
Automated Model-based Configuration of Enterprise Java
Applications

Jules White and Doulas C. Schmidt
Vanderbilt University,

{jules, schmidt}@dre.vanderbilt.edu

Krzysztof Czarnecki
University of Waterloo,

kczarnec@swen.uwaterloo.ca

Christoph Wienands, Gunther Lenz,
Egon Wuchner, and Ludger Fiege

Siemens AG,
{christoph.wienands, lenz.gunther,

egon.wuchner, ludger.fiege}@siemens.com

Abstract—The decentralized process of configuring enterprise
applications is complex and error-prone, involving multiple
participants/roles and numerous configuration changes across
multiple files, application server settings, and database decisions.
This paper describes an approach to automated enterprise
application configuration that uses a feature model, executes a
series of probes to verify configuration properties, formalizes
feature selection as a constraint satisfaction problem, and applies
constraint logic programming techniques to derive a correct
application configuration. To validate the approach, we developed
a configuration engine, called Fresh, for enterprise Java appli-
cations and conducted experiments to measure how effectively
Fresh can configure the canonical Java Pet Store application.
Our results show that Fresh reduces the number of lines of
hand written XML code by up to 92% and the total number
of configuration steps by up to 72%.

I. INTRODUCTION

Enterprise applications are large-scale software programs,
typically hosted on multiple application servers, that perform
complex business processes. Enterprise applications com-
monly support thousands or more simultaneous users and are
often written using component middleware, such as Enterprise
Java Beans. Due to their large number of components, com-
plicated XML-based configuration files, and complex interde-
pendencies between components, enterprise applications are
often hard to configure.

Enterprise application configuration is typically a decentral-
ized process. Multiple development roles edit configuration
files, install applications, and perform other configuration steps
to deploy an enterprise application. Each role usually operates
semi-independently from other roles and focuses on aspects
of application configuration pertinent to requirements the role
is responsible for. For example, database developers identify
the best database vendor, database schema, and database con-
figuration parameters to use; component developers determine
what software components are needed to meet the functional
requirements for the application; and IT administrators install
and configure application servers on the appropriate nodes in
data centers.

The diverse configuration decisions made by each role
outlined above constrain the possible configuration decisions
of other roles. For example, when database developers choose
a database, component developers must use the appropriate
database driver for that database. These configuration de-
cisions are distributed across roles and configuration files

and must ultimately be integrated to create a complete and
valid configuration. When integration takes place, each role
often performs other configuration steps (such as installing
the correct database driver) necessitated by decisions made by
other roles. This integration process may require adding new
components to adapt the application to its target environment,
loading extra libraries into the application server, or other types
of configuration steps.

It is hard to keep track of and analyze an enterprise ap-
plication’s configuration decisions (configuration state) since
these decisions are enacted by multiple roles, involve hundreds
or more components, and are spread throughout numerous
configuration files. Even after the configuration state is col-
lected, the complex interdependencies and implications of the
configuration decisions must be understood to check the valid-
ity of the configuration state and derive further configuration
steps to perform. Finally, after a complete configuration for
the application is derived, the configuration must be enacted
by the multiple roles in numerous configuration files.

Configuration errors related to functional requirements have
been shown to be a major contributor to enterprise application
downtime and cost. In some studies, for example, misconfig-
uration from manual processes has been shown to cause over
50% of all application failures [10]. One approach to allevi-
ating the complexity of configuring enterprise applications is
to use model-driven development [25]. With a model-based
approach, a model of the application’s configuration rules and
configuration state is first built. Configuration artifacts, such
as XML configuration files, are generated from the model. By
creating a model of application components and configura-
tion requirements, algorithmic techniques (such as constraint
solvers) can be used to check configuration correctness and
derive valid configurations.

Feature modeling [17], [9] is a promising modeling tech-
nique for representing the configuration state of enterprise
applications. This technique can capture the configuration
dependencies between roles and non-functional requirements
for enterprise applications. Feature modeling provides a set
of modeling formalisms that decompose an application based
on functional and non-functional variations and formalize the
rules by which these variabilities may be composed into an
application variant. In the context of enterprise applications,
feature modeling can be used to capture (1) what configuration
decisions must be made to install an enterprise application, (2)

Jta

Libraries

JtaRef

JBoss Tomcat

ApplicationServer

Oracle MSSQL MySQL

DatabaseInstance

NonJtaDAOs

JtaRef

JtaDAOs

DataAccessObjects (DAOs)

DatabaseInstanceRef

CombinedDatabase

JtaDAOsRef DatabaseInstanceRef

[2..2]

DualDatabase

DatabaseConfiguration

ObjectPersistence

[1..∗]

DataTier

PetStore

Fig. 1: Feature Model of the Features Related to the J2EE Pet Store’s Data Tier

what roles are responsible for what configuration steps (by
having a separate feature model per role), (3) how each role’s
configuration steps affect other roles, and (4) how the target
infrastructure and requirements limit the valid configuration
possibilities.

To configure an application with a feature model, develop-
ment team members (such as component developers, database
developers, etc.) first identify a feature selection, which is
a group of desired functional capabilities that constitute a
complete configuration of an application and adhere to the con-
straints specified in the feature model. These participants must
then determine what configuration actions, such as adding
component IDs to application XML descriptors or installing a
specific database, are required to enable and/or implement the
functionality specified in the feature set. What we term feature
selection is also often called product configuration [19]. To
avoid confusion, we use the term application configuration
to denote editing XML files, installing application servers,
and other configuration related actions. Likewise, we define
feature selection as the process of determining a valid set
of configuration parameters (i.e., filling in variabilities) with
respect to a feature model’s constraints.

The challenge with using existing model-based approaches,
including feature models, for enterprise application config-
uration is that they often require a single large monolithic
model of the system [8], [14], [3], [22], [23], [11]. Enterprise
configuration decisions are often spread across multiple files,
developers, and hosts, however, so it is time consuming to
build and maintain accurate feature models. Moreover, the de-
centralization of enterprise application configuration decisions
makes it easy for monolithic models to drift out of sync with
the actual configuration state.

Some approaches advocate the use of multiple models [7],
[4] that contain references to each other. This multi-model
organization better mirrors the decentralized structure of
enterprise application configuration and improves developer
concurrency. The multi-model approach, however, requires
that each role manually specify how changes to other roles’
models affect elements in its own model. Manually specifying
these effects is thus tedious and error-prone, as shown in
Section II-C.

This paper describes how we created and applied an auto-
mated application configuration tool called Fresh to configure

enterprise Java applications. Our Fresh approach uses a novel
probe-based synchronization technique to allow each role to
use its own feature model, while also not requiring manual
cross-model effect specification and synchronization. Each
probe is executable Java code that tests a property of the
target environment (such as what libraries have been installed)
and updates a role’s feature model according to the results
of the test (such as disabling or enabling a corresponding
feature). As each role changes its feature selection and enacts
changes on the application or target environment, Fresh probes
translate the changes into feature modifications in any affected
models. Roles synchronize models by describing how they
affect and are affected by code and configuration changes to
the application and target environment.

