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Abstract. Feature models help to simplify the development of product-
lines for component-based systems by capturing the key commonalities
and variabilities of an application and how they relate to component
configuration and composition. Performing requirements-driven feature
selection from a feature model, such as selecting a maximal set of fea-
tures whose constituent components fit within the target infrastructure’s
memory, motivates the use of a constraint solver. Building a constraint
solver-based feature selection engine is hard, however, since solvers typ-
ically have low-level APIs and require complex transformations on data
encapsulated in multiple features. To address these challenges, we devel-
oped an approach called Role-based Object Constraints (ROCs).
This paper provides the following contributions to the study of building
reusable feature selection engines for component-based applications: (1)
it presents the techniques that can be used to decouple applications and
constraint solvers to make solver-based solutions reusable, (2) it shows
how to select and coordinate multiple constraint solvers dynamically to
increase performance, and (3) it presents results from applying ROCs to
a case study that selects software features for mobile devices and shows
how ROCs increases modularity, reusability, and performance compared
with a tightly-coupled single-solver solution.

1 Introduction

Product-line architectures (PLAs) enable the development of families of software
packages that can be retargeted for different requirement sets by leveraging com-
mon capabilities, patterns, and architectural styles [1, 2]. The design of a PLA is
typically guided by scope, commonality, and variability (SCV) analysis [3]. SCV
captures key characteristics of software product-lines, including their (1) scope,
which defines the domains and context of the PLA, (2) commonalities, which de-
scribe the attributes that recur across all members of the family of products, and
(3) variabilities, which describe the attributes unique to the different members
of the family of products.
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One approach to describing the commonality and variability in a product
line is feature modeling [4, 5]. A feature model describes the indivisible units of
functionality that can be enabled or disabled in an application. From a PLA per-
spective, features are the high-level capabilities of the application that manifest
from different configurations of the underlying implementation components. For
example, selecting a MessageDriven Enterprise Java Bean (EJB) and a Message-

BasedAccount EJB could result in the higher-level feature AsynchronousMes-
sagingCapable. The features chosen for the product-line variant drive the config-
uration and composition of the underlying implementation components.

Although feature models simplify the development of new applications, it is
hard to find a valid feature set from a product-line that meets a set of require-
ment goals, which we term requirements-driven feature selection. For example,
if a developer wishes to choose a maximal set of features that fit within the
resource constraints (such as available memory and CPU cycles) on the target
infrastructure there may be an enormous number of possible feature sets to try.
In particular, if the solution space for a feature set composed of N unique fea-
tures is viewed as a binary string where each position represents whether or not
the ith feature is present in the set, there are 2N distinct values that the feature
set can have.

In production scenarios [6], there may be not only numerous components but
numerous types of requirements governing feature selection. These requirements
can range from resource restrictions and OS types to feature inter-dependencies
and composition rules. Manual approaches to perform requirements-driven fea-
ture selection do not scale well with these large solution spaces and complex
constraints.

A constraint solver is a more scalable approach to select requirements-driven
features based on complex resource, composition and other constraints. A con-
siderable amount of work [7–10] has been done on constraint optimization. As
a result, this technique has been applied successfully to a large number of do-
mains ranging from scheduling and configuration to resource management and
route planning. Expert systems are used in medical domains for diagnosis assis-
tance. Logistical operations, such as UPS, Fedex, and DHL, make extensive use
of constraint solvers to plan, route, and schedule shipments.

Tools for solving constraint problems, however, are often stove-piped solu-
tions that are tightly coupled to each application and constraint solver implemen-
tation and can thus rarely be reused across feature models. Moreover, constraint
solvers tend to have low-level APIs that are either not object-oriented (OO) or
that provide OO abstractions that are not aligned with the feature selection
domain. Considerable work must done to translate each high-level requirement
into a constraint satisfaction problem, such as an instance of a 0-1 programming
problem.

Another challenge with constraint solving tools is that data must be extracted
from the feature model and the requirement goals and transformed to the native
constraint solver formats. This transformation from (1) requirement definition
to (2) constraint satisfaction problem, data extraction, and API leveraging is
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typically duplicated for each constraint solver type needed to handle the various
high-level requirement types. Since solutions are often tightly-coupled and hard
to reuse, however, this endeavor is not only expensive but the costs cannot be
amortized across feature models.

While developing feature selection engines that leverage constraint-solvers [11],
we have wrestled with these problems of constraint-solver integration. To address
these challenges, we have developed an approach called Role-based Object Con-
straints (ROCs) programming that helps simplify the development of feature
selection engines that leverage constraint solvers. This paper shows how ROCs
allows developers to: (1) leverage a high-level of abstraction to specify com-
plex feature requirements using types aligned with the feature rather than the
constraint solver domain, (2) allow developers to build reusable feature selec-
tion engines that can be retargeted for different feature models, (3) leverage a
pluggable architecture to automate data transformation from arbitrary feature
models to native constraint solver formats, (4) to specify high-level requirement
to constraint satisfaction problem mappings that can be reused across feature
models and constraint solver implementations, and (5) dynamically select and
coordinate multiple constraint solvers based on requirement types and problem
instance characteristics.

The remainder of this paper is organized as follows: Section 2 presents a case
study for automated feature selection in mobile device product-lines; Section 3
introduces ROCs programming and shows how it uses key patterns and ab-
stractions to address the complexities of building feature selection engines based
on constraint solvers; Section 4 analyzes the results of experiments that apply
ROCs to our case study; Section 5 compares our work on ROCs programming
with related work; and Section 6 presents concluding remarks.

2 Motivating Example: FeatureBind

As part of the ROCs project, we developed an application called Scatter for mod-
eling product-lines for mobile device software. Scatter provides developers with
the capability to capture the structure of a PLA, the non-functional require-
ments of the components, and to use constraint solvers to derive an optimal
variant from the product-line with respect to a cost function. Scatter allows on-
demand software deployment of customized variants targeted specifically for an
individual mobile device. After developing Scatter, we took its core constraint
solving engine and built a new application, called FeatureBind, that performs
dynamic software configuration for mobile devices based on feature models.

