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Abstract

This paper discusses the software architecture of a Real-
time CORBA object request broker (ORB) called ZEN, writ-
ten in Real-time Java, which is designed to eliminate common
sources of overhead and non-determinism in ORB implemen-
tations. We illustrate how ZEN can be configured to select the
minimal set of components used by an application. Our ex-
perience with ZEN indicates that combining Real-time Java
with Real-time CORBA is a major step forward towards sim-
plifying the development and maintenance of distributed mid-
dleware and applications with stringent quality of service re-
quirements.

Keywords: Distributed Real-time and Embedded Systems,
Real-time CORBA, Real-time Java.

1 Introduction to Distributed, Real-
time, Embedded Systems

Distributed, real-time, and embedded (DRE) systems are be-
coming increasingly widespread and important. There are
many types of DRE systems, but they have one thing in com-
mon: the right answer delivered too late becomes the wrong
answer. Common DRE systems include telecommunication
networks (e.g., wireless phone services), tele-medicine (e.g.,
remote surgery), manufacturing process automation (e.g., hot
rolling mills), and defense applications (e.g., avionics mission
computing systems).

The various aspects of DRE systems have the following
challenging requirements.

� As distributed systems, DRE systems require capabili-
ties to manage connections and message transfer between
separate machines.

�This work was funded in part by AFOSR grant F49620-00-1-0330, ATD,
DARPA ITO, SAIC, and Siemens.

� As real-time systems, DRE systems require predictable
and efficient control over end-to-end system resources.

� As embedded systems, DRE systems have weight, cost,
and power constraints that limit their computing and
memory resources. For example, embedded systems of-
ten cannot use conventional virtual memory, since soft-
ware must fit on low-capacity storage media, such as
EEPROM or NVRAM.

Designing DRE systems that implement all the required ca-
pabilities, are fast and reliable, and use limited computing re-
sources is hard; building them on time and within budget is
even harder. In particular, DRE applications developers face
the following challenges:

� Tedious and error-prone development— Accidental
complexity proliferates, because many DRE applications
are still developed using low-level languages, such as C
and assembly languages.

� Limited debugging tools — Although debugging tools
are improving, real-time and embedded systems are still
hard to debug due to inherent complexities, such as con-
currency and remote debugging.

� Validation and tuning complexities— It is hard to val-
idate and tune key quality of service (QoS) properties,
such as (1) pooling concurrency resources, (2) synchro-
nizing concurrent operations, (3) enforcing sensor in-
put and actuator output timing constraints, (4) allocat-
ing, scheduling, and assigning priorities to computing
and communication resources end-to-end, and (5) man-
aging memory.

Because of these challenges, developers repeatedly rediscover
core concepts and reinvent custom solutions that are tightly
coupled to particular hardware and software platforms.

Over the past decade, distributed object computing (DOC)
middleware frameworks, such as CORBA [1], COM+ [2],
Java RMI [3], and SOAP/.NET [4], have emerged to reduce
the complexity of developing distributed applications. DOC
middleware simplifies application development for distributed
systems by off-loading the tedious and error-prone aspects of
distributed computing from application developers to middle-
ware developers. It has been used successfully in large-scale



business systems where scalability, evolvability, and interop-
erability are essential for success.

Real-time CORBA [5] is a rapidly maturing DOC middle-
ware technology standardized by the OMG that can simplify
many challenges for DRE applications, just as CORBA has
for large-scale business systems. Real-time CORBA is de-
signed for applications with hard real-time requirements, such
as avionics mission computing [6], as well as those with strin-
gent soft real-time requirements, such as telecommunication
call processing and streaming video [7].

This paper makes the following contributions to the design
of Real-time CORBA middleware to address key challenges
of developing DRE systems:

1. It describes the design of the ZEN ORB, an open-
source Real-time CORBA ORB implemented in Real-
time Java [8] to simplify the programming model for
DRE applications. ZEN is inspired by many of the pat-
terns, techniques, and lessons learned in The ACE ORB
(TAO) [6], an open-source implementation of Real-time
CORBA written in C++.

2. It explains how ZEN uses patterns [9, 10] to automati-
cally minimize the memory footprint of DRE middleware
customized for each application.

3. It compares ZEN’s novel micro-ORB design and imple-
mentation with the design and implementation of tradi-
tional monolithic ORB architectures.

The remainder of this paper is organized as follows: Sec-
tion 2 gives an overview of Real-time CORBA and Real-
time Java; Section 3 describes how ZEN is designed to im-
prove flexibility and minimize memory footprint; and Sec-
tion 4 presents concluding remarks.

