
Experiences Using Adaptive Middleware in Distributed Real-time Embedded
Application Contexts: a Dependability Perspective

Christopher D. Gill
Washington University,

St. Louis

Joseph P. Loyall, Richard E Schantz
BBN Technologies,

Cambridge

Douglas C. Schmidt
University of California,

Irvine

Abstract
Over the past few years we have developed a number of

real world applications that have both motivated and used
middleware technologies for COTS-based distributed ob-
ject computing in general, and runtime adaptive behavior
in particular. In this context, a new twist on the theme of
dependability involves adaptation as an effective means
for dealing with the less-than-optimum situations that of-
ten arise due to failures and other forms of sudden, unex-
pected behavior. This paper briefly describes two of these
applications, Weapons Systems Open Architecture
(WSOA) and Unmanned Aerial Vehicles (UAV), which
have already undergone a series of evaluation steps to
determine the suitability of their concepts and implemen-
tations under realistic usage scenarios.

Our focus in this paper is on the adaptivity exhibited by
WSOA and UAV applications under changing operating
conditions, and on the technical basis for the effective
marshaling of modified workplans to keep application
mission objectives focused using available resources. We
summarize some of the lessons learned thus far in devel-
oping these applications and the underlying middleware
technologies, and show how they influence each other.
We also assess the suitability of the solutions offered, dis-
cuss some of the difficulties encountered along the way,
and outline the means we are applying to overcome them.
We conclude with some of the key research challenges that
must be resolved to field distributed real-time and embed-
ded systems that can be depended upon to perform ade-
quately, even under extreme and unusual operating cir-
cumstances.

1. Introduction

1.1. Emerging Trends

The next-generation of mission-critical distributed real-
time and embedded (DRE) systems require an increasingly
wide range of features, while at the same time minimizing
costs. For instance, next-generation avionics mission
computing systems [WSOA] must collaborate with remote
command and control systems, provide on-demand
browsing capabilities for human operators, and respond
flexibly to unanticipated situational factors that arise in

run-time environments [UAV]. Moreover, these systems
must perform unobtrusively, shielding human operators
from unnecessary details, while simultaneously communi-
cating and responding to mission-critical information at an
accelerated operational tempo.

The characteristics of next-generation DRE systems
present QoS requirements for shared resources and work-
loads that can vary significantly at run-time. In turn, this
increases the demands on end-to-end system resource
management and control, which make it hard to simulta-
neously (1) create effective resource managers using tra-
ditional statically constrained allocators and schedulers,
(2) achieve reasonable resource utilization, and (3) meet
the individual application needs for tradeoff preferences.
In addition, the mission-critical aspects of these systems
require that they respond adequately to both anticipated
and unanticipated operational changes in their run-time
environment, and ensure critical components can acquire
available resources. Meeting the increasing QoS demands
of next-generation real-time systems motivates the need
for adaptive middleware-centric abstractions and tech-
niques, such as the automated reconfiguration, layered
resource management, and dynamic scheduling techniques
focused on in our research.

Introducing application-level awareness of changes to
expected and delivered QoS is a new direction for inserting
adaptive behavior into DRE applications. Adaptation can
occur at any and all of the various layers of the system,
including customized approaches in the application itself
and standard service (re)configurations within the sup-
porting middleware infrastructure. An example of an ap-
plication-level adaptation might be moving from full mo-
tion video to audio and still imagery to text-only interac-
tions. An example of a service-level adaptation might be
acquiring additional bandwidth by preempting lower pri-
ority users or automatically instantiating additional re-
source replicas when another one becomes unreachable.
The key to success in these adaptations lies in developing
paths through the system layers that can effectively coor-
dinate the otherwise independent activities so they provide
maximum utility to developers and users without conflict-
ing behavior that might otherwise result from a series of
independent or transparent actions.

Computer system dependability has often traditionally
meant, and continues to mean, redundancy management in

g
t
f
w
q
p
i
s
r
s
e
m
v
i

w
c
d
t
i
t
t
a
d
o
g
r
t
a
s
h

1
A

a
t
a

grated components enable an unprecedented degree of
application-level control and adaptability to varying con-
ditions typically found in both embedded and Internet en-
vironments. In turn, these integrated capabilities enable a
new generation of DRE applications whose resource man-
agement strategies can be customized readily, without the
need to make application developer responsibilities sig-
nificantly more complex or risky.

2. DRE Examples

This section discusses two example DRE applications
we’ve built, evaluated, and experimented with as part of
our investigation of managing QoS and adaptive behavior
to meet mission requirements under varying and changing
Logical Method Calls

Bandwidth
Control

Status
Collection

Configuration
Management

Client Host Network

Operating System
and Protocols

Middleware

Applications
Client

Servant Host

Middleware

Applications
Object

Resource
Managers

Resource
Managers

Property
Managers

Policy
Managers QoS Adaptive Layer

Common Services
QoS Adaptive Layer
Common Services

Distributed Objects
COTS ORB

Distributed Objects
COTS ORB

Mechanisms

Network Based Services
Event

Services
Name

 Services
...
...Managers

Operating System
and Protocols

Communication and
Concurrency Mechanisms

Communication and
Concurrency Mechanisms

Figure 1: Abstract System Model
eneral and replication management in particular. In that
radition, an application or system has some specific fixed
unctionality. Moreover, there are parts of the system that
hen integrated together and behaving properly with ade-
uate resources provide that functionality. By analyzing the
otential failures and providing enough redundancy, the idea
s generally to mask the fact that a failure has occurred by
ubstituting failed ones with alternate parts that provide
oughly the same capability. There has been considerable
uccess with that approach, but also significant limitations,
specially as the systems we try to make dependable become
ore distributed and complex, and are subject to many more

ariations of not only failures but also changes in the operat-
ng environment.

