
6 Applying Patterns

Within this process, every individual act of building
is a process in which space gets differentiated.

It is not a process in which pre-formed parts
are combined to create a whole: but a process of

unfolding, like the evolution of an embryo,
in which the whole precedes its parts,

and actually gives birth to them, by splitting.

Christopher Alexander, The Timeless Way of Building

Using patterns in a real-world project requires more than detailed
guidelines for their implementation. Several issues are not addressed.
For example, how to integrate a pattern into a partially existing de-
sign? Complementary to pattern-specific implementation guidelines
we therefore need general guidelines for applying patterns.



56 Applying Patterns

6.1 Introduction

As we have learned, every well-described pattern provides informa-
tion about its implementation [GHJV95] [BMRSS96]. Every pattern
also provides information about its refinement and combination with
other patterns. However, all these guidelines are pattern-specific.
They do not support applying patterns in general, when building a
real-word software system. But how to integrate a pattern into a par-
tially existing design? What kinds of patterns should be applied in
which order? How to solve problems that cannot be solved by a single
pattern in isolation?

Answering such questions is important for being able to use patterns
effectively. Otherwise we apply patterns, but the resulting design will
likely expose unnecessary complexity. Even worth, the architecture
under construction may not provide the properties we need. For ex-
ample, many patterns introduce a level of indirection to solve a design
problem. Connecting several of such patterns in a row may, however,
result in an inefficient indirection cascade. Instead we want to com-
bine the patterns without introducing multiple levels of indirection,
but in a way such that the essence of each pattern still remains.

The above example reveals that the application of patterns is not a
mechanical task. It needs some experience to compose them to large
structures in a meaningful way. The reason for this is obvious. Large-
scale software architectures introduce problems and forces just be-
cause of their sheer size and inherent complexity. These problems
and forces are independent of the design issues addressed by individ-
ual patterns.

A pattern language for software architecture is one approach for sup-
porting the effective use of patterns (see Chapter 7, Towards Pattern
Languages). Its constituent patterns would not only provide solutions
to specific design problems. The language would also provide a pro-
cess—embedded in the patterns—that helps applying them: when,
how, and in which order. A good example for such a language is Kent
Beck’s ‘Smalltalk Best Practise Patterns’ [Bec97]. However, we neither
have such a pattern language for software architecture available, nor
is it likely that such a language could be provided in the near future.
Today, most patterns for software architecture are organized in pat-



Introduction 57

tern catalogs and pattern systems [GHJV95] [BMRSS96] [PLoP94]
[PLoP95] [PLoP96]; but these do not provide the support for using pat-
terns that we need.

To apply patterns of a catalog or system effectively therefore calls for
appropriate guidelines. These should enable us to act like an expert
software architect who has designed systems with patterns for years.
At least they should help us being aware of the problems that may
arise when applying patterns and the pitfalls into which we can stum-
ble. For this reason, the kinds of guidelines we are looking for cannot
be simple one- or two-line statements telling us what to do or not. We
need a more structured form. What problem in applying patterns
does a specific guideline address? When does this problem occur?
And how do we apply patterns correctly in the presence of the prob-
lem?

Consequently, guidelines for applying patterns should be patterns by
themselves: exposing a context, a problem that arises in that context,
and a solution that resolves the problem. We can describe the pat-
terns by using an appropriate pattern form.

In this chapter we present several patterns for applying patterns. They
were mined over the past years and reflect what we, and our col-
leagues world-wide, have learned when using patterns to design and
implement industrial software systems.

Some of our patterns for applying patterns build directly on Christo-
pher Alexander’s work [Ale79] [ANAK87]. Others emerged from the
growing experience in using patterns for software development
[Gab96]. Altogether they complement and complete the specific im-
plementation guidelines that accompany well-described patterns for
software architecture, for example the ones in [Cope92] [GHJV95]
[BMRSS96] [PLoP94] [PLoP95] [PLoP96] and this book. For the de-
scription of our patterns for applying patterns we use Christopher
Alexander’s pattern form: Name-Context-Problem-Solution-Example.



58 Applying Patterns

6.2 A Pattern Language for Applying Patterns

Before describing our patterns for applying patterns in full detail we
want to briefly characterize their intents, and also the global context
in which they are to be seen. In total there are 9 patterns:

• Piecemeal Growth (61) outlines the overall process for constructing
software systems with patterns.

• Architectural Vision (64) focuses on how to specify—with help of
patterns—fundamental system structures and design principles
that can serve as a starting point for the process of piecemeal
growth.

• Step-wise Refinement (67) describes how to refine and complete a
given design structure with patterns.

• Repair Instead Large Lump Design (69) specifies how to proceed if
the optimal solution of a design problem does not integrate with the
existing structure in which it must be contained.

• Stable Design Center (72) addresses how to specify structures that
allow for extension and adaptation, but without the need to modify
their key elements and abstractions.

• One Mechanism for One Kind of Problem (74) states how to solve
similar and related design problems.

• One Pattern at a Time (76) defines how many patterns should be
applied at once.

• First Integrate Then Implement (77) describes how to best codify a
given pattern.

• Merge Similar Responsibilities (80) shows how to combine patterns
with existing design structures whose participants partly provide
similar or related responsibilities.

All 9 patterns strongly depend on each other. You start with the first
pattern—Piecemeal Growth (61)—and will be directed to the patterns
that apply thereafter. Every pattern makes most sense in the context
of the patterns it precedes and completes. In other words, our pat-



59

terns for applying patterns form a pattern language. The diagram be-
low briefly illustrates the dependencies between the patterns.