For example, if a customer carries a mobile device onto a train and requests
that a food services application be provided to the device, FeatureBind analyzes
the various feature composition and non-function requirements and determines
which features to enable in the application delivered to the customer. If the
customer’s device is a laptop, resources constraints may not be an issue when
selecting features. If the device is a Treo phone, however, optimizing the features
to minimize memory and CPU usage may be much more important.
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FeatureBind’s feature selection engine may also have to make decisions based
on business data. For example, two different menus may be available for first class
and coach class passengers. If the passenger is seated in first class, the feature
selection engine must ensure that first class features, such as the enhanced menu,
are active in the application deployed to the device.

Conventional ways of identifying valid feature sets [5] involve software de-
velopers manually determining the software features that must be active, the
components to configure, and how to compose and deploy the components. In
addition to being infeasible in an on-demand setting, such as our mobile soft-
ware deployment environment, where the characteristics of the target devices
are not known a priori, such manual approaches are tedious, error-prone, and a
significant source of system downtime [12].

As a case study for this paper, we present the work we did refactoring Feature-
Bind to use our ROCs infrastructure. When an application variant is requested,
FeatureBind analyzes the target device’s infrastructure that the application will
be running on, including its resources (such as memory) and its configuration
(such as OS and middleware stacks) and determines the appropriate set of fea-
tures to be used by the application. This section shows how FeatureBind trans-
forms high-level resource requirements into a format that can be operated upon
by a constraint solver. The remainder of the paper then shows how ROCs helps to
address the challenging transformation and problem specification steps involved
in FeatureBind.

FeatureBind transforms the composition, configuration, and resource require-
ments of the application’s features into a constraint satisfaction problem and
solves for valid feature combinations that can be run on the target infrastructure.
This design allows FeatureBind to ensure that both a compositionally correct set
of features are chosen for the application and that the underlying components
fit within the available memory and CPU provided by the hardware/software
infrastructure.

Fig. 1. Mapping Feature Selection to a Constraint Satisfaction Problem for CLP(FD)

For FeatureBind to select features that adhere to the resource constraints
of the target infrastructure, it employs a Constraint Logic Programming Finite
Domain (CLP(FD)) [8] solver, as shown in Figure 1. FeatureBind transforms
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the resource requirements into a bin-packing problem that is operated on by
the CLP(FD) solver. For each Feature Ci available in the model, a presence
variable DCi, with domain [0,1] is created to indicate whether or not the Feature
is present in the chosen feature set. For every modeled resource type, such as
CPU, the individual Feature resource requirements, Ci(R), when multiplied by
their presence variables and summed cannot exceed the available amount of that
resource, Dvc(R), on the target Infrastructure.

If the presence variable is assigned 0 (which indicates that the feature is
not in the variant) the resource demand by that feature falls to zero. The∑

Ci(R) ∗ DCi < Dvc(R) constraint is created to enforce this rule. The solver
supports multiple types of composition relationships between Features. For each
Feature Cj that Ci depends on, FeatureBind creates the constraint Ci > 0 →

Cj = 1. FeatureBind also supports a selection composition constraint that al-
lows exactly N components from the dependencies to be present. The selection
operator creates the constraint Ci > 0 →

∑
Cj = N .

When new features are added to the application, the linear equations must
be modified to incorporate new DCi presence variables. As features are added to
the application, developers must also capture the values of the resource demands
of the various features and map them to new Ci(R) coefficients. At runtime, the
application must collect the status of the various types of resources available on
the target infrastructure and translate the statuses into values for the right-hand
sides of the equations Dvc(R).

It is clearly tedious and error-prone to manually create a mapping from an
application’s resource requirements and the resources available on the target
infrastructure to a system of linear equations. As shown in Section 3, how-
ever, leveraging a constraint solver in this fashion also presents numerous chal-
lenges to a developer. What is needed, therefore, is a mechanism for raising the
level of abstraction for requirements specification, automating data and require-
ments transformation to and from the constraint solver, and decoupling solvers,
constraint satisfaction problems, and application components to make solutions
reusable, as described in Section 3.

3 Addressing the Complexity of Leveraging Constraint

Solvers with ROCs Programming

To address the challenges of building constraint-solver based feature selection
engines, we developed an approach called Role-based Object Constraint (ROCs)
programming that has the following benefits:

– Subject-oriented design [13] analysis techniques are used to raise the level of
abstraction of requirement specification and align it with the feature mod-
eling domain.

– The transformation from requirement to constraint satisfaction problem is
decoupled from the native formats of constraint solvers and constraint sat-
isfaction problems can be expressed in terms of features and their inter-
relationships.
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– Complex requirements can be specified as workflows across multiple con-
straint satisfaction problems.

– The transformation of data from feature models to and from the solver is
automated by the underlying infrastructure by leveraging a common ab-
straction.

– Solvers are decoupled from constraint satisfaction problem specifications al-
lowing solvers to be plugged-in depending on the solving QoS characteristics,
such as optimality and speed, needed by the application.

This section describes the challenges we faced when developing a feature
selection engine that leverages a constraint solver to make requirements-driven
selection decisions. We examine each challenge in the context of our example
case study presented in Section 2 and show how it is addressed by ROCs.

3.1 Challenge 1: Mapping Constraints to Application Components

Context. To express requirements to the constraint solver, constraints must be
mapped to the various components in the application. Requirements over a high-
level concept, such as a feature, may be mapped to multiple actual application
components in the application.
Problem. Requirements are typically based on high-level concepts, such as
”if the AsynchronousMessaging feature is present, it requires that an Asyn-
chronousMessageService be installed.” If AsychronousMessaging is present in
a J2EE context it could mean that an Enterprise Java Bean was contained in
the application that inherited from MessageDrivenBean. In turn, deciding to in-
stall AsynchronousMessageService might require analyzing the J2EE application
server that the application was running in to ensure that the Java Messaging
Service (JMS) was installed and running.

For each new high-level concept that a requirement depends on, a mapping
must be created down to the actual implementation details to either capture the
data required to analyze the state of the concept, such as how much memory
is in the target system, or to enact the concept, such as make a feature active.
Requirements typically cover numerous concepts that map to a large number of
member variables and methods spread throughout the application. To allow con-
straint solving to take place, these complex mappings from high-level concepts
to implementation details must be used to collect all the data represented by the
concepts from the numerous components spread throughout the application.