It is particularly hard to mask anomalies in DRE systems
hose dispersed components also have real time performance

onstraints. A complementary approach to this type of
ependability management is providing the best service under
he circumstances, even when those circumstances may not
nclude all of the desirable attributes of the intended compu-
ation or system. A truly dependable system can be expected
o do the “right thing” under whatever circumstances arise
nd whatever resources are available. It is this type of
ependability that we explore in this paper, i.e., the behavior
f a system under unexpected or unplanned conditions. Our
oal is to provide the most effective behavior under any
esource availability circumstances. Our approach is to alter
he pattern of interactions or simultaneously modify the
pplication or system behavior itself to an alternate form more
uited to the circumstances, instead of–or in addition to–
aving identical replicated services available.

.2. A Common Middleware Framework for
daptable Distributed Computing

Figure 1 illustrates our general concept of middleware
nd some of the key layers we are using to organize our
echnology integration activities. Based on our prototyping
nd benchmarking activities to date [ICDCS], these inte-

operating conditions. The first of these (WSOA) is part of
a fielded concept of operation in conjunction with the
Boeing Company and AFRL supporting dynamic inflight
replanning. The second (UAV) represents a real-time
video sensor capture, dissemination, and processing capa-
bility with feedback, linking mobile and fixed assets, op-
erating over shared resources.

2.1. Weapons System Open Architecture (WSOA)

The Weapons System Open Architecture (WSOA) pro-
gram has explored the possibility of building an open-
systems testbed environment in which legacy embedded
systems in the avionics domain can be integrated within a
next-generation middleware quality of service (QoS) man-
agement context to provide unprecedented capabilities for
time-critical target prosecution. The major feature areas
provided by the WSOA framework (see Figure 2) are as
follows:
• Tactical communication links, using legacy Link 16

technology to connect mission computers on an F-15
aircraft with imagery terminal servers on a command-
and-control (C2) aircraft.

RTARM

Browser
Application

Collaboration
Client

Application
Delegate

Progress
Contract

VTFCollaboration
Server

C2 QoS Mgmt

ORBexpress

Net RM

TAO ORB

TAO Adaptive
 Scheduler

AdjustAdjust
expected QoSexpected QoS

Adaptive behavior toAdaptive behavior to
update compressionupdate compression

level of next tilelevel of next tile

Optimization withinOptimization within
current operatingcurrent operating

regionregion
Criticality assurance,Criticality assurance,

then utilizationthen utilization
optimizationoptimization

F-15F-15C2C2

Adaptive behavior toAdaptive behavior to
update operatingupdate operating

regionregion

Link-16 Live or Simulation Software Link-16 Live or Simulation Software

Boeing
BBN

Oregon Graduate Institute
Washington University

HTC

OSA C3I
Simulation

Figure 2: WSOA dynamic replanning system architecture

• Collaborative planning between F-15 and C2 personnel
during a mission.

• Giving F-15 personnel information-mining capabilities
on the C2 imagery libraries, via a browser-like interface
using standard F-15 cockpit equipment.

• Link bandwidth optimization, using contract-based
evaluation of application requirements and system re-
sources and loads.

• Adaptive and dynamic QoS management, to ensure
maintenance of critical assurances, while optimizing and
tuning non-critical performance.

This paper highlights the last two feature areas: link
bandwidth optimization and adaptive and dynamic QoS
management. To provide assurances and optimization of
key QoS system properties, coordinating diverse ap-
proaches to a number of QoS management areas is funda-
mental. In particular, we have integrated several forms of
advanced middleware capabilities within the WSOA test-
bed, including the following technologies that constitute a
layered middleware architecture (from top to bottom; see
Figure 3:

• QuO[QuO], an end-to-end QoS management middle-
ware framework developed at BBN Technologies

• RT-ARM[RT-ARM], a real-time adaptive resource
manager developed at Honeywell Technologies

• Kokyu[Kokyu], a real-time scheduling and dispatching
framework developed at Washington University in St.
Louis

• TAO[TAO], a high-performance and real-time
CORBA-compliant object request broker (ORB)
developed at Washington University in St. Louis
and the University of California, Irvine.

In this section we consider how the WSOA
project provides insights into the nature of depend-
ability in large-scale heterogeneous systems with
demanding QoS requirements. Of particular inter-
est is how the balance of (1) strict assurances for
critical system behavior and (2) adaptive tuning
and optimization of non-critical behavior is
achieved. Each middleware layer addresses sepa-
rate concerns, and yet those concerns must be
woven seamlessly end-to-end and layer-to-layer to
achieve robust and dependable system perform-
ance in complex mission-critical systems, such as
the WSOA testbed framework.

Robust behavior during overload. One key
area in which dependability must be considered is
whether skillful management of resources can al-
low a more robust response to scarcity in worst-
case conditions, as well as giving better overall

performance in the average case. In WSOA, real-world
constraints on power consumption, weight, and frequency
of processor upgrades, limit the ability to offer sufficient
resources through excessive over-provisioning. For ex-
ample, the complexity of the environment in which
WSOA is expected to operate, combined with the further
complexity of systems-of-systems integration end-to-end,
means that explicit testing of all possibilities is not possi-
ble. Instead, other techniques, such as combining testing
and model-based analysis must be pursued [Stuart:01].

While the total system requirements for the WSOA
testbed are both high in quantity and variable in the face of
environmental variations, a key insight is that systems of
this kind may still be engineered so that a critical subset of
the total requirements can be implemented so that they are
both (1) lower in quantity and (2) more predictable in both
time and in interaction with other system features. For
example, operations can be designed in a way similar to
the imprecise computations model [ChungLiuLin:90] in
that a fixed sufficient number of computation steps could
be performed by a single critical operation, with additional
desirable computation steps being performed by a se-
quence of non-critical operations whose execution is not
assured. This means that resources must be provisioned to
assure the maximum critical requirements can be met, and
that additional processing be managed dynamically and
adaptively with remaining resources.

