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1 Introduction

Commercial-of-the-shelf (COTS) middleware technologies
have matured considerably over the past decade. They are
now widely used to help enhance the quality and reduce the
time to develop an increasingly broad range of application do-
mains. Historically, middleware has been applied toenterprise
applications, which comprise a large class of applications that
perform important business functions, such as planning enter-
prise resource usage, automating key business functions, and
managing supply chains and customer relationships. Exam-
ples of enterprise applications include airline reservation sys-
tems, bank asset management systems, and just-in-time inven-
tory control systems.

More recently, middleware has been applied to distributed
real-time and embedded (DRE) applications with stringent
quality of service (QoS) requirements for latency, efficiency,
scalability, dependability, and security. There are many types
of DRE applications, but they have one thing in common:the
right answer delivered too late becomes the wrong answer.
Examples of DRE applications includeindustrial process con-
trol systems, such as hot rolling mill control systems that pro-
cess molten steel in real-time, andavionics systems, such as
mission management computers that help aircrafts navigate
through their route legs. DRE applications are an increasingly
important domain since over 99% of all microprocessors are
now used for embedded systems to control physical, chemi-
cal, or biological processes or devices in real-time.

Regardless of the domain that middleware is applied in, it
helps expedite the application development process by shield-
ing programmers from many accidental and inherent complex-
ities, such as platform and language heterogeneity, resource lo-
cation, and fault tolerance.Component middlewareis a rapidly
maturing type of middleware that enables component services
to be composed, configured, and installed to create applica-
tions rapidly and robustly. In particular, component middle-
ware offers application developers the following reusable ca-
pabilities:
� Connector mechanisms between components, such as re-

mote method invocations and message passing
� Horizontal infrastructure services, such as request bro-

kers, and
� Vertical models of domain concepts, such as common

semantics for higher-level reusable component services
ranging from transaction support to multi-level security.

Examples of COTS component middleware include the
CORBA Component Model (CCM) [1], Java 2 Enterprise Edi-
tion (J2EE) [2], and the Component Object Model (COM) [3],
which use different APIs, different protocols, and different
component models.

Ironically, one of the original motivations for middleware
was to reduce system heterogeneity via layers that made the
software infrastructure appearvirtually homogeneous [4]. Un-
fortunately, the proliferation of middleware technologies over
the past decade has created a new level of heterogeneity that
needs to be addressed. Since the cost of abandoning existing,
working middleware can be prohibitively high, there is a trend
towards so-calledWeb services[5] that help integrate differ-
ent types of middleware technologies. Emerging Web services
technologies are positioning themselves to become the “mid-
dleware of middleware” [6] by intentionally accommodating
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heterogeneity in various layers, including applications, net-
work protocols, operating systems, and the middleware itself.

To achieve these goals, Web services use ubiquitous pro-
tocol infrastructure (such as TCP/IP, HTTP, and SMTP) and
XML-based messages and metadata (such as SOAP [7] or
WSDL [8]) to exchange information with clients. By exchang-
ing XML-formated messages, Web services for business appli-
cations can easily adopt existing business standards, such as
Electronic Data Interchange (EDI). Web services can support
either RPC-styled or message-passing communication models
depending on the requirements of the applications. Clients can
bind to Web services using location services, such as theuni-
versal description, discovery, and integration(UDDI) service
that queries the locations and the descriptions of available Web
services.

Although today’s Web services offerings strive to integrate
software applications that use different middleware technolo-
gies, a number of key technical challenges remain. Chief
among these challenges include the following:
1. Reconciling different middleware technologies. To pro-
vide sufficient QoS support and take advantage of new tech-
nologies as they arise, middleware must inevitably work with
heterogeneous OS platforms, interface with legacy systems
written in different languages, and interoperate with multiple
technologies from many suppliers. Support for heterogeneity
is essential since different middleware technologies have dif-
ferent pros and cons for different types of system environments
and application requirements. For example, the middleware
capabilities needed to manage supply chains over the Internet
are different than those needed to intercept and destroy cruise
missiles in flight.

Web services can be extended to integrate systems that
comprise many existing component middleware technologies,
some of which are wedded to particular programming lan-
guages and platforms. For example, Microsoft’s .NET [9] sup-
ports XML/SOAP Web services and is based on a common
language runtime (CLR) and COM [3]. Conversely, Sun’s
ONE [10], IBM’s WebSphere [11], and BEA’s WebLogic [12]
are based on Java, J2EE, and CORBA. These technologies
provide tools that can expose existing middleware applications
as Web services so they can be accessed by any clients capable
of using Web services.

Integrating different middleware technologies using Web
services remains hard, however, since different middleware
technologies have their own interaction model, such as com-
ponent lifecycle, component addressing, and error notifica-
tion [13]. What is needed is a way to ensure the behavioral
differences between middleware technologies are represented
and reflected across Web service points.
2. Satisfying multiple quality of service (QoS) require-
ments in real-time. An increasing number of DRE applica-
tions, such as controllers for surface-mount component pick-

and-place machines or total ship computing environments, re-
quire stringent QoS demands that must be satisfied simulta-
neously in real-time. In large-scale DRE systems, these QoS
demands cross-cut multiple system layers and require end-to-
end enforcement. Today’s Web services technologies were
designed for applications with conventional business-oriented
QoS requirements, such as data persistence and transactional
support, so they do not yet enforce the stringent QoS require-
ments of DRE applications effectively.

QoS-aware Web services are particularly useful for integrat-
ing DRE systems where application requirements constrain
the choice of hardware, languages, operating systems, and
middleware. Military command and control (C2) and intel-
ligence, surveillance, and reconnaissance (ISR) systems (such
as AWACS and JSTARS), are a good example of such sys-
tems since they monitor enemy air and group movements and
deliver tracks and targeting information to coalition forces in
real-time. By necessity, these large-scale “systems of sys-
tems” are heterogeneous since different sensors and process-
ing equipment are provided by different suppliers at different
points in time. Moreover, they must link together many di-
verse hardware devices, such as sensors, that communicate in-
formation, such as track reports and GPS coordinates, across
wireless links. This information can be readily exchanged as
XML data if DRE applications are composed of QoS-enabled
Web services.

