
Multi-Paradigm Scheduling for Distributed Real-Time Embedded Computing

Christopher D. Gill and Ron K. Cytron Douglas C. Schmidt
fcdgill, cytrong@cs.wustl.edu schmidt@uci.edu

Department of Computer Science Electrical & Computer Engineering
Washington University, St.Louis University of California, Irvine

Abstract

Increasingly complex requirements, coupled with with tighter
economic and organizational constraints, are making it hard to
build complex distributed real-time embedded (DRE) systems en-
tirely from scratch. The proportion of DRE systems made up of
commercial-off-the-shelf (COTS) hardware and software is there-
fore increasing significantly. There are relatively few systematic
empirical studies, however, that illustrate how suitable COTS-based
hardware and software have become for mission-critical DRE sys-
tems.

This paper provides the following contributions to the study of
real-time quality of service (QoS) assurance and performance in
COTS-based DRE systems: (1) it presents evidence that flexible
configuration of COTS middleware mechanisms, and the operating
system settings they use, allows DRE systems to meet critical QoS
requirements over a wider range of load and jitter conditions than
statically configured systems, (2) it shows that in addition to making
critical QoS assurances, non-critical QoS performance can be im-
proved through flexible support for alternative scheduling strategies,
and (3) it presents an empirical study of three canonical scheduling
strategies—specifically the conditions that predict success of a strat-
egy for a production-quality DRE avionics mission computing sys-
tem. Our results show that applying a flexible scheduling framework
to COTS hardware, operating systems, and middleware improves
real-time QoS assurance and performance for mission-critical DRE
systems.

Keywords: Middleware and APIs, Quality of Service Issues, Dis-
tributed Real-time and Embedded Systems, Mission Critical Sys-
tems, Dynamic Scheduling Algorithms and Analysis.

I. I NTRODUCTION

A. Emerging System Demands

Distributed, real-time, and embedded (DRE) systems are becom-
ing increasingly widespread and important. Examples of DRE sys-
tems includetelecommunication networks, e.g., wireless phone ser-
vices, tele-medicine, e.g., remote surgery,manufacturing process
automation, e.g., hot rolling mills, anddefense systems, e.g., avion-
ics mission computing systems. Although there are many types of
DRE systems, they have one thing in common:the right answer de-
livered too late becomes the wrong answer. More specifically, DRE
systems have the following types of requirements:

� As distributed systems, DRE systems require capabilities to
manage connections and data transfer between separate com-
puters.

� As real-time systems, DRE systems require predictable and ef-
ficient control over end-to-end system resources.

� As embedded systems, DRE systems have weight, cost, and
power constraints that limit their computing and memory re-
sources.

Designing DRE systems that implement their required capabili-
ties, are dependable, and are parsimonious in their use of limited

This work was supported in part by Boeing, DARPA ITO, DARPA contract
F33615-00-C-1697 (PCES) and AFRL contracts F3615-97-D-1155/DO (WSOA) and
F33645-97-D-1155 (ASTD/ASFD).

computing resources is hard; building them on time and within bud-
get is even harder. A particularly essential task is supporting the
quality of service (QoS) demands of mission-critical DRE systems
that possess a mix of hard and soft real-time requirements, such as
avionics mission computing systems [1], mission-critical distributed
audio/video processing [2], [3], and real-time robotic systems [4].

B. Key Challenges: FlexibilityandQoS Assurance

DRE systems have historically been custom developed in anad
hoc and inflexible manner. While many operational systems have
been built this way, this development process failed to address the
following challenges adequately:

Reducing total ownership costs:Custom software develop-
ment and evolution is labor-intensive and error-prone for complex
DRE systems, and can represent a substantial fraction of system
lifecycle costs. Moreover, incommensurate lifetimes between long-
lived DRE systems (>= 20 years) and COTS platforms and tools
(2–5 years) lead to pervasive software obsolescence that multiply
total ownership costs by requiring periodic software redevelopment
and COTS refresh.

Portable QoS management:Modern DRE systems must invest
an ever-increasing proportion of functionality and QoS management
in software. Rapidly emerging technologies and flexibility required
for diverse operational contexts force deployment of multiple soft-
ware versions on various platforms, while simultaneously preserv-
ing key QoS properties, such as real-time response and end-to-end
priority preservation.

Dependence on rigid assumptions:Custom DRE systems are
scheduled inflexibly so that if assumptions about thetotal resource
load are violated, critical real-time constraints may be violated. Un-
fortunately this leads to provisioning of resources at levels that are
both (1) excessive compared to what is needed to assure the mini-
mumcritical system requirements and (2) unrecoverable to improve
average case performance.

Insufficient responsiveness to varying operating environments:
Custom DRE systems make rigid assumptions about system load
and load jitter that can in unexpectedly varying environments lead
to (1) a violation of critical QoS requirements, and/or (2) reduced
performance in meeting non-critical QoS requirements. While static
scheduling might be replaced with dynamic scheduling in some sys-
tems, anysingle-paradigmapproach will naturally suffer these same
limitations.

some aspects of the total ownership cost challenges Outlined
above are being addressed for business applications by COTS soft-
ware, such as SOAP/.NET and J2EE. Until recently, however, little
has been done to simultaneously meet all of these challenges for
mission-critical DRE systems.

C. A Promising Approach: Real-time CORBA Middleware

Over the past several years, a promising solution to many of the
challenges outlined above has emerged in the form ofdistributed
object computing (DOC) middleware. DOC middleware is sys-
tems software that resides between the applications and the under-
lying operating systems, network protocol stacks, and hardware [5].

Its primary role is to allow clients to invoke operations on tar-
get object implementations without concern for where the object
resides, what language the object implementations are written in,
the OS/hardware platform, or the types of communication proto-
cols, networks, and buses used to interconnect distributed applica-
tions [6].

Real-time CORBA [7] is a DOC middleware standard that adds
QoS control capabilities to the original CORBA specification by (1)
improving system predictability and bounding priority inversions
and (2) managing system resources end-to-end. At the heart of
Real-time CORBA is an Object Request Broker (ORB) that provides
run-time support to automate many DRE computing tasks, such as
connection management, marshaling/demarshaling, demultiplexing,
language and OS independence, resource scheduling and load bal-
ancing, error handling and fault-tolerance, and security.

First-generation ORBs did not provide features or optimizations
to support DRE systems with stringent QoS requirements. To bet-
ter meet these requirements, researchers at Washington Univer-
sity St. Louis and the University of California, Irvine have de-
veloped a second-generation ORB called TAO [8], which is an
open-source implementation of Real-time CORBA that supports
efficient, predictable, and flexible DRE computing. Prior work
on TAO has explored many dimensions of high-performance and
real-time ORB design and performance, including scalable event
processing [9], request demultiplexing [10], I/O subsystem [11]
and protocol [12] integration, connection architectures [13], asyn-
chronous [14] and synchronous [15] concurrent request processing,
adaptive load balancing [16], meta-programming mechanisms [17],
and IDL stub/skeleton optimizations [18].

TAO isolates DRE systems from platform-specific QoS enforce-
ment mechanisms by encapsulating a robust QoS framework for
managing end-to-end resources within a standard set of CORBA
interfaces. TAO also reduces DRE system dependence on rigid as-
sumptions by enabling alternative policies and mechanisms to be
plugged into its QoS framework. In fact, the Real-time CORBA 1.0
specification and its implementation in TAO address all the DRE
system challenges outlined in Section I-Bexceptfor insufficient re-
sponsiveness to varying operational environments. The reason for
this omission is because nosingle scheduling paradigm performs
best in all environments, which motivates our research in this paper
on the design and performance of flexible scheduling frameworks
for DRE middleware and applications.

D. An Inclusive Solution: Multi-paradigm Scheduling

This paper extends our previous work on static [8] and dy-
namic [1] scheduling for Real-time CORBA by incorporating a
strategized scheduling frameworkcalledKokyu1 as a service atop
TAO. Kokyu enables the configuration and empirical evaluation of
multiple scheduling paradigms, including:

� Static scheduling strategies,e.g., rate monotonic scheduling
(RMS) [19],

� Dynamic scheduling strategies,e.g., earliest deadline first
(EDF) [19] and minimum laxity first (MLF) [4], and

� Hybrid static/dynamic scheduling strategies,e.g., maximum
urgency first (MUF) [4] and RMS+MLF [20].

Kokyu is applicable to an important class of demanding real-
world DRE systems, which includes avionics mission comput-
ing [21], [22], mission-critical distributed audio/video process-
ing [2], [3], and real-time robotic systems [4]. To maintain schedul-
ing assurances and simplify testing for these types of systems, we

1Kokyu is a Japanese word meaning literally “breath”, but also implying timing
and coordination.

have enhanced our prior work [1], [8] to focus on DRE systems with
the following characteristics:

� Bounded execution time, where the use of resources during
each execution of a resource request stays within the limit of
its specified duration.

� Bounded rates, where resource requests arrive within a speci-
fied period.

� Known operations, where all operations are visible to the
scheduler prior to scheduling, or are reflected entirely within
the execution times of other specified operations.

� Critical and non-critical operations , where deadlines of all
critical operations must be assured, and non-critical deadlines
should be met to the extent possible.