The changing nature of proper functioning. In an
avionics mission-computing environment, such as WSOA,
operations may exhibit different degrees of criticality, de-
pending on the environmental and system context. For
example, consider computing the next segment of a navi-

QuO

RT-ARM

• Manages application progress
– Early, On-Time, or Late for each operation

• Defines operating regions
– Range of rates for each operation
– Execution deadlines and expected number of

dispatches per operation

• Manages QoS parameters within the given
operating regions

– Adjust rates within defined ranges for each
operation

• Reports when execution deadlines are missed (or
will be missed)

System
Resource
Manager

Processor
Resource
Manager

Late

Early

On Time

Kokyu Scheduler
• Binds specific rate according to RT-ARM

supplied admission control policy
• Queues operations and enforces hybrid

static/dynamic scheduling policy
• Makes available to RT-ARM the actual execution

times of each scheduled operation

Kokyu
Adaptive
Scheduler

TAO ORB

Figure 3: Layered resource management

g
p
d
p
e
o
s
p
n
o
c

m
a
s
m
p
o
a
q
W
p
e
(
e
p
c
l

e
l
l
W
m
q

compression levels for each tile.
Moreover, system load, user inputs, and
other factors may further perturb the
conditions under which QoS is man-
aged.

A control-centric QoS management
architecture is therefore necessary to
maintain dependable system behavior in
the face of unanticipated conditions.
QuO monitors and adjusts its perception
of system behavior regularly, so that it
maintains a clear picture of the actual
conditions under which it is controlling
system QoS. RTARM monitors a dif-
ferent set of conditions, such as whether
it is succeeding in meeting control
boundaries for processing (decompres-
sion, storage, and delivery) tiles that
0

50

100

Start Deadline

Time

%
 Im

ag
e

P
ro

ce
ss

ed

Early

Late

On Time

• Request more bandwidth on next tile

• Request higher priority

• Request lower Q level on next tile

• Notify application

• Request higher Q level on next tile

• Finish early

Image A

Image B

Figure 4: A QuO contract monitors the progress of image download and
adapts to keep it within the “On Time” range
ation route, with each segment going between two way-
oints. In some situations, such as under low-threat con-
itions, the first two segments from the aircraft’s current
osition may be the only ones considered critical, and oth-
rs can be designated non-critical to reduce the demands
f the critical subset of processing. In other situations,
uch as egress from a high-threat environment, more route
lanning may be considered critical, so that additional
avigation operations must be added to – and presumably
ther kinds of processing can be removed from – the criti-
al subset.

Interestingly, non-critical processing may also be made
ore dependable through context-aware adaptive man-

gement. For example, if a non-critical navigation route
egment cannot be computed on time, the application
ight retry the computation rather than proceed to com-

ute the next segment, whose origin would depend on the
ne that was not computed. As a similar example, im-
gery is downloaded as a sequence of tiles of varying
uality, radially from a point of interest in the image.
SOA uses the QuO middleware to monitor download

rogress, and tune image tile compression upward as nec-
ssary to fit within the specified image transmission time
see Figure 4). Clearly, image tiles near the point of inter-
st must be kept at as low compression as possible to im-
rove image quality – however, additional surrounding
ontext in the image may still be of sufficient resolution at
ower quality to be useful.

The issue of timeliness for imagery download is inter-
sting in the WSOA context due to the complexity of the
ibraries themselves, and the degree to which compression
evels depend on the contents of the images themselves.

hile a QuO contract may request a level of compression
atching expectations of timely download and sufficient

uality, the image itself may result in discrete alternative

arrive at the F-15 endsystem, and when
it cannot feasibly schedule that proc-

essing either directs Kokyu to reschedule the CPU with
some operations at lower ranges of available rates, or re-
ports back to QuO that it cannot meet its obligations and
QuO can respond accordingly. What is most important
here is that the control loop is closed, even though it
crosses multiple QoS management layers.

Moving design and resource management decisions
to later in the software engineering cycle. In the Bold
Stroke domain-specific middleware, upon which the
WSOA framework is based, late binding was applied ini-
tially to software, in an evolution from hand-crafted as-
sembly language, to an object-oriented component-based
CORBA approach written in C++. The effect of this evo-
lution was that the point in the software lifecycle at which
functionality could be applied was pushed significantly
later. For example, in the hand-crafted version, all func-
tionality had to be defined before the design of a cyclic
executive that ran the components. In the initial CORBA
version, rate monotonic scheduling was done at system
build time, and through careful design of system modes,
the set of objects that was active could be selected at run-
time.

WSOA takes this idea of late binding to another level,
particularly in the area of QoS management. Hybrid
static/dynamic scheduling and adaptive selection of exe-
cution rates was applied by Kokyu to defer operation
scheduling until run-time. The RTARM performed adap-
tive monitoring and adjustment of available rates to main-
tain system operating conditions within specified limits.
QuO used contract-based monitoring and evaluation to
integrate diverse resource management techniques (e.g.,
image compression levels and rates of execution for the
decompression operation) and ensure QoS requirements
were met end-to-end.

m
s
h
s
l
Q
s
a
o
a
o
p
m
i
T
s
r
k
t
n
R
t
a
o
o
s
o

l
d
a
a
s
1
2

3. QuO-triggered adaptation of
available rates of execution for
image tile processing operations
4. RTARM in-region evalua-
tion
5. RTARM-triggered adapta-
tion of available rates for image
tile processing operations and
6. Kokyu scheduler adaptive
rescheduling of operations.

In addition, we have instru-
mented the image tile request-

download-decompression-
delivery path to assess the im-
pact of adaptive management on
application performance. We
will run three major experiments,
with repeated trials of each: (a)
full compression, without adap-
Control Station Host 5