2 Overview of Real-time CORBA and
Real-time Java

2.1 Real-time CORBA

CORBA is distribution middleware that provides run-time
support to automate many distributed computing tasks, such
as connection management, object (de)marshaling1, object de-
multiplexing, language and OS independence, load balancing,
fault-tolerance, and security. Real-time CORBA is integrated
with the CORBA 2.5 specification [1] and adds QoS control
capabilities to regular CORBA to

� Improve application predictability by bounding priority
inversions and

� Manage system resources end-to-end.

1We use the term “(de)marshal” to mean marshal and/or demarshal.
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Figure 1: Real-time CORBA Features

Figure 1 illustrates the standard features that Real-time
CORBA provides for DRE applications so that they can con-
figure and control the following system resources:

� Processor resourcesvia thread pools, priority mecha-
nisms, intra-process mutexes, and a global scheduling
service for real-time applications with fixed priorities

� Communication resourcesvia protocol properties and
explicit bindings to server objects using priority bands
and private connections, and

� Memory resourcesvia buffering requests in queues and
bounding the size of thread pools.

The Real-time CORBA specification addresses some —
though by no means all — important DRE application devel-
opment challenges. Its primary focus is on “fixed-priority”
real-time applications [11], where priorities are assigned stat-
ically to tasks, and the task with the highest priority always
runs. In many new and planned DRE applications, however,
static task prioritization is often not possible, since task work-
loads and their priorities are not known until run-time [12].

Although the Real-time CORBA specification was inte-
grated into the OMG standard several years ago, it has not yet
been adopted universally for DRE applications, due to its

� Steep learning curve, caused largely by the complexity
of its C++ mapping, and

� Run-time and memory footprint overhead, which stem
from monolithic ORB implementations that include all
the code supporting the various core ORB services, such
as connection and data transfer protocols, concurrency
and synchronization management, request and operation
demultiplexing, (de)marshaling, and error-handling.
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2.2 Real-time Java

Most current implementations of Real-time CORBA are avail-
able only in C++ or Ada. Finding and retaining experienced
developers trained in these languages is hard, however. The
Java programming language is an attractive alternative for the
following reasons:
� Java has a large and rapidly growing programmer base

and is taught in many universities.
� Java is simpler than C++ or Ada; therefore, programmers

experienced in those languages can learn it easily.
� Java has a powerful, portable standard library that can

reduce programming time and costs.
� Java offloads many tedious and error-prone programming

details from developers into the language run-time sys-
tem.

� Java has desirable language features, such as strong typ-
ing, dynamic class loading, and reflection/introspection.

� Java defines portable support for concurrency and syn-
chronization.

� Java’s bytecode representation is more compact than na-
tive code, reducing the memory required for embedded
systems.

� Many Java virtual machines (JVMs) support “lazy class-
loading and linking,” in which classes are loaded into
memory and bound to an interface only upon first use.

� Java can make ORB and application development easier
and faster, therefore, due to its simplicity and improved
portability.

Conventional Java implementations are unsuitable for de-
veloping real-time systems, however, because they do not al-
low fine-grained control over memory management, nor do
they enforce thread priorities with sufficient precision. To ad-
dress these problems, the Real-time Java Experts Group has
defined the Real-time Specification for Java (RTSJ) [8], which
provides the following capabilities without modifying the Java
programming language itself:
� New memory management models that can be used in

lieu of garbage collection, which can cause significant
non-determinism in real-time systems.

� Access to raw physical memory, which is required for
many embedded systems.

� A higher resolution time granularity suitable for real-time
systems.

� Stronger guarantees on thread semantics than regular
Java: the highest priority runnable thread is always run.

The RTSJ therefore retains the advantages of regular Java,
while improving language semantics and features for program-
ming real-time systems. The RTSJ does not, however, include
any facilities for distributed applications.2

2The JSR-50 effort [13] is attempting to define a Distributed Real-time
Specification for Java.

3 An Overview of the ZEN Real-time
ORB

ZEN is a Real-time CORBA ORB implemented using Real-
time Java, thereby combining the benefits of these two stan-
dard technologies. This section presents the research chal-
lenges and goals addressed by the ZEN project, followed by
an overview of the design process and architecture of the ZEN
ORB.

3.1 ZEN Research Goals

Due to constraints on weight, power consumption, memory
footprint, and performance, the development techniques for
DRE application software have lagged behind those used for
mainstream desktop and enterprise software. As a result,
DRE applications are costly to develop, maintain, and evolve.
Moreover, they are often so specialized that they cannot adapt
readily to meet new functional or QoS requirements, hard-
ware/software technology innovations, or market opportuni-
ties.

