
Designing and Optimizing a Scalable CORBA Notification Service

Pradeep Gore and Ron Cytron Douglas Schmidt and Carlos O’Ryan

fpradeep, cytrong@cs.wustl.edu fschmidt, coryang@uci.edu
Department of Computer Science Electrical & Computer Engineering
Washington University, St.Louis University of California, Irvine�

Abstract

Many distributed applications require a scalable event-driven
communication model that decouples suppliers from con-
sumers and simultaneously supports advanced quality of ser-
vice (QoS) properties and event filtering mechanisms. The
CORBA Notification Service provides a publish/subscribe
mechanism that is designed to support scalable event-driven
communication by routing events efficiently between many
suppliers and consumers, enforcing various QoS properties
(such as reliability, priority, ordering, and timeliness), and fil-
tering events at multiple points in a distributed system.

This paper provides several contributions to research on
scalable notification services. First, we present the CORBA
Notification Service architecture and illustrate how it ad-
dresses limitations with the earlier CORBA Event Service.
Second, we explain how we addressed key design challenges
faced when implementing the Notification Service in TAO,
which is our high-performance, real-time ORB. Finally, we
discuss the optimizations used to improve the scalability of
TAO’s Notification Service.

1 Introduction

Many distributed applications, such as real-time avionics mis-
sion computing systems, distributed interactive simulations,
and computer-assisted stock trading, require an event-based
communication model. The CORBA [1] Notification Service
provides developers of these applications with a standards-
based, QoS- and filtering-enabled event distribution mecha-
nism. Our work on the Notification Service leverages the ex-
perience we gained developing TAO’s Real-Time Event Ser-
vice [2] to provide a flexible, extensible, and predictable im-
plementation. In this paper, we explore the key design chal-
lenges faced in providing ascalablenotification service. We
also discuss optimization issues related to footprint reduction
and configurability.

Limitations with client/server communication models:
The most common invocation model for client/server commu-
nication in distributed object computing (DOC) middleware

�This work was funded in part by ATD, Cisco, Siemens MED, and DARPA
ITO

is based on synchronous method invocations (SMI). For ex-
ample, CORBA, COM+, and Java RMI all support invocation
models where a client invokes a two-way operation on a target
object implemented by a server and then blocks waiting for
the response. Although this invocation model is widely used,
it has the following limitations:

� Tight coupling of client and server lifetimes: For a
client request to be successful, the server must be available
to process the request. If a request fails because the server
is unavailable, the client receives an exception and must take
some corrective action, such as notifying an end-user or sys-
tem administrator. The CORBA Messaging specification [3]
also introduced time-independent invocations (TII). Although
the TII supports disconnected communication, it still requires
clients to know the object references of their target objects.

� Synchronous communication: A client must wait syn-
chronously until the server finishes processing the request and
returns the result(s) to the client. Although CORBA now sup-
ports asynchronous method invocation (AMI) [4], this model
still requires the server to be available when a client invokes a
request.

� Point-to-point communication: A client invocation is
typically destined for a single target object on a particular
server. The CORBA Fault Tolerance [5] specification re-
laxes this point-to-point architecture, but is not widely imple-
mented [6] or used at this time.

Potential Solution: The CORBA Event Service: The
CORBA Event Service provides a decoupled communication
model that addresses the limitations with the CORBA SMI
(and AMI) invocation mechanisms outlined above. As shown
in Figure 1, the Event Service defines three roles:

Supplier

Supplier

Event Channel

Consumer

Consumer

Events Events

Figure 1: Components in the CORBA Event Service

� Suppliers, which produce event data;

� Consumers, which receive and process event data;

1

� Event channels, which are mediators [7] through which
multiple consumers and suppliers communicate asyn-
chronously.

Events are transferred via standard CORBA two-way re-
quests1 from suppliers to an event channel, which in turn for-
wards the events to consumers.

In general, the CORBA Event Service addresses the limita-
tions of standard CORBA SMI and AMI invocation models,
as follows:
� Decoupling of event suppliers and event consumers:

By using an event channel, events can be delivered from sup-
pliers to consumers without requiring these participants to
know about each other explicitly.
� Asynchronous communication: By introducing the

event channel between the suppliers and consumers, suppliers
need not wait until an event is delivered to the consumers.
� Transparent group communication: Event channels

can simplify application software by implementing group
communication and serving as a replicator, broadcaster, or
multicaster that forwards events from one or more suppliers
to multiple consumers.

