
Flexible and Adaptive Control of Real-Time
Distributed Object Computing Middleware

Joseph P. Loyall (jloyall@bbn.com), Alia K. Atlas
(akatlas@bbn.com) and Richard E. Schantz (schantz@bbn.com)
BBN Technologies

Christopher D. Gill (cdgill@cs.wustl.edu), David L. Levine
(levine@cs.wustl.edu), Carlos O’Ryan
(coryan@cs.wustl.edu) and Douglas C. Schmidt
(schmidt@cs.wustl.edu)
Washington University, St. Louis

Abstract.
Next-generation distributed systems have growing demands for real-time quality of service

(QoS), flexibility, and control over the often unpredictable environments in which they are
deployed. These demands have been hard to achieve simultaneously. For instance, systems
have historically either been real-time, which meant that they were highly-tuned, special-
purpose, and fragile, or they were flexible, thereby incurring performance penalties that made
it hard to achieve stringent QoS requirements. Achieving both sets of demands simultaneously
requires distributed object computing (DOC) middleware that supports dynamic and layered
resource management, automated reconfiguration, dynamic scheduling, and application-level
interfaces for control and adaptation.

This paper provides three contributions to the study of adaptive real-time middleware
for distributed and embedded systems. First, it describes advances in Object Request Bro-
ker (ORB) technology that can support stringent real-time requirements. Second, it describes
extensions to the DOC model that support the control and measurement of, and adaptation to,
changing QoS requirements and conditions. Finally, the paper describes how combining multi-
ple cross-cutting DOC middleware strategies for real-time scheduling, resource management,
flexible control, and adaptation can achieve real-time QoSandflexibility simultaneously.

Keywords: Adaptive Middleware, Dynamic Scheduling, Real-Time Middleware, Quality of
Service

1. Introduction

Emerging trends: Next-generation highly networked and interconnected
distributed and embedded real-time systems must collaborate with multiple
remote sensors, provide on-demand browsing and actuation capabilities for
human operators, and respond flexibly to unanticipated situational factors that
arise at run-time (Doerr et al., 1999). Moreover, these systems must perform
unobtrusively, shielding operators from unnecessary details, while simulta-
neously communicating and responding to mission-critical information at an
accelerated operational tempo (Levine et al., 1998). In such environments, it

c 1999Kluwer Academic Publishers. Printed in the Netherlands.

2

is often hard or impossible to predicta priori, or even approximate into the
near future, system configurations or workload mixes.

The communication infrastructure for these next-generation systems must
be sufficiently flexible to support varying workloads at different times during
an application lifecycle, yet maintain highly predictable behavior.Quality of
service(QoS) is a widely accepted term that describes a loosely organized
collection of activities and technology initiatives designed to improve and
control communication-oriented resource management based on mounting
R&D experience with distributed applications and systems (Christopher D.
Gill et al., 1999). Controlling the real-time behavior of such distributed
computing systems is one important dimension of the delivered quality of
service.

Providing effective QoS has always influenced the usability of applica-
tions and systems. It is only recently, however, that QoS as a set ofnamed
aspects(Kiczales, 1997) has emerged as a user-controllable property of dis-
tributed system infrastructure. Providing greater user control over QoS is
in contrast to the level of service that has been traditionally fixed – iden-
tically and uncontrollably for all users and application use-cases – during
infrastructure conception.

The recent focus on user control over QoS aspects stems from technology
advances in historically challenging research areas, such as allocation poli-
cies, synchronization of streams (Steinmetz, 1990) in distributed multimedia
applications, and assured communication in the face of high demand. The
focus on QoS aspects has led the computing and communication research
community to devise a number of proposed and implemented improvements
to commonly available distributed computing infrastructures. When coupled
with software that can recognize and react to environmental changes, these
improvements form the basis for constructing appropriate adaptive behavior
for next-generation distributed and embedded systems.

An overview of COTS middleware: Constructing usable distributed and
real-time systems has always been challenging. Requirements for faster de-
velopment cycles, decreased cost, and reusable solutions motivate the use of
middleware. Middleware is software that resides between applications and the
underlying operating systems, protocol stacks, and hardware to enable or sim-
plify how these components are connected and interoperate (Christopher D.
Gill et al., 1999). Figure 1 illustrates the general concept of middleware and
some of its key layers used for this paper. We can further decompose the
middleware layer into two general categories of middleware:

� Infrastructure middleware:This layer encapsulates lower-level operat-
ing system communication and concurrency mechanisms to provide a
higher level DOC programming model that automates common net-
work programming tasks, such as parameter marshaling/demarshaling,

3

Figure 1. Layers of Middleware

request demultiplexing, and error handling. At the heart of this in-
frastructure middleware resides some form of Object Request Broker
(ORB), such as CORBA (Object Management Group, 1999c) and Real-
time CORBA (Object Management Group, 1999b), Java RMI (Wollrath
et al., 1996), and Microsoft’s DCOM (Box, 1997).

� Common middleware service components:Infrastructure middleware it-
self forms an enabling framework for yet a higher level of common
middleware service components. These components provide domain-
independent services that can be reused by many applications to manage
common distributed system tasks. Example services (Object Manage-
ment Group, 1995) include persistence (Object Management Group,
1999a), security (Object Management Group, 1998b), transactions (Ob-
ject Management Group, 1997b), fault tolerance (Object Management
Group, 1998a), and concurrency (Object Management Group, 1997a).

In general, middleware provides the following benefits: (1) it shields soft-
ware developers from low-level, tedious, and error-prone details, such as
socket-level programming (Schmidt et al., 1995), (2) it provides a consis-
tent set of higher-level abstractions (Gill et al., 2000; Zinky et al., 1997) for
developing distributed systems, (3) it amortizes software lifecycle costs by
leveraging previous development expertise and capturing implementations of
key design patterns (Schmidt and Cleeland, 1999) in reusable frameworks,
rather than building them entirely from scratch for each use.

When middleware is commonly available for acquisition or purchase, it
becomes “commercial-off-the-shelf” (COTS). While it is possiblein theory
to develop complex systems from scratch,i.e., without using COTS mid-
dleware, contemporary economic and organizational constraints, as well as
competitive pressures, are making it implausible to do soin practice. Thus,

4

COTS middleware plays an increasingly strategic role in software intensive,
real-time distributed systems, which is why we base our adaptive real-time
R&D activities on COTS middleware.

Towards an adaptive COTS middleware solution:In addition to the
development methodology and system lifecycle constraints outlined above,
designers of real-time systems have historically used relatively static methods
to allocate scarce or shared resources to system components. For instance,
flight-qualified avionics mission computing systems (Harrison et al., 1997)
establish priorities for all resource allocation and scheduling decisions very
early in the system lifecycle,i.e., well before run-time. Static strategies have
traditionally been used for real-time applications because

� System resources were insufficient for more computationally-intensive
dynamic on-line approaches.

� Simplifying analysis and validation was essential to remain on budget
and on schedule, particularly when systems were designed from scratch
using low-level, proprietary tools.

Both these factors are changing rapidly. For instance, additional computing
and networking resources are becoming available (though statically config-
ured legacy software is often not able to use these new resources effectively).
Moreover, complex systems are rarely built from scratch anymore. Thus, al-
though validation and analysis of these systems remains hard, it become more
tractable by using pre-analyzable common COTS infrastructure components,
rather than using custom proprietary components built in-house.

As network and endsystem performance continues to increase, so too does
the demand for more control and manageability of their resources through the
middleware interface. In particular, next-generation systems present real-time
QoS requirements for shared resources and workloads that can vary signifi-
cantly at run-time. In turn, this increases the demands on end-to-end system
resource management and control, which makes it hard to simultaneously
(1) create effective resource managers using traditional statically constrained
allocators and schedulers, (2) achieve reasonable resource utilization, and
(3) meet individual application tradeoffs and preferences. In addition, the
mission-critical processing aspects of next-generation systems require that
they (1) respond adequately to both anticipated and unanticipated operational
changes in their run-time environment and (2) ensure that critical capabilities
acquire the necessary resources.

Meeting the increasing demands of next-generation real-time systems mo-
tivates the need for additional adaptive middleware-centric abstractions and
techniques. Supporting this adaptive middleware architecture efficiently, pre-
dictably, and scalably requires new dynamic and adaptive resource manage-
ment techniques that extend existing static resource management techniques
in areas such as automated reconfiguration, layered resource management,

5

and dynamic scheduling. These techniques are currently being explored in
the context of various research activities, in particular the DARPA Quorum
program (DARPA, 1999), which is researching solutions to a number of the
missing capabilities needed for mission-critical system development, such
as predictable performance for network based applications, fault tolerance
and dependability characteristics, real-time performance properties, and fine
grained distributed systems security.

In this paper, we describe recent advances we have made towards de-
veloping adaptive real-time systems within the context of standards-based
COTS middleware. We have created advanced, reusable, multi-level mid-
dleware that enables a new generation of flexible distributed applications
to (1) have greater control over their resource management strategies and
(2) be easily reconfigured and adapted dynamically to changing network
and computing environments. Our results come through the integration of
two complementary perspectives and technologies: a “top down” adaptable
policy-driven perspective coupled with a “bottom up” real-time mechanism-
driven perspective.

Paper organization: The remainder of this paper is structured as fol-
lows: Section 2 describes the individual technologies underlying our work
on adaptive real-time COTS middleware; Section 3 then discusses the top-
ics, approach taken, current results, and open research issues related to
our integration activities within the DARPA Quorum (DARPA, 1999) pro-
gram; Section 4 summarizes ongoing work in the field related to our current
research; and Section 5 presents concluding remarks.

2. DOC Middleware Technology Overview

Distributed object computing (DOC) is the most advanced, mature, flexible
paradigm available today in which tackle the development of next-generation
distributed and embedded systems (Henning and Vinoski, 1999) in domains
such as national security, military, health care, medical, multimedia, and
financial systems. DOC software architectures are composed of relative
autonomous objects that can be distributed or collocated throughout a wide-
range of networks and interconnects. Client objects invoke operations on
target objects to perform interactions and functionality needed to achieve
application goals.

