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Abstract 
Software has become strategic to developing effective distributed real-time and embedded (DRE) systems. 
Next-generation DRE systems, such as total ship computing environments, coordinated unmanned air 
vehicle systems, and national missile defense, will use many geographically dispersed sensors, provide on-
demand situational awareness and actuation capabilities for human operators, and respond flexibly to 
unanticipated run-time conditions. These DRE systems will also increasingly run unobtrusively and 
autonomously, shielding operators from unnecessary details, while communicating and responding to 
mission-critical information at an accelerated operational tempo. In such environments, it’s hard to predict 
system configurations or workloads in advance. This paper describes the need for adaptive and reflective 
middleware systems (ARMS) to bridge the gap between application programs and the underlying operating 
systems and network protocol stacks in order to provide reusable services whose qualities are critical to 
DRE systems. ARMS middleware can adapt in response to dynamically changing conditions for the purpose 
of utilizing the available computer and network infrastructure to the highest degree possible in support of 
mission needs. 

 

Motivation 
New and planned distributed real-time and embedded 
(DRE) systems are inherently network-centric “systems of 
systems.” DRE systems have historically been developed 
via multiple technology bases, where each system brings 
its own networks, computers, displays, software, and 
people to maintain and operate it. Unfortunately, not only 
are these “stove-pipe” architectures proprietary, but they 
tightly couple many functional and non-functional DRE 
system aspects, which impedes their 
1. Assurability, which is needed to guarantee efficient, 

predictable, scalable, and dependable quality of 
service (QoS)  from sensors to shooters  

2. Adaptability, which is needed to (re)configure DRE 
systems dynamically to support varying workloads or 
missions over their lifecycles and 

3. Affordability, which is needed to reduce initial non-
recurring DRE system acquisition costs and recurring 
upgrade and evolution costs. 

The affordability of certain types of systems, such as 
logistics and mission planning, can often be enhanced by 
using commercial-off-the-shelf (COTS) technologies. 
However, today’s efforts aimed at integrating COTS into 
mission-critical DRE systems have largely failed to 
support affordability and assurability and adaptability 
effectively since they focus mainly on initial non-
recurring acquisition costs and do not reduce recurring 
software lifecycle costs, such as “COTS refresh” and 

subsetting military systems for foreign military sales.  
Likewise, many COTS products lack support for 
controlling key QoS properties, such as predictable 
latency, jitter, and throughput; scalability; dependability; 
and security. The inability to control these QoS properties 
with sufficient confidence compromises DRE system 
adaptability and assurability, e.g., minor perturbations in 
conventional COTS products can cause failures that lead 
to loss of life and property.  

Historically, conventional COTS software has been 
particularly unsuitable for use in mission-critical DRE 
systems due to its either being:  
1. Flexible and standard, but incapable of guaranteeing 

stringent QoS demands, which restricts assurability 
or  

2. Partially QoS-enabled, but inflexible and non-
standard, which restricts adaptability and 
affordability. 

As a result, the rapid progress in COTS software for 
mainstream business information technology (IT) has not 
yet become as broadly applicable for mission-critical 
DRE systems. Until this problem is resolved effectively, 
DRE system integrators and warfighters will be unable to 
take advantage of future advances in COTS software in a 
dependable, timely, and cost effective manner. Thus, 
developing the new generation of assurable, adaptable, 
and affordable COTS software technologies is an 
important R&D goal.  



 

 

Key Technical Challenges and Solutions 

Some of the most challenging IT requirements for new 
and planned DRE systems can be characterized as 
follows: 
• Multiple QoS properties must be satisfied in real-time 
• Different levels of service are appropriate under 

different configurations, environmental conditions, 
and costs 

• The levels of service in one dimension must be 
coordinated with and/or traded off against the levels of 
service in other dimensions to meet mission needs and  

• The need for autonomous and time-critical application 
behavior necessitates a flexible distributed system 
substrate that can adapt robustly to dynamic changes 
in mission requirements and environmental conditions.  

 
Standards-based COTS software available today cannot 
meet all of these requirements simultaneously for the 
reasons outlined in Section Motivation. However, 
contemporary economic and organizational constraints—
along with increasingly complex requirements and 
competitive pressures—are also making it infeasible to 
built complex DRE system software entirely from scratch. 
Thus, there is a pressing need to develop, validate, and 
ultimately standardize a new generation of adaptive and 
reflective middleware systems (ARMS) technologies that 
can support stringent DRE system functionality and QoS 
requirements. 