Real-time QoS requirements of DRE systems with these character-
istics have been addressed historically by scheduling tasks within a
single paradigm, such as:

� Static scheduling, that assigns priorities toall tasks statically
and ensuring the task with the highestfixed priority always
runs [19], [23], or

� Dynamic scheduling, that ordersall tasks dynamically and en-
suring the task with the highestdynamicpriority is dispatched
preferentially [19], [4].

Static scheduling can minimize overhead stemming from,e.g.,
dispatching and admission control mechanisms, while dynamic
scheduling requires lessa priori knowledge of operation charac-
teristics,e.g., rates of execution. However, using either of these
scheduling paradigmsaloneimposes the following limitations:

1) It does not isolate critical and non-critical load,
2) It is brittle in the face of total load in excess of the feasible

limit, even though critical load is below that limit, and
3) It is thus insufficiently responsive to variations in demands by

the application or operating environment.
A hybrid static/dynamic scheduling paradigm used by the

MUF [4] and RMS+MLF [20] strategies has been proposed to (1)
partition critical and non-critical resource utilization using static
mechanisms such as thread priorities, and then (2) dynamically
schedule operations within one [20] or more [4] partitions. The hy-
brid static/dynamic scheduling paradigm can therefore assure fea-
sible critical deadlines will be met, even when when total load is
infeasible. When the total load is feasible, however, the additional
overhead imposed by hybrid static/dynamic scheduling means that
fewer non-critical deadlines can be met than in static scheduling.

To alleviate the drawbacks of single-paradigm scheduling—while
still preserving its key benefits—our work with the Kokyu frame-
work described in this paper allows DRE systems to specifymulti-
paradigmscheduling strategies that trade a small additional amount
of overhead for increased flexibility in (1) assuring critical QoS re-
quirements and (2) enhancing the availability of resources to im-
prove non-critical performance. In particular, we present foun-
dational work towards strategies that can enforce each preferred
single-paradigm strategy along the entire range of resource utiliza-
tion.

Figure 1 illustrates the benefits of the Kokyu multi-paradigm ap-
proach. The upper solid curved line shows a hypothetical ideal uti-
lization of resources as system load increases. The solid square line
illustrates static single-paradigm strategies, such as RMS, that can
approach the ideal under certain conditions, but may miss critical as-
surances beyond a certain limit, which is illustrated by the utilization
value dropping to zero. Similarly, purely dynamic approaches may
offer feasibility improvements under special cases,e.g., when rates
are non-harmonic, yet the additional overhead they impose may re-
sult in missed critical assurances at an even lower level of load. Hy-
brid static-dynamic approaches, in contrast, offer feasibility along
the length of the load axis (as long as the critical load is feasible),

OOVVEERRHHEEAADD
IIDDEEAALL

DDYYNNAAMM II CC

HHYYBBRRIIDD

SSTTAATTII CC//DDYYNNAAMMIICC

NNOONN--CCRRIITTIICCAALL LLOOAADD

RR
EE

SSOO
UU

RR
CC

EE
 UU

TT
IILL

IIZZ
AA

TT
IIOO

NN

SSTTAATTIICC

MMUULLTTII --
PPAARRAADDIIGGMM

Fig. 1. Ideal, Static, Dynamic, and Hybrid Paradigms

and exhibit overhead that is intermediate between purely static and
purely dynamic approaches.

The dashed curve in Figure 1 shows how multi-paradigm schedul-
ing can approximate the best single-paradigm approach at each point
along the horizontal load axis. Due to mode switches or other adap-
tation mechanisms, multi-paradigm approaches may incur more
overhead than static and hybrid static/dynamic single-paradigm ap-
proaches. They are better suited than single-paradigm approaches,
however, to approximate the ideal performance curve over its length.

This paper shows how the Kokyu framework supports alterna-
tive scheduling strategies implemented using COTS OS and mid-
dleware mechanisms. By doing so, Kokyu increases adaptability
across product families, operating systems, and most importantly
environmental conditions, while preserving the rigorous scheduling
guarantees and testability offered by prior work on statically sched-
uled CORBA operations [8], [21], [22].

E. Paper Organization

The remainder of this paper is organized as follows: Section II
describes the application, middleware, OS, and hardware configu-
rations that comprise the open experimentation platform used for
our empirical studies; Section III describes how our experiments
quantitatively evaluate the suitability of COTS-based hardware and
software for mission-critical DRE systems; Section IV presents the
empirical results obtained on our open experimentation platform;
Section V summarizes the observations and recommendations based
on our results; Section VI compares our research on Kokyu with re-
lated work; and Section VII presents concluding remarks.

II. OPEN EXPERIMENTATION PLATFORM

The work in this paper focuses on a mission-critical system that
is representative of an important class of DRE systems:the op-
erational flight program (OFP) in an avionics mission computing
system. An OFP manages sensors and operator displays, navigates
the aircraft’s course, and controls on-board equipment. The avion-
ics system used for this paper consists of OFP components hosted
on a domain-specific middleware infrastructure calledBold Stroke,
which in turn is built using the distribution middleware capabilities
and common middleware services provided by the TAO Real-time
CORBA ORB [8].

Figure 2 illustrates the interactions between the Kokyu framework
and OFP application and middleware components. Along with Fig-
ure 3 in Section II-A, this figure shows how the OFP application
components were hosted on an open experimentation platform con-
sisting of the following layers:

� An OS/hardware platform consisting of the VxWorks real-time
operating system on embedded hardware, which is described in
Section II-A.

OOBBJJEECCTT RREEQQUUEESSTT BBRROOKKEERR

AAiirr
FFrraammee

SSeennssoorr
pprrooxxyy

NNaavv

SSeennssoorr
pprrooxxyy

SSeennssoorr
pprrooxxyy

11::RREEGGIISSTTEERR

OOPPEERRAATTIIOONN

CCHHAARRAACCTTEERRIISSTTIICCSS

KKOOKKYYUU
SSCCHHEEDDUULLEERR

KKOOKKYYUU
DDIISSPPAATTCCHH
MMOODDUULLEE

33:: RREEGGIISSTTEERR TTOO GGEETT

PPEERRIIOODDIICC TTIIMMEEOOUUTTSS,,
SSEENNDD EEVVEENNTTSS

22::RREEGGIISSTTEERR

FFOORR EEVVEENNTTSS

44:: RREEGGIISSTTEERR

DDEEPPEENNDDEENNCCIIEESS
RRTT--AARRMM

55:: ((RREE)) AASSSSIIGGNN

RRAATTEE,, PPRRIIOO

66:: ((RREE))--
CCOONNFFIIGGUURREE

77:: PPEERRIIOODDIICC

PPUUSSHH

88:: FFIILLTTEERR,,
CCOORRRREELLAATTEE

99:: PPRRIIOO

DDIISSPPAATTCCHH

EEVVEENNTT
CCHHAANNNNEELL

KKOOKKYYUU
SSEERRVVIICCEESS

Fig. 2. Application and Middleware Layers

� The ACE ORB (TAO) [8], the TAO real-timeevent channel[9],
and the Kokyu strategized scheduler [1] middleware, which is
described in Section II-B.

� The Bold Stroke avionics domain-specific middleware [21],
[22], which is described in Section II-C.

� The OFP application components used for the studies, which
are described in Section II-D.

The remainder of this section describes these layers of the open ex-
perimentation platform.2 Sidebar 1 defines key terminology used
throughout the paper.

A. Overview of OS/Hardware Configurations

Figure 3 shows the COTS hardware and operating system used in
the experiments described in Section III, consisting of a commercial
VME-64 chassis with four commercial processor cards, a desktop
computer running Windows NT 4.0, and a portable UNIX worksta-
tion. The desktop computer gathered metrics data and presented vi-
sualizations of processor utilization and deadline successes, failures,
and cancellations. The UNIX workstation loaded the executable
programs onto the boards in the VME chassis and provided a file
server for the digital map display.

Two COTS processor cards, a Dy4-783 and a Dy4-177, per-
formed the map display function. The Dy4-783 card had a memory-
mapped display processor and the Dy4-177 card hosted an appli-
cation component that ran the map display algorithms. The OFP
system was distributed across the remaining two processor cards.
The first system card was a 200 MHz, PowerPC 604, Motorola card,
which ran the experimental system described in Section II-D on the
VxWorks [24] 5.3.1 real-time operating system. The second system
card was a 100 MHz, PowerPC 603, Dy4-177 card. This card con-
tained a MIL-STD-1553 MUX bus interface card and the Ethernet
interface for the VME chassis. All external communication,e.g.,
over the 1553 bus to avionics remote terminals, or over the VME
backplane to diagnostic and debug systems, went through this card.
This card also controlled timing for frame sequencing and display
updates, upon which operation rates on the Motorola card depended.

2This platform, and the studies conducted on it, were supported under the Adap-
tive Software Flight Demonstration (ASFD) program hosted by the Boeing Phantom
Works Open Systems Architecture organization. This work was administered by the
Embedded Systems Branch of the Information Directorate, Air Force Research Labs
(AFRL), Wright-Patterson Air Force Base, Dayton, Ohio. Portions of the TAO ORB
and the Bold Stroke open experimentation platform were developed under support
from DARPA ITO.

Sidebar 1: Terminology

For clarity, we define the following terms used in the discus-
sion of the Bold Stroke open experimentation platform:

� Operation—A single short-lived computation run each
time an event is pushed to its component.