Limitations with the CORBA Event Service: Although
the CORBA Event Service addresses many limitations with
the standard SMI and AMI invocation models, the following
requirements of distributed applications are not specified ex-
plicitly in the standard CORBA Event Service [2]:
� QoS property support: In real-time systems, events

must be processed so that consumers can meet their QoS
needs, such as reliability, priority, ordering, and timeliness.
However, the CORBA Event Service provides no interfaces
or policies for supporting these QoS properties. For example,
there is no interface that consumers can use to specify their
execution deadlines or other scheduling requirements.
� Event filtering support: By federating event channels,

it is possible to create an event filtering graph that consumers
register with to receive subsets of supplier events. However,
this design increases the number of hops that an event must
travel between suppliers and consumers, thereby degrading
scalability. Thus, there is a need for centralized filtering to
improve scalability. As shown in Figure 2, without the sup-
port for centralized filtering, an event must cross the network
boundary before it can be rejected. With centralized filter-
ing, each consumer can set filtering properties at setup time.
Events not required by a consumer are rejected rapidly by an
event channel.

Historically, implementations of the CORBA Event Ser-
vice [2, 8] addressed these limitations by defining proprietary

1Some Event Service implementations use one-way requests, but this can
cause flow control and reliability problems due to the semantics of CORBA
one-way operations.

Filtering
Consumer

Network Boundary

Event Channel 1

Consumer2Consumer1

Event Channel 2

Supplier1 Supplier2

Filtering via Event Channel Federation

Network Boundary

Event Channel 1

Consumer2Consumer1

Supplier1 Supplier2

Centralized Filtering via Notification
Service

Per-Consumer Filter

Event Flow

Figure 2: Alternative Event Filtering Architectures

QoS properties and event filtering mechanisms. Proprietary
extensions make it hard to build interoperable heterogeneous
systems due to non-standard features. These extensions also
tightly couple users to a particular implementation of an Event
Service, which restricts the use of interchangeable solutions
from other middleware providers.

Better Solution: The CORBA Notification Service: The
CORBA Notification Service [9] was specified by the OMG
to address the limitations with the CORBA Event Service out-
lined above. The CORBA Notification Service is a proper
superset of the CORBA Event Service. Thus, in addition to
providing all the interfaces and functionality specified in the
Event Service, the CORBA Notification Service introduces the
following capabilities:

� Structured events: Unlike the CORBA Event Service,
whose push operations take genericAny data types, the
structured events in the Notification Service can carry filtering
and QoS parameters that influence the delivery of the payload
data to its destination.

� Filtering: The use of structured events enables con-
sumers to attach efficient filters to each proxy in a channel,
thereby specifying which events they are interested in receiv-
ing. In addition, the Notification Service defines a constraint
language that allows consumers to expressing arbitrarily com-
plex filtering constraints.

� Sharing subscription information between event chan-
nels and consumers: This capability allows suppliers to de-
termine the event types required by consumers of a channel.
Thus, suppliers only must produce events for consumers that
are interested in them. Likewise, consumers can determine
when new event types are offered by suppliers so they can sub-
scribe to new event types that become available.

� QoS properties: This capability allows suppliers, con-
sumers, or administrators of an event channel to configure var-

2

ious QoS properties, such as reliability, priority, ordering, and
timeliness, on a per-channel, per-proxy, or per-event basis.

Paper organization: The remainder of this paper is orga-
nized as follows: Section 2 describes the structure and func-
tionality of the CORBA Notification Service in more depth;
Section 3 describes the design challenges we addressed and
optimizations we applied when implementing this service in
TAO; Section 4 compares our work on the CORBA Notifi-
cation and Event Services with related work; and Section 5
presents concluding remarks and lessons learned.

2 Structure and Functionality in the
CORBA Notification Service

This section first describes the structure of the core compo-
nents2 in the CORBA Notification Service. We then outline
the dynamic interactions in the CORBA Notification Service
to illustrate how it operates in common use-cases.

2.1 Component Structure of the CORBA Noti-
fication Service

Figure 3 illustrates the components in the standard CORBA
Notification Service. This architecture is similar to the archi-

Proxy Pull Supplier

Event ChannelConsumer Admin Supplier Admin

Admin Filter Admin Filter

Proxy Push Supplier

Proxy Pull Consumer Proxy Push Consumer
Consumer Filter

Supplier Filter Supplier Filter

Consumer Filter

Pull Consumer Push Consumer

Pull Supplier Push Supplier

Event Flow

Figure 3: Components in the CORBA Notification Service

tecture of the CORBA Event Service, though some compo-
nents have a broader range of capabilities in the Notification
Service. The enhancements in the Notification Service archi-
tecture are backwardly compatible to preserve interoperability
with clients written for the CORBA Event Service. Each of
these components is described below.

2The termcomponentused throughout this paper refers to a “component”
in the general sense,i.e., an identifiable entity in a program, rather than in the
more specific sense of the CORBA Component Model [10].

