
Model-driven Configuration and Deployment of
Component Middleware Publish/Subscribe Services

George Edwards, Gan Deng, Douglas C. Schmidt, Aniruddha Gokhale, and Bala Natarajan
{edwardgt,dengg,schmidt,gokhale,bala}@dre.vanderbilt.edu

Department of Electrical Engineering and Computer Science, Vanderbilt University
Nashville, TN 37235, USA?

Abstract

Quality of service (QoS)-enabled publish/subscribe services are available in component middle-
ware platforms, such as the CORBA Component Model (CCM). Today, however, these platforms
lack a simple and intuitive way to integrate publish/subscribe service configurations and deploy-
ments. This paper illustrates how generative model-driven techniques and tools can automate
many service configuration and deployment tasks associated with integrating publish/subscribe
services into QoS-enabled component-based systems. We evaluate these techniques in the context
of a real-time avionics mission computing problem involving a system with over 50 components.
Our evaluation finds that an automated model-driven configuration of a reusable component
middleware framework not only significantly reduces handwritten code and but also simultane-
ously achieves high reusability and composability of CCM components.
Keywords: Real-time Publish/subscribe Service, Component Middleware, CORBA Component
Model, Model-based Systems.

1 Introduction

Emerging trends. To reduce the complexity of designing robust, efficient, and scalable dis-
tributed real-time and embedded (DRE) software systems, developers increasingly rely onmid-
dleware[1], which is software that resides between applications and lower-level run-time infras-
tructure, such as operating systems, network protocol stacks, and hardware. Middleware isolates
DRE applications from lower-level infrastructure complexities, such as heterogeneous platforms
and error-prone network programming mechanisms. It also enforces essential end-to-end quality
of service (QoS) properties, such as low latency and bounded jitter; fault propagation/recovery
across distribution boundaries; authentication and authorization; and weight, power consump-
tion, and memory footprint constraints.

Over the past decade, middleware has evolved to support the creation of applications via
composition of reusable and flexible softwarecomponents[2]. Components are implementation/-
integration units with precisely-defined interfaces that can be installed in application server
run-time environments. Examples of conventional commercial-off-the-shelf (COTS) component
middleware include the CORBA Component Model (CCM) [3] and Java 2 Enterprise Edition
(J2EE) [4].

Component middleware generally supports two models for component interaction: (1) a
request-responsecommunication model, in which a component invokes a point-to-point oper-
ation on another component, and (2) anevent-basedcommunication model, in which a compo-
nent transmits arbitrarily-defined messages, calledevents, to other components [5]. Event-based
communication models are particularly relevant for large-scale DRE systems1 (such as avionics

? This work was sponsored in part by grants from NSF ITR CCR-0312859, Siemens, and DARPA/AFRL
contract #F33615-03-C-4112

1 In this context,systemsinclude the OS/hardware/network, middleware, and applications.



mission computing [6, 7], distributed audio/video processing [8, 9], and distributed interactive
simulations [10, 11]) since they help reduce software dependencies and enhance system compos-
ability and evolution. In particular, thepublish/subscribearchitecture [12] of event-based com-
munication allows application components to interact anonymously and asynchronously [13].
The publish/subscribe communication model defines the following three software roles:

– Publishers generate events to be transmitted. Depending on the architecture design and
implementation, publishers may need to describe the events they generatea priori.

– Subscribersreceive events via hook operations. Subscribers also may need to declare the
events they receivea priori.

– Event channelsaccept events from publishers and deliver events to subscribers. Event chan-
nels perform event filtering and routing, QoS enforcement, and fault management. In dis-
tributed systems, event channels propagate events across distribution domains to remote
subscribers.

Figure 1 illustrates the relationships and information flow between these three types of compo-
nents.

Fig. 1. Relationships Between Components in a Publisher/subscribe Architecture

Applying model-driven middleware to publish/subscribe architectures. Our previous work
on publish/subscribe architectures focused on the patterns and performance optimizations of
event channels in the context of QoS-enableddistributed object computing(DOC) middleware [14],
specifically a highly scalable [11] and real-time [15, 6] CORBA Event Service [16]. This paper
extends our previous work on DOC middleware as follows:

– We describe key challenges associated with configuring and deploying publish/subscribe
services in QoS-enabledcomponent middleware. Component middleware enhances DOC
middleware to enable the composition, configuration, and deployment of reusable services
and applications more rapidly and robustly.

– We present a methodology for resolving these challenges based onModel-Driven Middle-
ware (MDM) [17], which is a generative programming paradigm that integrates (1) model-
driven development technologies, such as Model-Integrated Computing [18, 19] and the
OMG’s Model Driven Architecture [20], and (2) QoS-enabled component middleware tech-
nologies, such as Real-time CORBA [21] and theComponent-Integrated ACE ORB(CIAO),
which is our QoS-enabled implementation of CCM.

– We describe theEvent QoS Aspect Language (EQAL), which is an MDM tool that supports
graphical representations of crosscutting concerns (such as component event port connec-
tions and event channel configuration) associated with publish/subscribe QoS configurations
and federated publish/subscribe service deployments. This paper explores EQAL support for
two generative aspects – service configuration and deployment – that help automate much
of the integration of publish/subscribe services into QoS-enabled component-based DRE
systems.

– We evaluate empirically how MDM reduces the amount of handwritten code in developing
component applications that utilize publish/subscribe services. Our results applying MDM



to a 50 component avionics mission computing scenario show that it dramatically reduces
handwritten code via automated configuration of a reusable component framework, while si-
multaneously eliminating accidental complexities incurred when hand-crafting 100+ XML-
based descriptor files, which are the standard way to describe configure and deploy publish/-
subscribe services in CCM.

Paper organization. The remainder of this paper is organized as follows: Section 2 outlines
the deployment and configuration capabilities in the CORBA Component Model (CCM) that
is leveraged by our work; Section 3 describes the key challenges and solution approaches as-
sociated with configuring and deploying publish/subscribe services in QoS-enabled component
middleware; Section 4 demonstrates in detail how our EQAL MDM tool addresses the publish/-
subscribe configuration and federation deployment challenges; Section 5 empirically evaluates
the extent to which EQAL reduces the amount of handwritten code in developing component-
based avionics mission computing systems that utilize publish/subscribe services; Section 6 com-
pares our MDM approach with related work; and Section 7 presents concluding remarks and
outlines future work.

2 Overview of CCM Configuration and Deployment Capabilities and
DAnCE

The CORBA Component Model (CCM) [3] specification describes a component architecture and
standardizes component implementation, packaging, and deployment mechanisms [22]. Compo-
nents in DRE systems may need to be configured differently, depending on the context in which
they are used. For example, it might be necessary to collocate or replicate related components to
improve performance or resilience to failures by distributing functionality encapsulated as com-
ponents. CCM implementations provide the capabilities described below that DRE systems can
use to (1) collocate and/or distribute components depending on application QoS needs, (2) make
the necessary connections between communicating components, (3) group components together
to form reusable artifacts, and (4) deploy groups of components on various nodes in a target
environment.

