
 Page 1 of 10

A Model-Based Approach to System Specification for
Distributed Real-time and Embedded Systems*

Radu Cornea1, Shivajit Mohapatra1, Nikil Dutt1, Rajesh Gupta2, Ingolf Krueger2, Alex Nicolau1,
Doug Schmidt3, Sandeep Shukla4, Nalini Venkatasubramanian1

1Department of Computer Science, UC Irvine,
{radu,mopy,dutt,nicolau,nalini}@ics.uci.edu

2Department of Computer Science and Engineering, UC San Diego,
{gupta,ikrueger}@cs.ucsd.edu

3Department of Electrical Engineering and Computer Science, Vanderbilt University,
d.schmidt@vanderbilt.edu

4Department of Electrical and Computer Engineering, Virginia Tech.
shukla@vt.edu

1 Introduction
Distributed, real-time, and embedded (DRE) systems take input from many remote sensors,
and provide geographically-dispersed operators with the ability to interact with the collected in-
formation and to control remote actuators. These devices are useful in a range of DRE application
domains such as avionics, biomedical devices and telemedicine, remote sensing, space explora-
tion and command and control. An important design challenge for such complex DRE computing
systems is to satisfy performance and reliability constraints while ensuring efficient exploration
through a very large architectural design space, and a very large implementation space for micro-
electronic system implementations. Current strategies in meeting these challenges has led to
emergence of a new class of modeling and implementation tools that enable composition of such
systems for microelectronic implementations and limited capabilities for retargeting existing
compilers for new processors. However, the application development process for DRE systems
continues to be very manually driven. The design of DRE systems is often very platform specific
from the very early stages of the design process. Combinations of functional and non-functional
requirements considered at the early stages of design are very specific for the system that is being
developed. This makes the resulting system design inflexible (against changing requirements) and
non-reusable (in settings with different requirements). To overcome these challenges, we are de-
veloping the FORGE project [Cornea03], which uses the following three mechanisms for dealing
with the specific challenges of DRE systems:

• Conceptualization and specification of DRE system requirements including those related to
its structure, behavior, and performance/QoS guarantees;

• Modeling the available design knowledge (including the elicited requirements and the target
platform) using flexible software architecture that are specified via architectural description
languages (ADLs);

• Targeting flexible and optimizing middleware solutions and operating systems as our imple-
mentation platform.

* This work was partially supported by NSF award ACI-0204028.

 Page 2 of 10

Overall our approach is to use a model-based approach to system specification that allows reason-
ing about functional and non-functional properties of the system from the properties of the con-
stituent components and the composition mechanism used; and to use a middleware infrastructure
that lends itself to platform specific optimization for performance and size. Specifically, we focus
on adaptive and reflective middleware services to meet the application requirements and to dy-
namically smooth the imbalances between demands and changing environments [Venkatubrama-
nian01, Mohapatra02]. While a full discussion on the nature of middleware is out of scope here,
very briefly, adaptive middleware is software whose functional and QoS-related properties can be
modified either:

(a) Statically, for example, to reduce the memory footprint, exploit platform-specific capa-
bilities, functional subsetting, and minimize hardware/software infrastructure dependen-
cies; or

(b) Dynamically, for example, to optimize system responses to changing environments or re-
quirements, such as changing component interconnections, power-levels, CPU/network
bandwidth, latency/jitter; and dependability needs.

Reflective middleware [Wang01] goes a step further in providing the means for examining the
capabilities it offers while the system is running, thereby enabling automated adjustment for op-
timizing those capabilities. Thus, reflective middleware supports more advanced adaptive behav-
ior, i.e., the necessary adaptations can be performed autonomously based on conditions within the
system, in the system's environment, or in combat system doctrine defined by operators and ad-
ministrators.

