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Abstract

The CORBA Event Service provides a flexible model for asyn-
chronous communication among objects. However, the stan-
dard CORBA Event Service specification lacks important fea-
tures required by real-time applications. For instance, oper-
ational flight programs for fighter aircraft have complex real-
time processing requirements. This paper describes the design
and performance of an object-oriented, real-time implementa-
tion of the CORBA Event Service that is designed to meet these
requirements.

This paper makes three contributions to the design and per-
formance measurement of object-oriented real-time systems.
First, it illustrates how to extend the CORBA Event Service so
that it is suitable for real-time systems. These extensions sup-
port periodic rate-based event processing and efficient event
filtering and correlation. Second, it describes how to de-
velop object-oriented event dispatching and scheduling mech-
anisms that can provide real-time guarantees. Finally, the pa-
per presents benchmarks that demonstrate the performance
tradeoffs of alternative concurrent dispatching mechanisms
for real-time Event Services.

1 Introduction

There is a widespread belief in the embedded systems commu-
nity that object-oriented (OO) techniques are not suitable for

�This work was funded in part by McDonnell Douglas Aerospace and in
part by NSF, grant NCR-9628218.

real-time systems. In particular, the dynamic binding proper-
ties of OO programming languages seem antithetical to real-
time systems, which require deterministic execution behavior
and low latency. However, many real-time application do-
mains (such as avionics, telecommunications, process control,
and distributed interactive simulation) can benefit from flexi-
ble and open distributed object computing architectures, such
as those defined in the CORBA specification [1].

1.1 Overview of CORBA

CORBA is a distributed object computing middleware stan-
dard being defined by the Object Management Group (OMG).
CORBA is designed to support the development of flexible and
reusable distributed services and applications by (1) separat-
ing interfaces from remote implementations and (2) automat-
ing many common network programming tasks (such as ob-
ject registration, location, and activation; request demultiplex-
ing; framing and error-handling; parameter marshalling and
demarshalling; and operation dispatching).

Figure 1 illustrates the primary components in the OMG
Reference Model architecture [2]:

At the heart of the OMG Reference Model is theObject Re-
quest Broker(ORB). ORBs allow clients to invoke operations
on target object implementations without concern for where
the object resides, what language the object is written in, the
OS/hardware platform, or the type of communication proto-
cols and networks used to interconnect distributed objects [3].

This paper focuses on theCORBA Event Service, which is
defined within the CORBA Object Services (COS) component
in Figure 1. The COS specification [4] presents architectural
models and interfaces that factor out common services for de-
veloping distributed applications.

Many distributed applications exchange asynchronous re-
quests usingevent-basedexecution models [5]. To sup-
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Figure 1:OMG Reference Model Architecture.

port these common use-cases, the CORBA Event Service de-
fines supplier and consumerparticipants. Suppliers gener-
ate events and consumers process events received from suppli-
ers. In addition, the CORBA Event Service defines anEvent
Channel, which is a mediator [6] that propagates events to
consumers on behalf of suppliers.

The OMG Event Service model simplifies application soft-
ware by allowing decoupled suppliers and consumers, asyn-
chronous event delivery, and distributed group communica-
tion [7]. In theory, this model seems to address many com-
mon needs of event-based, real-time applications. In prac-
tice, however, the standard CORBA Event Service specifica-
tion lacks other important features required by real-time ap-
plications such asreal-time event dispatching and scheduling,
periodic event processing, andefficient event filtering and cor-
relation mechanisms.

To alleviate the limitations with the standard COS Event
Service, we have developed aReal-time Event Service(RT
Event Service) as part of the TAO project [3] at Washington
University. TAO is a real-time ORB endsystem that provides
end-to-end quality of service guarantees to applications by
vertically integrating CORBA middleware with OS I/O sub-
systems, communication protocols, and network interfaces.
Figure 2 illustrates the key architectural components in TAO
and their relationship to the real-time Event Service.

TAO’s RT Event Service augments the CORBA Event Ser-
vice model by providing source-based and type-based filter-
ing, event correlations, and real-time dispatching. To facil-
itate real-time scheduling (e.g., rate monotonic [8]), TAO’s
RT Event Channels can be configured to support various
strategies for priority-based event dispatching and preemption.
This functionality is implemented using a real-time dispatch-
ing mechanism that coordinates with a system-wide real-time
Scheduling Service.

TAO’s RT Event Service runs on real-time OS platforms
(e.g., VxWorks and Solaris 2.x) that provide real-time schedul-
ing guarantees to application threads. Windows NT also pro-
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Figure 2:TAO: An ORB Endsystem Architecture for High-
Performance, Real-time CORBA.

vides real-time threads, though it lacks certain features re-
quired for hard real-time systems [9].

1.2 Related Work

Conventional approaches to quality of service (QoS) enforce-
ment have typically adopted existing solutions from the do-
main of real-time scheduling, [8], fair queuing in network
routers [10], or OS support for continuous media applications
[11]. In addition, there have been efforts to implement new
concurrency mechanisms for real-time processing (such as the
real-time threads of Mach [12] and real-time CPU scheduling
priorities of Solaris [13]).

However, QoS research at the network and OS layers has
not necessarily addressed key requirements and usage char-
acteristics of distributed object computing middleware. For
instance, research on QoS for network infrastructure has fo-
cused largely on policies for allocating bandwidth on a per-
connection basis. Likewise, research on real-time operat-
ing systems has focused largely on avoiding priority inver-
sions and non-determinism in synchronization and scheduling
mechanisms. In contrast, the programming model for develop-
ers of OO middleware focuses on invoking remote operations
on distributed objects. Determining how to map the results
from the network and OS layers to OO middleware is a major
focus of our research.

There are several commercial CORBA-compliant Event
Service implementations available from multiple vendors
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(such as Expersoft, Iona, Sun Systems, and Visigenic Soft-
ware). Iona also sells OrbixTalk, which is a messaging
technology based on IP multicast. Unfortunately, since the
CORBA Event Service specification does not address issues
critical for real-time applications, these implementations are
not acceptable solutions for many domains.

The OMG has issued a request for proposals (RFP) on a
new Notification Service [14] that has generated several re-
sponses [15]. The RFP specifies that a proposed Notification
Service must be a superset of the COS Event Service with in-
terfaces for the following features: event filtering, event deliv-
ery semantics (e.g., at least once, at most once,etc.), security,
event channel federations, and event delivery QoS. The orga-
nizations contributing to this effort have done some excellent
work in addressing many of the shortcomings of the CORBA
Event Service [16]. However, the OMG RFP documents do
not address the implementation issues related to the Notifica-
tion Service.

Although there has been research on formalisms for real-
time objects [17], relatively little published research on the
design and performance of real-time OO systems exists. Our
approach is based on emerging distributed object computing
standards (i.e., CORBA) – we focus on the design and perfor-
mance of various strategies for implementing QoS in real-time
ORBs [3].

The QuO project at BBN [18] has defined a model for
communicating changes in QoS characteristics between ap-
plications, middleware, and the underlying endsystems and
network. The QuO architecture differs from our work on
RT Event Channels, however, since QuO does not provide
hard real-time guarantees of ORB endsystem CPU schedul-
ing. SunSoft [19] describes techniques for optimizing the per-
formance of CORBA Event Service implementations. As with
QuO, their focus also was not on guaranteeing CPU process-
ing for events with hard real-time deadlines.

Rajkumar,et al., describe a real-time publisher/subscriber
prototype developed at CMU SEI [5]. Their Publisher/Sub-
scriber model is functionally similar to the COS Event Ser-
vice, though it uses real-time threads to prevent priority inver-
sion within the communication framework. One interesting
aspect of the CMU model is the separation of priorities for
subscription and event transfer so that these activities can be
handled by different threads with different priorities. How-
ever, the model does not utilize any QoS specifications from
publishers (suppliers) or subscribers (consumers). As a result,
the message delivery mechanism does not assign thread pri-
orities according to the priorities of publishers or subscribers.
In contrast, the TAO Event Service utilizes QoS parameters
from suppliers and consumers to guarantee the event delivery
semantics determined by a real-time scheduling service.