� Cancellation—Interdiction of the event push to an oper-
ation so that it will not be invoked. We denote schedul-
ing strategies using cancellation by a c annotation in
Section IV.

� Load chain—A sequence of operations, where each op-
eration itself (except the last one) pushes an event to in-
voke the next operation in the chain. Subsequent events
have precedence dependencies on prior events in the
chain, and cancelling an operation in the chain amounts
to shedding the rest of the chain from that operation on-
ward.

� Route leg—A segment of a navigation route computed
in one operation invocation. Computing route legs was
implemented as a load chain in our experiments, with
each route segment successfully completed requesting
the next segment, up to the length of the chain. In par-
ticular, a realistic system might declare the computa-
tion of the first one or two legs to be critical operations,
that must be completed on time and cannot be can-
celled, while subsequent route legs might be declared
non-critical.

� Replication service—A middleware service provided by
the Boeing Bold Stroke infrastructure for replicating
data across mission-computing processors. Operation
deadlines in the experimental system correspond to the
points in time when their respective output values must
be delivered and flushed to the replication service.

� Remote terminals—Connected sensors and actuators in
the aircraft. In the open experimentation platform, emu-
lation software for these was connected to the mission
computer by a MIL-STD-1553 hardware bus, to simu-
late the inputs of actual sensors. The experimental sys-
tem, middleware, and hardware were demonstrated in
an AV-8B flight simulator at Boeing, which included an
AV-8B cockpit and hardware remote terminals.

MMoottoorroollaaDDyy44--117777DDyy44--778833 DDyy44--117777

VVMMEE
BBaacckkppllaannee

EEtthheerrnneett

BBOOLLDD SSTTRROOKKEE
IINNFFRRAASSTTRRUUCCTTUURREE

OOFFPP
CCOOMMPPOONNEENNTT

EEVVEENNTT CCHHAANNNNEELL

SS
CC
HH
EE
DD
UU
LL
EE
RR

OOFFPP
CCOOMMPPOONNEENNTT

OOFFPP
CCOOMMPPOONNEENNTT

BBOOLLDD SSTTRROOKKEE
IINNFFRRAASSTTRRUUCCTTUURREE

OOFFPP
CCOOMMPPOONNEENNTT

UUnniixx
WWoorrkkssttaattiioonn

NNTT DDeesskkttoopp

MMaapp DDiissppllaayy PPrroocceessssiinngg OOFFPP PPrroocceessssiinnggEEVVEENNTT CCHHAANNNNEELL

EEVVEENNTT CCHHAANNNNEELL

VVXXWWOORRKKSS RRTTOOSS

TTAAOO OORRBB CCOORREE

VVXXWWOORRKKSS RRTTOOSS VVXXWWOORRKKSS RRTTOOSS

11555533
BBuuss

Fig. 3. Hardware and Software Configuration

B. Overview of DOC Middleware Configurations

The COTS distributed object computing middleware used for the
ASFD demonstration were based on the TAO 1.2 implementation
of Real-time CORBA [8], [7]. Real-time CORBA allows DRE de-
velopers to configure and control the following system resources:

� Processor resourcesvia thread pools, priority mechanisms,
intra-process mutexes, and a global scheduling service for real-
time systems with fixed priorities

� Communication resourcesvia protocol properties and ex-
plicit bindings to server objects using priority bands and private

connections and
� Memory resources via buffering requests in queues and

bounding the size of thread pools.
As shown in Figure 2, the TAO Real-time Event Channel [9] is

a publish/subscribe service that mediates communication between
components acting as proxies for (1) remote terminals that interact
with the physical environment and (2) the operations that process
the data. Sensor proxies flush relevant data to the replication service
and thenpushevents through the Real-time Event Channel to the
processing operations.

Figure 2 also shows the Kokyu scheduling framework, which is a
CORBA service that provides scheduling and dispatching services
to TAO’s Real-time Event Channel. Kokyu is responsible for (1)
isolating critical processing from non-critical processing and (2)
making the remaining CPU time available to non-critical process-
ing. Kokyu provides these services via a scheduling strategy with
which it is configured to (1) assign priorities to operations and (2) to
specify the queueing discipline used at each priority level. By con-
figuring the TAO Real-time Event Channel according to the speci-
fied set of priorities and queue disciplines, the middleware services
described above enforce the mission computing system’s real-time
QoS assurances and performance.

C. Overview of the Bold Stroke Platform

The open experimentation platform for our work is based on the
Bold Stroke domain-specific middleware [21], [22]. Bold Stroke
uses COTS hardware and middleware to produce a standards-based
component architecture for military avionics mission computing ca-
pabilities, such as navigation, data link management, and weapons
control. A driving objective of Bold Stroke is to support reusable
product-line applications, leading to a highly configurable appli-
cation component model and supporting reusable middleware ser-
vices, such as a replication service.

Bold Stroke has been developed and deployed using DOC mid-
dleware components and services based on the TAO Real-time ORB
and Real-time Event Channel, and the Kokyu framework described
in Section II-B. Figure 2 illustrates the middleware components in
Bold Stroke. As shown in this figure, Bold Stroke uses TAO Real-
time Event Channel atop the TAO ORB to communicate between
components (1) on the same endsystem and (2) distributed across
different endsystems. The Kokyu scheduler maintains information
required for priority-preserving dispatching, which in the experi-
mental framework described in Section III was performed in dis-
patching queues within the TAO Real-time Event Channel.

D. Overview of the OFP Application

The OFP application used as the basis of our multi-paradigm
scheduling experiments provides avionics mission computing capa-
bilities for an AV-8B (Harrier) aircraft. The baseline version evolved
from

1) An AV-8B OFP written in assembly language, to
2) A single-board C/C++ OFP, and subsequently to
3) A distributed OFP using the Boeing AV-8 Open Systems Core

Avionics Requirements airframe and the Boeing Bold Stroke
domain-specific middleware described in Section II-C.

All major OFP components were implemented as periodically in-
voked operations, executed by event consumers. Operations were
divided into two equivalence classes:

� Hard real-time (HRT) for critical operations —Critical op-
erations in the HRT class are those whose failure to meet any
given deadline has potentially significant consequences for the
correctness of the application.

� Soft real-time (SRT) for non-critical operations—Deadline
success for the non-critical SRT operations is desirable but not
strictly mandatory.

There were five pre-defined rates of execution in the system: 40
Hz, 20 Hz, 10 Hz, 5 Hz, and 1 Hz. Each operation runs at one
of these rates. For the ASFD open experimentation platform, new
20 Hz SRT functions were added to the OFP, including routes and
steering components, as well as a digital map display.

III. E XPERIMENTAL FRAMEWORK TO EVALUATE

MULTI -PARADIGM SCHEDULING

Section II outlined the Bold Stroke architecture and the OFP ap-
plication components for avionics mission computing. This sec-
tion describes the design of experiments that empirically evalu-
ate the suitability of COTS-based hardware and software for these
types of mission-critical DRE systems. We focus on three canoni-
cal scheduling strategies—Rate Monotonic Scheduling (RMS) [19],
Maximum Urgency First (MUF) [4], and RMS+Minimum Laxity
First (MLF) [20]—to determine which performs better under repre-
sentative environmental conditions with varyingloadandload jitter.

A. OFP Application Design and Implementation Challenges

Challenges addressed by Bold Stroke:The Bold Stroke archi-
tecture addresses the following key design and implementation chal-
lenges confronted by OFP applications:

a) Scheduling assurance of critical operations is required
prior to run-time: In OFP applications, as in many other DRE
systems, the consequences of missing a deadline at run-time can
be catastrophic. For example, failure to process an input from the
pilot by a specified deadline can be disastrous in an avionics appli-
cation,e.g., during navigation through a dense threat environment.
It is therefore essential to assureprior to run-timethat even in the
worst-case scenario(s), all critical processing deadlines will be met.
Bold Stroke has historically addressed this challenge through static
scheduling and extensive testing and validation.

b) Severe resource limitations:Like many other DRE sys-
tems, OFP applications must performefficientprocessing due to
strict resource constraints, such as cost, weight, and power con-
sumption restrictions. In particular, it is desirable to provision only
the resources needed to meet worst-case critical processing require-
ments. Bold Stroke has historically addressed this challenge by
clustering operations within an OFP application into a set of coarse-
grain mutually exclusivemodes, and provisioning resources for the
worst-case mode.

c) Adaptability across product families:Some DRE real-time
systems are custom-built for specific product families. Development
and testing costs can be reduced if critical and non-critical resource
requirements can be shown to be isolated. In addition, validation
and certification of components can be shared across product fami-
lies, which amortizes development time and effort. Bold Stroke ad-
dresses this challenge by using CORBA to separate interfaces from
implementations and support component reuse [8].