As outlined in Section 1, DOC middleware exposes only the functional
interfaces of application component and services, thereby shielding appli-
cations from many distributed computing complexities. Chief among these
complexities include remote location interoperability, heterogeneity, common
services, and synchronization. Mission-critical next-generation distributed
applications have stringent quality of service (QoS) requirements, however,

6

such as real-time performance, security, and dependability, that require them
to react to or controlhow services are delivered, not justwhat services are
delivered.

Conventional middleware, based DOC and other programming paradigms,
fails to support more stringent end-to-end application requirements because
it hides the details necessary to specify, measure, and control QoS. Moreover,
it does not support the development of systems that can adapt to chang-
ing QoS conditions dynamically. As a result, developers of mission-critical
distributed applications must often “program around” the DOC middleware,
which provides little or no advantage compared with building systems man-
ually from scratch. These problems are exacerbated when applications are
distributed over WANs, which are inherently more dynamic, unpredictable,
and unreliable than LANs and real-time bus interconnects.

This section describes extensions we have made to conventional DOC
middleware programming models and implementations so they can support
real-time QoS properties and simultaneously allow flexible control and adap-
tation of key application QoS aspects. We have been developing extensions
these in the context of the COTS CORBA DOC middleware model (Object
Management Group, 1999c), which we summarize first. Next, we summa-
rize the key features and characteristics of TAO and QuO, which leverage
CORBA to provide efficient, scalable, and predictable real-time middleware
mechanisms and adaptive QoS management policies, respectively.

2.1. OVERVIEW OF CORBA

CORBA Object Request Brokers (ORBs) allow clients to invoke operations
on distributed objects without concern for object location, programming
language, OS platform, communication protocols and interconnects, and
hardware (Henning and Vinoski, 1999). Figure 2 illustrates the key compo-
nents in the CORBA reference model (Object Management Group, 1999c)
that collaborate to provide this degree of portability, interoperability, and
transparency.1 Each component in the CORBA reference model is outlined
below:

Client: A client is a role that obtains references to objects and invokes
operations on them to perform application tasks. Objects can be remote or
collocated relative to the client. Ideally, a client can access a remote ob-
ject just like a local object,i.e., object !operation(args) . Figure 2
shows how the underlying ORB components described below transmit remote
operation requests transparently from client to object.

Object: In CORBA, an object is an instance of an OMG Interface Def-
inition Language (IDL) interface. Each object is identified by anobject

1 This overview only focuses on the CORBA components relevant to this paper. For a
complete synopsis of CORBA’s components see (Object Management Group, 1999c).

7

ORB CORE

OBJECT

ADAPTER

GIOP/IIOP

IDL
STUBS

operation()
in argsin args

out args + return valueout args + return value

CLIENTCLIENT
OBJECTOBJECT
((SERVANTSERVANT))

OBJOBJ

REFREF

STANDARD INTERFACESTANDARD INTERFACE STANDARD LANGUAGE MAPPINGSTANDARD LANGUAGE MAPPING

ORB-ORB-SPECIFIC INTERFACESPECIFIC INTERFACE STANDARD PROTOCOLSTANDARD PROTOCOL

IDLIDL
SKELETONSKELETON

IDL
COMPILER

IDL
COMPILER

Figure 2. Key Components in the CORBA 2.x Reference Model

reference, which associates one or more paths through which a client can
access an object on a server. Anobject ID associates an object with its im-
plementation, called a servant, and is unique within the scope of an Object
Adapter. Over its lifetime, an object has one or more servants associated with
it that implement its interface.

Servant: This component implements the operations defined by an OMG
IDL interface. In object-oriented (OO) languages, such as C++ and Java,
servants are implemented using one or more class instances. In non-OO lan-
guages, such as C, servants are typically implemented using functions and
struct s. A client never interacts with servants directly, but always through
objects identified by object references.

ORB Core: When a client invokes an operation on an object, the ORB
Core is responsible for delivering the request to the object and returning
a response, if any, to the client. An ORB Core is implemented as a run-
time library linked into client and server applications. For objects executing
remotely, a CORBA-compliant ORB Core communicates via a version of
the General Inter-ORB Protocol (GIOP), such as the Internet Inter-ORB Pro-
tocol (IIOP) that runs atop the TCP transport protocol. In addition, custom
Environment-Specific Inter-ORB protocols (ESIOPs) can also be defined.

OMG IDL Stubs and Skeletons: IDL stubs and skeletons serve as a
“glue” between the client and servants, respectively, and the ORB. Stubs im-
plement theProxypattern (Gamma et al., 1995) and provide a strongly-typed,
static invocation interface(SII) that marshals application parameters into
a common message-level representation. Conversely, skeletons implement
the Adapter pattern (Gamma et al., 1995) and demarshal the message-
level representation back into typed parameters that are meaningful to an
application.

IDL Compiler: An IDL compiler transforms OMG IDL definitions
into stubs and skeletons that are generated automatically in an application
programming language, such as C++ or Java. In addition to providing pro-

8

gramming language transparency, IDL compilers eliminate common sources
of network programming errors and provide opportunities for automated
compiler optimizations (Eide et al., 1997).

Object Adapter: An Object Adapter is a composite component that
associates servants with objects, creates object references, demultiplexes
incoming requests to servants, and collaborates with the IDL skeleton to dis-
patch the appropriate operation upcall on a servant. Object Adapters enable
ORBs to support various types of servants that possess similar requirements.
This design results in a smaller and simpler ORB that can support a wide
range of object granularities, lifetimes, policies, implementation styles, and
other properties.

2.2. OVERVIEW OF THE TAO REAL-TIME ORB AND EVENT SERVICE

TAO is a high-performance, real-time ORB endsystem targeted for ap-
plications with deterministic QoS requirements, as well as best-effort re-
quirements. The TAO ORB endsystem contains the network interface, OS,
communication protocol, and CORBA-compliant middleware components
and services shown in Figure 4.

NETWORK

ORB RUN-TIME

SCHEDULER

IDL
STUBS

IDL
SKELETON

OS KERNEL

HIGH-SPEED

NETWORK INTERFACE

REAL-TIME I/O
SUBSYSTEM

OS KERNEL

HIGH-SPEED

NETWORK INTERFACE

REAL-TIME I/O
SUBSYSTEM

ACE COMPONENTS

REAL-TIME ORB CORE
IOP

PLUGGABLE

ORB & XPORT

PROTOCOLS

IOP
PLUGGABLE

ORB & XPORT

PROTOCOLS

push()

CLIENT

push()

SERVANT

REAL-TIME

OBJECT

ADAPTER

REAL-TIME

EVENT SERVICE

Figure 4. Components in the TAO Real-time ORB Endsystem

TAO supports the standard OMG CORBA reference model (Object Man-
agement Group, 1999c) and Real-time CORBA specification (Object Man-
agement Group, 1999b), with enhancements designed to ensure efficient,
predictable, and scalable QoS behavior for high-performance and real-time
applications.

9

Optimized IDL Stubs and Skeletons: IDL stubs and skeletons per-
form marshaling and demarshaling of application operation parameters,
respectively. TAO’s IDL compiler generates stubs/skeletons that can se-
lectively use highly optimized compiled and/or interpretive marshal-
ing/demarshaling (Gokhale and Schmidt, 1999). This flexibility allows ap-
plication developers to selectively trade off time and space, which is crucial
for high-performance, real-time, and/or embedded distributed systems.

Real-time Object Adapter: An Object Adapter associates servants with
the ORB and demultiplexes incoming requests to servants. TAO’s real-time
Object Adapter (Pyarali et al., 1999) uses perfect hashing (Schmidt, 1990)
and active demultiplexing (Pyarali et al., 1999) optimizations to dispatch
servant operations in constantO(1) time, regardless of the number of active
connections, servants, and operations defined in IDL interfaces.

Run-time Scheduler: TAO’s run-time scheduler (Object Management
Group, 1999b) maps application QoS requirements, such as bounding end-
to-end latency and meeting periodic scheduling deadlines, to ORB endsys-
tem/network resources, such as CPU, memory, network connections, and
storage devices. TAO’s run-time scheduler supports both static (Schmidt
et al., 1998) and dynamic (Gill et al., 2000) real-time scheduling strategies.

Real-time Event Service:TAO’s Real-time (RT) Event Service (Harrison
et al., 1997) extends the standard CORBA Event Service (Object Manage-
ment Group, 1995) by providing (1) source and type-based filtering, (2) event
correlations, (3) event channel federations, (4) hardware and kernel-level
filtering based on IP multicast, and (5) large numbers of suppliers and con-
sumers. In addition, TAO’s RT Event Service can be integrated with TAO’s
run-time scheduler outlined above to support applications with stringent
end-to-end real-time requirements.

Real-time ORB Core: An ORB Core delivers client requests to the Ob-
ject Adapter and returns responses (if any) to clients. TAO’s real-time ORB
Core (Schmidt et al., 2000) uses a multi-threaded, preemptive, priority-based
connection and concurrency architecture (Gokhale and Schmidt, 1999) to
provide an efficient and predictable CORBA protocol engine. TAO’s ORB
Core allows customized protocols to be plugged into the ORB without
affecting the standard CORBA application programming model.

Real-time I/O subsystem:TAO’s real-time I/O (RIO) subsystem (Kuhns
et al., 1999b) extends support for CORBA into the OS. RIO assigns priorities
to real-time I/O threads so that the schedulability of application components
and ORB endsystem resources can be enforced. When integrated with ad-
vanced hardware, such as the high-speed network interfaces described below,
RIO can (1) perform early demultiplexing of I/O events onto prioritized ker-
nel threads to avoid thread-based priority inversion and (2) maintain distinct
priority streams to avoid packet-based priority inversion. TAO also runs ef-

10

ficiently and relatively predictably on conventional I/O subsystems that lack
advanced QoS features.

