Distributed Computing Systems

Overview

Outline

Overview

Network Infrastructure Distributed Computing Systems Communication Protocols Communication Models Communication Subsystems Distributed Applications Summary

Overview

- Observation
 - Stand-alone computers are increasingly being interconnected to form Distributed Computing Systems (DCS)

• Evolution

 "Old" days: a computer was a stand-alone machine

- ▶ e.g., mainframes, PC
- Today: computers communicate with each other
 - ▷ e.g., "the network is the computer"

• Key themes:

- Open systems and international standards...

2

Overview (cont'd)

- Three phases mark the evolution of networking and distributed systems:
- 1. Connectivity (1970s)
 - Joining together end-systems into networks
 - Proprietary protocols
- 2. Internetworking (1980s)
 - Joining together networks into internetworks
 - Internetworking standards
 - ▷ Both *de facto* and *de jure*
- 3. Interworking (1990s)
 - Designing distributed computing systems that coordinate distributed applications in a robust, secure, flexible, and efficient manner
 - ▷ e.g., "teamware," CSCW, DCE, etc.

3

1

Distributed Computing Systems

- DCSs contain policies and mechanisms for exchanging various classes of multimedia information across *heterogeneous* internetworks of gateways, bridges, and hosts
- Primary DCS Components
- 1. Transmission media and network infrastructure
- 2. Communication protocols
- 3 Communication Models
- 4. Transport systems
- 5. Distributed application support

An Example DCS End System

11

Network Infrastructure

- A simple point-to-point network configuration
 - Note, hosts A and B may be arbitrary computers or other terminal devices
 - ▷ *e.g.*, frame buffers, video cameras, etc
 - Hosts may operate at different rates
 - Transmission line may be copper, fiber, microwave, radiowave, satellite, etc.

	Reliability
Network Infrastructure Challenges	 Transmission channels are not always error- free
 Even with this simple architecture, several types of problems may occur, involving: 	 Therefore, depending on applications, we may need mechanisms
 Reliability Transmission Control 	* Error detection * Error reporting * Error recover and correction
 Moreover, as network topologies become more complex it is also necessary to handle: 1. Routing 2. Congestion 	 Common reliability management schemes for both bit- and packet-level errors include 1. "Positive Acknowledgment with Retransmission" (PAR) 2. "Automatic Repeat Request" (ARQ) 3. "Forward error correction" (<i>e.g.</i>, Hamming code) 4. "Ostrich Approach" (<i>i.e.</i>, do nothing) Note "end-to-end" argument
13	14

Transmission Control

- Two related problems
- 1. Host A may send data at a faster rate than host B can handle it
- 2. Multiple sender hosts may swamp resources at a single receiver host
- Buffer overflows and CPU saturation result if either problem remains unchecked

Transmission Control (cont'd)

- Common solutions involve:
- 1. Flow Control (reactive)
- (a) "Stop-and-wait" (ping-pong)
- (b) "Sliding window" (pipeline)
- 2. Rate Control (preventive)
 - Controls the burst amount and burst interval

Stop-and-wait protocol

• Problem: wasted resources: CPU and network bandwidth are underutilized

17

Sliding window protocol

- Goal: fully utilize network and transport system during steady state
 - Challenge: how big should the window be?

18

Routing

- Complex network topologies require support for *routing*
 - If host A sends packets to host E then hosts B, C, and D have to make routing decisions
- Distinguish between routing:
 - Policies e.g., updating routing tables
 - 'Mechanisms e.g., how a route is located

19

Routing Schemes

- There are many types of routing schemes:
- 1. Fixed Routing
 - Fast, but inflexible
- 2. Dynamic Routing
 - Flexible, but less efficient
- 3. Hybrid Schemes
- Note, routing behavior is usually transparent to distributed applications
 - i.e., they do not have much, if any, control over routing behavior