Component packaginggroups implementations of component functionality (typically stored
in a dynamic link library) together with metadata that describes the features available in it (e.g.,
its properties) or the features that it requires (e.g., its dependencies). A component package is
the vehicle for deploying a single component implementation. The CCM Component Implemen-
tation Framework (CIF) uses the Component Implementation Definition Language (CIDL) to
generate the component implementation skeletons and persistent state management automati-
cally.

Component assemblygroups components and characterizes the metadata that describes
these components in an assembly [22] via acomponent assembly descriptor, which specify how
components are connected together, on what hosts they will run, how the components are in-
stantiated, among numerous other properties. A component assembly package is the vehicle for
deploying a set of interrelated component implementations. CCM assemblies are defined via
XML Schema templates, which provide an implementation-independent mechanism for describ-
ing component properties and generating default configurations for CCM components. These
assembly configurations can preserve the required QoS properties and establish the necessary
configuration and interconnections among groups of related components.

Component deploymentinstalls and connects a logical component topology to form a phys-
ical computing environment. The component topology is specified by an assembly package. A
deployment tooldeploys individual components and assemblies of components to an installation
site,e.g., a set of hosts on a network. Based on an assembly descriptor and user input, a CCM



deployment tool installs and activates component homes and instances. It also configures com-
ponent properties and connects components together via interface and event ports, as designated
by an assembly descriptor.

Figure 2 illustrates the Deployment and Configuration Engine (DAnCE) [23], which is our im-
plementation of the OMG deployment and configuration (DnC) specification [22], addressing the
DnC crosscutting concerns of DRE systems, DAnCE supports the creation, control, and termina-
tion of components on the nodes of the target environment. DAnCE takes the DnC XML descrip-
tors and creates an in-memory representation of the metadata. Run-time services in DAnCE then
populate a global deployment plan, which provides an in-memory representation. Depending
on the number of nodes needed for a particular deployment, DAnCE splits the global plan into
multiple local deployment plans that are optimally configured for deployment on that platform.

Fig. 2. DAnCE Deployment and Configuration Engine

3 Meeting the Challenges of Configuring and Deploying Publish/subscribe
Systems

QoS-enabled component middleware platforms, such as the CIAO [24] and Qedo [25], leverage
the benefits of component-based software development and preserve the optimization patterns
and principles of DOC middleware. Before developers of event-based DRE systems can derive
benefits from QoS-enabled component middleware, however, they must reduce the complexity
of configuring and deploying publish/subscribe services. In particular, DRE system developers
must resolve the following challenges associated with publish/subscribe mechanisms provided
by conventional component middleware:

1. Configuring publish/subscribe service QoS, where there are currently no standard means
of configuring component middleware mechanisms to deliver appropriate QoS to DRE sys-
tems, and

2. Deploying federated publish/subscribe services, where there are currently no standard
policies and mechanisms to deploy a federation of publish/subscribe services for DRE sys-
tems.

This section explains the context in which each challenge outlined above arises, identifies the
specific problems that must be addressed, and outlines solution approaches that help resolve the
challenge. Section 4 then illustrates how we have applied these solutions using Model-Driven
Middleware (MDM).



3.1 Challenge 1: Configuring Publish/Subscribe Quality-of-Service

Context. Configurabilityis an important requirement for many publish/subscribe services devel-
oped using middleware. For example, various operating policies (such as threading and buffering
strategy) of the CORBA publish/subscribe services can be customized programmatically via in-
vocations on a configuration interface. The drawbacks with DOC middleware approaches to con-
figurability, however, are (1)reduced flexibilitydue to tight coupling of application logic with
crosscutting configuration and deployment concerns, such as publish/subscribe relationships and
choice of various types of publish/subscribe services, such as the CORBA-based Event, Real-
time Event, and Notification Services. and (2)impeded reusedue to tight coupling of application
logic with specific QoS properties, such as event latency thresholds and priorities.

In contrast, component middleware publish/subscribe services enhance flexibility and reuse
by using meta-programming techniques (such as the XML descriptor files in CCM) to specify
component configuration and deployment concerns. This approach enables QoS requirements to
be specifiedlater (i.e., just before run-time deployment) in a system’s lifecycle, rather thanear-
lier (i.e., during component development). For example, the configuration framework provided
by the CIAO component middleware parses XML configuration files and make appropriate invo-
cations on a publish/subscribe service configuration interface. This approach is useful for DRE
systems that require custom QoS configurations for various target OS, network, and hardware
platforms that have different capabilities and properties.
Problem. Conventional component middleware relies uponad hoctechniques based onmanu-
ally specifying the QoS requirements for DRE component systems. Unfortunately, configuring
component middleware manually is hard [26] due to the number and complexity of operating
policies, such as transaction and security properties, persistence and lifecycle management, and
publish/subscribe QoS configurations. These policies exist at multiple layers of middleware and
often employ non-standard legacy specification mechanisms, such as configuration files that use
proprietary text-based formats.

Moreover, given component interoperability needs across various platforms (e.g., CCM and
J2EE) and the existence of multiple publish/subscribe services within individual platforms (e.g.,
the CORBA Event Service and Notification Service), a component-based application may use
several publish/subscribe services. To further complicate matters, certain combinations of poli-
cies are semantically invalid and can result in system failure. For example, if multiple levels of
priorities for events are supported, a priority-based thread pool model should be used rather than
a reactive threading model [27]. Care should be taken to ensure that lower level configurations
support end-to-end priorities,e.g., using Real-time CORBA priority-banded connections [28].

Most publish/subscribe services based on DOC middleware (including the CORBA Event
and Notification Services) do not validate QoS specifications automatically. It is hard, moreover,
to manuallyvalidate QoS configurations for semantic compatibility. This process is particularly
daunting for large-scale, mission-/safety-critical DRE systems, where the cost of human error is
most egregious.
Solution approach→ Develop MDM tools to create publish/subscribe service configura-
tion models. MDM tools can help application developers create QoS specifications for DRE
systems more rapidly and correctly by automatically generating configuration descriptor files
and enforcing constraints among publish/subscribe policies via model checkers [29]. These ben-
efits are particularly important when component applications are maintained and evolved over
an extended period of time since (1) QoS configurations can be modified more easily to reflect
changing OS, network, and hardware platforms and (2) QoS configurations for system enhance-
ments can be checked systematically for compatibility with legacy specifications.

To attain these benefits, we developed theEvent QoS Aspect Language(EQAL), which is
an MDM tool that models configurations for three CORBA-based publish/subscribe services:
(1) the Event Service [16], (2) Real-time Event Service [6, 15], and (3) Notification Service [30].
EQAL informs users if invalid combinations of QoS policies are specified. After publish/subscribe



QoS models are complete and validated, EQAL can also synthesize the XML configuration files
used by the underlying component middleware to configure itself. Section 4.2 illustrates how
we applied EQAL to configure key QoS properties of component middleware publish/subscribe
services.