Programming DRE applications is hard also because QoS
properties must be supported along with the application soft-
ware and distributed computing middleware functionality.
DRE applications have historically been custom-programmed
to implement these QoS properties. Unfortunately, this te-
dious and error-prone manual development process has not ad-
equately addressed the following challenges:

� Isolating DRE application development from the de-
tails of multiple platforms and varying operational
contexts. Modern DRE applications must invest an
ever-increasing proportion of functionality in software.
Rapidly emerging technologies and flexibility required
for diverse operational contexts force deployment of mul-
tiple versions of software on various platforms, while si-
multaneously preserving key properties, such as real-time
response and end-to-end priority preservation.

� Reducing total ownership costs. Custom software de-
velopment and evolution is labor-intensive and error-
prone for complex DRE applications, such as fly-by-wire
aircraft or autonomous vehicle systems, and can repre-
sent a substantial amount of total system acquisition and
maintenance costs.

� Sheltering the application development from obsoles-
cence trends. Incommensurate lifetimes between long-
lived DRE applications (20 years or more) and commer-
cial off-the-shelf (COTS) platforms and tools (2–5 years)
lead to pervasive software obsolescence and multiply the
total ownership costs by requiring periodic software re-
development and COTS refresh.
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While some aspects of these challenges have been addressed
in developing mainstream distributed systems, relatively little
has been done to meet these challenges for DRE systems. To
address these challenges, therefore, the research goals of the
ZEN project are as follows:

� Provide a full range of CORBA services for distributed
systems, to meet the needs of a wide variety of applica-
tion developers.

� Demonstrate the extent to which COTS languages, run-
time systems, and hardware can meet the following QoS
requirements:

– Achieve low and bounded jitter for ORB operations
– Eliminate sources of priority inversion
– Allow applications to control Real-time Java fea-

tures
– Achieve low startup latency

� Reduce middleware footprint to enable memory-
constrained embedded systems development.

� Achieve satisfactory level of throughput and scalability.
� Make the ORB easier for application developers to con-

figure and maintain.
� Make the ORB easily extensible.
� Allow both staticanddynamicconfiguration, to allow the

application developer to choose a tradeoff between max-
imal efficiency and flexibility. One of the chief research
challenges associated with supporting dynamic configu-
ration is to minimize latency and to ensure satisfaction of
end-to-end deadlines.

3.2 Overview of the ZEN Design Process

3.2.1 Generations of ORB Designs

Our work on ZEN has leveraged the lessons learned from our
earlier efforts on TAO’s design, implementation, optimization,
and benchmarking. We have identified the following five gen-
erations of ORB designs, ranging from the first implementa-
tions to an ideal ORB for DRE systems.

1. Static monolithic ORB, in which all code is loaded in
one executable, including the code for configuration vari-
ations. The original implementation of TAO [6] was de-
signed this way, as are many other non-real-time CORBA
ORBs. The advantage of this design is that it is effi-
cient, it is relatively easy to code, and it can support all
CORBA services. The obvious disadvantage is that a
monolithic ORB implementation results in an excessive
memory footprint, even if only a small subset of its fea-
tures are used. Moreover, the footprint grows with each
extension, such as adding support for a new protocol, and
extensibility is hard.

2. Monolithic ORB with compile-time configuration
flags, in which static mechanisms/tools, such as condi-
tional compilation and smart static linkers, allow a vari-
ety of different configuration options. The second gen-
eration of TAO [14] was designed this way. Compared
to a static, monolithic ORB, the advantage is a reduced
footprint, since the preprocessor can eliminate unneeded
code. The disadvantage, however, is that application and
ORB developers must face scores of configuration op-
tions, and must select the appropriate ones to achieve par-
ticular footprint and performance needs. It is therefore
much harder to code and maintain this type of ORB, due
to the accidental complexities associated with conditional
compilation [15].

3. Dynamic micro-ORB, in which only a small ORB ker-
nel is loaded in memory, with various components linked
and loaded dynamically on demand. Portions of the
current third generation of TAO are designed this way
(based on the Component Configurator [9] and Virtual
Component [10] patterns), as is the initial implementa-
tion of ZEN presented in Section 3.3. The advantage
of this design is the significant reduction in footprint
and the increase in extensibility. In particular, indepen-
dent ORB components can be configured dynamically
to meet the needs of different applications. Dynamic
configuration greatly reduces the myriad of configura-
tion options facing application developers using second-
generation ORBs. With dynamic configuration, applica-
tion developers select only a few — rather than scores
of — configuration options. The disadvantage is that dy-
namic linking on demand produces a potential source of
jitter, which can be unacceptable for real-time systems.
Moreover, dynamic linking may not be available or ap-
propriate for some embedded systems.