There are many benefits of enhancing Web services to meet
the QoS requirements of DRE applications. For example,
due to constraints on weight, power consumption, memory
footprint, and performance, development techniques for DRE
application software have lagged those used for mainstream
desktop and enterprise software. In particular, DRE appli-
cations have historically been custom-programmed to imple-
ment their required QoS properties, making them so expensive
to build and maintain that they cannot adapt readily to meet
new functional or QoS requirements, hardware/software tech-
nology innovations, or market opportunities. What is needed
therefore is a flexible component middleware infrastructure
for Web services that preserves the existing support for het-
erogeneity, yet also provides multiple dimensions of QoS en-
forcement.
3. Accidental complexities in integrating software systems.
To reduce lifecycle costs and time-to-market, application de-
velopers are attempting to assemble and deploy distributed ap-
plications that make up the backbone of Web services by se-
lecting the right set of compatible COTS components, which
in itself is a daunting task. The problem is further exacer-
bated by the existence of myriad strategies for configuring and
deploying the underlying component middleware to leverage
the environment advantages. Moreover, integrating applica-
tion using multiple middleware technologies demands multi-
ple skill sets which makes the task even more complicated.
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Application developers therefore spend non-trivial amounts of
time debugging problems associated with the selection of in-
compatible strategies and components. What is needed is an
integrated set of processes and tools that can (1) select and val-
idate a suitable configuration of middleware components and
(2) generate optimized Web service configurations automati-
cally.

A promising way to address the application-to-application
integration challenges described above is to applyModel-
Integrated Computingtechnologies [14]. Model-Integrated
Computing is an emerging paradigm for expressing applica-
tion functionality and QoS requirements at higher levels of ab-
straction than is possible using third-generation programming
languages, such as Visual Basic, Java, C++, or C#. In the con-
text of DRE applications, Model-Integrated Computing tools
can be applied to

1. Analyze different—but interdependent—characteristics
of system behavior, such as scalability, predictability,
safety, and security. Tool-specific model interpreters
translate the information specified by models into the in-
put format expected by analysis tools. These tools can
check whether the requested behavior and properties are
feasible given the constraints.

2. Synthesizeplatform-specific code that is customized for
specific component middleware and DRE application
properties, such as end-to-end timing deadlines, recovery
strategies to handle various runtime failures in real-time,
and authentication and authorization strategies modeled
at a higher level of abstraction.

Understanding how to integrate Model-Integrated Comput-
ing and component middleware is essential to resolve the con-
figuration, management, and deployment challenges of inte-
grating DRE applications using the Web services technolo-
gies described above. This paper provides the following
three contributions toward the successful integration of Model-
Integrated Computing and component middleware that is es-
sential to develop QoS-enabled Web services to address the
challenges presented above:
� We illustrate how the Model-Integrated Computing

paradigm can be applied to simplify the development of
large-scale DRE applications that integrate reusable com-
ponent middleware services using QoS-enabled Web ser-
vices.

� We describe how QoS-enabled component middleware
enables modeling and synthesis tools to rapidly develop,
assemble, and deploy flexible Web services that support
heterogeneity, yet can be tailored readily to meet the
needs of DRE applications with multiple simultaneous
QoS requirements.

� We discuss how emerging standards, such as the OMG
Model Driven Architecture [15] based on UML [16] and

XML [17], and the CORBA Component Model [1] can be
used to enhance and complement Model-Integrated Com-
puting technologies, thereby providing a standards-based
approach to assemble and deploy Web services.

The remainder of this paper is organized as follows: Sec-
tion 2 describes how Model-Integrated Computing and com-
ponent middleware can be combined to resolve key chal-
lenges associated with DRE application integration; Sec-
tion 3 illustrates how the OMG Model Driven Architecture
and CORBA Component Model are standardizing the Model-
Integrated Computing paradigm that QoS-enabled Web ser-
vices can leverage; Section 4 explains how we are apply-
ing these technologies to synthesize component-based appli-
cations from high-level models in theComponent-Integrated
ACE ORB (CIAO) and Component Synthesis with Model-
Integrated Computing(CoSMIC) projects; Section 5 com-
pared our work on CIAO and CoSMIC with related research;
and Section 6 presents concluding remarks.

2 Component Middleware and Model-
Integrated Computing: A Powerful
Approach to Building DRE Applica-
tions

DRE applications have a range of QoS requirements, includ-
ing bandwidth, bounded communication, latency, guaranteed
resource allocation, dependability, scalability, and security.
Much of the complexity of implementing QoS-aware Web ser-
vices from composing reusable middleware components arises
from interactions between the software and its environment,
i.e., the structure, actuator response times, and event intervals
with which the software interacts. For example, an intelligent
automotive engine management system must interact with the
transmission control system and anti-lock brake system to ac-
tuate the fuel injection circuit in time to provide responsive
performance. This section presents an overview of compo-
nent middleware and Model-Integrated Computing and then
describes how combining the best elements of these two tech-
nologies can address the complexities associated with devel-
oping DRE applications.

2.1 Overview of Component Middleware

Middleware capabilities. Middleware is reusable software
that resides between the applications and the underlying op-
erating systems, network protocol stacks, and hardware [4].
Its primary role is to bridge the gap between application pro-
grams and the lower-level hardware and software infrastruc-
ture to coordinate how parts of applications are connected and
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how they interoperate. When implemented properly, middle-
ware can help to:

� Shield application developers from low-level, tedious,
and error-prone platform details, such as socket-level net-
work programming.

� Simplify the development of distributed applications by
providing a consistent set of capabilities that are closer to
design-level abstractions than to the underlying comput-
ing and communication mechanisms.

� Amortize software lifecycle costs by leveraging previous
development expertise and capturing implementations of
key patterns in reusable frameworks, rather than rebuild-
ing them manually for each use.

� Provide a wide array of developer-oriented services, such
as transactional logging and security, that have proven
necessary to operate effectively in a distributed environ-
ment.

� Simplify the integration of software artifacts developed
by multiple technology suppliers.

Various technologies, such as OSF’s Distributed Comput-
ing Environment (DCE) [18], IBM’s MQ Series [19], and
CORBA [20], emerged over the past two decades to allevi-
ate complexities associated with developing software for en-
terprise applications. Their successes have added the mid-
dleware paradigm to the familiar operating system, program-
ming language, networking, and database offerings used by
previous generations of software developers. By decoupling
application-specific functionality and logic from the acciden-
tal complexities inherent in the infrastructure, middleware
enables application developers to concentrate on program-
ming application-specific functionality, rather than wrestling
repeatedly with lower-level infrastructure challenges. More-
over, since emerging Web services standards only address how
information can be exchanged—not how to implement the
services—Web service developers can also benefit from the
abstraction provided by middleware to make Web service im-
plementations themselves more efficient and portable.

Limitations with object-oriented middleware. The Object
Management Architecture (OMA) in the CORBA 2.x speci-
fications [20] defines an object-oriented middleware standard
for building portable distributed applications. The CORBA
2.x specification focuses oninterfaces, which are contracts
between clients and servers that define how clientsview and
accessobject services provided by a server. These objects can
be distributed or collocated throughout a network. Although
this model has certain virtues, such as location transparency, it
has the following limitations [21]:

� Lack of functional boundaries. The CORBA 2.x object
model treats all interfaces as client/server contracts. This

object model, however, does not provide sufficient mech-
anisms to prevent tight coupling among collaborating ob-
ject implementations. For example, object implementa-
tions that depend on other objects need to discover and
connect to these objects explicitly. To construct complex
distributed applications, therefore, application developers
need to program the connections among interdependent
services, which can yield brittle and non-reusable imple-
mentations.