3.2 Challenge 2: Deploying Publish/Subscribe Services in Target Networks

Context. Scalability is another important requirement for many publish/subscribe systems.
Large-scale publish/subscribe systems consist of many components and event channels dis-
tributed across network boundaries and possibly different administrative domains, and each event
channel may have many consumers. Naive implementations of publish/subscribe services send
a separate event across the network for each remote consumer, which can transmit the same
data multiple times (often to the same target host) and incur network and host overhead that is
excessive for many resource-constrained DRE applications. As the number of channels and/or
consumers grows, these types of publish/subscribe services can become a bottleneck.

To minimize the overhead of publish/subscribe services, multiple event channels can be
linked together to formfederatedconfigurations [11, 15], where event channels are assigned
to particular hosts and events received by one channel are propagated automatically to other
channels in the federation. Figure 3 illustrates how CIAO’s publish/subscribe services support
federated event channels. In CIAO’s federated publish/subscribe services, suppliers and con-

Fig. 3. Federated Event Channels in CIAO

sumers that are collocated on the same host connect to a local event channel. Each local event
channel communicates with other event channels when events sent by suppliers are destined
for consumers on remote hosts. This design reduces latency in large-scale DRE systems when
consumers and suppliers exhibitlocality-of-reference, i.e., where event consumers are on the
same host as event suppliers. In such cases, only local C++ method calls are needed instead of
remote CORBA operation calls. Moreover, if multiple remote consumers are interested in the
same event, only one message is sent to each remote event channel, thereby reducing network
utilization.

In CIAO’s federated publish/subscribe services, event channelgatewaysare used to mediate
the communication between remote event channels, while suppliers and consumers communicate
with each other via local event channels. Each gateway is a CORBA component that connects
to the local event channel as a supplier and connects to the remote event channel as a consumer.



CIAO supports three types of event channel gateways: CORBA IIOP, UDP, and IP multicast. In
CIAO’s federated publish/subscribe services, application developers need not write tedious and
error-prone code manually to perform bookkeeping operations, such as creating and initializing
gateways that federate event channels.

As discussed in Section 2, CCM deployment tools install individual components and as-
semblies of components on target sites, which are normally a set of hosts on a network. Simi-
larly, event channels must be assigned to hosts in the target network. CIAO’s federated publish/-
subscribe services are integrated via its DAnCE component deployment tool. The input to DAnCE
is an XML data file that (1) specifies the event channel deployment sites and (2) automatically
creates and initializes the event channel gateways at the appropriate sites.
Problem. Although the DAnCE CCM deployment tool provided by CIAO shields application
developers from having to write bookkeeping code for its federated publish/subscribe services,
application developers still musthand-craft federation deployment descriptor metadata using
an XML schema based on the OMG Deployment and Configuration specification [22]. Hand-
crafting descriptor metadata involves determining information about the type of federations (i.e.,
CORBA IIOP, UDP, or IP multicast), identifying remote event channels, and identifying local
event channels. Moreover, the metadata must address the following deployment requirements:
(1) each host could have its own event channels, event consumers, event suppliers, and event
channel gateways, (2) each event consumer and event supplier only communicates with a event
channel collocated in the same host, (3) event channels distributed across network boundaries are
connected through event channel gateways, (4) each connection between an event channel and
an event supplier should be uniquely identified, (5) each connection between an event channel
and an event consumer should be identified by using existing events, as defined in step (4), and
(6) each connection between an event channel and an event channel gateway should also be
identified by using existing events, as defined in step (4).

Experience has shown [31, 32] that it is hard for DRE developers to keep track of many com-
plex dependencies when deploying federated publish/subscribe services. Without tool support,
therefore, the effort required to deploy a federation involves hand-crafting deployment descriptor
metadata in anad hocway. Since large-scale DRE systems may involve many different types of
events and event channels,ad hocways of writing metadata to deploy publish/subscribe services
are tedious and error-prone. Addressing this challenge requires techniques that can analyze, val-
idate, and verify the correctness and robustness of federated event channel deployments.
Solution approach→ Develop MDM tools to deploy event channel federations in a visual,
intuitive way. MDM tools can synthesize the metadata for deploying a federated publish/-
subscribe service frommodelsof the interactions among different event-related components
(e.g., event suppliers, event consumers, event channels, and various types of event channel gate-
ways). MDM tools can also generate the metadata needed to deploy federated publish/subscribe
services that are syntactically and semantically valid. Section 4.3 shows how the EQAL MDM
tool was applied to deploy publish/subscribe service federations more effectively than existing
approaches.

4 Resolving Publish/subscribe Service Configuration and Deployment
Challenges in CoSMIC

This section describes how we have employed Model-Driven Middleware (MDM) techniques
to address the challenges of publish/subscribe service configuration and federated deployment
discussed in Section 3. We present an overview of theEvent QoS Aspect Language(EQAL) and
show how EQAL helps to resolve the challenges of (1) publish/subscribe configuration described
in Section 3.1 and federated event service deployment described in Section 3.2. As shown in
Figure 4, EQAL is part of the configuration generative tools of theComponent Synthesis via
Model Integrated Computing(CoSMIC) [23] MDM toolsuite. CoSMIC contains a collection of



domain-specific modeling languages and their associated analysis/synthesis tools that support
various phases of DRE system development, assembly, configuration, and deployment. CoSMIC

Fig. 4. CoSMIC MDM Toolsuite

generates crosscutting concerns, such as XML descriptors, that can be woven into component
applications via the DAnCE deployment and configuration engine outlined in Section 2.

4.1 Overview of the Event QoS Aspect Language (EQAL)

Conventional component middleware frameworks use XML files to describe publish/subscribe
service configurations and deployments. These textual specifications are unnecessarily complex
and error-prone, however, as discussed in Sections 3. To address these problems we created the
EQAL MDM tool, which supports graphical representations of QoS configurations and federated
deployments of publish/subscribe services.

EQAL is developed using the Generic Modeling Environment (GME) [33], which is a gen-
erative technology for creating domain-specific modeling languages and tools [18]. GME can
be programmed viametamodelsandmodel interpreters. Metamodels define modeling languages
(calledparadigms) that specify the syntax and semantics of the modeling element types, their
properties and relationships, and presentation abstractions defined by a domain-specific mod-
eling language. Model interpreters can traverse a paradigm’s modeling elements and perform
various actions, such as analyzing model properties and generating code.

Fig. 5. The Event QoS Aspect Language Architecture

The EQAL paradigm in GME consists of the two complementary entities shown in Figure 5
and described below:



• EQAL metamodel , which defines a modeling paradigm in which modelers specify the de-
sired publish/subscribe service (e.g., the CORBA Event Service, Notification Service, or Real-
time Event Service) and the configuration of that service for each component event connection.
Based on application needs, modelers can also specify how event channels are assigned to dif-
ferent hosts and whether/how they must be linked together to form federations.
• EQAL model interpreters that can (1) validate configuration and deployment models and
(2) synthesize text-based middleware publish/subscribe service and federation service config-
uration- and deployment-specific descriptor files from models of a given component assembly.
Component deployers can build publish/subscribe service configurations for component appli-
cations using the EQAL modeling paradigm and its model interpreters.