High-speed network interface:At the core of TAO’s I/O subsystem is a
“daisy-chained” network interface consisting of one or more ATM Port Inter-
connect Controller (APIC) chips (Dittia et al., 1997). The APIC is designed
to sustain an aggregate bi-directional data rate of 2.4 Gbps using zero-copy
buffering optimization to avoid data copying across endsystem layers. In
addition, TAO runs on conventional real-time interconnects, such as VME
backplanes and multi-processor shared memory environments.

TAO internals: TAO is developed using lower-level middleware called
ACE (Schmidt and Suda, 1994), which implements core concurrency and
distribution patterns (Gamma et al., 1995) for communication software. ACE
provides reusable C++ wrapper facades and framework components that sup-
port the QoS requirements of high-performance, real-time applications and
higher-level middleware like TAO. ACE and TAO run on a wide range of OS
platforms, including Win32, most versions of UNIX, and real-time operating
systems like Sun/Chorus ClassiX, LynxOS, and VxWorks.

2.3. OVERVIEW OF QUO

Quality Objects (QuO) is a distributed object computing (DOC) framework
designed to develop distributed applications that can specify (1) their QoS
requirements, (2) the system elements that must be monitored and controlled
to measure and provide QoS, and (3) the behavior for adapting to QoS vari-
ations that occur at run-time. By providing these features, QuO opens up
distributed object implementations (Kiczales, 1996) to control an applications
functional aspects and implementation strategies that are encapsulated within
its functional interfaces. To achieve these goals, QuO provides middleware-
centric policies and mechanisms for developing DOC applications that can
perform the following operationsin addition totheir functional behavior:

Specify operating regions and service requirements:QuO-enabled ap-
plications can specify their levels of desired performance or resources (which
might change dynamically based upon changes in the environment), oper-
ating modes, and operating regions. changes in the environment), operating
modes (corresponding to different functional objectives of the application),
and operating regions (corresponding to different environment or system
conditions, resource availability, etc.).

Measure environmental and system conditions:QuO-enabled applica-
tions can insert and use probes in their distributed environment to measure
resources, characteristics, and behavior. In addition, these applications can
receive information from resource managers, real-time operating systems or
ORBs, and other property managers and mechanisms.

11

Access control interfaces:QuO-enabled applications can access system
resource management control interfaces and pass information to resource or
property managers to achieve their desired level of service.

Adapt and reconfigure: QuO-enabled applications and systems can adapt
to changing conditions at all levels, coordinated through the QuO middle-
ware. For example, in response to changing mission objectives or degraded
resources, a QuO-enabled system can respond through adaptation on the
part of the resource managers, real-time mechanisms, QuO middleware, and
application programs.
The functional path of QuO illustrated in Figure 5 is a superset of the func-
tional path of CORBA illustrated in Figure 2. The components provided by
QuO to support the above operations are defined below.

Figure 5. The QuO Distributed Object Computing Model

Contracts: The operating regions and service requirements of the appli-
cation are encoded incontracts, which describe the possible states the system
might be in, as well as which actions to perform when the state changes. The
possible states are specified as a set ofregions, which can be nested. Each
region is defined by a predicate over a set of system condition objects, which
are described below. A contract also defines a set oftransitionsbetween re-
gions, which specify adaptive behavior that is triggered when the system state
(as defined by the contract regions and predicates) changes (as represented by
a contract transitioning from one valid region to another).

Delegates:QuO insertsdelegatesin the CORBA functional path. Dele-
gates project the same interfaces as the stub (client-side delegate) and the
skeleton (server-side delegate), but support adaptive behavior upon method
call and return. When a method call or return is made, the delegate checks the
system state, as recorded by a set of contracts, and selects a behavior based
upon it.

Contracts and delegates support two means for triggering manager-level,
middleware-level, and application-level adaptation. The delegate triggersin-
band adaptation by making choices upon method calls and returns. The

12

contract triggersout-of-bandadaptation when region transitions occur which
can be caused by changes in observed system condition objects.

System Condition Objects:These objects provide uniform interfaces to
multiple levels of system resources, mechanisms, and managers to translate
between application-level concepts, such as operating modes, to resource
and mechanism-level concepts, such as scheduling methods and real-time
attributes. System condition objects are used to measure the states of sys-
tem resources, mechanisms, and managers that are relevant to contracts in
the overall system. In addition, they can pass information to interfaces that
control the levels of desired services.

Higher-level system condition objects can interface to other, lower-level
system condition objects, forming a tree of system condition objects that
translate mechanism data into application data. System condition objects
can be eitherobservedor non-observed. Changes in the values measured by
observed system conditions trigger contract evaluation, possibly resulting in
region transitions and triggering adaptive behavior.

Observed system condition objects are suitable for measuring conditions
that either change infrequently or for whom a measured change can indi-
cate an event of notice to the application or system. Non-observed system
condition objects represent the current value of whatever condition they are
measuring, but do not trigger an event whenever the value changes. Instead,
they provide the value upon demand, whenever the contract needs it,i.e.,
whenever the contract is evaluated due to a method call or return or due to an
event from an observed system condition object.

Observed system condition objects can measure frequently changing
system conditions by coding the system condition object tosmooth outcon-
tinuous changes. For example, a system condition object measuring the load
on a host can be observed. However, it can be programmed to only report
periodic events showing average load over some time duration. Likewise, it
can be programmed to only report events when the load crosses a certain
threshold.

Instrumentation Probes: QuO provides a library ofinstrumentation
probesthat can be inserted throughout the remote method invocation path.
These probes can be used by the QuO infrastructure to gather performance
statistics and validation information unobtrusively. To accomplish this, the
QuO delegate adds a data structure to each method call and return. This
structure can be populated or read by any or all the instrumentation probes
along the method call/return path.

Quality Description Languages (QDLs) and Code Generators:QuO
provides a suite of QDLs, which are similar to CORBA’s Interface Descrip-
tion Language (IDL), andcode generators, which are similar to the stub and
skeleton generators of CORBA IDL compilers. QDLs and code generators
describe and automatically output, respectively, the components of QuO ap-

13

plications (Loyall et al., 1998b; Loyall et al., 1998a; Pal et al., 2000). QuO
currently provides a contract description language (CDL); a structure descrip-
tion language (SDL) to specify adaptive behavior and adaptation strategies;
and a connector setup language (CSL) to specify the components of a QuO
application and how they are instantiated, connected, and initialized.

QuO Runtime Kernel and GUI Monitor: QuO provides aruntime ker-
nel that coordinates contract evaluation and provides other runtime QuO
services (Vanegas et al., 1998). These services include initializing contracts
and system conditions, binding them to each other and to delegates, triggering
contract evaluation, and triggering adaptive behavior. The runtime kernel also
provides a debugging mode that prints trace messages of the QuO middleware
behavior during system execution.

In addition, the QuO kernel provides a graphical user interface (GUI) that
enables monitoring applications to observe the QuO middleware in action.
The GUI displays contracts and regions and indicates the current active region
and the previously active regions. It also displays the system condition objects
in the system and their values, indicating when region transitions occur and
the adaptive behavior triggered by the transition. Finally, it displays statistics
showing how much time applications have spent in each contract region.

QuO Gateway: QuO provides a general object gateway component, il-
lustrated in Figure 6, which allows low-level communication mechanisms

Figure 6. The QuO gateway

14

and special-purpose to beplugged intoan application (Schantz et al., 1999).
The QuO gateway resides between the client and server ORBs. It is a me-
diator (Gamma et al., 1995) that intercepts IIOP messages sent from the
client-side ORB and delivers IIOP messages to the server-side ORB (on the
message return the roles are reversed). On the way, the gateway translates
the IIOP messages into a custom transport protocol, such as group multicast
in a replicated, dependable system. The QuO gateway is implemented using
TAO’s pluggable protocol feature (Kuhns et al., 1999a).

The gateway also provides an API that allows adaptive behavior or pro-
cessing control to be configured below the ORB layer. For example, the
gateway can select between alternate transport mechanisms based on low-
level message filtering or shaping, as well as the overall system’s state and
condition objects. Likewise, the gateway can be used to integrate security
measures, such as authenticating the sender and verifying access rights to the
destination object.

3. QuO Middleware Specification and Control of TAO Real-Time
Mechanisms

TAO’s CORBA ORB middleware provides a rich set of mechanisms for rep-
resenting and enforcing real-time requirements in DOC applications. Directly
programming TAO’s lower-level real-time mechanisms to achieve specific
end-to-end quality of service (QoS) goals can be excessively tedious and
error-prone, however, particularly for large-scale mission-critical distributed
systems. Therefore, higher-level middleware capabilities for end-to-end QoS
specification and control are needed.

QuO offers the following two facilities for higher level specification and
control of TAO’s real-time mechanisms:

1. QuO provides additional mechanisms for application-level and
middleware-level adaptation that complements and improves lower-level
real-time capabilities of ORB middleware.

2. QuO allows developers to specify higher-level aspects of real-time re-
quirements, such as the type of real-time required –e.g., periodic or
end-to-end, the relative priority of events, and the tradeoffs between
real-time and other QoS requirements. It then maps these higher-level
specifications into QuO and TAO mechanisms that implement, measure,
and control them.

The remainder of this section examines various types of application re-
quirements for real-time QoS and describes mechanisms for specifying and
enforcing QoS within the TAO and QuO middleware. In addition, we present
a sample application that illustrates the power of our integrated approach

15

for specifying and enforcing end-to-end real-time QoS in mission-critical
distributed and embedded systems.

3.1. SYNOPSIS OFREAL-TIME APPLICATION QOS REQUIREMENTS

It is important to examine a distributed application’s real-time QoS require-
ments from the perspective of the application itself,i.e., in isolation from
various policies and mechanisms that are used to meet those requirements.
First, doing so offers insight into the general characteristics of the application,
thereby promoting portability and implementation flexibility by decoupling
application behavior from specific QoS management implementations. Sec-
ond, mapping these abstract requirements back into specific implementations
offers insight into the general capabilities of various QoS management poli-
cies and mechanisms. Finally, the patterns that emerge from comparing
application requirements and QoS management capabilities at an appropriate
level of abstraction provide a basis for evaluating the suitability of a particular
QoS management implementation for a given application.