1.3 Organization

This paper is organized as follows: Section 2 describes how
the CORBA Event Service model can help to simplify applica-
tion development in real-time domains like avionics; Section 3
discusses the real-time extensions we added to the CORBA
Event Service; Section 4 outlines the OO framework for real-
time event dispatching and scheduling that forms the core of
TAO’s Real-time Event Service; Section 5 shows how differ-
ent implementations of the dispatching and scheduling mecha-
nisms perform under different workloads on VxWorks running
real-time threads; Section 6 discusses our experiences using
OO techniques in a real-time context; and Section 7 presents
concluding remarks.

2 Overview of the OMG CORBA
Event Service

2.1 Background

The standard CORBA operation invocation model sup-
ports twoway, oneway, and deferred synchronous interac-
tions between clients and servers. The primary strength
of the twoway model is its intuitive mapping onto the
object->operation() paradigm supported by OO lan-
guages. In principle, twoway invocations simplify the devel-
opment of distributed applications by supporting an implicit
request/response protocol that makes remote operation invo-
cations transparent to the client.

In practice, however, the standard CORBA operation in-
vocation models is too restrictive for real-time applications.
In particular, these models lack asynchronous message deliv-
ery, do not support timed invocations or group communica-
tion, and can lead to excessive polling by clients. Moreover,
standard oneway invocations might not implement reliable de-
livery and deferred synchronous invocations require the use of
the CORBA Dynamic Invocation Interface (DII), which yields
excessive overhead for most real-time applications [20].

The Event Service is a CORBA Object Service that is
designed to alleviate some of the restrictions with standard
CORBA invocation models. In particular, the COS Event Ser-
vice supports asynchronous message delivery and allows one
or more suppliers to send messages to one or more consumers.
Event data can be delivered from suppliers to consumers with-
out requiring these participants to know about each other ex-
plicitly.

3



2.2 Structure and Participants for the COS
Event Service

Figure 3 shows the key participants in the COS Event Service
architecture:
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Figure 3:Participants in the COS Event Channel Architec-
ture.

The role of each participant is outlined below:

� Suppliers and consumers: Consumers are the ultimate
targets of events generated by suppliers. Suppliers and con-
sumers can both play active and passive roles. An active push
supplierpushesan event to a passive push consumer. Like-
wise, a passive pull supplier waits for an active pull consumer
to pull an event from it.

� Event Channel: At the heart of the COS Event Service is
the Event Channel, which plays the role of a mediator between
consumers and suppliers. The Event Channel manages object
references to suppliers and consumers. It appears as a “proxy”
consumer to the real suppliers on one side of the channel and
as a “proxy” supplier to the real consumers on the other side.

Suppliers use Event Channels to push data to consumers.
Likewise, consumers can explicitly pull data from suppliers.
The push and pull semantics of event propagation help to
free consumers and suppliers from the overly restrictive syn-
chronous semantics of the standard CORBA twoway commu-
nication model. In addition, Event Channels can implement
group communication by serving as a replicator, broadcaster,
or multicaster that forward events from one or more suppliers
to multiple consumers.

There are two models (i.e., pushvs. pull) of participant col-
laborations in the COS Event Service architecture. This paper
focuses on real-time enhancements to the push model, which
allows suppliers of events to initiate the transfer of event data
to consumers. Suppliers push events to the Event Channel,
which in turn pushes the events to consumers.
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Figure 4:Example Avionics Mission Control Application.

2.3 Applying TAO’s Real-time Event Service to
Real-time Avionics Systems

Modern avionics systems are characterized by processing
tasks with deterministic and statistical real-time deadlines, pe-
riodic processing requirements, and complex data dependen-
cies. Building flexible application software and OO middle-
ware that meets these requirements is challenging because the
need for determinism and predictability often results in tightly
coupled designs. For instance, conventional avionics mission
control applications consist of closely integrated responsibil-
ities that manage sensors, navigate the airplane’s course, and
control weapon release.

Tight coupling often yields highly efficient custom imple-
mentations. As the example below shows, however, the inflex-
ibility of tightly coupled software can substantially increase
the effort and cost of integrating new and improved avionics
features. For example, navigation suites are a source of contin-
ual change, both across platforms and over time. The specific
components that make up the navigation suite (e.g., sensors)
change frequently to improve accuracy and availability. Many
conventional avionics systems treat each implementation as a
“point solution,” with built-in dependencies on particular com-
ponents. This tight coupling requires expensive and time con-
suming development effort to port systems to newer and more
powerful navigation technologies.

2.4 Overview of Conventional Avionics Appli-
cation Architectures

Figure 4 shows a conventional architecture for distributing pe-
riodic I/O events throughout an avionics application. This ex-
ample has the following participants:
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� Aircraft Sensors: Aircraft-specific devices generate sen-
sor data at regular intervals (e.g., 30 Hz (i.e., 30 times a sec-
ond), 15 Hz, 5 Hz,etc.). The arrival of sensor data generates
interrupts that notify the mission computing applications to re-
ceive the incoming data.

� Sensor Proxies: Mission computing systems must process
data to and from many types of aircraft sensors, including
Global Position System (GPS), Inertial Navigation Set (INS),
and Forward Looking Infrared Radar. To decouple the details
of sensor communication from the applications, Sensor Proxy
objects are created for each sensor on the aircraft. When I/O
interrupts occur, data from a sensor is given to an appropri-
ate Sensor Proxy. Each Sensor Proxy object demarshals the
incoming data and notifies I/O Facade objects that depend on
the sensor’s data. Since modern aircraft can be equipped with
hundreds of sensors, a large number of Sensor Proxy objects
may exist in the system.

� I/O Facade: I/O Facades represent objects that depend on
data from one or more Sensor Proxies. I/O Facade objects
use data from Sensor Proxies to provide higher-level views
to other application objects. For instance, the aircraft posi-
tion computed by an I/O Facade is used by the navigation and
weapon release subsystems.

Thepush-driven model described above is commonly used
in many real-time environments, such as industrial process
control systems and military command/control systems. One
positive consequence of this push-driven model is the efficient
and predictable execution of operations. For instance, I/O Fa-
cades only execute when their event dependencies are satisfied
(i.e., when they are called by Sensor Proxies).

In contrast, using apull-driven model to design the mis-
sion control application would require I/O Facades that ac-
tively acquire data from the Sensor Proxies. If the data was
not available to be pulled, the calling I/O Facade would need
to block awaiting a result. In order for the I/O Facade to
pull, the system must allocate additional threads to allow the
application to make progress while the I/O Facade task is
blocked. However, adding threads to the system has many
negative consequences (such as increased context switching
overhead, synchronization complexity, and complex real-time
thread scheduling policies). Conversely, by using the push
model, blocking is largely alleviated, which reduces the need
for additional threads. Therefore, this paper focuses on the
push model.

2.5 Drawbacks with Conventional Avionics Ar-
chitectures

A disadvantage to the architecture shown in Figure 4 is the
strong coupling between suppliers (Sensor Proxies) and con-
sumers (I/O Facades). For instance, in order to call back to I/O
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Sensor
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Sensor
Proxy

Sensor
Proxy

1: I/O via interrupts

I/O Facade I/O Facade

Event
Channel

2: push (demarshaled data)
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Sensors

3: push (demarshaled data)

Suppliers

Figure 5:Example Avionics Application with Event Chan-
nel.

Facades, each Sensor Proxy must know which I/O Facades de-
pend on its data. As a result, changes to the I/O Facade layer
(e.g., addition/removal of a consumer) require the modifica-
tion of Sensor Proxies. Likewise, consumers that register for
callbacks are tightly coupled with suppliers. If the availability
of new hardware (such as Forward Looking Infrared Radar)
requires a new Sensor Proxy, I/O Facades must be altered to
take advantage of the new technology.

2.6 Alleviating Drawbacks with Conventional
Avionics Architectures

Figure 5 shows how an Event Channel can alleviate the disad-
vantages of the tightly coupled consumers and suppliers shown
above in Figure 4.