Structured Events: Structured events define a standard data
structure into which a wide variety of event messages can be
stored. The schema for structured events is known to the No-
tification Service and its clients. Consumers can install differ-
ent filters that use the “filterable body” fields of the structured
event definition to match with the filter constraint expressions
efficiently. As shown in Figure 4, the header of a structured

Domain, Type and Event
Name

QoS for this event

Event Header

Filterable body fields

Data

Event Body

Figure 4: Structured Event

event consists of type information and a variable header, which
can carry the QoS properties of an event. The event body con-
sists of filterable body fields followed by the payload data.

Proxy objects: Proxy objects are delegates that provide
complementary interfaces to clients,i.e., a consumer obtains
and connects to a proxy supplier and a supplier obtains and
connects to a proxy consumer. Hence, a supplier sends events
to its proxy consumer, whereas a consumer receives events
from its proxy supplier. This abstraction enables anonymous
connectivity between consumers and suppliers.

Admin objects: Each admin object is a factory [7] that cre-
ates the proxy interface to which each client will ultimately
connect. Consumer admins create proxy suppliers to which
consumers connect. Conversely, supplier admins create proxy
consumers to which the suppliers connect.

The Notification Service treats each admin object as the
manager of the group of proxies it has created. Admin objects
can themselves have QoS properties and filter objects associ-
ated with them. The QoS properties associated with a given
admin object are assigned to each proxy object when the ad-
min object creates it, but can be tailored subsequently on a
per-proxy basis. Conversely, the set of filter objects associated
with a given admin are treated as a unit, which apply at all
times to all proxy objects that have been created by an admin
object.

Supporting multiple admin objects in a given event channel
enables the logical grouping of the proxy objects associated
with the channel according to common subscription informa-
tion. This feature is particularly useful with respect to con-
sumer admin objects, since it enables the channel to optimize
the servicing of a group of consumers that are interested in
receiving the same set of events.

3

Filter and Mapping Filter Objects: Filter objects can be
associated with all admin and proxy objects. Filter objects
that affect the event forwarding decisions made by proxy ob-
jects encapsulate a set of constraints. Each constraint consists
of (1) a sequence of event types and (2) a string containing
a boolean expression whose syntax conforms to a constraint
grammar. The default constraint language defined by the No-
tification Service is Extended TCL, which extends the TCL
(Trader Constraint Language) specified by the Trading Ser-
vice [11].

To enable consumers to affect the priority and lifetime prop-
erties of events, the CORBA Notification Service introduces
the concept ofmapping filter objects. Each proxy supplier
within a Notification Service event channel can have associ-
ated with it mapping filter objects that affect (1) the priority
property of the events it receives and (2) the lifetime property
of the events it receives.

Event channels: An event channel is a factory that cre-
ates consumer admin and supplier admin objects. This dif-
fers slightly from the CORBA Event Service event channels,
which only have one instance of admin objects. QoS and ad-
min properties can be set on the event channel during its cre-
ation. These parameters are passed as default values to any
admin object created by the channel. These parameters can be
changed subsequently by consumers and suppliers.

Event channel factory: An event channel factory is a well
defined interface for creating new instances of event channels.
Figure 5 shows the Notification Service class hierarchy. A

«interface»
EventChannelFactory

«interface»
EventChannel

«interface»
ConsumerAdmin

«interface»
SupplierAdmin

«interface»
ProxyConsumer

«interface»
ProxySupplier

������Consumer������Supplier

«bind» «bind»

Figure 5: Notification Class Hierarchy

hierarchical object model is introduced improve the adminis-

tration of the Notification Service by applying the following
design principle:

� Each object is created by another object factory;

� Each parent factory assigns a unique identifier to the ob-
jects that it creates;

� Each object maintains a back pointer to its parent;

� Parents maintain a list of children that can be queried for.

This hierarchy allows any client of the Notification Service to
discover all objects that comprise the channel, starting with
any object in the channel.

QoS properties: The specification uses properties,i.e.,
<String , Any> tuples, to define QoS properties. QoS prop-
erties can be associated with an event channel, admin objects,
proxy suppliers and consumers, and individual event mes-
sages. The properties defined by the specification are:

� Reliability – The event reliability and connection relia-
bility specify fault tolerance properties to the Notifica-
tion Service. If these properties are supported then after
a Notification Service is restarted after a crash, it must
reconnect to all its clients and deliver all events that have
not expired yet to its consumers.

� Priority – This property controls the order in which
events are delivered to consumers. The event channel will
attempt to deliver messages to consumers in priority or-
der.

� Expiration times– This property indicates the time range
in which an event is valid. If an event is not delivered
within a specified time then an event channel should dis-
card it.

� Earliest delivery time– This property specifies how long
an event must be held in the channel before it is delivered.

� MaximumEventsPerConsumer– This property bounds
the maximum number of events the channel will queue
on behalf of a given consumer. This property helps avoid
the case when the channel fills up its queues with events
destined for a misbehaving consumer.