Below, we outline key requirements for distributed and embedded real-
time applications. These requirements present different aspects of the single
real-time QoS aspect:timeliness constraints on applications. These timeli-
ness constraints can manifest themselves as absolute time requirements or as
requirements for synchronization or coordination with other components. For
example, a distributed collaboration whiteboard application may require that
local display modifications propagate and appear on all other remote displays
within 400 milliseconds to avoid excessive display jitter.

The list below is not intended to be complete for all applications. In-
stead, it motivates and illustrates the generality and flexibility of the adaptive
middleware QoS architecture presented in subsequent discussions.

Periodic invocation: Certain distributed real-time applications have spe-
cialized timing requirements where specific operations must begin and/or
complete within repeated periodic intervals. For example, aircraft sensor de-
vices, such as global position system (GPS) and radar sensors, generate data
at regular periodic intervals (Harrison et al., 1997).

Aperiodic invocation: Unlike periodic requests, aperiodic invocation re-
quests are not generated at regular intervals. Instead they are generated in
response to specific events, such as threats or alerts. In many cases, aperiodic
events must take priority over periodic events due to special circumstances
they represent. For example, it may be necessary to respond at high priority
to the signal on a fighter aircraft that warns of an enemy radar lock.

Event delivery and consumption: Some distributed applications have
real-time requirements that are best defined in terms ofend-to-endevent
delivery and consumption. For example, the periodic generation of sensor
data described above may generate interrupts to notify various applications,

16

such as heads-up displays (HUDs) or navigation systems, to receive incoming
event data.

Event-driven models are used by many networked, embedded systems,
including avionics systems, command and control systems, and industrial
process control systems. Such applications often have requirements whereby
not only must events be delivered to the proper consumers, but consumers
must process the events completely within strict time bounds. In a periodic
invocation system, this is typically prior to the next arrival of a periodic event.
In aperiodic systems, this is often based upon external constraints. For exam-
ple, nuclear power plant safety applications detect dangerous situations and
also initiate automated safeguards to alleviate them. Both the initiation and
completion of the safeguard processing must complete within a fixed interval
from the detection of the hazardous situation.

Round-trip: Some applications require data to be delivered, processed,
and a reply returned within a given time-frame. For example, a stock market
trading application must place trades, conduct the trading transaction, and
return a confirmation, all within a fixed interval from the user’s initiation of a
trade.

Pipelined: Pipelined applications require that data and events be delivered
and passed to a final destination within specific time constraints. In some
cases, these applications, whose timing requirements often pertain only to the
final delivery, can be divided into subsidiary real-time constraints pertaining
to each segment of the distributed pipeline.

Different policies and mechanisms within middleware architectures can
be applied to specify, enforce, and control these real-time aspects and re-
quirements. TAO provides a number of mechanisms for enforcing the above
requirements, while QuO provides higher-level capabilities for specifying
and controlling these requirements. Together, TAO and QuO help applications
adapt to changing requirements and changing environments that affect their
ability to meet end-to-end QoS requirements.

3.2. TAO ENFORCEMENTMECHANISMS

TAO and its real-time (RT) Event Service provides many mechanisms for
enforcing QoS requirements related to managing CPU, memory, and network
resources (Harrison et al., 1997; O’Ryan et al., 1999). These mechanisms can
be categorized by the time-scales on which they provide adaptation to meet
application QoS requirements, as follows:

In-band mechanisms: These mechanisms perform shorter time-scale
activities to establish and preserve QoS during system operation. TAO’s in-
band mechanisms for real-time QoS include periodic timer expiration, event
correlation, event filtering, priority dispatching, and dynamic queue ordering.

17

Out-of-band mechanisms: These mechanisms perform longer time-
scale mechanisms that configure or reconfigure in-band mechanisms in the
ORB and its ORB Services. TAO’s out-of-band mechanisms for real-time
QoS include scheduling strategies, static priority assignment, static queue
configuration, event supplier registration, and event consumer registration.

Below, we examine these mechanisms in detail.
Periodic timer expiration: TAO’s RT Event Service allows event con-

sumers to register for periodic timer expiration events. This feature can
enforce periodic invocation of operations with periodic timing requirements,
e.g., polling values of sensor devices.

Event correlation: TAO’s RT Event Service allows event consumers to
control their real-time invocation semantics by correlating events using logi-
cal conjunction and disjunction. For example, an event consumer might wish
to be invoked whenever an event supplier sends a “data ready” eventor
whenever an “end-of-frame” timer expires.

Event filtering: TAO’s RT Event Service allows applications to reduce
resource demands by filtering out unnecessary events, thereby reducing event
traffic. For example, one event consumer may register to receive events only
from a particular event supplier. Conversely, another event consumer may
register to see only events of a particular type, but from any supplier.

Priority dispatching: Priority dispatching can be implemented efficiently
on most modern operating systems through the OS kernel’s preemptive thread
scheduler. TAO implements the standard Real-time CORBA (Object Man-
agement Group, 1999b) policies that allow applications to assign distinct
priority to threads in a pool (Schmidt et al., 2000) and to associate each
thread with a queue onto which requests can be inserted. Using these mecha-
nisms, operations can be demultiplexed and dispatched at appropriate thread
priorities.

Dynamic queue ordering: Different queue ordering policies are useful
for different types of real-time dispatching (Gill et al., 2000). For example,
operations can be ordered according to their advertised deadlines, also known
as earliest deadline first (EDF) (Liu and Layland, 1973) ordering. Moreover,
if an application knows the best and/or worst case execution times of its oper-
ations, it can use an minimum laxity first (MLF) (Stewart and Khosla, 1992)
ordering to ensure the operation with the least “slack” time is scheduled first.
Ordering by statically assigned subpriorities is useful to break ties among
operations with the same preemptive priority level but having precedence
relationships,e.g., due to data dependencies. Finally, if an application does
not require other forms of queue ordering, simple FIFO queueing is efficient
and straightforward to implement.

Scheduling strategies: TAO’s Scheduling Service supports different
strategies for static priority assignment and static dispatching queue con-

18

figuration. Implementations of the well-known RMS (Liu and Layland,
1973), EDF (Liu and Layland, 1973), MLF (Stewart and Khosla, 1992),
and MUF (Stewart and Khosla, 1992) scheduling strategies are provided
with TAO. The choice of scheduling strategy has significant implications
for the real-time behavior of an application. Therefore, scheduling strategies
are typically assigned during system design and rarely vary during system
execution.

Certain scheduling strategies are better suited for particular types of appli-
cations, however, which motivates the ability to configure different strategies
flexibly. For example, an RMS strategy may be serve a periodic sensor polling
application, where all operations are time-critical and are known in advance.
Conversely, an EDF strategy may be more suited to a peer-to-peer gateway
application with no bounds on its traffic load.

Static priority assignment: Scheduling strategies that assign distinct
static priorities to all operations can help to isolate higher priority opera-
tions from the resource demands of lower priority operations. In turn, this
allows the application of real-time analysis techniques, such as RMA (Klein
et al., 1993), that depend on fixed priorities for all operations. Likewise, other
scheduling strategies, such as maximum urgency first (MUF) (Stewart and
Khosla, 1992), that assign static priority according to operation criticality
can help to isolate mission-critical portions of the system from the resource
requirements of non-critical portions. Note that these “static” priorities can
be adaptively reconfigured at run-time using TAO’s reconfigurable scheduler
implementation (Doerr et al., 1999). However, such reconfiguration occurs
on an out-of-band time-scale, reflecting a system mode change (Sha et al.,
1989).

Static queue configuration:Supporting diverse scheduling strategies re-
quires significantin-bandvariation in the run-time enforcement of application
QoS. Despite this, theconfigurationsof the enforcement mechanisms can
be established statically. In particular, the number of dispatching queues,
and their policies for ordering operation dispatches, are functions of the
scheduling strategy and the characteristics of application operations.

For example, the MUF scheduling strategy requires a dispatching queue
and a dispatching thread at the corresponding static priority for eachcriti-
cality level. Each of these dispatching queues use the MLF ordering policy.
In contrast, RMS requires a dispatching queue for eachrate and dispatches
operations either in static subpriority order or FIFO order, depending on the
strategy implementation.

Event supplier and consumer registration: Event suppliers must pro-
vide configuration information when they register with TAO’s RT Event
Service. First, each supplier provides an identifier that will accompany all
events it sends. Second, each supplier indicates the event types it willpub-
lish. In addition, event consumers must provide configuration information

19

when they register with TAO’s RT Event Service. Each consumersubscribes
to events of particular types and/or events that are associated with specific
supplier identifiers.

3.3. QOS SPECIFICATION IN TAO

TAO supports QoS specification through its real-time scheduling service. An
application describes the characteristics of each operation to its Scheduling
Service, such as its criticality, period, worst case execution time, and depen-
dencies on other information. The Scheduling Service stores these attributes
in RT Info descriptors, which are shown in Figure 7. TAO’s Scheduling

DDEEPPEENNDDSS UUPPOONN ==
DDIISSPPAATTCCHHEEDD AAFFTTEERR

ssttrruucctt RRTT__IInnffoo
{{
 CCrr iittiiccaalliittyy ccrr iittiiccaalliittyy__;;
 TTiimmee wwoorrssttccaassee__eexxeecc__ttiimmee__;;
 PPeerr iioodd ppeerr iioodd__;;
 IImmppoorr ttaannccee iimmppoorr ttaannccee__;;
 DDeeppeennddeennccyy__IInnffoo ddeeppeennddeenncciieess__;;
}};;

Figure 7. Operation Characteristics

Service uses theseRT Info descriptors to prioritize operations, determine
the number and types of dispatching queues, and store derived information
about the operations, such as the assigned static dispatching priorities.

TAO’s Scheduling Service also provides a specification for the real-time
event service’s dispatching queue configuration, based on the registered op-
eration descriptors. The real-time scheduling service provides the number of
queues, the type of each queue (i.e., its ordering policy), the global priority
number for the queue, and the corresponding OS thread priority at which
operations will be dispatched from that queue.