Figure 1 illustrates the fundamental levels of adaptation and reflection that must be supported by
middleware services: (a) changes in the middleware, operating systems, and networks beneath
the applications to continue to meet the required service levels despite changes in resource avail-
ability, such as changes in network bandwidth or power levels, and (b) changes at the application
level to either react to currently available levels of service or request new ones under changed
circumstances, such as changing the transfer rate or resolution of information over a congested
network. In both instances, the middleware must determine if it needs to (or can) reallocate re-
sources or change strategies to achieve the desired QoS. DRE applications must be built in such
a way that they can change their QoS demands as the conditions under which they operate
change. Mechanisms for reconfiguration need to be put into place to implement new levels of
QoS as required, mindful of both the individual and the aggregate points of view, and the con-
flicts that they may represent.

Figure 1: Middleware services for DRE applications

 Page 3 of 10

2 Collaborative Specifications and Semantic Objects
Recently advances in middleware technologies such as the ACE/TAO or real-time extensions to
CORBA, have significantly improved the decoupling of implementation components within
complex distributed, reactive systems. This decoupling helps building component-oriented appli-
cations that can be more flexibly composed, and are easier to configure. It facilitates integration
of off-the-shelf system parts, thus enabling better reuse of proven solutions. Furthermore, mainte-
nance of component-oriented systems is simplified, because individual components can be more
easily replaced than in tightly-coupled or monolithic system implementations.

At the heart of the decoupling of components in middleware infrastructures is a shift of focus
from purely control-flow- and state-oriented system execution towards message- and event-
oriented component interaction or collaboration. Event channels within the middleware, for in-
stance, provide mechanisms for signaling the occurrence of events, as well as for the subscription
to event notification. The behavior of the overall system emerges as the interplay of the compo-
nents collaborating to implement a certain task or service by exchanging messages or processing
events. Therefore, a crucial step in developing service-oriented systems is the capturing and mod-
eling, as well as the efficient and correct implementation of the interactions among the compo-
nents establishing and defining a service. The interactions in which a component is involved re-
flect the relationship between the component and its environment, and thus characterize the com-
ponent’s interface beyond static lists of method signatures.

Message Sequence Charts (MSCs) and their relatives have been developed to complement the
local view on system behavior provided by state-based automaton specifications. MSCs allow the
developer to describe patterns of interaction among sets of components; these interaction patterns
express how each individual component behavior integrates into the overall system to establish
the desired functionality. Typically, one such pattern covers the interaction behavior for (part of)
one particular service of the system. A particular strength of MSCs is capturing component col-
laboration transparently; hence these are ideal for representing the QoS constraints. Easiest ex-
amples are constraints related to timing and rate of events and actions, but other constraints –
such as at most a certain amount of memory be spent in processing the enclosed message se-
quence – are also possible.

Streams and Relations on streams have emerged as an extremely powerful specification mecha-
nism for distributed and interactive systems [Broy01], suitable for providing the semantic basis
for MSCs and its hierarchical extensions. In this model, we view systems as consisting of a set of
components, objects, or processes, and a set of named channels. Each channel is directed from its
source to its destination component. Channels connect components that communicate with one
another; they also connect components with the environment. Communication proceeds by mes-
sage exchange over these channels.

Mathematically, a stream is a finite or infinite sequence of messages, occurring on a channel of
the system. In other words, streams represent the communication histories of system components.
Individual components can be understood as relations over their input/output histories. Intui-
tively, we describe a component by its reactions to the inputs it receives over time. This model
lends itself nicely to the capturing of collaborations and services: they emerge as projections of
the overall system behavior on certain components and their channels. Because in the stream
model we can reference entire histories of component interactions, we can describe and reason
about the global QoS properties mentioned above. Earlier, we have used this mathematical model
successfully to define a precise service notion, supporting simple QoS specifications [Krueger02].
MSC specifications can be systematically transformed into state-oriented component implementa-
tions. This is an important step for ensuring that the implementation meets the elicited interaction
requirements, and reduces the amount of manual work needed to achieve correct system designs.

 Page 4 of 10

Because collaboration specifications describe components together with the context they operate
in, these provide important design information required to provide optimized system implementa-
tions. In particular, in the context of the FORGE project [Cornea03], a collaboration specification
for a particular service will include information on what part of the middleware, and of other ex-
ternal components is required for implementing the service. An intelligent linker or runtime sys-
tem can use this information to reduce the memory footprint of the implementation.

