
EDITORIAL: TRENDS IN DISTRIBUTED OBJECT COM-
PUTING

Limitations with Current Practice. During the past decade advances in VLSI technol-
ogy and fiber-optics have increased computer processing power by 3-4 orders of magnitude
and network link speeds by 6-7 orders of magnitude. Assuming that these trends continue,
by the end of this decade there will be billions of interactive and embedded computing and
communication devices throughout the world running at clock speeds approaching�100 Gi-
gahertz, LAN link speeds running at�100 Gigabits/second, and wireless link speeds running
at�100 Megabits/second. These powerful computers and networks will be available largely
at commodity prices, built mostly with robust commercial off-the-shelf (COTS) components,
and will inter-operate over an increasingly convergent and pervasive Internet infrastructure.

To maximize the benefit from these advances in hardware technology, the quality and
productivity of technologies for developing distributed middleware and application software
must also increase. Historically, hardware has tended to become smaller, faster, and more re-
liable. It has also become cheaper and more predictable to develop and innovate, as evidenced
by Moore’s Law. In contrast, however, distributed software has often grown larger, slower,
and more error-prone. It has also become very expensive and time-consuming to develop,
validate, maintain, and enhance.

Although hardware improvements have alleviated the need for some low-level software
optimizations, the lifecycle cost [2] and effort required to develop software–particularly mission-
critical distributed and embedded real-time applications–continues to rise. The disparity be-
tween the rapid rate of hardware advances versus the slower software progress stems from a
number of factors, including:

Inherent and accidental complexities..There are vexing problems with distributed soft-
ware that result from inherent and accidental complexities. Inherent complexities arise from
fundamental domain challenges such as detecting and recovering from partial failures and
distributed deadlocks, minimizing the impact of communication latency, determining an op-
timal partitioning of service components and workload onto computers throughout a network,
and guaranteeing end-to-end quality of service (QoS) requirements. As networked systems
have grown in scale and functionality they must now cope with a much broader and harder
set of these complexities.

Accidental complexities arise from limitations with software tools and development tech-
niques, such as non-portable programming APIs, poor distributed debuggers, and the widespread
use of algorithmic–rather than object–oriented design, which results in non-extensible and
non-reusable systems. Ironically, many accidental complexities stem from deliberate choices
made by developers who favor low-level languages and tools that scale up poorly when ap-
plied to complex distributed software.

Continuous re-invention and re-discovery of core concepts and techniques..The soft-
ware industry has a long history of recreating incompatible solutions to problems that are
already solved. For example, there are dozens of non-standard general-purpose and real-time
operating systems that manage the same hardware resources. Likewise, there are dozens of
message-oriented and method-oriented middleware frameworks that provide slightly differ-
ent APIs that implement essentially the same features and services. If effort had instead
been focused on enhancing and optimizing a small number of solutions, developers of dis-
tributed software would be reaping the benefits available to hardware developers, who inno-
vate rapidly by reusing and applying common CAD tools and standard instruction sets, buses
and network protocols.

Solution Approach: Distributed Object Computing. Obviously, no single silver bul-
let [4] can slay all the demons plaguing distributed software. Over the past decade, however,

1

it has become clear thatdistributed object computing(DOC) can help to alleviate many inher-
ent and accidental software complexities. DOC represents the confluence of two major areas
of software technology:

� Distributed computing systems– Techniques for developing distributed systems fo-
cus on integrating multiple computers to act as a scalable computational resource.

� Object-oriented (OO) design and programming– Techniques for developing OO
systems focus on reducing complexity by creating reusable frameworks and compo-
nents that reify successful design patterns and software architectures.

Thus, DOC is the discipline that uses OO techniques to distribute reusable services and
applications efficiently, flexibly, and robustly over multiple, often heterogeneous, computing
and networking elements.

At the heart of contemporary distributed object computing isDOC middleware. DOC
middleware is object-oriented software that resides between applications and the underlying
operating systems, protocol stacks, and hardware to enable or simplify how these compo-
nents are connected and interoperate, as shown in the following figure: In general, DOC

INFRASTRUCTURE

MIDDLEWARE

DISTRIBUTION

MIDDLEWARE

COMMON

MIDDLEWARE

SERVICES

APPLICATIONS

Cons

ConsConsEVENTEVENT

CHANNELCHANNEL

OPERATINGOPERATING

SYSTEMS SYSTEMS &&
PROTOCOLSPROTOCOLS

HARDWAREHARDWARE DEVICESDEVICES

middleware can be decomposed into the following three layers:
Infrastructure middleware..This layer encapsulates core OS communication and con-

currency services to eliminate many tedious, error-prone, and non-portable aspects of devel-
oping and maintaining distributed applications using low-level network programming mech-
anisms, such as sockets. Widely-used examples of infrastructure middleware include the Java
Virtual Machine (JVM) [8] and the ADAPTIVE Communication Environment (ACE) [12].