Challenges addressed by Kokyu:We apply the Kokyu schedul-
ing framework to the Bold Stroke architecture to address the above
challenges in a broader range of contexts, as described in Section IV.
Furthermore, Kokyu addresses the following design and implemen-
tation challenges confronted by OFP applications, but not addressed
historically by the Bold Stroke platform itself:

d) Robust performance under widely varying environmental
conditions: As noted in Section I, next-generation DRE systems
must repond flexibly to variations in load and load jitter imposed
by the external environment. For example, next-generation avion-
ics mission computing applications implement features, such as on-
demand imagery download [2] and decision aiding systems [25],

whose resource demands (1) vary total load at longer time-scales
across a series of stable epochs of operation, according to inputs
from the environment and/or human users and (2) produce differ-
ent degrees of load jitter in invocation-to-invocation demands across
shorter time-scales within each epoch according to relevant factors,
such as progress of a navigation computation in a rapidly evolving
threat environment.

e) Safe addition of non-critical processing:To more fully oc-
cupy under-utilized resources in non-worst-case scenarios, it is de-
sirable to perform additional non-critical processing. While missing
a non-critical operation’s deadline does not compromise system cor-
rectness, reduced or even zero value accrues to the application for
that operation’s use of the resources. It is crucial, however, to assure
that non-critical processing does not interfere with critical process-
ing and cause critical deadlines to be missed.

These design and implementation challenges addressed by Bold
Stroke and Kokyu are also fundamental to many other DRE systems
with similar requirements and constraints. Our previous work [1]
described the design and implementation challenges we addressed
to apply Kokyu to Real-time CORBA and thus integrate Kokyu
within the Bold Stroke architecture. This paper extends our earlier
work by presenting empirical studies that show how Kokyu can then
meet the above open challenges not historically addressed by Bold
Stroke. The results in this paper can be generalized to a broader class
of DRE systems that perform both critical and non-critical process-
ing and that operate in dynamically varying environments.

B. Experimental Design

We have applied the open experimental platform described in
Section II to determine the degree to which the challenges described
in Section III-A can be met (1) using Commercial off-the-shelf
(COTS) hardware, operating systems, and middleware (i.e., using
Dy4 and Motorola cards, the VxWorks OS, and the TAO, TAO
Real-time Event Channel, and Kokyu middleware) and (2) across
a range of environmental conditions. The remainder of this section
describes the hypotheses tested, the variables that were controlled,
and the variables that were measured in our studies.

1) Hypotheses: The hypotheses explored in these studies are
shown in Table I. This table also notes which challenges described
in Section III-A are addressed by each hypothesis. To test these hy-

Hypothesis Challenges
Multi-paradigm scheduling is needed to both (1)
maintain QoS assurances for DRE systems while
(2) increasing performance beyond levels achiev-
able by single-paradigm approaches.

A, B, and D

Infrastructure factors, such as dynamic queue over-
head, may influence both the ability to enforce crit-
ical processingassurances, and the ability to im-
prove non-critical processingperformance.

C and E

TABLE I
HYPOTHESESSTUDIED AND CHALLENGES ADDRESSED

potheses, and to study the potential benefits and consequences of (1)
supporting alternative scheduling strategies and (2) working toward
the ability to perform beneficial adaptation among them at run-time,
we ran identical trials using each of the following canonical schedul-
ing strategies:

� RMS [19], which is a purely static strategy that assigns priori-
ties in rate order and manages requests at each priority level in
first-in-first-out (FIFO) order.

� MUF [4], which is a hybrid static/dynamic strategy that assigns
static priorities by operation criticality, and schedules within
each static priority by minimum laxity.

� RMS+MLF [20], which first schedules critical operations ac-
cording to rate and then non-critical operations at lower prior-
ity according to laxity.

We selected these strategies since they are most applicable to OFP
application requirements to support both hard real-time (HRT) and
soft real-time (SRT) operations under a range of load and load jitter
conditions.

2) Controlled Variables:To examine effects of varying load and
load jitter in the production-quality avionics mission computing en-
vironment described in Section III-A, many next-generation DRE
systems must satisfy resource demands that

� Vary overall at longer time-scales across a series of stable
epochs of operation and

� Produce different degrees of jitter in invocation-to-invocation
demands across shorter time-scales within each epoch.

To model variation in both load and load jitter imposed by these
types of demands, we added operations to a sequence of twelve
epochs of operation, each representing a distinctoperating re-
gion [2] numbered 0–11, as shown in Figure 4.

00

33

22

11

1111

1100

99

88

77

66

55

44

NNOONN--CCRRIITTIICCAALL LLOOAADD

MM
EE

AA
NN

 JJ
IITT

TT
EE

RR

Fig. 4. Operating Regions

In addition to the fixed OFP operations, which were present and
active in each operating region, we introduced chains of additional
20 Hz SRT route leg updates (see Sidebar 1) to each operating re-
gion. We varied the length of the request chain to move from lowest
to highestfundamentalnon-critical load. We did this incrementally
from region 1 to region 11, while keeping the fundamental critical
load constant across operating regions. We kept the non-critical load
the same in region 0 and region 1 to ensure that we compared the ef-
fects of two different levels of jitter with no change in fundamental
load in at least one case.

To examine the effects of (1) varying levels of load jitter across
similar fundamental loads and (2) similar levels of jitter across vary-
ing non-critical loads, we added an additional HRT event consumer
to the second card at each of the following rates: 10 Hz, 5 Hz, and
1 Hz HRT. The additional operations acted in these experiments as
surrogates for the workload variation that would normally be as-
sociated with a distributed production OFP. The CPU utilization
by these additional HRT event consumers was randomized across
a given range in each operating region, with the range of variation
cycling every four regions through the following:

1) 0 msec (lowest mean and lowest variance)
2) 0–5 msec (medium-low mean, medium variance)
3) 5–10 msec (highest mean, medium variance)
4) 0–10 msec (medium-high mean, highest variance)
Execution time variability within each range was implemented as

a pseudo-random sequence initialized with the same seed for each
strategy. The system moved to the next operating region every 150
seconds in each trial. The same profile of load and load jitter was
therefore applied for each strategy, allowing direct comparisons of
trials for different strategies. Table II shows how the HRT execution
variability and additional SRT loads were combined in each region:

Region Variable HRT Execution SRT Load Chain Length
0 0 msec 1 route leg
1 0 to 5 msec 1 route leg
2 5 to 10 msec 2 route legs
3 0 to 10 msec 3 route legs
4 0 msec 4 route legs
5 0 to 5 msec 5 route legs
6 5 to 10 msec 6 route legs
7 0 to 10 msec 7 route legs
8 0 msec 8 route legs
9 0 to 5 msec 9 route legs

10 5 to 10 msec 10 route legs
11 0 to 10 msec 11 route legs

TABLE II
LOADS FOR EACH OPERATINGREGION

� Regions 0, 4 and 8have fixed HRT event consumer loads, with
no additional variability.

� Regions 1, 5, and 9have variability of between 0 msec and 5
msec for each of the 10 Hz, 5 Hz, and 1 Hz rates, for a total
variability of between 0 and 80 msec of each 1 Hz frame,i.e.,
between 0 and 8 percent variability.

� Regions 2, 6, and 10have variability of between 5 msec and
10 msec for each of the 10 Hz, 5 Hz, and 1 Hz rates, for a total
variability of between 80 and 160 msec of each 1 Hz frame,
i.e., between 8 and 16 percent variability.

� Regions 3, 7, and 11have variability of between 0 msec and
10 msec for each of the 10 Hz, 5 Hz, and 1 Hz rates, for a total
variability of between 0 and 160 msec of each 1 Hz frame,i.e.,
between 0 and 16 percent variability.

Total variability was thus lowest in regions 0, 4, and 8, higher in
regions 1, 5, and 9, higher still in regions 3, 7, and 11, and high-
est in regions 2, 6, and 10. Therangeof variability was lowest in
regions 0, 4, and 8, was comparable in odd-numbered regions, and
was highest in regions 2, 6, and 10.

Each of the scheduling strategies examined in these trials was
studied both with and without SRT operation cancellation enabled.
If cancellation was enabled, an operation’supcall monitor adapter
would simply omit an upcall to the operation if its advertised worst-
case execution time exceeded the time remaining before its deadline
at the point of upcall.

The route leg update operation was registered as both an event
consumer and event supplier for TAO’s Real-time Event Channel.
When an event consumer routine is called, it updates one route leg.
If there are remaining steps in its computation chain (according to
the chain length for the current region, as described in Table II), it
pushes a SRT event to be consumed if needed. If a SRT event to the
route leg update consumer is cancelled, therefore, additional SRT
events are not pushed to the Real-time Event Channel even if the
mode indicates that there should be additional updates.

The end point of a route leg is a necessary input to the next route
leg (i.e., its starting point). If a route leg missed its deadline, its end
point would be produced after the data are flushed to the replication
service. Any subsequent route legs computed in that chain would
then likely be erroneous. Shedding the route leg load chain at the
first missed deadline removes operations that would otherwise con-
sume CPU time without adding utility. The cancellation policy out-
lined above therefore enables an increase in efficiency in operation
dispatching, without a loss of utility for the larger class of chained
operations, of which route leg updates are one example.