� Lack of generic application servers.CORBA 2.x does
not specify a genericapplication serverframework to
perform common “bookkeeping” work, including initial-
izing the broker and its QoS policies, providing com-
mon services (such as an event service), and manag-
ing the runtime environment of components. Although
CORBA 2.x standardized the interactions between ob-
ject implementations and object request brokers (ORBs),
server developers are still responsible for determining
how object implementations are installed in an ORB and
the interaction between the ORB and object implementa-
tions. The lack of a generic application server standard
has yielded tightly coupled,ad-hocapplication server
implementations, which increase the complexity of soft-
ware upgrades and reduce the reusability and flexibility
of CORBA-based applications.

Promising solution! component middleware. In recent
years,component middleware[22] has emerged to address the
limitations with object-oriented middleware outlined above.
Component middleware addresses these issues by creating a
virtual boundary around application components with well-
defined interfaces and composing and executing components
in generic application servers. Popular COTS component mid-
dleware platforms being used for various distributed applica-
tions today include the CCM [1], J2EE [2], and COM [3],
which provide the foundation for many Web services devel-
opment frameworks.

Large-scale DRE applications require seamless integration
of many hardware and software systems. As shown in Fig-
ure 1, these systems may be separated physically from each
others,e.g., an air traffic control system processes flight infor-
mation from multiple regional radars. These systems can also
be collocated physically, yet be disjointvirtually. For exam-
ple, a custom real-time flight bulletin board may reside in the
same airport as the approach flight management system that
runs on a mainframe computer and processes the information
required by the bulletin board. It is important for component
middleware to meet the designed QoS requirements for Web
services to deliver the expected quality of service.

Figure 1 also shows howcomponentsimplement the DRE
processing and control logic and howcontainersprovide a
common interface that allow different components to interact
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Figure 1: Integrating DRE Applications with Component
Middleware

with the underlying middleware platform. In addition, this fig-
ure shows how generic application servers can be used to in-
stantiate and manage containers and execute the components
configured into them. Metadata associated with components
provide instructions that application servers use to configure
and connect components.

The many interdependent components in complex DRE
applications often reside in multiple—possibly distributed—
application servers. Each application server consists of some
number of components that implement certain services for
clients. These components in turn may include other collo-
cated or remote services. In general, component middleware
helps reduce initial software development efforts by integrat-
ing custom application components with reusable COTS com-
ponents into generic application server frameworks. More-
over, as the requirements of DRE applications change, com-
ponent middleware can help make it easier to migrate and re-
distribute certain services to adapt to new environments, while
preserving key application QoS properties.

2.2 Overview of Model-Integrated Computing

Model-Integrated Computing (MIC) [14] is a development
paradigm that applies domain-specific modeling languages
systematically to engineer computing systems ranging from
small-scale real-time embedded systems to large-scale dis-
tributed enterprise applications. MIC provides rich, domain-
specific modeling environments, including model analysis
and model-based program synthesis tools [23]. In the MIC
paradigm, application developers model an integrated, end-to-
end view of the entire application, including the interdepen-
dencies of its components. Rather than focusing on a sin-
gle, custom application, therefore, MIC models capture the
essence of a class of applications. MIC also allows the model-
ing languages and environments themselves to be modeled by
so-calledmeta-models[24], which help to synthesize domain-
specific modeling languages that can capture the nuances of
domains they are designed to model.

When implemented properly, MIC technologies help to:
� Free application developers from dependencies on par-

ticular software APIs, which ensures that the models can
be used for a long time, even as existing software APIs
become obsolete and replaced by newer ones.

� Provide correctness proofs for various algorithms by ana-
lyzing the models automatically and offering refinements
to satisfy various constraints.

� Synthesized code that is highly dependable and robust
since the tools can be built using provably correct tech-
nologies.

� Rapidly prototype new concepts and applications that can
be modeled quickly using this paradigm, compared to the
effort required to prototype them manually.

� Save enterprises significant amounts of time and effort,
while also reducing application time-to-market.

Early computer-aided software engineering (CASE) tech-
nologies have evolved into sophisticated tools, such asobjec-
tiF andin-Stepfrom MicroTool andParadigm Plus, VISION,
andCOOL from Computer Associates. This class of products
has evolved over the past two decades to alleviate complex-
ities associated with developing software for enterprise ap-
plications. Their successes have added the Model-Integrated
Computing paradigm to the familiar programming languages
and language processing tool offerings used by previous gen-
erations of software developers. Popular examples of MIC
tools being used today include the Generic Modeling Environ-
ment (GME) [23] and Ptolemy [25] (which are used primarily
in the real-time and embedded domain) and UML/XML tools
based on the OMG Model Driven Architecture (MDA) [15]
(used primarily in the enterprise application domain thus far).

As shown in Figure 2, MIC uses a set of tools to
� Analyze the interdependent features of the system cap-

tured in a model and
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� Determine the feasibility of supporting different non-
functional system aspects, such as QoS requirements, in
the context of the specified constraints.

Another set of tools then translates models into executable
specifications that capture the platform behavior, constraints,
and interactions with the environment. These executable spec-
ifications can in turn be used to synthesize application soft-
ware.

2.3 Application Integration using Model-
Integrated Computing and Component
Middleware

As described above, MIC and component middleware have
evolved independently from different perspectives. Although
these two paradigms have achieved relatively good success in-
dependently, each also has the following limitations:

Complexity due to heterogeneity. Conventional compo-
nent middleware is developed using separate tools and in-
terfaces written and optimized manually for each middle-
ware technology, such as CORBA, J2EE, and .NET, and for
each target deployment, such as various OS, network, and
hardware configurations. Developing, assembling, validating,
and evolvingall this middleware manually is costly, time-
consuming, tedious, and error-prone, particularly for run-time
platform variations and complex application use-cases. This
problem is getting worse as more middleware, target plat-
forms, and complex applications continue to emerge.

Lack of sophisticated modeling tools. Previous efforts at
model-based development and code synthesis attempted by
CASE tools generally failed to deliver on their potential for
the following reasons [26]:

� They attempted to generate entire applications, including
the infrastructure and the application logic, which often
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Figure 3: Integrating Model-Integrated Computing and
Component Middleware

lead to inefficient, bloated code that was hard to optimize,
validate, evolve, or integrate with legacy code.

� Due to the lack of sophisticated domain-specific lan-
guages and associated modeling tools, it was hard to
achieveround-trip engineering, i.e., moving back and
forth seamlessly between model representations and the
synthesized code.

