatus
An enumerated type that specifies the status of a data transfer operation. Th
value is passed as a parameter toXmTransferDone () in order to terminate cur-
rent data transfer. The valid values for the type are:

XmTRANSFER_DONE_SUCCEED
 XmTRANSFER_DONE_CONTINUE
XmTRANSFER_DONE_FAIL
XmTRANSFER_DONE_DEFAULT

XmTraversalDirection
An enumerated type that specifies direction of traversal in a XmTraverseOb-
scuredCallbackStruct. It is defined as follows in <Xm/Xm.h>:

typedef enum {
XmTRAVERSE_CURRENT,
XmTRAVERSE_NEXT,
XmTRAVERSE_PREV,
XmTRAVERSE_HOME,
XmTRAVERSE_NEXT_TAB_GROUP,
XmTRAVERSE_PREV_TAB_GROUP,
XmTRAVERSE_UP,
XmTRAVERSE_DOWN,
XmTRAVERSE_LEFT,
XmTRAVERSE_RIGHT
XmTRAVERSE_GLOBALLY_FORWARD /* 2.0 */,
XmTRAVERSE_GLOBALLY_BACKWARD /* 2.0 */

} XmTraversalDirection;

XmTraverseObscureCallbackStruct
The callback structure passed to the XmNtraverseObscuredCallback of a
ScrolledWindow widget. It is defined as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason the callback was called
XEvent *event; /* event that triggered callback */
Widget traversal_destination;

/* widget or gadget to traverse to */
XmTraversalDirection direction; /* direction of traversal */

} XmTraverseObscuredCallbackStruct;
1194 Motif Reference Manual

Appendix B: Data Types

pe

an

ck

the
XmVisibility
An enumerated type that specifies the visibility state of a widget. A value of ty
XmVisibility is returned byXmGetVisibility (). It is defined as follows in
<Xm/Xm.h>:

typedef enum {
XmVISIBILITY_UNOBSCURED, /* completely visible */
XmVISIBILITY_PARTIALLY_OBSCURED, /* partially visible */
XmVISIBILITY_FULLY_OBSCURED /* not visible */

} XmVisibility;

XrmValue
A structure defined in <X11/Xresource.h>,used inXtConvert () and other
resource conversion routines:

typedef struct {
unsigned int size;
XPointer addr;

} XrmValue, *XrmValuePtr;

XrmValuePtr
See XrmValue.

XtAccelerators
A pointer to an opaque internal type, a compiled accelerator table. A pointer to
XtAccelerators structure is returned by a call toXtParseAcceleratorTa-
ble (). Usually, the compiled accelerator table is produced automatically by
resource conversion of a string accelerator table stored in a resource file.

XtCallbackList
A structure defined as follows in <X11/Intrinsic.h>:

typedef struct _XtCallbackRec {
XtCallbackProc callback;
XtPointer closure;

} XtCallbackRec, *XtCallbackList;

Applications which useXtAddCallback () or XtRemoveCallback () do not
need to use the XtCallbackList type. It can, however, be used to set a callba
resource by passing the structure toXtCreateWidget () or XtSetValues ().
Any structure so defined should be declared static. In most documentation,
closure member is referred to as client_data.
Motif Reference Manual 1195

Appendix B: Data Types

on-
in

ll is
oce-
XtCallbackProc
The prototype for callback functions. It is defined as follows in<X11/Intrin-
sic.h>:

typedef void (*XtCallbackProc) (Widget widget, XtPointer client_data,
XtPointer call_data)

XtConvertSelectionIncrProc
The prototype for an incremental selection conversion procedure. The XmNc
vertProc for a DragContext object is of this type, which is defined as follows
<X11/Intrinsic.h>:

typedef Boolean (*XtConvertSelectionIncrProc)(

Widget widget,
Atom *selection,
Atom *target,
Atom *type_return,
XtPointer *value_return,
unsigned long *length_return,
int *format_return,
unsigned long *max_length,
XtPointer client_data,
XtRequestId *request_id)

XtCreatePopupChildProc
The prototype for a procedure that pops up the child of a shell when the she
popped up. The XmNcreatePopupChildProc resource of Shell specifies a pr
dure of this type, which is defined as follows in<X11/Intrinsic.h>:

typedef void (*XtCreatePopupChildProc) (Widget shell)

XtKeyProc
The prototype for a keycode-to-keysym translation procedure.XmTrans-
lateKey () is the default XtKeyProc for Motif applications. The prototype is
defined as follows in<X11/Intrinsic.h>:

typedef void (*XtKeyProc)(Display *display,
KeyCode keycode,
Modifiers modifiers,
Modifiers *modifiers_return,
KeySym *keysym_return)
1196 Motif Reference Manual

Appendix B: Data Types

hil-
this

ay
ally
ill

an
XtOrderProc
The prototype for a procedure that allows composite widgets to order their c
dren. The XmNinsertPosition resource of Composite specifies a procedure of
type, which is defined as follows in<X11/Composite.h>:

typedef Cardinal (*XtOrderProc) (Widget child)

XtPointer
A datum large enough to contain the largest of a char*, int*, function pointer,
structure pointer, or long value. A pointer to any type or function, or a long, m
be converted to an XtPointer and back again and the result will compare equ
to the original value. In ANSI-C environments, it is expected that XtPointer w
be defined as void *.

XtSelectionCallbackProc
The prototype for a selection callback procedure. The XmNtransferProc for a
DropTransfer object is of this type, and is defined as follows in<X11/Intrin-
sic.h>:

typedef void (*XtSelectionCallbackProc)(Widget widget,
XtPointer client_data,
Atom *selection,
Atom *type,
XtPointer value,
unsigned long *length,
int *format0

XtTranslations
A pointer to an opaque internal type, a compiled translation table. A pointer to
XtTranslations structure is returned by a call toXtParseTranslationTa-
ble (). Usually, the compiled translation table is produced automatically by
resource conversion of a string translation table stored in a resource file.
Motif Reference Manual 1197

Appendix B: Data Types
1198 Motif Reference Manual

Re s

Xm

Xm

Xm n
n

Xm n

Xm

Xm t

Xm rd

Xm ow

Xm

Xm

Xm

Xm

Xm

Xm
Appendix C - Table of Motif Resources

This appendix lists all of the resources for the widget classes provided by the Motif

toolkit and the X Toolkit Intrinsics. The table lists the appropriate data types for

specifying each resource with both Motif and UIL. For resources that cannot be

specified in UIL, the table entry indicates that the resource is not applicable (NA). The

table also specifies the widget classes that define each resource. If a widget class has a

corresponding gadget class, the table lists only the widget class as defining resources,

even though the resources pertain to both the widget and gadget classes. For more

information on each resource, see the appropriate reference pages in Section 2, Motif
and Xt Widget Classes.

source Name Motif Type UIL Type Defined in Clas

NacceleratorText XmString compound_string XmLabel

Naccelerators XtAccelerators translation_table Core

NactivateCallback XtCallbackList procedure XmArrowButto
XmCascadeButto
XmDrawnButton
XmPushButton
XmText
XmTextField

NadjustLast Boolean boolean XmRowColum

NadjustMargin Boolean boolean XmRowColumn

Nalignment unsigned char integer XmIconGadge
XmLabel
XmTab

NallowOverlap Boolean boolean XmBulletinBoa

NallowResize Boolean boolean XmPanedWind

NallowShellResize Boolean boolean Shell

NancestorSensitive Boolean boolean Core
XmRectObj

NanimationMask Pixmap NA XmDropSite

NanimationPixmap Pixmap NA XmDropSite

NanimationPixmapDepth int NA XmDropSite

NanimationStyle unsigned char NA XmDropSite
Motif Reference Manual 1199

Appendix C: Table of Motif Resources

Xm x

Xm ox

Xm

Xm

Xm n

Xm

Xm

Xm n

Xm

Xm

Xm
x

Xm

Xm

Xm

Xm

Xm dow

Xm

Xm rd

Xm

Xm

Xm

Xm

Xm

Xm

Xm t

Re s
NapplyCallback XtCallbackList procedure XmSelectionBo

NapplyLabelString XmString compound_string XmSelectionB

Nargc int NA ApplicationShell

Nargv String * NA ApplicationShell

NarmCallback XtCallbackList procedure XmArrowButto
XmDrawnButton
XmPushButton
XmToggleButton

NarmColor Pixel color XmPushButton

NarmPixmap Pixmap pixmap XmPushButton

NarrowDirection unsigned char integer XmArrowButto

NarrowLayout unsigned char integer XmSpinBox

NarrowOrientation unsigned char integer XmSpinBox

NarrowSensitivity unsigned char integer XmSpinBox
XmSimpleSpinBo

NarrowSize int integer XmComboBox
XmSpinBox

NarrowSpacing int integer XmComboBox

Nattachment unsigned char NA XmDragIcon

NaudibleWarning unsigned char integer VendorShell

NautoDragModel XtEnum integer XmScrolledWin

NautoShowCursorPosition Boolean boolean XmText

NautoUnmanage Boolean boolean XmBulletinBoa

NautomaticSelection unsigned char integer XmContainer
XmList

NbackPageBackground Pixel color XmNotebook

NbackPageForeground Pixel color XmNotebook

NbackPageNumber int integer XmNotebook

NbackPagePlacement unsigned char integer XmNotebook

NbackPageSize Dimension integer XmNotebook

Nbackground Pixel color Core XmGadge

source Name Motif Type UIL Type Defined in Clas
1200 Motif Reference Manual

Appendix C: Table of Motif Resources

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm t

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Re s
NbackgroundPixmap Pixmap pixmap Core
XmGadget

NbaseHeight int integer WMShell

NbaseWidth int integer WMShell

NbindingPixmap Pixmap pixmap XmNotebook

NbindingType unsigned char integer XmNotebook

NbindingWidth int integer XmNotebook

NbitmapConversionModel XtEnum NA XmScreen

NblendModel unsigned char NA XmDragContex

NblinkRate int integer XmText
XmTextField

NborderColor Pixel color Core

NborderPixmap Pixmap pixmap Core

NborderWidth Dimension integer Core
XmRectObj

NbottomAttachment unsigned char integer XmForm

NbottomOffset int integer XmForm

NbottomPosition int integer XmForm

NbottomShadowColor Pixel color XmGadget
XmManager
XmPrimitive

NbottomShadowPixmap Pixmap pixmap XmGadget
XmManager
XmPrimitive

NbottomWidget Widget widget_ref XmForm

NbrowseSelectionCallback XtCallbackList procedure XmList

NbuttonAcceleratorText XmStringTable NA XmRowColumn

NbuttonAccelerators StringTable NA XmRowColumn

NbuttonCount int NA XmRowColumn

NbuttonFontList XmFontList font_table VendorShell
XmBulletinBoard
XmMenuShell

source Name Motif Type UIL Type Defined in Clas
Motif Reference Manual 1201

Appendix C: Table of Motif Resources

Xm

Xm n

Xm

Xm

Xm

Xm

Xm d

Xm ox

Xm ox

Xm tton

Xm utton

Xm

Xm

Xm ox

Xm

Xm

Xm

Xm

Xm ow

Xm

Xm

Xm

Xm

Xm
x

Re s
NbuttonRenderTable XmRenderTable widget_ref VendorShell
XmBulletinBoard
XmMenuShell

NbuttonMnemonicCharSets XmStringCharSetTable NA XmRowColum

NbuttonMnemonics XmKeySymTable NA XmRowColumn

NbuttonSet int NA XmRowColumn

NbuttonType XmButtonTypeTable NA XmRowColumn

Nbuttons XmStringTable NA XmRowColumn

NcancelButton Widget widget_ref XmBulletinBoar

NcancelCallback XtCallbackList procedure XmMessageB
XmSelectionBox

NcancelLabelString XmString compound_string XmMessageB
XmSelectionBox

NcascadePixmap Pixmap pixmap XmCascadeBu

NcascadingCallback XtCallbackList procedure XmCascadeB

NchildHorizontalAlignment unsigned char integer XmFrame

NchildHorizontalSpacing Dimension integer XmFrame

NchildPlacement unsigned char integer XmSelectionB

NchildType unsigned char integer XmFrame

NchildVerticalAlignment unsigned char integer XmFrame

Nchildren WidgetList NA Composite

NclientData XtPointer NA XmDragContext

NclipWindow Widget widget_ref XmScrolledWind

NcollapsedStatePixmap Pixmap pixmap XmContainer

NcolorAllocationProc XmAllocColorProc NA XmScreen

NcolorCalculationProc XmScreenColorProc NA XmScreen

Ncolormap Colormap identifier Core

Ncolumns short integer XmComboBox
XmSimpleSpinBo
XmText
XmTextField

source Name Motif Type UIL Type Defined in Clas
1202 Motif Reference Manual

Appendix C: Table of Motif Resources

Xm

Xm

Xm

Xm

Xm

Xm ow

Xm

Xm xt

Xm

Xm

Xm t

Xm t

Xm

Xm

Xm

Xm

Xm
x

Xm

Xm

Xm

Xm d

Xm

Xm n

Re s
NcomboBoxType unsigned char integer XmComboBox

Ncommand XmString compound_string XmCommand

NcommandChangedCallback XtCallbackList procedure XmCommand

NcommandEnteredCallback XtCallbackList procedure XmCommand

NcommandWindow Widget widget_ref XmMainWindow

NcommandWindowLocation unsigned char integer XmMainWind

NconvertCallback XtCallbackList procedure XmContainer
XmDrawingArea
XmPrimitive
XmScale

NconvertProc XtConvertSelectionIncrProc NA XmDragConte

NcreatePopupChildProc XtCreatePopupChildProc any Shell

NcurrentPageNumber integer int XmNotebook

NcursorBackground Pixel NA XmDragContex

NcursorForeground Pixel NA XmDragContex

NcursorPosition XmTextPosition integer XmText
XmTextField

NcursorPositionVisible Boolean boolean XmText
XmTextField

NdarkThreshold int NA XmScreen

Ndecimal String string XmTab

NdecimalPoints short integer XmScale
XmSimpleSpinBo
XmSpinBox

NdecrementCallback XtCallbackList procedure XmScrollBar

NdefaultActionCallback XtCallbackList procedure XmContainer
XmList

NdefaultArrowSensitivity unsigned char integer XmSpinBox

NdefaultButton Widget widget_ref XmBulletinBoar

NdefaultButtonEmphasis XtEnum NA XmDisplay

NdefaultButtonShadowThickness Dimension integer XmPushButto

source Name Motif Type UIL Type Defined in Clas
Motif Reference Manual 1203

Appendix C: Table of Motif Resources

Xm ox

Xm

Xm

Xm

Xm

Xm

Xm

Xm rd

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm n

Xm

Re s
NdefaultButtonType unsigned char integer XmMessageB

NdefaultCopyCursorIcon Widget NA XmScreen

NdefaultFontList XmFontList font_table VendorShell
XmMenuShell

NdefaultInvalidCursorIcon Widget NA XmScreen

NdefaultLinkCursorIcon Widget NA XmScreen

NdefaultMoveCursorIcon Widget NA XmScreen

NdefaultNoneCursorIcon Widget NA XmScreen

NdefaultPosition Boolean boolean XmBulletinBoa

NdefaultSourceCursorIcon Widget NA XmScreen

NdefaultValidCursorIcon Widget NA XmScreen

NdefaultVirtualBindings String NA XmDisplay

NdeleteResponse unsigned char integer VendorShell

Ndepth int identifier Core
 XmDragIcon

NdestinationCallback XtCallbackList procedure XmContainer
XmDrawingArea
XmList
XmText
XmTextField

NdestroyCallback XtCallbackList procedure Core
XmObject

Ndetail XmStringTable string_table XmIconGadget

NdetailColumnHeading XmStringTable string_table XmContainer

NdetailColumnHeadingCount Cardinal integer XmContainer

NdetailCount int integer XmIconGadget

NdetailOrder Cardinal * integer_table XmContainer

NdetailOrderCount Cardinal integer XmContainer

NdetailShadowThickness int integer XmArrowButto
XmSpinBox
XmToggleButton

NdetailTabList XmTabList widget_ref XmContainer

source Name Motif Type UIL Type Defined in Clas
1204 Motif Reference Manual

Appendix C: Table of Motif Resources

Xm rd

Xm rd

Xm x

Xm Box

Xm nBox

Xm nBox

Xm nBox

Xm onBox

Xm nBox

Xm Box

Xm nBox

Xm Box

Xm n

Xm

Xm

Xm t

Xm

Xm t

Xm xt

Xm

Xm

Xm

Xm t

Xm

Xm

Re s
NdialogStyle unsigned char integer XmBulletinBoa

NdialogTitle XmString compound_string XmBulletinBoa

NdialogType unsigned char integer XmMessageBo
XmSelectionBox

NdirListItemCount int integer XmFileSelection

NdirListItems XmStringTable string_table XmFileSelectio

NdirListLabelString XmString compound_string XmFileSelectio

NdirMask XmString compound_string XmFileSelectio

NdirSearchProc XmSearchProc any XmFileSelecti

NdirSpec XmString compound_string XmFileSelectio

NdirTextLabelString XmString NA XmFileSelection

Ndirectory XmString compound_string XmFileSelectio

NdirectoryValid Boolean NA XmFileSelection

NdisarmCallback XtCallbackList procedure XmArrowButto
XmDrawnButton
XmPushButton
XmToggleButton

NdoubleClickInterval int integer XmList

NdragCallback XtCallbackList procedure XmScale
 XmScrollBar

NdragDropFinishCallback XtCallbackList NA XmDragContex

NdragInitiatorProtocolStyle unsigned char NA XmDisplay

NdragMotionCallback XtCallbackList NA XmDragContex

NdragOperations unsigned char NA XmDragConte

NdragProc XtCallbackProc NA XmDropSite

NdragReceiverProtocolStyle unsigned char NA XmDisplay

NdragStartCallback XtCallbackList NA XmDisplay

NdropFinishCallback XtCallbackList NA XmDragContex

NdropProc XtCallbackProc NA XmDropSite

NdropRectangles XRectangle * NA XmDropSite

source Name Motif Type UIL Type Defined in Clas
Motif Reference Manual 1205

Appendix C: Table of Motif Resources

Xm

Xm t

Xm t

Xm

Xm

Xm t

Xm er

Xm

Xm

x

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm n

Xm

Xm n

Xm n

Xm

Xm n

Xm

Re s
NdropSiteActivity unsigned char NA XmDropSite

NdropSiteEnterCallback XtCallbackList NA XmDragContex

NdropSiteLeaveCallback XtCallbackList NA XmDragContex

NdropSiteOperations unsigned char NA XmDropSite

NdropSiteType unsigned char NA XmDropSite

NdropStartCallback XtCallbackList NA XmDragContex

NdropTransfers XmDropTransferEntryRec *} NA XmDropTransf

NeditMode int integer XmText

Neditable Boolean boolean XmScale
XmScrollBar
XmSimpleSpinBo
XmSpinBox
XmText
XmTextField

NenableBtn1Transfer XtEnum NA XmDisplay

NenableButtonTab Boolean NA XmDisplay

NenableEtchedInMenu Boolean NA XmDisplay

NenableMultiKeyBindings Boolean NA XmDisplay

NenableThinThickness Boolean NA XmDisplay

NenableToggleColor Boolean NA XmDisplay

NenableToggleVisual Boolean NA XmDisplay

NenableUnselectableDrag Boolean NA XmDisplay

NenableWarp XtEnum NA XmDisplay

NentryAlignment unsigned char integer XmRowColum

NentryBorder Dimension integer XmRowColumn

NentryCallback XtCallbackList procedure XmRowColum

NentryClass WidgetClass class_rec_name XmRowColum

NentryParent Widget widget_ref XmContainer

NentryVerticalAlignment unsigned char integer XmRowColum

NentryViewType unsigned char integer XmContainer

source Name Motif Type UIL Type Defined in Clas
1206 Motif Reference Manual

Appendix C: Table of Motif Resources

Xm

Xm

Xm ea

Xm

Xm ox

Xm Box

Xm nBox

Xm nBox

Xm onBox

Xm nBox

Xm

Xm n

Xm nBox

Xm

Xm rd

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Re s
NexpandedStatePixmap Pixmap pixmap XmContainer

NexportTargets Atom * NA XmDragContext

NexposeCallback XtCallbackList procedure XmDrawingAr
XmDrawnButton

NextendedSelectionCallback XtCallbackList procedure XmList

NfileFilterStyle XtEnum NA XmFileSelectionB

NfileListItemCount int integer XmFileSelection

NfileListItems XmStringTable string_table XmFileSelectio

NfileListLabelString XmString compound_string XmFileSelectio

NfileSearchProc XmSearchProc any XmFileSelecti

NfileTypeMask unsigned char integer XmFileSelectio

NfillOnArm Boolean boolean XmPushButton

NfillOnSelect Boolean boolean XmToggleButto

NfilterLabelString XmString compound_string XmFileSelectio

NfirstPageNumber int integer XmNotebook

NfocusCallback XtCallbackList procedure XmBulletinBoa
XmText
XmTextField

Nfont XFontStruct * NA XmScreen

Nfont XFontStruct * font XmRendition

NfontList XmFontList font_table XmComboBox
XmContainer
XmIconGadget
XmLabel
XmList
XmScale
XmText
XmTextField

