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1 Introduction 
Distributed, real-time, and embedded (DRE) systems take input from many remote sensors, 
and provide geographically-dispersed operators with the ability to interact with the collected in-
formation and to control remote actuators. These devices are useful in a range of DRE application 
domains such as avionics, biomedical devices and telemedicine, remote sensing, space explora-
tion and command and control. An important design challenge for such complex DRE computing 
systems is to satisfy performance and reliability constraints while ensuring efficient exploration 
through a very large architectural design space, and a very large implementation space for micro-
electronic system implementations. Current strategies in meeting these challenges has led to 
emergence of a new class of modeling and implementation tools that enable composition of such 
systems for microelectronic implementations and limited capabilities for retargeting existing 
compilers for new processors. However, the application development process for DRE systems 
continues to be very manually driven. The design of DRE systems is often very platform specific 
from the very early stages of the design process. Combinations of functional and non-functional 
requirements considered at the early stages of design are very specific for the system that is being 
developed. This makes the resulting system design inflexible (against changing requirements) and 
non-reusable (in settings with different requirements). To overcome these challenges, we are de-
veloping the FORGE project [Cornea03], which uses the following three mechanisms for dealing 
with the specific challenges of DRE systems:  

•  Conceptualization and specification of DRE system requirements including those related to 
its structure, behavior, and performance/QoS guarantees; 

•  Modeling the available design knowledge (including the elicited requirements and the target 
platform) using flexible software architecture that are specified via architectural description 
languages (ADLs);  

•  Targeting flexible and optimizing middleware solutions and operating systems as our imple-
mentation platform. 

                                                      
* This work was partially supported by NSF award ACI-0204028. 
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Overall our approach is to use a model-based approach to system specification that allows reason-
ing about functional and non-functional properties of the system from the properties of the con-
stituent components and the composition mechanism used; and to use a middleware infrastructure 
that lends itself to platform specific optimization for performance and size. Specifically, we focus 
on adaptive and reflective middleware services to meet the application requirements and to dy-
namically smooth the imbalances between demands and changing environments [Venkatubrama-
nian01, Mohapatra02]. While a full discussion on the nature of middleware is out of scope here, 
very briefly, adaptive middleware is software whose functional and QoS-related properties can be 
modified either:  

(a) Statically, for example, to reduce the memory footprint, exploit platform-specific capa-
bilities, functional subsetting, and minimize hardware/software infrastructure dependen-
cies; or  

(b) Dynamically, for example, to optimize system responses to changing environments or re-
quirements, such as changing component interconnections, power-levels, CPU/network 
bandwidth, latency/jitter; and dependability needs.  

Reflective middleware [Wang01] goes a step further in providing the means for examining the 
capabilities it offers while the system is running, thereby enabling automated adjustment for op-
timizing those capabilities. Thus, reflective middleware supports more advanced adaptive behav-
ior, i.e., the necessary adaptations can be performed autonomously based on conditions within the 
system, in the system's environment, or in combat system doctrine defined by operators and ad-
ministrators.  

Figure 1 illustrates the fundamental levels of adaptation and reflection that must be supported by 
middleware services: (a) changes in the middleware, operating systems, and networks beneath 
the applications to continue to meet the required service levels despite changes in resource avail-
ability, such as changes in network bandwidth or power levels, and (b) changes at the application 
level to either react to currently available levels of service or request new ones under changed 
circumstances, such as changing the transfer rate or resolution of information over a congested 
network.  In both instances, the middleware must determine if it needs to (or can) reallocate re-
sources or change strategies to achieve the desired QoS.  DRE applications must be built in such 
a way that they can change their QoS demands as the conditions under which they operate 
change.  Mechanisms for reconfiguration need to be put into place to implement new levels of 
QoS as required, mindful of both the individual and the aggregate points of view, and the con-
flicts that they may represent.  

  

Figure 1: Middleware services for DRE applications 
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2 Collaborative Specifications and Semantic Objects 
Recently advances in middleware technologies such as the ACE/TAO or real-time extensions to 
CORBA, have significantly improved the decoupling of implementation components within 
complex distributed, reactive systems. This decoupling helps building component-oriented appli-
cations that can be more flexibly composed, and are easier to configure. It facilitates integration 
of off-the-shelf system parts, thus enabling better reuse of proven solutions. Furthermore, mainte-
nance of component-oriented systems is simplified, because individual components can be more 
easily replaced than in tightly-coupled or monolithic system implementations.  