The overall goal of ‘Applying Patterns’ is, as we have said, to support
the use of patterns from pattern catalogs and pattern systems. From
a technical perspective this means that we want to support develop-
ers in defining architectures which meet the needs of the systems
they are building. In particular, that patterns help them to create the
most effective solutions for the design problems at hand, under the
constraints that must be considered. From a human perspective the
intent of ‘Applying Patterns’ is to enable developers to understand
and control the process of building systems with patterns, to be cre-
ative when constructing these systems, and to feel habitable in their
design and code.

The language works best under the following three conditions:

• There is an evolutionary development process in place that allows
to adjust the design and implementation of the system whenever
necessary; rather than a waterfall-like process, in which the sys-
tem is constructed in a strictly top-down fashion.

Piecemeal Growth

One Pattern
at a Time

Stable
Design Center

First Integrate
Then Implement

Merge Similar
Responsibilities

Step-wise
Refinement

Architectural
Vision

One Mechanism
For One Kind of

Problem

Repair Instead
Large Lump

Design



60 Applying Patterns

• A software architect or a team of architects is in control and charge
of the system’s design.

• Specific patterns are selected according to the guidelines given in
[BMRSS96].

In Section 6.3, Discussion we will return to both the goals and pre-
conditions of ‘Applying Patterns’ and discuss them in full detail.
Before, we present the language itself.



61

Piecemeal Growth
Context We want to design a new software system.

Problem How can we ensure that the system is well-structured and organized?
In particular, that its architecture meets specific functional and non-
functional requirements, and that architects, designers, and pro-
grammers feel habitable in it [Gab96]. Three forces are to be balanced:

• The system should expose a defined global structure, and its de-
sign should obey to certain common principles. Both the structure
and the design principles should be well-documented, so that de-
velopers can understand and follow the ‘vision’ of the system’s
architects.

• Every design problem should be appropriately solved. Dealing with
each design problem in isolation, however, will result in an archi-
tecture that does not consider the needs of the system as a whole.

• Assembling the system’s architecture bottom-up will likely result
in a structure where many parts will be designed according to
different principles that do not match. However, when following a
strict top-down approach, larger structures will often be inappro-
priate for resolving lower-level design problems effectively.

Solution Create the architecture of the system in a process of piecemeal growth
[Gab96]. It is a process of unfolding, in which the whole precedes the
parts [Ale79]—and also governs their refinement and detailed specifi-
cation. Unfolding means differentiating space: a given structure is
extended with new elements, and existing elements are replaced by
finer grained structures that fit into the larger structure.

Basic architecture:1
the ‘Whole’

Refinement2

Refinement3

of a part

of another part

Adjust existing4
parts, if needed



62 Applying Patterns

Adapted to software construction this means that we first define an
Architectural Vision (64): what is the fundamental structure for the
system and what are the general design principles for its refinement.
The structure provides the basis for the process of piecemeal growth,
the design principles impact the results of its subsequent steps. Fur-
thermore, the Architectural Vision (64) helps with communicating the
architecture of the system to developers.

Unfold this architectural skeleton by Step-wise Refinement (67)—ab-
straction level by abstraction level and separately for every design
problem. By this we consider each problem’s own needs, but
governed by the Architectural Vision (64) and the larger structures in
which the solutions are contained. Every part that we add to the ar-
chitecture then serves as a new whole that can be unfold, until the
architecture is complete.

It will likely happen, however, that the optimal resolution of a design
problem does not integrate with the structure in which the solution
is to be contained. When this happens, Repair Instead Large Lump De-
sign (69), to adjust the existing architecture.

As a result, the process piecemeal growth helps creating a coherent
software architecture. Due to a balanced interplay between Step-wise
Refinement (67) and Repair Instead Large Lump Design (69) we look
onto every design problem from three perspectives: the system view,
the view of the problem itself, and the view of lower-level issues that
may impact its resolution. At every level of abstraction the design of
the system follows common principles, from its coarse-grained struc-
ture down to the very details of its implementation.

Example Suppose we are building an interactive software system. Its architec-
tural vision can be defined by the Model-View-Controller pattern
[BMRSS96]. Model-View-Controller introduces a structure where core
functionality is separated from its control and the presentation of in-
formation.

Architectural vision:

Model

Controller

View

Model-View-Controller



Piecemeal Growth 63

By step-wise refinement we can unfold the details of this architectural
skeleton. The general communication between components of the
Model-View-Controller triad can be specified with help of the Publish-
er-Subscriber [BMRSS96] or Observer [GHJV95] pattern.The rela-
tionships between controller components and the model can be
refined by applying the Command Processor pattern [BMRSS96], the
relationships between view components and the model by using the
View Handler pattern [BMRSS96]. The model itself can, for example,
be structured according to the Layers pattern [BMRSS96].

We now could further refine the Command Processor structure. Sin-
gleton, Command, and Composite [GHJV95] may help with this. Oth-
er patterns apply for unfolding the details of other parts of the design.

Step by step the system will grow until its complete architecture is
defined. Space gets differentiated with every pattern we apply, but
always according to the principles pre-scribed by the larger structure
whose parts we are refining.

Model ControllerComProc

Refinement of Model-Controller
relationship:

Command Processor

Model

Controller

View

Refinement of Command Processor:
Command, Composite, Singleton

Model ControllerComProcACom

Com1

Com2

Macro

Model ControllerComProc

Singleton

Command &
Composite



64 Applying Patterns

Architectural Vision
Context We are at the beginning of the process of Piecemeal Growth (61).