NfontName String string XmRendition

NfontType XmFontType integer XmRendition

Nforeground Pixel color XmManager
XmPrimitive

NforegroundThreshold int NA XmScreen

source Name Motif Type UIL Type Defined in Clas
Motif Reference Manual 1207

Appendix C: Table of Motif Resources

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm ox

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Re s
NfractionBase int integer XmForm

NframeBackground Pixel color XmNotebook

NframeChildType unsigned char integer XmFrame

NframeShadowThickness Dimension integer XmNotebook

NgainPrimaryCallback XtCallbackList procedure XmText
XmTextField

Ngeometry String string Shell

Nheight Dimension integer Core
XmDragIcon
XmRectObj

NheightInc int integer WMShell

NhelpCallback XtCallbackList procedure XmGadget
XmManager
XmPrimitive

NhelpLabelString XmString compound_string XmMessageB
XmSelectionBox

NhighlightColor Pixel color XmGadget
XmManager
XmPrimitive

NhighlightOnEnter Boolean boolean XmGadget
XmPrimitive
XmScale

NhighlightPixmap Pixmap pixmap XmGadget
XmManager
XmPrimitive

NhighlightThickness Dimension integer XmComboBox
XmGadget
XmPrimitive
XmScale

NhistoryItemCount int integer XmCommand

NhistoryItems XmStringTable string_table XmCommand

NhistoryMaxItems int integer XmCommand

NhistoryVisibleItemCount int integer XmCommand

NhorizontalFontUnit int NA XmScreen

source Name Motif Type UIL Type Defined in Clas
1208 Motif Reference Manual

Appendix C: Table of Motif Resources

Xm
w

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm ox

Xm t

Xm ton

Xm on

Xm n

Xm n

Xm on

Xm

Xm

Xm

Xm

Re s
NhorizontalScrollBar Widget widget_ref XmList
XmScrolledWindo

NhorizontalSpacing Dimension integer XmForm

NhotX Position NA XmDragIcon

NhotY Position NA XmDragIcon

NiconMask Pixmap pixmap WMShell

NiconName String NA TopLevelShell

NiconNameEncoding Atom NA TopLevelShell

NiconPixmap Pixmap pixmap WMShell

NiconWindow Window any WMShell

NiconX int integer WMShell

NiconY int integer WMShell

Niconic Boolean NA TopLevelShell

NimportTargets Atom * NA XmDropSite

Nincrement int integer XmScrollBar

NincrementCallback XtCallbackList procedure XmScrollBar

NincrementValue int integer XmSimpleSpinB
XmSpinBox

Nincremental Boolean NA XmDragContex
XmDropTransfer

NindeterminateInsensitivePixmap Pixmap pixmap XmToggleBut

NindeterminatePixmap Pixmap pixmap XmToggleButt

NindicatorOn Boolean boolean XmToggleButto

NindicatorSize Dimension integer XmToggleButto

NindicatorType unsigned char integer XmToggleButt

NinitialDelay int integer XmScrollBar
XmSpinBox

NinitialFocus Widget widget_ref XmManager

NinitialResourcesPersistent Boolean boolean Core

NinitialState int integer WMShell

source Name Motif Type UIL Type Defined in Clas
Motif Reference Manual 1209

Appendix C: Table of Motif Resources

Xm

Xm

Xm

Xm a

Xm

Xm

Xm

Xm

Xm t

Xm

Xm n

Xm

Xm

Xm

Xm d

Xm

Xm

Xm

Xm t

Xm

Xm

Xm

Xm

Re s
NinnerMarginHeight Dimension integer XmNotebook

NinnerMarginWidth Dimension integer XmNotebook

Ninput Boolean boolean WMShell

NinputCallback XtCallbackList procedure XmDrawingAre

NinputMethod String string VendorShell

NinputPolicy XmInputPolicy integer VendorShell

NinsensitiveStipplePixmap Pixmap NA XmScreen

NinsertPosition XtOrderProc identifier Composite

NinvalidCursorForeground Pixel NA XmDragContex

NisAligned Boolean boolean XmRowColumn

NisHomogeneous Boolean boolean XmRowColum

NitemCount int integer XmComboBox
XmList

Nitems XmStringTable string_table XmComboBox
XmList

NkeyboardFocusPolicy unsigned char integer VendorShell

NlabelFontList XmFontList font_table XmBulletinBoar
VendorShell
XmMenuShell

NlabelInsensitivePixmap Pixmap pixmap XmLabel

NlabelPixmap Pixmap pixmap XmLabel

NlabelRenderTable XmRenderTable widget_ref VendorShell
XmBulletinBoard
XmMenuShell

NlabelString XmString compound_string XmIconGadge
XmLabel
XmRowColumn

NlabelType unsigned char integer XmLabel

NlargeCellHeight Dimension integer XmContainer

NlargeCellWidth Dimension integer XmContainer

NlargeIconMask Pixmap pixmap XmIconGadget

source Name Motif Type UIL Type Defined in Clas
1210 Motif Reference Manual

Appendix C: Table of Motif Resources

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm x

Xm x

Xm

Xm

Xm

Xm

Xm nBox

Xm

Xm

Xm

Xm

Re s
NlargeIconPixmap Pixmap pixmap XmIconGadget

NlargeIconX NA float XmContainer

NlargeIconY NA float XmContainer

NlargeIconY Pixmap pixmap XmIconGadget

NlastPageNumber int integer XmNotebook

NlayoutDirection XmDirection integer VendorShell
XmGadget
XmManager
XmMenuShell
XmPrimitive

NlayoutType unsigned char integer XmContainer

NleftAttachment unsigned char integer XmForm

NleftOffset int integer XmForm

NleftPosition int integer XmForm

NleftWidget Widget widget_ref XmForm

NlightThreshold int NA XmScreen

Nlist Widget widget_ref XmComboBox

NlistItemCount int integer XmSelectionBox

NlistItems XmStringTable string_table XmSelectionBo

NlistLabelString XmString compound_string XmSelectionBo

NlistMarginHeight Dimension integer XmList

NlistMarginWidth Dimension integer XmList

NlistSizePolicy unsigned char integer XmList

NlistSpacing Dimension integer XmList

NlistUpdated Boolean boolean XmFileSelectio

NlistVisibleItemCount int integer XmSelectionBox

NloadModel unsigned char integer XmRendition

NlosePrimaryCallback XtCallbackList procedure XmText
XmTextField

NlosingFocusCallback XtCallbackList procedure XmText
XmTextField

source Name Motif Type UIL Type Defined in Clas
Motif Reference Manual 1211

Appendix C: Table of Motif Resources

Xm w

Xm w

Xm

Xm rd

Xm

Xm ton

Xm

Xm

Xm rd

Xm

Xm

Xm

Xm d

Xm

Re s
NmainWindowMarginHeight Dimension integer XmMainWindo

NmainWindowMarginWidth Dimension integer XmMainWindo

NmajorTabSpacing Dimension integer XmNotebook

NmapCallback XtCallbackList procedure XmBulletinBoa
XmRowColumn

NmappedWhenManaged Boolean boolean Core

NmappingDelay int integer XmCascadeBut

Nmargin Dimension integer XmSeparator

NmarginBottom Dimension integer XmLabel

NmarginHeight Dimension integer XmBulletinBoa
XmComboBox
XmContainer
XmDrawingArea
XmFrame
XmIconGadget
XmLabel
XmPanedWindow
XmRowColumn
XmSpinBox
XmText
XmTextField

NmarginLeft Dimension integer XmLabel

NmarginRight Dimension integer XmLabel

NmarginTop Dimension integer XmLabel

NmarginWidth Dimension integer XmBulletinBoar
XmComboBox
XmContainer
XmDrawingArea
XmFrame
XmIconGadget
XmLabel
XmPanedWindow
XmRowColumn
XmSpinBox
XmText
XmTextField

Nmask Pixmap NA XmDragIcon

source Name Motif Type UIL Type Defined in Clas
1212 Motif Reference Manual

Appendix C: Table of Motif Resources

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm ox

Xm

Xm

Xm

Xm

Xm

Xm

Xm ox

Xm ox

Xm w

Xm

Xm

Xm

Xm

Xm x

Xm

Xm ox

Re s
NmatchBehavior unsigned char integer XmComboBox
XmList

NmaxAspectX int integer WMShell

NmaxAspectY int integer WMShell

NmaxHeight int integer WMShell

NmaxLength int integer XmText
XmTextField

NmaxWidth int integer WMShell

Nmaximum int integer XmScale
XmScrollBar

NmaximumValue int integer XmSimpleSpinB
XmSpinBox

NmenuAccelerator String string XmRowColumn

NmenuBar Widget widget_ref XmMainWindow

NmenuCursor String NA XmScreen

NmenuHelpWidget Widget widget_ref XmRowColumn

NmenuHistory Widget widget_ref XmRowColumn

NmenuPost String string XmRowColumn

NmessageAlignment unsigned char integer XmMessageB

NmessageString XmString compound_string XmMessageB

NmessageWindow Widget widget_ref XmMainWindo

NminAspectX int integer WMShell

NminAspectY int integer WMShell

NminHeight int integer WMShell

NminWidth int integer WMShell

NminimizeButtons Boolean boolean XmMessageBo
XmSelectionBox

Nminimum int integer XmScale
XmScrollBar

NminimumValue int integer XmSimpleSpinB
XmSpinBox

source Name Motif Type UIL Type Defined in Clas
Motif Reference Manual 1213

Appendix C: Table of Motif Resources

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm x

Xm

Xm

Xm

Xm

Xm

Xm

Xm ox

Xm nBox

Xm

Xm rd

Xm t

Xm

Re s
NminorTabSpacing Dimension integer XmNotebook

Nmnemonic KeySym keysym XmLabel
XmRowColumn

NmnemonicCharSet String string XmLabel
XmRowColumn

NmodifyVerifyCallback XtCallbackList procedure XmText
XmTextField

NmodifyVerifyCallbackWcs XtCallbackList procedure XmText
XmTextField

NmotifVersion int NA XmDisplay

NmotionVerifyCallback XtCallbackList procedure XmText
XmTextField

NmoveOpaque Boolean NA XmScreen

NmultiClick unsigned char integer XmArrowButton
XmDrawnButton
XmPushButton

NmultipleSelectionCallback XtCallbackList procedure XmList

NmustMatch Boolean boolean XmSelectionBo

NmwmDecorations int integer VendorShell

NmwmFunctions int integer VendorShell

NmwmInputMode int integer VendorShell

NmwmMenu String string VendorShell

NnavigationType XmNavigationType integer XmGadget
XmManager
XmPrimitive

NnoFontCallback XtCallbackList NA XmDisplay

NnoMatchCallback XtCallbackList procedure XmSelectionB

NnoMatchString XmString compound_string XmFileSelectio

NnoRenditionCallback XtCallbackList NA XmDisplay

NnoResize Boolean boolean XmBulletinBoa

NnoneCursorForeground Pixel NA XmDragContex

NnotebookChildType unsigned char integer XmNotebook

source Name Motif Type UIL Type Defined in Clas
1214 Motif Reference Manual

Appendix C: Table of Motif Resources

Xm

Xm

Xm

Xm r

Xm t

Xm

Xm ox

Xm

Xm

Xm

Xm x

Xm x

Xm xt

Xm t

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Re s
NnumChildren Cardinal NA Composite

NnumColumns short integer XmRowColumn

NnumDropRectangles Cardinal NA XmDropSite

NnumDropTransfers Cardinal NA XmDropTransfe

NnumExportTargets Cardinal NA XmDragContex

NnumImportTargets Cardinal NA XmDropSite

NnumValues int integer XmSimpleSpinB
XmSpinBox

NoffsetModel XmOffsetModel integer XmTab

NoffsetX Position NA XmDragIcon

NoffsetY Position NA XmDragIcon

NokCallback XtCallbackList procedure XmMessageBo
XmSelectionBox

NokLabelString XmString compound_string XmMessageBo
XmSelectionBox

NoperationChangedCallback XtCallbackList NA XmDragConte

NoperationCursorIcon Widget NA XmDragContex

NoptionLabel XmString NA XmRowColumn

NoptionMnemonic KeySym NA XmRowColumn

Norientation unsigned char integer XmNotebook
XmPanedWindow
XmRowColumn
XmScale
XmScrollBar
XmSeparator

NoutlineButtonPolicy unsigned char integer XmContainer

NoutlineChangedCallback XtCallbackList procedure XmContainer

NoutlineColumnWidth Dimension integer XmContainer

NoutlineIndentation Dimension integer XmContainer

NoutlineLineStyle unsigned char integer XmContainer

NoutlineState unsigned char integer XmContainer

source Name Motif Type UIL Type Defined in Clas
Motif Reference Manual 1215

Appendix C: Table of Motif Resources

Xm

Xm n

Xm

Xm

Xm

Xm

Xm

Xm ow

Xm ow

Xm Box

Xm nBox

Xm

Xm

Xm

Xm

Xm n

Xm

Xm ox

Xm

Xm

Xm Box

Xm

Xm

Xm

Re s
NoverrideRedirect Boolean boolean Shell

Npacking unsigned char integer XmRowColum

NPageChangedCallback XtCallbackList procedure XmNotebook

NpageDecrementCallback XtCallbackList procedure XmScrollBar

NpageIncrement int integer XmScrollBar

NpageIncrementCallback XtCallbackList procedure XmScrollBar

NpageNumber int integer XmNotebook

NpaneMaximum Dimension integer XmPanedWind

NpaneMinimum Dimension integer XmPanedWind

NpathMode XtEnum NA XmFileSelection

Npattern XmString compound_string XmFileSelectio

NpendingDelete Boolean boolean XmTextField

Npixmap Pixmap NA XmDragIcon

NpopdownCallback XtCallbackList procedure Shell

NpopupCallback XtCallbackList procedure Shell

NpopupEnabled Boolean boolean XmRowColum

NpopupHandlerCallback XtCallbackList procedure XmManager
XmPrimitive

Nposition int integer XmSimpleSpinB
XmSpinBox

NpositionIndex short integer XmContainer
XmNotebook
XmPanedWindow
XmRowColumn

NpositionMode XtEnum integer XmComboBox

NpositionType unsigned char integer XmSimpleSpin
XmSpinBox

NpostFromButton int NA XmRowColumn

NpreeditType String string VendorShell

NprimaryOwnership unsigned char integer XmContainer
XmList

source Name Motif Type UIL Type Defined in Clas
1216 Motif Reference Manual

Appendix C: Table of Motif Resources

Xm

Xm

Xm on

Xm nBox

Xm n

Xm n

Xm

Xm ow

Xm

Xm

Xm

Xm

Xm

Xm a

Xm n

Xm rd

Xm

Xm

Xm

Re s
NprocessingDirection unsigned char integer XmScale
XmScrollBar

NpromptString XmString compound_string XmCommand

NpushButtonEnabled Boolean boolean XmDrawnButt

NqualifySearchDataProc XmQualifyProc any XmFileSelectio

NradioAlwaysOne Boolean boolean XmRowColum

NradioBehavior Boolean boolean XmRowColum

NrecomputeSize Boolean boolean XmLabel

NrefigureMode Boolean boolean XmPanedWind

NrenderTable XmRenderTable widget_ref XmComboBox
XmContainer
XmIconGadget
XmLabel
XmList
XmScale
XmText
XmTextField

NrenditionBackground Pixel color XmRendition

NrenditionForeground Pixel color XmRendition

NrepeatDelay int integer XmScrollBar
XmSpinBox

Nresizable Boolean boolean XmForm
XmNotebook

NresizeCallback XtCallbackList procedure XmDrawingAre
 XmDrawnButton

NresizeHeight Boolean boolean XmRowColum
XmText

NresizePolicy unsigned char integer XmBulletinBoa
XmDrawingArea

NresizeWidth Boolean boolean XmRowColumn
XmText
XmTextField

NrightAttachment unsigned char integer XmForm

NrightOffset int integer XmForm

source Name Motif Type UIL Type Defined in Clas
Motif Reference Manual 1217

Appendix C: Table of Motif Resources

Xm

Xm

Xm n

Xm

Xm

Xm ow

Xm ow

Xm dow

Xm ow

Xm

Xm

Xm

Xm

Xm

Xm
w

Xm indow

Xm

Xm

Xm

Xm

Xm dow

Xm ndow

Xm dow

Xm dow

Xm

Xm ton

Re s
NrightPosition int integer XmForm

NrightWidget Widget widget_ref XmForm

NrowColumnType unsigned char integer XmRowColum

Nrows short integer XmText

NrubberPositioning Boolean boolean XmForm

NsashHeight Dimension integer XmPanedWind

NsashIndent Position integer XmPanedWind

NsashShadowThickness Dimension integer XmPanedWin

NsashWidth Dimension integer XmPanedWind

NsaveUnder Boolean boolean Shell

NscaleHeight Dimension integer XmScale

NscaleMultiple int integer XmScale

NscaleWidth Dimension integer XmScale

Nscreen Screen * identifier Core

NscrollBarDisplayPolicy unsigned char integer XmList
XmScrolledWindo

NscrollBarPlacement unsigned char integer XmScrolledW

NscrollHorizontal Boolean boolean XmText

NscrollLeftSide Boolean boolean XmText

NscrollTopSide Boolean boolean XmText

NscrollVertical Boolean boolean XmText

NscrolledWindowChildType Widget widget_ref XmScrolledWin

NscrolledWindowMarginHeight Dimension integer XmScrolledWi

NscrolledWindowMarginWidth Dimension integer XmScrolledWin

NscrollingPolicy unsigned char integer XmScrolledWin

NselectColor Pixel color XmContainer
XmList
XmToggleButton

NselectInsensitivePixmap Pixmap pixmap XmToggleBut

source Name Motif Type UIL Type Defined in Clas
1218 Motif Reference Manual

Appendix C: Table of Motif Resources

Xm n

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm ox

Xm

Xm

Xm

Xm

Xm ow

Xm

Xm n

Xm

Xm rd

Xm

Re s
NselectPixmap Pixmap pixmap XmToggleButto

NselectThreshold int integer XmTextField

NselectedItem XmString compound_string XmComboBox

NselectedItemCount int integer XmList

NselectedItems XmStringTable string_table XmList

NselectedObjectCount int NA XmContainer

NselectedObjects WidgetList NA XmContainer

NselectedPosition int integer XmComboBox

NselectedPositionCount int integer XmList

NselectedPositions int * integer_table XmList

NselectionArray XtPointer any XmTextField

NselectionArrayCount int integer XmTextField

NselectionCallback XtCallbackList procedure XmComboBox
XmContainer

NselectionLabelString XmString compound_string XmSelectionB

NselectionMode unsigned char integer XmList

NselectionPolicy unsigned char integer XmContainer
XmList

NselectionTechnique unsigned char integer XmContainer

Nsensitive Boolean boolean Core
XmRectObj

NseparatorOn Boolean boolean XmPanedWind

NseparatorType unsigned char integer XmSeparator

Nset unsigned char integer XmToggleButto

NshadowThickness Dimension integer XmGadget
XmManager
XmPrimitive

NshadowType unsigned char integer XmBulletinBoa
XmDrawnButton
XmFrame

NshellUnitType unsigned char integer VendorShell

source Name Motif Type UIL Type Defined in Clas
Motif Reference Manual 1219

Appendix C: Table of Motif Resources

Xm

Xm

Xm w

Xm

Xm n

Xm

Xm ow

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm t

Xm t

Xm

w

Xm

Re s
NshowArrows Boolean boolean XmScale
XmScrollBar

NshowAsDefault Dimension integer XmPushButton

NshowSeparator Boolean boolean XmMainWindo

NshowValue Boolean boolean XmScale

NsimpleCallback XtCallbackProc procedure XmRowColum

NsingleSelectionCallback XtCallbackList procedure XmList

NskipAdjust Boolean boolean XmPanedWind

NsliderMark XtEnum integer XmScale
XmScrollBar

NsliderSize int integer XmScrollBar

NsliderVisual Visual * integer XmScale
XmScrollBar

NslidingMode XtEnum integer XmScale
XmScrollBar

NsmallCellHeight Dimension integer XmContainer

NsmallCellWidth Dimension integer XmContainer

NsmallIconMask Pixmap pixmap XmIconGadget

NsmallIconPixmap Pixmap pixmap XmIconGadget

NsmallIconX NA float XmContainer

NsmallIconY NA float XmContainer

NsnapBackMultiple unsigned short integer XmScrollBar

Nsource XmTextSource any XmText

NsourceCursorIcon Widget NA XmDragContex

NsourcePixmapIcon Widget NA XmDragContex

Nspacing Dimension integer XmIconGadget
XmPanedWindow
XmRowColumn
XmScrolledWindo
XmSpinBox
XmToggleButton