The remainder of this section describes how EQAL addresses the challenges presented in
Section 3.

4.2 Configuring Publish/subscribe Quality-of-Service in EQAL

To address the publish/subscribe service configuration challenge described in Section 3.1, the
EQAL configuration paradigmspecifies publish/subscribe QoS configurations, parameters, and
constraints. For example, the EQAL metamodel contains a distinct set of modeling constructs
for each publish/subscribe service supported by CIAO. Example policies and strategies that can
be modeled include filtering, correlation, timeouts, locking, disconnect control, and priority.

Publish/subscribe service policies can have different scopes, ranging from a single port to
an entire event channel. EQAL’s publish/subscribe service configurations can therefore be pro-
visioned at the following three levels of granularity:

– Channel scope, which applies to all components using the channel. Each event channel is
specified with a number of policies that control its behavior, such as event filtering, event
correlation, timeouts, and locking. These policies control how the channel handles all con-
nections and events.

– Proxy scope, which applies to a single component port. Each event port is associated with
a proxy object. Certain QoS policies are configured at the proxy level, such as threading
control settings, average execution time, and worst-case execution time. QoS parameters
can be provided for each connection by configuring the proxy. Naturally, connection-level
parameters for a proxy must be consistent with channel-level policies.

– Event scope, which applies to an event instance. A limited number of QoS settings, such as
timeouts, can be specified for an individual event instance.

The EQAL metamodel allows modelers to provision reusable and sharable configurations at each
level of granularity outlined above. Modelers assign configurations to individual event connec-
tions and then construct filters for each connection. EQAL supports two forms of event genera-
tion using the push model: (1) a component may be an exclusive supplier of an event type or (2)
a component may supply events to a shared channel.

Dependencies among publish/subscribe QoS policies, strategies, and configurations can be
complex. Ensuring coherency among policies and configurations is therefore a non-trivial source
of complexity in component middleware [34]. During the modeling phase, EQAL ensures that
dependencies between configuration parameters are enforced by declaring constraints on the
contexts in which individual options are valid,e.g., priority-based thread allocation policies are
only valid with component event connections that have assigned priorities. EQAL can then auto-
matically validate configurations and notify users of incompatible QoS properties during model
validation, rather than at component deployment- and run-time.

To ensure semantically consistent configurations, violation of constraint rules should be de-
tected early in the modeling phase rather than later in the component deployment phase. To
support this capability, EQAL provides a constraint model checker that validates the syntactic
and semantic compatibility of event channel configurations to ensure the proper functioning of



publish/subscribe services. EQAL’s model checker uses GME’s constraint manager, which is
a lightweight model-checker that implements the standard OMG Object Constraint Language
(OCL) specification [35].

EQAL’s model interpreters perform the following two distinct configuration aspects:

• XML descriptor generation. EQAL contains an interpreter that synthesizes XML descriptors
used by the DAnCE component deployment framework to indicate the QoS requirements of in-
dividual component event connections. Since the CCM specification does not explicitly address
the mechanisms for ensuring component QoS properties, the EQAL-generated descriptors are
based on a schema developed for the Boeing Bold Stroke project for their Prism [34] extensions
to CCM (the XML descriptors remain compliant with the CCM specifications, however). Boe-
ing’s Bold Stroke schema has been carefully crafted, refined, tested, and optimized in the context
of production DRE avionics mission computing systems [31, 32].

EQAL generates the XML descriptors for one service at a time. To complete the interpreta-
tion process, EQAL makes multiple passes through the model hierarchy, corresponding to each
different type of publish/subscribe services, until all the service connections are configured. To
simplify the interpreter implementation, EQAL [36] uses the Visitor pattern [37], which utilizes
a double-dispatch mechanism to apply file-generation operations to different type of modeling
elements.

• Service configuration file generation.EQAL also contains an interpreter that generates event
channel service configuration files, calledsvc.conf files, that are used by the underlying
publish/subscribe services to select the appropriate behaviors of event channel resource facto-
ries [11]. These factories are responsible for creating many strategy objects that control the be-
havior of event channels. CIAO supports many (i.e., more than 40) options/policies for different
types of publish/subscribe services, which increases the complexity for application developers
who must consider numerous design choices when configuring the publish/subscribe services.
Interactions between event channel policies are complex due to the possibility of incompatible
groupings of options, making hand-crafting these files hard,e.g., priority-based thread allocation
policies are only valid with component event connections that have assigned priorities.

Much of the complexity associated with validating event channel QoS configurations is ac-
complished by EQAL’s modeling constraints and GME’s lightweight model checker. These con-
straints prevent application developers from specifying inconsistent or invalid combinations of
policies. After a set of policy settings is validated via modeling constraints, EQAL generates an
event channel descriptor(.ecd ) file that contains valid combinations of policy settings chosen
for a particular service configuration.

4.3 Deploying Publish/subscribe Service Federations in EQAL

To address the publish/subscribe federation service deployment challenge outlined in Section 3.2,
the EQALdeployment paradigmspecifies how components and event channels are assigned to
hosts on a target network. To address the scalability problem in any large-scale event-based archi-
tecture, CIAO provides publish/subscribe services that supports event channel federation. With
CIAO’s publish/subscribe services, an event channel federation can be implemented via CORBA
gateways. Application developers can configure the location of the gateways to utilize network
resources effectively.

For example, collocating a gateway with its consumer event channel (i.e., the one it connects
to as a supplier) eliminates the need to transmit events that have no consumer event channel
subscribers. Application developers can also choose different types of gateways based on differ-
ent application deployment scenarios with different networking and computing resources. These
deployment decisions have no coupling with, or bearing on, component application logic. The
same set of components can therefore be reused and deployed into different scenarios without
modifying application code manually.



The EQAL modeling paradigm allows three types of federation (i.e., CORBA IIOP, UDP, or
IP multicast) to be configured in a deployment. For event channel federation models, the EQAL
metamodel defines two levels of syntactic elements:

– Theouter-level, which contains the host elements as basic building blocks and allows users
to define the hosts present in the DRE system and

– The inner-level, which represents a host containing a set of elements (including event chan-
nels, CORBA IIOP gateways, UDP senders and receivers, IP multicast senders and receivers,
and event type references) that allow users to configure the deployment of these artifacts in-
side a host.

These two levels are associated with each other vialink parts, which act as connection points
between two different views of a model (such as adjacent layers of a hierarchical model) to
indicate some form of association, relationship, or dataflow between two or more models. The
inner-level elements are exposed to the outer-level in the form of link parts from the outside view,
which can be used to connect them to form a federation.

Figure 6 (a) is a screenshot that illustrates how we used EQAL to model the outer-level
view of CIAO federated publish/subscribe service in the real-time avionics mission computing
application outlined in Section 1. This figure shows the outer-level model of the deployment
of the federated publish/subscribe service, which includes nine physically distributed locations
that host CCM components. Figure 6 (b) shows the inner-level of the federation configurations,
which establish four CORBA gateways in the track center module to form a federation that
reduces network traffic.