Problem How can we define an architectural skeleton that captures the sys-
tem’s fundamental structure and design principles? Five forces arise:

• The structure must provide a global view onto the system: all its
relevant parts must be present, and every part must have defined
responsibilities and relationships to other parts. The system’s un-
derlying design principles must be clearly exposed.

• The skeleton should be as simple as possible—so that essential de-
sign ideas s are not hidden within overly fine-grained structures.

• The architecture must be usable as a basis for the process of Piece-
meal Growth (61): stable in its essence, but open for extension, re-
finement, and change.

• We must be able to communicate the structure—and its design
principles—to avoid an architectural drift during its refinement
and implementation.

• We want to base the architectural skeleton onto proven design con-
cepts.

Solution Create an architectural vision: a fundamental design structure which
governs the specification of the system down to its implementation.

To define the architectural vision, first collect all aspects that have an
impact on the system’s fundamental design. One kind of aspect are

Select architectural1
patterns

Combine them to2
an architectural
skeleton

Communicate3
the architectural
vision to the team



Architectural Vision 65

system-wide properties the application must expose, for example that
it is distributed and interactive. Other factors that impact a software
architecture are related to the use and integration of existing arti-
facts, such as legacy code and pre-fabricated components. For exam-
ple, that it is possible to plug-in and access components that follow a
specific component model.

If there are several of such properties and factors, bring them into an
ordered sequence, with the most important property at its head and
the least important property at its tail.

Select appropriate architectural patterns [BMRSS96] that address
these properties and factors—by providing corresponding system
structures and their underlying design principles. Apply the selected
patterns, One Pattern at a Time (76), according to the order of impor-
tance of the aspects they address. By this, design structures and
principles that help with implementing a more important aspect will
govern the architecture of the system more than design structures
and principles that expose a less important aspect.

For aspects which are not addressed by the available architectural
patterns implement suitable structures by using a ‘conventional’ de-
sign method. Or, use patterns that guide the process of constructing
such structures, like the ones presented in [Coad95].

As a result we will receive the fundamental architecture of the system:
its subsystems, their responsibilities and collaborations, and also the
design principles that guide its further specification and refinement.

Due to the use of patterns this architecture defines an ideal basis for
the process of Piecemeal Growth (61). It is built with help of proven
design concepts. It is stable in its overall structure, but open for ex-
tension and modification of local parts. And, the design is not overly
detailed. We only focus on the system’s decomposition into sub-
systems. The patterns that we used also help with communicating the
architectural vision: what kind of structure is it, why is it exactly this
structure, what are its underlying design ideas, and how is it built.

Example Suppose we want to develop a distributed and interactive system.
There are, among others, two architectural patterns that help with
this. The Broker pattern [BMRSS96] supports distribution, the Mod-
el-View-Controller pattern [BMRSS96] human-computer interaction.
Let us assume, in the context of this example, that distribution is the



66 Applying Patterns

most important system property. Thus, we apply Broker first. The
resulting structure basically consists of clients and servers, and a
broker for routing messages across process boundaries. The Model-
View-Controller pattern is then integrated into this structure, with
the servers representing the different parts of the model, and the cli-
ents the view and controller components.

The two patterns also define the basic communication and coopera-
tion mechanisms for components of the system. Broker defines how
clients can access remote servers. Model-View-Controller specifies
how user interface components interact with the functional core.

Both patterns also define the two general design principles for the
system: separation of application from communication functionality
and separation of the system’s functional core from its user interface.

Model

Controller

ViewBroker

Bridge

ProxyProxy

Client Server

Broker

Bridge

ProxyProxy

View ModelController

Client

Architectural vision
for a distributed
interactive system

Model-
View-
Controller

Broker



67

Step-wise Refinement
Context We are specifying a software architecture in a process of Piecemeal

Growth (61).

Problem How can we resolve a given design problem most effectively? Three
forces must be considered:

• The solution must meet the problem’s own needs, but also those of
the whole system. It must further obey to the global design princi-
ples defined by the Architectural Vision (64).

• We do not want to solve similar design problems differently. Other-
wise the architecture of the system would expose unnecessary
complexity.

• We like to solve the problem with help of well-proven design con-
cepts.

Solution Resolve the design problem by step-wise refinement. Extend the given
architecture with new components and relationships, and detail ex-
isting ones. Select appropriate patterns that help with this refine-
ment. These patterns should not just address the design problem at
hand. Their properties should also match with the design principles
and properties pre-scribed by the structure we are refining.

Split complex problems that cannot be solved by a single pattern into
smaller subproblems that can be resolved by several patterns in com-
bination. Always use One Mechanism for One Kind of Problem (74): a
design problem that is similar to a problem that we tackled already
should be solved similarly—with the same patterns and design prin-
ciples. This helps with avoiding complex and patch-work-like design
structures. Apply the selected patterns, One Pattern at a Time (76), to
support their correct implementation.

Identify a problem1
in the existing design

Select a pattern2
that solves the problem Refine the design by3

applying the pattern



68 Applying Patterns

When refining self-contained subsystems and large components,
each of these should define a Stable Design Center (72). This supports
us in specifying structures that allow for extension and adaptation,
but without the need to modify their key elements and abstractions.

If no patterns are available for solving a specific design problem,
create the solution by using an appropriate analysis and design
method. Or, even better, use patterns that guide the analysis and
solution of the problem, such as the patterns presented in [Coad95].