In Figure 5, Sensor Proxy objects are suppliers of I/O events
that are propagated by an Event Channel to I/O Facades, which
consume the demarshalled I/O data. Sensor Proxies push I/O
events to the channel without having to know which I/O Fa-
cades depend on the data. The benefit of using the Event Chan-
nel is that Sensor Proxies are unaffected when I/O Facades are
added or removed. This architectural decoupling is described
concisely by the Observer pattern [6].
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Another benefit of an Event Channel-based architecture is
that an I/O Facade need not know which Sensor Proxies sup-
ply its data. Since the channel mediates on behalf of the
Sensor Proxies, I/O Facades can register for certain types of
events (e.g., GPS and/or INS data arrival) without knowing
which Sensor Proxies actually supply these types of events
(Section 3.2 discusses typed-filtering). Once again, the use of
an Event Channel makes it possible to add or remove Sensor
Proxies without changing I/O Facades.

3 Overview of TAO’s Real-time Event
Service

3.1 Motivation

As shown in the previous section, the CORBA COS Event Ser-
vice provides a flexible model for transmitting asynchronous
events among objects. For example, it removes several re-
strictions inherent in synchronous twoway communication.
Moreover, it frees application programmers from the tedious
and error-prone details of handling registrations from multi-
ple consumers and suppliers. In addition, the COS Event Ser-
vice interfaces are fairly intuitive and the consumer/supplier
connections and event delivery models are symmetrical and
straightforward.

However, the standard COS Event Service Specification
lacks several important features required by real-time appli-
cations. Chief among these missing features include real-time
event dispatching and scheduling, periodic event processing,
and centralized event filtering and correlations. To resolve
these limitations, we have developed a Real-time Event Ser-
vice (RT Event Service) as part of the TAO project [3]. TAO’s
RT Event Service extends the COS Event Service specification
to satisfy the quality of service (QoS) needs of real-time ap-
plications in domains like avionics, telecommunications, and
process control.

The following list summarizes the features missing in the
COS Event Service and outlines how TAO’s Real-time Event
Service supports them:

� No guarantees for real-time event dispatching and
scheduling: In a real-time system, events must be processed
so that consumers can meet their QoS deadlines. For instance,
the Sensor Proxies shown in Figure 5 generate notification
events that allow the I/O Facades who depend on the sen-
sor data to execute. To enforce a real-time scheduling policy,
higher priority I/O Facades must receive events and be allowed
to run to completion before lower priority I/O Facades receive
events.

The COS Event Service has no notion of QoS, however.
In particular, there is no Event Channel interface that con-

sumers can use to specify their execution and scheduling re-
quirements. Therefore, standard COS Event Channels provide
no guarantee that they will dispatch events from suppliers with
the correct scheduling priority, relative to the consumers of
these events.

TAO’s RT Event Service extends the COS Event Service in-
terfaces by allowing consumers and suppliers to specify their
execution requirements and characteristics using QoS param-
eters (such as worst-case execution time, rate, etc.). These pa-
rameters are used by the channel’s dispatching mechanism to
integrate with the system-wide real-time scheduling policy to
determine event dispatch ordering and preemption strategies.
Section 4.2.1 describes these QoS parameters in more detail.

� No specification for centralized event filtering and cor-
relation: Some consumers can execute whenever an event
arrives from any supplier. Other consumers can execute only
when an event arrives from a specific supplier. Still other con-
sumers must postpone their execution until multiple events
have arrived from a particular set of suppliers (e.g., a corre-
lation of events).

For instance, an I/O Facade may depend on data from a sub-
set of all Sensor Proxies. Furthermore, it may use data from
many Sensor Proxies in a single calculation of aircraft posi-
tion. Therefore, the I/O Facade can not make progress until
all of the Sensor Proxy objects receive I/O from their external
sensors.

It is possible to implement filtering using standard COS
Event Channels, which can be chained to create an event fil-
tering graph that consumers to register for a subset of the to-
tal events in the system. However, the filter graph defined in
standard COS increases the number of hops that a message
must travel between suppliers and consumers. The increased
overhead incurred by traversing these hops is typically unac-
ceptable for real-time applications with low latency require-
ments. Furthermore, the COS filtering model does not address
the event correlation needs of consumers that must wait for
multipleevents to occur before they can execute.

To alleviate these problems, TAO’s RT Event Service pro-
vides filtering and correlation mechanisms that allow con-
sumers to specify logical OR and AND event dependencies.
When those dependencies are met, the RT Event Service dis-
patches all events that satisfy the consumers’ dependencies.
For instance, the I/O Facade can specify its requirements to
the RT Event Service so that the channel only notifies the Fa-
cade object after all its Sensor Proxies have received I/O. At
that time, the I/O Facade receives an aggregate of all the Sen-
sor Proxies it depends on via a singlepush .

� No support for periodic processing: Consumers in real-
time systems typically requireC units of computation time ev-
ery P milliseconds. For instance, some avionics signal pro-
cessing filters must be updated periodically or else they will
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spend a substantial amount of time reconverging. Likewise,
an I/O Facade might guarantee regular delivery of its data
to higher level components, regardless of whether its Sensor
Proxy objects actually generate events at the expected rate.

In both cases, consumers have strict deadlines by which
time they must execute the requestedC units of computa-
tion time. However, the COS Event Service does not permit
consumers to specify their temporal execution requirements.
Therefore, periodic processing is not supported in standard
COS Event Service implementations.

TAO’s RT Event Service allows consumers to specify event
dependency timeouts. It uses these timeout requests to prop-
agate temporal events in coordination with system scheduling
policies. In additional to the canonical use of timeout events
(i.e., receiving timeouts at some interval), a consumer can re-
quest to receive a timeout event if its dependencies are not
satisfied within some time period (i.e., a real-time “watchdog”
timer). For instance, an I/O Facade can register to receive a
timeout event if its Sensor Proxy dependencies are not satis-
fied after some time interval. This way, it can make best ef-
fort calculations on the older sensor data and notify interested
higher level components.

3.2 RT Event Service Architecture

Figure 6 shows the high-level architecture of TAO’s RT Event
Service implementation.

The role of each component in the RT Event Service is out-
lined below:

� Event Channel: In the RT Event Service model, the Event
Channel plays the same role as it does in the conventional COS
Event Service. Externally, it provides two factory interfaces,
ConsumerAdmin andSupplierAdmin , which allow ap-
plications to obtain consumer and supplier administration ob-
jects, respectively. These administration objects make it possi-
ble to connect and disconnect consumers and suppliers to the
channel. Internally, the channel is comprised of several pro-
cessing modules based on the ACE Streams framework [21].
As described below, each module encapsulates independent
tasks of the channel.

�Consumer Proxy Module: The interface to the Consumer
Proxy Module is identical toConsumerAdmin interface de-
fined in the COS Event ServiceCosEventChannelAdmin
module. It provides factory methods for creating objects that
support theProxyPushSupplier interface. In the COS
model, theProxyPushSupplier interface is used by con-
sumers to connect and disconnect from the channel.

TAO’s RT Event Service model extends the standard
COS ProxyPushSupplier interfaces so that consumers
can register their execution dependencies with a channel.
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Figure 6:RT Event Service Architecture.

Figure 7 shows the types of data exchanged and the inter-
object collaborations involved when a consumer invokes the
ProxyPushSupplier::connect push consumer
registration operation.
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� Supplier Proxy Module: The interface to this module
is identical to SupplierAdmin interface defined in the
COS Event ServiceCosEventChannelAdmin module. It
provides factory methods for creating objects that support
the ProxyPushConsumer interface. Suppliers use the
ProxyPushConsumer interface to connect and disconnect
from the channel.

TAO’s RT Event Service model extends the standard COS
ProxyPushConsumer interface so that suppliers can spec-
ify the types of events they generate. With this information,
the channel’s Subscription and Filtering Module can build data
structures that allow efficient run-time lookups of subscribed
consumers.

ProxyPushConsumer objects also represent the entry
point of events from suppliers into an Event Channel. When
Suppliers transmit an event to theProxyPushConsumer
interface via the proxy’spush operation the channel forwards
this event to thepush operation of interested consumer ob-
ject(s).