Middleware [Sch01a] is reusable service/protocol 
component and framework software that functionally 
bridges the gap between  
1. the end-to-end functional requirements and mission 

doctrine of applications and  
2. the lower-level underlying operating systems and 

network protocol stacks.  
Middleware therefore provides capabilities whose quality 
and QoS are critical to DRE systems.  

Adaptive middleware [Loy01] is software whose 
functional and QoS-related properties can be modified 
either 
• Statically, e.g., to reduce footprint, leverage 

capabilities that exist in specific platforms, enable 
functional subsetting, and minimize hardware and 
software infrastructure dependencies or 

• Dynamically, e.g., to optimize system responses to 
changing environments or requirements, such as 
changing component interconnections, power-levels, 
CPU/network bandwidth, latency/jitter, and 
dependability needs. 

In DRE systems, adaptive middleware must make these 
modifications dependably, i.e., while meeting stringent 
end-to-end QoS requirements.  

Reflective middleware [Bla99] goes a step further to 
permit automated examination of the capabilities it offers, 
and to permit automated adjustment to optimize those 

capabilities. Thus, reflective middleware supports more 
advanced adaptive behavior, i.e., the necessary 
adaptations can be performed autonomously based on 
conditions within the system, in the system's environment, 
or in DRE system doctrine defined by operators and 
administrators. 

The Structure and Functionality of 
Middleware 
Networking protocol stacks can be decomposed into 
multiple layers, such as the physical, data-link, network, 
transport, session, presentation, and application layers. 
Similarly, middleware can be decomposed into multiple 
layers, such as those shown in Figure 1.  

 
Figure 1. Layers of Middleware and  

Their Surrounding Context 
Below, we describe each of these middleware layers and 
outline some of the COTS technologies in each layer that 
are suitable (or are becoming suitable) to meet the 
stringent QoS demands of DRE systems.  

Host infrastructure middleware encapsulates and 
enhances native OS communication and concurrency 
mechanisms to create portable and reusable network 
programming components, such as reactors, acceptor-
connectors, monitor objects, active objects, and 
component configurators [Sch00b]. These components 
abstract away the accidental incompatibilities of 
individual operating systems, and help eliminate many 
tedious, error-prone, and non-portable aspects of 
developing and maintaining networked applications via 
low-level OS programming API, such as Sockets or 
POSIX Pthreads. Examples of COTS host infrastructure 
middleware that are relevant for DRE systems include: 
• The ADAPTIVE Communication Environment (ACE) 

[Sch01], which is a highly portable and efficient 
toolkit written in C++ that encapsulates native 
operating system (OS) network programming 
capabilities, such as connection establishment, event 
demultiplexing, interprocess communication, 



 

 

(de)marshaling, static and dynamic configuration of 
application components, concurrency, and 
synchronization. ACE has been used in a wide range 
of commercial and military DRE systems, including 
hot rolling mill control software, surface mount 
technology for “pick and place” systems, missile 
control, avionics mission computing, software defined 
radios, and radar systems. 

• Real-time Java Virtual Machines (RT-JVMs), which 
implement the Real-time Specification for Java (RTSJ) 
[Bol00]. The RTSJ is a set of extensions to Java that 
provide a largely platform-independent way of 
executing code by encapsulating the differences 
between real-time operating systems and CPU 
architectures. The key features of RTSJ include scoped 
and immortal memory, real-time threads with 
enhanced scheduling support, asynchronous event 
handlers, and asynchronous transfer of control 
between threads. Although RT-JVMs based on the 
RTSJ are in their infancy, they have generated 
tremendous interest in the R&D and integrator 
communities due to their potential for reducing 
software development and evolution costs.  