(a) Outer view (b) Inner view

Fig. 6. EQAL Deployment Model for a Real-time Avionics System

To ensure the validity of event channel federation models during the deployment phase, each
event channel’s configurations and settings must be model-checked to ensure that they are con-
sistent with the federation types. For example, IP multicast uses the Observer pattern [37] capa-
bilities of CIAO’s event channels. When a user chooses IP multicast as the type of event channel
federation, this observer functionality must be enabled for IP multicast to work properly. These
constraints can be checked automatically using EQAL.

Section 4.2 described how EQAL’s model interpreters handle configuration aspects. EQAL
also contains a model interpreter for the deployment aspect, which synthesizes the federated
publish/subscribe service assembly and deployment descriptor XML files. The information cap-
tured in these files includes the relationship between each artifact, the physical location of each
supplier, consumer, event channel, and CORBA gateway. This file is subsequently fed into the
DAnCE CCM deployment tool, which deploy the federated system to its designed target nodes.



5 Evaluating the Merits of Model-Driven Middleware

The EQAL MDM tool described in Section 4 is designed to reduce the configuration and devel-
opment effort of DRE applications. This section evaluates how the EQAL MDM tool helps alle-
viate common sources of complexity in a representative DRE application based on QoS-enabled
component middleware. We conduct this evaluation in the context of Boeing Bold Stroke, which
is an open experimental platform (OEP) [34] in the DARPA PCES [38] program for real-time
avionics mission computing. The Bold Stroke OEP integrates and demonstrates model-based,
language-based, and middleware-based technologies to productively program and evolve cross-
cutting aspects that support composable DRE middleware for publish/subscribe-based avion-
ics systems. Crosscutting concerns addressed by the Bold Stroke OEP include synchronization,
memory management, fault tolerance, real-time deadlines, end-to-end latencies, and bandwidth
and CPU management.

We implemented the OEP’sMedium-sized(MediumSP) scenario, which is a challenge prob-
lem product scenario in the DARPA PCES OEP [38], using EQAL and CIAO CCM middleware
platform. The MediumSP scenario is representative of real-time avionics mission computing
systems that employ event-driven data flow and control [31, 32]. This scenario consists of 50+
components with complex event dependencies that control embedded sensors and perform calcu-
lations to maintain displays. In this type of mission-critical DRE system, reliability and stringent
QoS assurance are essential.

5.1 Resolving Complexities of Configuring and Deploying Publish/Subscribe Services

The configuration and deployment of publish/subscribe services is an examplecrosscutting con-
cernsthat need to be refactored, modularized, and then composed back into the middleware.
EQAL helps to automate this process by enabling different types of services to be configured
based on application needs and available resources. For example, EQAL’s integrated model
checker and model interpreters can flag invalid configurations at design- and/or deployment-
time, thereby eliminating sources of accidental complexity that would otherwise manifest them-
selves at run-time. EQAL also significantly increases component reusability and maintainability
by decoupling (1) the type of publish/subscribe service configured into the system from (2) the
functionality of application components.

In the Bold Stroke MediumSP scenario, there are over 50 components and most components
act as both suppliers and consumers of events. Without automated support from an MDM tool
like EQAL, application developers would face the following challenges when implementing the
MediumSP scenario:

No systematic approach to specify policies/options.Manually configuring the publish/subscribe
services viaad hoctechniques can overwhelm application developers since configuration of each
service is intertwined with 20+ configuration parameters spread throughout different subsystems
and layers of the component middleware and applications. For example, configuration parame-
ters in the CIAO Real-time Event Service include the number of threads, cached execution time,
worst-case execution time, average execution time, level of importance, entry point name, etc.

Low-level, complex glue code.Application developers would either have to write/maintain special-
purpose “glue code” manually for different types of publish/subscribe services or treat the differ-
ent services in the same way,e.g., write different publish/subscribe-related glue code for different
types of publish/subscribe services (such as Event Service, Real-time Event Service, and Notifi-
cation Service) or a degenerate case of components communicating directly with each other.

Potential run-time errors.If the component middleware was configured improperly, application
functionality and QoS behavior can be incorrect. For example, if a component server and its
containers were not configured with support for real-time priorities and concurrency, it would
be hard for anad hocconfiguration and deployment process to detect erroneous conditions,



such as an application developer configuring a real-time event channel within the component
middleware. These conditions would be detected only when the system was actually deployed
and operating, at which point it might be too late to prevent serious run-time errors.

5.2 Evaluating How Component Middleware Minimizes Handwritten Code

In earlier generation of DOC middleware, developers had to explicitly handle the complexity
of connecting to, and configuring the policies of, the underlying middleware. For example, in
the CORBA 2.x DOC model, developers often manually configured the policies of middleware
entities, such as publish/subscribe services, transaction services, and security services. Moreover,
event channels were deployed by hand-crafting DOC middleware application servers to create
and destroy event channels and gateways.

Figure 7 shows how application developers using CORBA DOC middleware must write code
manually in the “Server” and “Impl” files. These manual programming activities result in the

Fig. 7. Generated vs. Handwritten Code in the CORBA DOC Model

production of considerable repetitive boilerplate code, which may actually be larger than the
application logic requiring publish/subscribe functionality! Moreover, these activities are error-
prone since they require application developers to wrestle with middleware details, which are
often low-level and proprietary.

In contrast, CCM middleware defines the container and component server elements to handle
most of the glue code. Moreover, CCM shields component developers from low-level details of
the underlying middleware via containers that provide the execution context in which applica-
tion components run and mediate access to underlying middleware services. Likewise, generic
component servers provide a standardized OS process in which components and event channels
can be composed and run, thereby alleviating the need to write and deploy custom servers.

As illustrated in Figure 8, CCM middleware increases the amount of generated code com-
pared with handwritten code because much of the boilerplate component server code, XML



component descriptors, servants, and other glue code can be generated automatically. Likewise,

Fig. 8. Generated vs. Handwritten Code in the CORBA Component Model

the configuration and deployment of publish/subscribe services can be automated by CCM mid-
dleware. Below we highlight concretely how EQAL can automatically generate code for the
MediumSP scenario that would otherwise be written manually.

Creating event channels.To create an event channel, the following steps must be carried out: (1)
declaring the channel, where a name is assigned to the channel, (2)setting channel attributes,
where the appropriate service configurator file is specified to configure the channel, (3)instan-
tiating the channel, where memory is allocated for the channel and its constructor is called, (4)
activating the channel, where the channel’s servant is enabled, and (5)registering the channel,
where the channel is registered with a CORBA server. The implementation of the event channel
creation member function requires 22 lines of C++.