3.4. APPLICATION ADAPTIVE MECHANISMS

Providing mechanisms and policies to specify and enforce QoS requirements
in real-time middleware can shield the application developer from many
tedious and error-prone details. There are cases, however, when controlled
violations of this layering are actually beneficial. For example, a collection of
application components that compete for the same set of resources may wish
to avoid congestion and blocking delays due to excessive contention. In such
cases, the application can play an active part in the management of its QoS
requirements, as follows:

20

1. An application component can simply reduce its impact on other appli-
cation components. For instance, it could reduce its resource demands or
yielding resources frequently.

2. An application component may adjust its real-time behavior. For in-
stance, it could change its rate of execution by registering for a different
timer interval or poll a sensor data port that is clocked at a different rate.

3. An application component may behave adaptively with respect to the
behavior of other components. For instance, it could set a “need data”
timer as described in Section 3.2 and use an older value if the supplier is
not ready.

The third technique is particular useful when integrating components whose
real-time behavior can vary significantly. As real-time systems continue to
be integrated with non-real-time data sources and applications, the need to
balance the competing design forces of (1) encapsulating complex program-
ming details and (2) supporting flexible adaptation in the application layer
will certainly increase.

3.5. QUO ADAPTIVE MECHANISMS

As noted in Section 3.2, adaptation mechanisms may operate either on a
shorterin-band time-scale or on a longerout-of-bandtime-scale. The QuO
adaptive QoS management middleware supports both types of mechanisms.
Moreover, QuO acts as a higher level middleware layer that can interoperate
both with the application and with lower-level middleware to mitigate the
design tension between encapsulation and flexibility described in Section 3.4.

We have inserted QuO middleware control in the path of the TAO RT
Event Service suppliers and consumers, as illustrated in Figure 8. Our efforts

Figure 8. QuO Control of the TAO event channel

have concentrated on the supplier-side of the periodic sensor-actuator event
channel examples supported by TAO. Within this context, QuO contracts and

21

delegates support the following types of adaptivity in these types of TAO
applications:

Changing the frequency of events:This adaptation varys the rate at
which a supplier pushes events by intercepting events in the delegate and
either pushing themfaster, i.e., requiring the delegate to generate events,
or slower, i.e., requiring the delegate to delay or eliminate events. In ad-
dition, the period of the consumer also can be varied by (1) changing the
associatedRT Info attribute or (2) intercepting delivered events with the
consumer-side delegate and pushing them to the actual consumer at a different
period.

Changing the priority of events: Depending on the specified scheduling
strategy, TAO uses differentRT Info attributes to control static priorities.
In turn, these priorities are enforced by dispatching threads, and static and
dynamic subpriorities which are enforced by dispatching queues. For exam-
ple, the MUF (Stewart and Khosla, 1992) scheduling strategy implemented
in TAO (Gill et al., 2000) usescriticality to assign static priority,worst case
execution timeandperiod to assign dynamic subpriority, andimportanceto
assign static subpriority. Importance is a lower measure of priority used to
break ties. Changing the priority and subpriority of events, therefore, involves
changing the criticality, worst case execution time, period, and importance at-
tributes for an event’sRT Info . Moreover, priority and worst case execution
time areinherentaspects of the application’s behavior. Therefore, application
itself may need to adapt to change these aspects properly.

Changing how the consumer processes events:When an event is de-
livered to a consumer, the consumer processes it in some manner,e.g., by
displaying an image on a HUD or updating navigation data. To invoke dif-
ferent forms of consumer processing, the consumer-side delegate can choose
between different methods or alternate arguments to methods based upon the
state of the contract.

Change the event type:The supplier-side or the consumer-side delegates
can change the event type of a supplied or delivered event. In turn, this
changes the way an event will be propagated to, and/or processed by, event
consumers.

TAO currently does not support changing ofRT Info attributesin-band.
It does, however, supportout-of-bandreconfiguration and reassignment of
priorities. For example, when the time-scale for application mode changes
corresponds to the out-of-band time-scale for reconfiguration,e.g., by an
Adaptive Resource Manager (J. Huang et al., 1997), it may be sufficient
to rely solely on out-of-band adaptation dynamic scheduling to control
variations in event-level QoS (Doerr et al., 1999).

These types ofout-of-bandadaptation may prove too costly for certain ap-
plications, however, particularly when significant variations in QoS must be

22

enforced on a fine-grainin-bandtime-scale. In such cases, creatively imple-
mented QuO delegates can still achieve adaptation on an in-band time-scale,
while preserving the correct operation of all QoS enforcement mechanisms
as they are configured. For example, changing the priority of events and/or
changing the period of events might entail setting up multipleRT Info
descriptions beforehand. This would entail creating one for each possible
priority and period, and then changing the event type inside the delegate to
the event type corresponding to the properRT Info .

The adaptation techniques outlined above can be combined to produce
powerful application- and system-level adaptation strategies. For example,
changing the frequency of events, and changing how the consumer pro-
cesses events, can be generalized to support any arbitrary supplier-side and
consumer-side processing of the event prior to (or instead of) delivery to
the event channel or consumer. This technique supports filtering of events
outside TAO’s event service, duplicating events to a remote monitoring
framework (Gill et al., 1999), adjusting event data, and so forth.

Changing the timing and distribution of events also supports a potentially
powerful adaptation technique:migration of processing. This technique al-
lows consumer-side functionality to bepulled into the supplier-side if, for
example, the consumer was unable to process the data completely within the
required time. Conversely, this technique allows supplier-side functionality to
bepushedout to the consumer-side,e.g., via a replication service. A real-time
system can dynamically reconfigure to recover from overloaded hosts or to
satisfy real-time requirements in the face of an increased number of aperiodic
events. It can do so by increasing the amount of processing performed by the
delegate on the supplier side and thus decreasing the processing load on the
consumer.

The QuO delegates and contracts also can impose control over the sup-
pliers from which a consumer can receive events. This feature can be used
to maintain and enforce real-time requirements. For example, as resources
become constrained in a system, a QuO delegate can prohibit delivery of
events to a consumer so that another consumer can maintain its period re-
quirement. This level of control is not supported currently by existing TAO
RT Event Service mechanisms, and is another example of the “meta-level”
programming power provided by QuO.

3.6. QOS SPECIFICATION IN QUO

The QoS specification mechanisms provided by TAO, which were described
in Section 3.3, have been shown to be sufficient for building mission-
critical applications with stringent real-time requirements (Harrison et al.,
1997; Levine et al., 1998; Gill et al., 2000; Doerr et al., 1999). However, these
applications were built by researchers and developers with significant experi-

23

ence and expertise both in real-time systems and in distributed object-oriented
software engineering. It is a non-trivial exercise for real-time application de-
velopers to recognize (1) which strategies and configurations should be used
and (2) how they should be applied to achieve the desired real-time behavior.

For example, the code required to (1) create and set up TAO’s Scheduling
Service and RT Event Service and (2) to connect suppliers and consumers
to the Event Service is fairly low-level and specific to the TAO event chan-
nel implementation. However, these steps are also relatively common from
one Event Service application to the next. Moreover, much of the low-level
code dealing with the association of suppliers, consumers, and QoS informa-
tion is at a lower level of abstraction than the application-level requirements
described in Section 3.1. The implementation details also require the specifi-
cation of unusedRT Info data on the supplier and the consumer, as well as
the creation of multiple unique names for each event.

In the spirit of CORBA IDL and QuO’s QDL, therefore, we have devel-
oped an aspect language to deal with the application-level real-time require-
ments of periodic sensor-actuator systems. This language, called Real-time
Specification Language (RSL), allows real-time application programmers to
define the supplier and consumer configurations for as many event types and
real-time attributes as are of interest. The programmer does so without sup-
plying the remainder of the information necessary to set up the event channel,
but that is not relevant to the application requirements.

RSL allows a QoS programmer to specify the following:

� A set of events; and

� A set of event suppliers, the events each will generate; and (optionally)
the period at which the event will be generated (or that the period will
be specified at runtime); and

� A set of event consumers, the events each consumes, and any or all of
the criticality, worst case time, typical time, cached time, and importance
values (or that the values will be specified at runtime).

The RSL code generator then outputs the code that (1) creates the scheduling
service servant, (2) creates the event channel and register it with the name
service, and (3) initializes each server and consumer. This code will gener-
ate unique names for the events, encode dummy values for anyRT Info
attributes not specified in the RSL specification (including unused attributes),
specify the values for attributes specified in the RSL, and put the runtime
specified attributes into the signature of the routine.

For example, the RSL specification in Figure 9 will generate a class named
QuORT Class that contains (along with the scheduler and event channel
configuration code) the following methods:

24

RT SPECS QuORT Class f
EVENTS f event1, event2, event3 g
EC SUPPLIER supplier1 setup routine f

GENERATESf event1, event2 g
APPLICATION SPECIFIED f period g

g
EC CONSUMER consumer1setup routine f

CONSUMESf event2 g
APPLICATION SPECIFIED f criticality, importance g

g
EC CONSUMER consumer2setup routine f

CONSUMESf event1 g
APPLICATION SPECIFIED fg
CONSTANTf criticality = very high;

importance = very low;
g

g
g

Figure 9. Example RSL specification

� The supplier1 setup routine method sets up a supplier that
generatesevent1 and event2 (although it will have unique names
to refer to them) and generates them at periods that will be passed into
the method when it is called at runtime.

� The second and third methods set up two consumers. One method
initializes a consumer that consumesevent2 with a criticality and
importance passed in at initialization time. The other method initializes
a consumer that consumes event1 with a very high criticality and a very
low importance2 .

Each of these three methods will encode dummy values for all the other
attributes ofRT Info .

3.7. UNIFYING QOS SPECIFICATION AND ENFORCEMENTLAYERS

The TAO and QuO QoS enforcement mechanisms described in Sec-
tions 3.2, 3.4, and 3.5, combined with the specification capabilities described
in Sections 3.3 and 3.6, provide a powerful framework for meeting the
application requirements listed in Section 3.1. To illustrate how the inte-
grate TAO and QuO framework can be used to meet the QoS requirements
of mission-critical real-time applications, we describe an example sensor-
actuator application, representative of those found in event-driven avionics
systems and illustrated in Figure 10.