At the heart of the decoupling of components in middleware infrastructures is a shift of focus 
from purely control-flow- and state-oriented system execution towards message- and event-
oriented component interaction or collaboration. Event channels within the middleware, for in-
stance, provide mechanisms for signaling the occurrence of events, as well as for the subscription 
to event notification. The behavior of the overall system emerges as the interplay of the compo-
nents collaborating to implement a certain task or service by exchanging messages or processing 
events. Therefore, a crucial step in developing service-oriented systems is the capturing and mod-
eling, as well as the efficient and correct implementation of the interactions among the compo-
nents establishing and defining a service. The interactions in which a component is involved re-
flect the relationship between the component and its environment, and thus characterize the com-
ponent’s interface beyond static lists of method signatures. 

Message Sequence Charts (MSCs) and their relatives have been developed to complement the 
local view on system behavior provided by state-based automaton specifications. MSCs allow the 
developer to describe patterns of interaction among sets of components; these interaction patterns 
express how each individual component behavior integrates into the overall system to establish 
the desired functionality. Typically, one such pattern covers the interaction behavior for (part of) 
one particular service of the system. A particular strength of MSCs is capturing component col-
laboration transparently; hence these are ideal for representing the QoS constraints. Easiest ex-
amples are constraints related to timing and rate of events and actions, but other constraints – 
such as at most a certain amount of memory be spent in processing the enclosed message se-
quence – are also possible.  

Streams and Relations on streams have emerged as an extremely powerful specification mecha-
nism for distributed and interactive systems [Broy01], suitable for providing the semantic basis 
for MSCs and its hierarchical extensions. In this model, we view systems as consisting of a set of 
components, objects, or processes, and a set of named channels. Each channel is directed from its 
source to its destination component. Channels connect components that communicate with one 
another; they also connect components with the environment. Communication proceeds by mes-
sage exchange over these channels.  

Mathematically, a stream is a finite or infinite sequence of messages, occurring on a channel of 
the system. In other words, streams represent the communication histories of system components. 
Individual components can be understood as relations over their input/output histories. Intui-
tively, we describe a component by its reactions to the inputs it receives over time. This model 
lends itself nicely to the capturing of collaborations and services: they emerge as projections of 
the overall system behavior on certain components and their channels. Because in the stream 
model we can reference entire histories of component interactions, we can describe and reason 
about the global QoS properties mentioned above. Earlier, we have used this mathematical model 
successfully to define a precise service notion, supporting simple QoS specifications [Krueger02]. 
MSC specifications can be systematically transformed into state-oriented component implementa-
tions. This is an important step for ensuring that the implementation meets the elicited interaction 
requirements, and reduces the amount of manual work needed to achieve correct system designs. 
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Because collaboration specifications describe components together with the context they operate 
in, these provide important design information required to provide optimized system implementa-
tions. In particular, in the context of the FORGE project [Cornea03], a collaboration specification 
for a particular service will include information on what part of the middleware, and of other ex-
ternal components is required for implementing the service. An intelligent linker or runtime sys-
tem can use this information to reduce the memory footprint of the implementation. 

Architecture Description Languages (ADL) have traditionally been employed by the compilers 
for managing the micro-architectural resources of the CPU (registers, functional units). By speci-
fying machine abstractions that capture both a processor's structure and behavior at a high level, 
the ADL can drive the automatic generation of compiler/simulator toolkits, allowing for early 
"compiler-in-the loop" design space exploration. This simultaneous exploration of the applica-
tion, architecture and compiler allows early feedback to the designers on the behavior of the 
match between the application needs, the architectural features, and the compiler optimizations. 

In case of heterogeneous machines, comprising multiple processors/resources, the ADL alone is 
not sufficient. A Resource Description Languages (RDL) is included for specifying attributes of 
the available hardware, as well as communication structure, constraints and system requirements. 
The RDL/ADL mechanisms expose both the architecture of the system and the resource con-
straints to the compiler, allowing for an effective match of the application to the underlying 
hardware. 

An example of ADL language that supports fast retargetability and DSE is EXPRESSION [Ex-
press, Halambi99, Mishra01]. The language consists of two main parts: behavior and structure 
specification. In the behavior component the available operations and instructions are enumer-
ated, as well as their execution semantics; this drives both the code generation phase of the com-
piler and the functional execution part of the simulator. The structure component describes the 
components of the processor, the connectivity (paths) between them and the memory subsystem; 
it is mainly used in the compiler's optimization phases to generate code that best match a given 
architecture. Also, the simulator accurately generates cycle by cycle statistics based on the same 
description. 

4 Resource and Architecture Description in FORGE 

One goal of the FORGE project is to integrate the middleware abstraction layer with the hard-
ware/OS abstraction layer. This section describes mechanisms for capturing resources and archi-
tectures at these two levels and mechanisms to allow interactions between the levels. 

Compiler technology has traditionally targeted mainly individual processors or controllers. How-
ever, designers of DRE applications increasingly must deal with large systems, containing multi-
ple processor cores, peripherals, memories, connected through different wireline and wireless 
networks. FORGE extends the traditional notion of a compiler and ADL to include not only plat-
form specific architectural details but also capabilities of the middleware services needed for an 
application. By viewing the system components, such as CPUs (e.g., data collection drones), dif-
ferent computing devices and peripherals as resources that are described in a high-level language, 
it is possible to allow the compiler to generate service specifications in a more globally optimal 
manner. 