� Subscription and filtering: The CORBA Event Service
defines Event Channels as broadcasters that forward all events
from suppliers to all consumers. This approach has several
drawbacks. If consumers are only interested in a subset of
events from the suppliers, they must implement their own
event filtering to discard unneeded events. Furthermore, if
a consumer ultimately discards an event, then delivering the
event to the consumer needlessly wastes bandwidth and pro-
cessing.

To address these shortcomings, TAO’s RT Event Service ex-
tends the COS interfaces to allow consumers to subscribe for
particular subsets of events. The channel uses these subscrip-
tions to filter supplier events, only forwarding them to inter-
ested consumers.

There are several reasons why TAO implements filtering in
the channel. First, the channel relieves consumers from imple-
menting filtering semantics. Second, it reduces communica-
tion channel load by eliminating filtered events in the channel
instead of at consumers. Furthermore, to implement filtering
at the suppliers, the suppliers would require knowledge of con-
sumers. Since this would violate one of the primary motiva-
tions for an event service (that is, decoupled consumers and
suppliers), TAO integrates filtering into the channel.

Adding filtering to the Event Channel requires a well-
defined type system for events. Although the complete schema
for this type system is beyond the scope of this paper, it in-
cludes source ID, type, data, and timestamp fields (the schema
is fully described in [22]). The RT Event Channel uses the
event type system in the following ways:

1. Supplier-based filtering– Not all consumers that connect
to an Event Channel are interested in the same events. In
this case, consumers only register for events generated

by certain suppliers. The event type system includes a
source ID field that allows applications to specify unique
supplier identifiers with each event. The Subscription and
Filtering Module uses this field to locate consumers that
have subscribed to particular suppliers inO(1)worst-case
time.

2. Type-based filtering– Each event contains a type field.
This allows consumers to register for events of a particu-
lar type. Since the type field is represented as an enumer-
ated type, the subscription and Filtering Module utilizes
a lookup structure to find type-based subscribers inO(1)
worst-case time.

3. Combined supplier/type-based filtering– Consumers
can register for any combination of supplier and type-
based filtering (e.g., only supplier-based, only type-
based, or supplier-based and type-based). To implement
this efficiently, the Subscription and Filtering Module
maintains type-based subscription tables for every sup-
plier in the system.

When an event enters the Subscription and Filtering Mod-
ule, consumers that subscribe to combined supplier/type-
based IDs are located with two table lookups. The first
lookup finds all the type-based subscription tables cor-
responding to the event’s source ID. The second lookup
finds the consumers subscribed to the event’s type ID.

The Subscription and Filtering Module permits consumers
to temporarily disable event delivery by the channel through
suspend andresume operations. These are lightweight op-
erations that have essentially the same effect as de-registering
and re-registering for events. Therefore,suspend and
resume are suitable for frequent changes in consumer sets,
which commonly occur during mode changes. By incorpo-
rating suspension and resumption in the module closest to
the suppliers, Event Channel processing is minimized for sus-
pended consumers.

� Priority Timers Proxy: The Supplier Proxy Module con-
tains a special-purposePriority Timers Proxythat manages all
timers registered with the channel. When a consumer regis-
ters for a timeout, the Priority Timers Proxy cooperates with
the Run-time Scheduler to ensure that timeouts are dispatched
according to the priority of their corresponding consumer.

The Priority Timers Proxy uses a heap-based callout queue
[23]. Therefore, in the average and worst case, the time re-
quired to schedule, cancel, and expire a timer isO(log N)
(whereN is the total number of timers). The timer mechanism
preallocates all its memory, which eliminates the need for dy-
namic memory allocation at run-time. Therefore, this mecha-
nism is well-suited for real-time systems requiring highly pre-
dictable and efficient timer operations.
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�Event correlation: A consumer may require certain events
to occur before it can proceed. To implement this functional-
ity, consumers can specify conjunctive (“AND”) or disjunctive
(“OR”) semantics when registering their filtering requirements
(i.e., supplier-based and/or type-based). Conjunctive seman-
tics instruct the channel to notify the consumer whenall the
specified event dependencies are satisfied. Disjunctive seman-
tics instruct the channel to notify the consumer(s) whenanyof
the specified event dependencies are satisfied. Consumers can
register their filtering requests with a channel multiple times.
In this case, the channel creates a disjunction relation for each
of its consumer registrations.

Mechanisms that perform filtering and correlation are called
Event Filtering Discriminators(EFDs). EFDs allow the run-
time infrastructure to handle dependency-based notifications
that would otherwise be performed by each consumer asall
events were pushed to it. Thus, EFDs provide a “data reduc-
tion” service that minimizes the number of events received by
consumers so that they only receive events they are interested
in.

� Dispatching: The Dispatching Module determines when
events should be delivered to consumers and pushes the events
to them accordingly. To guarantee that consumers execute in
time to meet their deadlines, this module collaborates with the
system-wide Scheduling Service (discussed in Section 4.2).
TAO’s Off-line Scheduler initially implements the rate mono-
tonic scheduling policy. Section 4 illustrates how adding
new dispatching implementations is straightforward since this
module is well-encapsulated from other components in the
Event Channel’s OO real-time event dispatching framework.

3.3 Static and Dynamic Event Channel Config-
uration

The performance requirements of an RT Event Service may
vary for different types of real-time applications. The pri-
mary motivation for basing the internal architecture of the
TAO Event Channel on the ACE Streams framework is to al-
low static and dynamic channel configurations. Each module
shown in Figure 7 may contain multiple “pluggable” strate-
gies, each optimized for different requirements. The Streams-
based architecture allows independent processing modules to
be added, removed, or modified without requiring changes to
other modules.

TAO’s Event Channel can be configured in the following
ways to support different event dispatching, filtering, and de-
pendency 34 semantics:
� The modules implementing a “full” TAO Event Chan-

nel include the Dispatching, Correlation, Filtering, and
Consumer/Supplier Proxy modules. Configuring a chan-
nel with all of these modules supports type and source-

based filtering, correlations, and priority-based queueing
and dispatching.

� As discussed in Section 4, TAO’s Event Channel Dis-
patching Module implements several concurrency strate-
gies. Each strategy caters to the type and availability of
system resources (such as the OS threading model and
the number of CPUs). TAO’s Event Channel framework
is designed so that changing the number of threads in
the system, or changing to a single-threaded concurrency
strategy, does not require modifications to unrelated com-
ponents in a channel.

The following configurations can be achieved by remov-
ing certain modules from an Event Channel:

– Removing the Dispatching Module from the Event
Channel results in anEvent Forwarding Discrimi-
nator (EFD) configuration that supports event fil-
tering and correlations. An EFD configuration is
shown in Figure 9(C). Since TAO’s Filtering and
Correlation Modules have been implemented to
guarantee deterministic run-time performance, the
EFD configuration is applicable for real-time ap-
plications that do not require priority-based queue-
ing and dispatching in the Event Channel. As dis-
cussed in Section 4.1.1 below, such systems might
implement real-time dispatching in the ORB’s Ob-
ject Adapter level, thereby simplifying the channel.

– Removing the Correlation Module from a full TAO
Event Channel yields aSubscription and Filtering
configuration. This configuration is useful for appli-
cations that have no complex inter-event correlation
dependencies, but simply want to receive events
when they match a simple filter.

– A Broadcaster Repeaterconfiguration can be
achieved by removing the Correlation and Dis-
patching Modules. This configuration supports nei-
ther real-time dispatching nor filtering/correlations.
In essence, this implements the semantics of the
standard COS Event Channel push model.

In static real-time environments (such as conventional
avionics systems), the configuration of an Event Channel is
generally performed off-line to reduce startup overhead. In
dynamic real-time environments (such as telecommunication
call-processing), however, component policies may require al-
teration at run-time. In these contexts, it may be unaccept-
able to completely terminate a running Event Channel when a
scheduling or concurrency policy is updated. In general, there-
fore, an RT Event Channel framework must support dynamic
reconfiguration of policies without interruption while continu-
ing to service communication operations [24]. Basing TAO’s
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RT Event Channel on the ACE Streams framework supports
both static and dynamic (re)configuration.