Fresh combines its multi-model approach with a constraint
solver to reduce the complexity of enterprise application
configuration. The key contribution of this paper is showing
how Fresh simplifies enterprise application configuration by:

1) Automatically collecting the application’s distributed
configuration state with probes, e.g. determine the
database installed, etc.

2) Phrasing the completion of the application’s feature
selection as a constraint satisfaction problem.

3) Deriving any remaining required features by solving the
constraint satisfaction problem with a constraint solver,
e.g. if a database driver is not installed determine which
one is needed.

4) Rewriting the application’s configuration files to include
any new required features e.g., add the database driver
to the application configuration.

The remainder of the paper is organized as follows: Sec-
tion II describes key challenges of configuring enterprise
Java applications; Section III describes how Fresh frames
the identification of valid configurations of enterprise Java
applications as a constraint satisfaction problem and applies a
constraint logic programming solver to automate and simplify
application configuration; Section IV analyzes the results
from experiments that quantify the reduction in configuration
complexity gained by applying Fresh to configuring the Java
Pet Store application; Section V compares Fresh with related
research; and Section VI presents concluding remarks.

II. CHALLENGES OF ENTERPRISE JAVA APPLICATION

FEATURE SELECTION

This section first explores the various roles involved in
configuring an enterprise Java application. It next examines the
complex constraints and dependencies exposed by these roles.
It then summarizes the challenges of deriving a configuration
that integrates the configuration decisions of all of the roles
and adheres to the application’s functional and non-functional
configuration constraints.

A. Example Enterprise Java Application: Pet Store

As a reference architecture of an enterprise Java application,
we use the J2EE Pet Store application [2], which provides an
example e-commerce site that allows customers to search for
and purchase pets over the Internet. Pet Store was developed
originally to showcase the benefits of J2EE technologies.
Since its original release, nearly every major J2EE application
server has included a refactored version of Pet Store as an
example application. Microsoft has also reimplemented Pet
Store (called Pet Shop) in .NET to highlight the differences
between J2EE and .NET.

Since Pet Store is widely known and demonstrates the
features of enterprise Java, we use it in this paper to show
the configuration challenges of enterprise Java applications. To
show the application’s numerous points of variability we built
a feature model of the Pet Store bundled with the Java Spring
framework [16], which allows developers to create highly-
modular and configurable enterprise Java applications. In
particular, Spring uses (1) the factory pattern [13] to instantiate
and interconnect enterprise Java components (beans) and (2)
Java reflection to shield application components from details
of the configuration process. At launch, a factory is created
and initialized using one or more XML configuration files,
which determine what components it constructs and how they
are wired together. In the process of constructing objects, the
factory may associate crosscutting aspect advice with them,
generate dynamic proxies to perform remote invocations, load
objects into a naming service, or perform numerous other
complex application configuration tasks.

We bounded the scope of the feature model presented in
this paper to a group of features related to the data tier of Pet
Store. For example, in the feature model shown in Figure 1,
the Pet Store can use either a CombinedDatabase setup, where
both order and product data is stored in the same database, or a
DualDatabase setup where product and order data are stored
in separate databases. Depending on which setup is chosen,
the Pet Store’s application configuration files must be changed
to include the appropriate Data Access Objects (DAOs). If
a DualDatabase setup is used, developers alter the Pet Store
configuration files to instruct Spring to instantiate and use the
JtaDAOs and wire them into the application.

B. Challenges Produced by a Decentralized Configuration
Process

For Pet Store—as with the majority of enterprise Java
applications—the participants involved in feature selection

can be divided into six roles [21]: enterprise bean (compo-
nent) developer, web developer, client application developer,
database developer, application assembler, and IT admin-
istrator (e.g., application deployer and administrator). The
numerous roles involved—and the complexity of the config-
uration constraints—thus make Enterprise Java applications
prone to common configuration problems. Ideally, these errors
should be identified when an application fails to load into its
container properly. Often, however, these errors reflect subtle
inconsistencies, such as incorrect file permissions, that may
be overlooked and could lead to problems, such as security
breaches.

Below we describe four major types of configuration chal-
lenges produced by the complexity of configuring an enter-
prise Java application that motivated our work on Fresh, as
described in Section III.

a) Challenge 1: Feature selection complexity: The com-
ponent dependencies or non-functional requirements are not
adhered to when a feature set is selected because the large
number of constraints, features, and roles involved makes it
hard to derive a correct configuration. For example, the Spring
Pet Store offers the ability to use a single or dual database
setup and either plain Data Access Objects (DAOs) or Java
Transaction API (JTA) enabled DAOs. As shown in Figure 2,
if database developers choose to use the dual database setup
then component developers must support transactions across
multiple databases. This decision requires the use of JTA-

Fig. 2: Data Tier Feature Selection Forces and Their Effect on
Various Roles

enabled DAOs, which prevents the Pet Store from running
in a standard J2EE web container, such as Tomcat [5]. IT
administrators must therefore either use a full-blown J2EE
Application Server, such as JBoss [12], or configure the web
container with additional components to support JTA. In this
case, a decision made by database developers ripples through
the functional composition decisions made by other roles. In
general it is hard to take these complex dependencies and
constraints across roles into account and derive a correct
configuration.

b) Challenge 2: Incorrect feature selection implementa-
tion: After a feature set is selected, multiple configuration files
must be edited and various actions (such as starting processes
and adding message queues) taken by the roles to enable
the desired features. For example, a non-functional variant
can be produced if IT administrators do not edit application
server XML configuration files properly to load the correct
libraries or do not completely understand the requirements or
implications of feature selection decisions. The non-functional

variant may fail to load properly into its container or load
correctly but function incorrectly. As shown in Figure 3, to
enable transaction support across databases with JTA, requires
the coordination of multiple roles and configuration files.

Fig. 3: Configuration Dependencies between Features and
Roles for Data Tier Configuration

c) Challenge 3: Human mis-communication: Often, one
or more roles misunderstand decisions made by other roles.
Costly and hard to identify misunderstandings can involve
environmental properties, such as application server platform
and file permissions. For example, Pet Store provides both
generic DAOs, which use only standard SQL mechanisms,
and DAOs for Oracle and MSSQL, which use vendor-specific
interfaces. The standard SQL DAOs will load properly into
the Pet Store without errors regardless of the database vendor.
The Oracle SequenceDAO, however, uses an Oracle-specific
thread-safe sequence and may encounter runtime exceptions.

Failing to use the Oracle SequenceDAO with an Oracle
database will not prevent the application from launching, but
could potentially cause thread-safety problems. Thread safety
problems are hard to diagnose Component developers may
believe (incorrectly) that the application uses an MSSQL
database instead of an Oracle database, thus causing a con-
figuration problem that is dangerous and hard to identify. The
mistake will therefore likely be identified only after incurring
damage, such as data corruption.