� Order Policy– This property specifies the order in which
events are buffered for delivery.

� Discard Policy– This property specifies policies for dis-
carding events when the queues are full.

Admin properties: The following administrative properties
can be set on an event channel:

� MaxQueueLength– This property specifies the maximum
number of events that will be queued by the channel be-
fore the channel begins discarding events or rejecting new
events upon receipt of each new event.

4

� MaxConsumers– This property specifies the maximum
number of consumers that can be connected to the chan-
nel at any given time.

� MaxSuppliers– This property specifies the maximum
number of suppliers that can be connected to the chan-
nel at any given time.

2.2 Dynamic Interactions in the CORBA Noti-
fication Service

In order for consumers to receive events from a supplier via
an event channel, they must each first connect to the channel,
which requires the steps shown in Figure 6. These steps are

EVENT
CHANNEL

P
U

S
H

P
H

A
S

E

CONSUMER

for_consumers()

RECEIVE
NOTIFICATIONS

obtain_push_supplier()

CONNECT TO
THE CHANNEL

OBTAIN A
PROXY SUPPLIER

connect_push_consumer(this)

OBTAIN A
CONSUMERADMIN

FACTORY

push(event)

C
O

N
N

E
C

T
IO

N
P

H
A

S
E

Figure 6: Connecting a Consumer to an Event Channel

explained below:

1. Obtain a ConsumerAdmin factory: Consumers that
want to connect to an event channel must first invoke the
event channel’sfor consumers operation to obtain a
ConsumerAdmin object reference. TheConsumerAdmin
is a factory that returns object references to supplier proxies.

2. Obtain a proxy supplier: After a consumer calls
the for consumers operation to get an object refer-
ence to the ConsumerAdmin factory from the event
channel, it must decide whether to bepassive or ac-
tive with respect to obtaining event notifications. The
obtain push supplier operation is invoked by con-
sumers that want to receive events passively from active
PushSuppliers via a channel. This operation returns
an object reference to aProxyPushSupplier . Con-
versely, theobtain pull supplier operation is invoked
by consumers that want to pull events actively from a
PullSupplier .

3. Connect to an event channel: After consumers obtain
the appropriate supplier proxy, they use the proxy to connect
themselves to an event channel. At first glance, this “double

dispatching” handshake between the consumer and the sup-
plier proxies seems unnecessary and overly complex. How-
ever, the channel uses this bi-directional exchange of object
references to keep track of its consumers and suppliers so it
can disconnect them gracefully.

3 Designing and Optimizing TAO’s
Notification Service

This section describes how we implemented the CORBA No-
tification Service in TAO [12], which is a CORBA-compliant
ORB that supports applications with stringent QoS require-
ments. TAO’s Notification Service makes it easier to de-
velop distributed applications in heterogeneous environments
by providing application transparency, high flexibility, scala-
bility, interoperability, bounded resource consumption, filter-
ing of events, and FIFO/deadline/priority-basedevent delivery.

The following design challenges were identified prior to and
during the development of TAO’s Notification Service:

1. Handling multiple event, supplier and consumer types
uniformly.

2. Efficiently propagating different event types to different
types of consumers.

3. Minimizing interference between the event channel par-
ticipants.

4. Ensuring fairness in event processing.

5. Optimizing the performance of the CORBAAny type.

6. Optimizations for footprint reduction.

7. Customizing event channels for particular deployment
environments.

8. Optimizing event filter evaluation.

These challenges and our solutions are discussed below. To
enhance the generality of our solutions, we describe them in
terms of the patterns [7, 13] we used to resolve the design chal-
lenges.3

3.1 Challenge 1: Handling Multiple Event,
Supplier and Consumer Types Uniformly

Context: Events transmitted between event channel partici-
pants can have different representation, such asAnys, struc-
tured events, and sequences of structured events.

3Note to OM’01 reviewers: the final version of this paper will contain the
results of benchmarks that will demonstrate empirically the benefits of these
design techniques and optimizations.

5

Problem: An event channel must propagate events from
suppliers that feed its events in any form to consumers that
want the event in any other form. When events are of the same
type, however, we do not want to perform needless conver-
sions to a canonical format, nor do we want to copy the event
multiple times in memory. Similarly, there are different types
of consumers and suppliers that can connect to the event chan-
nel. Since IDL interfaces are similar we do not want to write a
specific implementation for each type with redundant code in
each one of them.

Solution ! the Adapter pattern: This pattern converts
the interface of a class into another interface that clients ex-
pect [7]. The Adapter pattern lets classes work together that
could not otherwise due to incompatible interfaces. This pat-
tern relies on object composition,i.e., the adaptee object is
contained by the adapter object. The adapter also implements
a target interface, which is the interface expected by a client
class. The client deals with and invokes methods, only on the
target interface. The adapter implementation of the target in-
terface delegates operations to the adaptee. Hence, various
adaptees can conform to the target interface and thus maintain
a single interface to a client.