Fixed Routing Dynamic Routing • For a given source/destination pair, a path · Gateways determine which path is most efis given when configuring the network ficient at run-time • Advantages Advantages - Makes it easy to implement routers/gateways - More adaptive to dynamic changes in network traffic and available routes $-\,$ May be efficient for certain situations, since route lookup algorithms may be optimized... Disadvantages • Disadvantages - Per-packet routing overhead is very high - Not very robust or responsive when failures or con-▷ *i.e.*, more than just a table lookup is involved gestion occurs 21 22 Hybrid Routing • Computers periodically exchange informa-tion and determine the "best" path to des-Congestion tination - Note, this is a good example of a distributed al-• Congestion is a phenomena that occurs if aorithm host computers send more packets through a network than the intermediate gateway(\tilde{s}) are capable of handling • Advantages - e.g., the freeway during rush hour! Combines elements of both fixed and dynamic routing • Alleviating this problem requires congestion - Lookups are relatively fast control algorithms to perform "traffic smoothing" • Disadvantages - e.g., leaky-bucket method, which controls how fast new packets are accepted into the network - Periodic exchange of information creates extra traffic ▷ *i.e.*, just like "access-control" traffic lights on freeway! - Requires time to propagate information to other computers and gateways - "Routing loops" may occur 23 24

Local Area Networks (LANs)

- Typical configuration of Local Area Networks
 - Note, the communication line is *shared* among multiple users
 - Collisions occur if more than one user sends a packet at the same time

Local Area Networks (LANs)

- Ethernet (CSMA/CD)
 - 10 Mbps
 - Random access protocol
 - ▷ Send when you have a packet to send
 - ▷ If there is a collision, backoff and retransmit
 - ▷ "polite people in a dark room"
- Token Ring
 - 4/16 Mbps
 - Demand assignment
 - Assign channel capacity only to those who have packets to send

Metropolitan Area Networks (MANs) Example	Wide Area Networks (WANs) Example
 FDDI – (Fiber Distributed Data Interface) 100 Mbps Fiber optics, "dual counter-rotating ring topology" Supports synchronous and asynchronous traffic DQDB – (Distributed Queue Dual Bus) 160 Mbps Bus topology Supports isochronous and asynchronous traffic Uses CCITT ATM packet format 	 ATM - (Asynchronous Transfer Mode) 155/622 Mbps Very high-speed packet switched, connection-oriented network Based on optical transmission and VLSI technology Multi-service support for multimedia applications e.g., voice, video, data, image X.25 Traditional data communications network architecture Point-to-point
Communication Protocols A protocol is a set of rules or conventions governing how two or more entities cooper- ate to exchange data 	Communication Protocols (cont'd)

- As shown previously, there is tremendous diversity of components in distributed computing systems
 - Therefore, we need standard protocols to communicate reliably, efficiently, and correctly
- If protocols are standard, then interoperability may be achieved even if all other aspects of network/computer communication are heterogeneous

31

Comisso ve Ducha cala	
Services vs. Protocols	
• Services are operations <i>provided</i> to <i>consumers</i>	Services vs. Protocols (cont'd)
Protocols implement these services	• Note, there may be:
• Frotocols implement these services	1. Multiple protocols for a given service
 Protocols are accessed via "service interfaces" 	e a "reliable stream communication"
• Distinguishing services from protocols en-	2. Multiple service interfaces for a given protocol
ables providers to incorporate new technolo-	– e.g., BSD Sockets vs. System V TLI
gies while maintaining backward compatibil-	
ity at the "service interface" level	
33	34
Types of Service	
Types of Service	
1. Non-reliable real-time	
• a di vicica and video	Higher-layer Protocols
• e.g., voice and video	
	1. Transport Protocols
2. Reliable real-time	• e.g., TCP, XTP, TP4, UDP, RPC, VMTP
• <i>e.g.</i> , manufacturing control and robotics	Basic categories include connection-oriented, con-
	nectionless, request/response
3. Non-reliable non-real-time	
• <i>e.g.</i> , junk email	2. Distributed Object Protocols
	• e.g., CORBA/DCE wire protocols
4 Reliable non-real-time	
• e.g., bulk file transfer, remote login	
35	36

	Protocol Specifications
Higher-layer Protocols (cont'd)	 Protocols are specified by describing the objects and operations that comprise a particular communication protocol
1. Distributed file system protocols	Protocol specifications describe:
• NFS, AFS/DFS, RFS	 Protocol services and assumptions
 2. X-window protocols Used to decouple clients and X servers Make window applications independent of the hardware; change hardware without changing applications 	 e.g., file transfer, remote login, ARP over broadcast network Protocol vocabulary and encodings e.g., packet types, header formats, packet sizes, byte ordering Procedure rules e.g., state machine transitions Schemes for connection, flow and congestion, and reliability management
37	38

Communication Models

- To reduce complexity and enable vendor independence, communication protocols are commonly layered into a hierarchy that forms a "communication model"
 - i.e., a protocol stack (or more generally, a protocol graph)
- A protocol graph represents the hierarchical relations between protocols in one or more "protocol suites"
- Well-defined protocol graphs exist for network protocol suites