Distribution middleware defines higher-level distributed 
programming models whose reusable APIs and 
mechanisms automate and extend the native OS network 
programming capabilities encapsulated by host 
infrastructure middleware. Distribution middleware 
enables developers to program distributed applications 
much like stand-alone applications, i.e., by invoking 
operations on target objects without hard-coding 
dependencies on their location, programming language, 
OS platform, communication protocols and interconnects, 
and hardware characteristics.  
At the heart of distribution middleware are QoS-enabled 
object request brokers, such as the Object Management 
Group’s (OMG) Common Object Request Broker 
Architecture (CORBA) [Omg00].  CORBA is distribution 
middleware that allows objects to interoperate across 
networks regardless of the language in which they were 
written or the OS platform on which they are deployed. In 
1998 the OMG adopted the Real-time CORBA (RT-
CORBA) specification [Sch00a], which extends CORBA 
with features that allow DRE applications to reserve and 
manage CPU, memory, and networking resources. RT-
CORBA implementations have been used in dozens of 
DRE systems, including telecom network management 
and call processing, online trading services, avionics 
mission computing, submarine DRE systems, signal 
intelligence and C4ISR systems, software defined radios, 
and radar systems. 
Common middleware services augment distribution 
middleware by defining higher-level domain-independent 
components that allow application developers to 
concentrate on programming application logic, without 
the need to write the “plumbing” code needed to develop 
distributed applications by using lower level middleware 

features directly. Whereas distribution middleware 
focuses largely on managing end-system resources in 
support of an object-oriented distributed programming 
model, common middleware services focus on allocating, 
scheduling, and coordinating various end-to-end resources 
throughout a distributed system using a component 
programming and scripting model. Developers can reuse 
these services to manage global resources and perform 
recurring distribution tasks that would otherwise be 
implemented in an ad hoc manner by each application or 
integrator.  
Examples of common middleware services include the 
OMG’s CORBAServices [Omg98b] and the CORBA 
Component Model (CCM) [Omg99], which provide 
domain-independent interfaces and distribution 
capabilities that can be used by many distributed 
applications.  The OMG CORBAServices and CCM 
specifications define a wide variety of these services, 
including event notification, logging, multimedia 
streaming, persistence, security, global time, real-time 
scheduling, fault tolerance, concurrency control, and 
transactions. Not all of these services are sufficiently 
refined today to be usable off-the-shelf for DRE systems. 
The form and content of these common middleware 
services will continue to mature and evolve, however, to 
meet the expanding requirements of DRE.   
Domain-specific middleware services are tailored to the 
requirements of particular DRE system domains, such as 
avionics mission computing, radar processing, weapons 
targeting, or command and decision systems. Unlike the 
previous three middleware layers—which provide broadly 
reusable “horizontal” mechanisms and services—domain-
specific middleware services are targeted at vertical 
markets. From a COTS perspective, domain-specific 
services are the least mature of the middleware layers 
today. This immaturity is due in part to the historical lack 
of distribution middleware and common middleware 
service standards, which are needed to provide a stable 
base upon which to create domain-specific middleware 
services. Since they embody knowledge of a domain, 
however, domain-specific middleware services have the 
most potential to increase the quality and decrease the 
cycle-time and effort that integrators require to develop 
particular classes of DRE systems.  
A mature example of domain-specific middleware 
services is the Boeing Bold Stroke architecture [Sha98]. 
Bold Stroke uses COTS hardware, operating systems, and 
middleware to produce an open architecture for mission 
computing avionics capabilities, such as navigation, 
heads-up display management, weapons targeting and 
release, and airframe sensor processing. The domain-
specific middleware services in Bold Stroke are layered 
upon COTS processors (PowerPC), network interconnects 
(VME), operating systems (VxWorks), infrastructure 
middleware (ACE), distribution middleware (Real-time 
CORBA), and common middleware services (the CORBA 
Event Service). 



 

 

Recent Progress 
Significant progress has occurred during the last five 
years in DRE middleware research, development, and 
deployment, stemming in large part from the following 
trends: 

• Years of research, iteration, refinement, and 
successful use – The use of middleware and DOC 
middleware is not new [Sch86].  Middleware concepts 
emerged alongside experimentation with the early 
Internet (and even its predecessor ARPAnet), and 
DOC middleware systems have been continuously 
operational since the mid 1980’s.  Over that period of 
time, the ideas, designs, and most importantly, the 
software that incarnates those ideas have had a chance 
to be tried and refined (for those that worked), and 
discarded or redirected (for those that didn’t).  This 
iterative technology development process takes a good 
deal of time to get right and be accepted by user 
communities, and a good deal of patience to stay the 
course. When this process is successful, it often results 
in standards that codify the boundaries, and patterns 
and frameworks that reify the knowledge of how to 
apply these technologies, as described in the following 
bullets. 