Information may fail to flow across roles because partici-
pants do not understand which decisions impact other roles. In
Figure 3, each role needs to understand where its realm of re-
sponsibility overlaps another role’s realm of responsibility. In
Pet Store, for example, IT administrators can enact decisions
on the target infrastructure, such as selecting the component
container that will be used. Component developers, however,
may not have access to the target infrastructure or may be
located in a separate office and thus may not be aware that IT
administrators selected a specific container.

C. Limitations with Conventional Configuration Approaches

Various approaches [7], [4], [14], [3], [22], [23], [11] have
been presented for configuring component applications using
feature models and related mechanisms. Below we describe
four types of limitations with current approaches that moti-
vated our work on Fresh, as described in Section III.

Problem 1: Single model approaches. Conventional config-
uration approaches advocate the use of a single monolithic
model [3], [22], [23], [11], where all configuration decisions
are made in a single large model. Enterprise Java develop-
ment involves multiple participants, which makes it hard to
synchronize a single large model. The tight-coupling between
roles also limits developer concurrency and does not integrate
well with common development practices, such as eXtreme
Programming, that focus on source code.

A further complication of tightly-coupled, single-model
approaches are that they capture relevant information for each
role’s viewpoint in a single model. It is hard to capture all
the information required for each viewpoint in an intuitive
and usable manner. Moreover, a monolithic model poten-
tially exposes participants from each role to irrelevant details
from other roles. Even though different types of filtering
mechanisms can be applied to limit what each viewpoint
sees, developing these mechanisms is complicated since the
complexity of the model may make it hard to predict which
details are or are not relevant. Section III describes how
Fresh uses a loosely coupled multi-model strategy to avoid
the problems associated with a single model.

Problem 2: Manual synchronization and mapping of ele-
ments across models. Some approaches allow each role to
use its own model, but require that any decisions made by
a role that affect other roles be mapped manually to those
roles’ models [7], [4]. Most approaches, however, do not
prescribe how the accuracy of these mappings is ensured or
maintained. Mapping elements, such as features, across roles
is problematic because it is hard for each role to anticipate
which of its decisions will affect another role, what role it
will affect, and how the effect will manifest in the other role’s
model. These dependencies between the decisions of different
roles can only be enforced if they are expressed as mappings
between models, which can be unwieldy in large organizations.

For example, it may be difficult to precisely map changes
from one feature model to changes in another feature model.
Even if each role can identify which decisions affect other
roles, the effect of selecting a feature in one role’s feature
model must be evaluated from the viewpoint(s) of the other
roles. Relating the effects of a role’s feature selections to the
features of other roles means that roles must relate features
and decisions across viewpoints that they are not familiar with,
which is tedious and error-prone. Section III-C describes how
Fresh addresses this problem.

Problem 3: Not all necessary variabilities/decisions are
captured in a model. Conventional approaches assume all de-
cisions that are relevant to the configuration of an application
are captured in the feature model [7], [4], [14], [3], [22], [23],
[11], though they do not prescribe how this is accomplished.
Documenting all decisions and variabilities is hard. In some
cases, a role may not deem a variability important enough to
its viewpoint to include it in the model. Another viewpoint,
however, may be affected by this undocumented variability.
The complexity of the model and the distinct separation of the
roles’ viewpoints makes it hard for each role to understand if

a variability should be documented for another role’s sake.
Section III-C, shows how Fresh addresses this limitation
by using probes to gather feature configuration information
directly from the target environment.

Problem 4: No runtime feedback. Conventional ap-
proaches [7], [4], [14], [3], [22], [23], [11] do not account
for how dynamic application changes that affect the feature
model can be identified and understood. If a container changes
a runtime policy, it implicitly changes feature selections.
Without some way to relate runtime changes back to the
feature model, the model is only a design-time artifact. In
this case, no feature decisions made by application containers
or other runtime decisions can be constrained or understood.

In enterprise Java applications, it is undesirable to determine
all application-related decisions at design-time. For example,
the concept of cloning (i.e., determining the number of in-
stances of a feature) is a design-time decision in most ap-
proaches. In enterprise Java applications, containers normally
manage object pools and dynamically change the number
of instances (clones) of the objects at runtime. Other types
of decisions, such as load-balancing policies, are also often
best determined dynamically at runtime. In Section III-C, we
present Fresh’s approach to using probes to receive runtime
feedback.

III. SOLUTION APPROACH: AN AUTOMATED

CONFIGURATION ENGINE FOR JAVA APPLICATIONS

This section describes the Fresh configuration engine and
how it addresses the challenges of enterprise Java application
feature selection described in Section II. Fresh frames the iden-
tification of valid configurations of enterprise Java applications
for a specific target environment as a constraint satisfaction
problem (CSP) and applies a constraint logic programming
solver to automate and simplify application configuration.
Fresh also uses code generation to rewrite application configu-
ration files on-the-fly to implement the correct-by-construction
configuration deduced by the constraint solver.

A. Addressing Configuration Challenges

As discussed in Section I, our Fresh approach to configuring
enterprise Java application involves constructing a formal
model of the feature decisions that have been made, determin-
ing what variabilities have been constrained, and setting values
for the remaining component variabilities that are consistent
with the constrained variabilities. This approach helps address
the four challenges of a decentralized configuration process
described in Section II-B and the limitations with existing
methods of enterprise Java application configuration described
in Section II-C, as follows:

1. Use probes to identify constrained variabilities. A probe
is executable Java code that measures a property value of the
application’s environment or of the application itself. Fresh
uses probes to automate the discovery of decisions made
by each role, which allows the feature selection process to
ensure that the selected feature set conforms to points of
variability that are already constrained. To prevent one role

from misunderstanding the configuration decisions made by
another role, Fresh uses probes to automatically identify what
configuration decisions have been made.

For example, if database developers have chosen Oracle,
component developers cannot mistakenly think that MSSQL
was chosen if a probe is used. Just as unit tests can be written
to test the functionality of features, probes can be created for
each feature to validate dependent features and properties.

2. Formalize configuration as a CSP and use a constraint
solver to derive values for unconstrained variabilities. Fresh’s
constraint solvers can handle the combinatorial complexity
and interdependencies of feature selection more effectively
that a manual process, thereby addressing challenge 1 from
Section II-B. Moreover, a constraint solver will produce a
correct selection that honors the constraints, assuming a correct
configuration exists.

3. Generate configuration files from a feature selection.
Fresh uses code generation to create correct configuration files
automatically from the solution produced by the constraint
solver. This approach allows developers to annotate their
configuration files to show how features are bound to actual
configuration decisions. Moreover, this design allows the Fresh
configuration engine to regenerate the configuration files when
the feature selection changes.

