
Object-Oriented Design and

Programming

Overview of Object-Oriented

Design Principles and Techniques

Douglas C. Schmidt

www.cs.wustl.edu/�schmidt/

schmidt@cs.wustl.edu

Washington University, St. Louis

1

Deja Vu?

� In the past: Structured = Good

� Today: Object-Oriented = Good

� e.g.,

Object-oriented languages are good

Ada is an object-oriented language

----------

Therefore, Ada is good

� Note, there is even an object-oriented COBOL!

2

Goals

� Demystify the hype surrounding OOD and

OOP

� Focus on OOD/OOP principles, meth-

ods, notations, and tools

� Relate OOD/OOP to traditional develop-

ment methods

3

Overview

� What are object-oriented (OO) methods?

{ OO methods provide a set of techniques for

analyzing, decomposing, and modularizing soft-

ware system architectures

{ In general, OO methods are characterized by

structuring the system architecture on the ba-

sis of its objects (and classes of objects) rather

than the actions it performs

� What are the bene�ts of OO?

{ OO enhances key software quality factors of a

system and its constituent components

� What is the rationale for using OO?

{ In general, systems evolve and functionality changes,

but objects and classes tend to remain stable

over time

4



Software Quality Factors

� Object-oriented techniques enhance key ex-
ternal and internal software quality fac-
tors, e.g.,

1. External (visible to end-users)

(a) Correctness

(b) Robustness and reliability

(c) Performance

2. Internal (visible to developers)

(a) Modularity

(b) Flexibility/Extensibility

(c) Reusability

(d) Compatibility (via standard/uniform interfaces)

5

OOA, OOD, and OOP

� Object-oriented methods may be applied
to di�erent phases in the software life-
cycle

{ e.g., analysis, design, implementation, etc.

� OO analysis (OOA) is a process of dis-
covery

{ Where a development team models and under-
stands the requirements of the system

� OO design (OOD) is a process of inven-
tion and adaptation

{ Where the development team creates the ab-
stractions and mechanisms necessary to meet

the system's behavioral requirements determined

during analysis

6

OOA, OOD, and OOP (cont'd)

� Is it also useful to distinguish between object-
oriented design (OOD) and object-oriented
programming (OOP)

{ OOD is relatively independent of the program-

ming language used

{ OOP is primarily concerned with programming
language and software implementation issues

� Obviously, the more consistent the OOD

and OOP techniques, the easier they are

to apply successfully in real-life: : :

7

OOA, OOD, and OOP (cont'd)

� Basic De�nitions

1. Object-Oriented Design

{ A method for decomposing software archi-

tectures based on the objects every system

or subsystem manipulates

� Rather than \the" function it is meant to

ensure

2. Object-Oriented Programming

{ The construction of software systems as struc-

tured collections of Abstract Data Type (ADT)

implementations, plus inheritance and dy-

namic binding

8



Object-Oriented Design Topics

� Object-oriented design concepts include:

{ Decomposition/Composition

{ Abstraction

� Modularity

� Information Hiding

� Virtual Machine Hierarchies

{ Separating Policy and Mechanism

{ Subset Identi�cation and Program Families

{ Reusability

� Main purpose of these design concepts is

to manage software system complexity by

improving software quality factors

9

Object-Oriented Programming

Topics

� Object-oriented programming features and
techniques include

{ Data abstraction and information hiding

{ Active (rather than passive) types

{ Genericity

{ Inheritance and dynamic binding

{ Programming by contract

{ Assertions and exception handling

� Throughout the course we'll discuss how
these OOP features and techniques im-
prove software quality

{ e.g., correctness, reusability, extensibility, reli-
ability, etc.

10

Review: Goals of the Design

Phase

� Decompose System into Modules

{ i.e., identify the software architecture via \clus-
tering"

� In general, clusters should maximize cohe-

sion and minimize coupling

� Determine Relations Between Modules

{ Identify and specify module dependencies

� e.g., inheritance, composition, uses, etc.

{ Determine the form of intermodule communi-

cation, e.g.,

� global variables

� parameterized function calls

� shared memory

� RPC or message passing

11

Review: Goals of the Design

Phase (cont'd)

� Specify Module Interfaces

{ Interfaces should be well-de�ned

� facilitate independent module testing

� improve group communication

� Describe Module Functionality

{ Informally

� e.g., comments or documentation

{ Formally

� e.g., via module interface speci�cation lan-
guages

12



Decomposition/Composition

� Decomposition and composition are con-

cepts common to all software life-cycle

and design techniques

� The basic concepts are very simple:

1. Select a portion of the problem (initially, the

whole problem)

2. Decompose the selected portion into one or

more constitutent components using the de-
sign method of choice

{ e.g., functional vs. data structured vs. object-

oriented

3. Determine and depict how the components in-

teract (i.e., composition)

4. Repeat steps 1 through 3 until some termina-

tion criteria is met (e.g., customer is satis�ed,
run out of money, etc. ;-))

13

Decomposition/Composition

(cont'd)

� A major challenge of the design phase for

a system is to determine what the primary

units of decomposition and composition

ought to be

� Another way of looking at this is to ask

\at what level of abstraction should the

modules be speci�ed?"