Applying the Adapter pattern in TAO: Figure 7
shows how TAO uses a base class to represent an
event. The Any Event and Structured Event

Notify_Event

Any_Event Structured_Event

Figure 7: TheNotify Event Abstraction

classes (Adapters) “adapt” theCORBA::Any and
CosNotification::StructuredEvent (Adaptees)
to the Notify Event interface (Target). These classes
know how to manage memory and convert between the
various types,i.e., Any and Structured . This design
results in a uniform treatment of events throughout TAO’s
Notification Service event channel implementation, thereby
minimizing code duplication and allowing the integration of
different strategies to process all types of events.

Figure 8 shows the classes TAO’s Notifica-
tion Service uses to represent proxy objects. The
Any ProxyConsumer , Structured ProxyConsumer
and Sequence ProxyConsumer classes (Adapters)
are used to adapt theCosEvent::ProxyConsumer ,

Proxy

Notify_ProxyConsumer
Notify_ProxySupplier

Any_ProxyConsumer

Structured_ProxyConsumer

Sequence_ProxyConsumer

Similarly for ProxySuppliers

Figure 8: Abstraction for Proxy Objects

CosNotifyAdmin::StructuredProxyConsumer ,
and CosNotifyAdmin::SequenceProxyConsumer
interfaces (Adaptees) to theNotify ProxyConsumer
(Target) interface. Similarly, theProxySupplier classes
are adapted to theNotify ProxySupplier interface.

3.2 Challenge 2: Efficiently Propagating Dif-
ferent Event Types to Different Types of
Consumers

Context: When an event is send from a supplier to the event
channel, the receiving consumer(s) might not accept the same
type of event,e.g., an event send as anAny type could be
received as anAny, a structured event, or a sequence of struc-
tured events.

Problem: We need to propagate different event types to dif-
ferent types of consumers efficiently.

Solution! the Visitor pattern: This pattern decouples op-
erations that traverse elements in a complex object structure
from the object structure itself [7]. The Visitor pattern lets us
define a new operation without changing the classes of the el-
ements on which it operates. When a visitor object calls the
accept method of an element in an object structure, the im-
plementation of theaccept operation calls back the visitor
object’svisit method and passes information about its own
concrete type.

Applying the Visitor pattern to TAO: Figure 9 illustrates
how each consumer type implements thedispatch event
method, which in turn invokes thepush event method for
consumer-specific event dispatching. When an event is se-
lected to be dispatched to a consumer, the event processing
engine invokes thedispatch event method of the proxy

6

+dispatch_event()

ProxyConsumer

+dispatch_event() : Notify_Event

Any_ProxyConsumer

+dispatch_event() : Notify_Event

Structured_ProxyConsumer

e->push_event (this)

+push_event() : Any_ProxyConsumer
+push_event() : Structured_ProxyConsumer

Notify_Event

e->push_event (this)

Figure 9: Double Dispatching for Event Propagation

consumer. In turn, the specific implementation of this virtual
method invokes the correctpush event method of the event.
This method then performs any necessary type conversion and
initiates event dispatching to the remote consumer.

3.3 Challenge 3: Minimizing Interference Be-
tween Event Channel Participants

Context: An Event channel should be able to handle event
delivery from suppliers and should be able to perform event
forwarding with the minimum possible latency,i.e., suppli-
ers delivering an event to the channel should not have to wait
while the channel forwards events to recipient consumers.
Similarly when the event channel forwards events to multiple
consumers, each consumer might spend an unbounded amount
of time in the implementation of itspush method.

Since events are forwarded by the event channel via a
CORBA two-way method, the channel has no choice but to
have the dispatching thread wait while the consumer returns
from the call. Another case of such a coupling occurs when a
method on a filter object is invoked to check if an event’s prop-
erties match the filter constraints. A constraint could be arbi-
trarily complex and the filter itself could be a remote object.
These factors can affect the event channel’s event processing
time.

Problem: A reasonable implementation should strive to
minimize the interference between different participants of the
event channel.

Solution! the Active Object pattern: This pattern decou-
ples method execution from method invocation in order to sim-
plify synchronized access to an object that resides in its own
thread of control [13]. The Active Object pattern allows one

or more independent threads of execution to interleave their
access to data modeled as a single object.