Specifying service policies.When configuring a real-time service, the QoS requirements for a
supplier or consumer must be specified. This specification process involves the following steps:
(1) building a filter, where a consumer specifies the logical conditions (e.g., based on the supplier
and type of an event) under which an event should be delivered, and (2)specifying real-time prop-
erties, where desired QoS properties (e.g., priorities and required execution times) are given for
each event supplier and consumer. The implementation for specifying service policies requires
334 lines of C++.

Connecting suppliers and consumers.Connecting a supplier or consumer to a channel invokes
the following steps: (1)obtaining an administrative object, where the channel supplies a ref-
erence to a configuration entity known as an admin object, (2)obtaining a proxy, where the
admin supplies a reference to a connection point, known as a proxy object, (3)creating a con-
sumer/supplier servant, where a servant is declared, instantiated, and activated, and (4)connect-
ing to the event channel, where a reference to the servant is passed to the proxy object. The
implementations of connection methods for suppliers and consumers required 45 and 54 lines of
C++, respectively.



Implementing supplier and consumer servants.Implementing a supplier or consumer servant
involves inheriting from an abstract base class and implementing several hook methods. The
supplier and consumer servant methods are then dispatched by an event channel when an event
is pushed or when a disconnection occurs. Code to handle these occurrences in accordance with
specific requirements of an application must be provided by application developers. The amount
of code necessary is heavily dependent on application requirements, but required 94 lines of C++
in the Bold Stroke MediumSP scenario.

5.3 Applying EQAL to Real-time Avionics Mission Computing

Based on the discussions in Sections 5.1 and 5.2, we now focus on applying EQAL to model
the Bold Stroke MediumSP scenario, which is shown in Figure 9. We use this scenario to fur-

Fig. 9. EQAL Model for the Bold Stroke MediumSP Scenario

ther qualify the code reduction that results from employing the EQAL MDM tool and CIAO
component middleware instead of handwritten glue-code and DOC middleware.

Based on the particular assignment of components to host sites, different event channel fed-
erations are possible. For the scenario depicted in Figure 9, our EQAL model distributes compo-
nents among nine hosts. Given the number and location of suppliers, consumers, event channels,
and gateways, we describe the effort (measured roughly in terms of the number of artifacts devel-
oped) needed to integrate publish/subscribe services in the following phases of the MediumSP
scenario:

Phase 1: Managing event channel lifecycles, which involves creating and destroying event chan-
nels. Since EQAL’s MediumSP model incorporates multiple publish/subscribe services, multiple
event channels of differing types must be managed. In the MediumSP example, more than 10
event channels must be managed.

Phase 2: Initializing gateways, suppliers, and consumers, which involves (1) making interconnec-
tions between supplier/consumer components, event channels, and gateways and (2) implement-
ing supplier/consumer servants. There are a total of 42 event suppliers and 38 event consumers in
the MediumSP scenario that must be created and initialized. Based on the deployment scenario,
we have set up 12 gateways to federate these event channels (other types of gateways may chose
to form different types of federations).

Phase 3: Specifying service policies, which involves establishing control strategies, such as filter
criteria and QoS parameters. All 42 suppliers and 38 consumers of events specify real-time
rate requirements and 8 of the consumers require filter specifications to correlate events. Each



supplier and consumer must be configured individually with the appropriate policies, such as
filtering, correlation, timeouts, locking, disconnect control, and priority.

In each phase above, glue-code and XML descriptors must be provided to configure and de-
ploy the required publish/subscribe services. To avoid hand-crafting boilerplate software, EQAL
combines component middleware with MDM technology to synthesize glue-code and XML de-
scriptors. The resulting reduction in complexity for the MediumSP scenario is summarized be-
low:

The assembly of 50+ components for the MediumSP scenario requires a complicatedcom-
ponent assemblyfile that stores the connection information between component ports as XML
descriptors, partitions for process collocation, and interrelationships with other descriptors (e.g.,
the relationship between the interface definitions and component implementations) whose details
are spread across other assembly files, such as theimplementation artifact descriptor(.iad )
file. EQAL shields DRE system developers from these low-level details by ensuring that all this
metadata and dependencies are captured appropriately in various descriptor files it generates in
conjunction with other CoSMIC tools, such as PICML [23].

Every component requires two descriptor files: (1) thesoftware package descriptorfor the
component, which contains general information about the software (such as author, description,
license information, and dependencies on other software packages), followed by one or more
sections describing implementations of that software, and (2) theservant software descriptor,
which CIAO deployment tools use to load the desired servant library. For∼50 components,∼100
files are therefore required. Once again, EQAL shields DRE system developer from these low-
level details by generating these files automatically, thereby ensuring that all interdependencies
are captured appropriately in the descriptor files.

For the publish/subscribe service in the MediumSP component assembly, acomponent prop-
erty descriptor(CPF file) is generated for each component event port, anevent channel de-
scriptor (ECD file) will be generated for each real-time event channel filter, and CIAO’s service
configuration file (svc.conf ) file) will be generated for each event channel configuration. As
a result, 12 ECD files, 53 CPD files, and 1svc.conf file are generated by EQAL. Figure 10
summarizes the lines of code saved by not having to hand-craft these files.

Fig. 10. Amount of Code Reduction for Metadata in Bold Stroke MediumSP Scenario

Each component, event service, and their servants are distinguished via a unique identifier
(called a UUID) within the descriptor files mentioned above. Moreover, it is necessary to ensure
that when referring to a specific component or event service, the same UUID is referenced across
the different descriptor files. This requirement can yield accidental complexities when descriptor



files are hand-crafted manually. In the MediumSP scenario, this results in∼100 UUIDs that are
referred to across the∼100 descriptor files. EQAL’s generative tools eliminate these accidental
complexities by synthesizing the proper UUID references in the descriptor files.

The XML tags used to represent real-time properties and resulting configurations in com-
ponent middleware for integrating real-time event channels are not standardized by OMG yet.
Different QoS-enabled component middleware, such as CIAO, therefore define their own XML
tags using either XML DTDs or XML Schema definitions. For the MediumSP scenario, this
results in enhancing the above-mentioned descriptor files with CIAO-specific real-time proper-
ties, and configuration XML tags and data. EQAL shields DRE system developers from these
low-level details by synthesizing the proper middleware-specific tags and data in the appropriate
descriptor files.

The XML output shown below illustrates an EQAL-generatedcomponent property descrip-
tor (.cpf ) file for a BMDevice component in the MediumSP scenario. This file contains the
port real-time QoS properties, such as the number of threads and worst-case execution time.
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE properties SYSTEM "properties.dtd">
<properties>

<struct name="BMDevice-data_available-" type="ACEXML_RT_Info">
<description>Real-time Scheduler info for

BMDevice::data_available</description>
<simple name="port" type="string">

<value>data_available</value> </simple>
<simple name="period" type="string"> <value>0</value> </simple>
<simple name="entry_point" type="string"> <value></value> </simple>
<simple name="criticality" type="string">

<value>MEDIUM_CRITICALITY</value></simple>
<simple name="enabled" type="string">

<value>DEPENDENCY_NON_VOLATILE</value></simple>
<simple name="importance" type="string">

<value>MEDIUM_IMPORTANCE</value></simple>
<simple name="quantum" type="string"> <value>0</value> </simple>
<simple name="threads" type="string"> <value>1</value> </simple>
<simple name="cached_execution_time" type="string">

<value>0</value> </simple>
<simple name="worst_case_execution_time" type="string">

<value>0</value> </simple>
<simple name="info_type" type="string">

<value>OPERATION</value> </simple>
<simple name="typical_execution_time" type="string">

<value>0</value> </simple>
</struct> </properties>
In summary, EQAL dramatically reduces an application developer’s effort for an event-based

DRE application, such as the Bold Stroke MediumSP scenario, by generating a considerable
amount of glue-code and XML descriptors that are then used by other CCM-related tools, such
as DAnCE [23], to configure and deploy the CIAO publish/subscribe service middleware.