NspatialIncludeModel unsigned char integer XmContainer

source Name Motif Type UIL Type Defined in Clas
1220 Motif Reference Manual

Appendix C: Table of Motif Resources

Xm

Xm

Xm

Xm Box

Xm t

Xm

Xm

Xm ton

Xm x

Xm

Xm

Xm

Xm n

Xm n

Xm n

Xm

Xm ox

Xm x

Xm
x

Xm

Xm

Xm x

Xm ard

Re s
NspatialResizeModel unsigned char integer XmContainer

NspatialSnapModel unsigned char integer XmContainer

NspatialStyle unsigned char integer XmContainer

NspinBoxChildType unsigned char integer XmSimpleSpin
XmSpinBox

NstateCursorIcon Widget NA XmDragContex

NstrikethruType unsigned char integer XmRendition

NstringDirection XmStringDirection integer XmLabel
XmList
XmManager

NsubMenuId Widget widget_ref XmCascadeBut
XmRowColumn

NsymbolPixmap Pixmap pixmap XmMessageBo

NtabList XmTabList widget_ref XmRendition

NtabValue NA float XmTab

Ntag XmStringTag string XmRendition

NtearOffMenuActivateCallback XtCallbackList procedure XmRowColum

NtearOffMenuDeactivateCallback XtCallbackList procedure XmRowColum

NtearOffModel unsigned char integer XmRowColum

NtearOffTitle XmString compound_string XmRowColumn

NtextAccelerators XtAccelerators translation_table XmSelectionB

NtextColumns short integer XmSelectionBo

NtextField Widget widget_ref XmComboBox
 XmSimpleSpinBo
XmSpinBox

NtextFontList XmFontList font_table VendorShell
XmBulletinBoard

NtextRenderTable XmRenderTable widget_ref VendorShell
XmBulletinBoard

NtextString XmString compound_string XmSelectionBo

NtextTranslations XtTranslations translation_table XmBulletinBo

source Name Motif Type UIL Type Defined in Clas
Motif Reference Manual 1221

Appendix C: Table of Motif Resources

Xm

Xm

Xm

Xm

Xm

Xm on

Xm

Xm

Xm

Xm t

Xm t

Xm

Xm

Xm

Xm

Xm

Xm fer

Xm fer

Xm

Xm

Xm

Xm

Xm indow

Xm

Xm

Re s
Ntitle String string WMShell

NtitleEncoding Atom any WMShell

NtitleString XmString compound_string XmScale

NtoBottomCallback XtCallbackList procedure XmScrollBar

NtoTopCallback XtCallbackList procedure XmScrollBar

NtoggleMode unsigned char integer XmToggleButt

NtopAttachment unsigned char integer XmForm

NtopCharacter XmTextPosition integer XmText

NtopItemPosition int integer XmList

NtopLevelEnterCallback XtCallbackList NA XmDragContex

NtopLevelLeaveCallback XtCallbackList NA XmDragContex

NtopOffset int integer XmForm

NtopPosition int integer XmForm

NtopShadowColor Pixel color XmGadget
XmManager
XmPrimitive

NtopShadowPixmap Pixmap pixmap XmGadget
XmManager
XmPrimitive

NtopWidget Widget widget_ref XmForm

NtransferProc XtSelectionCallbackProc NA XmDropTrans

NtransferStatus unsigned char NA XmDropTrans

Ntransient Boolean boolean WMShell

NtransientFor Widget widget_ref TransientShell

Ntranslations XtTranslations translation_table Core

NtraversalOn Boolean boolean XmGadget
XmManager
XmPrimitive

NtraverseObscuredCallback XtCallbackList procedure XmScrolledW

NtroughColor Pixel color XmScrollBar

NunderlineType unsigned char integer XmRendition

source Name Motif Type UIL Type Defined in Clas
1222 Motif Reference Manual

Appendix C: Table of Motif Resources

Xm

Xm rd

Xm

Xm n

Xm

Xm

Xm

Xm t

Xm

Xm

Xm Box

Xm

Xm

Xm

Xm

Xm
w

Xm

Re s
NunitType unsigned char integer VendorShell
XmGadget
XmManager
XmPrimitive
XmTab

NunmapCallback XtCallbackList procedure XmBulletinBoa
XmRowColumn

NunpostBehavior unsigned char integer XmScreen

NunselectColor Pixel color XmToggleButto

NuseAsyncGeometry Boolean boolean VendorShell

NuseColorObject Boolean NA XmScreen

NuserData XtPointer any XmDisplay
XmGadget
XmManager
XmPrimitive
XmScreen

NvalidCursorForeground Pixel NA XmDragContex

Nvalue String XmText
XmTextField

Nvalue int string XmScale
XmScrollBar

Nvalues XmStringTable string_table XmSimpleSpin
XmSpinBox

NvalueChangedCallback XtCallbackList procedure XmScale
XmScrollBar
XmText
XmTextField
XmToggleButton

NvalueWcs wchar_t * wide_character XmText
XmTextField

NverifyBell Boolean boolean XmText
XmTextField

NverticalFontUnit int NA XmScreen

NverticalScrollBar Widget widget_ref XmList
XmScrolledWindo

NverticalSpacing Dimension integer XmForm

source Name Motif Type UIL Type Defined in Clas
Motif Reference Manual 1223

Appendix C: Table of Motif Resources

Xm t

Xm

Xm n

Xm

Xm t

Xm dow

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm

Xm ow

Xm ox

Xm

Xm

Re s
NviewType unsigned char integer XmIconGadge

NvisibleItemCount int integer XmComboBox
XmList

NvisibleWhenOff Boolean boolean XmToggleButto

Nvisual Visual * any Shell

NvisualEmphasis unsigned char integer XmIconGadge

NvisualPolicy unsigned char integer XmScrolledWin

NwaitForWm Boolean boolean WMShell

NwhichButton unsigned int integer XmRowColumn

Nwidth Dimension integer Core
XmDragIcon
XmRectObj

NwidthInc int integer WMShell

NwinGravity int integer WMShell

NwindowGroup Window any WMShell

NwmTimeout int integer WMShell

NwordWrap Boolean boolean XmText

NworkWindow Widget widget_ref XmScrolledWind

Nwrap Boolean boolean XmSimpleSpinB
XmSpinBox

Nx Position integer Core
XmRectObj

Ny Position integer Core
XmRectObj

source Name Motif Type UIL Type Defined in Clas
1224 Motif Reference Manual

U

X

X
G

X

X
lo

X

X
G

X

X

X

X

Appendix D Table of UIL Objects

This appendix lists all of the objects supported by the User Interface Language (UIL).

For each object, the table lists the corresponding widget or widgets in the Motif toolkit.

The resources and callbacks for each object are the same as the resources and callbacks

for the corresponding widget(s). UIL provides one additional callback,

MrmNcreateCallback, for each object. This callback is invoked when the object is

instantiated by the Motif Resource Manager (Mrm). The table also specifies the types

of objects that can be children of a particular object, as well as the names and classes of

any automatically-created children. For more information on each object, see the

appropriate reference pages in Section 2, Motif and Xt Widget Classes.

IL Object
Corresponding
Motif Widget(s)

Allowable
Children

Automatically Created Children

Name Class

mArrowButton XmArrowButton XmPopupMenu

mArrowButton-
adget

XmArrowButton-
Gadget

none

mBulletinBoard XmBulletinBoard all UIL objects

mBulletinBoardDia-
g

XmDialogShell with
XmBulletinBoard
child

all UIL objects

mCascadeButton XmCascadeButton XmPopupMenu
XmPulldownMenu

mCascadeButton-
adget

XmCascadeButton-
Gadget

XmPulldownMenu

mCheckBox XmRowColumn all UIL objects

mComboBox XmComboBox none Xm_List
Xm_Text
Xm_TextField

Xm_List
Xm_Text
Xm_TextField

mCommand XmCommand XmPopupMenu

mContainer XmContainer all UIL objectsa
Motif Reference Manual 1225

Appendix D: Table of UIL Objects

X

X

X

X

X

U

mDialogShell XmDialogShell XmBulletinBoard
XmCheckBox
XmComboBox
XmContainer
XmDrawingArea
XmFileSelection-
Box
XmForm
XmFrame
XmMessageBox
XmNotebook
XmPanedWindow
XmRadioBox
XmRenderTable
XmRowColumn
XmScale
XmScrolledWin-
dow
XmSelectionBox
XmSimpleSpinBox
XmSpinBox
XmWorkArea

mDrawingArea XmDrawingArea all UIL objects

mDrawnButton XmDrawnButton XmPopupMenu

mErrorDialog XmDialogShell with
XmMessageBox
child

all UIL objects Xm_Symbol
Xm_Separator
Xm_Message
Xm_OK
Xm_Cancel
Xm_Help

XmLabel
XmSeparator
XmLabel
XmPushButton
XmPushButton
XmPushButton

mFileSelectionBox XmFileSelection-
Box

all UIL objects Xm_Items
Xm_ItemsList
Xm_Separator
Xm_OK
Xm_Cancel
Xm_Help
Xm_FilterLabe
l
Xm_FilterText
Xm_DirList
Xm_Dir
Xm_Filter

XmLabel
XmScrolledList
XmSeparator
XmPushButton
XmPushButton
XmPushButton
XmLabel
XmText
XmScrolledList
XmLabel
XmPushButton

IL Object
Corresponding
Motif Widget(s)

Allowable
Children

Automatically Created Children

Name Class
1226 Motif Reference Manual

Appendix D: Table of UIL Objects

X
lo

X

X

X

X

X

X

X

X

X

U

mFileSelectionDia-
g

XmDialogShell with
XmFileSelection-
Box child

all UIL objects Xm_Items
Xm_ItemsList
Xm_Separator
Xm_OK
Xm_Cancel
Xm_Help
Xm_FilterLabe
l
Xm_FilterText
Xm_DirList
Xm_Dir
Xm_Filter

XmLabel
XmScrolledList
XmSeparator
XmPushButton
XmPushButton
XmPushButton
XmLabel
XmText
XmScrolledList
XmLabel
XmPushButton

mForm XmForm all UIL objects

mFormDialog XmDialogShell with
XmForm child

all UIL objects

mFrame XmFrame all UIL objects

mIconGadget XmIconGadget XmRenderTable

mInformationDialog XmDialogShell with
XmMessageBox
child

all UIL objects Xm_Symbol
Xm_Separator
Xm_Message
Xm_OK
Xm_Cancel
Xm_Help

XmLabel
XmSeparator
XmLabel
XmPushButton
XmPushButton
XmPushButton

mLabel XmLabel XmPopupMenu
XmRenderTable

mLabelGadget XmLabelGadget XmRenderTable

mList XmList XmPopupMenu
XmRenderTable

mMainWindow XmMainWindow all UIL objects Xm_Separator1
Xm_Separator2
Xm_Separator3

XmSeparator
XmSeparator
XmSeparator

IL Object
Corresponding
Motif Widget(s)

Allowable
Children

Automatically Created Children

Name Class
Motif Reference Manual 1227

Appendix D: Table of UIL Objects

X

X

X

X

X

X
n-

X

U

mMenuBar XmRowColumn XmCascadeButton
XmCascadeButton-
Gadget
XmDrawnButton
XmLabel
XmLabelGadget
XmPopupMenu
XmPulldownMenu
XmPushButton
XmPushButton-
Gadget
XmSeparator
XmSeparatorGadg-
et
XmToggleButton
XmToggleButton-
Gadget
user_defined object

mMenuShell XmMenuShell XmRenderTable
XmRowColumn

mMessageBox XmMessageBox all UIL objects Xm_Symbol
Xm_Separator
Xm_Message
Xm_OK
Xm_Cancel
Xm_Help

XmLabel
XmSeparator
XmLabel
XmPushButton
XmPushButton
XmPushButton

mMessageDialog XmDialogShell with
XmMessageBox
child

all UIL objects Xm_Symbol
Xm_Separator
Xm_Message
Xm_OK
Xm_Cancel
Xm_Help

XmLabel
XmSeparator
XmLabel
XmPushButton
XmPushButton
XmPushButton

mNotebook XmNotebook all UIL objects b

mOptionMenu XmRowColumn XmPulldownMenu Xm_OptionLab
el
Xm_OptionBut
ton

XmLabelGadget
XmCascadeButto
Gadget

mPanedWindow XmPanedWindow all UIL objects

IL Object
Corresponding
Motif Widget(s)

Allowable
Children

Automatically Created Children

Name Class
1228 Motif Reference Manual

Appendix D: Table of UIL Objects

X

X

X

X

U

mPopupMenu XmDialogShell with
XmRowColumn
child

XmCascadeButton
XmCascadeButton-
Gadget
XmDrawnButton
XmLabel
XmLabelGadget
XmPushButton
XmPushButton-
Gadget
XmSeparator
XmSeparatorGadg-
et
XmToggleButton
XmToggleButton-
Gadget
user_defined object

m_TearOffControl XmTearOffButton none

mPromptDialog XmDialogShell with
XmSelectionBox
child

all UIL objects Xm_Items
Xm_ItemsList
Xm_Selection
Xm_Text
Xm_Separator
Xm_OK
Xm_Cancel
Xm_Help
Xm_Apply

XmLabel
XmScrolledList
XmLabel
XmText
XmSeparator
XmPushButton
XmPushButton
XmPushButton
XmPushButton

mPulldownMenu XmDialogShell with
XmRowColumn
child

XmCascadeButton
XmCascadeButton-
Gadget
XmDrawnButton
XmLabel
XmLabelGadget
XmPushButton
XmPushButton-
Gadget
XmSeparator
XmSeparatorGadg-
et
XmToggleButton
XmToggleButton-
Gadget
user_defined object

Xm_TearOffCo
ntrol

XmTearOffButton

IL Object
Corresponding
Motif Widget(s)

Allowable
Children

Automatically Created Children

Name Class
Motif Reference Manual 1229

Appendix D: Table of UIL Objects

X

X

X

X

X

X

X

X

X

X

X

X

U

mPushButtonGadget XmPushButton-
Gadget

none

mQuestionDialog XmDialogShell with
XmMessageBox
child

all UIL objects Xm_Symbol
Xm_Separator
Xm_Message
Xm_OK
Xm_Cancel
Xm_Help

XmLabel
XmSeparator
XmLabel
XmPushButton
XmPushButton
XmPushButton

mRadioBox XmRowColumn all UIL objects

mRenderTable (pseudo-object) XmRendition

mRendition (pseudo-object) XmTabList

mRowColumn XmRowColumn all UIL objects

mScale XmScale all UIL objects Xm_Title XmLabel

mScrollBar XmScrollBar XmPopupMenu

mScrolledList XmScrolledWin-
dow with
XmList child

XmPopupMenu
XmRenderTable

Xm_VertScroll
Bar
Xm_HorScroll
Bar

XmScrollBar
XmScrollBar

mScrolledText XmScrolledWin-
dow with
XmText child

XmPopupMenu
XmRenderTable

Xm_VertScroll
Bar
Xm_HorScroll
Bar

XmScrollBar
XmScrollBar

mScrolledWindow XmScrolledWin-
dow

all UIL objects Xm_VertScroll
Bar
Xm_HorScroll
Bar

XmScrollBar
XmScrollBar

mSelectionBox XmSelectionBox all UIL objects Xm_Items
Xm_ItemsList
Xm_Selection
Xm_Text
Xm_Separator
Xm_OK
Xm_Cancel
Xm_Help
Xm_Apply

XmLabel
XmScrolledList
XmLabel
XmText
XmSeparator
XmPushButton
XmPushButton
XmPushButton
XmPushButton

IL Object
Corresponding
Motif Widget(s)

Allowable
Children

Automatically Created Children

Name Class
1230 Motif Reference Manual

Appendix D: Table of UIL Objects

X

X

X

X

X

X

X

X

X

X

X

X

X
G

U

mSelectionDialog XmDialogShell with
XmSelectionBox
child

all UIL objects Xm_Items
Xm_ItemsList
Xm_Selection
Xm_Text
Xm_Separator
Xm_OK
Xm_Cancel
Xm_Help
Xm_Apply

XmLabel
XmScrolledList
XmLabel
XmText
XmSeparator
XmPushButton
XmPushButton
XmPushButton
XmPushButton

mSeparator XmSeparator XmPopupMenu

mSeparatorGadget XmSeparatorGadget none

mSimpleSpinBox XmSimpleSpinBox XmTextField

mSpinBox XmSpinBox all UIL objects

mTearOffButton none XmPopupMenu

mTemplateDialog XmDialogShell with
XmMessageBox
child

all UIL objects Xm_Symbol
Xm_Separator
Xm_Message
Xm_OK
Xm_Cancel
Xm_Help

XmLabel
XmSeparator
XmLabel
XmPushButton
XmPushButton
XmPushButton

mTab (pseudo-object) none

mTabList (pseudo-object) XmTab

mText XmText XmPopupMenu
XmRenderTable

mTextField XmTextField XmPopupMenu
XmRenderTable

mToggleButton XmToggleButton XmPopupMenu

mToggleButton-
adget

XmToggleButton-
Gadget

none

IL Object
Corresponding
Motif Widget(s)

Allowable
Children

Automatically Created Children

Name Class
Motif Reference Manual 1231

Appendix D: Table of UIL Objects

X

X

X

a.S
b.N

U

mWarningDialog XmDialogShell with
XmMessageBox
child

all UIL objects Xm_Symbol
Xm_Separator
Xm_Message
Xm_OK
Xm_Cancel
Xm_Help

XmLabel
XmSeparator
XmLabel
XmPushButton
XmPushButton
XmPushButton

mWorkArea XmRowColumn all UIL objects

mWorkingDialog XmDialogShell with
XmMessageBox
child

all UIL objects Xm_Symbol
Xm_Separator
Xm_Message
Xm_OK
Xm_Cancel
Xm_Help

XmLabel
XmSeparator
XmLabel
XmPushButton
XmPushButton
XmPushButton

urely a mistake. The Container is designed for IconGadget children only.
o access to the abstract ArrowButton and SpinBox controls.

IL Object
Corresponding
Motif Widget(s)

Allowable
Children

Automatically Created Children

Name Class
1232 Motif Reference Manual

rd.

d.

r.

g

Appendix E - New Features in Motif 2.0 and 2.1

This appendix provides a summary of the new features in Motif 2.1 and 2.0. It lists the

new toolkit functions and widget classes in Motif 2.1 and 2.0, as well as any new

resources added to existing widget classes. For more information on the functions and

widgets, see the appropriate reference pages in Section 1, Motif Functions and Macros,

and Section 2, Motif and Xt Widget Classes

The appendix also lists the new Motif Resource Manager (Mrm) functions and User

Interface Language (UIL) data types in Motif 2.1. For more information on these

functions and data types, see the reference pages in Section 3, Mrm Functions, and

Section 6, UIL Data Types.