• The maturation of standards – Over the past decade, 
middleware standards have been established and have 
matured considerably with respect to DRE 
requirements. For instance, the OMG has adopted the 
following specifications in the past three years: 
o Minimum CORBA, which removes non-essential 

features from the full OMG CORBA specification to 
reduce footprint so that CORBA can be used in 
memory-constrained embedded systems.   

o Real-time CORBA, which includes features that 
allow applications to reserve and manage network, 
CPU, and memory resources predictably end-to-end.   

o CORBA Messaging, which exports additional QoS 
policies, such as timeouts, request priorities, and 
queueing disciplines, to applications.  

o Fault-tolerant CORBA, which uses entity 
redundancy of objects to support replication, fault 
detection, and failure recovery. 

 Robust implementations of these CORBA capabilities 
and services are now available from multiple vendors. 
Moreover, emerging standards such as Dynamic 
Scheduling Real-Time CORBA, the Real-Time 
Specification for Java, and the Distributed Real-Time 
Specification for Java are extending the scope of open 
standards for a wider range of DRE applications. 

• The dissemination of patterns and frameworks – A 
substantial amount of R&D effort during the past 
decade has also focused on the following means of 
promoting the development and reuse of high quality 
middleware technology:   
o Patterns codify design expertise that provides time-

proven solutions to commonly occurring software 

problems that arise in particular contexts [Gam95].  
Patterns can simplify the design, construction, and 
performance tuning of DRE applications by 
codifying the accumulated expertise of developers 
who have successfully confronted similar problems 
before.  Patterns also elevate the level of discourse 
in describing software development activities to 
focus on strategic architecture and design issues, 
rather than just the tactical programming and 
representation details.  

o Frameworks are concrete realizations of groups of 
related patterns [John97].  Well-designed 
frameworks reify patterns in terms of functionality 
provided by the middleware itself, as well as 
functionality provided by an application.  
Frameworks also integrate various approaches to 
problems where there are no a priori, context-
independent, optimal solutions.  Middleware 
frameworks can include strategized selection and 
optimization patterns so that multiple 
independently-developed capabilities can be 
integrated and configured automatically to meet the 
functional and QoS requirements of particular DRE 
applications. 

 
Historically, the knowledge required to develop 
predictable, scalable, efficient, and dependable mission-
critical DRE systems has existed largely in programming 
folklore, the heads of experienced researchers and 
developers, or buried deep within millions of lines of 
complex source code. Moreover, documenting complex 
systems with today’s popular software modeling methods 
and tools, such as the Unified Modeling Language 
(UML), only capture how a system is designed, but do not 
necessarily articulate why a system is designed in a 
particular way. This situation has several drawbacks: 

• Re-discovering the rationale for complex DRE 
system design decisions from source code is 
expensive, time-consuming, and error-prone since it’s 
hard to separate essential QoS-related knowledge 
from implementation details. 

• If the insights and design rationale of expert system 
architects are not documented they will be lost over 
time, and thus cannot help guide future DRE system 
evolution. 

• Without proper guidance, developers of mission-
critical DRE software face the Herculean task of 
engineering and assuring the QoS of complex DRE 
systems from the ground up, rather than by 
leveraging proven solutions. 

Middleware patterns and frameworks are therefore 
essential to help capture DRE system design expertise in a 
more readily accessible and reusable format. 
 
Much of the pioneering R&D on middleware patterns and 
frameworks was conducted in the DARPA ITO Quorum 
program [DARPA99]. This program focused heavily on 
CORBA open systems middleware and yielded many 



 

 

results that transitioned into standardized service 
definitions and implementations for the Real-time [Sch98] 
and Fault-tolerant [Omg98a] CORBA specification and 
productization efforts.   Quorum is an example of how a 
focused government R&D effort can leverage its results 
by exporting them into, and combining them with, other 
on-going public and private activities that also used a 
common open middleware substrate.  Prior to the viability 
of standards-based COTS middleware platforms, these 
same R&D results would have been buried within custom 
or proprietary systems, serving only as an existence proof, 
rather than as the basis for realigning the R&D and 
integrator communities.   