Distribution middleware..This layer builds upon the lower-level infrastructure middle-
ware to automate common network programming tasks, such as parameter marshaling/demarshaling,
socket and request demultiplexing, and fault detection/recovery. Common examples of dis-
tribution middleware include the Object Management Group’s (OMG’s) Common Object
Request Broker Architecture (CORBA) [9], Microsoft’s Distributed COM (DCOM) [3], and
JavaSoft’s Remote Method Invocation (RMI) [13] .

Common middleware services.This layer contains domain-independent reusable service
components [1]. Common middleware services include persistence, security, transactions,

2

fault tolerance, and concurrency. Today, common services are the least mature layer of the
middleware. In the future, however, this layer has the most potential to increase quality and
decrease the cycle-time and effort required to develop distributed applications by supporting
the integration of reusable service components implemented by different suppliers.

In general, these layers of DOC middleware provide the following benefits: (1) they
shield software developers from low-level, tedious, and error-prone details, such as socket-
level programming [12], (2) they provides a consistent set of higher-level abstractions [14]
for developing distributed systems, (3) they amortize software lifecycle costs by leveraging
previous development expertise and capturing implementations of key patterns [5] in reusable
frameworks, rather than building them entirely from scratch for each use-case.

Emerging Trends in Distributed Object Computing R&D. The following trends are
shaping the evolution of software development techniques for applications and middleware
based on distributed object computing technologies:

Applying patterns to capture the “best practices” of distributed object computing..Many
patterns associated with middleware and applications for concurrent [7] and networked ob-
jects [11] have been documented during the past decade. A key next step is to document
the patterns for designing [5] and optimizing [10] distributed objects, extending earlier work
to focus on topics such as remote service location and partitioning, naming and directory
services, load balancing, dependability and security. An increasing number of distributed
object computing systems, for example, must provide high levels of dependability to client
programs and end-users. With the adoption of the CORBA Fault Tolerance specification and
ORBs that implement this specification, developers will have more opportunities to capture
their experience in the form of patterns for fault-tolerant distributed object computing.

Real-time and embedded systems..An increasing number of computing systems are em-
bedded, including automotive control systems and car-based applications, control software
for factory automation equipment, avionics mission computing and hand-held computing de-
vices. Many of these systems are subject to stringent computing resource limitations, partic-
ularly memory footprint and time-constraints. Developing high-quality real-time and embed-
ded systems is hard and remains somewhat of a “black art.” As the efficiency, scalability, and
predictability of DOC middleware continues to improve, and is increasingly capable of being
subsetted to reduce footprint, we expect it will be applied heavily in these domains.

Mobile systems..Wireless networks are becoming pervasive and embedded computing
devices are become smaller, lighter and more capable. Thus, mobile systems will soon sup-
port many consumer communication and computing needs. Application areas for mobile sys-
tems include ubiquitous computing, mobile agents, personal assistants, position-dependent
information provision, remote medical diagnostics and teleradiology and home and office
automation. In addition, Internet services, ranging from Web browsing to on-line banking,
will be accessed from mobile systems. Mobile systems present many challenges, such as
managing low and variable bandwidth and power, adapting to frequent disruptions in con-
nectivity and service quality, diverging protocols and maintaining cache consistency across
disconnected network nodes. DOC middleware is essential to provide a flexible and adaptive
framework for developing and deploying mobile systems.

Quality of service for common-off-the-shelf (COTS)-based distributed systems..Dis-
tributed systems, such as streaming video, Internet telephony and large-scale interactive sim-
ulation systems, have increasingly stringent quality of service (QoS) requirements. Key QoS
requirements include network bandwidth and latency, CPU speed, memory access time and
power levels. To reduce development cycle-time and cost, such distributed systems are in-
creasingly being developed using multiple layers of COTS hardware, operating systems and
middleware components. Historically, however, it has been hard to configure COTS-based

3

systems that can simultaneously satisfy multiple QoS properties, such as security, timeliness
and fault tolerance. As developers and integrators continue to master the complexities of
providing end-to-end QoS guarantees, it is essential that successful patterns and techniques
be reified in DOC middleware to help others configure, monitor and control COTS-based
distributed systems that possess a range of interdependent QoS properties [14].