E.1 New Toolkit Functions
XmComboBoxAddItem() Adds an item to a ComboBox.
XmComboBoxDeletePos() Deletes an item from a ComboBox.
XmComboBoxSelectItem() Selects an item in a ComboBox.
XmComboBoxSetItem() Selects and makes visible an item in a

ComboBox.
XmComboBoxUpdate() Update the state of a ComboBox.
XmContainerCopy() Copy selected Container items to the clipboa
XmContainerCopyLink(Copy links to selected Container items to the

clipboard.
XmContainerCut() Cut selected Container items to the clipboar
XmContainerGetItemChildren() Retrieve the logical children of a Container

item.
XmContainerPaste() Copy clipboard data into a Container.
XmContainerPasteLink() Copy links to clipboard data into a Containe
XmContainerRelayout() Force the relayout of Container items.
XmContainerReorder() Sort the items within a Container.
XmConvertStringToUnits() Convert a unit specification expressed as a

string to an integral value.
XmCvtByteStreamToXmString() Convert a byte stream representation to a

compound string.
XmCvtTextPropertyToXmStringTable() Convert a text property to a compound strin

table.
XmCvtXmStringTableToTextProperty() Convert a compound string table to a text

property.
XmCvtXmStringToByteStream() Convert a compound string to a byte stream

representation.
Motif Reference Manual 1233

Appendix E: New Features in Motif 2.0 and 2.1

.

er.

 a

ject.

r.

lf.

r

ble.
XmDirectionMatch() Compare two XmDirection quantities.
XmDirectionMatchPartial() Loosely compare two XmDirection quantities
XmDirectionToStringDirection() Convert an XmDirection type to a

XmStringDirection type.
XmFontListCreate_r() Create an XmFontList in a thread-safe mann
XmFontListEntryCreate_r() Create an XmFontListEntry in a thread-safe

manner.
XmGetScaledPixmap() Read a pixmap and scale it for printing.
XmImCloseXIM() Close all input contexts associated with an X

Input Method.
XmImFreeXIC() Unregister all widgets associated with an X

Input Context.
XmImGetXIC() Create an X Input Context for a widget.
XmImMbResetIC() Reset an Input Context.
XmImSetXIC() Register a widget with an existing X Input

Context.
XmNotebookGetPageInfo() Retrieve data about a Notebook page.
XmObjectAtPoint() Find the widget most closely associated with

point.
XmParseMappingCreate() Create a parse mapping object.
XmParseMappingFree() Free a parse mapping object.
XmParseMappingGetValues() Retrieve the values of a parse mapping ob
XmParseMappingSetValues() Set the values of a parse mapping object.
XmParseTableFree() Free an array of parse mapping objects.
XmPrintPopupPDM() Issue a request to the Print Display Manage
XmPrintSetup() Initialize a PrintShell and X Print connection.
XmPrintToFile() Print X Print Server data to file.
XmRedisplayWidget() Synchronously force a widget to expose itse
XmRenderTableAddRenditions() Add rendition objects to a render table.
XmRenderTableCopy() Copy a render table.
XmRenderTableCvtFromProp() Convert a text property into a render table.
XmRenderTableCvtToProp() Convert a render table to a text property.
XmRenderTableFree() Free a render table.
XmRenderTableGetRendition() Find a rendition object in a render table.
XmRenderTableGetRenditions() Find a group of rendition objects in a rende

table.
XmRenderTableGetTags() Retrieve all the rendition tags in a render ta
XmRenderTableRemoveRenditions() Remove renditions from a render table.
XmRenditionCreate() Create a rendition object.
XmRenditionFree() Free a rendition object.
XmRenditionRetrieve() Retrieve the values of a rendition object.
XmRenditionUpdate() Set the values of a rendition object.
1234 Motif Reference Manual

Appendix E: New Features in Motif 2.0 and 2.1

e

xt

a

d

nd

n

a

XmScaleSetTicks() Place tick marks along the edge of a Scale.
XmSimpleSpinBoxAddItem() Add an item to a SimpleSpinBox.
XmSimpleSpinBoxDeletePos() Delete an item from a SimpleSpinBox.
XmSimpleSpinBoxSetItem() Select an item in a SimpleSpinBox.
XmSpinBoxValidatePosition() Validate a position in a SpinBox.
XmStringByteStreamLength() Return the length of a byte stream

representation of a compound string.
XmStringComponentCreate() Create a component in a compound string.
XmStringConcatAndFree() Concatenate two compound strings, and fre

the originals.
XmStringDirectionToDirection() Convert an XmStringDirection type into an

XmDirection type.
XmStringGenerate() Generate a new compound string using the

default parse table.
XmStringGetNextTriple() Retrieve the type, length, and value of the ne

compound string component.
XmStringIsVoid() Check if a compound string is empty of

components.
XmStringParseText() Convert a string into a compound string using

parse table.
XmStringPeekNextTriple() Look ahead at the type of the next compoun

string component.
XmStringPutRendition() Add rendition components around a compou

string.
XmStringTableParseStringArray() Convert an array of strings into an array of

compound strings using a parse table.
XmStringTableProposeTablist() Calculate an XmTabList for a compound

string.
XmStringTableToXmString() Convert a compound string table into a

compound string.
XmStringTableUnparse() Convert an array of compound strings into a

array of strings using a parse table.
XmStringToXmStringTable() Convert a string into an array of compound

strings.
XmStringUnparse() Convert a compound string into a string using

parse table.
XmTabCreate() Create a new XmTab object.
XmTabFree() Free an XmTab object.
XmTabGetValues() Retrieve the values of an XmTab object.
XmTabListCopy() Copy an array of XmTab objects.
XmTabListFree() Free an array of XmTab objects.
XmTabListGetTab() Find an XmTab object within an array.
Motif Reference Manual 1235

Appendix E: New Features in Motif 2.0 and 2.1

.
s.

ay

xt

r

s().

).
XmTabListInsertTabs() Add XmTab objects to an array of tabs.
XmTabListRemoveTabs() Remove XmTab objects from an array of tabs
XmTabListReplacePositions() Replace XmTab objects within an array of tab
XmTabListTabCount() Return the number of XmTab objects in an arr

of tabs.
XmTabSetValue() Set the value of an XmTab object.
XmTextCopyLink() Copy a link to the primary selection into the

clipboard.
XmTextGetCenterline() Return the centerline of a vertically oriented te

string.
XmTextPasteLink() Copy a link from the clipboard selection at the

insertion cursor.
XmToggleButtonSetValue() Set the value of a tri-state ToggleButton.
XmTransferDone() Signal the end of data transfer operations.
XmTransferSendRequest() Transmit a multiple data transfer request.
XmTransferSetParameters() Specify parameters for the next data transfe

request.
XmTransferStartRequest() Initiate a multiple data transfer request.
XmTransferValue() Issue a data transfer request.

E.2 Obsolete Toolkit Functions
XmFontListAppendEntry() Superseded by XmRenderTableAddRendition
XmFontListCopy() Superseded by XmRenderTableCopy().
XmFontListCreate() Superseded by XmRenditionCreate() and

XmRenderTableAddRenditions().
XmFontListEntryCreate() Superseded by XmRenditionCreate().
XmFontListEntryFree() Superseded by XmRenditionFree().
XmFontListEntryGetFont() Superseded by XmRenditionRetrieve().
XmFontListEntryGetTag() Superseded by XmRenditionRetrieve().
XmFontListEntryLoad() Superseded by setting the XmNloadModel of a

rendition object.
XmFontListFree() Superseded by XmRenderTableFree().
XmFontListGetNextFont() Superseded by XmRenditionRetrieve().
XmFontListNextEntry() Superseded by XmRenderTableGetRendition(
XmFontListRemoveEntry() Superseded by

XmRenderTableRemoveRenditions().
XmGetAtomName() Superseded by XGetAtomName().
XmInternAtom() Superseded by XInternAtom().
XmRepTypeInstallTearOffModelConverter() Internally installed.
XmMainWindowSep1() Superceded by XtNameToWidget().
XmMainWindowSep2() Superceded by XtNameToWidget().
1236 Motif Reference Manual

Appendix E: New Features in Motif 2.0 and 2.1

()

,

.

XmMainWindowSep3() Superceded by XtNameToWidget().
XmMainWindowSetAreas() Superseded by XtSetValues() of

XmNhorizontalScrollBar,XmNverticalS
crollBar, XmNworkWindow,
XmNmenuBar, and
XmNcommandWindow, resources.

XmScrolledWindowSetAreas() Superseded by XtSetValues() of
XmNhorizontalScrollBar,XmNverticalS
crollBar, and XmNworkWindow
resources.

XmStringCreateLtoR() Superceded by XmStringGenerate().
XmStringGetLtoR() Superceded by XmStringUnparse().
XmStringGetNextComponent() Superceded by XmStringGetNextTriple().
XmStringGetNextSegment() Superceded by XmStringGetNextTriple().
XmStringPeekNextComponent() Superceded by XmStringPeekNextTriple().
XmStringSegmentCreate() Superceded by XmStringComponentCreate

and XmStringConcat().

E.3 New Widget Classes
XmComboBox A widget which combines text input with list

selection.
XmContainer A general purpose manager for providing grid

tree, or free-format layout of
IconGadget children.

XmGrabShell A popup shell which grabs the keyboard and
pointer.

XmIconGadget A gadget which supports labelled pixmaps.
XmNotebook A layout widget which displays one child at a

time.
XmPrintShell An interface to the X11R6 Xp X Print utilities
XmSimpleSpinBox A widget which cycles through a set of

choices.
XmSpinBox A widget which controls cycling through

possibly multiple sets of choices.

E.4 New Resources in Existing Widget Classes
VendorShell XmNbuttonRenderTable

XmNinputPolicy
XmNlabelRenderTable
XmNlayoutDirection
XmNtextRenderTable
XmNunitType
Motif Reference Manual 1237

Appendix E: New Features in Motif 2.0 and 2.1
XmArrowButton XmNdetailShadowThickness

XmBulletinBoard XmNbuttonRenderTable
XmNlabelRenderTable
XmNtextRenderTable

XmDrawingArea XmNconvertCallback
XmNdestinationCallback

XmDisplay XmNdefaultButtonEmphasis
XmNenableBtn1Transfer
XmNenableButtonTab
XmNenableDragIcon
XmNenableEtchedInMenu
XmNenableMultiKeyBindings
XmNenableThinThickness
XmNenableToggleColor
XmNenableToggleVisual
XmNenableUnselectableDrag
XmNenableWarp
XmNmotifVersion
XmNnoFontCallback
XmNnoRenditionCallback
XmNuserData

XmFileSelectionBox XmNdirTextLabelString
XmNfileFilterStyle
XmNpathMode

XmFrame XmNframeChildType

XmGadget XmNbackground
XmNbackgroundPixmap
XmNbottomShadowPixmap
XmNhighlightPixmap
XmNlayoutDirection
XmNtopShadowPixmap

XmLabel XmNrenderTable
Motif Reference Manual 1238

Appendix E: New Features in Motif 2.0 and 2.1
XmList XmNhorizontalScrollBar
XmNmatchBehavior
XmNprimaryOwnership
XmNrenderTable
XmNselectColor

XmNselectedPositionCount1

XmNselectedPositions2

XmNselectionMode
XmNverticalScrollBar
XmNdestinationCallback

XmManager XmNlayoutDirection
XmNpopupHandlerCallback

XmMenuShell XmNbuttonRenderTable
XmNlabelRenderTable
XmNlayoutDirection

XmPanedWindow XmNorientation
XmNlayoutDirection

XmPrimitive XmNlayoutDirection
XmNconvertCallback
XmNpopupHandlerCallback

XmRowColumn XmNtearOffTitle

XmScreen XmNbitmapConversionModel
XmNcolorAllocationProc
XmNcolorCalculationProc
XmNinsensitiveStipplePixmap
XmNuseColorObject

XmScrollBar XmNeditable
XmNsliderVisual
XmNslidingMode
XmNsnapbackMultiple

1.Erroneously given as XmNselectPositionCount in 2nd edition.

2.Erroneously given as XmNselectPositions in 2nd edition.
Motif Reference Manual 1239

Appendix E: New Features in Motif 2.0 and 2.1
XmScrolledWindow XmNautoDragModel
XmNscrolledWindowChildType

XmScale XmNeditable
XmNrenderTable
XmNshowArrows
XmNsliderMark
XmNsliderSize
XmNsliderVisual
XmNslidingMode
XmNconvertCallback

XmText XmNtotalLines
XmNdestinationCallback

XmTextField XmNdestinationCallback

XmToggleButton XmNdetailShadowThickness
XmNindeterminateInsensitivePixmap
XmNindeterminatePixmap
XmNtoggleMode
XmNunselectColor
Motif Reference Manual 1240