3) Measured Variables:To measure the effects of varying load
and load jitter described in Section III-B.2, we instrumented the
application and middleware using lightweight, high-resolution time
stamps to profile system behavior. We collected three types of in-

formation:
1) Latency of dispatching enqueue and dequeue actions
2) Missed, made, and cancelled operation deadlines
3) Latency of the operation executions themselves
A key challenge in collecting and using this information is to do

so without violating either the space- or time-requirements of the
OFP application. In particular, data collection and extraction must
be done so that (1) relevant data are collected and not lost, (2) data
extraction is sufficient to avoid data collection overflowing avail-
able data storage space(s), and (3) neither collection nor extraction
of data interferes with the real-time constraints of the system itself.
To achieve this, we first optimized the data probes and cache for
both efficiency and flexibility. Second, we leveraged the existing
phasing of application operations to provide regular windows of re-
duced contention for the CPU, in which to extract collected data.
Figure 5 shows the resulting framing of operations in the executing
OFP. This framing is designed to improve real-time behavior as fol-

KK EEYY:: 1100HHZZ

DDAATTAA

55HHZZ

11HHZZ

OONNEE SSEECCOONNDD

Fig. 5. Framing of Operation Requests and Metrics Data Extraction Points

lows: (1) frame periods are harmonic and (2) initiation of requests is
staggered to reduce contention,i.e., avoiding the canonical critical
instant for as many operations as possible.

IV. EMPIRICAL RESULTS

We now present our results from running the trials described in
Section III-B, using the open experimental platform described in
Section II. Specifically, we systematically examine the hypothe-
ses described in Table I and note how a particular OFP challenge
described in Section III-A is or is not met in each case. We thus
empirically evaluate the suitability of COTS-based hardware and
software—in particular our use of TAO, the TAO Real-time Event
Channel, and the Kokyu framework, for mission-critical DRE sys-
tems.

A. Extending QoS Assurances

Hypothesis – Multi-paradigm scheduling is needed to both (1)
maintain QoS assurances for DRE systems while (2) increasing per-
formance beyond levels achievable by single-paradigm approaches:
We apply multi-paradigm scheduling to meet challenges A, B, and
D described in Section III-A. In particular, in cases where crit-
ical requirements are feasible—but total processing requirements
are not—we expect that multi-paradigm scheduling will maintain
critical assurances where single-paradigm (i.e., static, dynamic, or
even hybrid) approaches cannot. Second, we expect multi-paradigm
scheduling to provide more effective use of scarce resources than
single paradigm approaches, by consideringschedulingmodes as
well as application modes. Finally, we expect that multi-paradigm
scheduling will both meet critical assurances and improve non-
critical performance robustly under widely varying environmental
conditions.

Overview of the test:To evaluate this hypothesis, we exam-
ined the dispatching load and how each strategy performed in meet-
ing critical deadlines as the load increased. In particular, we ex-
amined the total number of operation deadlines missed, made, and
cancelled for each of the six strategies examined,i.e., RMS, MUF,

and RMS+MLF each with and without cancellation of SRT opera-
tions.

Summary of test results:Figure 6 shows effective load on
the system with each scheduling strategy,i.e., the total number of
requests enqueued, in each of the operating regions. Scheduling
strategies using operation cancellation are indicated by ac annota-
tion. MUF and RMS+MLF (both with cancellation) enqueued fewer

3000

3200

3400

3600

3800

4000

4200

4400

4600

0 1 2 3 4 5 6 7 8 9 10 11

operating region

en
q

u
eu

ed
 r

eq
u

es
ts

RMS, RMS©, MUF

RMS+MLF

RMS+MLF ©

MUF ©

Fig. 6. Total Requests Enqueued

dispatch requests overall due to the effects of cancellation on the
chains of operations described in Section III-B.2,i.e., when one op-
eration of a chain is cancelled, subsequent requests for that operation
are not made. The other strategies, RMS, MUF, and RMS+MLF (all
without cancellation), and RMS with cancellation, enqueued a total
number of dispatch requests that rose linearly from around 3,100 in
regions 0 and 1 to above 4,500 in region 11.

Figure 7 shows the total number of HRT and SRT operation dead-
lines made, missed, and cancelled for the MUF strategywith cancel-
lation. Figure 8 shows the same results for MUFwithoutcancella-
tion. The total operation loads in RMS+MLF were similar to those
in MUF, both with and without cancellation respectively. Cancella-
tion in RMS+MLF was similarly successful in reducing the number
of operation deadlines missed though again with a lower number
of operation deadlines made. As with MUF, RMS+MLF met more
deadlines under lower levels of jitter,i.e., in operating regions 0, 4,
8, than under higher levels of jitter,i.e., in operating regions 1–3,
5–7, and 9–11, respectively.

Figure 9 shows the total number of HRT and SRT operation dead-
lines made, missed, and cancelled for the RMS strategywithout
cancellation. Performance results for RMSwith cancellation were
nearly identical to those in Figure 9, except that RMS with cancella-
tion first missed HRT deadlines in operating region 6, rather than 7.
RMS with cancellation failed to cancel even a single non-critical
operation dispatch request: both RMS with cancellation and RMS
without cancellation showed a total operation load similar to that
of MUF without cancellation and RMS+MLF without cancellation.
Both RMS with cancellation and RMS without cancellation show a
significant number of HRT deadlines missed in the later, more heav-
ily loaded operating regions, and RMS with cancellation both (1)
missed more HRT deadlines overall and (2) first missed deadlines in
an earlier operating region with lower total load, than RMS without
cancellation.

Analysis of test results:In each of the operation behavior
graphs above, it is instructive to compare the slope of the top curve,
which indicates the increase in the total number of dispatch requests
in subsequent operating regions. In Figure 8 the slope of the to-
tal requests curve is similar to that shown in Figure 6, though the
curve is slightly lower as some dispatch requests are for internal de-
pendency correlations in the event channel, and not for application

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9 10 11

operating region

n
u

m
b

er
 o

f
o

p
er

at
io

n
s

Total

HRT made

SRT made

SRT cancelled

SRT missed

HRT missed

Fig. 7. MUF Operation Behavior With Cancellation

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9 10 11

operating region

n
u

m
b

er
 o

f
o

p
er

at
io

n
s

Total

HRT made

SRT missed

SRT made

HRT missed

Fig. 8. MUF Operation Behavior Without Cancellation

operations. Without cancellation, the total operation load in MUF
was thus proportional to the number of enqueued requests.

In Figure 7, the slope of the total requests curve was much less
than in Figure 8, indicating a lower and more slowly increasing total
operation load. The total operation load in MUF with cancellation
was well bounded, which we attribute to the effects of cancellation
on route leg update chains. Cancellation in MUF successfully re-
duced the number of operation deadlines missed, though it also re-
sulted in a lower number of operation deadlines made. Both with
and without cancellation, MUF met more deadlines under lower lev-

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9 10 11

operating region

n
u

m
b

er
 o

f
o

p
er

at
io

n
s

Total

HRT made

SRT made

HRT missed

SRT missed

Fig. 9. RMS Operation Behavior Without Cancellation

els of jitter,i.e., in operating regions 0, 4, 8, than under higher levels
of jitter, i.e., in operating regions 1–3, 5–7, and 9–11, respectively.

Interestingly, adding cancellation had no apparent benefit at all
with RMS in this application. In fact, it showed a greater number
of HRT deadlines missed and a lower number of HRT deadlines
made, in regions 6 though 11. We attribute this effect to the priority
assignment in RMS, under which 20 Hz SRT requests for operations
in the route leg chains were dispatched at the highest priority.

a) Summary: The results above support the hypothesis that
multi-paradigm scheduling is needed to extend QoS assurances and
performance for DRE systems beyond those achievable by single-
paradigm approaches. RMS was only able to meet critical deadlines
in operating regions 0 through 6. With two exceptions discussed
in Section IV-B, MUF and RMS+MLF were able to meet critical
deadlines in all operating regions. However, RMS made more non-
critical deadlines in operating regions 0 through 6. We therefore be-
lieve multi-paradigm scheduling is both beneficial and empirically
supported for use in mission-critical DRE systems.

B. Impact of Infrastructure Factors on Scheduling Feasibility

Hypothesis – Infrastructure factors, such as dynamic queue or
cancellation overhead, may influence both the ability to enforce crit-
ical processing assurances, and the ability to improve non-critical
processing performance:Multi-paradigm scheduling can extend the
range of environmental conditions over which assurances can be
made and performance improved (as described in Section IV-A).
However, we must also examine the effects of infrastructure fac-
tors on multi-paradigm scheduling, to meet challenges C and E de-
scribed in Section III-A. In particular, DRE system developers must
during validation and certificationconsiderspecial cases where crit-
ical assurances are violated, to ensure isolation of critical and non-
critical resource requirements. Furthermore, careful study is needed
to identify those special cases and ensure non-critical processing is
added safely. We therefore must examine queueing and cancellation
overhead empirically to further address the challenge of daptabil-
ity across product families, while also addressing the challenge of
safely adding non-critical processing, as described in Section III-A.

Overview of the test:To evaluate this hypothesis we first ex-
amined the queueing latency induced by the infrastructure itself. We
then compared the ability of strategies incurring differing levels of
overhead to meet critical deadlines. As before, we examine the total
number of operation deadlines missed, made, and cancelled for each
of the scheduling strategies.

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10 11

operating region

m
ea

n
 e

n
q

u
eu

e
la

te
n

cy
 (

u
se

c)

MUF © enqueue

MUF enqueue

RMS © enqueue

RMS+MLF © enqueue

RMS+MLF enqueue

RMS enqueue

Fig. 10. Mean Enqueue Latency Per Operation

Summary of test results:Figures 10 and 11 show the mean en-
queue and dequeue latencies for each strategy in each operating re-
gion, respectively. These figures illustrate that enqueue calls showed
higher latency than dequeue calls. MUF with and without cancel-
lation had the highest mean enqueue and dequeue latencies, with
lower latencies for RMS and RMS+MLF both with and without can-
cellation.