CORBA A/V
Streaming Service

UAV Host 1

MPEG
File

Host 4

Wired

Wireless
Ethernet

Video
Distributor
Process 1

Video
Distributor
Process 2

Video
Distributor
Process 3

Video
Source
Process Filter

Filter
Contract

UAV Host 2

MPEG
File

Video
Source
Process Filter

Filter
Contract

UAV Host 3
Video

Source
Process

Scale/
Compress

Quality
Contract

Bandwidth
Management

Bandwidth
Management

Bandwidth
Management

Throughput
Contracts

Displays

Control Station Host 6

Throughput
Contracts

Displays

Control Station Host 7

ATR
Contract

ATR
Display

Figure 5: Architecture of the Current UAV Demonstration
Knitting the different perspectives into a unified
anagement capability. The various capabilities de-

cribed above need to be integrated together to form a co-
esive system-level solution, which involves information
haring across and between these views. Each of the three
evels of adaptive QoS management described above,
uO, RTARM, and Kokyu, operates on a different time

cale. QuO can make image compression adjustments on
 per-tile basis, with a maximum rate on the order of sec-
nds. RTARM also bases its decisions on rate selection,
nd its maximum responsiveness is therefore also on the
rder of seconds. Note that QuO might make both a com-
ression level decision and handle a report of failure to
aintain the given QoS limits from RTARM in the same

nterval, though such case are expected to be infrequent.
he Kokyu scheduler makes operation scheduling deci-
ions whenever requested by RTARM, so its rate is natu-
ally tied to the RTARM. As noted below, however, Ko-
yu is designed to minimize the fraction of that interval
hat it uses, to minimize overhead of adaptive responsive-
ess and improve the possible responsiveness, e.g., if the
TARM were calibrated to run at a faster rate. Finally,

he Kokyu dispatcher makes dynamic scheduling decisions
nd multiplexes dispatch requests onto prioritized threads,
n the order of ten microseconds. As a result, as little
verhead is added to the in-band (as compared to Kokyu
cheduling, RTARM, and QuO adaptation, which operate
ut-of-band) path as possible.

Experimentation. To measure the benefits of multi-
ayer adaptive management, we are in the process of con-
ucting experiments within a realistic F-15 OFP hardware
nd software environment. We have instrumented the
daptation paths through the application to collect time
tamps around the following activities:
. QuO contract evaluation
. QuO-triggered adaptation of compression levels

tation, (b) no compression, with-
out adaptation , and (c) variable compression, using adap-
tation.

By obtaining and analyzing these data, we will achieve
a clear profile of the following key factors for multi-layer
adaptive resource management:
1. Coupling of layers in time and in overhead
2. Interactions of adaptation at different time-scales
3. Overhead measures for adaptation at each layer

Impact of adaptation on application performance – par-
ticularly how adaptation provides acceptable quality and
timeliness of imagery, compared to over-compressed or
under-compressed approaches without adaptation.

2.2. The Unmanned Aerial Vehicle (UAV) Appli-
cation

A second example we’ve worked with is an unmanned
aerial vehicle (UAV) demonstration. As part of an activity
for the US Navy, DARPA, and the US Air Force, we have
been developing a DRE system centered on the concept of
information dissemination from, and control of, UAVs. In
this application, we are concerned with managing the QoS
requirements for (a) the delivery of video from UAVs to a
command and control (C2) platform (e.g., a shipboard
environment, ground station, or air C2 node) and (b) the
delivery of control signals from the C2 platform back to
the UAVs. This QoS management includes trading off
video quality and timeliness, and coordinating resource
usage from end-to-end and among competing UAVs, to
satisfy changing mission requirements under dynamic, and
potentially hostile, environmental conditions.

UAV architecture. Figure 5 illustrates the architecture
of the demonstration. It is a three-stage pipeline, with
simulated UAVs or live UAV surrogates (such as airships
with mounted cameras) sending video to processes (dis-

tributors) that distribute the video to the proper control
stations. The UAVs in our prototypes are implemented by
two different types of processes:
1. The first reads MPEG video from a file simulating

high frame rate video capture devices.
2. The second is capturing video from a live camera feed,

which adds realism to the prototype and provides the
ability to manipulate the raw video, but produces
frame rates limited by the camera’s capabilities.

Our prototype also uses both wired and wireless
Ethernet connections to simulate the data links from the
UAVs to the distributor host. The wireless links from the
second and third UAV surrogates contend for the same
wireless Ethernet connection and provide a forum for ex-
perimenting with wireless video adaptation strategies. The
wired Ethernet connection provides a higher bandwidth
connection simulating current and emerging higher-
capacity wireless transports.

The video distributor processes send the video
streams to control stations on a land- or ship-based net-
work. The control stations include video display processes
and other video processing applications (the current dem-
onstration includes an automatic target recognition – ATR
– application), each with their own mission requirements.

UAV adaptivity strategies. Adaptation is used as part
of an overall system concept to provide load-invariant
performance. The video displays throughout the ship must
present the current images observed by the UAV with ac-
ceptable fidelity, regardless of the network and host load,
in order for the control station operators to achieve their
missions, e.g., flying the UAV or tracking a target. To
accomplish this, QuO system condition objects monitor
the frame rates and the host load on the distributor and
video display hosts. As the frame rate declines and/or the
host loads exceeds a threshold, they cause region transi-
tions, which trigger the following adaptations:
• If the network is the constrained resource, send a re-

duced amount of data, for example by dropping frames
or compressing the video at the sender or the distributor.

• If the land-based network is the constrained resource,
use a bandwidth reservation protocol to ensure that the
distributor is able to send the necessary data to the
viewers through the network, even when the network is
congested.

• If the distributor CPU is the constrained resource, move
the distributor to a different host where more resources
are available.
In addition, the ATR and other video processing appli-

cations must receive a sufficient frame rate and amount of
critical data content to fulfill their missions, e.g., to recog-
nize threats and targets in the video images. To accom-
plish this, QuO contracts on the UAV video sources coor-
dinate to share the wireless link. For example, the current
prototype scales and compresses the video destined for the
ATR process while it filters those destined for human dis-

play as described above. This maintains a high rate of
frames with sufficient information (but not necessarily
enough for viewing) for the ATR and a smooth, viewable
video for the human operators.