4. Dynamic reflective micro-ORB, in which the ORB
builds a configuration description for each application,
based on information derived from the application’s run-
time execution history. This configuration description
can be used to configure the ORB either adaptively or
upon ORB initialization for future invocations of the ap-
plication. The dynamicTAO [16] project and future ver-
sions of ZEN use this approach. The advantage of this
design is that it can achieve a near-minimal footprint au-
tomatically. It can also eliminate jitter from on-demand
class loading by pushing it into initialization. The disad-
vantage, again, is that dynamic linking may not be avail-
able or appropriate for some embedded systems.

5. Static reflective micro-ORB, in which the ORB uses the
configuration description built by the dynamic reflective
micro-ORB to generate the source code for a new cus-
tom ORB containing only the necessary or desired com-
ponents. The LegORB [17] project and future versions
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of ZEN use this approach. Its advantage is that it is
fast, small, custom, and easy for application developers
to use. Its disadvantage is that the reflective technology
needed to perform automatic customization is still largely
an open research issue.

Based on the taxonomy presented above, we are building
ZEN in the following three stages:

1. We first design ZEN to reduce the footprint of a non-real-
time Java ORB, using dynamic micro-ORB configura-
tion corresponding to the third-generation ORB described
above.

2. We next design ZEN to address real-time requirements,
using dynamic reflective micro-ORB configuration corre-
sponding to the fourth-generation ORB described above,
and implementing Real-time CORBA features using
Real-time Java.

3. Finally, we design ZEN to refine its own footprint
and real-time performance, using static reflective micro-
ORB configuration corresponding to the fifth-generation
ORB described above. Here we use reflective con-
figuration information and aspect-oriented programming
(AOP) [18] techniques to generate statically a custom,
small-footprint, real-time ORB.

The remainder of this section discusses the first stage of ZEN’s
design, since it is the most mature.

3.2.2 Micro-ORB versus Monolithic-ORB Designs

Our experience building TAO taught us the following lessons
that we applied to the design of ZEN:

� Implementing a full-service, flexible, specification-
compliant ORB can yield a monolithic ORB implementa-
tion with a large memory footprint, as shown in Figure 2.

� Basing the ORB architecture on patterns can resolve
common design forces and separate concerns effec-
tively [9]. For example, using a pluggable design frame-
work based on TAO’s pluggable protocol framework [19]
can substantially reduce the middleware footprint.

� Achieving a small footprint is possible only if the archi-
tecture is initially designed to achieve it. It is much harder
to reduce footprint in later stages of design.

As stated earlier, minimizing footprint is critical for memory-
constrained DRE applications. Therefore, in the first stage of
ZEN’s design, we focused on minimizing its footprint. We
generalized TAO’s pluggable protocol to other modular ser-
vices within the ORB, so that they need not be loaded until
they are used. ZEN’s micro-kernel architecture is also based
on patterns that have been used to develop micro-kernel oper-
ating systems [20]. ZEN’s therefore uses flexible, extensible
micro-ORB design, rather than a monolithic-ORB design for

Figure 2: Monolithic ORB Architecture

all CORBA services. In particular, we applied the following
design process systematically:

1. Identify each core ORB service whose behavior may
vary. Variation can depend on (1) a user’s optional choice
for certain behavior and (2) which standard CORBA fea-
tures are actually used.

2. Move each core ORB service, such as the object adapter,
protocol transport, andAny data type handling, out of
the ORB and apply the Virtual Component pattern [10]
to make each service pluggable dynamically.

3. Write concrete implementations of each abstract class
and factories that create instances of them.

4. Extend each family of factories and concrete classes to
support alternative features.

5. Minimize penalty for not using real-time features.
6. Optimize common use cases, while still ensuring that all

operations are predictable, by bounding worst-case exe-
cution time.

3.3 ZEN’s Pluggable ORB Architecture

ZEN’s ORB architecture is based on the concept oflayered
pluggability, as shown in Figure 3. Based on our earlier
work with TAO, we factored eight core ORB services (ob-
ject adapters, message buffer allocators, GIOP message han-
dling, CDR Stream readers/writers, protocol transports, object
resolvers, IOR parsers, andAny handlers) out of the ORB to
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Figure 3: Micro-ORB Architecture of ZEN

reduce its memory footprint and increase its flexibility. We
call the remaining portion of code theZEN kernel.