- e.g., ISO OSI, TCP/IP, XNS, Novell, SNA

ISO OSI 7 layer Reference Model

40

Higher layer protocols in OSI

- (7) Application Layer
 - Standard remote services like file transfer, directory services, mail, etc
- (6) Presentation Layer
 - Encryption, basic encoding rules (e.g., network/host byte-ordering), compression
 - XDR and ASN.1
- (5) Session Layer
 - "Dialog management"
- (4) Transport Layer
 - Services that ensure end-to-end communication
 - $\vartriangleright~e.g.,$ reliable, in-order, non-duplicated data delivery

41

Lower layer protocols in OSI Reference Model

- (3) Network Layer
 - Routing, congestion control, fragmentation and reassembly
- (2) Data Link Layer
 - Services for hop-to-hop communication
 - ▷ e.g., frame creation, frame error control
- (1) Physical Layer
 - Hardware (e.g., # of pins, voltage, etc.)

42

Internet Communication Model

HOST A HOST B VIRTUAL LINK PROCESS PROCESS HOST-TO-HOST-TO-HOST HOST GATEWAY A GATEWAY B INTERNET INTERNET INTERNET INTERNET NETWORK NETWORK NETWORK NETWORK ACCESS ACCESS ACCESS ACCESS 1 t PHYSICAL LINK

- Note, applications are responsible for *application*, *presentation*, and *session* layer services
 - Increases software redundancy, but may improve performance

Throughput Preservation Problem

- Note, network performance has improved by 5 to 6 orders of magnitude (from kbps to Gbps)
- Due to advances in fiber optics and VLSI technology
- $\bullet\,$ Note, mostly hardware at this level...

OSI vs. Internet

1. *OSI*

- The *de jure* standard
- International in its scope
- Top-down specification/development process
- "Committees do research, researchers do implementation"
- Intended as "displacement technology"
- *i.e.*, "installed-base hostile"

2. Internet

- The *de facto* standard
- Not vendor-specific
- Research, implement, deploy, and test before standardization!
- Motto: respect the installed base

45

Communication Subsystems

- Communication protocols do not generally exist in a vacuum
 - Instead, they exist within an integration framework offered by the communication subsystem

• A communication subsystem combines

- 1. Communication protocol tasks
 - Such as connection management, data transmission control, remote context management, and error protection
- 2. Operating system services
 - Such as memory and process management
- 3. Network hardware components
 - Local, metropolitan, and wide area networks devices

47

Comparision of Internet and OSI Protocol Families

46

Communication Subsystem

(cont'd)

- Communication subsystems integrate network protocols (*e.g.*, TCP, TP4, VMTP, XTP) into the operating systems of host computers
 - Typically incorporates OSI layers 3 and above
- Computer architecture performance has improved overall by 2 to 3 orders of magnitude (from 1 MIP to 100 MIPS)
 - Due to hardware advances such as (1) faster clock speeds, (2) larger caches, (3) superpipelining, and (4) superscalar architectures
- However, communication subsystems are largely written in software
 - Therefore, their overall improvement has not been 2 to 3 orders of magnitude, leading to a throughput preservation problem

48

 Distributed Applications (cont'd) Many integrated tool suites and reusable libraries are being developed to facilitate the development of distributed applications <i>e.g.</i>, ONC RPC and OSF DCE 	Distributed Applications (cont'd)
• Services include	• An important goal of the tools, libraries, and environments is often to make distribution transparent
- Authentication, authorization, and data security	- e.g., Remote Procedure Calls RPC
 Remote service binding (i.e., naming and identification) 	
- Service registration	 In addition, these infrastructures also pro- vide many reusable mechanisms and abstrac-
- Presentation layer conversion	tions that simplify distributed application de-
- Remote communication	velopment
 Automatic dispatching of pre-registered services 	
▷ i.e., separates "policy and mechanisms" for typ- ical event-driven applications	
53	54

Summary

- Distributed computing systems are becoming increasingly essential in research and commercial settings
- It is important to understand the networking aspects, communication subsystem aspects, and application aspects of these distributed systems
- Communication protocols are used to control diversity
 - Standardized communication protocols aid in the development of portable distributed applications by allowing for independence from specific
 - 1. Hardware platforms
 - 2. Vendors
 - However, there are several standards...