

Adaptive and Reflective Middleware for
Distributed Real-time and Embedded Systems

Douglas C. Schmidt

Electrical & Computer Engineering Dept.
University of California, Irvine
Irvine, CA 92697-2625, USA

schmidt@uci.edu

Abstract
Software has become strategic to developing effective distributed real-time and embedded (DRE) systems.
Next-generation DRE systems, such as total ship computing environments, coordinated unmanned air
vehicle systems, and national missile defense, will use many geographically dispersed sensors, provide on-
demand situational awareness and actuation capabilities for human operators, and respond flexibly to
unanticipated run-time conditions. These DRE systems will also increasingly run unobtrusively and
autonomously, shielding operators from unnecessary details, while communicating and responding to
mission-critical information at an accelerated operational tempo. In such environments, it’s hard to predict
system configurations or workloads in advance. This paper describes the need for adaptive and reflective
middleware systems (ARMS) to bridge the gap between application programs and the underlying operating
systems and network protocol stacks in order to provide reusable services whose qualities are critical to
DRE systems. ARMS middleware can adapt in response to dynamically changing conditions for the purpose
of utilizing the available computer and network infrastructure to the highest degree possible in support of
mission needs.

Motivation
New and planned distributed real-time and embedded
(DRE) systems are inherently network-centric “systems of
systems.” DRE systems have historically been developed
via multiple technology bases, where each system brings
its own networks, computers, displays, software, and
people to maintain and operate it. Unfortunately, not only
are these “stove-pipe” architectures proprietary, but they
tightly couple many functional and non-functional DRE
system aspects, which impedes their
1. Assurability, which is needed to guarantee efficient,

predictable, scalable, and dependable quality of
service (QoS) from sensors to shooters

2. Adaptability, which is needed to (re)configure DRE
systems dynamically to support varying workloads or
missions over their lifecycles and

3. Affordability, which is needed to reduce initial non-
recurring DRE system acquisition costs and recurring
upgrade and evolution costs.

The affordability of certain types of systems, such as
logistics and mission planning, can often be enhanced by
using commercial-off-the-shelf (COTS) technologies.
However, today’s efforts aimed at integrating COTS into
mission-critical DRE systems have largely failed to
support affordability and assurability and adaptability
effectively since they focus mainly on initial non-
recurring acquisition costs and do not reduce recurring
software lifecycle costs, such as “COTS refresh” and

subsetting military systems for foreign military sales.
Likewise, many COTS products lack support for
controlling key QoS properties, such as predictable
latency, jitter, and throughput; scalability; dependability;
and security. The inability to control these QoS properties
with sufficient confidence compromises DRE system
adaptability and assurability, e.g., minor perturbations in
conventional COTS products can cause failures that lead
to loss of life and property.

Historically, conventional COTS software has been
particularly unsuitable for use in mission-critical DRE
systems due to its either being:
1. Flexible and standard, but incapable of guaranteeing

stringent QoS demands, which restricts assurability
or

2. Partially QoS-enabled, but inflexible and non-
standard, which restricts adaptability and
affordability.

As a result, the rapid progress in COTS software for
mainstream business information technology (IT) has not
yet become as broadly applicable for mission-critical
DRE systems. Until this problem is resolved effectively,
DRE system integrators and warfighters will be unable to
take advantage of future advances in COTS software in a
dependable, timely, and cost effective manner. Thus,
developing the new generation of assurable, adaptable,
and affordable COTS software technologies is an
important R&D goal.

Key Technical Challenges and Solutions

Some of the most challenging IT requirements for new
and planned DRE systems can be characterized as
follows:
• Multiple QoS properties must be satisfied in real-time
• Different levels of service are appropriate under

different configurations, environmental conditions,
and costs

• The levels of service in one dimension must be
coordinated with and/or traded off against the levels of
service in other dimensions to meet mission needs and

• The need for autonomous and time-critical application
behavior necessitates a flexible distributed system
substrate that can adapt robustly to dynamic changes
in mission requirements and environmental conditions.