Looking Ahead  

Due to advances in COTS technologies outlined earlier, 
host infrastructure middleware and distribution 
middleware have now been successfully demonstrated 
and deployed in a number of mission-critical DRE 
systems, such as avionics mission computing, software 
defined radios, and submarine information systems. Since 
COTS middleware technology has not yet matured to 
cover the realm of large-scale, dynamically changing 
systems, however, DRE middleware has been applied to 
relatively small-scale and statically configured embedded 
systems. To satisfy the highly application- and mission-
specific QoS requirements in network-centric “system of 
system” environments, DRE middleware—particularly 
common middleware services and domain-specific 
services—must be enhanced to support the management 
of individual and aggregate resources used by multiple 
system components at multiple system levels in order to: 

• Manage communication bandwidth, e.g., network 
level resource capability and status information 
services, scalability to 102 subnets and 103 nodes, 
dynamic connections with reserved bandwidth, 
aggregate policy-controlled bandwidth reservation and 
sharing, incorporation of non-network resource status 
information, aggregate dynamic network resource 
management strategies, and managed bandwidth to 
enhance real-time predictability. 

• Manage distributed real-time scheduling and 
allocation of DRE system artifacts (such as CPUs, 
networks, UAVs, missiles, radar, illuminators, etc), 
e.g., fast and predictable queueing time properties, 
timeliness assurances for end-to-end activities based 
on priority/deadlines, admission controlled request 
insertion based on QoS parameters and global resource 
usage metrics, and predictable behavior over WANs 
using bandwidth reservations. 

• Manage distributed system dependability, e.g., group 
communication-based replica management, 
dependability manager maintaining aggregate levels of 
object replication, run-time switching among 
dependability strategies, policy-based selection of 

replication options, and understanding and tolerating 
timing faults in conjunction with real-time behavior. 

• Manage distributed security, e.g., object-level access 
control, layered access control for adaptive 
middleware, dynamically variable access control 
policies, and effective real-time, dependability, and 
security interactions. 

Ironically, there is currently little or no scientific 
underpinning for QoS-enabled resource management, 
despite the demand for it in most distributed systems. 
Today’s system designers and mission planners develop 
concrete plans for creating global, end-to-end 
functionality. These plans contain high-level abstractions 
and doctrine associated with resource management 
algorithms, relationships between these, and operations 
upon these. There are few techniques and tools, however 
that enable users, i.e., commanders, administrators, and 
operators, developers, i.e., systems engineers and 
application designers and/or applications to express such 
plans systematically, reason about and refine them, and 
have these plans enforced automatically to manage 
resources at multiple levels in network-centric DRE 
systems.  
 
Systems today are built in a highly static manner, with 
allocation of processing tasks to resources assigned at 
design time.  For systems that never change, this is an 
adequate approach. Large and complex military DRE 
combat systems change and evolve over their lifetime, 
however, in response to changing missions and 
operational environments.  Allocation decisions made 
during initial design often become obsolete over time, 
necessitating expensive and time-consuming redesign.  If 
the system’s requisite end-to-end functionality becomes 
unavailable due to mission and environment changes, 
there are no standard tools or techniques to diagnose 
configuration or run-time errors automatically. Instead, 
designers and operators write down their plans on paper 
and perform such reasoning, refinement, configuration 
generation, and diagnosis manually. This ad hoc process 
is clearly inadequate to manage the accelerated 
operational tempo characteristic of network-centric DRE 
combat systems. 
 
To address these challenges, the R&D community needs 
to discover and set the technical approach that can 
significantly improve the effective utilization of networks 
and endsystems that DRE systems depend upon by 
creating middleware technologies and tools that can 
automatically allocate, schedule, control, and optimize 
customizable—yet standards-compliant and verifiably 
correct—software-intensive systems. To promote a 
common technology base, the interfaces and (where 
appropriate) the protocols used by the middleware should 
be based on established or emerging industry or military 
standards that are relevant for DRE systems. However, the 
protocol and service implementations should be 



 

 

customizable—statically and dynamically—for specific 
DRE system requirements. 

To achieve these goals, middleware technologies and 
tools need to be based upon some type of layered 
architecture, such as the one shown in Figure 2 [Loy01]. 
This architecture decouples DRE middleware and 
applications along the following two dimensions: 
• Functional paths, which are flows of information 

between client and remote server applications. In 
distributed systems, middleware ensures that this 
information is exchanged efficiently, predictably, 
scalably, dependably, and securely between remote 
peers. The information itself is largely application-
specific and determined by the functionality being 
provided (hence the term “functional path”).  