B. Overview of Fresh and Its Feature Modeling Capabilities

We use the Fresh feature selection engine to demonstrate
our approach for automating the collection of feature modeling
decisions, phrasing a feature selection problem as a CSP, and
using a constraint solver. Each role can use Fresh to describe
the functional and non-functional requirements of enterprise
Java application configuration, along with a fitness function
for choosing a configuration when multiple solutions exist.
Fresh combines this information with the Choco constraint
logic programming solver [1] to derive a complete feature
selection for a partially configured application.

Fresh also provides an XML annotation language that can
inject the feature selection decisions into XML configuration
files. These files then determine what application components
are loaded, how they are wired together, and what values
are set for their configurable properties. The XML annotation
language maps features to elements and attributes in XML
configuration files.

Fresh provides two interceptors that can be used with the
factories in the Spring framework. When a Spring application
factory attempts to load an application’s configuration files, a
Fresh interceptor intercepts the call, probes the environment,
runs the constraint solver, and rewrites the configuration files
before they are returned to the Spring factory. Spring and
the application components are therefore not aware of Fresh
or that it is dynamically deducing an application’s configura-
tion. Moreover, the Fresh interceptor can be inserted/removed
to/from applications without affecting their components or
Spring. One of the two interceptors is designed to be used with
Spring’s Java servlet boot-strapping mechanisms and is the
interceptor used for the experiments presented in Section IV.

Initially, the roles manually perform some configuration
steps but do not completely configure the application. In step
one of the Fresh configuration process, automated probes are
run to discover the manual configuration actions that have been
taken and how they map to the feature model of each role,
as shown in Figure 4. In step two the decisions and feature

Fig. 4: Fresh Application Configuration Process

model roles are transformed into a CSP. In step three, Fresh
uses the Java Choco constraint logic programming solver to
solve the CSP for a valid feature set. The resulting feature
set will indicate what further configuration steps are needed
to complete the application’s configuration. In step four, the
configuration files for the application are regenerated with
required additional components to complete the application’s
configuration. Finally, in step five control is passed to the
Spring factory to initialize the application.

Fresh currently collects and solves for configurations (if no
conflicts are present). If a valid feature selection that integrates
all of the roles’ decisions cannot be found then Fresh fails to
start and notifies the user that no valid configuration exists.
Priorities and interactivity (where the developer is prompted
to resolve conflicts) are future work.

Fresh’s configuration file annotation language is based on
XML comments and does not interfere with the configuration
file’s directives. The annotation language can be used with
any XML file and is not specific to the file formats used
by Spring. These annotations can be added to existing files
or removed from the application entirely without affecting
it. Spring and application components developed atop it are
therefore decoupled from Fresh’s container extension and the
XML annotations.

C. Using the Target Environment as a Common Language

As described in Section II-C, conventional techniques for
enterprise Java application configuration fail to address key
challenges, such as a configuration process must be able to
relate how the actions of different roles affect each other.
Previously developed approaches either attempt to use a single
manually-produced large model to capture these interactions
formally or rely on manually creating complex mappings
across different models. The first approach suffers from the
problems of a complex top-down approach, whereas the sec-
ond approach forces the roles to specify complex cause-and-
effect relationships explicitly across unfamiliar viewpoints.

Fresh’s probing uses the target environment as a lingua
franca. Each role expresses how changes in the target envi-
ronment affect its model of the system. A probe checks a

property of the environment and maps the property to a change
in a role’s model. For example, a probe can be used to detect
automatically if JTA is installed and update the JTA feature
in the component developer’s model accordingly.

A benefit of the Fresh approach is that it avoids monolithic
top-down modeling (problem 1 of Section II-C). Each role
can use a model that is intuitive to the role’s viewpoint. The
models of each role are synchronized when the probes are
run. The probes determine the changes that the roles have
made to the target environment and update each role’s model
to reflect the configuration state. Each role therefore maintains
a model reflecting its viewpoint and is not tightly-coupled to
the models of other roles. Fresh currently does not resolve
conflicts between models but instead notifies the deployer
when there is no valid configuration that integrates all of the
roles’ decisions and constraints.

Another benefit is that the roles need not explicitly describe
how changes in their models map to changes in the models
of another viewpoint (problem 2 of Section II-C). Instead,
each role specifies how changes to the target environment
affect it. Since the mappings are based on executable code,
the mappings have precise semantics. The mappings also
do not require a participant in a role to understand another
role’s viewpoint. Each viewpoint instead maps its feature
selections to changes in the target environment and each role’s
probes translate the environment modifications into changes
in the role’s model. The environment serves as the common
language, as shown in Figure 5.

Fig. 5: Synchronizing Role/Viewpoint Models through Probes

Yet another benefit of the Fresh approach is that probes
do not differentiate between human induced environmental
changes and dynamic changes to the environment from con-
tainers or other runtime actors. Containers become another
participant that may enact changes to applications at runtime.
Since the probes are automated, they can be reused at runtime
to detect changes to each role’s feature model produced by the
container. Runtime processes can become roles that provide
feedback to the application (problem 3 of Section II-C).

Since the dissemination of information across roles is au-

tomated by the probes, Fresh can help address challenges 3
and 4 of Section II-B. Automated probes are more reliable
than human inspection of the configuration and environment.
Rather than pushing information to the roles that are affected
by changes in the target environment, the probes pull the re-
quired information to each role, thus avoiding communication
failures and misunderstanding.

D. Probing the Target Environment

The probes run by Fresh identify which features or com-
ponents are present (e.g., is JTA installed), what the values
are for different properties of the target infrastructure (e.g.,
application server vendor, OS, RAM, etc.), and what config-
uration steps have been performed (e.g., does a specific JMS
queue exist). The probes produce a series of values for the
variabilities in the model. For example, if JTA is installed, a
probe may enable the JTA feature or the JTAVersion attribute.

Fresh uses a plug-in architecture so application developers
can create characterization classes to package with an appli-
cation and run by Fresh to automate environment characteri-
zation. Each characterization class is a probe that determines
the value of one or more of the variabilities in the model
used for the configuration process. Before Fresh performs its
constraint-based feature selection, each characterization class
is invoked. A characterization class performs a test on the
target environment and returns a list of variable/value pairs
representing the target characteristics.

The values of the variables produced by characterization
determine what points of variability have already been con-
strained by each role. Fresh then derives values for the
other variabilities that are correct with respect to these fixed
points and the feature model constraints. The following are
examples of how Fresh can discover configuration decisions
using characterization classes:

• Local/remote addressing configuration. For external ad-
dressing, such as JNDI names or service URIs, charac-
terization classes can be created that attempt to resolve
the object and if it cannot be resolved, disable the
corresponding feature.

• Library configuration. Characterization classes use
the Java Reflection API to resolve references to
classes that a feature depends on. For example, to
test for JTA, a characterization class can invoke
Class.forName("javax.transaction.Transaction"),
which throws an exception if JTA is not present.