� Since CASE tools and modeling languages dealt primar-
ily with a restricted set of platforms (such as mainframes)
and legacy programming languages (such as COBOL)
they did not adapt well to the distributed computing
paradigm that arose from advances in PC and Internet
technology and newer object-oriented programming lan-
guages, such as Java, C++, and C#.

The limitations with Model-IntegratedComputing and com-
ponent middleware outlined above can largely be overcome by
integrating them as follows:

� Combining MIC with component middleware helps to
overcome problems with earlier-generation CASE tools
since it does not require the modeling tools to generate
all the code. Instead, large portions of applications can be
composedfrom reusable, prevalidated middleware com-
ponents, as shown in Figure 3.

� Combining MIC and component middleware helps ad-
dress environments where control logic and procedures
change at rapid pace, by synthesizing and assembling
newer extended components that implement the new pro-
cedures and processes.

� Combining component middleware with MIC helps to
make middleware more flexible and robust by automating
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the configuration of many QoS-critical aspects, such as
concurrency, distribution, resource reservation, security,
and dependability. Moreover, MIC-synthesized code can
help bridge the interoperability and portability problems
between different middleware for which standard solu-
tions do not yet exist.

� Combining component middleware with MIC helps to
model the interfaces among various components in terms
of standard middleware or Web services, rather than
language-specific features or proprietary APIs.

� Changes to the underlying middleware or language map-
ping for one or many of the components modeled can
be handled easily as long as they interoperate with other
components. Interfacing with other components can be
modeled as constraints that can be validated by model
checkers.

Figure 4 illustrates six points at which Model-Integrated
Computing can be integrated into component middleware ar-
chitectures and applied to DRE applications. We describe each
of these six integration points below:

1. Configuring and deploying application services end-to-
end. As discussed in the explanation of Figure 1, developing
complex DRE applications requires application developers to
handle a variety of configuration and deployment challenges,
such as

� Locating the appropriate existing services
� Partitioning and distributing application processes among

application servers using different middleware technolo-
gies and defining the Web services necessary and

� Partitioning and distributing application processes among
application servers using the same middleware technolo-
gies and

� Provisioning the QoS required for each service that com-
prises an application end-to-end.

It is a daunting task to identify and deploy all these capabilities
into an efficient, correct, and scalable end-to-end application
configuration. For example, to maintain correctness and effi-
ciency, services may change or migrate when the DRE appli-
cation requirements change. Careful analysis is therefore re-
quired to partition collaborating services on distributed nodes
so the information can be processed efficiently, dependably,
and securely.

Integrating MIC and component middleware to deploy DRE
application services end-to-end can help developers configure
the right set of services into the right part of an application in
the right way. MIC analysis tools can help determine the ap-
propriate partitioning of functionality that should be deployed
into various application servers throughout a network. For ex-
ample, tools likeMatlab, Simulink, TimeWiz, andRapidRMA
allow DRE application developers to model and visualize their
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Figure 4: Integrating Model-Integrated Computing with
Component Middleware

end-to-end application and QoS requirements. In particular,
theSimulinktool allows DRE application developers to model,
analyze, simulate, verify, and rapidly protoype applications.

2. Composing components into application servers. Inte-
grating MIC with component middleware provides capabilities
that help application developers to compose components into
application servers by

� Selecting a set of suitable, semantically compatible com-
ponents from reuse repositories.

� Specifying the functionality required by new components
to isolate the details of DRE systems that (1) operate in
environments where DRE processes change periodically
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and/or (2) interface with third-party software associated
with external systems.

� Determining the interconnections and interactions be-
tween components in metadata.

� Packaging the selected components and metadata into an
assembly that can be deployed into the application server.

CASE tools, such asMatlabandSimulink, provide visual tools
for composing DRE application servers.

3. Configuring application component containers. Ap-
plication components use containers to interact with the ap-
plication servers in which they are configured. Containers
provide many policies that distributed applications can use to
fine-tune underlying component middleware behavior, such as
its security, transactional, and quality of service properties.
Since DRE applications consist of many interacting compo-
nents, their containers must be configured with consistent and
compatible QoS policies.

Due to the number of policies and the intricate interactions
among them, it is tedious and error-prone for a DRE applica-
tion to manuallyspecify and maintain its component policies
and semantic compatibility with policies of other components.
MIC tools can help automate the validation and configura-
tion of these container policies by allowing system designers
to specify the required system properties as a set of models.
Other MIC tools can then analyze the models and generate the
necessary policies and ensure their consistency.

4. Synthesizing application component implementations.
Developing complex DRE applications today involves pro-
gramming new components that add application-specific func-
tionality. Likewise, new components must be programmed
to interact with external systems and sensors, such as a ma-
chine vision module controller, that are not internal to the ap-
plication. Since these components involve substantial knowl-
edge of application domain concepts, such as mechanical de-
signs, manufacturing process, workflow planning, and hard-
ware characteristics, it would be ideal if they could be devel-
oped in conjunction with mechanical engineers or domain ex-
perts, rather than programmed manually in isolation by soft-
ware developers.

The shift toward high-level design languages and modeling
tools is creating an opportunity for increased automation in
generating and integrating application components. The goal
is to bridge the gap between specification and implementation
via sophisticated aspect weavers [27] and generator tools [23]
that can synthesize platform-specific code customized for spe-
cific application properties, such as resilience to equipment
failure, prioritized scheduling, and bounded worst-case exe-
cution under overload conditions. Research in this area is now
transitioning into commercial products that support narrow,
well-defined domains, such as

� SimuLinkandStateFlowfrom MathWorks, which gener-
ate signal processing and control applications from high-
level models

� The Reactis product family from Reactive Systems,
which provides a modeler, simulator, validator, and a
code generator for embedded software systems

� ObjecTimefrom Rational, which generates call process-
ing applications from state chart models and

� +1Reusefrom +1 Software Engineering, which uses
modeling concepts to synthesize application component
integration.

5. Synthesizing middleware-specific configurations. The
infrastructure middleware technologies used by component
middleware provide a wide range of policies and options to
configure and tune their behavior. For example, CORBA
ORBs often provide the following options and tuning parame-
ters:

� Various types of transports and protocols
� Various levels of fault tolerance
� Middleware initialization options
� Efficiency of (de)marshaling event parameters
� Efficiency of demultiplexing incoming method calls
� Threading models and thread priority settings and
� Buffer sizes, flow control, and buffer overflow handling

Certain combinations of the options provided by the middle-
ware may be semantically incompatible when used to achieve
multiple QoS properties.