• QoS paths, which are responsible for determining how 
well the functional interactions behave end-to-end 
with respect to key DRE system QoS properties, such 
as  
1. How and when resources are committed to 

client/server interactions at multiple levels of 
distributed systems 

2. The proper application and system behavior if 
available resources do not satisfy the expected 
resources and  

3. The failure detection and recovery strategies 
necessary to meet end-to-end dependability 
requirements. 

In next-generation DRE systems, the middleware—rather 
than operating systems or networks in isolation—will be 
responsible for separating non-functional DRE system 
QoS properties from the functional application properties. 
Middleware will also coordinate the QoS of various DRE 
system and application resources end-to-end. The 
architecture in Figure 2 enables these properties and 
resources to change independently, e.g., over different 
distributed system configurations for the same 
applications.  

The architecture in Figure 2 is based on the expectation 
that non-functional QoS paths will be developed, 
configured, monitored, managed, and controlled by a 
different set of specialists (such as systems engineers, 
administrators, operators, and perhaps someday 
automated agents) and tools than those customarily 
responsible for programming functional paths in DRE 
systems.  The middleware is therefore responsible for 
collecting, organizing, and disseminating QoS-related 
meta-information needed to  
1. Monitor and manage how well the functional 

interactions occur at multiple levels of DRE systems 
and  

2. Enable the adaptive and reflective decision-making 
needed to support non-functional QoS properties 
robustly in the face of rapidly changing mission 
requirements and environmental conditions.  

These middleware capabilities are crucial to ensure that 
the aggregate behavior of complex network-centric DRE 

systems is dependable, despite local failures, transient 
overloads, and dynamic functional or QoS 
reconfigurations. 

 
Figure 3. Decoupling Functional and QoS Paths  

To simultaneously enhance assurability, adaptability, and 
affordability, the middleware techniques and tools 
developed in future R&D programs increasingly need to 
be application-independent, yet customizable within the 
interfaces specified by a range of open standards, such as  
• The OMG Real-time CORBA specifications and The 

Open Group’s QoS Forum 
• The Java Expert Group Real-time Specification for 

Java (RTSJ) and the Distributed RTSJ  
• The DMSO/IEEE High-level Architecture Run-time 

Infrastructure (HLA/RTI) and  
• The IEEE Real-time Portable Operating System 

(POSIX) specification.  

Concluding Remarks   
Advances in wireless networks and COTS hardware 
technologies are enabling the lower level aspects of 
network-centric DRE systems. The emerging middleware 
software technologies and tools are likewise enabling the 
higher level distributed real-time and embedded (DRE) 
aspects of network-centric DRE systems, making them 
tangible and affordable by controlling the hardware, 
network, and endsystem mechanisms that affect mission, 
system, and application QoS tradeoffs. 

The economic benefits of middleware stem from moving 
standardization up several levels of abstraction by 
maturing DRE software technology artifacts, such as 
middleware frameworks, protocol/service components, 
and patterns, so that they are readily available for COTS 
acquisition and customization. This middleware focus is 
helping to lower the total ownership costs of DRE 
systems by leveraging common technology bases so that 
complex and DRE functionality need not be re-invented 



 

 

repeatedly or reworked from proprietary “stove-pipe” 
architectures that are inflexible and expensive to evolve 
and optimize.  

Adaptive and reflective middleware systems (ARMS) are 
a key emerging theme that will help to simplify the 
development, optimization, validation, and integration of 
middleware in DRE systems. In particular, ARMS will 
allow researchers and system integrators to develop and 
evolve complex DRE systems assurably, adaptively, and 
affordably by: 
• Standardizing COTS at the middleware level, rather 

than just at lower hardware/networks/OS levels and  
• Devising optimizers, meta-programming techniques, 

and multi-level distributed dynamic resource 
management protocols and services for ARMS that 
will enable DRE systems to customize standard COTS 
interfaces, without the penalties incurred by today’s 
conventional COTS software product 
implementations. 

Many DRE systems require  these middleware 
capabilities. Additional information on DRE middleware 
is available at www.ece.uci.edu/~schmidt. 
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