• Attribute configuration. A characterization class can
obtain values for various attributes from environ-
mental context classes, such as java.lang.Runtime,
ServletContext, or ApplicationContext. These con-
text classes can provide critical infrastructural attributes,
such as JVM version, OS, RAM, etc., for the CSP
variables. A characterization class may also determine
attribute values by instantiating one or more application
components and using getter methods or the Java Reflec-
tion API to obtain member variable values.

• Infrastructure configuration. Characterization classes can
be used to test that specific infrastructural features are
running. For example a class can be created that attempts
to connect and post a message to a required JMS queue
or run a query against a database table. If the queue does
not exist or an exception is thrown the feature variable
for the queue can be disabled. Similarly, the database
configuration can be checked by creating a class that
obtains an instance of the DB driver and attempts to
perform queries to check that the tables are configured
properly.

The list above is not exhaustive. Numerous other types of
characterization classes, such as running a CPU benchmark,
can be used to obtain complex properties. In most cases, if
the application is affected by a configuration decision, it can
probe its environment to determine the value of that point of
configuration variability.

Class characterization allows the Fresh feature selection
engine to determine what variabilities have been constrained
in the product. After correctly determining what variable parts
are fixed, the constraint solver can select features to ensure the
application functions properly with respect to these fixed parts
and the application requirements.

E. Feature Selection as Constraint Satisfaction

Challenge 1 in Section II-B explains why the process of
configuring enterprise Java applications is complex due to
the large number of constraints and role viewpoints involved.
Significant work [22], [24] has been done in applying different
algorithmic techniques to manage this complexity. The probing
techniques that we described in Section III-D can be used
with these algorithmic approaches. For Fresh, we chose to
apply the extensive research and tools for constraint logic
programming [15] to manage this complexity.

Fresh transforms a feature model and set of non-functional
requirements into a CSP. The feature model and the non-
functional requirements are specified through Fresh configura-
tion files that reside in the classpath of the Spring application.
We use a reduction of feature selection that enhances the work
of Benavides et al. [3] (see Section V for a comparison). By
building a formal model of feature selection as a CSP [27],
Fresh can use a constraint solver to (1) check the correctness of
a configuration and (2) derive valid values for unconstrained
variabilities in a partially configured application, which ad-
dresses challenge 1 from Section II-B.

Selecting a feature set for an application can be reduced
to a constraint satisfaction problem. Fresh constructs a set of
variables P0 . . .Pn, with domain [0,1], to indicate whether or
not the ith feature is present in a feature set. A feature set thus
becomes a binary string where the ith position represents if
the ith feature is present. Satisfying a constraint satisfaction
problem for feature selection involves devising a labeling of
P0 . . .Pn that adheres to the composition rules of the feature
model.

The constraints in a feature model ensure that only a coher-
ent set of features is selected. For example, if the JtaDAOs

feature (i.e., DAOs that use the Java Transaction API) is chosen
in the Pet Store application, the JTA feature must also be
selected. To phrase this rule using the constraint satisfaction
model of feature selection, we can say that if the JtaDAOs
feature is represented by the variable P1 and the JTA feature is
represented by the variable P2, then P1 = 1→ P2 = 1. The CSP
can also encode non-functional constraints, such as JtaDAOs
requires that the target environment have at least 128mb of
memory: P1 = 1 → Envmemory ≥ 128. Envmemory is a variable
introduced to store the amount of memory on the target host.

Constraint satisfaction models may incorporate constraints
based on the conjunction or disjunction of several constraints
on other features. One example of this approach is the ex-
tension to cardinality constraints on features proposed in [9].
Their approach extends cardinality constraints to include a
sequence of intervals. For example, assume that the Pet Store
can use [1..2] or [4..4] different remoting mechanisms from
the remoting feature group. If the variable P0 represents the
Pet Store, and the variables P15 . . .P18 represent the remoting
features, we can transform this interval sequence into the
constraint: P0 = 1→ (∑Pt15 . . .P18 > 0)∧(∑Pt15 . . .P18 ≤ 2)∨
(∑Pt15 . . .P18 = 4).

F. Aggregating Feature Models and Feature Requirements

During application startup, Fresh inspects one or more
directories that contain the feature models for each role, non-
functional requirements, and configuration mechanisms for the
application. It then constructs its constraint satisfaction prob-
lem by composing the feature models of each viewpoint and
the non-functional requirements it discovers. Adapters are used
to load the feature model and non-functional requirements. By
default, Fresh provides adapters for reading feature models
and non-functional requirements that use a syntax similar to
cascading style-sheets. Adapters can be plugged-in to read
other formats, such as XMI models produced by the Eclipse
Modeling Framework (EMF) [6].

Since specifying feature dependencies and constraints us-
ing constraint satisfaction syntax can be overly complicated
for many application developers, we developed a Domain-
Specific Language (DSL) [18] for specifying feature models
and constraints. The feature modeling language, called Feature
Styles, allows application developers to specify the features
in the model, the dependencies between features, and the
non-functional requirements associated with each feature. The
language uses a simple textual notation and is intuitive for
developers who understand basic logic, e.g., A requires B, B
excludes C, etc.

Fresh supports the following constraint types:

• Required features that must be present for a feature
to function properly. For example, JTADAOs requires
JTAEnabled.

• Excluded features that cannot be present at the same
time as a feature. For example, OracleSupport excludes
SQLSequenceDAO.

• Cardinality constraints on required features. For example,
OrderRemoting requires a user to select [1..*] of the

features HessianRemoting, RMIRemoting, and BurlapRe-
moting.

Application developers use these dependency rule types to
build complex feature models for a product. Section III-E
describes how these rules are translated into a constraint satis-
faction problem [27] for a Java Constraint Logic Programming
(CLP(X)) solver [15]. The non-functional requirement specifi-
cation language of Feature Styles allows product developers to
specify constraints on the properties of the target environment.
For example, the constraint RAM > 128 would allow a feature
to only be enabled if the target had more than 128mb of RAM.
The constraints can reference the value of any property that
can be deduced from a probe. Fresh provides constraints based
on conjunctions or disjunctions of >,<,=, ! =,=<,>=.

A feature can be annotated with any number of constraints
on the attribute values. Component developers use these
constraints to encode the non-functional requirements of the
features. As with the feature dependency rules, the constraints
are encoded into the CSP provided to the feature selection
engine.

The full feature specification for the JtaDAOs is shown
below:

JtaDAOs {
Requires: JTA, DatabaseDriver;
Excludes: NonJtaDAOs;
JTAVersion > 1.01;
JTAVersion < 1.03;

}

IV. RESULTS FROM EXPERIMENTS WITH FRESH

To demonstrate the reduction in manual configuration com-
plexity provided by Fresh, we devised a realistic configuration
scenario for the Pet Store example in Section II-A. In this
scenario, Pet Store has a base deployment descriptor (the out-
of-the-box descriptor included with the Spring Pet Store) that
must be modified to install the Pet Store on Tomcat with an
Oracle Database, Email Notification, and RMI Remoting. Pet
Store is then migrated to a new target where it is hosted
on JBoss with an MSSQL database, no RMI Remoting (to
avoid conflicts with the application server), and no Email
Notification (email order notification is handled by a new
payment processing application when the customer’s credit
card has been charged). The results in this section show
that Fresh’s automated configuration approach can reduce the
total number of steps required to configure an enterprise Java
application by 72% and the total lines of XML code by 92%.