Architecture Description Languages (ADL) have traditionally been employed by the compilers
for managing the micro-architectural resources of the CPU (registers, functional units). By speci-
fying machine abstractions that capture both a processor's structure and behavior at a high level,
the ADL can drive the automatic generation of compiler/simulator toolkits, allowing for early
"compiler-in-the loop" design space exploration. This simultaneous exploration of the applica-
tion, architecture and compiler allows early feedback to the designers on the behavior of the
match between the application needs, the architectural features, and the compiler optimizations.

In case of heterogeneous machines, comprising multiple processors/resources, the ADL alone is
not sufficient. A Resource Description Languages (RDL) is included for specifying attributes of
the available hardware, as well as communication structure, constraints and system requirements.
The RDL/ADL mechanisms expose both the architecture of the system and the resource con-
straints to the compiler, allowing for an effective match of the application to the underlying
hardware.

An example of ADL language that supports fast retargetability and DSE is EXPRESSION [Ex-
press, Halambi99, Mishra01]. The language consists of two main parts: behavior and structure
specification. In the behavior component the available operations and instructions are enumer-
ated, as well as their execution semantics; this drives both the code generation phase of the com-
piler and the functional execution part of the simulator. The structure component describes the
components of the processor, the connectivity (paths) between them and the memory subsystem;
it is mainly used in the compiler's optimization phases to generate code that best match a given
architecture. Also, the simulator accurately generates cycle by cycle statistics based on the same
description.

4 Resource and Architecture Description in FORGE

One goal of the FORGE project is to integrate the middleware abstraction layer with the hard-
ware/OS abstraction layer. This section describes mechanisms for capturing resources and archi-
tectures at these two levels and mechanisms to allow interactions between the levels.

Compiler technology has traditionally targeted mainly individual processors or controllers. How-
ever, designers of DRE applications increasingly must deal with large systems, containing multi-
ple processor cores, peripherals, memories, connected through different wireline and wireless
networks. FORGE extends the traditional notion of a compiler and ADL to include not only plat-
form specific architectural details but also capabilities of the middleware services needed for an
application. By viewing the system components, such as CPUs (e.g., data collection drones), dif-
ferent computing devices and peripherals as resources that are described in a high-level language,
it is possible to allow the compiler to generate service specifications in a more globally optimal
manner.

The compiler is not the only place where the higher-level information can prove useful. At run-
time, information can be passed between abstractions at different levels, making the decision
process more aware of the actual device and application, so that the power and resource utiliza-
tion are improved. The OS/hardware level resides closest to the actual hardware device and has
full knowledge of its capabilities and limits. By relaying some of this information to the higher
levels, it helps the middleware framework in making decisions of task migration and

 Page 5 of 10

node/network restructuring (better mapping between tasks with different demands and available
heterogeneous nodes):

• Computing power (expressed in MIPS): in general, nodes are heterogeneous; their hardware
processing capabilities may vary over a large range depending on the type and number of
processors, frequency at which they are running and other local factors. Similarly, tasks
(particularly in time-constrained applications) may be characterized for WCET as well as
response time requirements. Middleware can make use of this information when migrating
the tasks between nodes or duplicating tasks on a node in response to increases in the proc-
essing workload.

• Available total memory: memory availability may not only be different but also diverse
across different nodes in a DRE system. Memory availability can be matched to task mem-
ory footprints for improved resource utilization.

• Availability of specialized functional units (and resources)

• Power budget or efficient battery discharge profile: typically, the middleware level assumes
a fixed energy available to each node and a linear discharge rate. In reality, the available en-
ergy depends heavily on the discharge curve. Discharges under a high current may weaken
the battery and shorten its life. Similarly, other nodes may be able to renew their energy lev-
els by using solar cells. In this case, the available energy profile on the node will have a pe-
riodic behavior, with high level during daytime and lower levels during nights, when the
only energy comes from the battery. A coordinated attempt to match desired energy con-
sumption profile through distribution and scheduling of tasks in a DRE system would be de-
sirable for efficient utilization of system resources.