In light of the differences in overhead between MUF and
RMS+MLF, it is instructive to examine closely the HRT deadlines
missed in strategies other than RMS beyond the total feasibility
limit. In addition to the missed HRT deadlines for RMS with and
without cancellation described in Section IV-A, one HRT deadline
was missed in region 9 in each of the MUF without cancellation and
RMS+MLF with cancellation strategies. Interestingly, this is the
only case of a missed HRT deadline outside RMS; it occurred in the
same region at the same sampling point for both strategies.

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10 11

operating region

m
ea

n
 d

eq
u

eu
e

la
te

n
cy

 (
u

se
c)

MUF dequeue
MUF © dequeue
RMS+MLF dequeue
RMS+MLF © dequeue
RMS dequeue
RMS © dequeue

Fig. 11. Mean Dequeue Latency Per Operation

Analysis of test results:The most important feature of the en-
queue and dequeue latency plots above is that the mean enqueue and
dequeue latencies did not rise significantly with increasing load or
variations in jitter. Including preemption and jitter delays, the com-
bined average queueing latency in each strategy (1) took around 12
�sec per dispatch request for RMS and RMS+MLF, (2) took around
32�sec per dispatch request for MUF, and (3) for each strategy re-
mained comparable across operating regions.

We observed one missed HRT deadline in region 9 in each of the
two strategies: MUF without cancellation and RMS+MLF with can-
cellation. We now examine the possible causes of this phenomenon.
As Section III-B.2 describes, the same pseudo-random sequence
was used for the load jitter function, and the same basic load func-
tion was used across strategies. It is therefore notable that the same
operation missed one deadline in the same data sample of the same
region in two different strategies. The HRT operation that missed
its deadline in both cases was the 10 Hz HRT additional operation
used to induce randomized jitter to various operating regions, as de-
scribed in Section III-B.2.

The range of jitter in this operation for region 9, shown in Ta-
ble II, is 0 to 5 msec, or 0 to 5 percent of a 100 msec 10 Hz frame.
There was no significant difference in latency for that one opera-
tion among the strategies in that region, either in the minimum,
maximum, or mean, or at the sample point at which the deadline
was missed. However, MUF without cancellation and RMS+MLF
with cancellation had slightly higher accrued HRT latency overall
at sample 140, where the deadline was missed. Moreover, even if
preemption by the 40 Hz reactor thread occurred, the deadline had
already been missed and the cause must be attributed to other fac-
tors. It therefore appears likely the missed deadline resulted from

an overall vulnerability of the RMS+MLF strategy with cancella-
tion and the MUF strategy without cancellation at that point, rather
than from a single anomaly. In particular, if delays from preemption
by spurious VxWorks network task interrupts contributed to this ef-
fect, it appears unlikely that a single long preemption interval was
involved.

Summary:These results support the hypothesis that infrastruc-
ture factors may influence both the ability to enforce critical process-
ing assurances, and the ability to improve non-critical processing
performance. In particular, the missed deadlines in MUF without
cancellation and RMS+MLF with cancellation correlate with addi-
tional overhead of mechanisms for (1) dynamic queue management
and (2) operation cancellation, respectively. We therefore believe
that while multi-paradigm scheduling is empirically supported for
use in mission-critical DRE systems, additional experiments and
careful and thorough testing are needed to more fully assess the
impacts of these kinds of mechanisms on mission-critical DRE sys-
tems.

V. OBSERVATIONS AND RECOMMENDATIONS

Sections III and IV focused on the empirical study of canonical
scheduling strategies for avionics mission computer OFPs. Mis-
sion computing software, like many other next-generation DRE soft-
ware, is increasingly required to execute in more flexible ways and
in increasingly varying environments. Characterizing the actual
performance of the Kokyu middleware infrastructure in a realistic
setting under a variety of load and load jitter conditions is there-
fore of fundamental importance. Moreover, new increasingly non-
deterministic types of processing, such as video and imaging [2],
are being targeted for transition to these DRE systems. The Kokyu
framework’s ability to manage variations in execution load and load
jitter through alternative scheduling strategies increases the appli-
cability of these techniques to DRE systems with next-generation
software requirements and architectures.

Our work also opens a larger possibility: performing truly adap-
tive scheduling using alternative strategies at run-time, to accom-
modate variations in the systems operating environment and cur-
rent mission objectives. There are several ongoing areas of research
to complete, as Section VII describes, before this type of run-time
adaptation will be applicable to avionics mission computing OFPs.
Based on the results in this paper, however, these problems appear
tractable, and planned future work will lead to a more complete so-
lution.

Below, we present key observations and recommendations based
on our empirical results from Section IV. These observations and
recommendations apply both to the particular avionics mission com-
puting application studied and to a larger family of mission-critical
DRE systems.

A. Extend Assurances via Hybrid Scheduling

Observation – Hybrid static/dynamic scheduling strategies met
critical deadlines in operating regions where static strategies could
not: The hybrid static/dynamic scheduling strategies MUF and
RMS+MLF (both without cancellation) were effective in manag-
ing dynamic SRT load, and isolating HRT and SRT resource uti-
lization, across a wider range of total load. Moreover, they did so
under different levels and ranges of randomized jitter in the exe-
cution times of certain HRT and SRT operations at different rates.
These results support the hypothesis that multi-paradigm scheduling
is needed and beneficial to extend QoS assurances for DRE systems
beyond those achievable by single-paradigm approaches.

Recommendation – Applying hybrid scheduling can be effec-
tive for mission-critical DRE applications that experience overload:
Criticality-aware hybrid static/dynamic scheduling in middleware
should be considered for systems that (1) have both critical and non-
critical operations, (2) have critical load that is always feasible, and
(3) may incur total load in excess of the feasible bound.

B. Pay Attention to Infrastructure Overhead

Observation – Overhead from cancellation and dynamic
scheduling is reasonable, but impacts performance and may impact
feasibility: Dynamic queue management is used to a lesser extent by
the RMS+MLF variants, and to a greater extent by the MUF vari-
ants. The overhead of increased dynamic queue management was
noticeable, but was within a reasonable scalar (�1.5) of the more
static queue management overhead. Moreover, this overhead was
in large part justified by increases in effectiveness or efficiency or
both. Queueing loads appeared to remain relatively stable for each
scheduling strategy, as may be expected for such a harmonic pe-
riodic application. Developers of rate-based real-time distributed
applications should therefore consider dynamic scheduling in mid-
dleware to be a reasonable and useful technique.

While in all but one sample MUF and RMS+MLF were able to
enforce critical assurances, the same sample late in operating re-
gion 9 showed a single missed deadline for MUF without cancel-
lation and RMS+MLF with cancellation. These two strategies had
intermediate overhead among the strategies that made all other crit-
ical deadlines in region 9. These results support the hypothesis that
infrastructure factors, such as dynamic queue overhead, may influ-
ence both the ability to enforce critical processing assurances, and
the ability to improve non-critical processing performance.

Recommendation – Perform careful empirical evaluation of
sources of overhead associated with chosen scheduling strategies,
and in particular their impacts on performance and feasibility:
The above observations suggest a vulnerability of scheduling strate-
gies that impose overheads such as cancellation or dynamic queue
management to missing critical deadlines. This is apparently due
to some form of interference between non-critical and critical pro-
cessing. Additional experiments are needed, however, to isolate the
particular mechanisms and effects involved. Moreover, careful em-
pirical testing of specific DRE systems is always recommended.

C. Apply Multiple Scheduling Paradigms

Observation – The dominant scheduling strategy differed
across operating regions:In Figure 12 we recolor each of the oper-
ating regions originally portrayed in Figure 4 to show the schedul-
ing strategy that performed best in each region. The static RMS

00

33

22

11

1111

1100

99

88

77

66

55

44

NNOONN--CCRRIITTIICCAALL LLOOAADD

MM
EE

AA
NN

 JJ
IITT

TT
EE

RR

RRMMSS

RRMMSS++
MMLLFF

MMUUFF

TTOOTTAALL LLOOAADD FFEEAASSIIBBLLEE

OOVVEERR LLOOAADDEEDD

Fig. 12. Most Effective Strategy by Operating Region

strategy without cancellation performed best among the strategies
studied when the total load was below the feasible limit. Above that
limit the hybrid static/dynamic RMS+MLF or MUF strategies per-
formed best. These results support the hypothesis that the efficiency

and effectiveness of any given scheduling strategy are functions of
environmental factors, in addition to the effects of the infrastructure
overheads discussed in Section IV-B.

Recommendation – Use different scheduling strategies under
different load conditions:For the avionics mission computing ap-
plication studied, we recommend using the following scheduling
strategies in the following cases:

� RMS if the system is not subject to overloads,
� RMS+MLF or MUF if the system is subject to overloads but

some degradation of non-critical performance is acceptable
when the system is not overloaded, or

� Using mode switching at run-time between RMS when the sys-
tem is not overloaded, and RMS+MLF or MUF when it is.