Index
A
a button gadget that maintains a Boolean

state 955

a button gadget that posts menus 629

a button widget that maintains a Boolean

state 945

a button widget that posts menus 624

a button widget that provides a graphics

area 695

a composite widget for command entry 644

a composite widget used for creating mes-

sage dialogs 789

a composite widget which combines a text

widget with a list of choices 634

a composite widget which controls cycling

through a set of choices 911

a constraint widget that tiles its children

809

a constraint widget which lays out its chil-

dren like pages in a book 796

a container widget that constrains its chil-

dren 720

a directional arrow-shaped button gadget

615

a directional arrow-shaped button widget

610

a gadget for displaying both text and a pix-

map 740

a gadget that draws a line to separate other

widgets visually 904

a gadget that starts an operation when it is

pressed 837

a List as a child of a ScrolledWindow 885

a manager widget that allows selection

from a range of values 861

a manager widget that arranges its children

in rows and columns 846

a manager widget that places a border

around a single child 727

a manager widget that provides scroll bars

for the data display 887

a popup shell that bypasses window man-

agement 577

a popup shell that grabs the keyboard and

pointer when mapped 736

a RowColumn that contains ToggleButtons

632, 841

a Shell interfacing onto the Xp printing fa-

cilities 821

a shell widget meant to contain popup and

pulldown menu pane 785

a simple gadget that displays a non-edit-

able label 751

a simple geometry-managing widget 617

a simple manager widget for interactive

drawing 690

a simple widget that displays a non-edit-

able label 745

a single-line text-editing widget 940

a Text widget as a child of a ScrolledWin-

dow 886

a type of RowColumn used as a pulldown

menu pane 828

a type of RowColumn widget used as a

menu bar 783

a type of RowColumn widget used as a

popup menu pane 819

a type of RowColumn widget used as an

option menu 807

a widget for cycling through a set of choices

906

a widget for selecting files 710

a widget for selecting one of a list of alter-

natives 893

a widget that allows a user to select from a

list of choices 754

a widget that draws a line to separate other

widgets visually 901

a widget that provides constraint resources

for its children 570

a widget that starts an operation when it is
Motif Reference Manual 1241

Index
pressed 830

a widget to control the scrolling of the view-

ing area in another widget 875

a widget which controls the layout and selec-

tion of a set of items 649

activate a protocol 3

add an item/items to a list 203, 204

add client callbacks to a protocol 5

add client callbacks to protocol 9

add drop transfer entries to drop operation

112

add item to SimpleSpinBox 339

add protocols to protocol manager 11

add rendition components to Compound

String 405

add renditions to a render table 286

add string to ComboBox 47

add widget to tab groups 7

additional top-level shells for an application

592

allow for modal selection of a component

511, 513

an object that defines the characteristics of a

drop site 701

an object to store display-specific information

672

an object used to represent the data in a drag

and drop operation 687

an object used to store information about a

drag transaction 678

an object used to store information about a

drop transaction 706

an object used to store screen-specific infor-

mation 870

an opaque type representing an entry in a

parse table 815

an opaque type representing an entry in a

render table 843

an unmanaged BulletinBoard as a child of a

DialogShell 623

an unmanaged FileSelectionBox as a child of

a Dialog Shell 719

an unmanaged Form as a child of a Dia-

logShell 726

an unmanaged MessageBox as a child of a Di-

alogShell 709, 744, 840, 958, 959

an unmanaged MessageBox as a child of Dia-

logShell 795, 921

an unmanaged SelectionBox as a child of a Di-

alog Shell 827, 900

any 1058

append font entry to font list 123

append string to Command 52

ApplicationShell 565

applicationShellWidgetClass 565

argument 1059

array of compound strings 1077

array of integers 1091

array of NULL-terminated strings 1061

ArrowButton 610

ArrowButtonGadget 615

asciz_string_table 1061

asciz_table 1061

Atom 1159

Atom, get string name 150

Atoms

return for property string 195

B
Boolean 1159

boolean 1063

bounding box of item in list 223

BulletinBoard 617

BulletinBoardDialog 623

byte stream

calculate length 347

byte stream, convert to string 78

C
calculate length of byte stream 347

call the UIL compiler from an application

1115

cancel a drag operation 96

cancel copy to clipboard 17

Cardinal 1159

CascadeButton 624

CascadeButton, set highlight state 13

CascadeButtonGadget 629
1242 Motif Reference Manual

Index
get from option menu 255

change resource values for drop site 111

character set type for use with strings and

font lists 1065

character type 1093

character_set 1065

character-to-color mapping type 1071

check that mwm is running 196

check widget can receive keyboard focus 202

child of Command, get 54

children for a MainWindow, specify 244

class_rec_name 1068

client callbacks, add to protocol 9

clipboard

cancel copy 17

copy Container selection 57

copy data passed by name 21

copy procedure 18

copy selection from text 442

cut Container selection 59

end copy 23, 25

get data format name 28

get data from 36

get length of data item 30

get list of pending items 32

get number of data formats available 27

lock 34

paste into Container 62

register new format 35

remove item 44

set up storage for 38

setting up for a copy 15

start retrieval 42

unlock 45

withdraw format 46

ClipboardBadFormat 35

ClipboardFail 23, 35, 45

ClipboardLocked 15, 17, 18, 21, 23, 27, 32,
34, 35, 36, 38, 42, 44, 46

ClipboardNoData 27, 36

ClipboardSuccess 15, 17, 18, 21, 23, 27, 32,
34, 35, 36, 38, 42, 44, 45, 46

ClipboardTruncate 36

close an Mrm hierarchy 963

close input method contexts 177

color 1069

color specified as color name 1069

color specified with the values of red, green,

and blue components 1098

color_table 1071

Colormap 1159

colors

get calculate procedure 151

set procedure for calculating default 332

update for widget 153

colors, updating for a widget 14

ComboBox 634

add compound string 47

delete item 48

select and show item 50

select item 49

update list 51

Command 644

append string 52

display error message 53

get child 54

replace string 56

compare two compound strings 346, 348

compare two directions 91

complete a data transfer operation 524

Composite 568

compositeWidgetClass 568

compound object, create 70

Compound String

add rendition components 405

check if void 392

compare 348

compare two 346

concatenate portion of one to another 396

concatenate two 351

contatenate and free 352

convert array of strings 408

convert from compound string table 412

convert from string 398

convert table to array of strings 414

convert to compound string table 416

convert to string 418

copy 354

copy a portion 397

create 355, 359

create a string context 390

create in current language environment
Motif Reference Manual 1243

Index
361

create segment 406

create tab list 410

create, containing separator 407

create, in current locale 357

create, with diretion 362

create, with single component 349

determine whether empty 370

draw 364

draw image 366

draw with underline 368

find substring 388

free memory 372

free string context 374

generate 376

get a text segment 378

get baseline spacing 345

get information about next component

380

get information about next segment 383

get length 393

get line height 389

get number of lines 394

get smallest rectangle for string 371

get triple information about next compo-

nent 385

get width of longest line 421

return type of next component 401

compound text encoding format for font list

element tag 247

compound_string 1073

compound_string_component 1075

compound_string_table 1077

CompoundString

return type of next component 403

concatenate portion of compound string to

another 396

concatenate two compound strings 351

concatenate two compound strings, and free

352

configure virtual key bindings 1030

Constraint 570

constraintWidgetClass 570

Container 649

copy links to selection 58

copy selection to clipboard 57

cut selection 59

force relayout 64

get children 60

paste 62

paste links 63

reorder children 65

convert a direction to a string direction 95

convert a keycode to a keysym using the de-

fault translator 534

convert an XmStringTable to an XTextProper-

ty 83

convert array of strings into compound string

table 408

convert byte stream to string 78

convert compound string into string 418

convert compound string table to array of

strings 414

convert compound string table to compound

string 412

convert compound string to compound string

table 416

convert render table into strings 291

convert string to byte stream 86

convert string to compound string 398

convert string to integer 66

convert string to text 87

convert string to unit-type value 80

convert strings into render table 290

convert text to string 79

convert value to specified unit type 68

convert XTextProperty to Compound String

Table 81

converts a string direction to a direction 363

copy

cancel 17

data passed by name 21

end operation 23, 25

incremental 21

setting up clipboard for 15

to clipboard 18

copy a compound string 354

copy a font list 125

copy a render table 289

copy a render table, excluding renditions 298

copy an XmTabList object 428

copy Container selection to clipboard 57
1244 Motif Reference Manual

Index
copy links Container selection 58

copy portion of a compound string 397

Core 572

coreWidgetClass 572

count tabs in list 435

create a CheckBox compound object 538

create a compound string 349, 355, 359

create a compound string, with direction 362

create a font context 144

create a font list 127

create a font list entry 130

create a font list in thread-safe manner 129

create a MenuBar compound object 540

create a new font list 121

create a parse mapping 257

create a pixmap 159

create a PopupMenu compound object as the

child of a MenuShell 546

create a Print Shell widget 269

create a PulldownMenu compound object as

the child of a MenuShell 549

create a RadioBox compound object 553

create a rendition object 299

create a tab stop 422

create an input method context for widget 179

create an OptionMenu compound object 543

create compound string in current language

environment 361

create compound string in current locale 357

create font list entry in thread-safe manner

133

create particular widget or object 70

create pixmap of specified depth 161

create scaled pixmap 164

create tab list for compound string table 410

create the widget tree rooted at a named wid-

get 978

create the widget tree rooted at a named wid-

get and override the resources set in the UID

file 981

Cursor 1160

set current menu cursor 336

cut Container selection 59

D
data format name, get from clipboard 28

deactivate a protocol 88

deactivate the XA_WM_PROTOCOLS proto-

col 89

delete a List item at specified position 210

delete all items from a list 207

delete an item/items from a list 208

delete item from ComboBox 48

delete items from position in list 209

delete List items at specified positions 211

delete SimpleSpinBox item at specified posi-

tion 341

delete the primary selection 481

deselect all items in a list 212

deselect item from list 213

deselect List item at specified position 214

determine if item is in list 219

dialog objects, create 73

DialogShell 669

Dimension 1160

direction, convert from string direction 363

direction, convert to string direction 95

directions, compare 91

directions, partially compare 93

Display 672, 1160

display

get Display object 173

display error message in Command 53

display the text at a specified position 502

double-precision floating point type 1079

drag and drop

determine target type compatibility 437

get information about 156

drag, cancel 96

drag, start 97

DragContext 678

DragIcon 687

draw a compound string 364

draw a compound string image 366

draw compound string with underline 368

DrawingArea 690

DrawnButton 695

drop

add transfer entries 112
Motif Reference Manual 1245

Index
start 114

drop site

change resource values 111

change stacking order 101

end update 102

get resource values 108

get stacking order 103

register 105

remove 110

start update 109

update 111

DropSite 701

DropTransfer 706

E
end copy operation 23, 25

F
fetch rendition 302

FileSelectionBox 710

get child 117

possible child values 119

start directory search 120

find child nearest to a point 254

find children of Container 60

finding position of items in a list 242

float 1079

font 1081

font_table 1083

FontList

append font entry 123

copy 125

create 127

create entry 130

create entry in thread-safe manner 133

create font context 144

create in thread-safe manner 129

create new 121

free font context 141

free memory 134

free memory used by list 140

get font information from entry 135

get next element information 142

get next entry 146

get tag of entry 137

load font for entry 138

remove entry 148

fonts

set font unit values 335

set unit values 334

fontset 1085

Form 720

Frame 727

free a font context 141

free a string context 374

free an input method context 178

free compound string memory 372

free font list entry 134

free memory used by font list 140

free memory used by parse mapping 260

free memory used by parse table 265

free render table memory 292

free rendition memory 301

free tab list memory 429

free XmTab memory 425

fundamental object class 576

fundamental object class with geometry 579

fundamental shell widget that interacts with

an ICCCM-compliant window manager 605

fundamental widget class that controls inter-

action between top-level windows and the

window manager 589

G
Gadget 731

GC 1160

generate a compound string 376

generic icon or xbitmapfile type 1095

get all occurrences of item in a list 216

get child of Command 54

get child of FileSelectionBox widget 117

get children of Container 60

get color calculate procedure 151

get composed string from an input method

182

get current destination widget 155
1246 Motif Reference Manual

Index
get current menu cursor 158

get data from clipboard 36

get Display object for a display 173

get font information from font list entry 135

get font list next element information 142

get information about drag and drop opera-

tion 156

get input method for a widget 181

get length of data item from clipboard 30

get next entry in font list 146

get position of List item with location cursor

215

get positions of selected List items 218

get resource values for drop site 108

get Screen object for a screen 174

get secondary widget resource data 166

get string representation of an Atom 150

get tab group for widget 169

get tag of font list entry 137

get tear-off control for menu 170

get the character position for an x, y position

504

get the display rectangle for a widget 556

get the positions of the baselines in a widget

555

get the state of a ToggleButton 505

get the x, y position of a character position 480

get visibility of widget 171

get widget that posted menu 163

get widget with keyboard focus 157

GrabModeAsync 737

GrabModeSync 737

GrabShell 736

H
highlight state of CascadeButton, setting 13

highlight text 490

I
icon 1087

IconGadget 740

ID number of a representation type 307

identifier 1036

images

install in cache 193

pre-installed, names and description 193

include 1037

include file directive 1037

incremental copying 21

initiate a multiple data transfer request 531

input methds

set values and focus 191

input method

get composed string 182

input Methods

register widget 185

input methods

close contexts 177

create context for widget 179

free context 178

get for widget 181

introduction 175

register widget with 188

reset context 184

set values 187, 192

set values and focus 186

unregister widget 189

unset focus for 190

XBufferOverflow 183

XLookupBoth 183

XLookupChars 183

XLookupKeysym 183

XLookupNone 183

insert tabs into a tab list 431

insert the clipboard selection 476, 478

install image in cache 193

integer 1089

integer_table 1091

introduction to the uniform transfer model

514

item is selected in list 222

K
keyboard focus

check widget can receive 202

set which widget 273
Motif Reference Manual 1247

Index
keyboard focus, get widget with 157

KeyCode 1160

KeySym 1160

keysym 1093

L
Label 745

LabelGadget 751

get from option menu 256

layout of Container 64

length of Compound String 393

List 754

add items 203, 204

check if item is selected 222

delete all items 207

delete an item/items 208

delete item at position 210

delete items at specified positions 211

delete items from specified position 209

deselect all items 212

deselect item 213

deselect item at specified position 214

determine if item is present 219

get all occurrences of item 216

get bounding box of item 223

get item position 220

get position of item at y-coordinate 242

get position of location cursor 215

get positions of selected items 218

how to check an item is visible 240

replace items 225, 226, 229

replace items at specified positions 230

replace specified items 227

select item 231

select item at specified position 232

set add mode 234

set first visible item 238, 240

set horizontal position 237

set last visible item 235

set last visible item, by position 236

set position of cursor 239

update list of selected items 241

list 1038

list definition section 1038

load font for font list entry 138

lock the clipboard 34

M
MainWindow 771

get widget ID of separator 243

specify children 244

Manager 774

Menu

get CascadeButtonGadget from option

menu 255

make inaccessible from widget 280

position a popup 248

set current cursor 336

menu

get tear-off control 170

get widget that posted 163

menu cursor, get current 158

menu objects, create 74

menu, make accessible from widget 8

MenuBar 783

MenuShell 785

MessageBox 789

get specified child 250

MessageDialog 795

Modifiers 1160

module 1041

module structure 1041

Motif compound string component type 1075

Motif compound string type 1073

Motif font list type 1083

Motif Window Manager, check whether run-

ning 196

MrmCloseHierarchy 963

MrmCode 1161

MrmCount 1161

MrmFetchBitmapLiteral 964, 965

MrmFetchColorLiteral 967

MrmFetchIconLiteral 969

MrmFetchLiteral 972

MrmFetchSetValues 975

MrmFetchWidget 978

MrmFetchWidgetOverride 981

MrmHierarchy 1161
1248 Motif Reference Manual

Index
MrmInitialize 985

MrmOpenHierarchy 986

MrmOpenHierarchyFromBuffer 988

MrmOpenHierarchyPerDisplay 989

MrmOsOpenParamPtr 1161

MrmRegisterArg 1161

MrmRegisterArgList 1161

MrmRegisterClass 992

MrmRegisterNames 994

MrmRegisterNamesInHierarchy 996

MrmType 1161

multi-color rectangular pixmap type 1087

mwm 1000

check whether running 196

MWM_DECOR_ALL 601

MWM_DECOR_BORDER 601

MWM_DECOR_MAXIMIZE 601

MWM_DECOR_MENU 601

MWM_DECOR_MINIMIZE 601

MWM_DECOR_RESIZEH 601

MWM_DECOR_TITLE 601

MWM_FUNC_ALL 601

MWM_FUNC_CLOSE 601

MWM_FUNC_MAXIMIZE 601

MWM_FUNC_MINIMIZE 601

MWM_FUNC_MOVE 601

MWM_FUNC_RESIZE 601

MWM_INPUT_FULL_APPLICATION_

MODAL 602

MWM_INPUT_MODELESS 601

MWM_INPUT_PRIMARY_APPLICATION_

MODAL 601

MWM_INPUT_SYSTEM_MODAL 602

N
Notebook 796

get information about a page 252

notify the Print Display Manager 267

NULL-terminated character string type 1102

O
Object 576

object 1043

objectClass 576

open an Mrm hierarchy 986, 989

open an Mrm hierarchy from a buffer 988

option menu

get CascadeButtonGadget 255

get LabelGadget 256

OptionMenu 805, 807

OverrideShell 577

overrideShellWidgetClass 577

P
PanedWindow 809

parse mapping

create 257

free memory 260

get resources 261

set resources 263

ParseMapping 815

partially compare two directions 93

paste into a Container 62

paste links into Container 63

Pixel 1162

Pixmap 1162

pixmap 1095

create scaled 164

create, of specified depth 161

get 159

pixmap, remove from cache 90

popup menu, how to position 248

popup shell that interacts with the window

manager 595

PopupMenu 819

Position 1162

position a popup menu 248

position of item in a list 220

pre-installed images 193

prepare the Mrm library for use 985

Print

create a Print Shell widget 269

force widget exposure 276

notify Print Display Manager 267

save data to file 271

PrintShell 821
Motif Reference Manual 1249

Index
procedure 1049

procedure declaration section 1049

procedure for calculating default colors 332

produce a listing of a UIL symbol table 1123

PromptDialog 827

protoclos

activate 3

protocols

add client callbacks to 5, 9

add to protocol manager 11

deactivate 88

deactivate XA_WM_PROTOCOLS 89

register 6

remove callback 281

remove callbacks 284

remove from protocol manager 282, 285

set prehooks and posthooks 337

set prehooks and posthooks for XA_

WM_PROTOCOLS 338

PulldownMenu 828

PushButton 830

PushButtonGadget 837

Q
QuestionDialog 840

R
RadioBox 841

reason 1096

RectObj 579

rectObjClass 579

register a drop site 105

register a representation type resource 314

register a widget creation function for a non-

Motif widget 992

register application-defined values and pro-

cedures 994

register application-defined values and pro-

cedures for use in a specific UIL hierarchy 996

register list of protocols 6

register new format for clipboard 35

register text encoding format for font list ele-

ment tag 279

register widget with an Input Manager 185

register widget with an input method context

188

relayout of Container 64

remove a drop site 110

remove an image from the image cache 536

remove callback from protocol 281

remove callbacks from protocol 284

remove entry from font list 148

remove item from clipboard 44

remove pixmap from cache 90

remove protocols from protocol manager

282, 285

remove tabs from list 432

remove widget from tab groups 283

render table

add renditions 286

convert from strings 290

convert to strings 291

copy 289

copy, excluding renditions 298

create rendition object 299

fetch rendition 302

free memory 292

free rendition memory 301

get a rendition 293

get rendition tags 296

search for renditions 294

set rendition object resources 304

rendition object resources, set 304

rendition tags from a render table 296

reorder children of Container 65

replace items at specified positions in list 230

replace part of the text string 482

replace part of the wide-character text string

484

replace specified items in a list 225, 226, 227,
229

replace string in Command 56

replace tabs in list 433

representation type

register resource 314

validity of numerical value 316

representation type, information about 309

representation types, get registered 311
1250 Motif Reference Manual

Index
reset an input method context 184

resource converter for the RowColumn

XmNtearOffModel, installing 313

retrieve an exported bitmap from an Mrm hi-

erarchy 964

retrieve an exported color value from an Mrm

hierarchy 967

retrieve an exported icon from an Mrm hier-

archy 969

retrieve an exported value from an Mrm hier-

archy 972

retrieve data from clipboard 36

return atom for property name string 195

reverse converter for a representation type

306

rgb 1098

RowColumn 846

run-time variable declaration section 1036

S
save X Print Server data to file 271

Scale 861

get slider value 319

set slider value 323

set tick marks 320

Screen 870, 1162

screen

get Screen object 174

scroll the text 486

ScrollBar 875

get current state 324

set current state 325

scrolled objects, create 75

ScrolledList 885

ScrolledText 886

ScrolledWindow 887

make child visible 329

specify children 327

search render table for a rendition 293

search render table for renditions 294

select and show item from ComboBox 50

select item at specified position in a list 232

select item from ComboBox 49

select item in a list 231

SelectionBox 893

get child 330

SelectionDialog 900

send a multiple transfer request 528

Separator 901

SeparatorGadget 904

SessionShell 581

sessionShellWidgetClass 581

set add mode in a list 234

set first visible item in a list 238, 240

set horizontal position of a list 237

set last visible item in a list 235

set last visible item in a list, by position 236

set parameters for next transfer 529

set position of cursor in a list 239

set SimpleSpinBox item 342

set the add mode state 487

set the edit permission state 489

set the maximum possible length of a text

string 494

set the position of the first character of text

that is displayed 501

set the position of the insertion cursor 488,
492

set the state of a ToggleButton 507

set the text source 496

set the text string 497

set the value of a ToggleButton 509

set the value of the primary selection 495

set the wide-character text string 499

set up storage for a copy 38

set value of Command 56

set value of tab stop 436

set values and focus for input method 191

set values and focus for input method context

186

set values for input method 192

set values for input method context 187

set widget resources to values retrieved from

an Mrm hierarchy 975

Shell 589

shell widget with Motif-specific hooks for

window manager interaction 598

shellWidgetClass 589

simple menu objects, create 74

SimpleSpinBox 906
Motif Reference Manual 1251

Index
add item 339

delete item at specified position 341

set item 342

single_float 1100

single-precision floating point type 1100

spacing for compound string 345

specified child of MessageBox widget 250

SpinBox 911

validate current value 343

stacking order of drop site 103

start a copy to clipboard 38

start a directory search 120

start a drag operation 97

start a drop operation 114

start an update of multiple drop sites 109

start clipboard retrieval 42

String 1163

string 1102

convert to compound string 398

string context, create 390

string direction, convert to direction 363

string, convert to byte stream 86

string, convert to integer 66

string, convert to text 87

string, convert to unit-type value 80

string_table 1077

StringTable 1163

T
Tab

create 422

free 425

get value 426

tab group, get for widget 169

tab groups

remove widget 283

tab groups, add widget to 7

tab stop, create 422

TabList

copy 428

count tabs 435

free 429

get a tab 430

insert tabs 431

remove tabs 432

replace tabs 433

set value of tab 436

TemplateDialog 921

Text 922

allow visual update 447

clear primary selection 438

copy primary selection 440

copy primary selection to clipboard 442

copy then remove selection 444

find beginning of string 448

find beginning of wide-character string

450

get edit permission state 455

get height 453

get maximum string length 458

get part of string 467

get part of wide-character string 469

get position of baseline 452

get position of insertion cursor 454, 456

get position of last character 457

get position of primary selection 460

get source 462

get string 463

get value of selection 459

get value of wide-character selection 461

get wide-character string 465

insert a wide-character string 474

insert another string 472

position of first character 471

prevent visual update 446

text, convert to string 79

text-editing widget 922

TextField 940

the fundamental class for Motif widgets that

manage children 774

the fundamental class for windowed widgets

572

the fundamental class for windowless wid-

gets 731

the fundamental widget that can have chil-

dren 568

the main shell for an application 565, 581

the Motif Window Manager 1000

the standard layout widget for an applica-

tion’s primary window 771
1252 Motif Reference Manual

Index
the uniform transfer model 514

the User Interface Language (UIL) compiler

1028

Time 1163

ToggleButton 945

ToggleButtonGadget 955

TopLevelShell 592

topLevelShellWidgetClass 592

transfer data to a destination 532

TransientShell 595

transientShellWidgetClass 595

translation_table 1105

true/false type 1063

type checking suppression type 1058

U
Uil 1115

uil 1028

UilDumpSymbolTable 1123

undo copy operation 44

unlock the clipboard 45

unregister input method context for widget

189

unset focus for input method context 190

update colors for widget 153

update ComboBox list 51

update list of selected items in a list 241

update srop site 111

update the display 537

user-defined callback type 1096

user-defined resource type 1059

V
value 1051

value names for a representation type 308

variable definition and declaration section.