A. Testing Configuration Complexity

In the test scenario, we compute the configuration cost
in lines of XML code that must be changed. We assume
that optional components, such as Email Notification’s Email
Advice, are not initially present in the deployment descriptor.
When a role selects a feature requiring a component, the
component is added to the configuration files. Table I shows
the steps involved in configuring the Pet Store for the first
deployment configuration.

Steps for Initial Deployment Lines of XML Changed Roles Involved Location of Change
1. Change Datasource Driver Class/URI 1 Database Dev/IT Admin dataAccessContext.xml
2. Remove Standard Sequence DAO 3 Database Dev/IT Admin dataAccessContext.xml
3. Add Oracle Sequence DAO 3 Database Dev/IT Admin dataAccessContext.xml
4. Add Mail Sender Bean to application.xml 3 IT Admin application.xml
5. Add Insert Order Pointcut 1 Component Dev application.xml
6. Add Email Advice 3 Component Dev application.xml
7. Add RMI Remoting Service Export 6 Component Dev/IT Admin application.xml
Total Steps: 7 Total Lines of XML: 20 Roles Involved: 3 Files Involved: 2

Steps for Second Deployment
1. Change Datasource Driver Class/URI 1 Database Dev/IT Admin dataAccessContext.xml
2. Remove Standard Order DAO 3 Database Dev/IT Admin dataAccessContext.xml
3. Add MSSQL Order DAO 3 Database Dev/IT Admin dataAccessContext.xml
4. Remove Oracle Sequence DAO 3 Database Dev/IT Admin dataAccessContext.xml
5. Add Standard Sequence DAO 3 Database Dev/IT Admin dataAccessContext.xml
6. Remove RMI Service Export 6 Component Dev/IT Admin application.xml
7. Remove Mail Sender Bean 3 IT Admin application.xml
8. Remove Insert Order Pointcut 1 Component Dev application.xml
9. Remove Email Advice 3 Component Dev application.xml
Total Steps: 9 Total Lines of XML: 26 Roles Involved: 3 Files Involved: 2

TABLE I: Cost of a Manual Approach to Configuration for the Scenario

As shown in Table I there are many steps, roles, and files
involved. To migrate to the second target environment, the
roles must remove some of the initially chosen components
(e.g., Oracle Sequence DAO, Email Advice, Order Pointcut,
etc.) and add other new components (e.g., MSSQL Order
DAO). The steps involved in the migration are shown in Table
I.

Table I also shows that there are a significant number
of steps and changes required to migrate to the new setup.
Each change in the target environment or desired feature
set will necessitate similar reconfiguration costs. Moreover,
if the application is widely used, the support team for each
application instance must pay this configuration cost.

We then performed the same migration experiment using
Fresh. Fresh required an extra initial investment of building
a basic feature model for the features from the migration
experiment. It also required the addition of comments to the
Pet Store’s XML configuration files that mapped features to
XML configuration directives (so that the configuration files
could be regenerated). The initial Fresh configuration overhead
is shown in Table II.

Fresh requires an initial overhead of 33 lines of
XML/Feature Model configuration. This extra configuration
code allows Fresh to (1) detect the database type used (inferred
from the data source driver class), (2) detect if a web con-
tainer or application server is the container (by checking for
EJB-specific classes), and (3) add/remove XML configuration
directives for the components of enabled/disabled features,
respectively. Although the initial cost of enabling Fresh is
higher than a traditional manual approach, this price is paid
only once, rather than each time the application is deployed.

Table II shows the steps required for installing the Pet
Store on the initial target with Oracle and Tomcat. Only two
configuration steps are required. First, the correct database
driver class is added to the configuration and then the desired
feature set is specified as Tomcat, Oracle, etc. Fresh performs
all other XML configuration tasks, including deriving a valid
feature selection with respect to the desired features.

Table II also summarizes the steps required to perform the

second migration to the JBoss/MSSQL environment. Again,
only two steps are required: setting the database driver and
updating the desired features. These two steps provide a
significant improvement over the manual approach, where 26
lines of XML were changed for the same migration.

Table III compares the totals for the manual vs. Fresh
configuration approaches. Fresh initially incurs a marginal
configuration cost for building a feature model and annotating
the XML configuration files for the Pet Store. After the
migration to the second target environment, however, Fresh
reduced the complexity of configuring the Pet Store by 9
lines of XML configuration. Moreover, for each configuration,
Fresh derived a valid feature set based on the desired features
specified by the roles. With a manual approach, this derivation
is not automated and can produce numerous types of errors,
as shown in Section II-B. In contrast, Fresh assures that each
configuration is correct by using a constraint solver to derive
a configuration based on the feature model constraints and
constrained variabilities.

When the cost of configuring the Pet Store over 100 separate
deployments is analyzed, the benefits of the Fresh approach are
amplified. At the minimum (assuming that each deployment
uses the default configuration), the manual approach requires
200 configuration steps and 600 lines of XML changes. The
total cost of the manual approach can be over 900 configu-
ration steps and 2,600 lines of XML code, however, if the
default configuration is not used on each deployment, which
we assume is common.

With Fresh, conversely, the total configuration steps are
fixed at 209 and the total lines of XML configuration at
233. At a minimum Fresh requires 62% less lines of XML
configuration changes and a maximum of 92% less. Step-
wise, Fresh uses at most 4.5% more steps but can also use
72% less total steps. As the number of deployments of the
Pet Store increases, Fresh’s development savings also increase.
With increased numbers of deployments, the initial investment
cost of Fresh becomes insignificant compared to the savings.