6 Related Work

This section reviews related work on model-based software development and describes how
modeling, analysis, and generative programming techniques have been used to model and provi-
sion QoS capabilities for QoS-enabled component middleware and applications.

Cadena [29] is an integrated development environment for modeling and model-checking
component-based DRE systems. Cadena’s model checking environment is particularly well suited
to event-based inter-component communication via real-time event channels. Cadena also pro-
vides an Event Configuration Framework (EMF) [39] that allows modeling event channel prop-
erties, which can be model checked. We are integrating our CoSMIC toolsuite with Cadena to



leverage its model checking capability. Both Cadena and CoSMIC have been used in the context
of Boeing’s OEP on avionics mission computing and for CCM-based applications.

Publish/subscribe service modeling research is also provided by Ptolemy II [40], which is a
tool for modeling concurrent hybrid and embedded systems based on the actor-oriented design
approach [41]. This approach uses the abstraction of actors, ports, interfaces, and model of com-
putations to model the system. Publish/subscribe is a model of computation in Ptolemy II. Our
efforts with CoSMIC are relatively orthogonal with Ptolemy II,e.g., our target is QoS-component
middleware and could fit in various families of applications.

The Aspect Oriented Middleware (AOM) research at the University of Toronto, is focusing
on the extension and refinement of publish/subscribe service for effectively supporting informa-
tion dissemination applications, such as modeling of uncertainty [42] or semantic matching [43]
in publish/subscribe services. Compared with our work on EQAL, the AOM project focuses on
enhancing the publish/subscribe services with uncertainty capabilities because in some situa-
tions exact knowledge to either specify subscriptions or publications is not available. Although
this approach proposes a new publish/subscribe model based on possibility theory and fuzzy
set theory to process uncertainties for both subscriptions and publications, it does not provide a
visual modeling language to model the QoS-enabled DRE systems, which is provided by EQAL.

Zanolin et. al. [44] propose an approach to support the modeling and validation of publish/-
subscribe service architectures. Application-specific components are modeled as UML statechart
diagrams while the middleware is supplied as a configurable predefined component. As to valida-
tion, properties are described with live sequence charts (LSCs) and transformed into automata.
Components, middleware, and properties are translated into Promela [44] and then passed to
SPIN (linear temporal logic) to validate the architecture. The main difference between this ap-
proach and our work is that Zanolin et. al.’s approach is based on standard UML statecharts to
model and validate the publish/subscribe service, but unlike EQAL they do not model the QoS
properties and the federation aspect in the publish/subscribe architecture.

7 Concluding Remarks

This paper showed how a Model-Driven Middleware (MDM) tool called theEvent QoS As-
pect Language(EQAL) can automate and simplify the integration of publish/subscribe services
into QoS-enabled component-based systems. EQAL verifies model validity and generates XML
metadata to configure and deploy publish/subscribe service federations in QoS-enabled compo-
nent middleware. Our experience applying EQAL in the context of DRE systems (such as the
avionics mission computing system analyzed in Section 5) is summarized below:

– EQAL allows DRE system deployers to create rapidly and synthesize publish/subscribe QoS
configurations and federation deployments viamodelsthat are much easier to understand and
analyze than hand-crafted code.

– EQAL decouples configuration and deployment decisions from application logic, which en-
hances component reusability by allowing QoS specifications (and their associated imple-
mentations) to change based on the target network architecture.

– EQAL helps alleviate the complexity of validating the QoS policies of publish/subscribe
services for DRE component applications, which is particularly important for large-scale
DRE systems that evolve over long periods of time.

– EQAL reduces the amount of code written by application developers for event-based DRE
systems by employing a configurable publish/subscribe service framework, which elimi-
nates the need to write code that handles event channel lifecycles, QoS configurations, and
supplier/consumer connections.

EQAL, CoSMIC, and CIAO are open-source software available for download atwww.dre.
vanderbilt.edu/cosmic/ .



References

1. Schantz, R.E., Schmidt, D.C.: Middleware for Distributed Systems: Evolving the Common Structure
for Network-centric Applications. In Marciniak, J., Telecki, G., eds.: Encyclopedia of Software
Engineering. Wiley & Sons, New York (2002)

2. Heineman, G.T., Councill, B.T.: Component-Based Software Engineering: Putting the Pieces
Together. Addison-Wesley, Reading, Massachusetts (2001)

3. Object Management Group: CORBA Components. OMG Document formal/2002-06-65 edn. (2002)
4. Sun Microsystems: JavaTM 2 Platform Enterprise Edition. java.sun.com/j2ee/index.html (2001)
5. Pietzuch, P.R., Shand, B., Bacon, J.: A Framework for Event Composition in Distributed Systems. In

Endler, M., Schmidt, D., eds.: Proceedings of the 4th ACM/IFIP/USENIX International Conference
on Middleware (Middleware ’03), Rio de Janeiro, Brazil, Springer (2003) 62–82

6. Harrison, T.H., Levine, D.L., Schmidt, D.C.: The Design and Performance of a Real-time CORBA
Event Service. In: Proceedings of OOPSLA ’97, Atlanta, GA, ACM (1997) 184–199

7. Gill, C.D., Levine, D.L., Schmidt, D.C.: The Design and Performance of a Real-Time CORBA
Scheduling Service. Real-Time Systems, The International Journal of Time-Critical Computing
Systems, special issue on Real-Time Middleware20 (2001)

8. Loyall, J., Gossett, J., Gill, C., Schantz, R., Zinky, J., Pal, P., Shapiro, R., Rodrigues, C., Atighetchi,
M., Karr, D.: Comparing and Contrasting Adaptive Middleware Support in Wide-Area and Embedded
Distributed Object Applications. In: Proceedings of the 21st International Conference on Distributed
Computing Systems (ICDCS-21), IEEE (2001) 625–634

9. Karr, D.A., Rodrigues, C., Krishnamurthy, Y., Pyarali, I., Schmidt, D.C.: Application of the QuO
Quality-of-Service Framework to a Distributed Video Application. In: Proceedings of the 3rd
International Symposium on Distributed Objects and Applications, Rome, Italy, OMG (2001)