Adaptation is also used to respond to changing mission
requirements and to dynamic conditions. For example, in
the current UAV prototype, when the ATR process recog-
nizes a target, it changes the mission requirements of the
corresponding UAVs. Whereas previously they only
needed to make sure a high rate of the critical data needed
by the ATR made it through, once a target has been de-
tected the UAV must provide human viewable video so
that a commander can make a decision, an operator can
track the target, etc. To accomplish this, a contract associ-
ated with the ATR host reacts to target recognition by
propagating that information upstream to contracts on the
UAV sources. The contracts on the UAV coordinate to
achieve the new mission, i.e., providing high quality video
at a high rate from the targeting UAV, in the following
manner:
• The targeting UAV shuts off its scaling and compres-

sion of the video
• To accommodate the greater amount of data on the

wireless link from the UAV that spotted the target, the
other UAVs will reduce their frame rate to the minimal
acceptable rate.
The current prototype includes diversity in the video

format (MPEG and PPM), network transport (wireless,
LAN, and WAN), and mission requirements (video view-
ing and ATR) to support a number of experiments in dy-
namic adaptation. The TAO A/V Streaming Service pro-
vides the flow connection between the various processes.
This is an implementation of the CORBA A/V Streaming
Service [CORBA-AV:97], which supports multimedia
applications. The CORBA A/V Streaming Service uses
RSVP as its bandwidth reservation mechanism.

Robust behavior under overload. Similarly to the
WSOA application, the UAV prototype has requirements
for dependability even in the presence of load or variations
in the availability of resources. Also similarly to WSOA,
these include both network resources and CPU resources.
The C2 components (whether shipboard or ground-based)
that are the target for the UAV video data do not typically
face the same constraints on power consumption and
weight as the WSOA avionics platform, although the
UAVs themselves will frequently face even more strict
constraints in these areas. Moreover, the current instantia-
tion of the UAV prototype requires resource management
in two dimensions:
1. Horizontal, or end-to-end, to achieve requirements of

video delivery from any particular UAV to the control
stations that use it (and control signals from the control
stations back to the UAVs).

2. Vertical, or coordinated, to mediate the conflicting re-
quirements of multiple UAVs, multiple distributors, and

multiple control stations in any stage of the pipeline,
competing for a set of resources, e.g., CPU, network,
and data.
The changing nature of proper functioning. In the

UAV platform, mission requirements can change from
control station to control station and from moment to mo-
ment, based upon environmental conditions. In normal
operation, certain control station functions, such as pilot-
ing the UAV, may take priority over other functions, such
as non-critical observation. The presence of threats or tar-
gets, however, might make the priorities of functions
change rapidly. Context-aware adaptation can trade off
less important functionality to maintain the requirements
of important functionality. For example, we might choose
to scale back the video frame rate from a UAV to mini-
mize the latency of the video for a control station that is
piloting the UAV. A similar adaptation can be used to
maximize the data content of the particular video frames
for a targeting officer who must have a high-fidelity image
to make command decisions.

The conflicting demands of functional requirements
can limit the types of adaptations that are possible and the
places at which they occur. For example, if the piloting
control station above triggers frame filtering at a UAV
source to achieve lower latency, it can affect other stations
that are counting on high data content, such as a collector
of surveillance data for off-line analysis. A better strategy
might be to reserve network resources so that both stations
can achieve their requirements: low latency and high data
content. While some adaptation decisions can be made
based only on local information, mission-wide strategies
must constrain the adaptation choices available. This is
why it is crucial for these adaptation strategies to be pro-
grammed in middleware, where they can consider both
application-level requirements and system-level mecha-
nisms.

Separation of concerns and late binding of adapta-
tion strategies. The UAV prototype application was de-
veloped using the QuO middleware to separate the func-
tional concerns of the application from the adaptation,
QoS, and dependability concerns. This enabled the func-
tional behavior of the application – video capture, distri-
bution, display, and control – to be developed without
entangling information about the platform in which the
application will be hosted. The development of the UAV
“system” then becomes a “construction” process, com-
bining functional components and QoS components into
an overall system suitable for the functional requirements,
dependability requirements, and the characteristics of the
target platform once it is known. For example, network
resource reservation (which is a reusable component in our
UAV prototype) is suitable only if the application re-
quirements can make use of it (i.e., the application needs
high bandwidth, low latency) and the platform can support
it (i.e., the network supports bandwidth reservation).

This advanced separation of concerns enables us to cre-
ate an application that is sufficiently flexible and efficient
for the requirements and environment that it is targeted
for. The alternative, i.e., to encode the adaptation in the
functional code of the application, would result in either
1. A tremendously complex and inefficient application that

covered every possible contingency in a large set of en-
vironments or

2. A more efficient, but brittle, application that is depend-
able only in a small set of environments.
Using middleware to knit together a unified capa-

bility. The current UAV prototype pulls together QuO
adaptation, along with adaptation strategies written in the
QuO toolkit, and resource reservation using RSVP. In one
deployment of the UAV prototype, i.e., in the NSWC
HiPer-D testbed, we integrated with a global resource
manager capability. We have also begun exploring using
Real-time CORBA, which is a first step towards incorpo-
rating an integrated CPU/network resource management
capability as part of a complete end-to-end and scalable
solution.

Experimental Results. We have installed two versions
of the UAV prototype application in the Hiper-D lab at the
Naval Surface Warfare Center (NSWC) and have evalu-
ated them in the Hiper-D 2000 and 2001 series of inte-
grated advanced concept demonstrations for the Naval
Surface Ship domain. These versions have been described
in earlier papers [ICDCS, UAV]. The current version de-
scribed in this paper is being provided as an open-source
release to researchers investigating related issues. The
Hiper-D 2000 version used TCP and an earlier, less func-
tional MPEG viewer, and illustrated the use of frame-
dropping and migration of the distributor in response to
excessive processor loads. The Hiper-D 2001 version uses
the CORBA A/V Streaming Service, UDP, and
DVDView, and combines bandwidth reservation, frame
dropping, and load balancing. The current version is the
one described in this paper and adds wireless networks,
live camera feeds, video processing, control feedback, and
contract-controlled coordination between UAVs.We ran
an experiment on the second version of the UAV software,
using the CORBA A/V Streaming Service over UDP, to
informally evaluate the effectiveness of the adaptability
strategy in focusing available resources when they are
constrained. We ran a total of three runs:
1. A control run, with no adaptation
2. A second run, where adaptation is implemented by

frame dropping and
3. A third run, which utilized both frame dropped and

RSVP bandwidth management.
The trials were run with the sender and distributor on

the same Pentium III 933 MHz processor and 512 MB of
RAM, and with the receiver on a separate laptop, with a
Pentium II 200 MHz processor and 144 MB of RAM, all
running Linux, with a 10 Mbps link between them. We

s
l
l
e
M
f
a

•

•

•

delay of 59 ms, a minimum delay of 52 ms, and a
maximum delay of 106 ms. The average delay of the
frames sent through when the system was not under load
was 58.1 ms, with a median of 56 ms, a minimum of 52
ms, and a maximum of 71 ms. 100 percent of the I
frames sent made it through when the system was under
load (120 out of 120), with 0% of the I frames being lost
by the UDP transport. The average delay of the frames
delivered while the system was under load was signifi-
cantly lower than the other two runs, 88.5 ms.