Thus, the lower level (OS/hardware) can provide the middleware levels with a simplified view of
the current state of the actual device at any point in time (in terms of processing capabilities,
available power and memory). On the other end, the application/middleware levels controls how
the application is to be distributed and run on the available network of nodes. They have an ex-
tended view of the requirements of the system at any point of time and can provide valuable in-
formation to the OS/hardware (lower levels). When making scheduling decisions, the
OS/hardware makes no assumption about the current and future position of the node or upcoming
processing requirements. They have a limited local view, where the actual distributed system is
not visible. When useful, the middleware level can make parts of the global information which
are relevant available to the lower levels:

• at the OS level, a task is viewed as a black box, assuming the worst case execution time and
maximum power consumption. In reality, a task may be profiled a priori and a more realistic
execution time and power profile could help the OS to make better scheduling decisions.

• some tasks are not too important for the system at specific times and they may be run at the
lowest rate (even serialized). The OS level will make decisions to slow down the processing
greatly reducing the power consumption (either by dynamic voltage scaling – DVS or dy-
namic power management - DPM).

• if the middleware level has a better understanding of the application flow (for instance, the
processing starts slowly, and it is not very critical, but later the computation can increase
heavily, pending the activation of an observed sensor), it can instruct the lower levels to
save energy, i.e., if possible run the tasks at lower QoS (such as a lower frame rates for a
frame based stream processing), or serialize the computation.

 Figure 2 shows our vision of the application development model for a complex heterogeneous
distributed computing platform. The Lowest layer shows an abstract picture of a heterogeneous
computing platform consisting of multiple devices connected over wire-line/wire-less communi-

 Page 6 of 10

cation links. The second layer shows the Architecture description of such a platform, and resource
constraint description of the application requirements (such as power budget, real-time constraints
etc.). The compiler (to be developed), takes the application functional specification, the ADL, and
RDL, generates the services, and middleware configuration shown in the second highest layer,
and their deployment information across the platform.

Compiler-Runtime Interaction and the Role of RDL
Our approach towards integration of the compiler with the runtime system relies on user-level
creation and management of threads (parallelism), and a new application-OS kernel interface that
supports a simple communication protocol between the OS and the executing application. This
communication protocol between user and kernel does not require context switching and hence it
involves minimal overhead. In fact, the critical aspects of the user-kernel interface and commu-
nication protocol consist of posting and inspecting processor and thread counts from both the cli-
ent (application) and the server (OS), and resuming execution (suspended threads) from user-
space without the involvement (and hence the cost) of the OS kernel. Both of these interfaces can
be implemented by inexpensive memory operations (loads/stores) to a shared region of the virtual
address space, which is pinned in physical memory. In the proposed approach, the OS decides
(according to policies that we have already developed), when and how many processors to give to
a process and for what duration. This information is communicated through the shared region of
memory (via an API). From the time of allocation, each processor is managed explicitly by user-
code, de-queuing and executing user-level threads while possibly queuing other threads.

Our approach eliminates the traditional manual partitioning of functionality of the application into
services/objects, and automates the generation of such partition and mapping. By definition, the

Capture Platform architecture

Heterogeneous computing platform

DSP µ-proc
DB Xscale

ADL capturing the platform archi-
tecture

RDL describing resource con-
straints

Application Functional Specification (including timing, power and other constraints)

Service
objects

Compiler

Capture resource
constraints

Figure 2: Application Development Model for Distributed Real-time Embedded Systems

Middleware

 Page 7 of 10

compiler has the most detailed information about applications, and coupled with target computing
platform description, it becomes the tool of choice for generating and inlining the runtime support
code into the application code. This can be done by partitioning the program into independent
threads exploiting user-specified or compiler extracted loop and task parallelism, and (using the
RDL target description) translating data and control dependencies into sequencing and communi-
cation code which, during execution, renders runtime support to the user application. In addition,
the compiler can also generate all the necessary data structures including scheduling queues and
designated space for user-level context save/restore operations. Since generation of the runtime
system is automated and inlined in user code, there is opportunity for compile-time optimization
of the runtime system code itself, which is impossible in traditional approaches.