Moreover, once constraint solving is finished, the high-level concepts must
be mapped back to the original implementation details to enact the feature
selections from the solver. For example, if the AsynchronousMessaging feature
maps to the presence variable DC1, then DC1 = 1, could indicate that several
MessageDrivenBeans should to be loaded into the application container. For
each seemingly simple assignment of a variable DCi, numerous complex changes
of the underlying application may need to be performed.

Writing the complex code to traverse the application components and its
environment and collect the required data is challenging. Moreover, after con-
straint solving is finished, more complex traversals must be implemented to walk
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the object graph underlying the components and enact the appropriate imple-
mentation changes to enable the appropriate features.

Solution → Subject-oriented design classes. To address these mapping
challenges, ROCs uses subject-oriented design [13] as the abstraction for viewing
an application. Subject-oriented design provides a decomposition abstraction
based on design subjects, which are units that encapsulate a single coherent
piece of functionality. The design subject abstraction helps align system design
and requirements. In ROCs, the components and the high-level concepts that
the requirements depend on are design subjects.

For each design subject present in the requirements, a DesignSubject class
is created. The design subject classes expose role-based relationships that they
may participate in. For example, a feature may have a role-based relationship
Dependencies, which specifies a list of other features that are required for the
feature to be active. Properties of a feature can also be expressed as role-based
relationships. For example, if a feature requires 10 Mbytes of RAM, the require-
ment could be expressed as a RequiresRam relationship with value 10. Features
and high-level datatypes, such as AsynchronousMessagingInstalled, are mapped
to DesignSubjects in ROCs.

A key property of the DesignSubject classes is that they possess the code
required to call the appropriate methods and set the needed member values to
map changes in the design subject’s relationships to the underlying application
components. For example, a DesignSubject class for our AsynchronousMessag-
ing feature would load the appropriate MessageDriven beans when its Present
relationship, modeled by the variable DC1 was set to 1.

This use of design subjects cleanly separates the application logic and the
logic required for collecting constraint solving data and implementing constraint
solving results. The design subject classes encapsulate the data and logic to make
the appropriate implementation level changes to enable/disable features in the
application. Existing applications can have automated feature selection inte-
grated into them without having to modify the existing components and their
logic. Finally, the subject-oriented design provides a direct mapping between the
high-level concepts of the requirements and objects in the application, thereby
simplifying the mapping the output from the constraint solver to the feature
model of the application.

3.2 Challenge 2: Raising the Level of Abstraction for Requirement

Specification

Context. To handle non-functional composition, configuration, and deployment
requirements, an application must map these requirements to concrete con-
straints that are understood by a constraint solver, as seen in step 1 of Figure 1.
For example, an application developer must be able to specify that a feature
requires a certain amount of memory when present. At binding time, the appli-
cation must be able to query the constraint solver for a set of features that fits
within the resources provided by the target infrastructure.
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Problem. Feature models allow developers to raise the level of abstraction and
express solutions using notations that are aligned with the capabilities of their
application. Constraint solvers, however, either provide low-level non-OO inter-
faces or provide interfaces that expose concepts that are a decomposition of the
solver domain not the application domain [14] and thus create a large semantic
gap, as shown in Figure 2.

Fig. 2. High-level Requirements and Constraint Solver Semantic Gap

The semantic gap creates two key conceptual challenges that limit the ability
of developers to use constraint solvers:

1. Structural misunderstanding. The semantic gap makes it hard for developers
to relate system structures, such as features, to their representation in a con-
straint solver. Without a clear understanding of how solutions presented by
a constraint solver relate to their features and the implementation decisions
underlying the features, domain experts tend to misinterpret and incorrectly
implement the recommendations from the solver.

2. Requirements specification inconsistencies. Without a clear understanding
of how a constraint solver input maps to system structure, it is hard for
developers to create and map requirements to constraints on input variables
provided to the constraint solver. This misunderstanding yields situations
where developers do not correctly translate the requirements into constraint
satisfaction problems and cause the constraint solver to provide no results.
Even worse, a result may be produced that is correct with regards to the
constraint satisfaction problem, but incorrect with regards to the actual
requirements, which is particularly dangerous.

Solution → High-level problem objects. ROCs provides a catalog of high-
level problem data structures, that serve as the target for to developers map their
requirements. This catalog can be expanded by adding new constraint solvers
that publish their new capabilities as abstract problem classes.

For example, ResourceProblem, is an abstract problem provided in our im-
plementation of ROCs. A high-level requirement, such as “the features do not
exceed the resource constraints of the target infrastructure” can be mapped to
these problem objects, such as the ResourceProblem. This arrangement allows
developers to express their requirements in terms of high-level problems that can
be much more easily related to the requirements.



IX

Developers provide typing information to the problems by specifying the
problems as assignments of the endpoints of the role-based relationships of the
design subjects in their application. For example, consider a resource problem
where we want to choose features for a feature set. The sum of the resource
demands of the features, however, must not exceed the amount of any resource
provided by the target infrastructure.

A ResourceProblem object can be constructed that maps the problem’s Re-
sourceProvider role to the TargetInfrastructure design subject and the Provide-
dResources role to the infrastructure’s CPU and RAM roles. Features can then be
mapped to the ResourceConsumer role of the problem object and Features’ Re-
quiredCPU and RequiredMemory roles can be mapped to the ConsumedResources
role of the problem. This problem tells the solver that the output should be a
map that associates the TargetInfrastructure design subject with a set of feature
design subjects.

This approach allows developers to specify problems at a very high-level of
abstraction and to provide strong typing to the inputs and outputs of the prob-
lems by mapping them to specific roles on their design subjects. Moreover, the
results that the constraint solver produces are assignments of the roles that were
specified as input to the problem. This alleviates developers from having to write
complex transformations from the design subject classes to an non-intuitive con-
straint solver input format, such as the various DCi, Dvc(R), andCi(R) variables
from Section 2.

Our approach also provides strong typing on the problems, which makes it
hard to create problem mappings incorrectly or incorrectly pipe input or output
from the solver. The results are returned as sets of design subject objects in the
application domain, i.e., the results are translated back into the Feature and
TargetInfrastructure classes native to the feature model’s domain.

3.3 Challenge 3: Providing Reusable Problem Abstractions

Context. As described in Section2, DesignSubjects must be transformed into
inputs, such as the variables Ci(R) and DCi, that the constraint solver can
understand. Once constraint solving is finished, the output provided by the con-
straint solver, such as the assignment of values to the DCi variables, must be
mapped back to the design subjects or features in the application.