1051

VendorShell 598

vendorShellWidgetClass 598

visibility of widget 171

Visual 1163

VoidProc 1163

W
WarningDialog 958

whole number type 1089

wide_character 1107

wide-character string type 1107

Widget 1164

widget 1109

check can receive keyboard focus 202

check the superclass or type 197

create input method context 179

ensure upward-compatibility 317

force exposure for printing 276

get current destination widget 155

get input method 181

get tab group 169

get the one that posted menu 163

get the one with keyboard focus 157

get visibility 171

make menu inaccessible 280

register with input method 185

remove from tab groups 283

set which has keyboard focus 273

unregister input method context 189

update colors 153

widget class pointer type 1068

widget declaration and definition section

1043

widget ID of MainWindow Separator 243

widget type 1109

widget, create 70

widget, update colors 14

WidgetClass 1164

widgetClass 572

WidgetList 1164

Window 1164

WM_COMMAND 566

WM_DELETE_WINDOW 567

WMShell 605

wmShellWidgetClass 605

WorkingDialog 959

X
X bitmap file type 1111

XA_WM_PROTOCOL 9
Motif Reference Manual 1253

Index
XA_WM_PROTOCOLS 4, 11, 284

xbitmapfile 1111

XBufferOverflow 183

XEvent 1164

XFontSet 1165

XFontSet type 1085

XFontStruct 1165

XFontStruct type 1081

XImage 1166

XLookupBoth 183

XLookupChars 183

XLookupKeysym 183

XLookupNone 183

Xm1000TH_INCHES 67, 68, 80, 603, 734,
777

Xm100TH_FONT_UNITS 67, 69, 80, 603,
734, 777

Xm100TH_MILLIMETERS 67, 68, 80, 603,
734, 777

Xm100TH_POINTS 67, 69, 80, 603, 734, 777

XmActivateProtocol 3

XmActivateWMProtocol 4

XmAddProtocolCallback 5

XmAddProtocols 6

XmAddTabGroup 7

XmAddToPostFromList 8

XmAddWMProtocolCallback 9

XmAddWMProtocols 11

XmALIGNMENT_BASELINE_BOTTOM

729, 849

XmALIGNMENT_BASELINE_TOP 729, 849

XmALIGNMENT_BEGINNING 728, 741,
746, 791, 848

XmALIGNMENT_CENTER 728, 729, 741,
746, 791, 848, 849

XmALIGNMENT_CONTENTS_BOTTOM

849

XmALIGNMENT_CONTENTS_TOP 849

XmALIGNMENT_END 728, 741, 746, 791,
848

XmALIGNMENT_WIDGET_BOTTOM 729

XmALIGNMENT_WIDGET_TOP 729

XmAllocColorProc 874, 1167

XmANY_ICON 653, 743

XmAnyCallbackStruct 621, 625, 734, 747,
778, 792, 928, 1167

XmAPPEND 655

XmAPPLICATION_DEFINED 889

XmARROW_DOWN 610

XmARROW_LEFT 610

XmARROW_RIGHT 610

XmARROW_UP 610

XmArrowButton 610

XmArrowButtonCallbackStruct 611, 1167

XmArrowButtonGadget 615

xmArrowButtonGadgetClass 615

xmArrowButtonWidgetClass 610

XmARROWS_BEGINNING 912

XmARROWS_DECREMENT_SENSITIVE

907, 913, 914

XmARROWS_DEFAULT_SENSITIVITY 914

XmARROWS_END 912

XmARROWS_FLAT_BEGINNING 912

XmARROWS_FLAT_END 912

XmARROWS_HORIZONTAL 913

XmARROWS_INCREMENT_SENSITIVE

907, 913, 914

XmARROWS_INSENSITIVE 907, 913, 914

XmARROWS_SENSITIVE 907, 913, 914

XmARROWS_SPLIT 912

XmARROWS_VERTICAL 913

XmAS_NEEDED 757, 888

XmATTACH_CENTER 688

XmATTACH_EAST 688

XmATTACH_FORM 722

XmATTACH_HOT 688

XmATTACH_NONE 722

XmATTACH_NORTH 688

XmATTACH_NORTH_EAST 688

XmATTACH_NORTH_WEST 688

XmATTACH_OPPOSITE_FORM 722

XmATTACH_OPPOSITE_WIDGET 722

XmATTACH_POSITION 722

XmATTACH_SELF 722

XmATTACH_SOUTH 688

XmATTACH_SOUTH_EAST 688

XmATTACH_SOUTH_WEST 688

XmATTACH_WEST 688

XmATTACH_WIDGET 722

XmAUTO_BEGIN 658

XmAUTO_CANCEL 658

XmAUTO_CHANGE 658
1254 Motif Reference Manual

Index
XmAUTO_DRAG_DISABLED 888

XmAUTO_DRAG_ENABLED 888

XmAUTO_MOTION 658

XmAUTO_NO_CHANGE 658

XmAUTO_SELECT 652, 756

XmAUTOMATIC 889

XmBACKGROUND_COLOR 865, 878

XmBELL 599

xmbind 1030

XmBLEND_ALL 679

XmBLEND_JUST_SOURCE 679

XmBLEND_NONE 679

XmBLEND_STATE_SOURCE 679

XmBOTTOM_LEFT 799, 889

XmBOTTOM_RIGHT 799, 889

XmBOTTOM_TO_TOP 94, 600, 776, 787

XmBOTTOM_TO_TOP_LEFT_TO_RIGHT

94, 600, 776, 787

XmBOTTOM_TO_TOP_RIGHT_TO_LEFT

94, 600, 776, 787

XmBROWSE_SELECT 655, 758

XmBulletinBoard 617

xmBulletinBoardWidgetClass 617

XmBulletonBoardDialog 623

XmBUTTON2_ADJUST 674

XmBUTTON2_TRANSFER 674

XmButtonType 1168

XmButtonTypeTable 1168

XmCASCADEBUTTON 854

XmCascadeButton 624

XmCascadeButtonGadget 629

xmCascadeButtonGadgetClass 629

XmCascadeButtonGadgetHighlight 13, 629

XmCascadeButtonHighlight 13, 624

xmCascadeButtonWidgetClass 624, 849

XmCELLS 656

XmCENTER 656

XmCENTIMETERS 67, 68, 603

XmChangeColor 14

XmCHARSET_TEXT 817

XmCheckBox 632

XmCHECKBUTTON 854

XmCLIP_WINDOW 890

XmClipboardBeginCopy 15

XmClipboardCancelCopy 17

XmClipboardCopy 18

XmClipboardCopyByName 21

XmClipboardEndCopy 23

XmClipboardEndRetrieve 25

XmClipboardInquireCount 27

XmClipboardInquireFormat 28

XmClipboardInquireLength 30

XmClipboardInquirePendingItems 32

XmClipboardLock 34

XmClipboardPendingList 1168

XmClipboardRegisterFormat 35

XmClipboardRetrieve 36

XmClipboardStartCopy 38

XmClipboardStartRetrieve 42

XmClipboardUndoCopy 44

XmClipboardUnlock 45

XmClipboardWithdrawFormat 46

XmCLOSEST 655

XmCOLLAPSED 657

XmColorProc 1168

XmCOMBO_BOX 635, 636

XmComboBox 634

XmComboBoxAddItem 47, 634

XmComboBoxCallbackStruct 639, 1169

XmComboBoxDeletePos 48, 634

XmComboBoxSelectItem 49, 634

XmComboBoxSetItem 50, 634

XmComboBoxUpdate 51, 634

xmComboBoxWidgetClass 634

XmCommand 644

XmCOMMAND_ABOVE_WORKSPACE 772

XmCOMMAND_BELOW_WORKSPACE

772

XmCommandAppendValue 52, 644

XmCommandCallbackStruct 645, 1169

XmCommandError 53, 644

XmCommandGetChild 54, 644

XmCommandSetValue 56, 644

xmCommandWidgetClass 644

XmCONSTANT 757, 889

XmContainer 649

XmContainerCopy 57, 649

XmContainerCopyLink 58, 649

XmContainerCut 59, 649

XmContainerGetItemChild 649

XmContainerGetItemChildren 60

XmContainerOutlineCallbackStruct 658,
Motif Reference Manual 1255

Index
1169

XmContainerPaste 62, 649

XmContainerPasteLink 63, 649

XmContainerRelayout 64, 649

XmContainerReorder 65, 649

XmContainerSelectCallbackStruct 658, 1170

xmContainerWidgetClass 649

XmConvertCallbackStruct 659, 692, 866,
1170

XmConvertStringToUnits 66

XmConvertUnits 68

XmCreateArrowButton 70, 610

XmCreateArrowButtonGadget 70, 615

XmCreateBulletinBoard 70, 617

XmCreateBulletinBoardDialog 73, 617, 623

XmCreateCascadeButton 70, 624

XmCreateCascadeButtonGadget 70, 629

XmCreateComboBox 70, 634

XmCreateCommand 70, 644

XmCreateCommandDialog 74

XmCreateContainer 70, 649

XmCreateDialogShell 70, 669

XmCreateDragIcon 71, 687

XmCreateDrawingArea 71, 690

XmCreateDrawnButton 71, 695

XmCreateDropDownComboBox 70, 634

XmCreateDropDownList 70, 634

XmCreateErrorDialog 73, 709, 789

XmCreateFileSelectionBox 71, 710, 719

XmCreateFileSelectionDialog 73, 710, 719

XmCreateForm 71, 720

XmCreateFormDialog 73, 720

XmCreateFrame 71, 727

XmCreateGrabShell 71, 736

XmCreateIconGadget 71, 740

XmCreateInformationDialog 74, 744, 789

XmCreateLabel 71, 745

XmCreateLabelGadget 71, 751

XmCreateList 71, 754

XmCreateMainWindow 71, 771

XmCreateMenuBar 74, 783, 846

XmCreateMenuShell 72, 785

XmCreateMessageBox 72, 789

XmCreateMessageDialog 74, 789, 795

XmCreateNotebook 72, 796

XmCreateOptionMenu 74, 805, 807, 846

XmCreatePanedWindow 72, 809

XmCreatePopupMenu 74, 785, 819, 846

XmCreatePromptDialog 74, 827, 893

XmCreatePulldownMenu 74, 785, 828, 846

XmCreatePushButton 72, 830

XmCreatePushButtonGadget 72, 837

XmCreateQuestionDialog 74, 789, 840

XmCreateRadioBox 72, 841, 846

XmCreateRowColumn 72, 632, 846

XmCreateScale 72, 861

XmCreateScrollBar 72, 875

XmCreateScrolledList 75, 754, 885, 887

XmCreateScrolledText 75, 886, 887, 922

XmCreateScrolledWindow 72, 885, 886, 887

XmCreateSelectionBox 72, 893, 900

XmCreateSelectionDialog 74, 893, 900

XmCreateSeparator 73, 901

XmCreateSeparatorGadget 73, 904

XmCreateSimpleCheckBox 74, 632, 846

XmCreateSimpleMenuBar 74, 783, 846

XmCreateSimpleOptionMenu 74, 805, 807,
846

XmCreateSimplePopupMenu 74, 819, 846

XmCreateSimplePulldownMenu 75, 828, 846

XmCreateSimpleRadioBox 75, 841, 846

XmCreateSimpleSpinBox 73, 906

XmCreateSpinBox 73, 911

XmCreateTemplateDialog 74, 789, 921

XmCreateText 73, 922

XmCreateTextField 73, 940

XmCreateToggleButton 73, 945

XmCreateToggleButtonGadget 73, 955

XmCreateWarningDialog 74, 789, 958

XmCreateWorkArea 72, 846

XmCreateWorkingDialog 74, 789, 959

XmCutPasteProc 1171

XmCvtByteStreamToXmString 78

XmCvtCTToXmString 79

XmCvtStringToUnitType 80

XmCvtTextPropertyToXmStringTable 81

XmCvtXmStringTableToTextProperty 83

XmCvtXmStringToByteStream 86

XmCvtXmStringToCT 87

XmDeactivateProtocol 88

XmDeactivateWMProtocol 89

XmDEFAULT_DIRECTION 747, 759
1256 Motif Reference Manual

Index
XmDEFAULT_SELECT_COLOR 654, 758,
948

XmDestinationCallbackStruct 659, 692, 762,
928, 1171

XmDESTROY 567, 600

XmDestroyPixmap 90

XmDETAIL 649, 653

XmDIALOG_APPLICATION_MODAL 619

XmDIALOG_CANCEL_BUTTON 790

XmDIALOG_COMMAND 895

XmDIALOG_COMMAND_TEXT 54

XmDIALOG_ERROR 791

XmDIALOG_FILE_SELECTION 895

XmDIALOG_FULL_APPLICATION_MOD-

AL 619

XmDIALOG_HELP_BUTTON 790

XmDIALOG_HISTORY_LIST 54

XmDIALOG_INFORMATION 744, 791

XmDIALOG_MESSAGE 791

XmDIALOG_MODELESS 619

XmDIALOG_OK_BUTTON 790

XmDIALOG_PRIMARY_APPLICATION_

MODAL 619

XmDIALOG_PROMPT 895

XmDIALOG_PROMPT_LABEL 54

XmDIALOG_QUESTION 791

XmDIALOG_SELECTION 895

XmDIALOG_SYSTEM_MODAL 619

XmDIALOG_TEMPLATE 791

XmDIALOG_WARNING 791

XmDIALOG_WORK_AREA 54, 619, 895

XmDIALOG_WORKING 791

xmDialogShellWidgetClass 669

XmDirection 1172

XmDirectionMatch 91

XmDirectionMatchPartial 93

XmDirectionToStringDirection 95

XmDisplay 672

XmDisplayCallbackStruct 677, 1172

xmDisplayClass 672

XmDO_NOTHING 600

XmDOUBLE_DASHED_LINE 845, 902

XmDOUBLE_LINE 845, 902

XmDOUBLE_SEPARATOR 854

XmDRAG_DROP_ONLY 674

XmDRAG_DYNAMIC 674

XmDRAG_NONE 674

XmDRAG_PREFER_DYNAMIC 674

XmDRAG_PREFER_PREREGISTER 674

XmDRAG_PREFER_RECEIVER 674

XmDRAG_PREREGISTER 674

XmDRAG_UNDER_HIGHLIGHT 702

XmDRAG_UNDER_NONE 702

XmDRAG_UNDER_PIXMAP 702

XmDRAG_UNDER_SHADOW_IN 702

XmDRAG_UNDER_SHADOW_OUT 702

XmDragCancel 96, 678

XmDragContext 678

xmDragContextClass 678

XmDragDropFininshCallbackStruct 1172

XmDragDropFinishCallback 682

XmDragDropFinishCallbackStruct 682

XmDragIcon 687

xmDragIconObjectClass 687

XmDragMotionCallback 682

XmDragMotionCallbackStruct 682, 1173

XmDragProcCallback 704

XmDragProcCallbackStruct 704, 1173

XmDragStart 97, 678

XmDragStartCallbackStruct 677

XmDrawingArea 690

XmDrawingAreaCallbackStruct 691, 1173

xmDrawingAreaWidgetClass 690

XmDrawnButton 695

XmDrawnButtonCallbackStruct 697, 1174

xmDrawnButtonWidgetClass 695

XmDROP_COPY 680, 703

XmDROP_DOWN_COMBO_BOX 635, 636

XmDROP_DOWN_LIST 635, 636

XmDROP_LINK 680, 703

XmDROP_MOVE 680, 703

XmDROP_NOOP 680, 703

XmDROP_SITE_ACTIVE 105, 702

XmDROP_SITE_COMPOSITE 106, 703

XmDROP_SITE_INACTIVE 702

XmDROP_SITE_INVALID 684

XmDROP_SITE_SIMPLE 703

XmDROP_SITE_VALID 684

XmDropFinishCallback 682

XmDropFinishCallbackStruct 682, 1174

XmDropProcCallback 704

XmDropProcCallbackStruct 704, 1174
Motif Reference Manual 1257

Index
XmDropSite 701

XmDropSiteConfigureStackingOrder 101,
701

XmDropSiteEndUpdate 102, 701

XmDropSiteEnterCallback 683

XmDropSiteEnterCallbackStruct 683, 1175

XmDropSiteLeaveCallback 683

XmDropSiteLeaveCallbackStruct 683, 1175

XmDropSiteQueryStackingOrder 103, 701

XmDropSiteRegister 105, 701

XmDropSiteRetrieve 108, 701

XmDropSiteStartUpdate 109, 701

XmDropSiteUnregister 110, 701

XmDropSiteUpdate 111, 701

XmDropStartCallback 683

XmDropStartCallbackStruct 683, 1175

XmDropTransfer 706

XmDropTransferAdd 112, 706

XmDropTransferEntry 707, 1176

XmDropTransferEntryRec 707, 1176

xmDropTransferObjectClass 706

XmDropTransferStart 114, 706

XmEACH_SIDE 864

XmErrorDialog 709

XmETCHED_LINE 864, 878

XmEXCLUSIVE_TAB_GROUP 733, 776

XmEXPANDED 657

XmEXPLICIT 600

XmEXTENDED_SELECT 655, 758

XmEXTERNAL_HIGHLIGHT 673

XmFALLBACK_CHARSET 1041

XmFILE_ANY_TYPE 713

XmFILE_DIRECTORY 713

XmFILE_REGULAR 713

XmFileSelectionBox 710

XmFileSelectionBoxCallbackStruct 715, 1176

XmFileSelectionBoxGetChild 117, 710, 719

xmFileSelectionBoxWidgetClass 710

XmFileSelectionDialog 719

XmFileSelectionDoSearch 120, 710, 719

XmFILTER_HIDDEN_FILES 713

XmFILTER_NONE 713

XmFIRST_FIT 655

XmFONT_IS_FONT 844

XmFONT_IS_FONTSET 844

XmFONT_UNITS 67, 69, 603, 734, 777

XmFontContext 1176

XmFontList 1176

XmFontListAdd 121

XmFontListAppendEntry 123

XmFontListCopy 125

XmFontListCreate 127

XmFontListCreate_r 129

XmFontListEntry 1177

XmFontListEntryCreate 130

XmFontListEntryCreate_r 133

XmFontListEntryFree 134

XmFontListEntryGetFont 135

XmFontListEntryGetTag 137

XmFontListEntryLoad 138

XmFontListFree 140

XmFontListFreeFontContext 141

XmFontListGetNextFont 142

XmFontListInitFontContext 144

XmFontListNextEntry 146

XmFontListRemoveEntry 148

XmFontType 1177

XmFOREGROUND_COLOR 865, 878

XmForm 720

XmFormDialog 726

xmFormWidgetClass 720

XmFrame 727

XmFRAME_GENERIC_CHILD 728

XmFRAME_TITLE_CHILD 728

XmFRAME_WORKAREA_CHILD 728

xmFrameWidgetClass 727

XmGadget 731

xmGadgetClass 731

XmGetAtomName 150

XmGetColorCalculation 151

XmGetColors 14, 153

XmGetDestination 155

XmGetDragContext 156

XmGetFocusWidget 157

XmGetMenuCursor 158

XmGetPixmap 159

XmGetPixmapByDepth 161

XmGetPostedFromWidget 163

XmGetScaledPixmap 164

XmGetSecondaryResourceData 166

XmGetTabGroup 169

XmGetTearOffControl 170
1258 Motif Reference Manual

Index
XmGetVisibility 171

XmGetXmDisplay 173, 672

XmGetXmScreen 174, 870

XmGrabShell 641, 736

xmGrabShellWidgetClass 736

XmGRID 656

XmGROW_BALANCED 656

XmGROW_MAJOR 656

XmGROW_MINOR 656

XmHIGHLIGHT_COLOR 654, 758, 948

XmHighlightMode 1178

XmHOR_SCROLLBAR 890

XmHORIZONTAL 801, 810, 851, 863, 877,
902

XmICCEncodingStyle 1178

XmIconGadget 740

xmIconGadgetClass 740

XmIm 175

XmImCloseXIM 177

XmImFreeXIC 178

XmImGetXIC 179

XmImGetXIM 181

XmImMbLookupString 182

XmImMbResetIC 184

XmImRegister 185

XmImSetFocusValues 186

XmImSetValues 187

XmImSetXIC 188

XmImUnregister 189

XmImUnsetFocus 190

XmImVaSetFocusValues 191

XmImVaSetValues 192

XmINCHES 67, 68, 603, 734, 777

XmIncludeStatus 1178

XmINDETERMINATE 949

XmINDICATOR_BOX 947

XmINDICATOR_CHECK 947

XmINDICATOR_CHECK_BOX 947

XmINDICATOR_CROSS 947

XmINDICATOR_CROSS_BOX 947

XmINDICATOR_FILL 947

XmINDICATOR_NONE 947

XmInformationDialog 744

XmInputPolicy 180

XmINSERT 816

XmInstallImage 193

XmINTERNAL_HIGHLIGHT 673

XmInternAtom 195

XmINVOKE 816

XmIsArrowButton 197, 610

XmIsArrowButtonGadget 197, 615

XmIsBulletinBoard 197

XmIsCascadeButton 197, 624

XmIsCascadeButtonGadget 197, 629

XmIsComboBox 197, 634

XmIsCommand 197, 644

XmIsContainer 197

XmIsDialogShell 197, 669

XmIsDisplay 197, 672

XmIsDragContext 197

XmIsDragIconObjectClass 197, 687

XmIsDrawingArea 198, 690

XmIsDrawnButton 198, 695

XmIsDropSiteManager 198

XmIsDropTransfer 198

XmIsFileSelectionBox 198, 710, 719

XmIsForm 198, 720

XmIsFrame 198, 727

XmIsGadget 197

XmIsGrabShell 198, 736

XmIsIconGadget 198, 740

XmIsLabel 198, 745

XmIsLabelGadget 198, 751

XmIsList 198, 754

XmIsMainWindow 198, 771

XmIsManager 197, 774

XmIsMenuShell 198, 785

XmIsMessageBox 198, 789

XmIsMotifWMRunning 196

XmIsNotebook 198, 796

XmIsPanedWindow 198, 809

XmIsPrimitive 197

XmIsPrintShell 199, 821

XmIsPushButton 199, 830

XmIsPushButtonGadget 199, 837

XmIsRowColumn 199, 632, 783, 805, 807,
841, 846

XmIsScale 199, 861

XmIsScreen 199, 870

XmIsScrollBar 199, 875

XmIsScrolledWindow 199, 887

XmIsSelectionBox 199, 827, 893
Motif Reference Manual 1259

Index
XmIsSeparator 199, 901

XmIsSeparatorGadget 199, 904

XmIsText 199, 922

XmIsTextField 199, 940

XmIsToggleButton 199, 945

XmIsToggleButtonGadget 199, 955

XmIsTraversable 202

XmIsVendorShell 199, 598

XmKeySymTable 1178

XmLabel 745

XmLabelGadget 751

xmLabelGadgetClass 751

xmLabelWidgetClass 745

XmLARGE_ICON 653, 743

XmLEFT_TO_RIGHT 94, 600, 733, 776, 787

XmLEFT_TO_RIGHT_BOTTOM_TO_TOP

94, 601, 776, 787

XmLEFT_TO_RIGHT_TOP_TO_BOTTOM

94, 601, 776, 787

XmList 754

XmListAddItem 203