For example, a component middleware implementation
could offer range of security levels to the application. In the
lowest security level, the middleware exchanges all the mes-
sages over an insecure channel. The highest security level, in
contrast, encrypts and decrypts messages exchanged through
the channel using a set of dynamic keys. The same middleware
could also provide an option to use zero-copy optimizations to
minimize latency. A modeling tool could automatically detect
the incompatibility of trying to compose the zero-copy opti-
mization with the highest security level (which makes another
copy of the data during encryption and decryption).

Advanced meta-programming techniques, such as adaptive
and reflective middleware [28, 29, 30, 31] and aspect-oriented
programming [27], are being developed to configure middle-
ware options so they can be tailored for particular DRE appli-
cation use cases.

6. Synthesizing middleware implementations. Model-
Integrated Computing can also be integrated with component
middleware by using MIC tools to generate custom middle-
ware implementations. This is a more aggressive use of mod-
eling and synthesis than integration point 5 described above
since it affects middlewareimplementations, rather than their
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configurations. Application integrators could use these ca-
pabilities to generate highly customized implementations of
component middleware so that

� It only includes the features actually needed for a partic-
ular application and

� It is carefully fine-tuned to the characteristics of particu-
lar programming languages, operating systems, and net-
works.

The customizable middleware architectural framework
Quarterware [32] falls under this category of integration.
Quarterware abstracts basic middleware functionality and al-
lows application-specific specializations and extensions. The
framework can generate core facilities of CORBA, RMI, and
MPI. The framework-generated code is optimized for perfor-
mance, which the authors demonstrate is comparable—and of-
ten better—than many commercially available middleware im-
plementations.

3 An Overview of the Model Driven
Architecture and CORBA Compo-
nent Model

The Object Management Group (OMG) has recently adopted
the Model Driven Architecture (MDA) [15] to standardize
the integration of MIC paradigm with component middleware
technologies. This section describes how the OMG MDA can
be used to develop, assemble and deploy complex DRE appli-
cations based on QoS-enabled Web services. In particular, we
show how the application functionality specified as models can
be used to synthesize new components that implement the web
service, as well as to assemble them with semantically com-
patible reusable components provided by the CORBA Com-
ponent Model [1] and Real-time CORBA [33]. Section 4 then
presents how we are synthesizing QoS-enabled CCM applica-
tions from UML models and exposing them as Web services.

3.1 Overview of the OMG Model Driven Archi-
tecture

The OMG MDA defines standard ways to address many of the
challenges facing complex applications, such as the DRE ap-
plications outlined in Section 1. The MDA builds upon years
of research on model-integrated computing [14, 34, 35] to pro-
vide standard modeling notations based on the Unified Mod-
eling Language (UML) [16]. Figure 5 illustrates the structure
of the MDA.

The MDA defines platform-independent models (PIMs) and
platform-specific models (PSMs) that streamline platform in-
tegration issues and protect investments against the uncertainty

Figure 5: Overview of the OMG Model Driven Architec-
ture (Copyright OMG, reproduced by permission)

of changing platform technology. These two levels of models
can be differentiated as follows:

� The PIMs describe at a high-level how applications will
be structured and integrated, without concern for the
middleware/OS platforms or programming languages, on
which they will be deployed. PIMs provide a formal defi-
nition of an application’s functionality, as well as a repre-
sentation of the application as a computation-independent
business model or a military strategy, also referred to as a
Domain Model. For example, a transaction in a business
system or target tracking and identification in a military
ISR mission, can be modeled in generically using model-
ing tools based on UML.

� The PSMs are so-calledconstrainedformal models since
they express platform-specific details. The PIM mod-
els are mapped into PSMs via translators. For example,
the generic operation that is specified in the PIM could
be mapped and refined to the domain-specific operation,
such as information exploitation of sensor data, in the un-
derlying Real-time CORBA platform.

Both PIM and PSM descriptions of applications are for-
mal specifications built using modeling standards, such as
UML, which can be used to model application functionality
and system interactions. The MDA also defines a platform-
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independent meta-modeling language that allows platform-
specific models to be modeled at an even higher level of ab-
straction.

Figure 5 also references the Meta-Object Facility (MOF),
which provides a framework for managing any type of meta-
data. The MOF has a layered metadata architecture with a
meta-meta-modeling layer and an object modeling language—
closely related to UML—that ties together the meta-models
and models. The MOF also provides a repository to store
meta-models.

The Common Warehouse Model (CWM) provides stan-
dard interfaces that can manage many different databases and
schemas throughout organizations as diverse as a military
command and control system or a financial services enterprise.
The CWM interfaces are designed to support management
decision making and exchange of domain-specific business
metadata or between diverse warehouse tools to help present
a coherent picture of business conditions at a single point in
time. The OMG has defined the XML metadata Interchange
(XMI) for representing and exchanging CWM metamodels in
XML.

The OMG defined three levels where MDA-based specifi-
cations are useful:

1. ThePervasive serviceslevel constitutes a suite of PIM
specifications of essential CORBA services, such as
events, transactions, directory, and security, that are use-
ful for large-scale application development. Additional
services may be added at a later date from the broad range
of existing CORBA object services.

2. TheDomain facilities level constitutes a suite of PIM
specifications from different domains, such as defense,
manufacturing, healthcare, and life science research
within the OMG.

3. TheApplications level constitutes a suite of PIM created
by software developers for their applications.

The three levels outlined above allows a broad range of ser-
vices and application designs to be reused across multiple plat-
forms. For instance, some domain-specific services from the
OMG could be reused for other technology platforms, such as
.NET or J2EE, rather than designing them from scratch.

3.2 Overview of the CORBA Component
Model

The OMG has addressed the limitations with object-oriented
middleware described in Section 2.1 by defining the CORBA
Component Model (CCM) [1]. CCM is modeled closely on
the Enterprise Java Beans (EJB) specification. Unlike EJB,
however, CCM uses the CORBA object model as its un-
derlying object interoperability architecture and is therefore
not bound to a particular programming language. CCM and

CORBA are also related to the Microsoft COM family of mid-
dleware technologies. Unlike CORBA, however, Microsoft’s
COM was designed to support a collocated component pro-
gramming model initially and later DCOM added the ability
to distribute COM objects.

Figure 6 shows an overview of the run-time architecture of
the CCM model.Componentsare the implementation entities
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that export a set of interfaces to clients. Components can also
express their intent to collaborate with other components by
defining interfaces calledports. There are three types of ports
in CCM:

� Facets, which define an interface that accepts syn-
chronous method invocations from other components

� Receptacles, which indicate a dependency on a syn-
chronous method interface provided by another compo-
nent and

� Event sources/sinks, which indicate a willingness to ex-
change messages asynchronously with other components.