Each ORB service itself is decomposed into smaller plug-
gable components that can be loaded into the ORB only when
needed. This pluggable design makes ZEN a good research
platform, because alternative implementations of various ORB
components can be plugged in and profiled with standard
benchmarks to determine their utility. Our future work will
evaluate the performance of alternative implementations of
core ORB services.

The remainder of this section describes how we designed
the eight core ORB services identified as candidates for appli-
cation of the Virtual Component pattern. For each core ORB
service, we

1. Outline the key characteristics of the particular core ORB
service to be factored out of the ORB

2. Discuss the problems encountered when implementing
this service in a monolithic ORB and

3. Explain how our solution uses the Virtual Component
pattern to reduce memory footprint.

3.3.1 Pluggable GIOP Message Handling

Context. The General Inter-ORB Protocol (GIOP) defines
the standard messages that may be sent between CORBA-
compliant ORBs. There are eight different types of GIOP
messages, each with a unique format. Implementation of each
GIOP message handler requires two methods, one to marshal
and another to demarshal a particular type of message.

Three versions of GIOP messages (versions 1.0, 1.1, and
1.2) have been defined, with a new version being standardized

by the OMG. Thus, there are 8 (different types)� 2 (mar-
shal/demarshal methods)� 3 (different versions) = 48 meth-
ods required to handle each possible GIOP message for each
possible version.3

The majority of client/server interactions are simple, requir-
ing only a few of these methods. For example, a pure server
will receive requests and send replies, and thus requires only
a request reader and a reply writer. Conversely, a pure client
will send requests and receive replies, requiring only a request
writer and a reply reader. Peers typically use up to four meth-
ods to read and write both requests and replies. In addition,
many applications use only one version of GIOP. However,
clients, servers, and peers must be prepared to handle all 48
possible messages from various versions.

Problems with Monolithic-ORB Designs. Monolithic-
ORBs contain code to handle all the possible GIOP mes-
sages and versions. Separate classes may be defined to handle
each type of message, whileswitch statements inside each
(de)marshal method may handle the various versions. This de-
sign has two major drawbacks:

1. It incurs non-trivial amounts of space overhead for all the
methods, even if they are not used.

2. It is hard to modify the ORB to handle a new GIOP ver-
sion because many class definitions must be modified, re-
compiled, and relinked.

Micro-ORB Design Solution in ZEN. GIOP message
(de)marshaling is a rich source of footprint reduction in ZEN,
as shown in Figure 4. Only a small number of the 48 possible
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Figure 4: Pluggable GIOP Readers

(de)marshaling methods need to be loaded at a time. We have
two different variants of the Virtual Component pattern:

1. Fine-grain, which uses a separate class for each of the
48 possible methods, loading only individual methods as
needed, and caching them for faster use after the initial
loading and

3Not all messages change with each version.
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2. Client/server pairing, which groups complementary
methods into a single class based on their likely use.
The advantage of this approach is that the complemen-
tary method that will later be needed is already loaded.

Both designs use the same conventions in naming classes,
enabling automatic construction from the particular use com-
bination. For example, classes containing the methods for
(de)marshaling are named by combining the message type,
version number, and operation type (read or write). In par-
ticular, classReplyReader1_0 would contain one method
to demarshal a GIOP 1.0 reply.

If a client sends a GIOP 1.0 request using the fine-grain
model, only classRequestWriter1_0 will be loaded to
write the request. This approach is advantageous in situa-
tions requiring only one method, such as a one-way request,
since only theRequestWriter1_0() method is loaded.
In the more typical two-way invocation, however, the client
must also load classReplyReader1_0 to demarshal the re-
ply message, using its read method to process the message
appropriately.

The client/server pairing model implementation handles the
common two-way invocation by grouping methods that are of-
ten used together. Since servers typically read requests and
write replies, we group the methodsRequestReader1_
0() and ReplyWriter1_0() according to GIOP ver-
sion. Similarly, since clients typically write requests and read
replies, these two methods are also grouped, by version. Thus,
a pure client using one GIOP version needs to load only one
class containing both client-oriented methods.

Modifying ZEN to support new versions of GIOP is
straightforward. New classes are simply added (containing ei-
ther one method for fine grain, or two methods for client/server
pairing), following the naming conventions, for each message
that changes. No existing classes require any changes.