4 An Object-Oriented Framework for
Real-time Event Service Dispatching
and Scheduling

Applications and middleware components using a real-time
Event Service have deterministic and statistical deadlines.
As a result, TAO’s RT Event Channel utilizes a real-time
Scheduling Service to ensure that events are processed be-
fore deadlines are missed. Most real-time scheduling poli-
cies (such as rate monotonic and earliest deadline first) require
priority-based event dispatching and preemption. To maxi-
mize reuse and allow flexibility between multiple scheduling
policies, TAO’s Event Channel framework separates the dis-
patching mechanism from the scheduling policy. The dis-
patching mechanism implements priority-based dispatching
and preemption, but consults a Run-time Scheduler to deter-
mine the priorities of objects and events.

This section discusses the Dispatching Module and
Scheduling Service in TAO’s RT Event Channel.

4.1 The Dispatching Module

The Dispatching Module is responsible for implementing
priority-based event dispatching and preemption. When the
Dispatching Module receives a set of supplier events from the
Event Correlation Module, it queries the Run-time Scheduler
to determine the priority of the consumers that the events are
destined for. With that information, the Dispatching Mod-
ule can either (1) insert the events in the appropriate priority
queues (which are dispatched at a later time) or (2) preempt a
running thread to dispatch the new events immediately.

The following figure shows the structure and dynamics of
the Dispatching Module in the context of the Event Channel.

The participants in Figure 8 include the following:

� Consumer and Supplier Proxies: The Event Channel
utilizes proxies to encapsulate communication with the con-
sumers and suppliers. For a distributed consumer or supplier,
a proxy manages the details of remote communication.

� Event filtering and correlation: When events arrive from
consumers, the Event Filtering and Correlation Modules deter-
mine which consumers should receive the events and when to
dispatch the events. These modules forward the events to the
Dispatching Module, which handles the details of dispatching
each event to its consumer(s) in accordance with the priority
of the event/consumer(s) tuple.

0 1 2 3 4

1: push (event)

Supplier ProxiesSupplier

2: push (event)

3: push (event, consumer)

4: push (event, consumer)

5: enqueue (event, consumer)

6: dequeue (event, consumer)

7: push (event)

8: push (event)

Consumer

Consumer Proxies

Dispatcher

Priority Queues

Run-Time Scheduler

Event Correlation

Subscription & Filtering

Consumer

Consumer
Event Channel

Dispatching Module

Figure 8:Event Channel Dispatching.

� Run-time Scheduler: The Dispatching Module collabo-
rates with the Run-time Scheduler to determine priority values
of the event/consumer tuples. Given an event and the target
consumer, the Run-time Scheduler determines the priority at
which the event should be dispatched to the consumer.

The motivation for decoupling the Run-time Scheduler from
the Dispatching Module is to allow scheduling policies to
evolve independently of the dispatching mechanism. TAO’s
Run-time Scheduler was initially implemented with a rate
monotonic scheduling policy that used the consumer’s rate to
determine the tuple’s priority. Subsequent Run-time Scheduler
implementations use an Earliest Deadline First (EFD) policy,
where the deadline of the event (or consumer) determines the
priority of the tuple. Thus, by separating the responsibilities of
scheduling from dispatching, the Run-time Scheduler can be
replaced without affecting unrelated components in the chan-
nel.

� Priority Queues: Given an event/consumer tuple, the
Run-time Scheduler returns a preemption priority and a sub-
priority. The Dispatching Module maintains a priority queue
of events for each preemption priority used by the Run-time
Scheduler. When an event/consumer tuple arrives, it is in-
serted onto the queue corresponding to the preemption priority
returned by the scheduler. The sub-priority is used by the Dis-
patcher to determine where in the Priority Queue the tuple is
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placed (described below).

� Dispatcher: The Dispatcher is responsible for removing
event/consumer tuples from the priority queues and forward-
ing the events to the consumers by calling theirpush opera-
tion. Depending on the placement of each tuple in the Priority
Queues, the Dispatcher may preempt a running thread in order
to dispatch the new tuple.

For instance, consider the arrival of an event/consumer tu-
ple in a Dispatching Module implemented with real-time pre-
emptive threads. If the Run-time Scheduler assigns the tuple a
preemption priority higher than any currently running thread,
the Dispatcher will preempt a running thread and dispatch the
new tuple. Furthermore, assuming that lower numbers indi-
cate higher priority, the Dispatcher in Figure 8 would dispatch
all tuples on queue 0 before dispatching any on queue 1. Sim-
ilarly, it would dispatch all tuples on queue 1 before those on
queue 2, and so on.

To remove tuples from Priority Queues, the Dispatcher al-
ways dequeues from the head of the queue. The Run-time
Scheduler can determine the order of dequeueing by return-
ing different sub-priorities for different event/consumer tu-
ples. For instance, assume that an implementation of the Run-
time Scheduler must ensure that some eventE1 is always dis-
patched before eventE2, but does not require that the arrival
of E2 preempt a thread dispatchingE1. By assigning a higher
sub-priority to event/consumer tuples containingE1, the tu-
ple will always be queued before any tuples containingE2.
Therefore, the Dispatcher will always dequeue and dispatch
E1 events beforeE2 events.

A benefit of separating the functionality of the Dispatcher
from the Priority Queues is to allow the implementation of
the Dispatcher to change independently of the other channel
components. TAO’s RT Event Channel has been implemented
with four different dispatching mechanisms, as described in
the following subsection.

4.1.1 Dispatcher Preemption Strategies

An important responsibility of the Event Channel’s Dispatcher
mechanism ispreemption. Most real-time scheduling policies
require preemption. For example, if consumer A with a pri-
ority of 2 is executing when consumer B with a priority of 1
becomes runnable, consumer A should be preempted so that B
can run until it completes or is itself preempted by a consumer
with a priority of 0. As shown in Figure 9, TAO’s Event Chan-
nel Dispatching Module supports several levels of preemption
via the following strategies:

� Real-time upcall (RTU) dispatching (with deferred pre-
emption): Figure 9(A) shows a single-threaded implementa-
tion where one thread is responsible for dispatching all queued
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Figure 9:Dispatcher Implementations.

requests. This requires that consumers cooperatively pre-
empt themselves when a higher priority consumer becomes
runnable. This model of “deferred preemption” is based on a
Real-time Upcall (RTU) concurrency mechanism [25].

The primary benefit of the RTU model is its ability to re-
duce the context switching, synchronization, and data move-
ment overhead incurred by preemptive multi-threading imple-
mentations. However, preemption is delayed to the extent that
consumers check to see if they must preempt themselves. This
latency may be unacceptable in some real-time applications.

� Real-time preemptive thread dispatching: An increas-
ing number of OS platforms (e.g., VxWorks, Solaris 2.x, and
DEC UNIX) support real-time threads. Figure 9(B) shows
an implementation of the Dispatching Module that allocates
a Real-time thread (or pool of threads) to each priority queue.

The advantage of this model is that the dispatcher can lever-
age kernel support for preemption by associating appropriate
OS priorities to each thread. For instance, when a thread at
the highest priority becomes ready to run, the OS will pre-
empt any lower priority thread that is running and allow the
higher priority thread to run. The disadvantages are that this
preemption incurs thread context switching overhead, and that
applications must identify, and synchronize access to, data that
can be shared by multiple threads.

� Single-threaded priority-based dispatching: The Dis-
patching Module can also be implemented with no support
for preemption. This is similar to the RTU dispatching mech-
anism in the sense that a single-thread is used to dispatch
events based on priority. However, once a consumer receives
an event, it can run to completion regardless of the arrival of
events for higher priority consumers.

As with the RTU model, single-threaded dispatching ex-
hibits lower context switching overhead than the real-time

11



thread dispatching model. Moreover, since the channel main-
tains its own thread of control, it does not borrow supplier
threads to propagate events. As a result, the channel is an asyn-
chronous event delivery mechanism for suppliers. However,
since the channel’s dispatching thread does not implement pre-
emption, consumers run to completion regardless of priority.
As a result, single-threaded dispatching can suffer from pri-
ority inversion, which results in lower system utilization and
non-determinism.

� EFD dispatching: As discussed in Section 3.3, the Dis-
patching Module can be removed from the channel, yielding a
purely EFD-based Event Channel. This configuration is shown
in Figure 9(C). An EFD channel forwards all events to the con-
sumers without any priority queueing, real-time scheduling, or
context switching. Events are dispatched without attention to
priority, and there is no preemption of consumers when higher
priority event/consumer tuples become available.