A containerprovides the run-time environment for a com-
ponent. It contains various pre-defined hooks that provide
strategies, such as persistence, event notification, transaction,
and security, to the component it manages. Each container
manages one type of component and is responsible for initial-
izing this component and connecting it to other components
and ORB services. Developer-specified metadata can be used
to instruct the CCM deployment mechanism how to create
these containers.
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In addition to the building blocks outlined above, the CCM
also standardizes component implementation, packaging, and
deployment. The CCM Component Implementation Frame-
work (CIF) helps generate the component implementation
skeletons and persistent state management automatically using
the Component Implementation Definition Language (CIDL).
The CCM also extends the Open Software Description (OSD),
which is a vocabulary of XML defined by W3C, to specify
component packaging and assembly descriptors that is used by
the CCM deployment mechanisms to configure the component
connections and container configurations. The CCM deploy-
ment mechanism enables an MDA model to be synthesized
to configure and deploy distributed applications, as shown by
integration point 1 in Figure 4.

The CCM is an effective component middleware technology
to serve as the basis for composing DRE applications using
MDA and hosted as a Web service for the following reasons:

1. Metadata specifies the interconnections among compo-
nents and application servers, which provides a natural
mechanism for MDA to compose new end-to-end DRE
application functionality and to describe Web services in-
terface using WSDL, as shown by integration point 1 and
3 in Figure 4.

2. The well-defined virtual boundaries of components sim-
plifies the validation of individual component functional-
ity, as well as the functionality of Web services in DRE
applications, and helps to address the challenges shown
by integration points 1 and 4 in Figure 4.

3. A rich set of existing common middleware services, such
as the CORBA Notification and Scheduling services, can
be componentized and reused to compose complex Web
services, which helps to address the challenges identified
by integration points 1 and 2 in Figure 4.

4. The portability and mature QoS capabilities of Real-time
CORBA enables CCM to run predictably on most OS
platforms, which makes it easier to integrate and interact
with legacy DRE systems written in a variety of program-
ming languages and running on a wide range of OS plat-
forms. Dynamically configurable CORBA implementa-
tions, such as dynamicTAO [36] and TAO [37], can help
address integration points 5 and 6 in Figure 4.

5. CCM can be extended to specify component QoS require-
ments in the metadata. The CCM container mechanisms
provide a standard interaction point to extend the QoS-
related interaction between components and the ORB.
These extensions provide the enabling mechanisms for
QoS-aware Web services and address integration points
1, 2, and 3 in Figure 4.

Although the CCM specification has recently been finalized
by the OMG, it is still not part of the Core CORBA specifica-
tion. A number of CCM implementations are available based

on the current draft [1], includingOpenCCMby the Universite
des Sciences et Technologies de Lille, France,K2 Containers
by iCMG, MicoCCMby FPX, andCIAO by the DOC groups
at Washington University St. Louis, Vanderbilt University, and
University of California Irvine. The influence of the architec-
tural patterns found in CCM is also evident in other popular
component middleware technologies, such as J2EE [38] and
.NET.

4 Resolving Distributed Application
Challenges with Model-Integrated
Computing and Middleware

As described in Section 1, developing and deploying DRE ap-
plications and Web services using today’s COTS middleware
technologies requires application developers to handle the pro-
liferation of middleware technologies, satisfy multiple QoS re-
quirements simultaneously, and eliminate accidental complex-
ities arising from the manual assembly of components and ap-
plications. A promising way to address these challenges is
to integrate MIC modeling tools with component middleware.
As discussed in Section 2.3, this integration helps developers
to more effectively

� Model application functionality at a higher level of ab-
straction and

� Analyze and partition responsibility of application
servers.

MIC tools can then be used to synthesize, assemble, and de-
ploy the component assemblies based on the models and the
feasibility analysis.

Figure 7 illustrates how we are developing theCompo-
nent Synthesis with Model Integrated Computing (CoSMIC)
toolset, which provides MDA-based tools designed to (1)
model and analyzedistributed application functionality and
QoS requirements as a platform-independent model (PIM) and
(2) synthesizeCCM-specific deployment metadata, which is a
platform-specific model (PSM), required to deliver end-to-end
QoS. Rather than using the CORBA Interface Definition Lan-
guage (IDL) as the PSM, the synthesized CCM-specific PSM
in CoSMIC consists of metadata in XML format describing
component compositions using existing component definitions
that can be mapped to modeling entities using MDA tools. A
QoS-enabled CCM provides a good target platform for MDA
since multiple QoS properties required by components can be
realized by modifying QoS-related meta-information.

The CoSMIC project is therefore developing synthesis tools
targeted at theComponent-Integrated ACE ORB(CIAO),
which is our CCM implementation based onThe ACE ORB
(TAO) [33]. TAO is an open-source, high-performance, highly
configurable Real-time CORBA ORB that implements key
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patterns [39] to meet the demanding QoS requirements of dis-
tributed systems. CIAO abstracts component QoS require-
ments into metadata that can be specified in a component
assembly after a component has been implemented. De-
coupling QoS requirements from component implementations
greatly simplifies the conversion and validation of an applica-
tion model with multiple QoS requirements into CCM deploy-
ment of DRE applications.

The remainder of this section describes how we are combin-
ing the CoSMIC design tools and procedures with the CIAO
component middleware platform to address key challenges
faced by the developers of DRE applications. Figure 5 illus-
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trates the interfaction between CoSMIC and CIAO.

Challenge 1: Reconciling Different Middleware Technolo-
gies

Problem. There are increasing number of component mid-
dleware technologies, such as CCM, J2EE, and .NET. Al-
though each has its strengths and weaknesses, no technol-
ogy provides a comprehensiveone-fits-allsolution. For ex-
ample, middleware technologies, such as Sun’s J2EE and the
Microsoft’s emerging .NET web services, may be challenged
to provide a complete end-to-end solution to build distributed
applications due to their dependence on an implementation
language, such as Java, or a platform, such as Windows, re-
spectively. Integrating DRE applications using the appropri-
ate middleware via Web services allows developers to leverage
technologies best suited for a particular task.

Business organizations, government agencies, and armed
services have a considerable investment in legacy applications
and equipment that do not use today’s middleware technolo-
gies. In particular, large-scale DRE applications often con-
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sist of components and subsystems based on multiple software
technologies developed over long periods of time. Although
Web services provide a starting point to integrate these appli-
cations together, it is a non-trivial task since different compo-
nent middleware technologies have their own unique interac-
tion model. For example, applications can not pass CORBA
object references via a Web service request since the receiver
may not understand CORBA object reference semantics.

Solution. Using the MIC paradigm can help to shield DRE
applications from the differences between diverse middleware
technologies and avoid tightly coupling applications to spe-
cific middleware. For example, the tools offered by CoSMIC
help resolve these challenges by using higher level modeling
languages, such as UML [16], to model application and system
behavior as indicated by integration point 1 and 2 in Figure 7.
Other CoSMIC tools can be used to synthesize middleware-
specific assemblies. In our work, we are initially targeting the
CCM and Real-time CORBA to demonstrate concretely how
MDA tools can generate and compose components and assem-
blies. There is no reason, however, why different middleware
technologies, such as J2EE or .NET, cannot be supported since
the component models are based on similar patterns.