10. Noseworthy, R.: IKE 2 – Implementing the Stateful Distributed Object Paradigm . In: 5th IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2002),
Washington, DC, IEEE (2002)

11. O’Ryan, C., Schmidt, D.C., Noseworthy, J.R.: Patterns and Performance of a CORBA Event Service
for Large-scale Distributed Interactive Simulations. International Journal of Computer Systems
Science and Engineering17 (2002)

12. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Software
Architecture—A System of Patterns. Wiley & Sons, New York (1996)

13. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and Evaluation of a Wide-Area Event
Notification Service. ACM Transactions on Computer Systems19 (2001) 332–383

14. Schmidt, D.C., Natarajan, B., Gokhale, A., Wang, N., Gill, C.: TAO: A Pattern-Oriented Object
Request Broker for Distributed Real-time and Embedded Systems. IEEE Distributed Systems Online
3 (2002)

15. Schmidt, D.C., O’Ryan, C.: Patterns and Performance of Real-time Publisher/Subscriber
Architectures. Journal of Systems and Software, Special Issue on Software Architecture -
Engineering Quality Attributes (2002)

16. Object Management Group: Event Service Specification Version 1.1. OMG Document
formal/01-03-01 edn. (2001)

17. Gokhale, A., Schmidt, D.C., Natarajan, B., Gray, J., Wang, N.: Model Driven Middleware. In
Mahmoud, Q., ed.: Middleware for Communications. Wiley and Sons, New York (2004)

18. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-Integrated Development of Embedded
Software. Proceedings of the IEEE91 (2003) 145–164

19. Gray, J., Bapty, T., Neema, S.: Handling Crosscutting Constraints in Domain-Specific Modeling.
Communications of the ACM (2001) 87–93

20. Object Management Group: Model Driven Architecture (MDA). OMG Document ormsc/2001-07-01
edn. (2001)

21. Krishna, A.S., Schmidt, D.C., Klefstad, R., Corsaro, A.: Real-time CORBA Middleware. In
Mahmoud, Q., ed.: Middleware for Communications. Wiley and Sons, New York (2003)

22. Object Management Group: Deployment and Configuration Adopted Submission. OMG Document
ptc/03-07-08 edn. (2003)

23. Gokhale, A., Balasubramanian, K., Balasubramanian, J., Krishna, A., Edwards, G.T., Deng, G.,
Turkay, E., Parsons, J., Schmidt, D.C.: Model Driven Middleware: A New Paradigm for Deploying
and Provisioning Distributed Real-time and Embedded Applications. The Journal of Science of
Computer Programming: Special Issue on Model Driven Architecture (2004)



24. Wang, N., Schmidt, D.C., Gokhale, A., Rodrigues, C., Natarajan, B., Loyall, J.P., Schantz, R.E., Gill,
C.D.: QoS-enabled Middleware. In Mahmoud, Q., ed.: Middleware for Communications. Wiley and
Sons, New York (2003)

25. Ritter, T., Born, M., Unterscḧutz, T., Weis, T.: A QoS Metamodel and its Realization in a CORBA
Component Infrastructure. In: Proceedings of the36th Hawaii International Conference on System
Sciences, Software Technology Track, Distributed Object and Component-based Software Systems
Minitrack, HICSS 2003, Honolulu, HW, HICSS (2003)

26. Memon, A., Porter, A., Yilmaz, C., Nagarajan, A., Schmidt, D.C., Natarajan, B.: Skoll: Distributed
Continuous Quality Assurance. In: Proceedings of the 26th IEEE/ACM International Conference on
Software Engineering, Edinburgh, Scotland, IEEE/ACM (2004)

27. Schmidt, D.C.: Evaluating Architectures for Multi-threaded CORBA Object Request Brokers.
Communications of the ACM Special Issue on CORBA41 (1998)

28. Pyarali, I., Schmidt, D.C., Cytron, R.: Techniques for Enhancing Real-time CORBA Quality of
Service. IEEE Proceedings Special Issue on Real-time Systems91 (2003)

29. Hatcliff, J., Deng, W., Dwyer, M., Jung, G., Prasad, V.: Cadena: An Integrated Development,
Analysis, and Verification Environment for Component-based Systems. In: Proceedings of the 25th
International Conference on Software Engineering, Portland, OR (2003)

30. Object Management Group: Notification Service Specification. Object Management Group. OMG
Document formal/2002-08-04 edn. (2002)

31. Sharp, D.C.: Reducing Avionics Software Cost Through Component Based Product Line
Development. In: Proceedings of the 10th Annual Software Technology Conference. (1998)

32. Sharp, D.C.: Avionics Product Line Software Architecture Flow Policies. In: Proceedings of the 18th
IEEE/AIAA Digital Avionics Systems Conference (DASC). (1999)

33. Ledeczi, A., Bakay, A., Maroti, M., Volgysei, P., Nordstrom, G., Sprinkle, J., Karsai, G.: Composing
Domain-Specific Design Environments. IEEE Computer (2001)

34. Sharp, D.C., Roll, W.C.: Model-Based Integration of Reusable Component-Based Avionics System.
In: Proceedings of the Workshop on Model-Driven Embedded Systems in RTAS 2003. (2003)

35. Object Management Group: Unified Modeling Language: OCL version 2.0 Final Adopted
Specification. OMG Document ptc/03-10-14 edn. (2003)

36. Edwards, G., Schmidt, D.C., Gokhale, A., Natarajan, B.: Integrating Publisher/Subscriber Services in
Component Middleware for Distributed Real-time and Embedded Systems. In: Proceedings of the
42nd Annual Southeast Conference, Huntsville, AL, ACM (2004)

37. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA (1995)

38. Office, D.I.E.: Program Composition for Embedded Systems (PCES).www.darpa.mil/ixo/
(2000)

39. Singh, G., Maddula, B., Zeng, Q.: Event Channel Configuration in Cadena. In: Proceedings of the
IEEE Real-time/Embedded Technology Application Symposium (RTAS), Toronto, Canada, IEEE
(2004)

40. Liu, J., Liu, X., Lee, E.A.: Modeling Distributed Hybrid Systems in Ptolemy II. In: Proceedings of
the American Control Conference. (2001)

41. Lee, E.A., Neuendorffer, S., Wirthlin, M.J.: Actor-Oriented Design of Embedded Hardware and
Software Systems. Journal of Circuits, Systems, and Computers (2003) 231–260

42. Liu, H., Jacobsen, H.A.: Modeling uncertainties in Publish/Subscribe System. In: Proceedings of The
20th International Conference on Data Engineering (ICDE04), Boston, USA (2004)

43. Petrovic, M., Burcea, I., Jacobsen, H.A.: S-ToPSS: Semantic Toronto Publish/Subscribe System. In:
Proceedings of the 29th VLDB Conference, Berlin, Germany (2003)

44. Zanolin, L., Ghezzi, C., Baresi, L.: An Approach to Model and Validate Publish/Subscribe
Architectures. In: Proceedings of the SAVCBS’03 Workshop, Helsinki, Finland (2003)