Example As an example, take the implementation of an interactive version of
the dice game ‘Game of Greed’ [Ree92]. Like many systems with hu-
man-computer interaction, its basic architecture can be defined with
help of the Model-View-Controller pattern [BMRSS96].

To refine the model part of this triad, we can apply a domain-specific
pattern that introduces a general structure for organizing dice games
[Ree92]. The pattern specifies three kinds of participants. A game
component represents the game, manages its rules, and validates
throws. A game organizer component manages the current standings,
the players, and the game’s progress. Player components represent
the players that are playing the game.

In the next step of refinement we specify the fundamental collabora-
tion between the components of the ‘dice game triad’. The analysis of
the problem reveals that it is very similar to the problem of organizing
the cooperation between the participants of the Model-View-Control-
ler pattern, which we applied in a previous step. Thus we resolve the
problem similarly, by applying the Publisher-Subscriber [BMRSS96]
or Observer [GHJV95] pattern again.

The game component of our structure can be further refined by intro-
ducing components that represent the rules of the game, the dices,
and a dice cup. The Objectifier pattern [PLoP94] helps with imple-
menting the rules as objects. The Manager pattern [PLoP96] can be
used to organize dice management: the dice cup is the manager, the
dices are the managed subjects. Other patterns apply for refining the
game organizer and player components.

Step by step we refine the original structure, until its details are fully
unfold. However, the process of this refinement is always governed by
the existing structure we are refining.



69

Repair Instead Large Lump Design
Context We are developing a software system in a Piecemeal Growth (61)

fashion.

Problem How can we deal with design problems that arise later in the design
process, but which solution impacts existing parts of the system’s ar-
chitecture? For example, problems due to ‘add-this-feature-immedi-
ately’ requests by our customers. Or, when prefabricated components
we like to use do not integrate into the existing design. Resolving this
conflict means to balance two forces:

• Aspects of the design problem that have an impact on the specifi-
cation of already existing structures cannot be ignored. Rather the
structures have to be specified under consideration of these
aspects.

• The solution to the design problem should integrate with the exist-
ing design. It should also be consistent to the Architectural Vision
(64) and global design principles.

Solution ‘Repair’ the existing architecture [Gab96]. Do not constrain the opti-
mal solution to the design problem at hand by inappropriate larger
structures and global design principles.

Identify all aspects of the solution to the design problem that impact
the existing software architecture—specifically the part which con-
tains the solution to this problem. Adjust this part of the design ac-

The solution to a problem1
does not integrate

Repair the existing2
architecture

Pattern X

Integrate3
the solution

with existing
structures



70 Applying Patterns

cording to the identified aspects. Similarly, revise the specification of
all sub-parts of this structure which are affected by the adjustment.
We may need to modify these as well. Then embed the solution to the
design problem into the revised structure.

In other words, we resolve—by Step-wise Refinement (67)—those de-
sign problems again which lead to the structure that is inappropriate
for integrating the solution to the design problem at hand. However,
this time we do not just take into account the needs of the system as
a whole and the larger problems themselves, but also the needs of the
lower-level design problem we are currently facing.

When adjusting a given structure, avoid violating even more design
principles, if possible. Otherwise recursively repair the affected de-
sign structures—if necessary up to the Architectural Vision (64).

As a result, the software architecture under construction is not a
product of large lump design [ASAIA75]: a fixed construct where each
part, once being specified, stays untouched forever. Rather the archi-
tecture changes and grows continuously all the time, and at all levels
of granularity, to stay coherent and consistent. Thus, the aspect of
repair is a vital principle of the process of Piecemeal Growth (61).

Example Suppose we want to decouple the request for a service from the details
of controlling its execution. In a first specification we apply the Com-
mand pattern [GHJV95] and encapsulate requests as objects. The
user interface elements of our application, such as menu entries and
dialog boxes, invoke the execution of commands.

Model ACom

Com1

Com2

Macro

Menu

Dialog

creates &
invokes

creates &
invokes

suspend
resume

?



71

After specifying this structure, an additional requirement comes up:
suspending and resuming of command execution must be possible.
The design as described above is insufficient to fulfill this require-
ment. We need access to all commands that are under execution—at
every given point in time. The knowledge about which commands are
active is, however, distributed among the invokers, rather than being
centralized within a single component.

The Command Processor pattern [BMRSS96] provides the structure
we need. Thus, we revise the existing design by inserting a command
processor and reorganizing the relationships between invokers and
commands. Invokers still create commands, but instead of triggering
their execution, they pass them to the command processor. The com-
mand processor maintains the received commands and also starts
and controls their execution. Functionality for suspending and re-
suming commands can now be implemented effectively [BMRSS96].

Model ACom

Com1

Com2

Macro

Menu

Dialog

creates

passes command

creates

invokes suspend
resume

ComProc

passes command

suspend
resume



72 Applying Patterns

Stable Design Center
Context We are specifying a given subsystem or large component by Step-wise

Refinement (67).

Problem How can we ensure that the structure is coherent and stable on the one
hand, but open to evolution and change on the other hand? Three
forces are associated with this problem:

• The more that a subsystem or component cannot be modified, the
more stable and coherent it stays over the lifetime of the system.
The less, however, we support the system’s evolution.

• The more that a design structure is open for change, the more
aspects of a system can be adapted to customer-specific require-
ments. On the other hand, the more likely a modification will break
the coherency of the software architecture.

• Fundamental aspects of subsystems or large components should
not be subject to change. Rather their structural and behavioral
integrity should be preserved over the lifetime of the system. Oth-
erwise we may endanger its general operability.