The intial cost paid to enable Fresh is incurred by the orig-

Steps to Enable Fresh Lines of XML Changed Roles Involved Location of Change
1. Build Fresh Feature Model 6 Component Dev/IT Admin/Database Dev petStoreFeatureModel.xml
2. Add Application Server Detection Probe 1 Component Dev probes.xml
3. Add Database Detection Probe 1 Database Dev probes.xml
4. Make Sequence DAO Switchable 4 Component Dev dataAccessContext.xml
5. Make Order DAO Switchable 4 Component Dev dataAccessContext.xml
6. Make Mail Sender Switchable 4 Component Dev application.xml
7. Make Insert Order Pointcut Switchable 2 Component Dev application.xml
8. Make Email Advice Switchable 4 Component Dev application.xml
9. Make RMI Remoting Service Switchable 7 Component Dev application.xml
Total Steps: 9 Total Lines of XML: 33 Roles Involved: 3 Files Involved: 4

Steps for Initial Deployment
1. Change Datasource Driver Class/URI 1 Database Dev/IT Admin dataAccessContext.xml
2. Change Desired Features 1 IT Admin dataAccessContext.xml
Total Steps: 2 Total Lines of XML: 2 Roles Involved: 2 Files Involved: 1

Steps for Second Deployment
1. Change Datasource Driver Class/URI 1 Database Dev/IT Admin dataAccessContext.xml
2. Change Desired Features 1 IT Admin dataAccessContext.xml
Total Steps: 2 Total Lines of XML: 2 Roles Involved: 2 Files Involved: 1

TABLE II: Fresh Configuration Cost for the Scenario

Total Steps Lines of XML Changed Total Roles Involved Files Changed
Initial Overhead
Manual 0 0 0 0
Fresh 9 33 3 4

Configuring for Tomcat/Oracle
Manual 7 20 3 2
Fresh 2 2 2 1

Migrating to JBoss/MSSQL
Manual 9 26 3 2
Fresh 2 2 2 1

Scenario Totals
Manual 16 46 3 2
Fresh 13 37 3 4

Configuration Cost Per Deployment
Manual 2min to 9+max 6min to 26+max 3 2
Fresh (not counting initial overhead) 2 2 2 1min to 2max

Total Configuration Cost Over 100 Deployments
Manual 200min to 900+max 600min to 2600+max 3 2
Fresh (including initial overhead) 209 233 3 4

TABLE III: Manual vs. Fresh Configuration Cost Totals

inal application developers. Applications are often developed
by one group, yet have hundreds or thousands of instances
installed and maintained by other groups, e.g., testers and
users. Moreover, the users often perform the final configura-
tion, such as choosing the database, OS/middleware version,
network configuration, etc. These users rarely possess the same
intimate knowledge of the application, so they are more likely
to make errors or produce poor configurations. With Fresh,
conversely, the initial developers can package their intimate
feature model, non-functional requirement, and configuration
knowledge with the application.

Since this expert configuration information is packaged
with the application, users focus on declaratively informing
Fresh what they want, rather imperatively programming new
configurations to provide what they want. Application users
can therefore benefit from the expert configuration knowledge
of the original developers, which is much harder with con-
ventional manual approaches. Moreover, Fresh greatly reduces
the configuration cost for users since they do not pay the
initial Fresh integration cost, which is borne by the original

application developers.

B. Fresh Performance Overhead

To determine the performance penalty for deriving a config-
uration with a constraint solver and rewriting an application’s
configuration files, we built a set of experiments to test
the startup time of Pet Store. We first devised several new
feature models of increasingly finer granularity to see how
long application startup took with varying feature model sizes.
Feature models of 60, 80, and 100 features were created. The
60, 80, and 100 feature models were actual feature models
of the Pet Store. The 60 feature model did not account for
features related to the web-tier of the Pet Store. The 80
feature model added features for the web-tier and Spring’s
Web Flow front end. The 100 feature model added features
for the alternate Apache Struts front-end of the Pet Store’s
web-tier.

Each test was built so that the feature set derived from
Fresh would lead to an identical application configuration,
i.e., produce the same set of XML configuration directives.

We also reproduced this configuration statically in XML to
launch without Fresh and derive the overhead incurred by
using Fresh. We launched Pet Store in Tomcat 6.0.9 using
JDK 1.5.0_11 on an IBM Think Pad T-43 with a 1.86GHZ
Pentium M processor, 1.5GB of RAM, and Windows XP. We
then tested the time needed to launch Pet Store within Tomcat
and configured it using Fresh with each feature model. The
results were compared to the static configuration launched in
Tomcat without Fresh and are shown in Figure 6.

Fig. 6: Pet Store Initialization Time in Tomcat

Figure 6 shows that using Fresh with a 60 feature model
required an extra ∼800ms to launch vs. a static configu-
ration. For 100 features, the total penalty was ∼1,000ms.
This overhead should be acceptable for many enterprise Java
application deployment scenarios because it is only incurred
once at application startup.

V. RELATED WORK

A mapping from feature selection to a constraint satisfaction
problem (CSP) is provided by Benavides et al. [3]. Fresh uses
this same reduction but also extends it with the capability
to handle feature references, cardinality constraints [9], and
resource constraints. Moreover, the approach presented in [3]
does not address the challenges presented by the decen-
tralized nature of enterprise Java configuration outlined in
Section II-C. Mannion et al. [20] also present a formal method
for specifying Product-Line Architecture (PLA) compositional
requirements using first-order logic. The correctness of a
variant can then be tested by determining if a PLA satisfies a
logical statement. Our Fresh approach to feature selection goes
beyond the approaches presented by Mannion and Benavides.
Fresh provides the ability to have multiple models that are
automatically synchronized through probes. Both Mannion and
Benavides approach uses a single model, which suffers from
the problems outlined in Section II-C. Fresh also provides an
XML annotation language specifically designed for enterprise
XML configuration files, such as enterprise Java deployment
descriptors. Finally, Fresh can leverage probes to provide
runtime feedback from the application.

Pure::variants [4] is a commercial tool similar to Fresh that
provides feature modeling capabilities. Pure::variants allows

developers to specify features and feature constraints, validate
feature selections, and to derive required completions of a fea-
ture selection. Pure::variants requires developers to manually
specify how features from one feature model affect features
in another feature model. Fresh, in contrast, automates the
synchronization of feature models through probes, which as
we have shown, is an important capability for enterprise ap-
plication capability. Fresh’s automated model synchronization
through probes reduces manual mapping errors and increases
developer concurrency by allowing multiple models. Further-
more, Fresh’s probes can be used to receive runtime feedback
to the feature model. Pure::variants does not support automated
runtime feedback.

BigLever Software Gears [7] is another commercial feature
modeling and software variant management tool. Software
Gears supports features similar to Fresh including: feature
modeling, automated feature selection completion, and con-
figuration injection. BigLever requires manually developed
mappings between features. As we have discussed, Fresh uses
probes to help eliminate problems from manually produced
cross-model feature mappings. Again, using probes allows
Fresh to also automate the collection of the application’s
configuration state and receive runtime feedback.

Various approaches [22], [23] have been devised to handle
the complexity of configuring applications. Other techniques
have also been proposed for variant configuration in PLAs
based on configuration rules for application components [26].
This related work focuses on how a configuration problem
can be formalized as a CSP. Our work on Fresh extends
these ideas, particularly those that describe a generic model
of configuration as a CSP [22]. These approaches provide
key building blocks of automated product configuration, but
do not address the specific challenges related to decentral-
ized enterprise Java configuration processes. These existing
approaches also have not been integrated into enterprise Java
frameworks to provide dynamic autonomous feature selection
and application configuration at startup or runtime. In contrast,
Fresh automates both the collection of configuration state
through probes and can inject configuration decisions by
regenerating application configuration files.