5 Case Studies
We outline here two applications from different domains to demonstrate our approach to DRE
software development.

• The first example is based on automated target recognition (ATR) systems. The ATR
application consists of two main components: target detection and target recognition. One
level down, the application processing part can be divided into four main tasks, which
operate independently on groups of frames: TARG (target detection), FFT (filters), IFFT
(filters), DIST (compute distance) shown in Figure 3 (the input frames from a video sen-
sor are passed through the processing steps which identify and mark the target with a
cross on the final images). This division allows the OS scheduler to parallelize the tasks
into a pipelined version amenable to deployment in a distributed environment.

We can envision an environment with hundreds of nodes performing target recognition,
geographically spread over a large area and running on a heterogeneous network of
hardware devices. The devices may be small drones, capable of moving on flat terrain,
small unmanned planes, or even miniature sensors that are dropped from airplanes over

Target Detection

FFT

Filter/IFFT

Compute Distance

Figure 3: ATR Application Structure

 Page 8 of 10

large areas. The nodes communicate wirelessly; some may have limited range of com-
munication and may require a proxy node in order to relay the information to control
nodes.

Operating such a complex distributed application is not trivial and it requires cooperation
between many components and different layers of the abstraction view (middleware,
hardware). Because of the extremely heterogeneous operating environment, there are
many decisions to be made in order to preserve the functionality of the application and to
meet the QoS requirements at the same time. Through a tight middleware / hardware
level integration, the complexity of such a system is reduced to manageable proportions.

• The second example studies the interaction between middleware and hardware levels in
the context of quality driven, power-aware video streaming to mobile devices. The appli-
cation runs in a distributed environment consisting of application servers, proxy servers,
access points and clients (mobile wireless devices, PDAs) as depicted in Figure 4. The
proxy nodes are intermediary processing servers that control the way content providers
are streaming video multimedia to clients. Their job is to relay the video stream to clients,
after optimizing it for the particular QoS the client requests, through a transcoding proc-
ess.

In response to actual status of a particular device (periodically reported by the hardware
level on the client), the middleware layer, which controls the transcoding at the proxy de-
cides on the optimal stream quality to be generated. The final objective is that of maxi-
mizing the end user experience at the client device. In this particular case, best experience
would mean the possibility of watching a movie on the device for the entire duration, at
the best quality as permitted by the residual power available in the battery (checked peri-
odically). The objective here is not minimizing the power consumption, but providing the
user with the best possible user experience. By integrating middleware techniques with
hardware level optimizations, such a tradeoff between quality and power can be easily at-
tained.

Figure 4: Proxy-based video streaming

t t

P CHTTP/TCP/IP

RTP/UDP/IP
802.11b

C

C
Wired

Wired wireless

User NUser 1

Proxy

Access
Point

Wireless
device

packets

tt tt

P CCHTTP/TCP/IP

RTP/UDP/IP
802.11b

CC

CC
Wired

Wired wireless

User NUser 1

Proxy

Access
Point

Wireless
device

packets

 Page 9 of 10

6 Summary
FORGE brings together a number of advances in architectural modeling, software architecture
and distributed/real-time systems to build a platform that provides two fundamental capabilities
for DRE system development: (a) conceptualization and coding of the design knowledge through
collaborative specifications that are inherently matched to distributed solutions; and (b) exploita-
tion of the design knowledge across all development phases for the DRE systems. Our proof-of-
concept FORGE prototype is built upon collaborative specifications captured by extensions to the
message sequence charts (MSCs) that drive the customization of CompOSE middleware services
and generate node-architecture specific code through descriptions of the architecture and re-
sources captured using ADL and RDL respectively.

References
[Azevedo02] Ana Azevedo, Ilya Issenin, Radu Cornea Rajesh Gupta, Nikil Dutt, Alex Vei-
denbaum, Alex Nicolau, "Profile-based Dynamic Voltage Scheduling using Program Check-
points in the COPPER Framework", Design Automation and Test in Europe, March 2002.