XmListAddItems 203

XmListAddItemsUnselected 204

XmListAddItemUnselected 204

XmListCallbackStruct 760, 1179

XmListDeleteAllItems 207

XmListDeleteItem 208

XmListDeleteItems 208

XmListDeleteItemsPos 209

XmListDeletePos 210

XmListDeletePositions 211

XmListDeselectAllItems 212

XmListDeselectItem 213

XmListDeselectPos 214

XmListGetKbdItemPos 215

XmListGetMatchPos 216

XmListGetSelectedPos 218

XmListItemExists 219

XmListItemPos 220

XmListPosSelected 222

XmListPosToBounds 223

XmListReplaceItems 225

XmListReplaceItemsPos 226

XmListReplaceItemsPosUnselected 227

XmListReplaceItemsUnselected 229

XmListReplacePositions 230

XmListSelectItem 231

XmListSelectPos 232

XmListSetAddMode 234

XmListSetBottomItem 235

XmListSetBottomPos 236

XmListSetHorizPos 237

XmListSetItem 238

XmListSetKbdItemPos 239

XmListSetPos 240

XmListUpdateSelectedList 241

xmListWidgetClass 754

XmListYToPos 242

XmLOAD_DEFERRED 845

XmLOAD_IMMEDIATE 845

XmMainWindow 771

XmMainWindowSep1 243, 771

XmMainWindowSep2 243, 771

XmMainWindowSep3 243, 771

XmMainWindowSetAreas 244, 771

xmMainWindowWidgetClass 771

XmMAJOR_TAB 801

XmManager 774

xmManagerWidgetClass 774

XmMapSegmentEncoding 247

XmMARQUEE 655

XmMARQUEE_EXTEND_BOTH 655

XmMARQUEE_EXTEND_START 655

XmMAX_ON_BOTTOM 863, 877

XmMAX_ON_LEFT 863, 877

XmMAX_ON_RIGHT 863, 877

XmMAX_ON_TOP 863, 877

XmMAX_SIDE 864

XmMENU_BAR 852

XmMENU_OPTION 852

XmMENU_POPUP 852

XmMENU_PULLDOWN 852

XmMenuBar 783

XmMenuPosition 248, 819

XmMenuShell 785

xmMenuShellWidgetClass 785

XmMergeMode 1180

XmMessageBox 789

XmMessageBoxGetChild 250, 709, 744, 789,
795, 840, 921, 958, 959

xmMessageBoxWidgetClass 789

XmMessageDialog 795
1260 Motif Reference Manual

Index
XmMILLIMETERS 67, 68, 603

XmMIN_SIDE 864

XmMINOR_TAB 801

XmMULTI_LINE_EDIT 923

XmMULTIBYTE_TEXT 817

XmMULTICLICK_DISCARD 611, 695, 831

XmMULTICLICK_KEEP 611, 696, 831

XmMULTIPLE_SELECT 655, 758

XmN_OF_MANY 948

XmNaccelerator 745

XmNaccelerators 572

XmNacceleratorText 745

XmNaccessColors 775

XmNactivateCallback 611, 625, 696, 832, 927

XmNadjustLast 847

XmNadjustMargin 847

XmNalignment 741, 745

XmNallowOverlap 617

XmNallowResize 811

XmNallowShellResize 589

XmNancestorSensitive 572, 579

XmNanimationMask 701

XmNanimationPixmap 701

XmNanimationPixmapDepth 701

XmNanimationStyle 701

XmNapplyCallback 896

XmNapplyLabelString 894

XmNargc 566

XmNargv 566

XmNarmCallback 611, 696, 832, 949

XmNarmColor 830

XmNarmPixmap 830

XmNarrowDirection 610

XmNarrowLayout 912

XmNarrowOrientation 912

XmNarrowSensitivity 906, 914

XmNarrowSize 635, 912

XmNarrowSpacing 635

XmNattachment 688

XmNaudibleWarning 598

XmNautoDragModel 888

XmNautomaticSelection 651, 755

XmNautoShowCursorPosition 922

XmNautoUnmanage 617

XmNavigationType 1180

XmNbackground 572, 732

XmNbackgroundPixmap 572, 732

XmNbackPageBackground 798

XmNbackPageForeground 798

XmNbackPageNumber 798

XmNbackPagePlacement 798

XmNbackPageSize 798

XmNbaseHeight 605

XmNbaseWidth 605

XmNbindingPixmap 798

XmNbindingType 798

XmNbindingWidth 798

XmNbitmapConversionModel 870

XmNblendModel 679

XmNblinkRate 925, 940

XmNborderColor 572

XmNborderPixmap 572

XmNborderWidth 572, 579, 615, 640

XmNbottomAttachment 721

XmNbottomOffset 721

XmNbottomPosition 721

XmNbottomShadowColor 732, 736, 775

XmNbottomShadowPixmap 732, 736, 775

XmNbottomWidget 721

XmNbrowseSelectionCallback 759

XmNbuttonAccelerators 853

XmNbuttonAcceleratorText 853

XmNbuttonCount 853

XmNbuttonFontList 598, 617, 786

XmNbuttonMnemonicCharSets 853

XmNbuttonMnemonics 853

XmNbuttonRenderTable 598, 617, 786

XmNbuttons 853

XmNbuttonSet 853

XmNbuttonType 853

XmNcancelButton 617

XmNcancelCallback 791, 896

XmNcancelLabelString 790, 894

XmNcascadePixmap 624

XmNcascadingCallback 625

XmNchildHorizontalAlignment 728

XmNchildHorizontalSpacing 728

XmNchildPlacement 894

XmNchildren 568

XmNchildType 728

XmNchildVerticalAlignment 728

XmNclientData 679, 816
Motif Reference Manual 1261

Index
XmNclipWindow 888

XmNcollapsedStatePixmap 651

XmNcolorAllocationProc 870

XmNcolorCalculationProc 870

XmNcolormap 572

XmNcolumns 635, 906, 925, 940

XmNcomboBoxType 635

XmNcommand 644

XmNcommandChangedCallback 645

XmNcommandEnteredCallback 645

XmNcommandWindow 772

XmNcommandWindowLocation 772

XmNconvertCallback 657, 691, 865

XmNconvertProc 679

XmNcreatePopupChildProc 589

XmNcurrentPageNumber 798

XmNcursorBackground 679

XmNcursorForeground 679

XmNcursorPosition 922, 940

XmNcursorPositionVisible 925, 940

XmNdarkThreshold 870

XmNdecimalPoints 862, 906, 914

XmNdecrementCallback 879

XmNdefaultActionCallback 657, 759

XmNdefaultArrowSensitivity 912

XmNdefaultButton 618

XmNdefaultButtonEmphasis 673

XmNdefaultButtonShadowThickness 830

XmNdefaultButtonType 790

XmNdefaultCopyCursorIcon 870

XmNdefaultFontList 598, 786

XmNdefaultInvalidCursorIcon 870

XmNdefaultLinkCursorIcon 870

XmNdefaultMoveCursorIcon 870

XmNdefaultNoneCursorIcon 871

XmNdefaultPixmapResolution 822

XmNdefaultPosition 618

XmNdefaultSourceCursorIcon 871

XmNdefaultValidCursorIcon 871

XmNdefaultVirtualBindings 673

XmNdeleteResponse 567, 598

XmNdepth 573, 688

XmNdestinationCallback 657, 691, 759, 927

XmNdestroyCallback 573, 576

XmNdetail 650, 741

XmNdetailColumnHeading 650, 651

XmNdetailColumnHeadingCount 651

XmNdetailCount 741

XmNdetailOrder 651

XmNdetailOrderCount 651

XmNdetailShadowThickness 610, 912, 946

XmNdetailTabList 651

XmNdialogStyle 618, 623

XmNdialogTitle 618

XmNdialogType 709, 719, 744, 790, 795, 827,
840, 894, 900, 921, 958, 959

XmNdirectory 711

XmNdirectoryValid 711

XmNdirListItemCount 711

XmNdirListItems 711

XmNdirListLabelString 711

XmNdirMask 711

XmNdirSearchProc 711

XmNdirSpec 711

XmNdirTextLabelString 711

XmNdisarmCallback 611, 696, 832, 949

XmNdoubleClickInterval 755

XmNdragCallback 865, 879

XmNdragDropFinishCallback 681

XmNdragInitiatorProtocolStyle 673

XmNdragMotionCallback 681

XmNdragOperations 679

XmNdragProc 703

XmNdragReceiverProtocolStyle 673

XmNdragStartCallback 676

XmNdropFinishCallback 681

XmNdropProc 703

XmNdropRectangles 702

XmNdropSiteActivity 702

XmNdropSiteEnterCallback 681

XmNdropSiteLeaveCallback 681

XmNdropSiteOperations 702

XmNdropSiteType 702

XmNdropStartCallback 681

XmNdropTransfers 707

XmNeditable 862, 876, 906, 922, 940

XmNeditMode 922

XmNenableBtn1Transfer 673

XmNenableButtonTab 673

XmNenableDragIcon 673

XmNenableEtchedInMenu 673

XmNenableFdbPickList 711
1262 Motif Reference Manual

Index
XmNenableMultiKeyBindings 673

XmNenableThinThickness 611, 673

XmNenableToggleColor 673

XmNenableToggleVisual 673

XmNenableUnselectableDrag 673

XmNenableWarp 673

XmNendJobCallback 823

XmNentryAlignment 847

XmNentryBorder 847

XmNentryCallback 855

XmNentryClass 784, 842, 847

XmNentryParent 656

XmNentryVerticalAlignment 847

XmNentryViewType 651

XmNexpandedStatePixmap 651

XmNexportTargets 679

XmNexposeCallback 691, 696

XmNextendedSelectionCallback 759

XmNfileFilterStyle 711

XmNfileListItemCount 711

XmNfileListItems 711

XmNfileListLabelString 711

XmNfileSearchProc 711

XmNfileTypeMask 711

XmNfillOnArm 830

XmNfillOnSelect 946

XmNfilterLabelString 711

XmNfirstPageNumber 799

XmNfocusCallback 620, 927

XmNfont 844, 871

XmNfontList 635, 651, 741, 745, 755, 862,
925, 940

XmNfontName 844

XmNfontType 844

XmNforeground 732, 775

XmNforegroundThreshold 871

XmNfractionBase 720

XmNframeBackground 799

XmNframeChildType 728

XmNframeShadowThickness 799

XmNgainPrimaryCallback 927

XmNgeometry 589

XmNgrabStyle 737

XmNheight 573, 579, 688

XmNheightInc 605

XmNhelpCallback 734, 778

XmNhelpLabelString 790, 894

XmNhighlightColor 732, 775

XmNhighlightOnEnter 732, 862

XmNhighlightPixmap 732, 775

XmNhighlightThickness 636, 640, 732, 862

XmNhistoryItemCount 644

XmNhistoryItems 644

XmNhistoryMaxItems 644

XmNhistoryVisibleItemCount 644

XmNhorizontalFontUnit 871

XmNhorizontalScrollBar 755, 888

XmNhorizontalSpacing 720

XmNhotX 688

XmNhotY 688

XmNiconic 592

XmNiconMask 605

XmNiconName 592

XmNiconNameEncoding 592

XmNiconPixmap 605

XmNiconWindow 605

XmNiconX 605

XmNiconY 605

XmNimportTargets 702

XmNincludeStatus 816

XmNincrement 876

XmNincremental 679, 707

XmNincrementCallback 879

XmNincrementValue 906, 914

XmNindeterminateInsensitivePixmap 946

XmNindeterminatePixmap 946

XmNindicatorOn 946

XmNindicatorSize 946

XmNindicatorType 946

XmNinitialDelay 876, 912

XmNinitialFocus 775

XmNinitialResourcesPersistent 573

XmNinitialState 605

XmNinnerMarginHeight 799

XmNinnerMarginWidth 799

XmNinput 605

XmNinputCallback 691

XmNinputMethod 598

XmNinputPolicy 599

XmNinsensitiveStippleBitmap 871

XmNinsertPosition 568

XmNinvalidCursorForeground 679
Motif Reference Manual 1263

Index
XmNinvokeParseProc 816

XmNisAligned 847

XmNisHomogeneous 847

XmNisHomogenous 784, 842

XmNitemCount 636, 755

XmNitems 636, 755

XmNkeyboardFocusPolicy 599

XmNlabelFontList 599, 618, 786

XmNlabelInsensitivePixmap 745

XmNlabelPixmap 745

XmNlabelRenderTable 599, 618, 786

XmNlabelString 741, 746, 847

XmNlabelType 746

XmNlargeCellHeight 651

XmNlargeCellWidth 651

XmNlargeIconMask 741

XmNlargeIconPixmap 741

XmNlastPageNumber 799

XmNlayoutDirection 599, 635, 732, 775, 786

XmNlayoutType 649, 650, 651

XmNleftAttachment 721

XmNleftOffset 721

XmNleftPosition 721

XmNleftWidget 721

XmNlightThreshold 871

XmNlist 636

XmNlistItemCount 894

XmNlistItems 894

XmNlistLabelString 827, 894

XmNlistMarginHeight 755

XmNlistMarginWidth 755

XmNlistSizePolicy 640, 755

XmNlistSpacing 755

XmNlistUpdated 712

XmNlistVisibleItemCount 827, 894

XmNloadModel 844

XmNlosePrimaryCallback 927

XmNlosingFocusCallback 927

XmNmainWindowMarginHeight 772

XmNmainWindowMarginWidth 772

XmNmajorTabSpacing 799

XmNmapCallback 620, 855

XmNmappedWhenManaged 573

XmNmappingDelay 624

XmNmargin 902

XmNmarginBottom 746

XmNmarginHeight 618, 636, 651, 690, 727,
741, 746, 809, 847, 912, 922, 940

XmNmarginLeft 746

XmNmarginRight 746

XmNmarginTop 746

XmNmarginWidth 618, 636, 651, 690, 727,
741, 746, 809, 847, 912, 922, 940

XmNmask 688

XmNmatchBehavior 635, 636, 755

XmNmaxAspectX 605

XmNmaxAspectY 606

XmNmaxHeight 606

XmNmaximum 862, 876

XmNmaximumValue 906, 914

XmNmaxLength 923, 941

XmNmaxWIdth 606

XmNmaxX 822

XmNmaxY 822

XmNmenuAccelerator 784, 820, 847

XmNmenuBar 772

XmNmenuCursor 871

XmNmenuHelpWidget 847

XmNmenuHistory 847

XmNmenuPost 784, 806, 808, 820, 847

XmNmessageAlignment 790

XmNmessageString 790

XmNmessageWindow 772

XmNminAspectX 606

XmNminAspectY 606

XmNminHeight 606

XmNminimizeButtons 790, 894

XmNminimum 862, 876

XmNminimumValue 907, 914

XmNminorTabSpacing 799

XmNminWidth 606

XmNminX 822

XmNminY 822

XmNmnemonic 746, 847

XmNmnemonicCharSet 746, 847

XmNmodifyVerifyCallback 916, 927

XmNmodifyVerifyCallbackWcs 927

XmNmotifVersion 673

XmNmotionVerifyCallback 927

XmNmoveOpaque 871

XmNmulciClick 610

XmNmultiClick 695, 830
1264 Motif Reference Manual

Index
XmNmultipleSelectionCallback 759

XmNmustMatch 894

XmNmwmDecorations 599

XmNmwmFunctions 599

XmNmwmInputMode 599

XmNmwmMenu 599

XmNnavigationType 633, 640, 732, 775, 842

XmNnoFontCallback 676

XmNnoMatchCallback 896

XmNnoMatchString 712

XmNnoneCursorForeground 679

XmNnoRenditionCallback 676

XmNnoResize 618

XmNnotebookChildType 801

XmNnumChildren 568

XmNnumColumns 847

XmNnumDropRectangles 702

XmNnumDropTransfers 707

XmNnumExportTargets 679

XmNnumImportTargets 702

XmNnumValues 907, 914

XmNO_AUTO_SELECT 652, 756

XmNO_DROP_SITE 684

XmNO_LINE 654, 845, 902

XmNO_SCROLL 890

XmNoffsetX 688

XmNoffsetY 688

XmNokCallback 791, 896

XmNokLabelString 790, 894

XmNONE 599, 637, 656, 733, 757, 776, 799,
864, 878

XmNoperationChangedCallback 681

XmNoperationCursorIcon 679

XmNoptionLabel 853

XmNoptionMnemonic 853

XmNorientation 784, 799, 806, 808, 809, 848,
862, 876, 902

XmNOT_SELECTED 743

XmNotebook 796

XmNotebookCallbackStruct 802, 1180

XmNotebookGetPageInfo 252, 796

XmNotebookPageInfo 1181

XmNotebookPageInfo structure 253

xmNotebookWidgetClass 796

XmNoutlineButtonPolicy 651

XmNoutlineChangedCallback 657

XmNoutlineColumnWidth 651

XmNoutlineIndentation 651

XmNoutlineLineStyle 651

XmNoutlineState 656

XmNoverrideRedirect 589

XmNownerEvents 737

XmNpacking 848

XmNpageChangedCallback 802

XmNpageDecrementCallback 879

XmNpageIncrement 876

XmNpageIncrementCallback 879

XmNpageNumber 801

XmNpageSetupCallback 823

XmNpaneMaximum 811

XmNpaneMinimum 811

XmNpathMode 712

XmNpattern 712, 816

XmNpatternType 816

XmNpdmNotificationCallback 823

XmNpendingDelete 924, 941

XmNpixmap 688

XmNpopdownCallback 589

XmNpopupCallback 589

XmNpopupEnabled 820, 848

XmNpopupHandlerCallback 778

XmNposition 907, 914

XmNpositionIndex 656, 811, 853

XmNpositionMode 636

XmNpositionType 907, 914

XmNpostFromButton 853

XmNpreeditType 599

XmNprimaryOwnership 651, 755

XmNprocessingDirection 862, 876

XmNpromptString 644

XmNpushButtonEnabled 695

XmNqualifySearchDataProc 712

XmNradioAlwaysOne 842, 848

XmNradioBehavior 633, 842, 848

XmNrecomputeSize 746

XmNrefigureMode 809

XmNrenderTable 636, 640, 651, 741, 746,
755, 862, 925, 941

XmNrenditionBackground 844

XmNrenditionForeground 844

XmNrepeatDelat 912

XmNrepeatDelay 876
Motif Reference Manual 1265

Index
XmNresizable 721, 801

XmNresizeCallback 691, 696

XmNresizeHeight 848, 925

XmNresizePolicy 618, 690

XmNresizeWidth 848, 925, 941

XmNrightAttachment 721

XmNrightOffset 721

XmNrightPosition 721

XmNrightWidget 721

XmNrowColumnType 633, 784, 806, 808,
820, 829, 842, 848

XmNrows 925

XmNrubberPositioning 720

XmNsashHeight 809

XmNsashIndent 810

XmNsashShadowThickness 810

XmNsashWidth 810

XmNsaveUnder 589

XmNscaleHeight 862

XmNscaleMultiple 862

XmNscaleWidth 862

XmNscreen 573

XmNscrollBarDisplayPolicy 755, 885, 886,
888

XmNscrollBarPlacement 888

XmNscrolledWindowChildType 890

XmNscrolledWindowMarginHeight 888

XmNscrolledWindowMarginWidth 888

XmNscrollHorizontal 926

XmNscrollingPolicy 885, 886, 888

XmNscrollLeftSide 926

XmNscrollTopSide 926

XmNscrollVertical 926

XmNselectColor 651, 755, 946

XmNselectedItem 636

XmNselectedItemCount 755

XmNselectedItems 755

XmNselectedObjectCount 651

XmNselectedObjects 651

XmNselectedPosition 636

XmNselectedPositionCount 755

XmNselectedPositions 755

XmNselectInsensitivePixmap 946

XmNselectionArray 924, 941

XmNselectionArrayCount 924, 941

XmNselectionCallback 639, 657

XmNselectionLabelString 894

XmNselectionMode 755

XmNselectionPolicy 640, 651, 755

XmNselectionTechnique 651

XmNselectPixmap 946

XmNselectThreshold 924, 941

XmNsensitive 573, 579

XmNseparatorOn 810

XmNseparatorType 902

XmNset 946

XmNshadowThickness 732, 737, 775

XmNshadowType 618, 695, 727

XmNshellUnitType 599

XmNshowArrows 862, 876

XmNshowAsDefault 830

XmNshowSeparator 772

XmNshowValue 862

XmNsimpleCallback 853

XmNsingleSelectionCallback 759

XmNskipAdjust 811

XmNsliderMark 862, 876

XmNsliderSize 862, 876

XmNsliderVisual 862, 876

XmNslidingMode 862, 876

XmNsmallCellHeight 651

XmNsmallCellWidth 651

XmNsmallIconMask 741

XmNsmallIconPixmap 741

XmNsnapBackMultiple 876

XmNsource 923

XmNsourceCursorIcon 679

XmNsourcePixmapIcon 679

XmNspacing 640, 741, 810, 848, 888, 912,
946

XmNspatialIncludeModel 650, 651

XmNspatialResizeModel 651

XmNspatialSnapModel 650, 651

XmNspatialStyle 650, 651

XmNspecifyLayoutDirection 775

XmNspecifyUnitType 775

XmNspinBoxChildType 907, 914

XmNstartJobCallback 823

XmNstateCursorIcon 679

XmNstrikethruType 844

XmNstringDirection 746, 755, 775

XmNsubMenuId 624, 848
1266 Motif Reference Manual

Index
XmNsubstitute 816

XmNsymbolPixmap 709, 744, 790, 840, 958,
959

XmNtabList 844

XmNtag 844

XmNtearOffMenuActivateCallback 855

XmNtearOffMenuDeactivateCallback 855

XmNtearOffModel 848