VI. CONCLUDING REMARKS

This paper demonstrated how the Fresh feature selection
engine simplified enterprise Java application configuration at
launch time via its use of automated probes, feature modeling,
a constraint solver, and configuration file generation. By
using an automated configuration approach at startup, Fresh
can produce a coherent model of the diverse configuration
decisions that the development roles have enacted. The results
presented in Section IV show that Fresh can reduce the total
number of lines of configuration XML code by between 62%
and 92% and the total number of configuration steps by up to
72%.

From our experience applying Fresh’s probing and
constraint-based configuration capabilities to the Pet Store and

other representative applications, we learned the following
lessons:

A constraint solver can derive a correct application
configuration. Fresh alleviates the problems described in
Section II-B by executing a series of Java probes at application
launch to identify constrained variabilities, formalizing and
solving a constraint satisfaction problem of the configuration
problem, and dynamically rewriting the application’s XML
configuration files. The information on functional and non-
functional properties collected by automated probing can be
treated as a constraint satisfaction problem and a correct
application configuration derived by using a constraint solver.
Moreover, the constraint solver can produce a solution that is
correct with respect to both the feature model and the decisions
made by the roles.

Automated probing adds little complexity. Probes did not
add significant complexity to Fresh’s automated configuration
approach. An application typically requires a probe for each
point of variability. In some cases, a probe may be needed
for each individual feature. In other cases, a single probe
can identify what features are enabled in an entire feature
group. As with unit test frameworks, such as JUnit, probes
are relative straightforward to write. Although unit tests can
often comprise a substantial amount of code compared to the
application itself, this was not the case for probes.

Probes are configuration unit tests. Even if a full
constraint-solver based solution is not deemed needed, using
a configuration probing infrastructure can be useful. Creat-
ing probes to ensure that individual points of configuration
are properly fixed can help improve the guarantees that an
application is installed and configured properly. Since appli-
cation misconfiguration contributes to a significant portion of
application failures [10], developers should consider the use
of automated configuration checking.

When roles have conflicting models or decisions, de-
bugging the problem is hard. An aspect of complexity that
Fresh does not yet not address is how to debug configu-
ration errors. For example, if an IT administrator chooses
Tomcat without JTA and component developers choose the
JtaDAOs, which participant’s action should be flagged as the
error? In many cases, there may be numerous intermediary
implications causing the conflict. When there are no possible
values for the unconstrained variabilities to create a correct
configuration, it is hard to provide meaningful feedback to
participants as to why a correct configuration cannot be
found. Fresh’s automated configuration approach can catch
configuration errors and reduce the complexity of completing
many partial configurations. When a configuration cannot be
completed, participants are still left with a complex process
of deducing why the configuration failed. In future work,
we plan to explore how tools and techniques developed for
explanation-based reasoning and diagnosing the problems in
over-constrained systems can be used to automate configura-
tion failure diagnosis.

Fresh is available in open-source form as part of the GEMS
project at www.sf.net/projects/gems.

REFERENCES

[1] Choco constraint programming system. http://choco.sourceforge.net/.
[2] The Java Pet Store. http://java.sun.com/developer/releases/petstore/.
[3] D. Benavides, P. Trinidad, and A. Ruiz-Cortes. Automated Reasoning

on Feature Models. 17th Conference on Advanced Information Systems
Engineering (CAiSE 2005, Proceedings), LNCS, 3520:491–503, 2005.

[4] D. Beuche. Variant management with pure:: variants. Technical report,
Pure-systems GmbH, http://www. pure-systems. com, 2003.

[5] J. Brittain and I. Darwin. Tomcat: The Definitive Guide. O’Reilly Media,
2003.

[6] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J. Grose.
Eclipse Modeling Framework. Addison-Wesley, Reading, MA, 2003.

[7] R. Buhrdorf, D. Churchett, and C. Krueger. Salion’s Experience with
a Reactive Software Product Line Approach. Proceeding of the 5th
International Workshop on Product Family Engineering. Nov, 2003.

[8] I. Crnkovic. Component-based software engineering-new challenges in
software development. Information Technology Interfaces, 2003. ITI
2003. Proceedings of the 25th International Conference on, pages 9–
18, 2003.

[9] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration
through specialization and multi-level configuration of feature models.
Software Process Improvement and Practice, 10(2):143–169, 2005.

[10] D. P. D. Oppenheimer, A. Ganapathi. Why do internet services fail, and
what can be done about it? Proceedings of the USENIX Symposium on
Internet Techňnologies and Systems, March 2003.

[11] G. Edwards, G. Deng, D. Schmidt, A. Gokhale, and B. Natarajan.
Model-Driven Configuration and Deployment of Component Middle-
ware Publish/Subscribe Services. Generative Programming and Com-
ponent Engineering (GPCE), pages 337–360, 2004.

[12] M. Fleury and F. Reverbel. The JBoss Extensible Server. International
Middleware Conference, 2003.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Profes-
sional, 1995.

[14] P. Goldsack, J. Guijarro, A. Lain, G. Mecheneau, P. Murray, and
P. Toft. SmartFrog: Configuration and Automatic Ignition of Distributed
Applications. HP Openview University Association conference, 2003.

[15] J. Jaffar and M. Maher. Constraint Logic Programming: A Survey.
constraints, 2(2):0.

[16] R. Johnson and J. Hoeller. Expert One-on-One J2EE development
without EJB. Wiley Pub., 2004.

[17] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-
oriented Domain Analysis (FODA) Feasibility Study. Software Engi-
neering Institute, Technical Report CMUSEI90TR21, Carnegie Mellon
University, 1990.

[18] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom, J. Sprinkle,
and G. Karsai. Composing Domain-Specific Design Environments. IEEE
Computer, pages 44–51, November 2001.

[19] G. Lenz and C. Wienands. Practical Software Factories in .NET. Apress,
Berkeley, CA, 2006.

[20] M. Mannion. Using first-order logic for product line model validation.
Proceedings of the Second International Conference on Software Prod-
uct Lines, 2379:176–187, 2002.

[21] V. Matena, S. Krishnan, B. Stearns, and L. Demichiel. Applying
Enterprise Javabeans: Component-based Development for the J2EE
Platform. Addison-Wesley, 2003.

[22] S. Mittal and F. Frayman. Towards a generic model of configuration
tasks. Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence, 2:1395–1401, 1989.

[23] D. Sabin and E. Freuder. Configuration as composite constraint satis-
faction. Proceedings of the Artificial Intelligence and Manufacturing
Research Planning Workshop, pages 153–161, 1996.

[24] D. Sabin and R. Weigel. Product configuration frameworks-a survey.
Intelligent Systems and Their Applications, IEEE [see also IEEE Intel-
ligent Systems], 13(4):42–49, 1998.

[25] B. Selic. The Pragmatics of Model-Driven Development. IEEE Software,
20(5):19–25, 2003.

[26] T. van der Storm. Variability and Component Composition. Springer,
2004.

[27] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT
Press Cambridge, MA, USA, 1989.