Solution Create stable design centers for important aspects of the system: core
services that are needed in every version, and structures on which
many services operate. Examples include the fundamental domain
model or the system’s communication infrastructure.

Capture these key aspects in a design structure which essential parts
cannot be changed: its general responsibility, the interface to clients,
the communication protocols for using the interface, but also its ba-
sic structural decomposition and the principles of how these internal
components cooperate. Consider that the design center must fit into
every context of the system in which the captured aspects play a role.

Stable core

Hooks for
extensions

Customer-specific
extensions

A stable
design center



Stable Design Center 73

Prepare those parts of the design center for evolution which—over the
lifetime of the system—are likely to be modified or adapted to custom-
er-specific requirements. Use appropriate design patterns for this, if
possible. For example, to support filtering existing behavior, or adding
new behavior, we can apply the Decorator pattern [GHJV95]. Or, to
adapt a general behavior to a specific one, we can apply the Template
Method pattern and the Strategy pattern [GHJV95].

Provide the design center with hooks that allow to attach future ex-
tensions that cannot be foreseen by today. Several patterns help with
this, such as Visitor [GHJV95] and Facet [PLoP96].

Avoid direct dependencies between clients and the internal structure
of the design center. The Facade pattern [GHJV95], for example, sup-
ports a defined access to services of a center, but without exposing its
internal structure. Abstract Factory and Builder [GHJV95] free cli-
ents from details of how to instantiate the design center.

As a result we receive design that is stable over the lifetime of the sys-
tem—from the perspective of its clients. It has defined boundaries and
responsibilities, and it is well-specified how it is to be used. Parts of
the system that depend on the design center can rely on this stability.

Yet the design center is open for evolution. Details can be adapted to
specific requirements without the need to change the center’s key el-
ements or any other part of the system. Future extensions can be at-
tached with only few and local modifications to existing parts.

If, however, we must change an aspect of a design center that is visi-
ble to clients—and though minimizing this need we cannot completely
exclude it for the whole lifetime of the system—this modification will
be expensive. Such a change will affect almost all parts of the system
that depend on that aspect. This is the major liability of creating sta-
ble design centers.

Example The Broker pattern [BMRSS96] defines a stable design center that
provides an infrastructure for component communication and coop-
eration in a distributed system. Internal aspects may differ from
implementation to implementation of a Broker architecture. The gen-
eral structure and its interface to clients, however, is fixed and even
standardized [OMG95a]. This allows client and server components,
and even different Broker implementations, to cooperate with each
other, using protocols that stay stable over the lifetime of the system.



74 Applying Patterns

One Mechanism for One Kind of Problem
Context We are specifying and decomposing a software architecture by Step-

wise Refinement (67).

Problem How can we handle similar and closely related problems that occur in
different places of the system? An example is decoupling the specifics
of concrete input and output devices from the general handling of
input and output in an application. Two forces arise:

• Handling related design problems differently may result in a com-
plex system structure. Though all problems share a common core,
design and implementation of their solutions may vary significant-
ly—even in their essence. As an effect, the architecture becomes
hard to understand and maintain.

• The more general principles are used to solve related design prob-
lems, the less coherent a software architecture is.

Solution Solve related design problems similarly—by using the same or related
design principles and patterns. Implement their solutions according
to the same coding principles and idioms. If such problems arise at
the same level of abstraction, specify their solutions to the same level
of granularity.

As a result, parts of the architecture that deal with related system as-
pects expose similar finer-grained design structures and implemen-
tations. This makes a system easier to understand and change. Its ar-
chitecture becomes balanced and coherent. There is a common vision
behind the solutions to design problems of a similar kind.

Resolve related
design problems with
the same patterns



One Mechanism for One Kind of Problem 75

Example When specifying a Model-View-Controller architecture [BMRSS96]
you may want to decouple the general handling of input from specific
details of the input devices used, such as mouse and light pen. The
Sensor variant of the Adapter pattern [GHJV95] helps with this. In
short, a sensor provides an unidirectional adaptation from a specific
to a general interface. However, the system does not only receive
input, it will also produce output. Thus, when refining the ‘input-side’
of a system, it is wise to also refine its ‘output-side’. The Display
variant of the Adapter pattern [GHJV95] provides a unidirectional
adaptation from a general to a specific interface. It is the appropriate
counterpart to the Sensor pattern applied previously.

Model

Controller

View Output

Input

Use the Display variant
of Adapter to decouple
output devices ...

... and the Sensor variant
of Adapter to decouple
input devices.

Model

Controller

View Display

Sensor

Output

Input



76 Applying Patterns

One Pattern at a Time
Context We are specifying either an Architectural Vision (64) or— by Step-wise

Refinement (67)—the details of a given software architecture. To re-
solve a specific design problem we selected several patterns.

Problem How many patterns should be applied at once to specify the solution
to the design problem at hand? Two forces arise:

• The resulting design should reflect the essence of the patterns that
we apply.

• The more patterns we apply at the same time, the more aspects
regarding their optimal implementation, combination, and integra-
tion arise. Dealing with many of such aspects may, however, dis-
tract our attention from solving the original problem.

Solution Apply one pattern at a time [Ale79]. Begin with the pattern that ad-
dresses the most important sub-aspect of the problem, followed by
the patterns that resolve less important aspects. First Integrate Then
Implement (77) every pattern that is applied.