Standards-based COTS software available today cannot
meet all of these requirements simultaneously for the
reasons outlined in Section Motivation. However,
contemporary economic and organizational constraints—
along with increasingly complex requirements and
competitive pressures—are also making it infeasible to
built complex DRE system software entirely from scratch.
Thus, there is a pressing need to develop, validate, and
ultimately standardize a new generation of adaptive and
reflective middleware systems (ARMS) technologies that
can support stringent DRE system functionality and QoS
requirements.

Middleware [Sch01a] is reusable service/protocol
component and framework software that functionally
bridges the gap between
1. the end-to-end functional requirements and mission

doctrine of applications and
2. the lower-level underlying operating systems and

network protocol stacks.
Middleware therefore provides capabilities whose quality
and QoS are critical to DRE systems.

Adaptive middleware [Loy01] is software whose
functional and QoS-related properties can be modified
either
• Statically, e.g., to reduce footprint, leverage

capabilities that exist in specific platforms, enable
functional subsetting, and minimize hardware and
software infrastructure dependencies or

• Dynamically, e.g., to optimize system responses to
changing environments or requirements, such as
changing component interconnections, power-levels,
CPU/network bandwidth, latency/jitter, and
dependability needs.

In DRE systems, adaptive middleware must make these
modifications dependably, i.e., while meeting stringent
end-to-end QoS requirements.

Reflective middleware [Bla99] goes a step further to
permit automated examination of the capabilities it offers,
and to permit automated adjustment to optimize those

capabilities. Thus, reflective middleware supports more
advanced adaptive behavior, i.e., the necessary
adaptations can be performed autonomously based on
conditions within the system, in the system's environment,
or in DRE system doctrine defined by operators and
administrators.

The Structure and Functionality of
Middleware
Networking protocol stacks can be decomposed into
multiple layers, such as the physical, data-link, network,
transport, session, presentation, and application layers.
Similarly, middleware can be decomposed into multiple
layers, such as those shown in Figure 1.

Figure 1. Layers of Middleware and

Their Surrounding Context
Below, we describe each of these middleware layers and
outline some of the COTS technologies in each layer that
are suitable (or are becoming suitable) to meet the
stringent QoS demands of DRE systems.

Host infrastructure middleware encapsulates and
enhances native OS communication and concurrency
mechanisms to create portable and reusable network
programming components, such as reactors, acceptor-
connectors, monitor objects, active objects, and
component configurators [Sch00b]. These components
abstract away the accidental incompatibilities of
individual operating systems, and help eliminate many
tedious, error-prone, and non-portable aspects of
developing and maintaining networked applications via
low-level OS programming API, such as Sockets or
POSIX Pthreads. Examples of COTS host infrastructure
middleware that are relevant for DRE systems include:
• The ADAPTIVE Communication Environment (ACE)

[Sch01], which is a highly portable and efficient
toolkit written in C++ that encapsulates native
operating system (OS) network programming
capabilities, such as connection establishment, event
demultiplexing, interprocess communication,

(de)marshaling, static and dynamic configuration of
application components, concurrency, and
synchronization. ACE has been used in a wide range
of commercial and military DRE systems, including
hot rolling mill control software, surface mount
technology for “pick and place” systems, missile
control, avionics mission computing, software defined
radios, and radar systems.

• Real-time Java Virtual Machines (RT-JVMs), which
implement the Real-time Specification for Java (RTSJ)
[Bol00]. The RTSJ is a set of extensions to Java that
provide a largely platform-independent way of
executing code by encapsulating the differences
between real-time operating systems and CPU
architectures. The key features of RTSJ include scoped
and immortal memory, real-time threads with
enhanced scheduling support, asynchronous event
handlers, and asynchronous transfer of control
between threads. Although RT-JVMs based on the
RTSJ are in their infancy, they have generated
tremendous interest in the R&D and integrator
communities due to their potential for reducing
software development and evolution costs.