Figure 6 illustrates the improvements afforded by the
adaptation under load. The test runs that included QuO
0

100

200

300

400

500

600

700

0 100 200 300 400 500 600

Number of frames sent

Nu
m

be
r o

f f
ra

m
es

 re
ce

iv
ed

No Adaptation

Frame dropping

Frame dropping and
network reservation

Load

Figure 6: QuO adaptation ensured successful delivery of all
video under load
tarted the video running. After 60 seconds, we applied a
oad to the network link for 60 seconds, then removed the
oad. After another 180 seconds, 300 seconds in all, the
xperiment terminated. The data collector recorded each
PEG I frame (2 per second, 600 in all) that was sent

rom the sender, and each that was received at the receiver,
nd the time elapsed from send to receive.

The results of each test run are described below:
 Test run 1, which as the control run without any adapta-
tion, lost 119 of the 121 I frames sent while the system
was under load, i.e., only 481 of the 600 I frames sent
made it through. The average delay of the frames that
made it through was 56.58 ms, with a median delay of
55 ms, a minimum delay of 38 ms, and a maximum de-
lay of 121 ms. The average delay of the frames sent
through when the system was not under load was 56.33
ms, with a median of 55 ms, a minimum of 38 ms, and a
maximum of 67 ms. 1.65 percent of the I frames sent
made it through when the system was under load (2 out
of 121), with 98.35% of the I frames being lost by the
UDP transport. The average delay of the two that did
make it through under load was 115.5 ms.
 Test run 2, with frame dropping as its only adaptation,
got all 600 of its I frames through despite the load on the
system. The average delay of all the frames was 70.01
ms, with a median delay of 57 ms, a minimum delay of
50 ms, and a maximum delay of 143 ms. The average
delay of the frames sent through when the system was
not under load was 57.01 ms, with a median of 55 ms, a
minimum of 50 ms, and a maximum of 68 ms. 100 per-
cent of the I frames sent made it through when the sys-
tem was under load (120 out of 120), with 0% of the I
frames being lost by the UDP transport. The average
delay of the frames delivered while the system was un-
der load was 122.15 ms.
 Test run 3, with adaptation using both frame dropping
and network reservation (RSVP), also got all 600 of its I
frames through despite the load on the system. The av-
erage delay of all the frames was 64.2 ms, with a median

adaptation were able to recover from the load imposed on
the system to keep the video flowing and not lose any im-
portant (i.e., I) frames. The video stream that did not have
adaptive control lost nearly all the video sent during the
time when load was imposed on the system.

3. Lessons Learned and Open Research Issues

The previous section presented two applications we
have built to evaluate and validate our middleware-based
concepts and ideas concerning managed QoS and adaptive
behavior. We looked at these applications through a nar-
row lens focusing on how we use managed QoS concepts
to promote dependability under non-optimal and/or
changing conditions. Based on our results, we have
learned the following lessons:
• Dependability needs to address working under changing

requirements and unanticipated conditions

• It is feasible to operate with less than a full complement
of resources, so long as they are targeted at the critical
parts

• There is a context sensitive nature to “what’s the best
behavior”

• Late binding is an avenue to many innovative ap-
proaches

• Layered solutions with integrated parts are an important
development tool, especially for large, complex prob-
lems. This involves information sharing and cooperative
behavior across and between these layers.

In this section we speculate on where these types of ac-
tivities are or ought to be headed. In doing so, we take a
broader view of the challenges we face in constructing the
new generation of DRE systems, going well beyond the
relatively simple examples developed to date. In our view,
the key research challenges for the next several years will
involve the integration and augmentation of the following
capabilities:

• Contracts and adaptive meta-programming –
Information must be gathered for particular applications
or application families regarding user requirements, re-
source requirements, and system conditions. Multiple
system behaviors must be made available based on what
is best under the various conditions. This information
provides the basis for the contracts between users and
the underlying system substrate. These contracts pro-
vide not only the means to specify the degree of assur-
ance of a certain level of service, but also provide a
well-defined, high-level middleware abstraction to im-
prove the visibility of adaptive changes in the mandated
behavior. A crucial (and currently missing) capability
involves the ability to change strategies rapidly and with
few negative side effects.

• Graceful degradation – Adaptive meta-programming
mechanisms must also be devised to monitor the system
and enforce contracts, providing feedback loops so that
application services can degrade gracefully (or augment)
as conditions change, according to a prearranged con-
tract governing that activity. The initial challenge here
is to establish the idea in developers’ and users’ minds
that multiple behaviors are both feasible and desirable.
The next step is to put into place the additional middle-
ware support–including connecting to lower level net-
work and operating system enforcement mechanisms–
necessary to provide the right behavior effectively and
efficiently given current system conditions.

• Prioritization and physical world constrained load in-
variant performance – Some systems are highly corre-
lated with physical constraints and have little flexibility
in some of their requirements for computing assets, in-
cluding QoS. Deviation from requirements beyond a
narrowly defined error tolerance can sometimes result in
catastrophic failure of the system. The challenge is in
meeting these invariants under varying load conditions.
This often means guaranteeing access to some re-
sources, while other resources may need to be diverted
to insure proper operation. Generally collections of
such components will need to be resource managed
from a system (aggregate) perspective in addition to a
component (individual) perspective.