Due to the clean separation of component implementa-
tions in the CCM, MDA provides a natural extension to com-
pose component interconnection for the CCM. Moreover, the
CCM provides the mechanisms for composing an applications
by reusing existing components and middleware infrastruc-
ture. To achieve this, CoSMIC takes advantage of the de-
ployment facility provided by CIAO. We are using thismodel-
first/generate-nextstrategy to implement finer grained func-
tionality of components. As shown by integration point 4 in
Figure 7, we are developing tools that help model and syn-
thesize component implementations based on the component
function specification defined in higher level modeling tools.

Challenge 2: Satisfying Multiple Quality of Service (QoS)
Requirements Simultaneously

Problem. DRE applications demand stringent QoS support
from their middleware. For example, DRE applications such
as controller for high-speed surface mount component pick-
and-place machines require real-time predictability and per-
formance guarantees. Due to (1) the complexity of these QoS
requirements, (2) the heterogeneity of the environments in
which they are deployed, and (3) the existing legacy systems
and data, it is infeasible to develop a single-vendor, end-to-
end solution that can address all these challenges. Instead,
integrating highly configurable, flexible, and optimized COTS
components from several different providers based on standard
component middleware via Web service enables developers to
assemble and deploy these systems rapidly and robustly. En-
suring application QoS requirements end-to-end, however, can

be complicated.

Solution. A benefit of MDA is its ability to employ complex
modeling tools that can check for certain properties of the im-
plementation,e.g., check the correctness of an algorithm or
ensure that a series of constraints are enforced. Although the
OMG MDA standard has adopted the UML-based PIM and
PSM for CORBA, it does not yet adequately address a broad
spectrum of DRE application QoS issues. In particular, it does
not address the integration of priority propagation, resource al-
locations, dependability, and predictability that are crucial to
DRE applications.

Therefore, the tools we are developing in CoSMIC are de-
signed to model both the application functionality and its end-
to-end QoS requirements. With CIAO’s support for QoS-
enabled, reusable CCM components, it is possible to

� Model the QoS requirements of applications using UML
� Associate the model with different QoS profiles and
� Synthesize the QoS-enabled application functionality in

component assemblies.

Figure 7 illustrates how CoSMIC can be used to synthesize
and assemble QoS-enabled, CCM middleware for DRE appli-
cations. This synthesis uses the following iterative process to
assemble and deploy QoS-enabled distributed applications:

1. Model the overall application using CoSMIC visual
modeling tools and specify the application’s QoS require-
ments as constraints. This step defines and partitions the
functionality and QoS requirements demanded by each
application module based on the overall model of the ap-
plication, as described by integration point 1 of Figure 7

2. Compose application serversusing CoSMIC applica-
tion server composition tools to combine component as-
semblies by mixing and matching existing off-the-shelf
components and partitioning or defining the functional-
ity of new components, as needed, as shown in Point 2
of Figure 7. The metadata in a component assembly also
contain QoS requirements for each components that the
composition tools derived from the model.

3. Model and synthesize components—If new component
implementations are needed from the previous step, each
can be modeled by using CoSMIC’s modeling tool. CoS-
MIC’s component implementation synthesizer will gen-
erate the actual implementations based on the models, as
indicated by integration point 4 of Figure 7.

4. Validate applications via’s CoSMIC tools that check
whether an application composition implements its
model definitions correctly.

5. Deploy the resulting system for testing and tuningvia
tools that fine-tune CIAO’s QoS requirements for assem-
blies. Later iterations of this process can use these adjust-
ments as feedback to improve the overall system model.
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Challenge 3: Addressing Accidental Complexities in Inte-
grating Software Systems

Problem. QoS-enabled component middleware, such as
CIAO, provides libraries of reusable, configurable components
that can be used to assemble and deploy applications that of-
fer QoS-aware Web services. However, a naive approach to
assemble and configure these components can yield compo-
nents with incompatible, non-interoperable QoS requirements,
thereby increasing accidental complexities. Manual assem-
bling components and configuring their QoS requirements are
tedious and error-prone, which adversely affects application
lifecycle costs and time-to-market. Moreover, to ensure these
requirements are met end-to-end across Web services, applica-
tion servers often explicitly require complex policies and cus-
tomized middleware plugins. Manually specifying and config-
uring these policies makes the development process even more
vexing.

Solution. The iterative process described in the solution for
Challenge 2 above helps DRE application developers manage
the accidental complexity of assembling components by pro-
viding rich semantics in models and automatically propagat-
ing these semantics into assemblies through metadata. There
is, however, a need to ensure that the application servers and
the underlying middleware are configured properly to satisfy
the QoS requirements demanded by the installed components.

The CCM specification does not yet address how to asso-
ciate component QoS requirements with a component deploy-
ment. Our CCM implementation (CIAO) therefore supports
the configuration of certain component QoS properties via the
component deployment metadata shown by integration point 2
of Figure 7. Since we providing component QoS management
services through containers in our CCM implementation[40],
the synthesizing tools will also generate container configura-
tions in a component assembly, as depicted in Point 3 of Fig-
ure 7.

To support QoS requirements that were not foreseen by
the component middleware implementation, CoSMIC can also
synthesize middleware modules that CIAO uses to customize
its behavior to support non-native QoS supports required by
other systems using the Web services. CIAO’s deployment
framework then uses these customized modules to config-
ure application servers before deploying the components, as
shown by integration point 6 of Figure 7. The automation of
semantic propagation described here ensures that all applica-
tion servers providing Web services in an integrated DRE ap-
plication perform their work as specified in the overall model,
without undue programmer intervention.

5 Related Work

Large-scale application integration using Web services is an
increasingly popular research topic. Integrating Web services
implemented with different middleware technologies is hard
due to the lack of a standard interaction model for Web ser-
vices [6, 13]. There are R&D efforts to define languages that
describe the interaction models of Web services, such as Web
Services Flow Language [41] and X-Lang [42]. Research on
QoS-enabled Web Services currently focuses on either QoS
properties related to business applications or the design of Web
Services protocols, such as SOAP and HTTP [43]. Recently,
there have been efforts on an embedded SOAP implemen-
tation, calledeSOAP(www.embedded.net/eSOAP ) used
for data exchange in network appliances.