Distribution middleware defines higher-level distributed
programming models whose reusable APIs and
mechanisms automate and extend the native OS network
programming capabilities encapsulated by host
infrastructure middleware. Distribution middleware
enables developers to program distributed applications
much like stand-alone applications, i.e., by invoking
operations on target objects without hard-coding
dependencies on their location, programming language,
OS platform, communication protocols and interconnects,
and hardware characteristics.
At the heart of distribution middleware are QoS-enabled
object request brokers, such as the Object Management
Group’s (OMG) Common Object Request Broker
Architecture (CORBA) [Omg00]. CORBA is distribution
middleware that allows objects to interoperate across
networks regardless of the language in which they were
written or the OS platform on which they are deployed. In
1998 the OMG adopted the Real-time CORBA (RT-
CORBA) specification [Sch00a], which extends CORBA
with features that allow DRE applications to reserve and
manage CPU, memory, and networking resources. RT-
CORBA implementations have been used in dozens of
DRE systems, including telecom network management
and call processing, online trading services, avionics
mission computing, submarine DRE systems, signal
intelligence and C4ISR systems, software defined radios,
and radar systems.
Common middleware services augment distribution
middleware by defining higher-level domain-independent
components that allow application developers to
concentrate on programming application logic, without
the need to write the “plumbing” code needed to develop
distributed applications by using lower level middleware

features directly. Whereas distribution middleware
focuses largely on managing end-system resources in
support of an object-oriented distributed programming
model, common middleware services focus on allocating,
scheduling, and coordinating various end-to-end resources
throughout a distributed system using a component
programming and scripting model. Developers can reuse
these services to manage global resources and perform
recurring distribution tasks that would otherwise be
implemented in an ad hoc manner by each application or
integrator.
Examples of common middleware services include the
OMG’s CORBAServices [Omg98b] and the CORBA
Component Model (CCM) [Omg99], which provide
domain-independent interfaces and distribution
capabilities that can be used by many distributed
applications. The OMG CORBAServices and CCM
specifications define a wide variety of these services,
including event notification, logging, multimedia
streaming, persistence, security, global time, real-time
scheduling, fault tolerance, concurrency control, and
transactions. Not all of these services are sufficiently
refined today to be usable off-the-shelf for DRE systems.
The form and content of these common middleware
services will continue to mature and evolve, however, to
meet the expanding requirements of DRE.
Domain-specific middleware services are tailored to the
requirements of particular DRE system domains, such as
avionics mission computing, radar processing, weapons
targeting, or command and decision systems. Unlike the
previous three middleware layers—which provide broadly
reusable “horizontal” mechanisms and services—domain-
specific middleware services are targeted at vertical
markets. From a COTS perspective, domain-specific
services are the least mature of the middleware layers
today. This immaturity is due in part to the historical lack
of distribution middleware and common middleware
service standards, which are needed to provide a stable
base upon which to create domain-specific middleware
services. Since they embody knowledge of a domain,
however, domain-specific middleware services have the
most potential to increase the quality and decrease the
cycle-time and effort that integrators require to develop
particular classes of DRE systems.
A mature example of domain-specific middleware
services is the Boeing Bold Stroke architecture [Sha98].
Bold Stroke uses COTS hardware, operating systems, and
middleware to produce an open architecture for mission
computing avionics capabilities, such as navigation,
heads-up display management, weapons targeting and
release, and airframe sensor processing. The domain-
specific middleware services in Bold Stroke are layered
upon COTS processors (PowerPC), network interconnects
(VME), operating systems (VxWorks), infrastructure
middleware (ACE), distribution middleware (Real-time
CORBA), and common middleware services (the CORBA
Event Service).