The compiler is not the only place where the higher-level information can prove useful. At run-
time, information can be passed between abstractions at different levels, making the decision 
process more aware of the actual device and application, so that the power and resource utiliza-
tion are improved. The OS/hardware level resides closest to the actual hardware device and has 
full knowledge of its capabilities and limits. By relaying some of this information to the higher 
levels, it helps the middleware framework in making decisions of task migration and 
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node/network restructuring (better mapping between tasks with different demands and available 
heterogeneous nodes): 

•  Computing power (expressed in MIPS): in general, nodes are heterogeneous; their hardware 
processing capabilities may vary over a large range depending on the type and number of 
processors, frequency at which they are running and other local factors. Similarly, tasks 
(particularly in time-constrained applications) may be characterized for WCET as well as 
response time requirements. Middleware can make use of this information when migrating 
the tasks between nodes or duplicating tasks on a node in response to increases in the proc-
essing workload. 

•  Available total memory: memory availability may not only be different but also diverse 
across different nodes in a DRE system. Memory availability can be matched to task mem-
ory footprints for improved resource utilization.  

•  Availability of specialized functional units (and resources) 

•  Power budget or efficient battery discharge profile: typically, the middleware level assumes 
a fixed energy available to each node and a linear discharge rate. In reality, the available en-
ergy depends heavily on the discharge curve. Discharges under a high current may weaken 
the battery and shorten its life. Similarly, other nodes may be able to renew their energy lev-
els by using solar cells. In this case, the available energy profile on the node will have a pe-
riodic behavior, with high level during daytime and lower levels during nights, when the 
only energy comes from the battery. A coordinated attempt to match desired energy con-
sumption profile through distribution and scheduling of tasks in a DRE system would be de-
sirable for efficient utilization of system resources. 

Thus, the lower level (OS/hardware) can provide the middleware levels with a simplified view of 
the current state of the actual device at any point in time (in terms of processing capabilities, 
available power and memory). On the other end, the application/middleware levels controls how 
the application is to be distributed and run on the available network of nodes. They have an ex-
tended view of the requirements of the system at any point of time and can provide valuable in-
formation to the OS/hardware (lower levels). When making scheduling decisions, the 
OS/hardware makes no assumption about the current and future position of the node or upcoming 
processing requirements. They have a limited local view, where the actual distributed system is 
not visible. When useful, the middleware level can make parts of the global information which 
are relevant available to the lower levels: 

•  at the OS level, a task is viewed as a black box, assuming the worst case execution time and 
maximum power consumption. In reality, a task may be profiled a priori and a more realistic 
execution time and power profile could help the OS to make better scheduling decisions. 

•  some tasks are not too important for the system at specific times and they may be run at the 
lowest rate (even serialized). The OS level will make decisions to slow down the processing 
greatly reducing the power consumption (either by dynamic voltage scaling – DVS or dy-
namic power management - DPM). 

•  if the middleware level has a better understanding of the application flow (for instance, the 
processing starts slowly, and it is not very critical, but later the computation can increase 
heavily, pending the activation of an observed sensor), it can instruct the lower levels to 
save energy, i.e., if possible run the tasks at lower QoS (such as a lower frame rates for a 
frame based stream processing), or serialize the computation. 

  Figure 2 shows our vision of the application development model for a complex heterogeneous 
distributed computing platform. The Lowest layer shows an abstract picture of a heterogeneous 
computing platform consisting of multiple devices connected over wire-line/wire-less communi-
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cation links. The second layer shows the Architecture description of such a platform, and resource 
constraint description of the application requirements (such as power budget, real-time constraints 
etc.). The compiler (to be developed), takes the application functional specification, the ADL, and 
RDL, generates the services, and middleware configuration shown in the second highest layer, 
and their deployment information across the platform. 

Compiler-Runtime Interaction and the Role of RDL  
Our approach towards integration of the compiler with the runtime system relies on user-level 
creation and management of threads (parallelism), and a new application-OS kernel interface that 
supports a simple communication protocol between the OS and the executing application.  This 
communication protocol between user and kernel does not require context switching and hence it 
involves minimal overhead.  In fact, the critical aspects of the user-kernel interface and commu-
nication protocol consist of posting and inspecting processor and thread counts from both the cli-
ent (application) and the server (OS), and resuming execution (suspended threads) from user-
space without the involvement (and hence the cost) of the OS kernel.  Both of these interfaces can 
be implemented by inexpensive memory operations (loads/stores) to a shared region of the virtual 
address space, which is pinned in physical memory.  In the proposed approach, the OS decides 
(according to policies that we have already developed), when and how many processors to give to 
a process and for what duration.  This information is communicated through the shared region of 
memory (via an API).  From the time of allocation, each processor is managed explicitly by user-
code, de-queuing and executing user-level threads while possibly queuing other threads. 