Our research on QoS-enabled middleware and model driven
architecture extends earlier work on Model-Integrated Com-
puting (MIC) [14, 44, 35] to model and synthesize component
middleware code for DRE applications. The MIC infrastruc-
ture provides a unified software architecture and framework
for creating a Model-Integrated Program Synthesis (MIPS)
environment [23]. The core components of the MIC infras-
tructure include (1) a customizable generic model editor for
creation of multiple-view, domain-specific models, (2) model
databases for storage of the created models, and (3) a model in-
terpretation technology that assists in the creation of domain-
specific, application-specific model interpreters for transfor-
mation of models into executable/analyzable artifacts. The
new environment is domain-specific and includes tools and
functionality to support the creation and storage of system
models, in addition to generation of executable/analyzable ar-
tifacts from these models.

In the MIC technology, the modeling concepts to be in-
stantiated in the MIPS environment are specified in a meta-
modeling language [24]. A metamodel of the modeling
paradigm is constructed that specifies the syntax, static se-
mantics, and the presentation semantics of the domain-specific
modeling paradigm. The metamodel uses a Unified Modeling
Language (UML) class diagram to capture information about
the objects that are needed to represent the system informa-
tion and the inter-relationships between different objects. The
meta-modeling language also provides for the specification of
visual presentation of the objects in the graphical model editor.

Popular examples of MIC technology being used today in-
clude GME [23] and Ptolemy [25] (which are used primar-
ily in the real-time and embedded domain) and MDA [15]
based on UML [16] and XML [17] (which is used primarily
in the business domain). Our work uses the GME tool and
UML modeling language to model and synthesize component
middleware for use in provisioning collaborative DRE applica-
tions. In particular, we are enhancing the GME tool to produce
meta-models for DRE applications, as well as developing and
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validating new UML profiles to support DRE applications.

To support QoS-enable Web services, the implementation of
a service must be able to honor the QoS requirements that the
service advertises. Our past research on building Real-time
CORBA middleware to support DRE systems with stringent
QoS requirements has identified key patterns [39] that we have
applied to implement a highly configurable [45], QoS-enabled
ORB called TAO [33, 46]. Our current research builds upon
these results to provide the foundation to support the QoS-
enabled CCM.

Kon and Campbell [28] apply reflective middleware tech-
niques to extend TAO to reconfigured the ORB at run-time
by dynamically linking in the required modules according to
the features required by the applications. Although their re-
search provides a proof-of-concept for dynamic configurable
middleware framework, their research may not be suitable for
DRE applications since dynamic loading and unloading ORB
components may incur undue overhead and prevent the ORB
from meeting application’s QoS demands. Our work on the
Component-Integrated ACE ORB (CIAO) relies upon MIC
tools to analyze the required ORB components and their con-
figurations. This approach ensures the ORB in an application
server contains only the required components without compro-
mising the predictability of the system.

Container architectures provide a useful way to apply
meta-programming techniques [47] to provide QoS assur-
ance control in component middleware, as previously identi-
fied in [40]. Containers can also apply aspect-oriented pro-
gramming (AOP) [27] techniques to plug in different non-
functional behaviors [48]. Pluggable ORB components can
also be used to plug in QoS assurance mechanisms as CIAO
will support.

The QoSketframework [49] developed at BBN Technolo-
gies provides reusable QoS behaviors that can be used to
modify application QoS behaviors by packaging and installing
these behaviors into an application. A QoSket is a collection of
these behaviors that bundles QoS specifications, middleware
components that implement, monitor, and control QoS proper-
ties, and application specific adaptive behaviors in one place.
The QoSket is build on theQuality Objects(QuO) [50] dis-
tributed object computing middleware, which applies aspect-
oriented programming (AOP) [27] techniques to adaptive ap-
plications running over wide-area networks. Our CIAO project
provides a QoSket-like mechanism to install QoS behaviors
for component middleware. CIAO behavior components are
reusable by themselves, however, and can be composed along
with metadata to specify the actual behaviors. By separating
the behavioral metadata from the implementation, MDA tools
can translate QoS constraints into specifications.

6 Concluding Remarks

Due to tight coupling between software modules, conventional
methods for building distributed applications increase the time
and effort required to develop and evolve the software. More-
over, many application quality aspects, such as persistent data
store, security, and management of run-time resources, cut
across multiple layers, which also tightly couples application
software modules with the middleware infrastructure and its
associated housekeeping tasks. These tight couplings yield
brittle application implementation that are hard to reuse, main-
tain, and evolve.

One way to address these coupling issue is by refactor-
ing common application logic intoobject-oriented application
frameworks[51]. This solution has limitations, however, since
application objects can still interact directly with each other,
which encourages tight coupling. Moreover, framework-
specific bookkeeping code is also required within the appli-
cations to manage the framework, which can tightly couple
applications to the framework they are developed upon. It is
therefore non-trivial to reuse application objects and port them
to different frameworks.

Component middleware[22] has emerged as a promising
solution to many limitations with object-oriented application
frameworks. This type of middleware consists of reusable
software artifacts that can be distributed or collocated through-
out a network. A proliferation of component middleware tech-
nologies have emerged recently to address various require-
ments of distributed applications. These types of applications
are increasingly being assembled from components belong-
ing to disparate middleware technologies, which increases the
effort required to integrate and deploy semantically compati-
ble and interoperable components across multiple middleware
platforms. Moreover, distributed applications must increas-
ingly support multiple simultaneous QoS properties, such as
dependability, security, and scalability.

Proliferation of incompatible middleware technologies,
however, has become an impeding force against developers
to take advantage of existing applications using different tech-
nologies. The emerging trend of exposing application func-
tionality via Web servicesreduce the cost of middleware and
application integration. Nonetheless, developers still face
the problems outlined above when implement the services.
Our solution to these problems involves combining Model-
Integrated Computing with QoS-enabled component middle-
ware to create flexible Web services that support heterogene-
ity, yet can be tailored readily to meet the needs of DRE appli-
cations with multiple simultaneous QoS requirements.

This paper explores the benefits of Model-Integrated Com-
puting for developing DRE applications. Our focus is on the
OMG Model Driven Architecture (MDA) standard and the
CORBA Component Model (CCM). We describe how com-
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ponent middleware enables modeling and synthesis tools to
rapidly develop, assemble, and deploy middleware and appli-
cations that possess multiple, simultaneous QoS requirements.
This combination is important because it does not require the
modeling tools to generate all the code. Instead, large portions
of applications can be reused and/or customized from exist-
ing middleware components. These middleware components
handle many critical QoS aspects, such as concurrency, distri-
bution, transactions, security, and dependability.

We are developing a Model-Integrated Computing toolsuite
called CoSMIC, which extends the popular GME modeling
and synthesis tools [23] to support the development, assem-
bly, and deployment of QoS-enabled distributed applications
using component middleware. To ensure these QoS require-
ments can be realized in the middleware layer, we are also
developing a QoS-aware CCM implementation called CIAO,
which is based on our TAO Real-time CORBA ORB. CIAO
allows Model-Integrated Computing tools to specify the QoS
requirements of components in the accompanying metadata.
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