Step by step we develop the solution to the problem. By applying only
one pattern at a time, the resulting design will most likely reflect the
essence of the patterns we apply. We can follow their implementation
guidelines more easily, and aspects of other, not yet applied patterns,
do not need to be considered. The concrete implementations of all
patterns together form a coherent structure which effectively solves
the design problem at hand.

Example When implementing the Command Processor pattern [BMRSS96],
several other patterns help with specifying its details, such as
Command and Composite [GHJV95]. However, we do not apply both
patterns at the same time. First we apply Command to encapsulate
user request into objects. Composite is applied thereafter to support
macro commands.



77

First Integrate Then Implement
Context We are defining a specific part of a software architecture with patterns

by applying One Pattern at a Time (76).

Problem How can a given pattern be best implemented? Two forces must be
considered:

• The implementation must be tailored to the needs of the design
problem at hand, and also according to the needs of the whole sys-
tem.

• Specifying the details of a pattern before integrating it with the ex-
isting software architecture may result in an inappropriate pattern
implementation. You may create a design pearl, which is perfect
and beautiful by itself, but which is not usable for the application
under development.

Solution Integrate the pattern into the existing architecture before implementing
its details. First, identify the pattern’s clients. Merge Similar Respon-
sibilities (80), if these provide roles that the pattern introduces. Oth-
erwise, specify each pattern component according to the needs of its
clients. Examples include input and output parameters, function
names, data structures, and algorithms. Then, implement each pat-
tern component according to its specification.

First integrate1
a pattern ...

Pattern X

... then implement2
its details.



78 Applying Patterns

Parts of the pattern—components or relationships between them—
that are too complex to be implemented straight forward, should be
further refined. Follow the process of Piecemeal Growth (61) to unfold
these details appropriately.

Parts of the pattern that can be implemented directly should not be
further decomposed—even if you know patterns that help with this.
It will only result in a complex pattern implementation. The more that
a component is split into subcomponents, the harder that it becomes
to understand, implement and maintain. Furthermore, an overly fine-
grained decomposition may introduce performance penalties, due to
additional communication between subcomponents.

Example Consider applying the Command Processor pattern [BMRSS96] to
refine the relationships between the controllers and the model of a
Model-View-Controller architecture [BMRSS96].

The implementation of the Command Processor pattern requires us
to specify controller components that receive user input, create so-
called command components, and pass these command components
to the command processor for execution. However, we do not define
completely new controllers when implementing the Command Proces-
sor pattern. Rather we extend the controllers that were specified
when applying Model-View-Controller with the two latter responsibil-
ities from above.

New kinds of components are the command processor and the com-
mands. Their specification, on the other hand, is constraint by gen-
eral system requirements. For example, when providing undo/redo
and logging services, we must define appropriate interfaces for both
the command components and the command processor.

After integrating the Command Processor pattern with the existing
design we can proceed with implementing its details. Several patterns
help with this. Command [GHJV95] specifies how to encapsulate user
request into objects. Composite [GHJV95] can be used for providing
macro commands. Singleton [GHJV95] helps with ensuring that the
command processor can be instantiated only once. The relationships
between the pattern participants can be implemented straight for-



First Integrate Then Implement 79

ward and without further refinement, for example by using pointers
or references.

An example for a detailed and a straight forward implementation of a
pattern is the use of Observer [GHJV95] when refining the model-view
relationship in a Model-View-Controller structure. The model plays
the role of the subject, the views the role of observers. The concrete
implementation of this structure must be able to handle multiple
views effectively. For maintaining these multiple views, we provide the
model with a registry component. To notify views about changes to
the model, we apply the Iterator pattern [GHJV95]: an iterator iterates
over all registered views and calls their update method.

For reasons of robustness, we need to notify the iterator about every
unsubscription of a view from the model’s view registry. Otherwise,
the iterator might try to notify a view that does not exist. To resolve
this problem, we can apply Observer a second time: with the view reg-
istry as subject and the iterator as observer. However, this time we
can implement the pattern straight forward. To notify registered views
about changes we only need one iterator. There is no need to prepare
the view registry for handling multiple iterators. Therefore, the view
registry maintains a defined hard-coded reference to the singleton
iterator and notifies it directly whenever a view registered or unregis-
tered with the model. We do not need to apply Iterator here, as in the
first application of Observer.

Implementation of Command Processor:
Command, Composite, Singleton

Model ControllerComProcACom

Com1

Com2

Macro

Model ControllerComProc

Singleton

Command &
Composite

Integration of Command Processor:
Connect it with the model and
existing controller components



80 Applying Patterns

Merge Similar Responsibilities
Context We First Integrate Then Implement (77) a specific pattern.

Problem How can we optimally integrate a pattern into a partially existing soft-
ware architecture? Five forces must be considered:

• We must integrate the pattern such that the existing architecture
governs its implementation.

• Elements of the existing architecture may already provide respon-
sibilities that are defined by the pattern.

• Responsibilities of pattern participants may complement or com-
plete responsibilities of existing design elements.

• Adding new components or relationships to the design likely in-
creases the structural complexity of the system.

• Assigning overly many and distinct responsibilities to a design ele-
ment will likely break the principle of separation of concerns. The
resulting architecture becomes hard to understand, change, and
extend.

Solution Assign responsibilities of pattern participants to elements of the exist-
ing software architecture wherever it is useful and simplifies the sys-
tem’s structure and complexity.

Assign responsibilities of pattern1
participants to existing design

Pattern X

Add new components2
and relationships

elements wherever useful

for new roles



Merge Similar Responsibilities 81

If a design element of the structure into which we are integrating the
pattern must, or should, play the role of a specific pattern partici-
pant, three situations are possible:

• The design element already provides all responsibilities of the
pattern participant. In this case we are set. Otherwise we would
implement the same responsibilities twice.