Our approach eliminates the traditional manual partitioning of functionality of the application into 
services/objects, and automates the generation of such partition and mapping. By definition, the 

Capture Platform architecture 

Heterogeneous computing platform 

DSP µ-proc 
DB Xscale 

ADL capturing the platform archi-
tecture 

RDL describing resource con-
straints  

Application Functional Specification (including timing, power and other constraints) 

Service 
objects 

Compiler 

Capture resource 
constraints 

Figure 2: Application Development Model for Distributed Real-time Embedded Systems 

Middleware 
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compiler has the most detailed information about applications, and coupled with target computing 
platform description, it becomes the tool of choice for generating and inlining the runtime support 
code into the application code.  This can be done by partitioning the program into independent 
threads exploiting user-specified or compiler extracted loop and task parallelism, and (using the 
RDL target description) translating data and control dependencies into sequencing and communi-
cation code which, during execution, renders runtime support to the user application.  In addition, 
the compiler can also generate all the necessary data structures including scheduling queues and 
designated space for user-level context save/restore operations.  Since generation of the runtime 
system is automated and inlined in user code, there is opportunity for compile-time optimization 
of the runtime system code itself, which is impossible in traditional approaches. 

5 Case Studies 
We outline here two applications from different domains to demonstrate our approach to DRE 
software development. 

•  The first example is based on automated target recognition (ATR) systems. The ATR 
application consists of two main components: target detection and target recognition. One 
level down, the application processing part can be divided into four main tasks, which 
operate independently on groups of frames: TARG (target detection), FFT (filters), IFFT 
(filters), DIST (compute distance) shown in Figure 3 (the input frames from a video sen-
sor are passed through the processing steps which identify and mark the target with a 
cross on the final images). This division allows the OS scheduler to parallelize the tasks 
into a pipelined version amenable to deployment in a distributed environment. 

 

 

 

We can envision an environment with hundreds of nodes performing target recognition, 
geographically spread over a large area and running on a heterogeneous network of 
hardware devices. The devices may be small drones, capable of moving on flat terrain, 
small unmanned planes, or even miniature sensors that are dropped from airplanes over 
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Figure 3: ATR Application Structure 
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large areas. The nodes communicate wirelessly; some may have limited range of com-
munication and may require a proxy node in order to relay the information to control 
nodes. 

Operating such a complex distributed application is not trivial and it requires cooperation 
between many components and different layers of the abstraction view (middleware, 
hardware). Because of the extremely heterogeneous operating environment, there are 
many decisions to be made in order to preserve the functionality of the application and to 
meet the QoS requirements at the same time. Through a tight middleware / hardware 
level integration, the complexity of such a system is reduced to manageable proportions. 

 

•  The second example studies the interaction between middleware and hardware levels in 
the context of quality driven, power-aware video streaming to mobile devices. The appli-
cation runs in a distributed environment consisting of application servers, proxy servers, 
access points and clients (mobile wireless devices, PDAs) as depicted in Figure 4. The 
proxy nodes are intermediary processing servers that control the way content providers 
are streaming video multimedia to clients. Their job is to relay the video stream to clients, 
after optimizing it for the particular QoS the client requests, through a transcoding proc-
ess. 

In response to actual status of a particular device (periodically reported by the hardware 
level on the client), the middleware layer, which controls the transcoding at the proxy de-
cides on the optimal stream quality to be generated. The final objective is that of maxi-
mizing the end user experience at the client device. In this particular case, best experience 
would mean the possibility of watching a movie on the device for the entire duration, at 
the best quality as permitted by the residual power available in the battery (checked peri-
odically). The objective here is not minimizing the power consumption, but providing the 
user with the best possible user experience. By integrating middleware techniques with 
hardware level optimizations, such a tradeoff between quality and power can be easily at-
tained. 

 

 

 

 

 

 

Figure 4: Proxy-based video streaming 
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6 Summary 
FORGE brings together a number of advances in architectural modeling, software architecture 
and distributed/real-time systems to build a platform that provides two fundamental capabilities 
for DRE system development: (a) conceptualization and coding of the design knowledge through 
collaborative specifications that are inherently matched to distributed solutions; and (b) exploita-
tion of the design knowledge across all development phases for the DRE systems. Our proof-of-
concept FORGE prototype is built upon collaborative specifications captured by extensions to the 
message sequence charts (MSCs) that drive the customization of CompOSE middleware services 
and generate node-architecture specific code through descriptions of the architecture and re-
sources captured using ADL and RDL respectively. 
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