Recent Progress
Significant progress has occurred during the last five
years in DRE middleware research, development, and
deployment, stemming in large part from the following
trends:

• Years of research, iteration, refinement, and
successful use – The use of middleware and DOC
middleware is not new [Sch86]. Middleware concepts
emerged alongside experimentation with the early
Internet (and even its predecessor ARPAnet), and
DOC middleware systems have been continuously
operational since the mid 1980’s. Over that period of
time, the ideas, designs, and most importantly, the
software that incarnates those ideas have had a chance
to be tried and refined (for those that worked), and
discarded or redirected (for those that didn’t). This
iterative technology development process takes a good
deal of time to get right and be accepted by user
communities, and a good deal of patience to stay the
course. When this process is successful, it often results
in standards that codify the boundaries, and patterns
and frameworks that reify the knowledge of how to
apply these technologies, as described in the following
bullets.

• The maturation of standards – Over the past decade,
middleware standards have been established and have
matured considerably with respect to DRE
requirements. For instance, the OMG has adopted the
following specifications in the past three years:
o Minimum CORBA, which removes non-essential

features from the full OMG CORBA specification to
reduce footprint so that CORBA can be used in
memory-constrained embedded systems.

o Real-time CORBA, which includes features that
allow applications to reserve and manage network,
CPU, and memory resources predictably end-to-end.

o CORBA Messaging, which exports additional QoS
policies, such as timeouts, request priorities, and
queueing disciplines, to applications.

o Fault-tolerant CORBA, which uses entity
redundancy of objects to support replication, fault
detection, and failure recovery.

 Robust implementations of these CORBA capabilities
and services are now available from multiple vendors.
Moreover, emerging standards such as Dynamic
Scheduling Real-Time CORBA, the Real-Time
Specification for Java, and the Distributed Real-Time
Specification for Java are extending the scope of open
standards for a wider range of DRE applications.

• The dissemination of patterns and frameworks – A
substantial amount of R&D effort during the past
decade has also focused on the following means of
promoting the development and reuse of high quality
middleware technology:
o Patterns codify design expertise that provides time-

proven solutions to commonly occurring software

problems that arise in particular contexts [Gam95].
Patterns can simplify the design, construction, and
performance tuning of DRE applications by
codifying the accumulated expertise of developers
who have successfully confronted similar problems
before. Patterns also elevate the level of discourse
in describing software development activities to
focus on strategic architecture and design issues,
rather than just the tactical programming and
representation details.

o Frameworks are concrete realizations of groups of
related patterns [John97]. Well-designed
frameworks reify patterns in terms of functionality
provided by the middleware itself, as well as
functionality provided by an application.
Frameworks also integrate various approaches to
problems where there are no a priori, context-
independent, optimal solutions. Middleware
frameworks can include strategized selection and
optimization patterns so that multiple
independently-developed capabilities can be
integrated and configured automatically to meet the
functional and QoS requirements of particular DRE
applications.

Historically, the knowledge required to develop
predictable, scalable, efficient, and dependable mission-
critical DRE systems has existed largely in programming
folklore, the heads of experienced researchers and
developers, or buried deep within millions of lines of
complex source code. Moreover, documenting complex
systems with today’s popular software modeling methods
and tools, such as the Unified Modeling Language
(UML), only capture how a system is designed, but do not
necessarily articulate why a system is designed in a
particular way. This situation has several drawbacks:

• Re-discovering the rationale for complex DRE
system design decisions from source code is
expensive, time-consuming, and error-prone since it’s
hard to separate essential QoS-related knowledge
from implementation details.

• If the insights and design rationale of expert system
architects are not documented they will be lost over
time, and thus cannot help guide future DRE system
evolution.

• Without proper guidance, developers of mission-
critical DRE software face the Herculean task of
engineering and assuring the QoS of complex DRE
systems from the ground up, rather than by
leveraging proven solutions.

Middleware patterns and frameworks are therefore
essential to help capture DRE system design expertise in a
more readily accessible and reusable format.