Reflective middleware..This term describes a collection of technologies designed to
manage and control system resources in autonomous distributed application and systems. Re-
flective middleware techniques enable dynamic changes in application behavior by adapting
core software and hardware protocols, policies and mechanisms with or without the knowl-
edge of applications or end-users [6]. As with distributed system QoS, DOC middleware
will play a key role in supporting the effective application of reflective middleware-based
applications.

Concluding Remarks. Advances in distributed object computing (DOC) technology
have occurred at a time when deregulation and global competition are motivating an increase
in software productivity and quality. Distributed computing is perceived as a way to meet
QoS requirements for dependability and scalability, and to control costs via open systems.
Likewise, OO design and programming are widely touted as a means to reduce software cost
and improving software quality through reuse, extensibility, and modularity. As a result, there
has been a surge of interest in DOC technology in the trade press and in many organizations.

Unfortunately, the level of high quality R&D focus concerning DOC technologies has
not kept pace with the level of interest. Since DOC is a combination of two fields, aca-
demic journals and conferences concerned with either field have only recently embraced the
merger, which has yielded relatively few forums for technical discussion of the combined
disciples. Consequently, DOC technology has been “sold” far more than it has been studied
systematically. This special issueParallel and Distributed Computing Practicesis intended
to rectify this imbalance by examining the technical benefits and the challenges provided by
DOC technology.

Douglas C. Schmidt
University of California, Irvine

REFERENCES

[1] BEA SYSTEMS, et al., CORBA Component Model Joint Revised Submission, Object Management Group,
OMG Document orbos/99-07-01 ed., July 1999.

[2] B. W. BOEHM, A Spiral Model of Software Development and Enhancement, IEEE Computer, 21 (1988),
pp. 61–72.

[3] D. BOX, Essential COM, Addison-Wesley, Reading, MA, 1997.
[4] F. P. BROOKS, No Silver Bullet: Essence and Accidents of Software Engineering, IEEE Computer, 20 (1987),

pp. 10–19.
[5] E. GAMMA , R. HELM, R. JOHNSON, AND J. VLISSIDES,Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley, Reading, MA, 1995.
[6] F. KON, M. ROMAN, P. LIU, J. MAO, T. YAMANE , L. MAGALHAES, AND R. CAMPBELL, Monitoring,

Security, and Dynamic Configuration with the dynamicTAO Reflective ORB, in Proceedings of the
Middleware 2000 Conference, ACM/IFIP, Apr. 2000.

[7] D. L EA, Concurrent Java: Design Principles and Patterns, Second Edition, Addison-Wesley, Reading, MA,
1999.

[8] T. L INDHOLM AND F. YELLIN, The Java Virtual Machine Specification, Addison-Wesley, 1997.
[9] OBJECTMANAGEMENT GROUP, The Common Object Request Broker: Architecture and Specification,

2.3 ed., June 1999.
[10] I. PYARALI , C. O’RYAN , D. C. SCHMIDT, N. WANG, V. KACHROO, AND A. GOKHALE, Using Principle

Patterns to Optimize Real-time ORBs, Concurrency Magazine, 8 (2000).

4

[11] D. C. SCHMIDT, M. STAL , H. ROHNERT, AND F. BUSCHMANN, Pattern-Oriented Software Architecture:
Patterns for Concurrency and Distributed Objects, Volume 2, Wiley & Sons, New York, NY, 2000.

[12] D. C. SCHMIDT AND T. SUDA, An Object-Oriented Framework for Dynamically Configuring Extensible
Distributed Communication Systems, IEE/BCS Distributed Systems Engineering Journal (Special Issue
on Configurable Distributed Systems), 2 (1994), pp. 280–293.

[13] A. WOLLRATH, R. RIGGS, AND J. WALDO, A Distributed Object Model for the Java System, USENIX
Computing Systems, 9 (1996).

[14] J. A. ZINKY, D. E. BAKKEN , AND R. SCHANTZ, Architectural Support for Quality of Service for CORBA
Objects, Theory and Practice of Object Systems, 3 (1997).

5