• The design element provides parts of the pattern participant’s
responsibilities. In this situation extend and complete the design
element’s specification with the missing parts. Otherwise we
separate aspects that belong together.

• The design element does not provide any responsibility of the
pattern participant. In this case, assign the responsibilities to the
design element. Do not introduce a new component or relationship.
Otherwise we increase the structural complexity of the system.

If responsibilities of a pattern participant and an existing design ele-
ment complement each other, it may be useful to attach the pattern
participant’s responsibilities to the design element. However, this de-
pends on the concrete context of the system.

On the one hand, combining roles can avoid communication overhead
between otherwise strongly coupled components—and thus perfor-
mance penalties. For example, when separating an interface from its
possible implementations with the Bridge pattern [GHJV95] it may be
useful to also attach authorization services to the interface, as de-
fined by the Protection Proxy pattern [BMRSS96]. On the other hand,
overloading a component with overly many different responsibilities
may introduce inefficiency. If the component plays distinct roles in
several different contexts, it may become a performance bottleneck.
Keeping the responsibilities separate from each other would be more
effective.

In general, assigning responsibilities of pattern participants to exist-
ing design elements helps reducing the structural complexity of a
software architecture. It also ensures that the implementation of the
pattern is tailored to the needs of the system, and not vice versa.

However, do not assign responsibilities of a pattern participant to an
existing design element that it does not need to provide or which must
be implemented separately. Specify these, according to the pattern’s
implementation guidelines, as components or relationships of their



82 Applying Patterns

own and integrate them with the existing software architecture.
Otherwise we would break the principle of separation of concerns.

Example Suppose we are encapsulating service requests as objects by applying
the Command pattern [GHJV95]. An extension to this would be a
support for macro commands. The Composite pattern [GHJV95]
helps with solving this problem. We refine our design as follows.

The responsibilities of the command component in the Command
pattern and those of the component component in the Composite pat-
tern complement each other. Clients would not need to distinguish
between macro commands and ‘atomic’ commands—they would just
execute a command. Thus, we attach the responsibilities of the
component component to the command component. The concrete
commands in the Command pattern already provide the roles of leafs
in the Composite pattern. We do not need to do anything here.

In our design context, the composite component of the Composite
pattern plays the role of a macro command. This responsibility, how-
ever, must be kept separate from atomic commands. Otherwise we
lose flexibility in composing macro commands. We therefore imple-
ment a separate macro command component and integrate it into the
design according to the guidelines of the Composite pattern.

ACom

Com1 Com2 Macro

ACom

Com1 Com2

Comp

Leaf Composite

Extend the abstract
command with the
responsibilities of
component

Concrete
commands
are leafs

Add a new macro
command that plays
the role of a composite

Integrating Composite
into a Command
structure to provide
macro commands



Discussion 83

6.3 Discussion

In the introduction section we have said that ‘Applying Patterns’ ad-
dresses technical and human aspects of using patterns for software
architecture. Now that we know the language in full length, we can
discuss this statement in detail. We can also revisit the pre-conditions
under which the language works best, and discuss their impact as
well.

Technical and Human Aspects

A technical aspect—with respect to using patterns—is related either
to a specific design goal, such as keeping a design flexible, or to the
implementation of a given pattern. In the first case, the language lists
concrete kinds of patterns that help with achieving the goal. For
example, that the Broker architectural pattern [BMRSS96] defines a
flexible infrastructure for distributed systems. In the latter the
language provides appropriate implementation guidelines. For
example, that a pattern should be integrated with the existing design
first before it is implemented in full detail. 5 patterns of ‘Applying
Patterns’ address such technical aspects:

• Architectural Vision (64) tells us what kind of patterns help best
with defining a system’s basic structure and how these patterns
are to be used.

• Stable Design Center (72) names specific patterns for software ar-
chitecture which support us in keeping a design stable and flexible
at the same time.

• One Pattern at a Time (76), First Integrate Then Implement (77) and
Merge Similar Responsibilities (80) complement pattern-specific im-
plementation guidelines with aspects of their integration into an
existing design structure.

Human issues deal, in general, with specific needs of developers when
constructing software systems. For example, how can developers be
supported in tackling a design problem most effectively, but without
being swamped with overly many aspects that impact its solution.



84 Applying Patterns

Human aspects are very important for a software development
project, more than they tend to be on a first look. The reason for this
is simple. Software was built by humans in the past, it is built by hu-
mans today, and it still will be built by humans in the future—despite
the numerous attempts to automate software construction. Thus, if
we do not address the many human aspects that arise in a software
development project, we neglect an important success factor.

‘Applying Patterns’ addresses several human aspects that are specif-
ically related to using patterns for software architecture:

• One Pattern at a Time (76) supports developers in keeping their
focus on the original design problem when solving it with patterns,
rather than on issues of handling the details of their combination
and integration to more complex structures.

• Keeping a software architecture understandable is supported by
Merge Similar Responsibilities (80) and One Mechanism for One
Kind of Problem (74).

Most human issues in software development, however, are indepen-
dent of the use of patterns. ‘Applying Patterns’ addresses these in 4
of its patterns:

• Piecemeal Growth (61), Step-wise Refinement (67) and Repair In-
stead Large Lump Design (69) address, together, 4 general human
aspects of software design. In particular, that humans usually can-
not define the most optimal design in one pass, that they can
handle only a limited number of design issues simultaneously, that
they may forget to address important design aspects, and that un-
foreseen design problems may arise.