Problem. Transformation of the data in the application’s components into a
format that can be used by a constraint solver, such as an instance of a mixed
integer programming (MIP) [15] problem, requires significant development effort
and is tedious and error prone. Custom transformation code must be written to
convert between the two formats.

Solutions to this mapping problem tend to involve handcrafted transforma-
tion of the requirements to a constraint satisfaction problem in a specific solver’s
input format. This handcrafted transformation tightly couples the requirement
translation to the native representation of that constraint satisfaction problem
for a single constraint solver. In many cases, multiple types or implementations
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of constraint solvers may be need to handle all of the requirement types of the
application.

For example, a resource requirement may need a bin-packer while a config-
uration requirement may need a Binary Decision Diagram (BDD) [16]. With
a manually produced transformation approach, the requirement specification is
tightly coupled to the representation of the corresponding constraint satisfaction
problem in a specific solver. Custom transformations must therefore be written
for each solver that must be leveraged.

Often, individual instances of the same abstract problem may be amenable
to entirely different types of constraint solver implementations. For example, in
one scenario, an application may be distributed across several nodes connected
through a network and the constraint solver must find a way to pack all of
the features onto the multiple nodes. In this case, a bin-packing algorithm that
uses a heuristic based-approach to explore the solution space and try packing
configurations may be the most appropriate.

In another situation, there may be a large group of features and only a single
node. The goal in this situation is to maximize a cost function when selecting
the feature set for the application. In this case, a simplex method or CLP(X)
approach may be the best option. The problem, however, is that although both
are different flavors of bin-packing, the solver’s will have different representations
of the constraint satisfaction problem for bin-packing.

Separate complex transformations will therefore be needed to translate the
requirements into constraint satisfaction problems. Moreover, separate trans-
formations must be written to extract the appropriate data from the feature
model. This data could include values for the coefficients Ci(R) that specifically
formulate the variables of each phrasing of the satisfaction problem.

Transformations must also be bi-directional. Significant effort must be ex-
pended mapping the output of the constraint solver back to the feature model
and application components. The output format could range from a list of object
ids to a complex tree structure representing a graph. These outputs must again
be mapped to numerous design subjects in the feature model. When either the
application’s feature structure or the solver’s input format changes, extensive
work must be done to update the mapping between the two domains.

The tight coupling between the application’s feature decomposition and trans-
formation code makes constraint solver solutions rarely reusable. Each time a
stove-piped tightly-coupled solution is developed for an application, it cannot
be reused in other applications. Often, many common problems, such as bin-
packing, occur over and over in various feature modeling domains. Tightly cou-
pled application-solver solutions that handle these common problems require
costly reinvention and rediscovery of existing solutions. Limiting reuse prevents
an organization from amortizing the cost of the feature selection engine across
multiple applications.

Solution → Constraint solver decoupling and transformation automa-

tion. To decouple requirement or constraint specification from the specific in-
put format of a constraint solver, ROCs employs the Adapter pattern [17], which



XI

adapts the interface of the problems to the native constraint satisfaction problem
interface of the constraint solver. Developers express their requirements in terms
of the problem data structures described in Section 3.3. Constraint solver devel-
opers provide adapters that transform the abstract problem definitions into con-
crete implementations of a constraint satisfaction problem in the native solver’s
format.

For example, the resource problem described in Section 2 could be trans-
formed into a set of constraint network objects for a Choco [14] based bin-packer
or an invocation of a Prolog-based First Fit Decreasing bin-packing [18] rule. The
adapter architecture can be seen in Figure 3. This adapter-based design allows

Fig. 3. Using Adapters to Map Problems to Constraint Satisfaction Problem Specifi-
cations for Solvers

problem implementations for a specific solver to be reused and also allows con-
straint solver implementations to be swapped in and out without affecting the
application, feature model, or mapping from requirements to abstract problems.
Each constraint solver only needs to define the mapping from the abstract prob-
lem types to the solver’s native input format. Intelligence can also be used to
select solvers based on the characteristics of particular problem instances, such
as selecting a solver on the fly depending on whether or not the application is
being deployed to multiple or a single node.

Once the results are obtained and mapped by ROCs to changes in the role-
based relationships of the subject classes, the classes themselves take over the
low-level coordination of making the appropriate method calls or other imple-
mentation changes to express the state of the high-level concepts, such as selected
features. A benefit of this approach is that since the satisfaction of the high-level
requirements and the mapping to and from the constraint solver’s format is in-
dependent of how the high-level concepts, such as features, are mapped to the
underlying infrastructure, the automated feature selection mechanism can easily
be ported to different implementations of the same application.

For example, if one version of the application is based on EJB and another on
CORBA, the implementations of the feature subject classes can be changed and
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the high-level requirements solving reused. In the EJB version of the application,
enabling the AsynchronusMessagingFeature may lead the AsynchronousMessag-
ingFeature class to load a set of MessageDriven EJBs. Enabling the same fea-
ture in the CORBA version may lead the AsynchronousMessagingFeature class
to start an instance of the OMG Data Distribution Service (DDS) [19]. This de-
coupling is obtained by using the Bridge pattern [17], which allows the interface
exposed by the design subjects to remain constant while the implementation of
the interface varies.

3.4 Challenge 4: Managing DesignSubjects and Constraint Solvers

Context. There may be hundreds or more design subject objects in an appli-
cation and numerous constraint solvers. The application must have a way of
managing the various subject objects and solvers, providing services for solving
abstract problems, managing solver adapters, and gathering application state
from the design objects.
Problem. Although design subjects provide a mechanism for extracting high-
level concept state from low-level application state, an abstract problem may
require data from numerous design subjects. Determining which design subjects
to interrogate, traversing the numerous subject objects, and mapping their re-
lationship values to abstract problem parameters can take considerable effort.
Moreover, the application may need to track the state of the high-level concepts,
such as AsynchronousMessagingInstalled, and as their state changes reconsider
feature selection decisions. For example, if the Java Messaging Service on an
application server fails, the application can change AsynchronousMessagingIn-
stalled to false, rerun the feature selection engine and continue operating in the
new environment. Providing this complex state tracking and feature reselection
capabilities requires significant effort.