VI. RELATED WORK

Distributed real-time and embedded (DRE) computing is an
emerging field of study. An increasing number of research efforts
are focusing on end-to-end quality of service (QoS) properties, such
as timeliness, by integrating QoS management policies and mecha-
nisms,e.g., real-time scheduling into standards-based middleware,
such as Real-time CORBA. Pioneering efforts are beginning to ex-
tend this field by providing meta-capabilities, such as configuration
flexibility, reflection, and ultimately adaptation, while still meeting
strict QoS assurances. This section describes representative work
that is related to our Kokyu framework.

Avionics platform research: The following two branches of
research are endeavoring to make QoS-managed system infrastruc-
ture a prevalent and reusable feature of avionics computing systems:

� Avionics domain platform research:Standardized avionics
platforms, such as the ARINC Avionics Application Software Stan-
dard Interface (APEX) for Integrated Modular Avionics (IMA) [26],
provide QoS assurances for systems in the avionics domain. McEl-
hone [27] examines the question of how to support operations with
soft real-time constraints and possibly long running or variable
length computations, in canonical avionics-specific platforms, such
as IMA.

� Open systems avionics research:Sharp, Doerr,et al. [21],
[22] address the challenge of retaining key QoS assurances in avion-
ics systems, while achieving improvements in modularity, reuse, cy-
cle times, and cost across families of flight software applications.
The Bold Stroke avionics domain-specific middleware described in
Section II-C has emerged and evolved through that work. Our re-
search on flexible and adaptive real-time scheduling and dispatching
was conducted within the context of the Bold Stroke infrastructure,
and has contributed to its evolution.

CORBA-related QoS middleware research: There is a
growing body of work related to CORBA-based QoS middleware.
We focus below on related CORBA middleware research efforts that
address scheduling or other forms of adaptive QoS management.

� Standard specifications:The OMG Real-Time CORBA
1.0 [28] specification includes interfaces for an optional schedul-
ing service that can be implemented readily using Kokyu’s flexi-
ble scheduling and dispatching capabilities. We plan to release an
implementation of this service built using the Kokyu framework.
Emerging COTS middleware standards, such as Dynamic Schedul-
ing Real-Time the Common Object Request Broker Architecture
(CORBA) 2.0 (DSRTCORBA) [29], as well as the non-CORBA
Real-Time Specification for JavaTM (RTSJ) [30], generalize the
possible range of scheduler implementations, rather than specifying
a particular scheduling approach. Kokyu offers a natural basis for
reuse of policies and mechanisms in implementing schedulers and
associated dispatching infrastructures for either of these standards.

� BBN QuO: The Quality Objects(QuO) distributed object
middleware is developed at BBN Technologies [31]. QuO is based
on CORBA and provides the following support for agile applica-
tions running in wide-area networks: (1)run-time performance tun-
ing and configurationthrough the specification ofQoS regions, be-
havior alternatives, and reconfiguration strategies that allows the
QuO run-time to adaptively trigger reconfiguration as system condi-
tions change (represented by transitions between operating regions)
and (2)feedbackacross software and distribution boundaries based
on a control loop in which client applications and server objects re-
quest levels of service and are notified of changes in service. We
have integrated Kokyu into the QuO framework, as described in [2].

� UCSB Realize:The Realize project at UCSB has developed
an approach based on object migration and replication, to improve
performance of soft real-time distributed systems [32], [33]. This
approach constitutes a higher level of adaptive control for soft real-
time QoS management, and is complementary to Kokyu. In particu-
lar, a system developer might apply Realize to provide soft real-time
load balancing across endsystems, using the Kokyu framework to in-
tegrate scheduling and dispatching of both critical and non-critical
load.

� UCI TMO: The Time-triggered Message-triggered Objects
(TMO) project [34] at the University of California, Irvine, supports
the integrated design of distributed OO systems and real-time sim-
ulators of their operating environments. The TMO model provides
structured timing semantics for distributed real-time object-oriented
applications by extending conventional invocation semantics for ob-
ject methods,i.e., CORBA operations, to include (1) invocation of
time-triggered operations based on system times and (2) invocation
and time bounded execution of conventional message-triggered op-
erations. TMO, Kokyu, and TAO are complementary technologies
because (1) TMO and Kokyu extend and generalize TAO’s exist-
ing time-based invocation capabilities and (2) TAO provides a con-
figurable and dependable connection infrastructure needed by the
TMO CNCM service.

Non-CORBA QoS research: In addition to CORBA-related
QoS middleware research, our work on Kokyu is also related to the
following QoS research conducted outside CORBA:

� Utah CRM: Regehr and Lepreau [35] propose the CPU Re-
source Manager (CRM), a middleware service for managing pro-
cessor allocation using scheduling abstractions provided by COTS
operating systems. They examine different kinds of QoS reser-
vations and propose a unifying low-level middleware abstraction
layer to shield developers from accidental complexities produced by
variations in scheduling abstractions at the operating system level.
Our approach focuses onencapsulationof scheduling and dispatch-
ing policies, and providing flexible infrastructure to allow arbitrary
composition of heuristics. Rather than enclosing a known set of
common abstractions, our aim is to provide flexible support for
diverse and possibly unanticipated combinations of scheduling re-
quirements, mechanisms, and policies in middleware.

� UCI RED-Linux Scheduling Framework:Wang,et al., at the
University of California, Irvine, have proposed a general schedul-
ing framework [36] to unify three distinct kinds of scheduling ap-
proaches:priority-based, time-based, andshare-based. They de-
compose scheduling behavior into policy (allocator) and mecha-
nism (dispatching) components, which are similar to the Kokyu
scheduling service framework. They have implemented the dis-
patching portion of this framework in their real-time extensions to
the Linux kernel, called RED-Linux. While the RED-Linux ap-
proach to scheduling relies on special-purpose extensions to the OS
kernel, our Kokyu framework relies only on commonly available
OS features, such as preemptive thread priorities. Our dispatching
mechanisms can therefore augment standards-based CORBA mid-

dleware and can perform effectively on a wide range of commonly
available real-time and general-purpose OS platforms.

VII. CONCLUDING REMARKS

To quantify the tradeoffs between static and dynamic scheduling
algorithms, we developed a strategized scheduling service frame-
work called Kokyu and integrated this framework with TAO [8],
which is our high-performance, real-time ORB, and the TAO Real-
time Event Channel, which is a QoS-enabled publish/subscribe ser-
vice.3 Our experimental results demonstrate that no single schedul-
ing paradigm is ideal in all cases, and therefore multi-paradigm
scheduling is both suitable and beneficial to mission-critical DRE
applications. In particular, multi-paradigm scheduling can provide
both assurancesand increasedperformanceto DRE applications
with both critical and non-critical operations.

This paper describes how we used the TAO ORB, TAO’s Real-
time Event Channel, and Kokyu to empirically measure the over-
head, effectiveness, and efficiency of different scheduling strategies
in a production-quality DRE application: an operational flight pro-
gram for avionics mission computing built atop the Boeing Bold
Stroke domain-specific middleware. Our empirical measurements
provide a foundation upon which we are developing practical guide-
lines to configure and use multi-paradigm scheduling strategies for
Real-time CORBA applications. We conclude by summarizing our
lessons learned in this work and outlining our planned areas of fu-
ture work.

Summary of lessons learned:The following are key lessons
learned from our application of COTS hardware and software tech-
nologies to avionics missions computing:

� Multi-paradigm scheduling is necessary and beneficial.:
While standards, such as the Real-time CORBA 1.0 and 2.0 speci-
fications, address key issues for mission-critical DRE systems, they
leave essential areas unspecified, notably: (1) which scheduling
strategies are suitable to a particular DRE system and (2) which will
outperform the others under each set of environmental conditions
within which the system runs. Our empirical results demonstrate the
limitations of anysingle-paradigmapproach, and show that RMS is
preferable when total load is feasible, whereas strategies that can
isolate critical and non-critical processing are preferable in over-
load situations. Our results also indicate that hybrid static/dynamic
scheduling strategies can be used in Real-time CORBA applications
to (1) offer higher resource utilization than purely static scheduling
strategies with acceptable run-time cost, (2) preserve scheduling as-
surances for critical operations even for an overloaded schedule, and
(3) provide applications the flexibility to adapt to varying applica-
tion requirements and platform features.

� Careful instrumentation and analysis to measure infras-
tructure overhead and its impact is necessary:While hybrid
static/dynamic scheduling mechanisms added some overhead, our
results show that (1) the overhead is within reasonable bounds for
DRE applications, and (2) offered suitable performance across dif-
ferent levels of load and load jitter. The case of a missed critical
deadline reported in Section IV-B urges caution, however, as well
as careful empirical evaluation when applying these techniques to
mission-critical DRE systems. Our results show that while opera-
tion cancellation did not improveeffectivenessof scheduling strate-
gies, it did improveefficiencywhen moderate or high levels of jitter
were present.

Future work: We are currently exploring the following areas
in our future research on multi-paradigm scheduling of Real-time
CORBA operations:

3TAO, TAO’s Real-time Event Channel, and Kokyu are available as open-source
software fromwww.cs.wustl.edu/˜schmidt/TAO.html .

1) Performance models—We are investigating models for the
results seen in this work, particularly whether the better per-
formance of MUF under moderate jitter is due to (1) incidental
slack-stealing effects allowed by the greater overhead of dy-
namic scheduling or (2) a particular capability of the schedul-
ing mechanism itself.