• Architectural Vision (64) addresses the aspect of communication:
what are the key design ideas and concepts of the system.

Within our language both technical and human issues of construct-
ing software systems with patterns are tightly interwoven. For exam-
ple, Architectural Vision (64) addresses how to define a subsystem
structure and how to support communication of key design concepts.
The purpose of Merge Similar Responsibilities (80) is to avoid structur-
al complexity and to help with understanding the system.

The tight interconnection between human and technical aspects is
not accidental. Most activities in real-world software development ex-



Discussion 85

pose both a technical and a human side. Only if we consider this in-
herent coupling, as in ‘Applying Patterns’, we can achieve the original
goal: constructing a software architecture that meets its functional
and non-functional requirements, and in which architects, designers,
and programmers feel habitable.

Integration With Methods and Processes

The main pre-condition for ‘Applying Patterns’ is that we use an
evolutionary software development process, in which we can adjust
the given architecture whenever necessary. That our language does
not work otherwise, for example when using a waterfall-like process
model, is obvious. Neither Repair Instead Large Lump Design (69) for
itself, nor its interplay with Step-wise Refinement (67) would be
applicable. Both patterns, however, describe fundamental aspects of
the process of piecemeal growth.

But how does ‘Applying Patterns’ integrate into existing evolutionary
process models, such as the fountain approach [HE95]? A close look
onto such models reveals that they only define between which phases
of software development we can jump back and forth. They do not
specify in detail how this step should look like, and how bottom-up,
top-down and ‘repair’ aspects are interwoven. This, however, is
subject of ‘Applying Patterns’. From a pragmatic view the languages
defines how evolution happens. It does not re-define any concrete
process step and the connections between them.

There is only one change or add-on that ‘Applying Patterns’ suggests
to existing process models. The language stresses the importance of
specifying an architectural skeleton for the system right at the begin-
ning of its development, as manifested by the pattern Architectural Vi-
sion (64). This architectural skeleton is defined even before the spec-
ification of the domain model, which is usually the first activity in
existing processes. With respect to integrating ‘Applying Patterns’
with these processes, we can simply add an architecture specification
phase up-front. After that, we proceed with following the original pro-
cess, for example with specifying the domain specific parts. ‘Applying
Patterns’ is then used to support the steps as defined by that process.

With this discussion another question arises. Does ‘Applying Pat-
terns’ define a new software development process or method? A



86 Applying Patterns

process or method that may replace exiting approaches, such as
Booch [Boo94], Coad/Yourdon [CY91], Object Modeling Technique
[RBPEL91] or even the Unified Modeling Language (UML) [RGB97].
This is, however, not the case.

Instead, ‘Applying Patterns’ complements existing approaches with
respect to using patterns for software architecture. One Pattern at a
Time (76), First Integrate Then Implement (77), Merge Similar Respon-
sibilities (80) and One Mechanism for One Kind of Problem (74) define
specific activities and principles for selecting, integrating, refining,
and coding patterns for software architecture. Architectural Vision
(64), Step-wise Refinement (67) and Repair Instead Large Lump Design
(69) specify how to use patterns within general design activities that
are defined by existing methods. The same holds for Stable Design
Center (72), which defines a general design goal, but under consider-
ation of using patterns to achieve it. Piecemeal Growth (61), finally,
details the idea of evolutionary development, as we discussed above.

In summary, ‘Applying Patterns’ help with using existing process and
methods effectively when constructing systems with patterns.

The Need for a Software Architect

The second pre-condition for ‘Applying Patterns’ is that a software ar-
chitect or a team of architects is in control and charge of the system’s
design.

This requirement is reflected most obviously in Architectural Vision
(64). An architectural vision usually cannot be defined by all develop-
ers of the system in a committee-like procedure. Rather it has to be
created by a single person from the project team, or by a small group
of key persons. All who are defining the architectural vision must be
experienced developers. They must have an overview of the system as
a whole, and its specific needs and requirements. They must define a
fundamental design structure for the system and must communicate
this structure to those who develop specific parts of it. And finally,
they must integrate individually developed subsystems or parts to a
coherent whole again. In other words, persons who develop an archi-
tectural vision need to be software architects.

Other patterns in our language also define activities that call for a
software architect. For example, One Mechanism for One Kind of Prob-



Discussion 87

lem (74). If problems that are similar to each other arise in different
parts of the system, and if these parts are implemented by different
developers, the developers must agree on the same mechanisms and
patterns to resolve the problems. It is the responsibility of a software
architect to establish and supervise this coordination.

‘Applying Patterns’ is certainly useful even when there is no software
architect in place. However, the larger that a software development
team is, and the more that work is distributed among developers, the
greater is the need for a software architect in order to use ‘Applying
Patterns’ successfully.

Summary

‘Applying Patterns’ helps us to use patterns for software architecture
effectively for two reasons. First it considers both human and techni-
cal aspects of software development and using patterns. Second, it
complements and completes existing software development processes
and methods with pattern-specific steps and aspects. Thus, as con-
crete patterns for software architecture are a pragmatic approach to
resolve concrete design problems, ‘Applying Patterns’ provides a prag-
matic approach for integrating the use of patterns with existing soft-
ware engineering practise.

Credits

We like to thank Dirk Riehle for providing us with many insights and
suggestions, which helped us shaping, improving, and polishing our
pattern language for applying patterns.