Another challenge is that several solvers may be capable of solving an abstract
problem. Logic must be provided to determine which solver to use and under
which conditions. Once the appropriate solver is found the correct adapter must
be found and applied to map the abstract problem to the solver’s native format
and the result back to the application domain.
Solution → Complexity container. To integrate these design subjects, adapters,
problems, and solvers, ROCs uses the concept of a container, which is a fa-
miliar element in component-based technologies [20]. DesignSubjects are added
to an instance of a container and the application objects can use a Solution-
ProviderFinder service to obtain a handle to a SolutionProvider for a problem
instance. The SolutionProvider interface provides a common interface to solu-
tions instances of problems, as shown in Figure 4.

When the SolutionProviderFinder service is queried for a SolutionProvider
for a particular problem instance, it evaluates the characteristics of the problem,
as well as any solving policies provided with the problem, to determine which
solver to return as a SolutionProvider. The solving policies of a problem allow the
application to express requirements, such as optimality or max solving time that
should be used to select a solver. Although the container may return different
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Fig. 4. The Complexity Container Architecture

solvers as the SolutionProvider the application component uses the solver with
the same interface and is unaware of which solver was returned.

For example, a bin-packing problem that did not require optimality could
be mapped to a bin-packing approximation algorithm to increase solving time.
Conversely, if optimality is required the problem could be mapped to a CLP(FD)
implementation of a solver that guaranteed optimal packing but provided slower
solving speed. Internally, the container can view the selection of a solver as a
constraint satisfaction problem where the input is the problem instance, the
constraints are the solving policies and solver capabilities, and the output is a
solver that provides the appropriate characteristics for the problem.

After selecting the appropriate solver, the container gathers the subject ob-
jects that are referenced by the problem and maps their relationship values to
the various properties of the problem. This alleviates developers from having to
traverse the design subject object graph and find the appropriate instances to
gather data from.

In cases where constraint solving needs to be rerun and feature selections
reconsidered if results change, developers can mark problems as active. The
container registers itself as a listener on the various subject objects contained
within it. When a role-based relationship of a subject object changes and that
role is referenced by an active problem, the container automatically reruns the
constraint solver. If the solution changes from its previous value, the container
updates the appropriate role-based relationships on the feature design subjects,
which in turn may update properties of the application. This design enables
requirements-driven feature reselection at runtime.

For example, in FeatureBind, feature selection can be made an active prob-
lem. When the values of the underlying resources of the target infrastructure
change beyond a certain threshold, the TargetInfrastructure design subject can
be updated, automatically triggering the reselection of application features. This
automated event-based constraint solving could allow an application to shut-
down unessential functionality when memory runs low. Another example use
case would be to shutdown dependent features when a feature, such as Asyn-
chronousMessagingInstalled, failed.
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3.5 Challenge 5: Specifying High-level Requirements that Require

Multiple Solvers

Context. High-level requirements, such as “valid feature selection,” may not
map to a single problem abstraction. For example, “valid feature selection” may
require checking that resource constraints are met and that features are only
selected if the target infrastructure has the appropriate OS and middleware
stack to support the feature. In this example, the resource constraints map to
bin-packing and the configuration constraints map to a local inference problem
to figure out which features are valid in the context of the target configuration.
Problem. When high-level requirements require the solving of multiple problem
types, the application may need to coordinate multiple constraint solvers. For
example, to solve the “valid feature selection” requirement, the application may
need to first solve the configuration problem to reduce the items (features) that
are considered during the bin-packing (resource constraint solving).

To achieve this coordination, the design subject data must be transformed
into the input format of the first solver. After solving is performed, the output
must be translated into an input for the second solver. Finally, the output is
mapped back to the application. Providing these transformations between con-
straint solvers and specifying workflows between solvers takes time and effort.
Moreover, the workflows and transformations between solvers can easily become
tightly-coupled to the input formats of the solvers and thus limit reusability.

Another challenge is that the solvers that may need to be coordinated may
change for different instances of the same requirement. In our earlier example for
bin-packing from Section 3.3, depending on the number nodes the application is
being deployed to, different bin-packers are chosen. In this type of situation, the
inference solver may be coordinated with either a CLP(FD) based bin-packer
or a heuristic-bin packer with different interfaces. Providing workflows that can
dynamically coordinate various types of constraint solvers with heterogeneous
interfaces is challenging.
Solution → Problem pipelining. ROCs allows problem abstractions to be
expressed as workflows of existing problems, called ProblemPipelines. To build a
high-level problem workflow, developers create a problem class that implements
the ProblemPipeline interface. The problem pipeline specifies an ordered list of
problems that must be solved and how the outputs of the problem Pi map to
the inputs of problems Pi+1..Pn. Moreover, adapters can be installed between
problems to transform the output of one problem into the format that is suitable
for the next problem in the pipeline. Each problem Pi can itself be a Problem-
Pipeline, which allows the construction of even higher-level problem workflows
from existing workflows, as seen in Figure 5.

For example, “valid feature selection” can be decomposed into two distinct
type of problems. First, there are the configuration constraints governing the OS
type, middleware, or other infrastructure that must be present on the target node
that a feature is selected for. These constraints are based on the static properties
of the target node. These configuration constraints can be very efficiently solved
using Prolog’s standard inferencing. The second type of constraints are resource
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Fig. 5. Feature Selection as a ProblemPipeline

constraints that govern the amount of resources, such as CPU, consumed by the
features selected. These types of constraints must be solved by a bin-packer. The
goal of “valid feature selection” is to find a solution that satisfies the conjunction
of these constraint sets.

The results returned by the satisfaction of the configuration constraints is the
lists of features that can be supported by the target node. The result returned
from the bin-packing is a set of features that fit into the resource constraints of
the node. The output of the configuration solver can be used to prune the solution
space for the resource problem by mapping the output of the inference solver, a
set of valid features, to the ResourceConsumers input on the resource problem.
This FeatureSelectionProbem creates a reusable higher-level problem abstraction
that is defined as a workflow over a configuration and resource problem.

When the container is asked for a SolutionProvider for a ProblemPipeline,
it dynamically builds a SolutionProvider that calls the appropriate sequence of
solvers in the appropriate order. Moreover, the SolutionProvider built by the
container manages the mapping of the results from one solving step to the input
of later solving steps and applies the appropriate adapters where necessary. A
problemPipeline allows developers to create complex solver workflows without
writing complex transformations between solvers or working directly with solver
input formats. Moreover, solver workflows can be reused and even higher levels
of abstraction can be built on existing workflows.