Although it is possible to satisfy contracts, achieve
graceful degradation, and globally manage some system
resources to a limited degree in a limited range of systems
today, much R&D work remains. The research strategies
needed to deliver these goals can be divided into the seven
areas described below:

1. Individual QoS Requirements – Individual QoS deals
with developing the mechanisms relating to the end-to-end
QoS needs from the perspective of a single user or DRE
application. The specification requirements include multi-

ple contracts, negotiation, and domain specificity. Multi-
ple contracts are needed to handle requirements that
change over time and to associate several contracts with a
single perspective, each governing a portion of an activity.
Different users running the same application may have
different QoS requirements emphasizing different benefits
and tradeoffs, often depending on current configuration.
Even the same user running the same application at differ-
ent times may have different QoS requirements, e.g., de-
pending on current mode of operation and other external
factors. Such dynamic behavior must be taken into ac-
count and introduced seamlessly into next-generation dis-
tributed systems.

General negotiation capabilities that offer convenient
mechanisms to enter into and control a negotiated behav-
ior (as contrasted with the service being negotiated) need
to be available as COTS middleware packages. The most
effective way for such negotiation-based adaptation
mechanisms to become an integral part of QoS is for them
to be “user friendly,” e.g., requiring a user or administrator
to simply provide a list of preferences. This is an area
that is likely to become domain-specific and even user-
specific. Other challenges that must be addressed as part
of delivering QoS to individual applications include:
• Translation of requests for service among and between

the various entities on the distributed end-to-end path
• Managing the definition and selection of appropriate

application functionality and system resource tradeoffs
within a “fuzzy” environment and

• Maintaining the appropriate behavior under compos-
ability.

Translation addresses the fact that complex network-
centric systems are being built in layers. At various levels
in a layered architecture the user-oriented QoS must be
translated into requests for other resources at a lower level.
The challenge is how to accomplish this translation from
user requirements to system services. A logical place to
begin is at the application/middleware boundary, which
closely relates to the problem of matching application re-
sources to appropriate distributed system resources. As
system resources change in significant ways, either due to
anomalies or load, tradeoffs between QoS attributes (such
as timeliness, precision, and accuracy) may need to be
(re)evaluated to ensure an effective level of QoS, given the
circumstances. Mechanisms need to be developed to
identify and perform these tradeoffs at the appropriate
time. Last, but certainly not least, a theory of effectively
composing systems from individual components in a way
that maintains application-centric end-to-end properties
needs to be developed, along with efficient implementable
realizations of the theory.

2. Run-time Requirements – From a system lifecycle per-
spective, decisions for managing QoS are made at design
time, at configuration/deployment time, and/or at run-time.
Of these, the run-time requirements are the most chal-
lenging since they have the shortest time scales for deci-
sion-making, and collectively we have the least experience
with developing appropriate solutions. They are also the
areas most closely related to advanced middleware con-
cepts. This area of research addresses the need for run-
time monitoring, feedback, and transition mechanisms to
change application and system behavior, e.g., through dy-
namic reconfiguration, orchestrating degraded behavior, or
even off-line recompilation. The primary requirements
here are measurement, reporting, control, feedback, and
stability. Each of these plays a significant role in deliver-
ing end-to-end QoS, not only for an individual application,
but also for an aggregate system. A key part of a run-time
environment centers on a permanent and highly tunable
measurement and resource status service as a common
middleware service, oriented to various granularities for
different time epochs and with abstractions and aggrega-
tions appropriate to its use for run-time adaptation.

In addition to providing the capabilities for enabling
graceful degradation, these same underlying mechanisms
also hold the promise to provide flexibility that supports a
variety of possible behaviors, without changing the basic
implementation structure of applications. This reflective
flexibility diminishes the importance of many initial de-
sign decisions by offering late- and run-time-binding op-
tions to accommodate actual operating environments at the
time of deployment, instead of only anticipated operating
environments at design time. In addition, it anticipates
changes in these bindings to accommodate new behavior.

3. Aggregate Requirements – This area of research deals
with the system view of collecting necessary information
over the set of resources across the system, and providing
resource management mechanisms and policies that are
aligned with the goals of the system as a whole. While
middleware itself cannot manage system-level resources
directly (except through interfaces provided by lower level
resource management and enforcement mechanisms), it
can provide the coordinating mechanisms and policies that
drive the individual resource managers into domain-wide
coherence. With regards to such resource management,
policies need to be in place to guide the decision-making
process and the mechanisms to carry out these policy deci-
sions.

Areas of particular R&D interest include:

• Reservations, which allow resources to be reserved to
assure certain levels of service

• Admission control mechanisms, which allow or reject
certain users access to system resources

• Enforcement mechanisms with appropriate scale,
granularity and performance and

• Coordinated strategies and policies to allocate distrib-
uted resources that optimize various properties.
Moreover, policy decisions need to be made to allow

for varying levels of QoS, including whether each appli-
cation receives guaranteed, best-effort, conditional, or sta-
tistical levels of service. Managing property composition
is essential for delivering individual QoS for component
based applications, and is of even greater concern in the
aggregate case, particularly in the form of layered resource
management within and across domains.

4. Integration Requirements – Integration requirements
address the need to develop interfaces with key building
blocks for system construction, including the OS, network
management, security, and data management. Many of
these areas have partial QoS solutions underway from
their individual perspectives. The problem today is that
these partial results must be integrated into a common
interface so that users and application developers can tap
into each, identify which viewpoint will be dominant un-
der which conditions, and support the tradeoff manage-
ment across boundaries to get the right mix of attributes.
Currently, object-oriented tools working with distributed
object computing middleware provide end-to-end syntactic
interoperation, and relatively seamless linkage across the
networks and subsystems. There is no managed QoS,
however, making these tools and middleware useful only
for resource rich, best-effort environments.