EFD channels are appropriate in systems that do not have
significant priority-based requirements. In these cases, there
is no overhead incurred by a Dispatching Module. However,
EFD channels are not always suitable when real-time schedul-
ing policies must be enforced. As shown in Section 5, our per-
formance results show that these drawbacks can cause missed
deadlines even under relatively low loads.

The current design of the Dispatching Module is motivated
largely from need to support a single host, real-time event
propagation mechanism. To allow all CORBA applications
to utilize the ORB’s real-time scheduling and dispatching fea-
tures, we are integrating the role of the Dispatching Module
into TAO’s Real-time Object Adapter [3]. However, this pa-
per focuses on an implementation that integrates real-time dis-
patching into TAO’s Real-time Event Service.

4.1.2 Scheduling Enforcement

The real-time scheduling for the version of TAO’s Event Chan-
nel described in this paper is performed off-line. Therefore, no
mechanisms for enforcing component behavior are provided.
Consequently, tasks that overrun their allotted resource allo-
cations can cause other tasks to miss their deadlines. An ad-
vantage of this “trusting” policy is there is no overhead in-
curred by QoS enforcement mechanisms that would otherwise
be necessary to monitor and enforce the scheduling behavior
at run-time. A disadvantage is that all components must be-
have properly,i.e., they must use only the resources allotted
to them. Though the architecture of our Event Service frame-
work supports QoS enforcement, the decision not to include
this mechanism in the Event Channel is motivated by the static
scheduling characteristics and stringent performance require-
ments of real-time avionics applications.

4.1.3 Visualization of Dispatching Module Implementa-
tions

To visualize the semantic differences between the four Dis-
patching Module implementations outlined in Section 4.1.1,
we implemented a timeline visualization tool in Java. The
timeline tool reads event logs from RT Event Service test runs
and displays a timeline of supplier and consumer activity. Fig-
ures 10 and 11 show timelines from multi-threaded and single-
threaded implementations of the Dispatching Module, respec-
tively. Each test run consists of 3 suppliers and 3 consumers,
which are listed on the y-axis. Supplier2 and consumer2 run
at the highest frequency (40 Hz), supplier1 and consumer1
run at the next highest frequency (20 Hz), and supplier0 and
consumer0 run at the lowest frequency (10 Hz).

The x-axis denotes time in�seconds. Each consumer and
supplier outputs a point when it receives an event from the
Event Channel. Another point is output when it finishes pro-
cessing the event. Suppliers receive timeouts and generate a
single event for each timeout. Each consumer registers for
events from a single supplier. A horizontal line indicates the
time span when the respective consumer or supplier runs on
the CPU.

Each figure is explained below:

Figure 10:Timeline from Multi-Threaded Channel.

� Real-time thread dispatching: Figure 10 shows how OS
real-time thread support for preemption results in supplier0

and consumer0 being preempted whenever higher priority
tasks become runnable. Our performance results (discussed in
Section 5) demonstrate that Dispatching Module implemen-
tations (such as the real-time thread dispatching) that sup-
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port more responsive preemption mechanisms yield higher re-
source utilization without missing deadlines.

� Single-threaded dispatching: Figure 11 shows how a
single-threaded dispatching module can result in deadlines be-
ing missed if lower priority tasks hold the CPU for excessive
periods of time. The negative values next to the end times of
supplier2 and consumer2 show the number of�secs the dead-
lines were missed. In other words, consumer0 held the CPU
too long, so that higher rate suppliers and consumers were un-
able to execute in time to preserve correct application behav-
ior.

Figure 11:Timeline from Single-Threaded Channel.

4.2 Real-time Scheduling Service

The RT Event Service must guarantee that consumers receive
and process events with sufficient time to meet their deadlines.
To accomplish this, we have developed a Real-time Schedul-
ing Service. The two primary components in the Real-time
Scheduling Service are the Run-time Scheduler and Off-line
Scheduler. Although a complete discussion of these compo-
nents is beyond the scope of this paper, their responsibilities
are summarized below ([22] describes these components in de-
tail).

4.2.1 Run-time Scheduler

The Run-time Scheduler associates priorities with target object
implementation operations at run-time. The implementation
of the Real-time Scheduling Service described in this paper
uses a static scheduling policy. Therefore, thread priorities are
determined prior to run-time by the Off-line Scheduler.

Our Real-time Scheduling Service requires that if an ob-
ject is to be scheduled, each of its operations must export an
RT Info data structure describing the operation’s execution
properties. During schedulingconfiguration runs(described in
Section 4.2.2 below),RT Info s contain execution times and
rate requirements. At run-time, the static Scheduler need not
know any information about an operation’s execution charac-
teristics. Only the operation’s priority is needed, so the sched-
uler can determine how the operation should be dispatched.
Thus, at run-time, each operation’sRt Info need only con-
tain priority values for the operation.

At run-time, the Dispatching Module queries the Run-time
Scheduler for the priority of a consumer’s push operation.
The Run-time Scheduler uses a static repository that identifies
the execution requirements (including priority) of each oper-
ation. The Event Channel’s Dispatching Module uses the op-
eration priority returned by the Run-time Scheduler to deter-
mine which priority queue an event/consumer tuple should be
inserted onto.

All scheduling and priority computation is performed off-
line. This allows priorities to be computed rapidly (i.e., looked
up in O(1) time) at run-time. Thus, TAO’s Run-time Sched-
uler simply provides an interface to the results of the Off-line
Scheduler, discussed below.

4.2.2 Off-line Scheduler

The Off-line Scheduler has two responsibilities. First, it as-
signs priorities to object operations. Second, it determines
whether a current Event Channel configuration is schedulable
given the available resources and the execution requirements
of supplier and consumer operations. Both responsibilities re-
quire that operation interdependencies be calculated by aTask
Interdependency Compilationprocess during during aconfigu-
ration run. Task Interdependency Compilation builds a repos-
itory that records which objects’ operations call each other.
This can be visualized as a directed graph where the nodes in
the graph are object operations and directed edges indicate that
one operation calls another, as shown in Figure 12.

Once Task Interdependency Compilation is complete, the
Off-line Scheduler assigns priorities to each object operation.
The implementation of the Event Service described in this pa-
per utilizes a rate monotonic scheduling (RMS) policy [8, 26].
Therefore, priorities are assigned based on task rates,i.e.,
higher priorities are assigned to threads with faster rates. For
instance, a task that needs to execute at 30 Hz would be as-
signed to a thread with a higher priority than a task that needs
to execute at 15 Hz.

Most operating systems that support real-time threads guar-
antee higher priority threads will (1) preempt lower prior-
ity threads and (2) run to completion (or until higher prior-
ity threads preempt them). Therefore, object operations with
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Figure 12:Scheduling Service Internal Repository.

higher priorities will preempt object operations with lower pri-
orities. These priority values are computed by the Off-line
Scheduler and are stored in a table that is queried by the Run-
time Scheduler at execution time.

5 Performance Tests

5.1 Utilization Measurements

For non-real-time Event Channels (e.g., EFD-based), correct-
ness implies that consumers receive events when their depen-
dencies are met (i.e., source/type subscriptions and correla-
tions). Conversely, for real-time Event Channels (e.g., RTUs
and real-time threads), correctness implies that deadlines are
met. Therefore, correct RT Event Service behavior requires
that (1) consumers receive events when their dependencies are
satisfiedand (2) consumers receive these events in time to
meet their deadlines.

An important metric for evaluating the performance of the
RT Event Service is theschedulable bound. The schedulable
bound of a real-time schedule is the maximum resource uti-
lization possible without deadlines being missed [25]. Like-
wise, the schedulable bound of the RT Event Service is the
maximum CPU utilization that supplier and consumers can
achieve without missing deadlines.

For TAO’s Real-time Scheduling Service to guarantee the
schedulability of a system (i.e., all tasks meet their deadlines),
high priority tasks must preempt lower priority tasks. With
RMS, higher rate tasks preempt lower rate tasks.