The ROCs container handles the coordination between solvers by itself lever-
aging the SolutionProvider interface. At each stage in the ProblemPipeline, it
queries itself for a SolutionProvider for the current problem. After solving is per-
formed and results obtained, it retrieves a solution provider for the Pi+1 problem
stage and maps the output from SolutionProviders Sp0..Spi to the input for So-
lutionProvider Spi+1. Using the SolutionProvider abstraction internally allows
the container to coordinate multiple solution providers with heterogeneous data
input formats using a single common interface. Once again, ROCs leverages the
Bridge pattern [17] to manage the heterogeneity of constraint solving.

The ProblemPipelines provided by ROCs also provide type safety. Since a
SolutionProvider is created by the container, it checks to ensure that the map-
ping of outputs to inputs does not violate type restrictions. For example, if the
inference problem was mapped to a Foo subject class and then the output was
mapped to a resource problem where the ResourceConsumer had been typed as
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the Feature subject, an exception would be thrown. If however, the Foo subject
class derived from Feature, no exception would be thrown.

3.6 Challenge 6: Handling Requirement and Feature Conflicts

Context. It is possible in some cases the requirements that are being used to
drive feature selection cannot be met. For example, when selecting a feature
set for a resource-constrained target infrastructure, the infrastructure may not
have sufficient memory to run even the most minimal feature set. If the target
is running several other applications and cannot provide enough memory to
support even the most minimal feature set, the solver will not be able to make a
selection. In these cases, it is crucial that the feature selection mechanism provide
a method of diagnosing the failure and negotiating resource or configuration
changes on the target to make feature selection possible. We call this process of
handling feature selection failure model repair.
Problem. The first challenge of providing automated repair is creating a way
of diagnosing the cause of a feature selection failure. With numerous complex
composition rules guiding the selection process, it is extremely hard to figure
out why there is no valid feature set and how to repair the target or relax
the selection driving requirements to overcome the problem. Simply failing to
select a feature set and not providing an explanation would leave the reasoning
of the underlying cause to the application user, without any hints on possible
modifications (such as resource expansions) to make it work. In these situations,
deducing the cause of selection failure could be as hard as finding a valid feature
set manually.

A key question was what type of feedback should be provided to users. One
approach we evaluated was marking non-functional requirements, such as CPU
demand, that could not be satisfied and then returning a list of failed require-
ments as an error message. This approach is unsatisfactory, however, for the
following reasons:

– For global constraints, such as resource constraints, the overall state of the
application and target infrastructure determines whether or not the con-
straint succeeds. During feature selection, if the target infrastructure does
not provide sufficient resources to host all of the features required for a fea-
ture set, it is not necessarily a single requirement that is causing the problem.
Marking the first requirement that could not be met would not make sense
since different packing or selection search orders could result in different
requirements marked as the cause of failure.

– Even if the cause of the failure was marked in some manner, users would
still need to manually determine how to modify the target infrastructure
from its present state to make it compliant with the failed constraints. Al-
though fixing the problem, by taking an action such as shutting down other
applications, might appear trivial when the failing constraint was identified,
changing the device state could have unforeseen affects on the other domain
constraints. Once again, manual approaches do not scale for these types of
constraint satisfaction problems.
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Solution → Model repair operators. To address this challenge and allow for
automated model repair when feature selection fails, ROCs provides a mechan-
sism for specifying model repair operators. These operators can be applied to
the feature model and selection driving requirements to make feature selection
possible, as shown in Figure 6. ROCs defines a model repair operator as a func-
tion repair(M,R) that takes the original feature model, M, and requirements, R,
and maps them to a new feature model, M’, and requirement set R’, such that
feature selection is possible.

Fig. 6. Using Repair Operations

For example, if feature selection is not possible, due to insufficient resources,
a repair operation IncreaseMemory can be created that shuts down unessential
applications on the target infrastructure to increase memory. On the constraint
solver side, this repair operator is translated into an increase on the bound
Dvc(Memory) that governs the amount of memory that can be consumed by
the feature set. For example, if the repair operator sees that it can free up 50
Mbytes of memory, the constraint would be rephrased for the CLP(FD) solver
as

∑
Ci(R) ∗ DCi < Dvc(R) + 50.

Repair operations can also allow for unbounded relaxation of constraints. For
example, rather than specifying that 50 Mbytes can be freed, the constraint can
be removed entirely to allow the solver to select any feature set regardless of the
memory it consumes. This type of unbounded repair operation can be leveraged
with an optimization strategy, such as minimize consumed memory, to tell the
solver to find the most minimal memory consuming feature set that is valid for
the target infrastructure.

These two types of repair are distinguished as Guaranteed Repair Operations
and Conditional Repair Operations. A Guaranteed Repair Operation is a repair
function that ensures that the new model and constraints, M’ and R’, allow a
valid feature set to be found. A Conditional Repair Operation is a function that
creates a new model and constraints, M’ and R’, that allow a valid feature set
to be found if and only if a repair constraint RC can be satisfied.

In ROCs, problem instances can have repair operations attached to them so
that solvers have a fall back course of action when no solution is found. Each
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repair operation is again an abstract repair that is specific to the type of prob-
lem it is attached to. For example, IncreaseMemory would be a specialization of
the IncreaseResource repair operation that is valid in the context of a Resour-
ceProblem. Repair operations are published in the problem catalog along with
the problem types.

ROC’s repair operation mechanism provides the following key characteristics
that make automated conflict resolution for feature models possible:

– diagnosing and providing a meaningful explanation of feature selection fail-
ure to a user is not required

– the target infrastructure and feature model developers control repair by ex-
pressing only modifications that the application or target infrastructure is
willing or capable of making

– repair is automated and does not require error-prone user intervention and
– repair can be optimized according to a cost function.

ROC’s repair mechanism removes any necessity for user to diagnose fail-
ures. Even though repair is automated, the target infrastructure, feature model
developers, and the application can still control the feature selection process
by exposing allowed modification preferences, such as whether or not applica-
tions can be closed, third-party software downloaded, or memory reservations
increased. Finally, this mechanism allows developers of the feature models to
provide criteria for choosing the best feature set in the face of failures, which is
important when costs are associated with feature sets.