Much of the pioneering R&D on middleware patterns and
frameworks was conducted in the DARPA ITO Quorum
program [DARPA99]. This program focused heavily on
CORBA open systems middleware and yielded many

results that transitioned into standardized service
definitions and implementations for the Real-time [Sch98]
and Fault-tolerant [Omg98a] CORBA specification and
productization efforts. Quorum is an example of how a
focused government R&D effort can leverage its results
by exporting them into, and combining them with, other
on-going public and private activities that also used a
common open middleware substrate. Prior to the viability
of standards-based COTS middleware platforms, these
same R&D results would have been buried within custom
or proprietary systems, serving only as an existence proof,
rather than as the basis for realigning the R&D and
integrator communities.

Looking Ahead

Due to advances in COTS technologies outlined earlier,
host infrastructure middleware and distribution
middleware have now been successfully demonstrated
and deployed in a number of mission-critical DRE
systems, such as avionics mission computing, software
defined radios, and submarine information systems. Since
COTS middleware technology has not yet matured to
cover the realm of large-scale, dynamically changing
systems, however, DRE middleware has been applied to
relatively small-scale and statically configured embedded
systems. To satisfy the highly application- and mission-
specific QoS requirements in network-centric “system of
system” environments, DRE middleware—particularly
common middleware services and domain-specific
services—must be enhanced to support the management
of individual and aggregate resources used by multiple
system components at multiple system levels in order to:

• Manage communication bandwidth, e.g., network
level resource capability and status information
services, scalability to 102 subnets and 103 nodes,
dynamic connections with reserved bandwidth,
aggregate policy-controlled bandwidth reservation and
sharing, incorporation of non-network resource status
information, aggregate dynamic network resource
management strategies, and managed bandwidth to
enhance real-time predictability.

• Manage distributed real-time scheduling and
allocation of DRE system artifacts (such as CPUs,
networks, UAVs, missiles, radar, illuminators, etc),
e.g., fast and predictable queueing time properties,
timeliness assurances for end-to-end activities based
on priority/deadlines, admission controlled request
insertion based on QoS parameters and global resource
usage metrics, and predictable behavior over WANs
using bandwidth reservations.

• Manage distributed system dependability, e.g., group
communication-based replica management,
dependability manager maintaining aggregate levels of
object replication, run-time switching among
dependability strategies, policy-based selection of

replication options, and understanding and tolerating
timing faults in conjunction with real-time behavior.

• Manage distributed security, e.g., object-level access
control, layered access control for adaptive
middleware, dynamically variable access control
policies, and effective real-time, dependability, and
security interactions.

Ironically, there is currently little or no scientific
underpinning for QoS-enabled resource management,
despite the demand for it in most distributed systems.
Today’s system designers and mission planners develop
concrete plans for creating global, end-to-end
functionality. These plans contain high-level abstractions
and doctrine associated with resource management
algorithms, relationships between these, and operations
upon these. There are few techniques and tools, however
that enable users, i.e., commanders, administrators, and
operators, developers, i.e., systems engineers and
application designers and/or applications to express such
plans systematically, reason about and refine them, and
have these plans enforced automatically to manage
resources at multiple levels in network-centric DRE
systems.

Systems today are built in a highly static manner, with
allocation of processing tasks to resources assigned at
design time. For systems that never change, this is an
adequate approach. Large and complex military DRE
combat systems change and evolve over their lifetime,
however, in response to changing missions and
operational environments. Allocation decisions made
during initial design often become obsolete over time,
necessitating expensive and time-consuming redesign. If
the system’s requisite end-to-end functionality becomes
unavailable due to mission and environment changes,
there are no standard tools or techniques to diagnose
configuration or run-time errors automatically. Instead,
designers and operators write down their plans on paper
and perform such reasoning, refinement, configuration
generation, and diagnosis manually. This ad hoc process
is clearly inadequate to manage the accelerated
operational tempo characteristic of network-centric DRE
combat systems.

To address these challenges, the R&D community needs
to discover and set the technical approach that can
significantly improve the effective utilization of networks
and endsystems that DRE systems depend upon by
creating middleware technologies and tools that can
automatically allocate, schedule, control, and optimize
customizable—yet standards-compliant and verifiably
correct—software-intensive systems. To promote a
common technology base, the interfaces and (where
appropriate) the protocols used by the middleware should
be based on established or emerging industry or military
standards that are relevant for DRE systems. However, the
protocol and service implementations should be

customizable—statically and dynamically—for specific
DRE system requirements.