2 TAO recognizes criticality and importance values ofVERY HIGH, HIGH, MEDIUM, LOW,
andVERY LOW.

25

I/O Facade

Sensor
Proxy

Sensor
Proxy

Sensor
Proxy

Sensor
Proxy

I/O Facade I/O Facade

2: Demarshaled data

High Level
Abstraction

Low Level
Abstraction

1: I/O via interrupts

Aircraft
Sensors

Figure 10. A Real-time Event-Driven Avionics System

Sensor-actuator applications, such as those found in embedded avionics
systems (Harrison et al., 1997), contain many subsystems operating in con-
cert, responding to sensor data events, and managing functions of the aircraft.
These subsystems include functionality, such as the heads-up display and
navigation subsystems. Sensor data can come from a number of sensors on
the aircraft, such as a global positioning satellite receivers, or various radar
sensors.

In general, these subsystems have crucial QoS requirements, such as real-
time response, dependability, and resource utilization. Moreover, the set of
QoS requirements that must be satisfied can be highly variable, differing (1)
between families of aircraft and between specific products within a family of
aircraft, (2) between subsystems within a single aircraft, and (3) even between
missions and between operating modes, within a single aircraft subsystem.

Currently fielded avionics systems are designed to be configured between
missions, so that pilots can manually switch between mission computer op-
erating modes (Doerr and Sharp, 1999). However, for the most part current
avionics software systems are configured statically. Therefore, changes oc-
cur in the form of software upgrade cycles and mission reprogramming.
These legacy sensor-actuator systems are inflexible because the sensors are
tightly coupled to the actuators, and the software is often tightly coupled to
special-purpose hardware.

To overcome these limitations, it is necessary to apply new engineering
methods to the process of developing these systems. In particular, improv-
ing the reliability and flexibility of distributed real-time systems requires
advanced techniques, such as leveraging COTS hardware and software, in-
creasing software reuse through middleware, and applying design patterns
and adaptive object-oriented programming techniques. Moreover, these tech-
niques serve to manage the monetary and time costs of the overall system
development lifecycle.

26

Adaptable DOC middleware frameworks, such as QuO and TAO, imple-
ment the necessary patterns, strategies, and infrastructure needed to build
modern, more flexible avionics systems. In the example illustrated in Fig-
ure 10, sensors and actuators are decoupled, hidden from one another through
sensor proxies and event channels. This allows sensors and actuators to be
reconfigured, upgraded, or replaced dynamically without affecting the other
subsystems. Furthermore, the avionics software can automatically adapt to
changing missions and operational conditions by making tradeoffs between
QoS dimensions, and dynamically reallocating resources. For example, an
avionics system may temporarily sacrifice progress of non-critical operations
for increased performance of critical operations.

This adaptable architecture requires the following combined assets:

� Middleware that can decouple sensors and actuators while providing
real-time enforcement, such as that provided by the TAO real-time ORB;

� Dynamic resource managers and mechanisms, such as RT-ARM (J.
Huang et al., 1997) or Darwin (Prashant Chandra, 1998);

� Adaptable middleware, such as the QuO system, which can provide
application-level control and adaptation based upon changing mission
goals, operational modes, environmental conditions, and changing QoS
tradeoffs.

These capabilities are complementary. The TAO ORB enables the decoupling
of sensor and actuator functionality while guaranteeing real-time delivery
of sensor events. Dynamic resource managers enable access to and reallo-
cation of resources in response to changing system conditions and mission
needs, while the QuO middleware enables the application- and subsystem-
level control to allocate the resources and functionality to the proper mission
or operating mode.

3.8. OPEN RESEARCHISSUES

This section illustrates how application QoS requirements can be specified to
higher-level DOC middleware, such as QoO, which in turn maps these spec-
ifications onto efficient, predictable, and scalable mechanisms in lower-level
middleware, such as TAO, in order to meet the QoS requirements end-to-end.
To make the example concrete, and to document our on-going R&D activities
in the DARPA Quorum integration effort, we have focused on a particular
use-case in the avionics mission computing domain. We are planning to ad-
dress the following open research issues, however, to demonstrate the broader
applicability of our adaptive multi-level middleware strategy.

Leveraging existing QoS research:The operating system and network-
ing research communities have produced a wealth of techniques, architec-
tures, and empirical information for QoS management issues in the network

27

and OS kernel layers. These techniques must be used as the basis for
developing and evaluating middleware QoS management approaches, and
wherever possible built into end-to-end middleware solutions. Some mid-
dleware solutions leverage particular point-solutions for QoS management,
e.g., TAO leverages preemptive thread scheduling in the OS kernel to enforce
static priorities. However, a more comprehensive integration of policies and
mechanismsat the middleware levelis needed.

Identifying general-purpose patterns: To leverage existing QoS re-
search at the OS and networking levels effectively, it is necessary to identify
the key general-purpose patterns forcomposingthe lower level mechanisms
end-to-end. For example, identifying different patterns for co-scheduling net-
work and CPU resources along a request-response path between a client and
a server will be relevant to many applications. These client-server resource
allocation patterns will in turn guide the creation of flexible middleware
that is suited to the common requirements of a wide range of QoS-enabled
client-server applications.

Identifying domain-specific patterns: Where effective resolutions of
common design forces are captured by general-purpose patterns, each in-
dividual application domain also produces design forces that are specific
to that domain. QoS requirements such as timing, utilization, or reliability
constraints may differ between different application domains,e.g., telecom-
munications and sensor-actuator systems. Additional research is needed to
identify the key design forces for each domain, along with the patterns that
can resolve those forces.

Building flexible QoS frameworks: After identifying the general-
purpose and domain-specific patterns outlined above, along with the neces-
sary lower-level mechanisms for QoS enforcement, it is possible to reify these
patterns in flexible QoS frameworks. Implementing key QoS mechanisms,
strategies and policies, and embedding these within middleware frameworks,
allows DOC middleware to support (1) the common requirements of a wide
range of QoS-enabled applications and (2) the specific requirements of in-
dividual domains and applications. Moreover, building these frameworks
offers practical insights into additional patterns and techniques for QoS
management in adaptive DOC middleware for distributed and embedded
systems.

4. Related Work

Real-time middleware is an emerging field of study. An increasing number
of research efforts are focusing on integrating QoS and real-time scheduling
into middleware like CORBA. This section compares our work on TAO with
related QoS middleware integration research.

28

CORBA-related QoS research:

� Mitre Real-time CORBA:Krupp, et al., (Thuraisingham et al., 1994)
at MITRE Corporation were among the first to elucidate the require-
ments of real-time CORBA systems. A system consisting of a com-
mercial off-the-shelf real-time OS, a CORBA-compliant ORB, and a
real-time object-oriented database management system is under de-
velopment (USAF-RFI:97, 1997). Similar to TAO’s original static
scheduling service (Schmidt et al., 1998), their initial static scheduling
approach used RMS, though a strategy for dynamic deadline monotonic
scheduling support has been designed (Cooper et al., 1997).

� URI TDMI: Wolfe, et al., are developing a real-time CORBA system
at the US Navy Research and Development Laboratories (NRaD) and
the University of Rhode Island (URI) (Wolfe et al., 1997). The system
supports expression and enforcement of dynamic end-to-end timing con-
straints through timed distributed operation invocations (TDMIs) (Fay-
Wolfe et al., 1995). ATDMI corresponds to TAO’sRT Operation
(Schmidt et al., 1998). Likewise, anRT Environment structure
contains QoS parameters similar to those in TAO’sRT Info . One
difference between TAO and the URI approaches is thatTDMIs ex-
press required timing constraints,e.g., deadlines relative to the current
time, whereasRT Operation s publish their resource,e.g., CPU time,
requirements.

� UCSB Realize:The Realize project at UCSB (Kalogeraki et al., 1997)
supports soft real-time resource management of CORBA distributed
systems. Realize aims to reduce the difficulty of developing real-time
systems and to permit distributed real-time programs to be programmed,
tested, and debugged as easily as single sequential programs. Realize
integrates distributed real-time scheduling with fault-tolerance, fault-
tolerance with totally-ordered multicasting, and totally-ordered multi-
casting with distributed real-time scheduling, within the context of OO
programming and existing standard operating systems. The Realize re-
source management model can be hosted on top of TAO (Kalogeraki
et al., 1997).

� UIUC Epiq: The Epiq project (Feng et al., 1997) defines an open
real-time CORBA scheme that provides QoS guarantees and run-time
scheduling flexibility. Epiq explicitly extends TAO’s off-line scheduling
model to provide on-line scheduling. In addition, Epiq allows clients to
be added and removed dynamically via an admission test at run-time.
The Epiq project is work-in-progress and empirical results are not yet
available.

29

� UCI TMO: The Time-triggered Message-triggered Objects (TMO)
project (Kim, 1997) at the University of California, Irvine, supports the
integrated design of distributed OO systems and real-time simulators
of their operating environments. The TMO model provides structured
timing semantics for distributed real-time object-oriented applications
by extending conventional invocation semantics for object methods (i.e.,
CORBA operations) to include (1) invocation of time-triggered oper-
ations based on system times and (2) invocation and time bounded
execution of conventional message-triggered operations.

TAO differs from TMO in that it provides a complete CORBA ORB, as
well as CORBA ORB services and real-time extensions. Timer-based
invocation capabilities are provided through TAO’s Real-Time Event
Service (Harrison et al., 1998). Where the TMO model creates new
ORB services to provide its time-based invocation capabilities (Kim and
Shokri, 1999), TAO provides a subset of these capabilities by extending
the standard CORBA COS Event Service. We believe TMO and TAO
are complementary technologies since (1) TMO extends and generalizes
TAO’s existing time-based invocation capabilities and (2) TAO provides
a configurable and dependable connection infrastructure needed by the
TMO CNCM service. We are currently collaborating with the UCI TMO
team to integrate the TAO and TMO middleware as part of the DARPA
Quorum integration project.