Each of the RT Event Channel’s Dispatching Module strate-
gies support varying degrees of preemption. The EFD and

Single-Threaded implementations support no preemption; the
RTU implementation supports deferred preemptions; and the
multi-threaded version uses OS support for immediate pre-
emption. The goal of the benchmarks described below is to
measure the utilization implications of each approach.

The performance tests discussed below were conducted on a
single-CPU Pentium Pro 200 MHz workstation with 128 MB
RAM running Windows NT 4.0. Test configurations included
3 suppliers and 3 consumers. As shown in Figure 13, the time-
line tool can zoom out to show the periodic nature of the test
participants.

Figure 13:Wide view of test run.

The view in Figure 13 shows the relative frequencies of
the participants. Supplier2 generates events for consumer2 at
the highest frequency (40 Hz). Likewise, supplier1 generates
events for consumer1 at 20 Hz, and supplier0 generates events
for consumer0 at 10 Hz.

Figure 14 shows the total CPU utilization achieved (y-axis)
by each Event Channel implementation (i.e., multi-threaded,
RTU, single-threaded, and EFD), as the workload configura-
tion was changed (x-axis).

More specifically, the x-axis in Figure 14 represents the per-
centage workload given to the 40 Hz supplier and consumer.
For instance, at the 10 percent x-axis column, the 40 Hz sup-
plier and consumer were given relatively small amounts of
work (10 percent of the total possible) to perform each iter-
ation (40 times second). Then the workload for the 20 Hz and
10 Hz participants was repeatedly increased (thus increasing
overall CPU utilization) until deadlines started to be missed.
The maximum utilization achieved was then plotted relative to
the y-axis.

As the values along the x-axis increase, the workload of the
40 Hz participants increases and the workload of the 20 Hz
and 10 Hz participants decreases. Likewise, for lower values
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Figure 14: CPU Utilization for RTU, Multi-Threaded,
Single-Threaded, and EFD channel implementation.

on the x-axis, the workload of the 20 Hz and 10 Hz participants
are larger. For each value on the x-axis, the maximum utiliza-
tion achieved without any missed deadlines was then plotted
on the y-axis. The graph in Figure 14 illustrates how the uti-
lization of different channel implementations can vary as the
configuration of the system changes.

The results of our performance benchmarks show that
the RTU and multi-threaded implementations of the channel
achieve approximately 95 percent utilization for all workload
configurations. That these implementations fell 5 percent be-
hind the maximum utilization results from the overhead im-
posed by the Event Channel. Although the RTU and multi-
threaded implementations performed consistently for all con-
figurations, utilizations for the single-threaded and EFD im-
plementations vary significantly as the workload configura-
tions change. These results show how the increased support
for preemption provide greater stability across workloads.

The differences between the single-threaded and EFD chan-
nels can be accounted for by the fact that the single-threaded
channel provides minimal support for preemption. After each
event is propagated to a consumer in the single-threaded
channel, the channel’s thread (in the Dispatching Module)
dispatches the next highest priority event/consumer tuple.
Thus, if while an event is being dispatched, a higher prior-
ity event/consumer tuple arrives in the channel (e.g., a timeout
for a high priority consumer), the new tuple will be dispatched
as soon as the currently running event completes.

Alternatively, when a supplier generates an event in the EFD
channel, it is dispatched immediately to all consumers. If the
EFD channel is dispatching an event to consumers when a
timeout occurs for a higher priority consumer, the timeout will

not be dispatched until all other consumers have completed. In
the single-threaded channel, the timeout would be dispatched
after the next consumer completed. The EFD’s semantics in-
crease the chances of missed deadlines and consequently re-
duce utilization.

It is also instructive to note that the single-threaded imple-
mentation performs optimally when the workload of 40 Hz
participants is the greatest. For higher x-axis values, the work-
load of the 20 Hz and 10 Hz participants is lower. This reduces
the demand for preemption since lower priority suppliers and
consumers only use the thread of control for a very short time
(since they are doing less work). Therefore, the graph shows
that as the demand for preemption decreases (x values become
greater), the lack of support for preemption becomes less cru-
cial.

5.2 Latency Measurements

Another important measure of Event Channel performance is
the latency it introduces between suppliers and consumers. To
determine Event Channel latency, we developed an Event La-
tency Test. This test timestamps each event as it originates in
the supplier and then subtracts that time from the arrival time
at the consumer to obtain the end-to-end supplier! consumer
latency. The consumer does not do anything with the event
other than to keep track of the minimum, maximum, and aver-
age latencies.

The Minimum Event Spacing Test looks at the average
event delivery time for all of the events that a supplier delivers
to its consumers. As before, consumers do not do anything
with events that are pushed to them. The average event deliv-
ery time includes the event interval (spacing) and Event Chan-
nel overhead. Ideally, it should be as close as possible to the
event interval. As the event interval is reduced, however, the
Event Channel overhead starts to become significant. This test
finds that minimum event interval.

These tests were run on a Sun UltraSPARC 2 with two 167
Mhz CPUs, running SunOS 5.5.1. The Event Channel and
test applications were built with g++ 2.7.2 with�02 optimiza-
tion. Consumers, suppliers, and the Event Channel were all
co-located in the same process to eliminate ORB remote com-
munication overhead. Furthermore, there was no other signif-
icant activity on the workstation during testing. All tests were
run in the Solaris real-time scheduling class, so they had the
highest software priority (but below hardware interrupts) [13].

With the single-threaded Event Channel, we measured a
best-case supplier-to-consumer latency of�90�secs. “Best-
case” refers to a single supplier and single consumer regis-
tered with Event Channel. The supplier received a timeout
every 250 milliseconds and then sent a timestamped event to
the consumer. As the number of suppliers and/or consumers
increased, the latency increased as well, as shown in Table 1.
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Table 1:Event Latency,�secs, Through Event Channel, 250 millisec Event Interval.

Average
per Event, Latency,�sec

Suppliers Consumers Events millisec First Consumer Last Consumer
1 1 100 250.035 90 –
1 10 100 250.057 331 603
1 50 100 250.050 1247 2073
2 1 100 250.203 197 –
2 10 100 250.587 337 531
2 50 100 250.379 1250 2330

50 1 100 251.117 393 –
50 10 100 250.859 473 1831
50 50 100 250.626 501 2092
50 50 1000 250.074 356 1020

Under these conditions, the average event delivery time was
comparable to the event timeout interval of 250 milliseconds.
The supplier timeout value was progressively reduced to find
the point at which the Event Channel overhead significantly
affected the average delivery time. That timeout interval was
�20 millisec; below that value, the average event delivery time
increased significantly.

We have investigated optimizations for this Event Chan-
nel implementation to improve these performance numbers.
Probes were inserted to track the progress of an event through
the Event Channel components. The detailed latency break-
down is shown in Table 2.

Table 2:Breakdown of Event Latency.

Event Channel Operation Time,�sec
delivery to Supplier Module (thru Supplier Proxy) 5.4
delivery to Subscription Module 0.9
Subscription Module:
pushsource 7.9
pushsourcetype: Correlation Module 34.8
pushsourcetype: Dispatching Module queuing 7.9

dispatch (dequeue) the event 29.7
decode the event 0.9
deliver event to consumer proxy 6.4
push event to consumer 3.4

——
total 97.3

The probes measure the time spent by an event in each of the
major Event Channel components shown in Figure 6. Most of
the time is spent in the Subscription Module. Therefore, we
inserted additional probes into it to precisely pinpoint its la-
tency contribution. The two operations,push source and
push source type , correspond to consumer event regis-
tration for events from a particular supplier and for events from
a particular supplier of a specified type, respectively.

In the Latency Test, the consumers registered only for
events from a particular supplier of a specified type. So, the
time spent inpush source was not used to deliver the event.
Additional probes were inserted intopush source type .
They show the time spent in the major Event Channel compo-
nents that contribute to actual event delivery, in this case.

Performance analysis revealed the following potential areas
for improvement:

� Bypassing the Correlation Module for uncorrelated
events;

� Optimizing internal data structures (there is a fixed-size
table that, when initialized, constructs each of its slots
individually whether or not they will be used);

� Eliminating dynamic allocation and deallocation;

� Streamlining the Dispatching Module to bypass queueing
when possible. There are some cases when the Dispatch-
ing Module queuing can be eliminated. For example, if
the supplier thread has the same priority as the target con-
sumer, and there are no events queued for that priority, the
supplier thread can be used to dispatch the event.