� Typical units of decomposition and com-
position include:

{ Subsystems

{ Virtual machine levels

{ Classes

{ Functions

14

Decomposition/Composition

(cont'd)

� Some principles for guiding the decompo-
sition and composition process

{ Since design decisions transcend execution time,
modules often do not correspond to execution

steps: : :

{ Decompose so as to limit the e�ect of any one

design decision on the rest of the system

{ Remember, anything that permeates the sys-

tem will be expensive to change

{ Modules should be speci�ed by all information

needed to use the module and nothing more

{ Try to compose the system by reusing existing
components if possible

15

Abstraction

� Motivation

{ Abstraction provides a way to manage com-
plexity by emphasizing essential characteristics

and suppressing implementation details

� Traditional abstraction mechanisms

{ Name abstraction

{ Expression abstraction

{ Procedural abstraction

� e.g., closed subroutines

{ Data abstraction

� e.g., ADTs

{ Control abstraction

� iterators, loops, multitasking, etc.

16



Modularity

� Motivation

{ Modularity is an essential characteristic of good

designs since it:

� Enables developers to reduce overall system
complexity via decentralized software archi-

tectures

� i.e., divide and conquer

� Enhances scalability by supporting indepen-

dent and concurrent development by multi-

ple personnel

� i.e., Separation of concerns

� To be both useful and reusable, modules
should possess

1. Well-speci�ed abstract interfaces

2. High cohesion and low coupling

17

Criteria for Evaluating Design

Methods

� Modular Decomposability

{ Does the method aid decomposing a new prob-

lem into several separate subproblems?

� e.g., top-down functional design

� Modular Composability

{ Does the method aid constructing new systems

from existing software components?

� e.g., bottom-up design

� Modular Understandability

{ Are modules separately understandable by a
human reader

� e.g., how tightly coupled are they?

18

Criteria for Evaluating Design

Methods (cont'd)

� Modular Continuity

{ Do small changes to the speci�cation a�ect a

localized and limited number of modules?

� Modular Protection

{ Are the e�ects of run-time abnormalities con-
�ned to a small number of related modules?

� Modular Compatibility

{ Do the modules have well-de�ned, standard
and/or uniform interfaces?

� e.g., \principle of least surprise"

19

Principles for Ensuring Modular

Designs

� Language Support for Modular Units

{ Modules must correspond to syntactic units in

the language used

� Few Interfaces

{ Every module should communicate with as few
others as possible

� Small Interfaces (Weak Coupling)

{ If any two modules communicate at all, they
should exchange as little information as possi-

ble

20



Principles for Ensuring Modular

Designs (cont'd)

� Explicit Interfaces

{ Whenever two modules A and B communicate,

this must be obvious from the text of A or B

or both

� Information Hiding

{ All information about a module should be pri-

vate to the module unless it is speci�cally de-
clared public

21

Information Hiding

� Motivation

{ Details of design decisions that are subject to

change should be hidden behind abstract inter-

faces

� i.e., modules

{ Information hiding is one means to enhance

abstraction

� Typical information to hide includes:

{ Data representations

{ Algorithms

{ Input and Output Formats

{ Policies and/or mechanisms

{ Lower-level module interfaces

22

Virtual Machines

� Motivation

{ To reduce overall complexity, software system

architectures may be decomposed into, more
manageable \virtual machine" units

� A virtual machine provides an extended
\software instruction set"

{ Provides additional data types and associated
\software instructions" that extend the under-

lying hardware instruction set

{ Virtual machines allow incremental extensions

to existing \application programmatic interfaces"
(APIs)

23

Virtual Machine (cont'd)

� Common examples of virtual machines in-
clude

{ Computer Architectures

� e.g., compiler ! assembler ! object code
! microcode ! gates, transistors, signals,

etc.

{ Communication protocol stacks

� e.g., ISO OSI reference model, Internet ref-
erence model

24



Virtual Machine (cont'd)

� Several challenges must be overcome to
e�ectively use virtual machines as an ar-
chitectural structuring technique:

{ Ensuring Adequate Performance:

� It is di�cult to obtain good performance at

level N, if below N are not implemented ef-

�ciently

� This often requires implementing the virtual
machine di�erently than the design may dictate: : :

{ Alleviating Inter-level Dependencies

� To maximize reuse, it is essential to elimi-
nate/reduce dependencies \between" virtual

machine levels: : :

� Therefore, virtual machines are often orga-

nized into hierarchical layers or levels of ab-
straction

25

Virtual Machine (cont'd)

� A \hierarchy" may be de�ned to reduce

module interactions by restricting the topol-

ogy of relationships between virtual ma-

chines

� A relation de�nes a hierarchy if it parti-
tions units into levels

{ Level 0 is the set of all units that use no other

units

{ Level i is the set of all units that use at least

one unit at level < i and no unit at level > i

� Advantages of hierarchical structuring

{ Facilitates independent development of levels

or layers

{ Isolates rami�cations of change

{ Enables rapid prototyping

26

Virtual Machine (cont'd)

� Relations that de�ne hierarchies:

{ Uses

{ Is-Composed-Of

{ Is-A

{ Has-A

� The �rst two are general to all design

methods, the latter two are more particu-

lar to object-oriented design and program-

ming

27

Virtual Machine (cont'd)

� The Uses Relation

{ X Uses Y if the correct functioning of X de-
pends on the availability of a correct imple-

mentation of Y

{ Note, uses is not necessarily the same as in-

vokes:

� Some invocations are not uses relations

� e.g., error logging

� Some uses relations don't involve direct in-
vocations

� e.g., message passing, interrupts, shared

memory access

{ A simple, but e�ect design heuristic is to design

uses relations that yield a hierarchy

� i.e., avoid cycles in the \uses graph"

28



Virtual Machine (cont'd)

� The Uses Relation (cont'd)

{ Allow X to use Y when:

� X is simpler because it uses Y

� e.g., standard C library routines, OSI layers

� Y is not substantially more complex because

it is not allowed to use X

� i.e., hierarchies should be designed to be
useful, and not just to blindly satisfy soft-

ware engineering principles

� There is a useful subset containing Y and

not X

� i.e., allows sharing and reuse of Y

� There is no conceivably useful subset con-

taining X but not Y

� i.e., Y is necessary for X to function cor-
rectly

29

Virtual Machine (cont'd)

� The Uses Relation (cont'd)

{ How should recursion be handled?

� Group X and Y as a single entity in the uses

relation

{ A hierarchy in the uses relation is essential for

designing non-trivial reusable software systems

{ Note that certain software systems require some

form of controlled violation of a uses hierarchy

� e.g., asynchronous communication protocols,

call-back schemes, signal handling, etc.

� Upcalls are one way to control these non-

hierarchical dependencies

30

Virtual Machine (cont'd)

� The Is-Composed-Of Relation

{ The is-composed-of relationship illustrates how

the system is statically decomposed into its

constituent components

{ X is-composed-of fxig if X is a group of units

xi that share some common purpose

{ A graphical description of a system's architec-

ture may be speci�ed by the is-composed-of

relation such that:

� Non-terminal are \virtual" code

� Terminals are the only units represented by

\actual" code

31

Virtual Machine (cont'd)

� The Is-Composed-Of Relation (cont'd)

{ Many programming languages support the is-

composed-of relation via some higher-level module

or record structuring technique

{ Note: the following are not equivalent:

1. Level (virtual machine)

2. Module (an entity that hides a secret)

3. A subprogram (a code unit)

4. A record (a passive data structure)

{ Modules and levels need not be identical, as a

module may have several components on sev-

eral levels of a uses hierarchy

� Likewise, a level may be implemented via

several modules: : :

32



Virtual Machine (cont'd)

� The Is-A and Has-A Relations

{ These two relationships are associated with

object-oriented design and programming lan-

guages that possess inheritance and class fea-
tures

{ Is-A (descendant or inheritance) relationship

� class X possesses Is-A relationship with class
Y if instances of class X are specialization of

class Y

� e.g., a square is a specialization of a rectan-

gle, which is a specialization of a shape: : :

{ Has-A (client or composition) relationship

� class X possesses a Has-A relationship with

class Y if instances of class X contain an

instance(s) of class Y

� e.g., a car has an engine and four tires: : :

33

Separate Policies and Mechanisms

� Motivation

{ Separate concerns between the what/when and

the how at both the design and implementa-
tion phases

� Multiple policies may be implemented via
a set of shared mechanisms

{ e.g., OS scheduling and virtual memory paging

� Same policy can be implemented by mul-
tiple mechanisms

{ e.g., reliable, non-duplicated, bytestream ser-

vice can be provided by multiple communica-

tion protocols

� What is a policy and what is a mechanism

is a matter of perspective: : :

34

Program Families and Subsets

� Program families are a collection of re-
lated modules or subsystems that form a
reusable application framework, e.g.,

{ UNIX System V STREAMS I/O subsystem

{ Graphical user interface frameworks such as In-

terViews, MFC, and Fresco

� The components in a program family are

similar enough that it makes sense to em-

phasize their similarities before discussing

their di�erences

� Motivation

{ Program families are useful for implementing

subsets

{ Reasons for providing subsets include cost, time,
personnel resources, etc.

35

Program Families and Subsets

(cont'd)

� Identifying subsets:

{ Analyze requirements to identify minimally use-
ful subsets

{ Also identify minimal increments to subsets

� Advantages of subsetting:

{ Facilitates software system extension and con-
traction

{ Promotes reusability

{ Anticipates potential changes

36



Program Families and Subsets

(cont'd)

� Program families support:

{ Di�erent services for di�erent markets

� e.g., di�erent alphabets, di�erent vertical

applications, di�erent I/O formats

{ Di�erent hardware or software platforms

� e.g., compilers or OSs

{ Di�erent resource trade-o�s

� e.g., speed vs. space

{ Di�erent internal resources

� e.g., shared data structures and library rou-

tines

{ Di�erent external events

� e.g., UNIX I/O device interface

{ Backward compatibility

� e.g., sometimes it is important to retain bugs!

37