To achieve these goals, middleware technologies and
tools need to be based upon some type of layered
architecture, such as the one shown in Figure 2 [Loy01].
This architecture decouples DRE middleware and
applications along the following two dimensions:
• Functional paths, which are flows of information

between client and remote server applications. In
distributed systems, middleware ensures that this
information is exchanged efficiently, predictably,
scalably, dependably, and securely between remote
peers. The information itself is largely application-
specific and determined by the functionality being
provided (hence the term “functional path”).

• QoS paths, which are responsible for determining how
well the functional interactions behave end-to-end
with respect to key DRE system QoS properties, such
as
1. How and when resources are committed to

client/server interactions at multiple levels of
distributed systems

2. The proper application and system behavior if
available resources do not satisfy the expected
resources and

3. The failure detection and recovery strategies
necessary to meet end-to-end dependability
requirements.

In next-generation DRE systems, the middleware—rather
than operating systems or networks in isolation—will be
responsible for separating non-functional DRE system
QoS properties from the functional application properties.
Middleware will also coordinate the QoS of various DRE
system and application resources end-to-end. The
architecture in Figure 2 enables these properties and
resources to change independently, e.g., over different
distributed system configurations for the same
applications.

The architecture in Figure 2 is based on the expectation
that non-functional QoS paths will be developed,
configured, monitored, managed, and controlled by a
different set of specialists (such as systems engineers,
administrators, operators, and perhaps someday
automated agents) and tools than those customarily
responsible for programming functional paths in DRE
systems. The middleware is therefore responsible for
collecting, organizing, and disseminating QoS-related
meta-information needed to
1. Monitor and manage how well the functional

interactions occur at multiple levels of DRE systems
and

2. Enable the adaptive and reflective decision-making
needed to support non-functional QoS properties
robustly in the face of rapidly changing mission
requirements and environmental conditions.

These middleware capabilities are crucial to ensure that
the aggregate behavior of complex network-centric DRE

systems is dependable, despite local failures, transient
overloads, and dynamic functional or QoS
reconfigurations.

Figure 3. Decoupling Functional and QoS Paths

To simultaneously enhance assurability, adaptability, and
affordability, the middleware techniques and tools
developed in future R&D programs increasingly need to
be application-independent, yet customizable within the
interfaces specified by a range of open standards, such as
• The OMG Real-time CORBA specifications and The

Open Group’s QoS Forum
• The Java Expert Group Real-time Specification for

Java (RTSJ) and the Distributed RTSJ
• The DMSO/IEEE High-level Architecture Run-time

Infrastructure (HLA/RTI) and
• The IEEE Real-time Portable Operating System

(POSIX) specification.

Concluding Remarks
Advances in wireless networks and COTS hardware
technologies are enabling the lower level aspects of
network-centric DRE systems. The emerging middleware
software technologies and tools are likewise enabling the
higher level distributed real-time and embedded (DRE)
aspects of network-centric DRE systems, making them
tangible and affordable by controlling the hardware,
network, and endsystem mechanisms that affect mission,
system, and application QoS tradeoffs.

The economic benefits of middleware stem from moving
standardization up several levels of abstraction by
maturing DRE software technology artifacts, such as
middleware frameworks, protocol/service components,
and patterns, so that they are readily available for COTS
acquisition and customization. This middleware focus is
helping to lower the total ownership costs of DRE
systems by leveraging common technology bases so that
complex and DRE functionality need not be re-invented

repeatedly or reworked from proprietary “stove-pipe”
architectures that are inflexible and expensive to evolve
and optimize.