4 Experimentation Results

To demonstrate the capabilities of ROCS, we took an initial implementation of a
stovepiped feature selection engine (referred to as FeatureBindOne) developed in
Java using a Prolog CLP(FD) solver for constraint satisfaction and refactored it
to use our ROCs implementation in Java. We refer to our refactored, ROCs-based
version of FeatureBind as ROCFeatureBind. This section presents results showing
the lines of code needed to refactor our implementation, as well as performance
results comparing the two implementations. The results show that the solvers
created using ROCs provided better performance and reusability compared with
the initial stovepiped implementation.

4.1 Analyzing Development Effort Using ROCs

FeatureBindOne used the Java Prolog Library (JPL) to make calls to an SWI
Prolog engine [21]. It consisted of ∼1,400 lines of Java code and 180 lines of
Prolog code. The selection engine can handle arbitrary local constraints based
on <, =, and > comparisons on Feature and target infrastructure properties.
For example, a constraint TargetInfrastructure.OS = ”Linux”, could be added
to restrict a feature for use only on Linux systems. The selection solver could
also evaluate dependencies between features.
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Features can specify composition rules by specifying that N of a set of M
other features must be present to activate the feature. A feature could also
specify features that it was incompatible with. Finally, the selection engine had
a resource constraint solver allowing feature modelers to express the amount of
each type of resource on the target infrastructure consumed by a feature. The
resource constraint solver ensured that for any feature set selected, the sum of
the resource demands of the features did not exceed the resources on the target.

Roughly 200 lines of code were needed to refactor our implementation to
use the ROCs infrastructure. This code included classes to make the multiple
constraint solving rules in our initial implementation modular so that the re-
source solver or the configuration engine could be used independently of one
another. By adding this 200 lines of code, the solvers from FeatureBindOne were
decoupled from the original application feature model.

The refactored feature selection engine is known as ROCFeatureBindOne.
By adding ∼20 lines of code to ROCFeatureBindOne, we allowed it to lever-
age another feature model implementation based on different Java classes. We
also performed the same reimplementation with FeatureBindOne, without using
ROCS, to connect it to the separate feature model implementation. This version
of the refactoring required ∼295 lines of code.

The total lines of code to refactor FeatureBindOne using ROCs and connect
it to the new feature model implementation required a total of 220 lines of code.
Only ∼20 lines of this code could not be reused, however. Connecting it to further
feature model implementations would thus require a similar ∼20 or so lines of
code while with FeatureBindOne, an amount closer to 295 would be required. For
large projects, with numerous types of solvers, constraint satisfaction problems,
requirement types, and feature model implementations, the code savings would
be much more significant. Moreover, code developed to solve various types of
constraint problems and integrate diverse solver implementations would form a
reusable catalog of solvers and constraint problems. New projects would simply
map their requirements and features to existing primitives, rather than reinvent
solver and other infrastructure from scratch.

4.2 Analyzing the Performance of ROCs

The next aspect of ROCs we tested was performance. We reimplemented our
resource solver using the Java Choco constraint solver. This revision required
∼220 lines of code and allowed us to compare the solving performance of the
strictly Prolog solution with our ROCS solution that first solved the configura-
tion constraints in Prolog and then the resource constraints in the Java Choco
solver. Our experiments were conducted on an IBM T43 laptop with 1 gigabyte
of RAM and a 1.86ghz Pentium M CPU. More powerful hardware could be used
to run the feature selection engine but the tests show that even with a laptop,
FeatureBind provides good performance.

• Experiment one: Comparing feature selection performance of Fea-

tureBindOne and ROCFeatureBind. Our performance tests evaluated the
time required for the feature selection engines to find a maximal set of features
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that fit into the resource and configuration constraints of the target infrastruc-
ture. Our application was based on the scenario described in Section 2, and
involved selecting features from a train services application for a software vari-
ant for a mobile device. The services application included features ranging from
the ability to order food and tickets for further travel legs to checking destination
weather conditions. The feature model contained constraints based on configu-
ration, such as OS and middleware installed on the target, business rules, such
as the class of the owner’s ticket, and resource constraints, such as the amount
of memory and CPU consumed by features.

Since solving the resource constraints was the most time consuming portion
of the feature selection process, the results evaluate the total time taken by the
feature selection engine versus the number of features still in consideration during
the resource constraint solving phase. We present the results in this manner
since the configuration solver quickly eliminated candidate features based on
incompatibilities in the target infrastructure, which drastically reduced solving
time.

For example, for a device, such as a Treo phone, although the feature model
contained 50 total features, 40 or more of them could be eliminated during the
configuration phase. The feature set could therefore be found far more quickly
than for a device where 20 or 30 possible features were left after solving the
configuration constraints and were present during resource constraint solving.
This result was expected since the resource solving is a form of bin-packing,
an NP-Hard problem [18]. Thus the results show the time with respect to the
number of features left after this initial solution space pruning. The results are
shown in Figure 7. As can be seen from this figure, for 10 or less features,

Fig. 7. Comparing FeatureBindOne and ROCFeatureBindOne

FeatureBindOne outperformed ROCFeatureBindOne. Past 10 features, however,
ROCFeatureBindOne exhibited significantly superior performance and scaling.
These results underscore the need to use different solvers depending on the char-
acteristics of individual problem instances, e.g., for small numbers of resource
consumers, the Prolog-based solver should be used, whereas for numbers ¿ ∼10,
the Choco solver should be used.
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• Experiment two: Comparing solution time of a hybrid dual-solver

solution versus two single solver solutions. Our next experiment looked
at the feasibility of creating a hybrid solver to use the Prolog-based resource
solver for small numbers of features and the Java solver for 11 or more features.
We chose 11 as the breaking point to switch between solvers since this appeared
to be the count at which the Choco and Prolog solutions were evenly matched,
as shown in Figure 7. Since both solvers were already implemented in ROCs,
this experiment required adding a simple two line if statement to select the
appropriate solver based on the number of resource consumers in the resource
problem. The results comparing the results of the three solvers are shown in
Figure 8.

Fig. 8. Comparing FeatureBindOne, ROCFeatureBind, and a Hybrid Solver

As can be seen from the figure, the hybrid solver exhibited the best case per-
formance of the two individual solvers. For small numbers of items, it delegates
to the Prolog solver and obtains its performance. For larger numbers of resource
consumers, it delegates to the Java Choco resource solver and exhibits its solving
characteristics.