Non-CORBA-related QoS research:

� ARMADA:The ARMADA project (Mehra et al., 1997; Abdelzaher et al.,
1997) defines a set of communication and middleware services that sup-
port fault-tolerant and end-to-end guarantees for real-time distributed
applications. ARMADA provides real-time communication services
based on the X-kernel and the Open Group’s MK micro-kernel. This in-
frastructure provides a foundation for constructing higher-level real-time
middleware services.

TAO differs from ARMADA in that most of the real-time infrastruc-
ture features in TAO are integrated into its ORB Core (Schmidt et al.,
2000) and I/O subsystem (Kuhns et al., 1999b), rather than in a micro-
kernel. In addition, TAO implements the OMG CORBA standard, while
also providing the hooks necessary to integrate with an underlying real-
time I/O subsystem and OS. Thus, the real-time services provided by
ARMADA’s communication system can be utilized by TAO to support
standards-based applications running over a vertically and horizontally
integrated real-time system.

� CMU Publisher/Subscriber:Rajkumar,et al., (Rajkumar et al., 1995) at
CMU developed a real-time Publisher/Subscriber model that is similar

30

to the TAO’s Real-time Event Service (Harrison et al., 1997),e.g., it uses
real-time threads to prevent priority inversion within its communication
framework. The CMU model does not utilize any QoS specifications
from publishers (event suppliers) or subscribers (event consumers),
however. Therefore, scheduling is based on the assignment of request
priorities, which is not addressed by the CMU model.

In contrast, TAO’s Scheduling Service and real-time Event Service
utilize QoS parameters from suppliers and consumers to assure re-
source access via priorities. One interesting aspect of the CMU Pub-
lisher/Subscriber model is the separation of priorities for subscription
and data transfer. By handling these activities with different threads,
with possibly different priorities, the impact of on-line scheduling on
real-time processing can be minimized.

� UCI RED-Linux Scheduling Framework:Wang, et al. (Wang et al.,
1999), at the University of California, Irvine, have proposed a gen-
eral scheduling framework to unify three distinct kinds of scheduling
approaches:priority-based, time-based, andshare-based. Wang,et al.,
decompose scheduling behavior into policy (allocator) and mechanism
(dispatching) components, which are similar to the TAO scheduling
service framework. They have implemented the dispatching portion of
this framework in their real-time extensions to the Linux kernel, called
RED-Linux.

While the RED-Linux approach to scheduling relies on special-purpose
extensions to the OS kernel, TAO’s scheduling service relies only on
commonly available OS features, such as preemptive thread priorities.
Therefore, TAO’s dispatching mechanisms can leverage standards-based
CORBA middleware and it can perform effectively on a wide range of
commonly available real-time and general-purpose OS platforms.

� OSU Share-based Scheduling:Tyan, et al. (Tyan and Hou, 1999), at
Ohio State University, have developed a general framework for share-
based scheduling. They demonstrate their framework’s ability to imple-
ment a number of well-known fair queueing algorithms, as well as its
ability to implement new kinds of share-based scheduling algorithms.

TAO’s strategized scheduling service differs in that it uses priority based
scheduling approaches, in order to address applications with hard real-
time requirements. In our future research, we are investigating share-
based scheduling and its interaction with priority-based scheduling for
various classes of real-time applications.

31

5. Concluding Remarks

Next-generation distributed and embedded systems requires a wide range
of features to support increasingly stringent quality of service (QoS) as-
pects involving bandwidth, latency, jitter, and dependability. In addition to
requiring support for these QoS requirements, next-generation systems are
becomingenabling technologiesfor companies competing in markets where
deregulation and global competition motivate the need for increased software
productivity, quality, and cost-effectiveness. Due to constraints on footprint,
performance, and weight/power consumption, however, development of dis-
tributed and embedded systems has historically lagged far behind mainstream
software development methodologies. As a result, these systems are ex-
tremely expensive and time-consuming to develop, validate, optimize, deploy,
maintain, and upgrade.

The goal of COTS middleware is to decrease the cycle-time and effort
required to develop high-quality distributed and embedded systems by com-
posing applications out of flexible and modular reusable software components
and services, rather than building them entirely from scratch using proprietary
tools. Achieving this goal is essential in contemporary software development
environments, which are increasingly constrained in terms of time and effort.
Moreover, COTS middleware helps reduce the tight coupling of systems to
their current configuration and operating environment, so they can adapt more
readily to new market opportunities, technology innovations, and changes in
run-time situational environments.

The adaptive real-time middleware policies and mechanisms based on
TAO and QuO described in this paper support applications whose resource re-
quirements can vary significantly at run-time. These capabilities make it pos-
sible to develop DOC applications that can respond adequately to changing
situational features in their run-time environment. TAO and QuO have been
applied successfully to a range of real-time applications, including avionics
mission computing systems at Boeing (Harrison et al., 1997; Christopher D.
Gill et al., 1999; Doerr et al., 1999), the SAIC Run Time Infrastructure (RTI)
implementation (O’Ryan et al., 1999) for the Defense Modeling and Simu-
lation Organization’s (DMSO) High Level Architecture (HLA) (Kuhl et al.,
1999), and high-energy testbeam acquisition systems at SLAC (SLAC,) and
CERN (Kruse, 1997).

The source code and documentation for the TAO ORB and its
Real-time (RT) Event Service and Scheduling Service are freely
available from URL www.cs.wustl.edu/ �schmidt/TAO.html .
Information about the QuO software release is available at
www.dist-systems.bbn.com/tech/QuO .

32

References

Abdelzaher, T., S. Dawson, W.-C.Feng, F.Jahanian, S. Johnson, A. Mehra, T. Mitton, A.
Shaikh, K. Shin, Z. Wang, and H. Zou: 1997, ‘ARMADA Middleware Suite’. In:
Proceedings of the Workshop on Middleware for Real-Time Systems and Services. San
Francisco, CA.

Box, D.: 1997,Essential COM. Addison-Wesley, Reading, MA.
Christopher D. Gill et al.: 1999, ‘Applying Adaptive Real-time Middleware to Address

Grand Challenges of COTS-based Mission-Critical Real-Time Systems’. In:Proceedings
of the 1st IEEE International Workshop on Real-Time Mission-Critical Systems: Grand
Challenge Problems.

Cooper, G., L. C. DiPippo, L. Esibov, R. Ginis, R. Johnston, P. Kortman, P. Krupp, J. Mauer,
M. Squadrito, B. Thuraisingham, S. Wohlever, and V. F. Wolfe: 1997, ‘Real-Time
CORBA Development at MITRE, NRaD, Tri-Pacific and URI’. In:Proceedings of the
Workshop on Middleware for Real-Time Systems and Services. San Francisco, CA.

DARPA: 1999, ‘The Quorum Program’.
http://www.darpa.mil/ito/research/quorum/index.html.

Dittia, Z. D., G. M. Parulkar, and J. R. Cox, Jr.: 1997, ‘The APIC Approach to High
Performance Network Interface Design: Protected DMA and Other Techniques’. In:
Proceedings of INFOCOM ’97. Kobe, Japan, pp. 179–187.

Doerr, B. S. and D. C. Sharp: 1999, ‘Freeing Product Line Architectures from Execution
Dependencies’. In:Proceedings of the 11th Annual Software Technology Conference.

Doerr, B. S., T. Venturella, R. Jha, C. D. Gill, and D. C. Schmidt: 1999, ‘Adaptive
Scheduling for Real-time, Embedded Information Systems’. In:Proceedings of the 18th
IEEE/AIAA Digital Avionics Systems Conference (DASC).

Eide, E., K. Frei, B. Ford, J. Lepreau, and G. Lindstrom: 1997, ‘Flick: A Flexible,
Optimizing IDL Compiler’. In:Proceedings of ACM SIGPLAN ’97 Conference on
Programming Language Design and Implementation (PLDI). Las Vegas, NV.

Fay-Wolfe, V., J. K. Black, B. Thuraisingham, and P. Krupp: 1995, ‘Real-time Method
Invocations in Distributed Environments’. Technical Report 95-244, University of Rhode
Island, Department of Computer Science and Statistics.

Feng, W., U. Syyid, and J.-S. Liu: 1997, ‘Providing for an Open, Real-Time CORBA’. In:
Proceedings of the Workshop on Middleware for Real-Time Systems and Services. San
Francisco, CA.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides: 1995,Design Patterns: Elements of
Reusable Object-Oriented Software. Reading, MA: Addison-Wesley.

Gill, C. D., D. L. Levine, C. O’Ryan, and D. C. Schmidt: 1999, ‘Distributed Object
Visualization for Sensor-Driven Systems’. In:Proceedings of the 18th IEEE/AIAA
Digital Avionics Systems Conference (DASC).

Gill, C. D., D. L. Levine, and D. C. Schmidt: 2000, ‘The Design and Performance of a
Real-Time CORBA Scheduling Service’.The International Journal of Time-Critical
Computing Systems, special issue on Real-Time Middleware.

Gokhale, A. and D. C. Schmidt: 1999, ‘Optimizing a CORBA IIOP Protocol Engine for
Minimal Footprint Multimedia Systems’.Journal on Selected Areas in Communications
special issue on Service Enabling Platforms for Networked Multimedia Systems17(9).

Harrison, T. H., D. L. Levine, and D. C. Schmidt: 1997, ‘The Design and Performance of a
Real-time CORBA Event Service’. In:Proceedings of OOPSLA ’97. Atlanta, GA.

Harrison, T. H., C. O’Ryan, D. L. Levine, and D. C. Schmidt: 1998, ‘The Design and
Performance of a Real-time CORBA Event Service’.submitted to the Journal on
Selected Areas in Communications special issue on Service Enabling Platforms for
Networked Multimedia Systems.

33

Henning, M. and S. Vinoski: 1999,Advanced CORBA Programming With C++.
Addison-Wesley Longman.

J. Huang et al.: 1997, ‘RT-ARM: A real-time adaptive resource management system for
distributed mission-critical applications’. In:Workshop on Middleware for Distributed
Real-Time Systems, RTSS-97. San Francisco, California.