[Broy01] M. Broy, K. Stølen, “Specification and Development of Interactive Systems”. Focus on
Streams, Interfaces, and Refinement. Springer, 2001

[Chou02] P. H. Chou, J. Liu, D. Li, and N. Bagherzadeh, "IMPACCT: Methodology and tools for
power aware embedded systems", Design Automation for Embedded Systems, Kluwer Interna-
tional Journal, Special Issue on Design Methodologies and Tools for Real-Time Embedded Sys-
tems, 2002.

[Cornea03] R. Cornea1, N. Dutt, R. Gupta, I. Krueger, A. Nicolau, D. Schmidt, S. Shukla,
“FORGE: A Framework for Optimization of Distributed Embedded Systems Software”, 17th In-
ternational Parallel and Distributed Processing Symposium , 2003.

[Express] Expression Project Webpage, http://www.cecs.uci.edu/~aces/projMain.html#expression

[Halambi99] Ashok Halambi, Peter Grun, Vijay Ganesh, Asheesh Khare, Nikil Dutt, Alex Nico-
lau, "EXPRESSION: A Language for Architecture Exploration through Compiler/Simulator Re-
targetability", DATE 99.

[Havinga00] P. J. M. Havinga, “Mobile Multimedia Systems”, PhD thesis, University of Twente,
Feb 2000.

ITU-R Recommendation BT-500.7, “Methodology for the subjective assessment of the quality of
television pictures”, ITU Geneva Switzerland, 1995.

[Krueger02] I. Krüger, “Towards Precise Service Specification with UML and UML-RT”, in:
Critical Systems Development with UML (CSDUML). Workshop at «UML» 2002, 2002

[Leeser97] P. Soderquist, M. Leeser, “Optimizing the data cache performance of a software
MPEG-2 video decoder”, ACM Multimedia, 1997, pp. 291–301.

[Mishra01] Prabhat Mishra, Peter Grun, Nikil Dutt, Alex Nicolau, "Processor-Memory Co-
Exploration driven by a Memory-Aware Architecture Description Language”, the 14th Interna-
tional Conference on VLSI Design (VLSI Design 2001), Jan. 2001

 Page 10 of 10

[Mishra02] Prabhat Mishra, Hiroyuki Tomiyama, Ashok Halambi, Peter Grun, Nikil Dutt, Alex
Nicolau, "Automatic Modeling and Validation of Pipeline Specifications driven by an Architec-
ture Description Language", VLSI Design ASPDAC 2002.

[Mohapatra02] Shivajit Mohapatra, Nalini Venkatasubramanian, "A Distributed Adaptive Sched-
uler for QoS Support in Compose|Q", Seventh IEEE International Workshop on Object-oriented
Real-time Dependable Systems (WORDS 2002). January 7-9, 2002 San Diego,CA

[Mohapatra03] Shivajit Mohapatra, Nalini Venkatasubramanian, "PARM: Power Aware Recon-
figurable Middleware", IEEE International Conference on Distributed Computer Systems
(ICDCS-23), Rhode Island, May 2003.

[Radkov03] P. Shenoy, P. Radkov, “Proxy-Assisted power-friendly streaming to mobile devices”,
MMCN, January 2003.

[Schantz02] Richard E. Schantz and Douglas C. Schmidt, “Middleware for Distributed Systems:
Evolving the Common Structure for Network-centric Applications,” Encyclopedia of Software
Engineering, Wiley and Sons, 2002.

[Venkatubramanian01] Nalini Venkatubramanian, Mayur Deshpande, Shivajit Mohapatra, Sebas-
tian Gutierrez-Nolasco and Jehan Wickramasuriya, "Design & Implementation of a Composable
Reflective Middleware Framework", IEEE International Conference on Distributed Computer
Systems (ICDCS-21), Phoenix AZ, April 2001.

[Wang01] Nanbor Wang, Douglas C. Schmidt, Kirthika Parameswaran, and Michael Kircher,
“Towards a Reflective Middleware Framework for QoS-enabled CORBA Component Model Ap-
plications,” IEEE Distributed Systems Online special issue on Reflective Middleware, 2001.