Adaptive and reflective middleware systems (ARMS) are
a key emerging theme that will help to simplify the
development, optimization, validation, and integration of
middleware in DRE systems. In particular, ARMS will
allow researchers and system integrators to develop and
evolve complex DRE systems assurably, adaptively, and
affordably by:
• Standardizing COTS at the middleware level, rather

than just at lower hardware/networks/OS levels and
• Devising optimizers, meta-programming techniques,

and multi-level distributed dynamic resource
management protocols and services for ARMS that
will enable DRE systems to customize standard COTS
interfaces, without the penalties incurred by today’s
conventional COTS software product
implementations.

Many DRE systems require these middleware
capabilities. Additional information on DRE middleware
is available at www.ece.uci.edu/~schmidt.

References
 [Bla99] Blair, G.S., F. Costa, G. Coulson, H. Duran, et al,
“The Design of a Resource-Aware Reflective Middleware
Architecture”, Proceedings of the 2nd International
Conference on Meta-Level Architectures and Reflection,
St.-Malo, France, Springer-Verlag, LNCS, Vol. 1616,
1999.

[Bol00] Bollella, G., Gosling, J. “The Real-Time Spec-
ification for Java,” Computer, June 2000.

[DARPA99] DARPA, The Quorum Program, http://www
.darpa.mil/ito/research/quorum/index.html, 1999.

[Gam95] Gamma E., Helm R., Johnson R., Vlissides J.,
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995.

[John97] Johnson R., “Frameworks = Patterns + Compon-
ents”, Communications of the ACM, Volume 40, Number
10, October, 1997.

[Loy01] Loyall JL, Gossett JM, Gill CD, Schantz RE,
Zinky JA, Pal P, Shapiro R, Rodrigues C, Atighetchi M,
Karr D. “Comparing and Contrasting Adaptive Middle-
ware Support in Wide-Area and Embedded Distributed
Object Applications”. Proceedings of the 21st IEEE
International Conference on Distributed Computing
Systems (ICDCS-21), April 16-19, 2001, Phoenix,
Arizona.

[Omg98a] Object Management Group, “Fault Tolerance
CORBA Using Entity Redundancy RFP”, OMG Docu-
ment orbos/98-04-01 edition, 1998.

[Omg98b] Object Management Group, “CORBA-
Servcies: Common Object Service Specification,” OMG
Technical Document formal/98-12-31.

[Omg99] Object Management Group, “CORBA Compon-
ent Model Joint Revised Submission,” OMG Document
orbos/99-07-01.
[Omg00] Object Management Group, “The Common Ob-
ject Request Broker: Architecture and Specification
Revision 2.4, OMG Technical Document formal/00-11-
07”, October 2000.

[Sch86] Schantz, R., Thomas R., Bono G., “The Archi-
tecture of the Cronus Distributed Operating System”, Pro-
ceedings of the 6th IEEE International Conference on
Distributed Computing Systems (ICDCS-6), Cambridge,
Massachusetts, May 1986.
[Sch98] Schmidt D., Levine D., Mungee S. “The Design
and Performance of the TAO Real-Time Object Request
Broker”, Computer Communications Special Issue on
Building Quality of Service into Distributed Systems,
21(4), 1998.

[Sch00a] Schmidt D., Kuhns F., “An Overview of the
Real-time CORBA Specification,” IEEE Computer
Magazine, June, 2000.

[Sch00b] Schmidt D., Stal M., Rohnert H., Buschmann F.,
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, Wiley and Sons,
2000.

[Sch01] Schmidt D., Huston S., C++ Network Pro-
gramming: Resolving Complexity with ACE and Patterns,
Addison-Wesley, Reading, MA, 2001.

[Sch01a] Schantz R., Schmidt D., “Middleware for Dist-
ributed Systems: Evolving the Common Structure for
Network-centric Applications,” Encyclopedia of Software
Engineering, Wiley & Sons, 2001.

 [Sha98] Sharp, David C., “Reducing Avionics Software
Cost Through Component Based Product Line Devel-
opment”, Software Technology Conference, April 1998.

	Abstract
	Motivation
	Key Technical Challenges and Solutions
	The Structure and Functionality of Middleware
	Recent Progress
	Looking Ahead
	Concluding Remarks