CORBA applications that use either of these micro-ORB
designs need not know beforehand that their behavior will be
server-like or client-like, or what messages they will need. In-
stead, the necessary methods are loaded on demand depending
on whether the program is a client, server, or peer. If the be-
havior of a particular program is known beforehand, however,
the necessary classes may be pre-loaded at initialization time
to eliminate any delays from lazy class loading.

3.3.2 Pluggable Object Adapters

Context. An object adapter maps client requests to the ap-
propriate servant in a CORBA server. There are different types
of object adapters, such as

1. The Standard Portable Object Adapter (POA), which of-
fers a full interface of functionality to the application pro-
grammer and is targeted to general applications which are
not real-time,

2. Minimum POA, which implements a smaller interface
than the standard POA, intended to help reduce the mem-
ory footprint of an object adapter, and

3. Real-time POA, which adds methods to the standard POA
to allow the application more control over threading and
memory management. It must also ensure all operations
are predictable.

In addition, new object adapters are being developed. We, in
fact, are currently developing an object adapter specification
to support filtering of multicast requests only to subscribed
objects.
Problems with Monolithic-ORB Designs. An object
adapter is necessary only in a server application. Monolithic-
ORB designs contain an object adapter as part of the ORB,
however, even for pure clients that do not require this function-
ality. Therefore, if multiple types of object adapters are sup-
ported, the code to handle each type may be loaded, whether
used or not.

Micro-ORB Design Solution in ZEN. Using the Virtual
Component pattern, ZEN loads only portions of an object
adapter, only when object adapter services are needed, as
shown in Figure 5. Pure clients have no object adapter, while
pure servers load only the portions of the appropriate POA
when needed. ZEN provides both a standard POA and a real-

Figure 5: Pluggable Object Adapters

time POA. At most one of these object adapters is added into
the ORB, only if the application plays the role of server. Ap-
plication developers can choose which POA is used, RT or
Standard, as part of the customization configuration.

This pluggable design will also facilitate addition of new
object adapters, such as the multicast object adapter, as they
are standardized.

3.3.3 Pluggable Transport Protocols

Context. GIOP can run over many protocol transports, such
as TCP/IP, shared memory, UNIX-domain sockets, and SSL.
For a single protocol, there are roughly five different classes to
implement it, each containing a few methods:

� Client-oriented classes,e.g., connector, address, and
transport, and
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� Server-oriented classes,e.g., acceptor, reactor, address,
and transport.

There may therefore be 20 to 30 classes needed to handle the
most common protocols.

Problems with Monolithic-ORB Designs. Some
monolithic-ORB designs support all possible, or a large
number of, protocols, with all code loaded and the particular
methods necessary selected throughif or switch state-
ments. With this approach, the resident code is large and
increases with each new protocol supported by the ORB.

An alternative monolithic-ORB design chooses only one
protocol to support, typically TCP/IP. With this approach, the
resident code is smaller, but the ORB then lacks the ability
to handle other protocols, which is problematic for DRE ap-
plications that need to run over non-TCP/IP backplanes and
real-time interconnects.

Micro-ORB Design Solution in ZEN. One micro-ORB ap-
proach, first implemented in TAO [19], reduces resident code
by loading only the classes necessary for one protocol at a
time. TAO loads all five classes for that protocol, however, re-
gardless of whether it needs the client-oriented classes or the
server-oriented classes.

The micro-ORB approach used in ZEN similarly allows one
(or more) desired protocol(s) to be loaded, as shown in Fig-
ure 6. Only the required sub-classes are loaded dynamically

Figure 6: Pluggable Protocols

when the factory is loaded. For example, both clients and
servers require the appropriate transport and address classes.
Additionally, a pure server requires an acceptor and a reactor,
while a pure client requires a connector.

3.3.4 Pluggable CDR Stream Reader/Writer

Context. CORBA ORBs must handle diverse endsystem in-
struction sets, where byte order may vary between clients
and servers. CORBA defines Character Data Representa-
tion (CDR) input and output streams to allow (de)marshaling
of multi-byte data objects to or from transport byte
streams. A classCDRInputStream contains methods
such asreadLong() , readShort() , andreadByte() .
A CDROutputStream will contain methods such as
writeLong() , writeShort() , and writeByte() .
The input stream assembles the bytes properly according to

a boolean flag contained within a message. Since JVMs rep-
resent all data in big-endian, allCDROutputStream s mar-
shaled by a Java ORB, such as ZEN, will be in big-endian,
even if the native hardware byte order is little-endian. How-
ever, since Java ORBs may need to interact with non-Java
ORBs running on little-endian endsystems, they must be able
to demarshal messages received from little-endian endsys-
tems.
Problems with Monolithic-ORB Design. Monolithic
ORBs define one class forCDRInputStream contain-
ing a method to handle each possible data type,e.g.,
readDouble() , readLong() , readShort() , and
readByte() . Each of these methods in turn uses an
if statement to test the endian order of the stream being
demarshaled, to assemble multi-byte entities, such as integers
and floating points, into the correct order, as follows:

int readLong() {
if (byteOrder == littleEndian)