To estimate the event latency with these optimizations ap-
plied, we developed the estimated latency breakdown shown
in Table 3

This estimate is based on removal of the overhead
of “unused” subscriptions, (e.g., push source for a
push source type message), and the overhead of corre-
lation when not used.
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Table 3: Estimated Breakdown of Optimized Event La-
tency.

Estimated
Event Channel Operation Time,�sec
Subscription module delivery (thru Supplier proxy) 6
Subscription module 8
Dispatching Module enqueue 8
check env 2
Dispatching Module dequeue 30
delivery to Consumer (thru Consumer proxy) 10

——
total (estimated) 64

6 Evaluating the Use of OO for Real-
time Systems

While applying OO technologies to real-time systems we en-
countered two issues regarding polymorphism that threatened
to compromise the predictability and performance of our sys-
tems. This section briefly discusses each of the issues and how
our systems address the potential problems.

6.1 The Cost of Dynamic Binding Mechanisms

Since our systems are developed using C++, dynamic binding
is implemented via virtual method tables (VFTs). As a result,
compilers can implement highly optimized virtual method call
mechanisms that impose constant-time overhead. These algo-
rithms typically involve loading thethis pointer, adjustment
of the this pointer (for multiple inheritance), lookup of the
method offset in the VFT, and final calculation of the ad-
dress before invoking the method. However, these steps still
have bounded completion times allowing predictable virtual
method call performance regardless of the degree of inheri-
tance used by applications.

We measured the cost of virtual method calls on these plat-
forms: VxWorks 5.3.1 on a 60 MHz Pentium with Cygnus g++
2.7.2-960126, VxWorks 5.3.1 on a 200 MHz Pentium with
GreenHills 1.8.8, VxWorks 5.3.1 on a 200 MHz PowerPC with
GreenHills 1.8.8D, Solaris 2.5.1 on a dual-CPU 168 MHz Sun
UltraSPARC 2 with g++ 2.7.2, Irix 6.4 on a dual-CPU 180
MHz SGI Origin200 with SGI C++ 7.10, and Windows NT
4.0 on a 200 MHz PentiumPro with Microsoft Visual C++ 5.0.
As shown in Table 4, a virtual method call costs roughly 2 to
5 times that of a global function or non-virtual method call.

While these ratios seem high, for some platforms, the abso-
lute time penalty (relative to a global function call) for a virtual
method call was less than 0.6�sec on the tested platforms. Our
experience has been that this is not an impediment to real-time
system performance, though we avoid virtual methods where
not needed. Furthermore, modern compilers implement strate-

gies for replacing indirect virtual method calls with direct non-
virtual calls [27]. The results for the IRIX C++ and Microsoft
VC++ compilers indicate well-optimized virtual method calls.

6.2 The Cost of Polymorphism

Polymorphism facilitates run-time changes in object behav-
ior. Real-time systems often require predictable behavior of all
components. Initially, the flexibility of polymorphism seems
to be at odds with the requirement for real-time predictability.
We resolved this issue using the Off-line Scheduler discussed
in Section 4.2. Since scheduling is performed off-line, all ob-
jects and operations must be known in advance. Therefore,
it is the responsibility of the Off-line Scheduler to determine
whether a particular system configuration will meet all of its
deadlines. As a result, when a virtual method is called at run-
time, the system is not concerned with the actual implementa-
tion being invoked. The Off-line Scheduler has already guar-
anteed that its deadline will be met, based on the published
parameters of each schedulable operation.

One advantage of our approach is that operation invoca-
tions only pay the overhead of the C++ virtual method call.
If the schedule was not determined off-line, a run-time (dy-
namic) scheduler would need to intercede before any abstract
operation was invoked, which incurs additional overhead. For
instance, if a rate monotonic scheduling policy is used, the
scheduler must determine the rate that each object operation
executes in order to calculate its priority. Furthermore, this
type of dynamic scheduler must make some type of guarantee,
either weak or strong, that deadlines will be met.

One way a scheduler could make strong guarantees is to
perform admission control, which permits operations to exe-
cute when the necessary resources are available. Admission
control requires that object operations export execution prop-
erties such as worst-case execution time. Alternatively, the
scheduler might implement a weaker, “best-effort” admission
policy. For example, if an Earliest Deadline First policy is
used, object operations with the nearest deadlines are given
priority over operations with later deadlines. Such a policy
would require that object operation deadlines be exported or
calculated by the scheduler. This type of support for dynamic
scheduling can incur significant overhead, and thus decrease
effective resource utilization. As a result, dynamic scheduling
solutions are sometimes not viable solutions for systems with
hard deadlines and constrained resources.

Since all objects and operations in TAO’s Real-time Event
Service are determined off-line, one could argue that no real
polymorphism exists. Although this is true to a certain extent,
there are more benefits to dynamic binding than just changing
behavior at run-time. In particular, we found that the abil-
ity to develop components independently of applications that
use them significantly increases the potential for reuse in the
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Call time,�sec ratio
Global Non-Virtual Virtual Virtual to Virtual to

Platform Function Method Method Global Function Non-Virtual
VxWorks/g++/60 MHz Pentium 0.300 0.450 0.900 3.0 2.0
VxWorks/GHS/200 MHz Pentium 0.174 0.358 0.542 3.1 1.5
VxWorks/GHS/200 MHz PowerPC 0.021 0.021 0.068 3.2 3.2
Solaris/g++/168 MHz Ultrasparc 0.069 0.061 0.173 2.5 2.8
IRIX/CC/180 MHz SGI Origin200 0.061 0.061 0.084 1.4 1.4
NT/MSVC++/200 MHz Pentium 0.030 0.035 0.035 1.2 1.0

Table 4:Cost of Virtual Method Calls

avionics domain. For instance, since the Event Channel pushes
to abstractPushConsumer interfaces, the code for the Event
Channel remains decoupled from the number and type of ap-
plicationPushConsumer objects.

7 Concluding Remarks

The CORBA COS Event Service provides a flexible OO model
where Event Channels dispatch events to consumers on behalf
of suppliers. TAO’S Real-time Event Service described in this
paper augments this model with Event Channels that support
source and type-based filtering, event correlations, and real-
time event dispatching. TAO’s Event Channels can be con-
figured with multiple scheduling policies (e.g., rate monotonic
scheduling and earliest deadline first) by configuring differ-
ent Run-time Scheduler strategies. Similarly, channels can be
built with varying levels of support for preemption by con-
figuring different Dispatcher preemption strategies (e.g., EFD,
single-threaded, RTU, and real-time thread Dispatchers). This
flexibility allows applications to adapt their scheduling and
dispatching policies to obtain optimal utilization for differ-
ent application requirements and platform resource character-
istics.

Our performance results demonstrate that dispatching
mechanisms with finer-grained support for preemption yield
more consistent CPU utilization across different application
configurations. These results also indicate that the dynamic
binding mechanisms used by our C++ compilers are not fun-
damentally at odds with the deterministic execution behavior
required by real-time applications. In addition, our results il-
lustrate that it is feasible to apply CORBA Object Services
to develop real-time systems. TAO’s Real-time Scheduling
Service architecture was submitted as a response to the OMG
Real-time Special Interest GroupRequest for Informationon
Real-time CORBA [22].

The current implementation of TAO’s Real-time Event Ser-
vice is written in C++ using components from the ACE frame-
work [21]. ACE is a widely used communication frame-
work that contains a rich set of high-performance compo-
nents. These components automate common communication

software tasks such as connection establishment, event demul-
tiplexing and event handler dispatching, message routing, dy-
namic configuration of services, and flexible concurrency con-
trol for network services. ACE has been ported to a variety of
real-time OS platforms including VxWorks, Solaris, Win32,
and most POSIX 1003.1c implementations.

The RT Event Service is currently deployed at McDonnell
Douglas in St. Louis, MO, where it is being used to de-
velop operation flight programs for next-generation avionics
systems.
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