Applying the Active Object pattern to TAO: Using the
Active Object pattern at the various stages of event processing
enables the minimization of the interference between the event
channel participants. As shown in Figure 10, events and the
operation performed on them are encapsulated as command

Enqueuing Thread

Command Queue

Processing
Thread Pool

Dispatch to remote
consumer

Filtering

Figure 10: Asynchronous Event Processing Using the Active
Object Pattern

objects. Enqueueing thread(s) place events into a command
queue according to a buffering order policy. An Active ob-
ject with worker threads dequeues and executes the command
objects in the queue. Note that the ORB itself can be con-
figured to increase concurrency by using the Leader/Followers
pattern [13]. In this case, each ORB invocation is handled by a
separate thread, allowing multiple events to be delivered con-
currently to the event channel.

3.4 Challenge 4: Ensuring Fairness in Event
Processing

Context: The priority QoS property specifies the relative
importance of an event. The Notification Service ensures that
priorities are respected by enqueueing events in an internal
buffer according to priority.

Problem: A long-duration filter evaluation operation involv-
ing a maximum of four remote filters (1 each for the Proxy Ob-
jects and 1 each at the Admin Objects) can starve other events
in the queue and prevent them from being processed promptly.

Solution ! the Command Object pattern: This pattern
encapsulates a request as an object, thereby allowing param-
eterization of different requests [7]. The actual nature of the
request is hidden by the Command Object interface. Differ-
ent concrete implementation of the Command interface imple-
ment the request and provide semantics to it. This pattern can
be used to decompose the internal event processing within an
event channel into stages to ensure fairness.

Applying the solution in TAO: The filter evaluation, sub-
scription lookup and event dispatching operations are encap-
sulated as command objects. As shown in Figure 11 instead

7

Command Queue

1 2 4 5

6

1 Proxy Supplier Filter
Evaluation

2 Consumer Admin Filter
Evaluation

4Proxy Consumer Filter
Evaluation 5 Supplier Admin Filter

Evaluation

3
Subscription Lookup

Operation

3

6 Event Dispatching

Figure 11: Processing Command Objects to Ensure Fairness

of performing these six operations synchronously, the evalua-
tion is broken up into discrete operations. If the event is still
eligible for further processing after executing an command op-
eration, it is enqueued back into the command queue as the fol-
lowing command Object and subsequently dequeued for fur-
ther processing. Finally, the dispatching command send out
the event to the remote consumer.

3.5 Challenge 5: Optimizing the Performance
of Anys

Context: A CORBA-compliant Notification Service must
be able to process events containingAnys.

Problem: In CORBA, Anys are expensive data types be-
cause they can have many levels of nesting. For example, an
Any can be contained within a structure, which can itself be
contained within anAny and so forth. When a demarshaling
engine decodes this expensive type from a common data rep-
resentation (CDR) stream, it makes a copy of the entire data
buffer used to represent theAny. Likewise, copying anAny
can require several memory allocations and buffer copys to ob-
tain a new representation of the CDR stream. Moreover, the
C++ mapping of CORBAAnys requires them to be respon-
sible for any memory returned to the application. Optimized
ORBs should share theAny contents even if there are multiple
copies of theAny object.

Solution ! Reference counting via the Handle/Body id-
iom: This presents multiple logical copies of the same data
while sharing the same physical copy [14]. In C++, this idiom
is often used to automate the memory management in conjunc-
tion with reference counting and smart pointers.

Applying the solution in TAO: In TAO the CDR marshal-
ing engine does not copy the CDR stream into theAny, in-
stead, all CDR streams are reference counted, and theAnyonly
increments the reference count to maintain a logical copy of

the buffer. Likewise, once the contents of theAny are ex-
tracted by the application theAny object becomes responsible
for deallocating the extracted object. This extracted object can
be shared by multiple instances of theCORBA::Any object,
minimizing the cost of copying and extracting the contents re-
peatedly. The use of the Handle/Body idiom implements this
optimization without changing the semantics required by the
standard C++ mapping.

3.6 Challenge 6: Optimizations for Footprint
Reduction

Context: The Notification Service specification has many
features that might be required by all applications,e.g., some
deeply embedded systems may not want to incur the increase
in memory footprint for certain unneeded features.

Problem: A required set of Notification features should be
“composable” by users.

Solution! the Builder pattern: This pattern separates the
construction of a complex object from its representation so that
the same construction process can create different representa-
tions [7].

Applying the solution in TAO: The Builder pattern uses
the appropriate sets of libraries to compose a configuration re-
quired in a particular use-case. For example, a configuration
containingno-filtering + AnyProxySupplier + AnyProxyCon-
sumer + reactive dispatching strategywould yield the seman-
tics of the CORBA Event Service.

These features are separated into libraries as follows:

� The three different pairs of proxy supplier and proxy
consumer types are separated into different libraries. In
a specific configuration, only the required type (e.g.,
the push proxy supplier) may be loaded by a builder at
startup. Hence, the other types of proxy implementations
are not loaded since they are not needed.

� An application may not require filtering, in which case
the filtering engine library is not loaded by the builder.