// return the combined four bytes
// in little-endian format;

else // byte order is big-endian
// return the combined four bytes
// in big-endian format;

}

Not only is this approach inconsistent with object-oriented
programming techniques, but also it creates excessive foot-
print, since each method must handle both cases, although
only one is needed at a time. Moreover, many applications,
particularly Java-to-Java or those running on homogeneous
hardware, will use the same byte order. In such cases, it is
particularly undesirable to increase the memory footprint by
having both byte-order versions in memory.
Micro-ORB Design Solution in ZEN. We applied
the Virtual Component pattern to split the single
CDRInputStream class into two derived classes: one
that handles only big-endian messages, and another that
handles only little-endian messages. Each method in the class
for little-endian has the code in thetrue case, as follows:

int readLong() {
// return the combined four bytes
// in little-endian format;

}

Conversely, each method in the class for big-endian has just
the code for thefalse case, as follows:

int readLong() {
// return the combined four bytes
// in big-endian format;

}

When a GIOP message is received, only the appropriate
CDRInputStream matching the endian of the received mes-
sage is loaded, if it is not already cached. When a big-endian
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message is received, for instance, no little-endian conversion
code will be loaded on either side of the communication, as
shown in Figure 7. Instead of re-executing the conditional
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Figure 7: Pluggable CDR reader

statement each time a multi-byte primitive is read from a mes-
sage, a single conditional is executed once, when the message
is received, to determine the set of methods needed to demar-
shal the message.

3.3.5 Pluggable Any Handlers

Context. The Any data type is useful for generic services,
because it can be used to hold any data type, such as arrays
or primitives.Anys are used by many of the CORBA Object
Services (COS) [21], such as the Trading Service, the Event
Service, the Notification Service, and the Security Service.
EachAny is preceded with a type code to allow interpretive
manipulation of the values it contains. Many DRE applica-
tions do not require theAny data type, however, and methods
to supportAnys consume significant space.
Problems with Monolithic-ORB Designs. Monolithic
ORBs include extensive code to supportAnys . This code is
extensive because it must include methods to read, to write,
to (de)marshal, and to insert and extract objects from each of
the primitives, structs, unions, arrays, user-defined types, and
sequences of all possibleAnys .
Micro-ORB Design Solution in ZEN. The methods to sup-
port Anys are good candidates for removal from the ORB
kernel for further footprint savings. To minimize the default
footprint of DRE applications, ZEN maintains only a minimal
proxy object representing theAnyReader andAnyWriter
objects in the ORB kernel, until an application tries to read or
write anAny, as shown in Figure 8. At that time, the proxy
loads the class for the appropriate specific methods needed.
The sameAny method is commonly reused, since arrays and
sequences contain elements of the same type.

3.3.6 Pluggable IOR Parsers

Context. Interoperable ORB References (IORs) are
CORBA’s powerful object pointers. Unlike memory pointers,
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Figure 8: Pluggable Any

IORs can point to a specific servant (in the role of an object)
on a remote host. CORBA supports a variety of formats for
IORs, to allow object references to come from files, web
pages, location services, or other sources. While the “IOR: ”
format is the most common, a CORBA-compliant ORB must
support a variety of other IOR formats, such as “FILE: ,”
“HTTP: ,” “ CORBALOC,” and “FTP: ”. IOR formats contain
different information in different formats, and therefore
require different methods for parsing and handling. As shown

iiop:1.0//pachanga:10015/P353bccdb00094ae8/firstPOA/myservant

Object
Adapter Id

Protocol Id

Communication
Endpoint

Time Stamp Object Id

Figure 9: Example IOR

in Figure 9, the format of an “IOR: ” IOR may contain
information, such as protocol name, communication endpoint
(e.g., host and port), object adapter name, and object name,
as well as other ORB-specific information to optimize servant
lookups.

Problems with Monolithic-ORB Designs. In a monolithic-
ORB design, matching the IOR format string, whether by table
lookup or by cascadedif statements, requires that the code to
parse and handle every format be loaded, even if it is not used.