XmNtearOffTitle 848

XmNtextAccelerators 894

XmNtextColumns 894

XmNtextField 636, 907

XmNtextFontList 599, 618

XmNtextRenderTable 599, 618

XmNtextString 894

XmNtextTranslations 618

XmNtitle 606

XmNtitleEncoding 606

XmNtitleString 862

XmNtoBottomCallback 879

XmNtoggleMode 946

XmNtopAttachment 721

XmNtopCharacter 923

XmNtopItemPosition 756

XmNtopLevelEnterCallback 681

XmNtopLevelLeaveCallback 681

XmNtopOffset 721

XmNtopPosition 722

XmNtopShadowColor 732, 737, 775

XmNtopShadowPixmap 732, 737, 775

XmNtopWidget 722

XmNtotalLines 923

XmNtoTopCallback 879

XmNtransferProc 707

XmNtransferStatus 707

XmNtransient 606

XmNtransientFor 595

XmNtranslations 573

XmNtraversalOn 633, 640, 732, 775, 842

XmNtraverseObscuredCallback 890

XmNtroughColor 876

XmNUMERIC 908, 915

XmNunderlineType 844

XmNunitType 599, 732, 775

XmNunmapCallback 620, 855

XmNunpostBehavior 871

XmNunselectColor 946

XmNuseAsyncGeometry 599

XmNuseColorObject 871

XmNuserData 673, 732, 775, 871

XmNvalidCursorForeground 679

XmNvalue 862, 876, 923, 941

XmNvalueChangedCallback 865, 879, 916,
927, 949

XmNvalues 907, 914

XmNvalueWcs 923, 941

XmNverifyBell 923, 941

XmNverticalFontUnit 871

XmNverticalScrollBar 756, 888

XmNverticalSpacing 720

XmNviewType 741

XmNvisibleItemCount 636, 756

XmNvisibleWhenOff 946

XmNvisual 589

XmNvisualEmphasis 741

XmNvisualPolicy 640, 885, 886, 888

XmNwaitForWm 606

XmNwhichButton 848

XmNwidth 573, 579, 688

XmNwidthInc 606

XmNwindowGroup 606

XmNwinGravity 606

XmNwmTimeout 606

XmNwordWrap 925

XmNworkWindow 888

XmNwrap 907, 914

XmNx 573, 579

XmNy 573, 579

XmObjectAtPoint 254

XmOFF 674

XmOffset 1181

XmOffsetModel 1181

XmOffsetModel values 423

XmOffsetPtr 1181

XmONE_BASED 638

XmONE_OF_MANY 948

XmONE_OF_MANY_DIAMOND 948

XmONE_OF_MANY_ROUND 948

XmOperationChangedCallback 683

XmOperationChangedCallbackStruct 683,
1181

XmOptionButtonGadget 255, 629, 805, 807
Motif Reference Manual 1267

Index
XmOptionLabelGadget 256, 751, 805, 807

XmOptionMenu 805, 807

XmOUTLINE 649, 653

XmOUTLINE_BUTTON_ABSENT 653

XmOUTLINE_BUTTON_PRESENT 653

XmOWN_ALWAYS 654, 757

XmOWN_MULTIPLE 654, 757

XmOWN_NEVER 654, 757

XmOWN_POSSIBLE_MULTIPLE 654, 757

XmPACK_COLUMN 851

XmPACK_NONE 851

XmPACK_TIGHT 851

XmPAGE 801

XmPAGE_SCROLLER 801

XmPanedWindow 809

xmPanedWindowWidgetClass 809

XmParseMapping 815, 1181

XmParseMappingCreate 257, 815

XmParseMappingFree 260, 815

XmParseMappingGetValues 261, 815

XmParseMappingSetValues 263, 815

XmParseModel 1182

XmParseModel structure 415

XmParseProc 817, 1182

XmParseTable 1182

XmParseTableFree 265

XmPATH_MODE_FULL 714

XmPATH_MODE_RELATIVE 714

XmPER_SHELL 600

XmPER_WIDGET 600

XmPIXELS 67, 68, 80, 603, 734, 777

XmPIXMAP 747, 799

XmPIXMAP_OVERLAP_ONLY 799

XmPLACE_ABOVE_SELECTION 895

XmPLACE_BELOW_SELECTION 895

XmPLACE_TOP 895

XmPOINTER 600

XmPOINTS 67, 69, 603, 734, 777

XmPOPUP_AUTOMATIC 851

XmPOPUP_AUTOMATIC_RECURSIVE 851

XmPOPUP_DISABLED 851

XmPOPUP_KEYBOARD 851

XmPopupHandlerCallbackStruct 778, 1183

XmPopupMenu 819

XmPOSITION_INDEX 908, 915

XmPOSITION_VALUE 908, 915

XmPrintPopupPDM 267, 821

XmPrintSetup 269, 821

XmPrintShell 821

XmPrintShellCallbackStruct 823, 1183

xmPrintShellWidgetClass 821

XmPrintToFile 271, 821

XmProcessTraversal 273

XmPromptDialog 827

XmPulldownMenu 828

XmPUSHBUTTON 854

XmPushButton 830

XmPushButtonCallbackStruct 832, 1182

XmPushButtonGadget 837

xmPushButtonGadgetClass 837

xmPushButtonWidgetClass 830

XmQTaccessColors 598, 615, 731, 741, 751,
904

XmQTaccessTextual 745, 751, 798, 894, 912,
922, 940

XmQTactivatable 610, 615, 695, 711, 790,
798, 830, 837, 894

XmQTcareParentVisual 615, 741, 751, 830,
904, 955

XmQTcontainer 650, 741

XmQTcontainerItem 60, 650, 741

XmQTdialogShellSavvy 617, 669

XmQTjoinSide 798

XmQTmenuSavvy 745, 751, 830, 837, 847,
901, 904, 955

XmQTmenuSystem 624, 629, 695, 745, 751,
772, 785, 830, 837, 847, 945, 955

XmQTnavigator 650, 755, 798, 888, 912, 922

XmQTpointIn 650, 741

XmQTscrollFrame 650, 755, 798, 888, 922

XmQTspecifyLayoutDirection 598, 731, 785

XmQTspecifyRenderTable 598, 617, 624,
629, 650, 695, 741, 745, 751, 755, 785, 830,
837, 861, 922, 940, 945, 955

XmQTspecifyUnhighlight 731, 798

XmQTspecifyUnitType 598, 731

XmQTtakesDefault 617, 830, 837

XmQTtransfer 650, 745, 751, 755, 861, 922,
940

XmQTtraversalControl 650, 798

XmQualifyProc 1183

XmQuestionDialog 840
1268 Motif Reference Manual

Index
XmQUICK_NAVIGATE 637, 757

XmRadioBox 841

XmRADIOBUTTON 854

XmRedisplayWidget 276, 821

XmRegisterSegmentEncoding 279

XmRemoveFromPostFromList 280

XmRemoveProtocolCallback 281

XmRemoveProtocols 282

XmRemoveTabGroup 283

XmRemoveWMProtocolCallback 284

XmRemoveWMProtocols 285

XmRenderTable 1184

XmRenderTableAddRenditions 286

XmRenderTableCopy 289

XmRenderTableCvtFromProp 290

XmRenderTableCvtToProp 291

XmRenderTableFree 292

XmRenderTableGetRendition 293

XmRenderTableGetRenditions 294

XmRenderTableGetTags 296

XmRenderTableRemoveRenditions 298

XmRendition 843, 1183

XmRenditionCreate 299, 843

XmRenditionFree 301, 843

XmRenditionRetrieve 302, 843

XmRenditionUpdate 304, 843

XmRepTypeAddReverse 306

XmRepTypeEntry 1184

XmRepTypeEntry structure 309

XmRepTypeGetId 307

XmRepTypeGetNameList 308

XmRepTypeGetRecord 309

XmRepTypeGetRegistered 311

XmRepTypeId 1184

XmRepTypeInstallTearOffModelConverter

313

XmRepTypeList 1184

XmRepTypeRegister 314

XmRepTypeValidValue 316

XmRESIZE_ANY 620, 691

XmRESIZE_GROW 620, 691

XmRESIZE_IF_POSSIBLE 757

XmRESIZE_NONE 620, 691

XmResolveAllPartOffsets 317

XmResolvePartOffsets 318

XmREVERSED_GROUND_COLORS 654,

758, 948

XmRIGHT_TO_LEFT 94, 600, 733, 776, 787

XmRIGHT_TO_LEFT_BOTTOM_TO_TOP

94, 601, 776, 787

XmRIGHT_TO_LEFT_TOP_TO_BOTTOM

94, 601, 776, 787

XmROUND_MARK 864, 878

XmRowColumn 632, 846

XmRowColumnCallbackStruct 856, 1184

xmRowColumnWidgetClass 632, 783, 805,
807, 841, 846

XmScale 861

XmScaleCallbackStruct 866, 1185

XmScaleGetValue 319, 861

XmScaleSetTicks 320, 861

XmScaleSetValue 323, 861

xmScaleWidgetClass 861

XmScreen 870

xmScreenClass 870

XmScreenColorProc 873, 1185

XmSCROLL_HOR 890

XmSCROLL_VERT 890

XmScrollBar 875

XmScrollBarCallbackStruct 880, 1185

XmScrollBarGetValues 324, 875

XmScrollBarSetValues 325, 875

xmScrollBarWidgetClass 875

XmScrolledList 885

XmScrolledText 886

XmScrolledWindow 887

XmScrolledWindowSetAreas 327, 887

xmScrolledWindowWidgetClass 887

XmScrollVisible 329, 887

XmSearchProc 1186

XmSecondaryResourceData 1186

XmSELECT_ALL 924

XmSELECT_LINE 924, 942

XmSELECT_POSITION 924, 942

XmSELECT_WORD 924, 942

XmSELECTED 743

XmSelectionBox 893

XmSelectionBoxCallbackStruct 897, 1186

XmSelectionBoxGetChild 330, 827, 893, 900

xmSelectionBoxWidgetClass 893

XmSelectionCallbackStruct 1186

XmSelectionDialog 900
Motif Reference Manual 1269

Index
XmSEPARATOR 854

XmSeparator 901

XmSeparatorGadget 904

xmSeparatorGadgetClass 904

xmSeparatorWidgetClass 901

XmSET 949

XmSetColorCalculation 332

XmSetFontUnit 334

XmSetFontUnits 335

XmSetMenuCursor 336

XmSetProtocolHooks 337

XmSetWMProtocolHooks 338

XmSHADOW_ETCHED_IN 620, 696, 728,
902

XmSHADOW_ETCHED_OUT 620, 696, 728,
902

XmSHADOW_IN 620, 696, 728

XmSHADOW_OUT 620, 696, 728

XmSHADOWED_BACKGROUND 865, 878

XmSimpleSpinBox 906

XmSimpleSpinBoxAddItem 339, 906

XmSimpleSpinBoxDeletePos 341, 906

XmSimpleSpinBoxSetItem 342, 906

xmSimpleSpinBoxWidgetClass 906

XmSINGLE 654

XmSINGLE_DASHED_LINE 845, 902

XmSINGLE_LINE 845, 902

XmSINGLE_LINE_EDIT 923

XmSINGLE_SELECT 655, 758

XmSLIDER 865, 878

XmSMALL_ICON 653, 743

XmSNAP_TO_GRID 656

XmSOLID 799

XmSPATIAL 649, 653

XmSpinBox 911

XmSpinBoxCallbackStruct 916, 1187

XmSpinBoxValidatePosition 343, 911

xmSpinBoxWidgetClass 911

XmSPIRAL 799

XmSTATIC 757, 888

XmSTATUS_AREA 801

XmSTICKY_TAB_GROUP 733, 776

XmSTRING 747, 908, 915

XmString 1187

XmSTRING_DIRECTION_DEFAULT 776

XmSTRING_DIRECTION_L_TO_R 747, 759,

776

XmSTRING_DIRECTION_R_TO_L 747, 759,
776

XmStringBaseline 345

XmStringByteCompare 346

XmStringByteStreamLength 347

XmStringCharSet 1188

XmStringCharSetTable 1188

XmStringCompare 348

XmStringComponentCreate 349

XmStringComponentType 1188

XmStringComponentType values 381

XmStringConcat 351

XmStringConcatAndFree 352

XmStringContext 1189

XmStringCopy 354

XmStringCreate 355

XmStringCreateLocalized 357

XmStringCreateLtoR 359

XmStringCreateSimple 361

XmStringDirectionCreate 362

XmStringDirectionToDirection 363

XmStringDraw 364

XmStringDrawImage 366

XmStringDrawUnderline 368

XmStringEmpty 370

XmStringExtent 371

XmStringFree 372

XmStringFreeContext 374

XmStringGenerate 376

XmStringGetLtoR 378

XmStringGetNextComponent 380

XmStringGetNextSegment 383

XmStringGetNextTriple 385

XmStringHasSubstring 388

XmStringHeight 389

XmStringInitContext 390

XmStringIsVoid 392

XmStringLength 393

XmStringLineCount 394

XmStringNConcat 396

XmStringNCopy 397

XmStringParseText 398

XmStringPeekNextComponent 401

XmStringPeekNextTriple 403

XmStringPutRendition 405
1270 Motif Reference Manual

Index
XmStringSegmentCreate 406

XmStringSeparatorCreate 407

XmStringTable 1189

XmStringTable, convert to XTextProperty 83

XmStringTableParseStringArray 408

XmStringTableProposeTablist 410

XmStringTableToXmString 412

XmStringTableUnparse 414

XmStringTag 1189

XmStringToXmStringTable 416

XmStringUnparse 418

XmStringWidth 421

XmTab 1189

XmTAB_GROUP 733, 776

XmTabCreate 422

XmTabFree 425

XmTabGetValues 426

XmTabList 1190

XmTabListCopy 428

XmTabListFree 429

XmTabListGetTab 430

XmTabListInsertTabs 431

XmTabListRemoveTabs 432

XmTabListReplacePositions 433

XmTabListTabCount 435

XmTabSetValue 436

XmTargetsAreCompatible 437

XmTEAR_OFF_DISABLED 852

XmTEAR_OFF_ENABLED 852

XmTemplateDialog 921

XmTERMINATE 816

XmText 922

XmTextBlock 929

XmTextBlockRec 1190

XmTextBlockRecWcs 1190

XmTextBlockWcs 929

XmTextClearSelection 438

XmTextCopy 440

XmTextCopyLink 442

XmTextCut 444

XmTextDirection 1190

XmTextDisableRedisplay 446

XmTextEnableRedisplay 447

XmTextField 940

XmTextFieldClearSelection 438

XmTextFieldCopy 440

XmTextFieldCopyLink 442

XmTextFieldCut 444

XmTextFieldGetBaseline 452

XmTextFieldGetCursorPosition 454

XmTextFieldGetEditable 455

XmTextFieldGetInsertionPosition 456

XmTextFieldGetLastPosition 457

XmTextFieldGetMaxLength 458

XmTextFieldGetSelection 459

XmTextFieldGetSelectionPosition 460

XmTextFieldGetSelectionWcs 461

XmTextFieldGetString 463

XmTextFieldGetStringWcs 465

XmTextFieldGetSubstring 467

XmTextFieldGetSubstringWcs 469

XmTextFieldInsert 472

XmTextFieldInsertWcs 474

XmTextFieldPaste 476

XmTextFieldPasteLink 478

XmTextFieldPosToXY 480

XmTextFieldRemove 481

XmTextFieldReplace 482

XmTextFieldReplaceWcs 484

XmTextFieldSetAddMode 487

XmTextFieldSetCursorPosition 488

XmTextFieldSetEditable 489

XmTextFieldSetHighlight 490

XmTextFieldSetInsertionPosition 492

XmTextFieldSetMaxLength 494

XmTextFieldSetSelection 495

XmTextFieldSetString 497

XmTextFieldSetStringWcs 499

XmTextFieldShowPosition 502

xmTextFieldWidgetClass 940

XmTextFieldXYToPos 504

XmTextFindString 448

XmTextFindStringWcs 450

XmTextGetBaseline 452

XmTextGetCenterline 453

XmTextGetCursorPosition 454

XmTextGetEditable 455

XmTextGetInsertionPosition 456

XmTextGetLastPosition 457

XmTextGetMaxLength 458

XmTextGetSelection 459

XmTextGetSelectionPosition 460
Motif Reference Manual 1271

Index
XmTextGetSelectionWcs 461

XmTextGetSource 462

XmTextGetString 463

XmTextGetStringWcs 465

XmTextGetSubstring 467

XmTextGetSubstringWcs 469

XmTextGetTopCharacter 471

XmTextInsert 472

XmTextInsertWcs 474

XmTextPaste 476

XmTextPasteLink 478

XmTextPosition 1190

XmTextPosToXY 480

XmTextRemove 481

XmTextReplace 482

XmTextReplaceWcs 484

XmTextScroll 486

XmTextSetAddMode 487

XmTextSetCursorPosition 488

XmTextSetEditable 489

XmTextSetHighlight 490

XmTextSetInsertionPosition 492

XmTextSetMaxLength 494

XmTextSetSelection 495

XmTextSetSource 496

XmTextSetString 497

XmTextSetStringWcs 499

XmTextSetTopCharacter 501

XmTextShowPosition 502

XmTextSource 1190

XmTextType 1191

XmTextVerifyCallbackStruct 929, 1191

XmTextVerifyCallbackStructWcs 929, 1192

xmTextWidgetClass 922

XmTextXYToPos 504

XmTHERMOMETER 865, 878

XmTHUMB_MARK 864, 878

XmTITLE 854

XmTOGGLE_BOOLEAN 949

XmTOGGLE_INDETERMINATE 949

XmToggleButton 945

XmToggleButtonCallbackStruct 950, 1192

XmToggleButtonGadget 955

xmToggleButtonGadgetClass 849, 955

XmToggleButtonGadgetGetState 505, 955

XmToggleButtonGadgetSetState 507, 955

XmToggleButtonGadgetSetValue 509, 955

XmToggleButtonGetState 505, 945

XmToggleButtonSetState 507, 945

XmToggleButtonSetValue 509, 945

XmToggleButtonState 1192

xmToggleButtonWidgetClass 945

XmTOP_LEFT 799, 889

XmTOP_RIGHT 799, 889

XmTOP_TO_BOTTOM 94, 600, 776, 787

XmTOP_TO_BOTTOM_LEFT_TO_RIGHT

94, 601, 776, 787

XmTOP_TO_BOTTOM_RIGHT_TO_LEFT

94, 601, 776, 787

XmTopLevelEnterCallback 684

XmTopLevelEnterCallbackStruct 684, 1193

XmTopLevelLeaveCallback 684

XmTopLevelLeaveCallbackStruct 684, 1193

XmTOUCH_ONLY 655

XmTOUCH_OVER 655

XmTrackingEvent 511

XmTrackingLocate 513

XmTRANSFER_FAILURE 707

XmTRANSFER_SUCCESS 707

XmTransferDone 524

XmTransferSendRequest 528

XmTransferSetParameters 529

XmTransferStartRequest 531

XmTransferStatus 1194

XmTransferValue 532

XmTranslateKey 534

XmTraversalDirection 1194

XmTraverseObscureCallbackStruct 1194

XmTraverseObscuredCallbackStruct 890

XmTROUGH_COLOR 865, 878

XmUninstallImage 536

XmUNMAP 600

XmUNSET 949

XmUNSPECIFIED_PAGE_NUMBER 803

XmUpdateDisplay 537

XmVaCreateSimpleCheckBox 538, 632, 846

XmVaCreateSimpleMenuBar 540, 783, 846

XmVaCreateSimpleOptionMenu 543, 805,
807, 846

XmVaCreateSimplePopupMenu 546, 819,
846

XmVaCreateSimplePulldownMenu 549, 828,
1272 Motif Reference Manual

Index
846

XmVaCreateSimpleRadioBox 553, 841, 846

XmVARIABLE 757, 889

XmVERT_SCROLLBAR 890

XmVERTICAL 801, 810, 851, 863, 877, 902

XmVisibility 1195

XmVisibility structure 172

XmWarningDialog 958

XmWIDECHAR_TEXT 817

XmWidgetGetBaselines 555

XmWidgetGetDisplayRect 556

XmWORK_AREA 852, 890

XmWorkingDialog 959

XmZERO_BASED 638

XPFinishProc structure 272

XpStartJob 272

XRectangle 1167

XrmValue 1195

XrmValuePtr 1195

Xt translation table type 1105

XtAccelerators 1195

XtAppCreateShell 565, 581, 672

XtAppInitialize 566, 672

XtCallbackList 1195

XtCallbackProc 1196

XtCheckpointToken 585

XtCheckpointTokenRec 585

XtConvertSelectionIncrProc 1196

XtCreatePopupChildProc 590, 1196

XTextProperty

convert to Compound String Table 81

XTextProperty structure 82

XtIsApplicationShell 565

XtIsComposite 568

XtIsConstraint 570

XtIsOverrideShell 577

XtIsSessionShell 581

XtIsTopLevelShell 592

XtIsTransientShell 595

XtIsWidget 572

XtIsWMShell 605

XtKeyProc 1196

XtNcancelCallback 582

XtNcloneCommand 582

XtNconnection 582

XtNcurrentDirectory 582

XtNdieCallback 582

XtNdiscardCommand 582

XtNenvironment 582

XtNerrorCallback 582

XtNinteractCallback 582

XtNjoinSession 582

XtNprogramPath 582

XtNresignCommand 582

XtNrestartCommand 582

XtNrestartStyle 582

XtNsaveCallback 582

XtNsaveCompleteCallback 582

XtNsessionID 582

XtNshutdownCommand 582

XtOrderProc 569, 1197

XtPointer 1197

XtSelectionCallbackProc 1197

XtTranslations 1197

XtVaAppCreateShell 565, 581

XtVaAppInitialize 565
Motif Reference Manual 1273

	Motif Reference Manual
	Preface
	Section 1 - Motif Functions and Macros
	Section 2 - Motif and Xt Widget Classes
	Section 3 - Mrm Functions
	Section 4 - Mrm Clients
	Section 5 - UIL File Format
	Section 6 - UIL Data Types
	Section 7 - UIL Functions
	Appendix A - Function Summaries
	Appendix B - Data Types
	Appendix C - Table of Motif Resources
	Appendix D Table of UIL Objects
	Appendix E - New Features in Motif 2.0 and 2.1
	Index