� The Dispatching Strategies could be simple reactive dis-
patching, or asynchronous dispatching as described in
Section 3.2.

3.7 Challenge 7: Customizing Event Channels
for Particular Deployment Environments

Context: The standard CORBA Notification Service is con-
figurable in the following manner:

1. A user can specify features required by configuration.

8

2. A specific class implementation can be modified by the
user to enhance or customize behavior.

3. Users can vary default properties, such as thread pool size
and locking strategy.

Problem: A mechanism is needed to allow the application
developers to use the various configurable option in the Noti-
fication Service.

Solution ! the Component Configurator pattern: This
pattern decouples the behavior of component services from the
point in time at which service implementation are configured
into an application [13].

Applying the solution in TAO: All objects in TAO’s Notifi-
cation Service implementation are created via factory objects.
These factories can be loaded statically or dynamically by us-
ing the ACE framework [15]. Figure 12 shows a schematic of
the how the Component Configurator is used in the Notifica-
tion Service.

Configuration File

Component -Configurator

Filter Library Dispatching Library Proxy Library

Specifies Options

Loads LibrariesNotify Engine

Uses Configurator

Figure 12: Apply the Component Configurator Pattern in the
Notification Service

3.8 Challenge 8: Optimizing Filter Evaluation

Context: Admin objects in the Notification Service can be
associated with filter objects. All proxy’s connected to such an
admin share the list of filter objects associated with the admin.
Moreover, the proxys themselves are associated with filter ob-
jects. An event must satisfy the constraints specified by the
filters at both the proxy and admin level.

Problem: After an admin level filter has been matched suc-
cessfully against an event, we do not want to repeat this match-
ing operation for each proxy connected to the same admin.

Solution ! Optimization principle pattern of “passing
hints”: We use a variation of the optimization principle pat-
tern “passing information between layers” [16]. This pattern

is commonly used in protocol stack optimizations where each
protocol layer passes certain information to the layer on top to
help it avoid demultiplexing overhead.

Applying the solution in TAO: In TAO’s Notification Ser-
vice, we pass a hint to proxy objects to skip filter evaluation of
their parent admin object if this has already been performed.
We can optimize the filtering of a given event by a group of
proxies since each member of the group logically applies the
same filters to the same event. Thus, the results of the evalua-
tion of a given event against a given filter can be shared by all
proxy objects managed by a given admin object.

Figure 13 shows the configuration of a consumer admin
(with filter A) of proxy supplier 1 (with filterB) and proxy

Proxy Supplier 1 Proxy Supplier 2

Filter B Filter C

Supplier Admin

Filter A

Figure 13: The Optimizing Filter Evaluation

supplier 2 (with filterC). An event must pass filters at both lev-
els to be dispatched to consumers4. Filter A is evaluated first
and the result of that evaluation is passed as a hint to both the
proxy suppliers. This hint is used subsequently to determine if
a proxy filter should be evaluated.

4 Related Work

A number of research projects have focused on distributed
publish/subscribe mechanisms. For example, Rajkumaret al.,
describe a real-time publisher/subscriber prototype developed
at CMU SEI [17]. Their Publisher/Subscriber model is func-
tionally similar to the CORBA Event and Notification Ser-
vices, though it uses real-time threads to prevent priority in-
version within the communication framework. One interest-
ing aspect of the CMU model is the separation of priorities
for subscription and event transfer so that these activities can
be handled by different threads with different priorities. How-
ever, the model does not utilize any QoS specifications from
publishers (suppliers) or subscribers (consumers). As a result,
the message delivery mechanism does not assign thread prior-
ities according to the priorities of publishers or subscribers. In
contrast, TAO’s Real-time Event Service [2] utilizes QoS pa-
rameters from suppliers and consumers to guarantee the event

4An inter-filter group operator specifies if the results of evaluating the
proxy and admin filters should be logicallyAND or OR

9

delivery semantics determined by a real-time scheduling ser-
vice.

COBEA [8] is a CORBA-based event architecture service
that generates parameterized events, which are published by a
trading service. For scalability, clients must register their in-
terest at the service, at which point an access control check
is carried out. Subsequently, whenever a matching event oc-
curs, the client is notified. This COBEA project is similar to
the TAO Notification Service, the main difference being that
TAO’s Notification Service is based on the OMG standard.

There are several commercial CORBA-compliant Notifica-
tion Service implementations available from vendors, such as
Iona, Inprise, SunSoft [18], and DTSC. Iona also sells Or-
bixTalk, which is a messaging technology based on IP mul-
ticast. Unfortunately, since the CORBA Notification Service
specification does not address issues critical for real-time ap-
plications, these implementations are not acceptable solutions
for many domains.