Micro-ORB Design Solution in ZEN. ZEN uses the Virtual
Component pattern to (1) define an interface that parses and
handles IORs and (2) then derive separate class strategies to
handle each specific IOR format, as shown in Figure 10. When
a particular IOR format is encountered, ZEN loads only the
class specialized to handle that format. Future repeated uses of
that format will be faster, after the class has been loaded. This
implementation saves a small amount of code size overhead
and eliminates an extra test for each demarshaling operation.
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Figure 10: Pluggable IOR Parsers

3.3.7 Pluggable Object Resolvers

Context. CORBA applications use theORB::resolve_
initial_references() method to obtain references to
ORB objects, such as the RootPOA, or to CORBA Ser-
vice objects, such as the Naming Service or Event Channel.
The number of objects that can be obtained through calls
to resolve_initial_references() is large and in-
creasing with each new version of the CORBA specification.

Problems with Monolithic-ORB Designs. Monolithic-
ORB designs use a series of cascadedif statements in
resolve_initial_references() to match the string
name parameter to the code that handles each particular name
value. This design is not easily extensible, because the ORB
must be modified to handle each additional name value.

Micro-ORB Design Solution in ZEN. We apply the Vir-
tual Component pattern to define pluggable object resolvers,
as shown in Figure 11. At the core of this mechanism is an ab-
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Figure 11: Pluggable Object Resolvers

stract base class with a factory method that takes a string and
returns a reference to a CORBA Object. We then derive classes
for each specific name value that may be resolved. ZEN uses
a naming convention for the classes, so that the name being
resolved matches the name of the class that can resolve it.
For example, the object resolver for the name “RootPOA” is
named classRootPOAResolver . Upon receiving a request
to resolve an initial reference, the class for resolving that name
value can be loaded as needed. This design enhances extensi-
bility as new object names are added.

3.3.8 Pluggable Message Buffer Allocators

Context. An ORB must provide a message buffer allocator
to ensure efficient interprocess communication and to avoid
unnecessary garbage collection. While general-purpose dy-
namic storage allocation algorithms are well understood [22],
it is hard to determine which specific algorithm is optimal for
allocating ORB message buffers for a particular DRE applica-
tion. The optimal algorithm may vary, depending on an ap-
plication’s usage patterns, and is not intuitively obvious. Mid-
dleware, therefore, should allow the application developer the
flexibility to choose different algorithms in different situations,
based on their empirical performance.

Problems with Monolithic-ORB Designs. To provide the
flexibility necessary to meet a wide range of DRE sys-
tems’ real-time requirements, monolithic-ORB implementa-
tions must include all possible memory allocation algorithms,
and not rely only on Java’s built-in heap. Java’s built-in heap,
while simple to implement, allows the uncontrolled and un-
predictable garbage collector to cause hard real-time deadlines
to be missed. Furthermore, Real-time Java’s garbage collector
does not mandate predictable behavior and thus may allow un-
bounded priority inversion.

Micro-ORB Design Solution in ZEN. To support a vari-
ety of memory allocation algorithms, we use the Strategy pat-
tern [23] to make the algorithms pluggable, as shown in Fig-
ure 12. We also use the Thread-Specific Storage pattern [9]
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Figure 12: Pluggable Allocators

to allow each ORB to have its own memory management al-
gorithm, thereby reducing the need for thread synchronization
across ORB objects. We define a base class for buffer allocator
that provides operationsnew anddelete .

Middleware users may choose from a set of standard al-
gorithms, such asfast fit or thebuddy system, to implement
new anddelete . Only the classes implementing the algo-
rithms chosen by the application developer need be loaded
and plugged in for use. In future versions of ZEN, we will
investigate varying the algorithm dynamically to improve per-
formance, based upon online feedback and reflection.
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4 Concluding Remarks

This paper describes the design of the ZEN ORB. The objec-
tives of the ZEN project are to:

� Make development of distributed real-time embedded
(DRE) systems easier, faster, more extensible, and more
portable

� Reduce the footprint size of middleware for use in
memory-constrained embedded systems.

� Provide an infrastructure for international DOC middle-
ware R&D efforts by releasing ZEN in open-source form
http://www.zen.uci.edu .

To achieve these goals, ZEN integrates the following COTS
technologies:

� Java, which is relatively easy to learn and use correctly.
� Real-time Java, which alleviates drawbacks with Java

when used to develop of real-time applications.
� CORBA, which is a widely adopted standard for devel-

oping distributed applications
� Real-time CORBA, which extends CORBA with key

end-to-end QoS capabilities.
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