Kalogeraki, V., P. Melliar-Smith, and L. Moser: 1997, ‘Soft Real-Time Resource
Management in CORBA Distributed Systems’. In:Proceedings of the Workshop on
Middleware for Real-Time Systems and Services. San Francisco, CA.

Kiczales, G.: 1996, ‘Beyond the Black Box: Open Implementation’.IEEE Software.
Kiczales, G.: 1997, ‘Aspect-Oriented Programming’. In:Proceedings of the 11th European

Conference on Object-Oriented Programming.
Kim, K. and E. Shokri: 1999, ‘Two CORBA Services Enabling TMO Network

Programming’. In:Fourth International Workshop on Object-Oriented, Real-Time
Dependable Systems.

Kim, K. H. K.: 1997, ‘Object Structures for Real-Time Systems and Simulators’.IEEE
Computerpp. 62–70.

Klein, M. H., T. Ralya, B. Pollak, R. Obenza, and M. G. Harbour: 1993,A Practitioner’s
Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time
Systems. Norwell, Massachusetts: Kluwer Academic Publishers.

Kruse, A.: 1997, ‘CMS Online Event Filtering’. In:Computing in High-energy Physics
(CHEP 97). Berlin, Germany.

Kuhl, F., R. Weatherly, and J. Dahmann: 1999,Creating Computer Simulation Systems.
Upper Saddle River, New Jersey: Prentice Hall PTR.

Kuhns, F., C. O’Ryan, D. C. Schmidt, and J. Parsons: 1999a, ‘The Design and Performance
of a Pluggable Protocols Framework for Object Request Broker Middleware’. In:
Proceedings of the IFIP6th International Workshop on Protocols For High-Speed
Networks (PfHSN ’99). Salem, MA.

Kuhns, F., D. C. Schmidt, and D. L. Levine: 1999b, ‘The Design and Performance of a
Real-time I/O Subsystem’. In:Proceedings of the5th IEEE Real-Time Technology and
Applications Symposium. Vancouver, British Columbia, Canada, pp. 154–163.

Levine, D. L., C. D. Gill, and D. C. Schmidt: 1998, ‘Dynamic Scheduling Strategies for
Avionics Mission Computing’. In:Proceedings of the 17th IEEE/AIAA Digital Avionics
Systems Conference (DASC).

Liu, C. and J. Layland: 1973, ‘Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment’.JACM20(1), 46–61.

Loyall, J. P., D. E. Bakken, R. E. Schantz, J. A. Zinky, D. Karr, R. Vanegas, and K. R.
Anderson: 1998a, ‘QuS Aspect Languages and Their Runtime Integration’.Proceedings
of the Fourth Workshop on Languages, Compilers and Runtime Syste,s for Sclable
Components.

Loyall, J. P., R. E. Schantz, J. A. Zinky, and D. E. Bakken: 1998b, ‘Specifying and
Measuring Quality of Service in Distributed Object Systems’. In:Proceedings of The 1st
IEEE International Symposium on Object-oriented Real-time distributed Computing
(ISORC 98).

Mehra, A., A. Indiresan, and K. G. Shin: 1997, ‘Structuring Communication Software for
Quality-of-Service Guarantees’.IEEE Transactions on Software Engineering23(10),
616–634.

Object Management Group: 1995, ‘CORBAServices: Common Object Services
Specification, Revised Edition’. Object Management Group, 95-3-31 edition.

Object Management Group: 1997a, ‘Concurrency Services Specification’. Object
Management Group, OMG Document formal/97-12-14 edition.

34

Object Management Group: 1997b, ‘Transaction Services Specification’. Object
Management Group, OMG Document formal/97-12-17 edition.

Object Management Group: 1998a, ‘Fault Tolerance CORBA Using Entity Redundancy
RFP’. Object Management Group, OMG Document orbos/98-04-01 edition.

Object Management Group: 1998b, ‘Security Service Specification’. Object Management
Group, OMG Document ptc/98-12-03 edition.

Object Management Group: 1999a, ‘Persistent State Service 2.0 Specification’. Object
Management Group, OMG Document orbos/99-07-07 edition.

Object Management Group: 1999b, ‘Realtime CORBA Joint Revised Submission’. Object
Management Group, OMG Document orbos/99-02-12 edition.

Object Management Group: 1999c, ‘The Common Object Request Broker: Architecture and
Specification’. Object Management Group, 2.3 edition.

O’Ryan, C., D. C. Schmidt, and D. Levine: 1999, ‘Applying a Scalable CORBA Events
Service to Large-scale Distributed Interactive Simulations’. In:Proceedings of the5th

Workshop on Object-oriented Real-time Dependable Systems. Montery, CA.
Pal, P., J. Loyall, R. Schantz, J. Zinky, , R. Shapiro, and J. Megquier: 2000, ‘Using QDL to

Specify QoS Aware Distributed (QuO) Application Configuration’. In:Proceedings of
The 3rd IEEE International Symposium on Object-oriented Real-time distributed
Computing (ISORC 00).

Prashant Chandra, e. a.: 1998, ‘Darwin: Resource Management for Value-Added
Customizable Network Service’. In:Sixth IEEE International Conference on Network
Protocols (ICNP’98). Austin, TX.

Pyarali, I., C. O’Ryan, D. C. Schmidt, N. Wang, V. Kachroo, and A. Gokhale: 1999,
‘Applying Optimization Patterns to the Design of Real-time ORBs’. In:Proceedings of
the5th Conference on Object-Oriented Technologies and Systems. San Diego, CA.

Rajkumar, R., M. Gagliardi, and L. Sha: 1995, ‘The Real-Time Publisher/Subscriber
Inter-Process Communication Model for Distributed Real-Time Systems: Design and
Implementation’. In:First IEEE Real-Time Technology and Applications Symposium.

Schantz, R. E., J. A. Zinky, D. A. Karr, D. E. Bakken, J. Megquier, and J. P. Loyall: 1999,
‘An Object-level Gateway Supporting Integrated-Property Quality of Service’. In:
Proceedings of The 2nd IEEE International Symposium on Object-oriented Real-time
distributed Computing (ISORC 99).

Schmidt, D. C.: 1990, ‘GPERF: A Perfect Hash Function Generator’. In:Proceedings of the
2
nd C++ Conference. San Francisco, California, pp. 87–102.

Schmidt, D. C. and C. Cleeland: 1999, ‘Applying Patterns to Develop Extensible ORB
Middleware’. IEEE Communications Magazine37(4).

Schmidt, D. C., T. H. Harrison, and E. Al-Shaer: 1995, ‘Object-Oriented Components for
High-speed Network Programming’. In:Proceedings of the1st Conference on
Object-Oriented Technologies and Systems. Monterey, CA.

Schmidt, D. C., D. L. Levine, and S. Mungee: 1998, ‘The Design and Performance of
Real-Time Object Request Brokers’.Computer Communications21(4), 294–324.

Schmidt, D. C., S. Mungee, S. Flores-Gaitan, and A. Gokhale: 2000, ‘Software Architectures
for Reducing Priority Inversion and Non-determinism in Real-time Object Request
Brokers’. Journal of Real-time Systems.

Schmidt, D. C. and T. Suda: 1994, ‘An Object-Oriented Framework for Dynamically
Configuring Extensible Distributed Communication Systems’.IEE/BCS Distributed
Systems Engineering Journal (Special Issue on Configurable Distributed Systems)2,
280–293.

Sha, L., R. Rajkumar, J. Lehoczky, and K. Ramamritham: 1989, ‘Mode Change Protocols for
Priority-Driven Preemptive Scheduling’.The Journal of Real-Time Systems1, 243–264.

35

John A. Stankovic and Krithi Ramamritham,Advances in Real-Time Systems, IEEE
Computer Society Press, 1992.

SLAC, ‘BaBar Collaboration Home Page’. http://www.slac.stanford.edu/BFROOT/.
Steinmetz, R.: 1990, ‘Synchronization Properties in Multimedia Systems’.Journal on

Selected Areas in Communications8(3).
Stewart, D. B. and P. K. Khosla: 1992, ‘Real-Time Scheduling of Sensor-Based Control

Systems’. In: W. Halang and K. Ramamritham (eds.):Real-Time Programming.
Tarrytown, NY: Pergamon Press.

Thuraisingham, B., P. Krupp, A. Schafer, and V. Wolfe: 1994, ‘On Real-Time Extensions to
the Common Object Request Broker Architecture’. In:Proceedings of the Object
Oriented Programming, Systems, Languages, and Applications (OOPSLA) Workshop on
Experiences with CORBA.

Tyan, H.-Y. and J. C. Hou: 1999, ‘A Rate-Based Message Scheduling Paradigm’. In:Fourth
International Workshop on Object-Oriented, Real-Time Dependable Systems.

USAF-RFI:97: 1997, ‘Statement of Work for the Extend Sentry Program, CPFF Project,
ECSP Replacement Phase II’. Submitted to OMG in response to RFI ORBOS/96-09-02.

Vanegas, R., J. A. Zinky, J. P. Loyall, D. Karr, R. E. Schantz, and D. E. Bakken: 1998,
‘QuO’s Runtime Support for Quality of Service in Distributed Objects’.Proceedings of
Middleware 98, the IFIP International Conference on Distributed Systems Platform and
Open Distributed Processing.

Wang, S., Y.-C. Wang, and K.-J. Lin: 1999, ‘A General Scheduling Framework for
Real-Time Systems’. In:IEEE Real-Time Technology and Applications Symposium.

Wolfe, V. F., L. C. DiPippo, R. Ginis, M. Squadrito, S. Wohlever, I. Zykh, and R. Johnston:
1997, ‘Real-Time CORBA’. In:Proceedings of the Third IEEE Real-Time Technology
and Applications Symposium. Montréal, Canada.

Wollrath, A., R. Riggs, and J. Waldo: 1996, ‘A Distributed Object Model for the Java
System’.USENIX Computing Systems9(4).

Zinky, J. A., D. E. Bakken, and R. Schantz: 1997, ‘Architectural Support for Quality of
Service for CORBA Objects’.Theory and Practice of Object Systems3(1).