5 Concluding Remarks

Many distributed applications, such as real-time avionics mis-
sion computing systems, distributed interactive simulation,
and computer-assisted stock trading, require an event-based
communication model. By using the Notification Service de-
scribed in this paper, these applications can be built effectively
by leveraging a middleware solution that is standards-based,
flexible, and optimized for high-performance and scalability.
The CORBA Notification Service builds upon the CORBA
Event Service, which delivers events to all consumers con-
nected to it on a best-effort basis. The Notification Service
extends this service by providing the following two general
mechanisms:

� Event filtering, which allow applications to control which
supplier events are disseminated to which consumers.
This selective control helps reduce redundant network
traffic, i.e., events that would be rejected by consumer
applications after traversing the network are not sent in
the first place.

� QoS properties, such as reliability, priority, ordering, and
timeliness, which allow applications to bound resource
consumption of the Notification Service. It also enables
applications to specify the ordering of events in an event
channel, thereby allowing events to be propagated with
priorities and deadline criteria, rather than the strict FIFO
ordering of the standard CORBA Event Service.

TAO’s implementation of the Notification Service addresses
the issue of scalability and high-performance by applying suit-
able patterns and reusable framework components, optimizing

the critical path of event propagation at the service- and ORB-
levels, and providing configurability to reduce memory foot-
print and customize deployment.

All the source code, documentation, examples, and tests for
TAO and its Notification Service and Real-time Event Service
mechanisms are open-source and can be downloaded from
www.cs.wustl.edu/ �schmidt/TAO.html .

References
[1] Object Management Group,The Common Object Request Broker: Ar-

chitecture and Specification, 2.4 ed., Oct. 2000.
[2] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and

Performance of a Real-time CORBA Event Service,” inProceedings of
OOPSLA ’97, (Atlanta, GA), ACM, October 1997.

[3] Object Management Group,CORBA Messaging Specification, OMG
Document orbos/98-05-05 ed., May 1998.

[4] A. B. Arulanthu, C. O’Ryan, D. C. Schmidt, M. Kircher, and J. Par-
sons, “The Design and Performance of a Scalable ORB Architecture for
CORBA Asynchronous Messaging,” inProceedings of the Middleware
2000 Conference, ACM/IFIP, Apr. 2000.

[5] Object Management Group,Fault Tolerant CORBA Specification, OMG
Document orbos/99-12-08 ed., December 1999.

[6] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith, “Using Intercep-
tors to Enhance CORBA,”IEEE Computer, vol. 32, pp. 64–68, July
1999.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns: El-
ements of Reusable Object-Oriented Software. Reading, MA: Addison-
Wesley, 1995.

[8] C. Ma and J. Bacon, “COBEA: A CORBA-Based Event Architecture,”
in Proceedings of the4rd Conference on Object-Oriented Technologies
and Systems, USENIX, Apr. 1998.

[9] Object Management Group,Notification Service Specification, OMG
Document telecom/99-07-01 ed., July 1999.

[10] BEA Systems,et al., CORBA Component Model Joint Revised Submis-
sion. Object Management Group, OMG Document orbos/99-07-01 ed.,
July 1999.

[11] Object Management Group,Trading ObjectService Specification,
1.0 ed., Mar. 1997.

[12] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and Perfor-
mance of Real-Time Object Request Brokers,”Computer Communica-
tions, vol. 21, pp. 294–324, Apr. 1998.

[13] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,Pattern-
Oriented Software Architecture: Patterns for Concurrency and Dis-
tributed Objects, Volume 2. New York, NY: Wiley & Sons, 2000.

[14] Jim Coplien, Advanced C++ – Programming Styles and Idioms.
Addison-Wesley, 1992.

[15] D. C. Schmidt and T. Suda, “An Object-Oriented Framework for
Dynamically Configuring Extensible Distributed Communication Sys-
tems,”IEE/BCS Distributed Systems Engineering Journal (Special Issue
on Configurable Distributed Systems), vol. 2, pp. 280–293, December
1994.

[16] I. Pyarali, C. O’Ryan, D. C. Schmidt, N. Wang, V. Kachroo, and
A. Gokhale, “Applying Optimization Patterns to the Design of Real-
time ORBs,” inProceedings of the5th Conference on Object-Oriented
Technologies and Systems, (San Diego, CA), USENIX, May 1999.

[17] R. Rajkumar, M. Gagliardi, and L. Sha, “The Real-Time Pub-
lisher/Subscriber Inter-Process Communication Model for Distributed
Real-Time Systems: Design and Implementation,” inFirst IEEE Real-
Time Technology and Applications Symposium, May 1995.

[18] Y. Aahlad, B. Martin, M. Marathe, and C. Lee, “Asynchronous Notifi-
cation Among Distributed Objects,” inProceedings of the2nd Confer-
ence on Object-Oriented Technologies and Systems, (Toronto, Canada),
USENIX, June 1996.

10