2) Distributed scheduling behavior—Further empirical mea-
surements are needed to determine the impact of factors such
as network latency on the end-to-end performance of dynam-
ically scheduled distributed systems.

3) Application requirements—A detailed examination of the
impact of application specific requirements, such as policies
for handling missed deadlines, will help guide the develop-
ment of additional strategies for dynamically scheduled sys-
tems.

4) Adaptive control—We are exploring whether adaptive con-
trol laws for alternation between scheduling strategies can be
identified and demonstrated to be effective for broad classes
of DRE systems.

ACKNOWLEDGMENTS

We gratefully acknowledge the support and direction of the AFRL
program manager for ASFD, Kenneth Littlejohn, and of Boeing
Bold Stroke Principal Investigators Bryan Doerr and David Sharp.
In addition, we would like to thank Greg Holtmeyer for his con-
tributions to this research, Douglas Niehaus for his suggestions on
improving this paper, and Fred Kuhns for his observation that the
better performance by MUF under moderate jitter conditions could
be due to a form of slack stealing by non-critical operations.

REFERENCES

[1] C. D. Gill, D. L. Levine, and D. C. Schmidt, “The Design and Performance of
a Real-Time CORBA Scheduling Service,”Real-Time Systems, The
International Journal of Time-Critical Computing Systems, special issue on
Real-Time Middleware, vol. 20, March 2001.

[2] J. Loyall, J. Gossett, C. Gill, R. Schantz, J. Zinky, P. Pal, R. Shapiro,
C. Rodrigues, M. Atighetchi, and D. Karr, “Comparing and Contrasting
Adaptive Middleware Support in Wide-Area and Embedded Distributed
Object Applications,” inProceedings of the 21st International Conference on
Distributed Computing Systems (ICDCS-21), pp. 625–634, IEEE, April 2001.

[3] D. A. Karr, C. Rodrigues, Y. Krishnamurthy, I. Pyarali, and D. C. Schmidt,
“Application of the QuO Quality-of-Service Framework to a Distributed
Video Application,” inProceedings of the 3rd International Symposium on
Distributed Objects and Applications, (Rome, Italy), OMG, September 2001.

[4] D. B. Stewart and P. K. Khosla, “Real-Time Scheduling of Sensor-Based
Control Systems,” inReal-Time Programming(W. Halang and
K. Ramamritham, eds.), Tarrytown, NY: Pergamon Press, 1992.

[5] R. E. Schantz and D. C. Schmidt, “Middleware for Distributed Systems:
Evolving the Common Structure for Network-centric Applications,” in
Encyclopedia of Software Engineering(J. Marciniak and G. Telecki, eds.),
New York: Wiley & Sons, 2001.

[6] M. Henning and S. Vinoski,Advanced CORBA Programming With C++.
Reading, Massachusetts: Addison-Wesley, 1999.

[7] Object Management Group,The Common Object Request Broker:
Architecture and Specification, 2.6 ed., Dec. 2001.

[8] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and Performance of
Real-Time Object Request Brokers,”Computer Communications, vol. 21,
pp. 294–324, Apr. 1998.

[9] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-time CORBA Event Service,” inProceedings of
OOPSLA ’97, (Atlanta, GA), pp. 184–199, ACM, October 1997.

[10] A. Gokhale and D. C. Schmidt, “Measuring and Optimizing CORBA Latency
and Scalability Over High-speed Networks,”Transactions on Computing,
vol. 47, no. 4, 1998.

[11] F. Kuhns, D. C. Schmidt, C. O’Ryan, and D. Levine, “Supporting
High-performance I/O in QoS-enabled ORB Middleware,”Cluster
Computing: the Journal on Networks, Software, and Applications, vol. 3,
no. 3, 2000.

[12] C. O’Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J. Parsons, “The Design
and Performance of a Pluggable Protocols Framework for Real-time
Distributed Object Computing Middleware,” inProceedings of the
Middleware 2000 Conference, ACM/IFIP, Apr. 2000.

[13] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale, “Software
Architectures for Reducing Priority Inversion and Non-determinism in
Real-time Object Request Brokers,”Journal of Real-time Systems, special
issue on Real-time Computing in the Age of the Web and the Internet, vol. 21,
no. 2, 2001.

[14] A. B. Arulanthu, C. O’Ryan, D. C. Schmidt, M. Kircher, and J. Parsons, “The
Design and Performance of a Scalable ORB Architecture for CORBA
Asynchronous Messaging,” inProceedings of the Middleware 2000
Conference, ACM/IFIP, Apr. 2000.

[15] C. O’Ryan, D. C. Schmidt, F. Kuhns, M. Spivak, J. Parsons, I. Pyarali, and
D. L. Levine, “Evaluating Policies and Mechanisms to Support Distributed
Real-Time Applications with CORBA,”Concurrency and Computing:
Practice and Experience, vol. 13, no. 2, pp. 507–541, 2001.

[16] O. Othman, C. O’Ryan, and D. C. Schmidt, “An Efficient Adaptive Load
Balancing Service for CORBA,”IEEE Distributed Systems Online, vol. 2,
Mar. 2001.

[17] N. Wang, D. C. Schmidt, O. Othman, and K. Parameswaran, “Evaluating
Meta-Programming Mechanisms for ORB Middleware,”IEEE
Communication Magazine, special issue on Evolving Communications
Software: Techniques and Technologies, vol. 39, Oct. 2001.

[18] A. Gokhale and D. C. Schmidt, “Optimizing a CORBA IIOP Protocol Engine
for Minimal Footprint Multimedia Systems,”Journal on Selected Areas in
Communications special issue on Service Enabling Platforms for Networked
Multimedia Systems, vol. 17, Sept. 1999.

[19] C. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment,”JACM, vol. 20, pp. 46–61, January 1973.

[20] J.-Y. Chung, J. W.-S. Liu, and K.-J. Lin, “Scheduling Periodic Jobs that Allow
Imprecise Results,”IEEE Transactions on Computers, vol. 39, pp. 1156–1174,
September 1990.

[21] D. C. Sharp, “Reducing Avionics Software Cost Through Component Based
Product Line Development,” inProceedings of the 10th Annual Software
Technology Conference, Apr. 1998.

[22] B. S. Doerr and D. C. Sharp, “Freeing Product Line Architectures from
Execution Dependencies,” inProceedings of the 11th Annual Software
Technology Conference, Apr. 1999.

[23] C. D. Locke, “Software Architecture for Hard Real-Time Applications: Cyclic
Executives vs. Fixed Priority Executives,”The Journal of Real-Time Systems,
vol. 4, pp. 37–53, 1992.

[24] Wind River Systems, “VxWorks 5.3.”
www.wrs.com/products/html/vxworks.html.

[25] C. D. Gill, J. W. Hoffert, D. C. Sharp, and P. H. Goertzen, “An Evolution of
QoS Context Propagation in Event-Mediated Avionics Software
Architectures,” inProceedings of the 20th IEEE/AIAA Digital Avionics
Systems Conference (DASC), Oct. 2001.

[26] ARINC Incorporated, Annapolis, Maryland, USA,Document No. 653:
Avionics Application Software Standard Inteface (Draft 15), Jan. 1997.

[27] C. McElhone, “Soft Computations within Integrated Avionics Systems,” in
Proceedings of the IEEE National Aerospace and Electronics Conference
(NAECON 2000), October 2000.

[28] Object Management Group,Real-time CORBA Joint Revised Submission,
OMG Document orbos/99-02-12 ed., March 1999.

[29] Object Management Group,Dynamic Scheduling Real-Time CORBA 2.0 Joint
Final Submission, OMG Document orbos/2001-06-09 ed., Apr. 2001.

[30] Bollella, Gosling, Brosgol, Dibble, Furr, Hardin, and Turnbull,The Real-Time
Specification for Java. Addison-Wesley, 2000.

[31] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support for Quality
of Service for CORBA Objects,”Theory and Practice of Object Systems,
vol. 3, no. 1, pp. 1–20, 1997.

[32] V. Kalogeraki, P. M. Melliar-Smith, and L. E. Moser, “Dynamic Migration
Algorithms for Distributed Object Systems,” in21st IEEE International
Conference on Distributed Computing Systems (ICDCS), (Phoenix AZ), IEEE,
Apr. 2001.

[33] V. Kalogeraki, P. M. Melliar-Smith, and L. E. Moser, “Dynamic Scheduling of
Distributed Method Invocations,” in21st IEEE Real-Time Systems Symposium,
(Orlando, FL), IEEE, November 2000.

[34] K. H. K. Kim, “Object Structures for Real-Time Systems and Simulators,”
IEEE Computer, pp. 62–70, Aug. 1997.

[35] J. Regehr and J. Lepreau, “The Case for Using Middleware to Manage Diverse
Soft Real-Time Schedulers,” inProceedings of the International Workshop on
Multimedia Middleware (M3W ’01), (Ottowa, Canada), October 2001.

[36] Y.-C. Wang and K.-J. Lin, “Implementing A General Real-Time Scheduling
Framework in the RED-Linux Real-Time Kernel,” inIEEE Real-Time Systems
Symposium, pp. 246–255, IEEE, December 1999.