• Interpretation of the results. The results in Figures 7 and 8 underscore
that for a small one-time initial development cost to integrate a new solver into
the framework, the solver can be reused with substantially less development ef-
fort than a stovepiped solution. Moreover, by integrating multiple solvers into
ROCs, powerful hybrid solvers can be built that not only delegate to different
solvers based on constraint types but also on individual problem characteristics,
such as the number of resource consumers in a resource problem. Choosing the
right solver for each problem instance is critical to obtain the best performance.
By decoupling solvers from both the feature model and the requirement spec-
ification, ROCs improves reusability and enables the dynamic construction of
“solving pipelines” that use the right solver for each phase of the constraint solv-
ing involved in satisfying a high-level requirement. For example, if a requirement,
R, is mapped to the conjunction of the constraint satisfaction problem instances,
C1,C2,...Cn, rather than requiring the same solver to solve all of C1 through Cn,
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the best performing solver can be chosen for each individual problem. Although
crossing solver boundaries and transforming data from one solver’s format to
the ROCs intermediary format and then to another solver’s format incurs some
overhead, this time penalty is insignificant for complex constraint satisfaction
problems compared with the time required to solve the actual problems. For
larger problem sizes, therefore, choosing the right solver is more important than
minimizing trips across solver boundaries, as shown in Section 4.2.

5 Related Work

This section compares and contrasts our work on ROCs and using constraint
solvers to guide binding decisions with related work on requirements specification
and constraint solving.

In [22], Mannion et al presents a method for specifying PLA compositional
requirements using first-order logic. The validity of a variant can then be vali-
dated by determining if a PLA satisfies a logical statement. The ROC’s approach
to PLA composition, based on features, expands on this idea by specifying PLAs
as compositions of features using AND and XOR. ROCs also extends the work in
[22] by including the ability to evaluate non-functional requirements not related
to composition in validation. In particular, ROCs automates feature selection
process using these boolean expressions and augments the selection process to
take into account resource constraints, as well as optimization criteria. Although
the idea of automated theorem proving is enhanced in [23], this approach does
not provide a requirements-driven optimal feature selection engine like can be
built with ROCs. Moreover, unlike ROCs, [23] does not provide an integration
framework and decoupling mechanism to enable dynamic multi-solver solutions,
which can provide significantly better performance than single-solver solutions,
as shown in Section 4.2.

Mylopoulos et al. [24] present an extension to OO analysis and requirements
capture called Soft Goals that allows developers to formally state the goals of
their systems and perform analysis on them. The Soft Goals approach uses an
abstraction based on entities that is similar to ROCs. Likewise, their approach
proposes the use of goals to analyze the correctness of a system. ROCs extends
Soft Goals in several ways. First, the Soft Goal approach does not provide a
concrete method of defining goal types and checking their satisfaction, whereas
ROCs defines how new goal types are declared (abstract problem specification)
and how these goals are mapped to solvers. Moreover, [24] does not describe
automated mechanisms for transforming a system description into a form that
can be operated on by a constraint solver or checker, which as we have shown,
is an important portion of reducing solver integration costs. Finally, the focus
of [24] is on augmenting OO analysis, rather than the broader types of models
and decompositions that ROCs supports.

Many complex modeling tools are available for describing and solving com-
binatorial constraint problems, such as those presented in [25, 10, 26–28]. These
tools provide mechanisms for describing domain-constraints, a set of knowledge,
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and finding solutions to the constraints. Unlike ROCs, however, these tools do
not automate the transformation of data to and from the solver domain. Like-
wise, these tools do not support integration across multiple solver platforms and
implementations, as ROCs does. Finally, problem abstractions and workflows
developed in these tools are not portable across constraint solvers and must
be redeveloped for each platform, whereas ROCs allows workflows to be de-
scribed across multiple solver implementations and constraint satisfaction prob-
lem types.

6 Concluding Remarks

This paper presents a technique and toolset called Role-based Object Constraint
(ROCs) programming that leverages subject-oriented design to decouple con-
straint specification from the feature model of an application and allow users to
specify requirements in a high-level declarative format. ROCs provide a compre-
hensive framework for integrating constraint solvers with modeling tools while
decoupling the solution algorithms from the metamodel of the language. The
work presented in this paper addresses the challenges of requirements-driven
feature selection and the high integration cost of using a constraint solver to
automate feature selection.

From our experience developing ROCs and applying it to our case study and
experiments, we learned the following lessons:

– For realistic size feature models, manual requirements-driven feature selec-
tion has serious scalability issues. These scalability issues become even more
problematic when global constraints, such as resource constraints, are used
to drive feature selection. As discussed in Section 2, by utilizing a constraint
solver, requirements can not only be used to check whether a manually de-
fined feature set is correct but can be leveraged to suggest and automate
feature selections.

– Since, as described in Section 2 it is infeasible to perform requirements-
driven feature selection manually, constraint solvers are therefore needed.
There are numerous barriers to the inclusion of a constraint solver in a
practical modeling environment that must be overcome. Even with ROCs,
writing solvers is still challenging. As discussed in Section 3.3, by decoupling
a solver from a specific feature model, however, solvers can be reused and
their cost amortized across applications.

– When conflicting requirements are defined or a valid feature set cannot be
found for the target infrastructure, repair operations, such as IncreaseMem-
ory, can be used to specify the rules the constraint solver can use to resolve
the conflict. As presented in Section 3.6, automating conflict resolution helps
eliminate the need for manual intervention, which could be just as challeng-
ing as manually trying to find a way of satisfying the constraints. The repair
mechanism prevents the application from having to fall back to tedious and
non-scalable human intervention.
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– As discussed in Section 4.2, by decoupling requirement specification from
a specific input format of a constraint solver, high-level reusable problem
specifications can be created, as well as complex workflows across solvers.
Workflows across solvers allow the production of hybrid solvers that can eval-
uate and select solvers based on individual problem instance characteristics
to provide the best performance.

In future work, we plan to more thoroughly explore the autonomic capa-
bilities of ROCs using active problems and model repair. ROCs is part of the
Generic Eclipse Modeling System (GEMS) open-source project and is available
from www.sf.net/projects/gems.
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