To meet varying requirements for integrated behavior,
advanced tools and mechanisms are needed that permit
requests for different levels of attributes with different
tradeoffs governing this interoperation. The system would
then either provide the requested end-to-end QoS, recon-
figure to provide it, or indicate the inability to deliver that
level of service, perhaps offering to support an alternative
QoS, or triggering application-level adaptation. For all of
this to work together properly, multiple dimensions of the
QoS requests must be understood within a common
framework to translate and communicate those requests
and services at each relevant interface. Advanced integra-
tion middleware provides this common framework to en-
able the right mix of underlying capabilities.

5. Adaptivity Requirements – Many of the advanced capa-
bilities in next-generation DRE system environments will
require adaptive behavior to meet user expectations and
smooth the imbalances between demands and changing
environments. Adaptive behavior can be enabled through
the appropriate organization and interoperation of the ca-
pabilities of the previous four areas. There are two funda-
mental types of adaptation required:

1. Changes beneath the applications to continue to meet
the required service levels despite changes in resource
availability and

2. Changes at the application level to either react to cur-
rently available levels of service or request new ones
under changed circumstances.
In both instances, the system must determine if it needs

to (or can) reallocate resources or change strategies to
achieve the desired QoS. Applications need to be built in
such a way that they can change their QoS demands as the
conditions under which they operate change. Mechanisms
for reconfiguration need to be put into place to implement
new levels of QoS as required, mindful of both the indi-
vidual and the aggregate points of view, and the conflicts
that they may represent. In particular, fundamental con-
cern in performing adaptive resource management is to
reduce overhead and improve predictability of adaptation.
If too much of the resource budget is spent monitoring and
performing adaptive functions, therefore, adaptation can
prove ineffective or even detrimental to system perform-
ance.

Part of the effort required to achieve these goals in-
volves continuously gathering and instantaneously ana-
lyzing pertinent resource information collected as men-
tioned above. A complementary part is providing the algo-
rithms and control mechanisms needed to deal with rap-
idly changing demands and resource availability profiles
and configuring these mechanisms with varying service
strategies and policies tuned for different environments.
Ideally, such changes can be dynamic and flexible in han-
dling a wide range of conditions, occur intelligently in an
automated manner, and can handle complex issues arising
from composition of adaptable components. Coordinating
the tools and methodologies for these capabilities into an
effective adaptive middleware should be a high R&D pri-
ority.

6. System Engineering Methodologies and Tools – Ad-
vanced middleware by itself will not deliver the capabili-
ties envisioned for next-generation embedded environ-
ments. We must also advance the state of the system en-
gineering discipline and tools that come with these ad-
vanced environments used to build complex distributed
computing systems. This area of research specifically
addresses the immediate need for system engineering ap-
proaches and tools to augment advanced middleware solu-
tions. These include:
• View-oriented or aspect-oriented programming tech-

niques, to support the isolation (for specialization and
focus) and the composition (to mesh the isolates into a
whole) of different projections or views of the properties
the system must have. The ability to isolate, and subse-
quently integrate, the implementation of different, inter-
acting features will be needed to support adapting to
changing requirements.

• Design time tools and models, to assist system develop-
ers in understanding their designs, in an effort to avoid
costly changes after systems are already in place (this is
partially obviated by the late binding for some QoS de-
cisions referenced earlier).

• Interactive tuning tools, to overcome the challenges
associated with the need for individual pieces of the
system to work together in a seamless manner

• Composability tools, to analyze resulting QoS from
combining two or more individual components

• Modeling tools for developing system performance
models as adjunct means (both online and offline) to
monitor and understand resource management, in order
to reduce the costs associated with trial and error

• Debugging tools, to address inevitable problems.

7. Reliability, Trust, Validation, and Certifiability – The
dynamically changing behaviors we envision for next-
generation large-scale, network-centric systems are quite
different from what we currently build, use, and have
gained some degrees of confidence in. In particular, since
adaptive meta-programming mechanisms must monitor
and respond to externally induced stimuli, they are vulner-
able to malicious behavior. Considerable effort must there-
fore be focused on assuring the validity of inputs and ad-
ministrative operations, validating the correct functioning
of the adaptive behavior, and on understanding the prop-
erties of large-scale systems that try to change their be-
havior according to their own assessment of current con-
ditions, before they can be deployed. But even before that,
longstanding issues of adequate reliability and trust fac-
tored into our methodologies and designs using off-the-
shelf components have not reached full maturity and
common usage, and must therefore continue to improve.
The current strategies organized around anticipation of
long life cycles with minimal change and exhaustive test
case analysis are clearly inadequate for next-generation
dynamic systems with stringent QoS requirements.

4. Concluding Remarks

This paper began by discussing the need for adaptive
behavior as a key component of making the computing
and communication systems we build more responsive to
the changing conditions that are often associated with dis-
tributed real-time and embedded (DRE) applications and
environments. We articulated the particular viewpoint of
adaptive behavior as another means to enhance depend-
ability, by keeping systems functioning effectively under
non-optimal and/or changing conditions. We examined
this viewpoint in the context of two representative DRE
systems that we have built using these principles, and also

in the context of related system organization issues. We
then proposed an R&D agenda for the next five years,
which can take these ideas and propel them into a new
generation of systems, responsive both to user require-
ments and realities of real world environments, as well as
to the software engineering challenges associated with
systems of ever enlarging scope and complexity.

References

[WSOA] Corman, David, October 2001, WSOA–Weapon Sys-
tems Open Architecture Demonstration–Using Emerging Open
System Architecture Standards to Enable Innovative Techniques
for Time Critical Target (TCT) Prosecution, 20th Digital Avion-
ics Systems Conference (DASC), Daytona Beach, Florida,
IEEE/AIAA.

[UAV] Karr DA, Rodrigues C, Loyall JP, Schantz RE, Krishna-
murthy Y, Pyarali I, Schmidt DC. Application of the QuO Qual-
ity-of-Service Framework to a Distributed Video Application.
Proceedings of the International Symposium on Distributed Ob-
jects and Applications, September 18-20, 2001, Rome, Italy.

[ICDCS] Loyall JL, Gossett JM, Gill CD, Schantz RE, Zinky JA,
Pal P, Shapiro R, Rodrigues C, Atighetchi M, Karr D. Compar-
ing and Contrasting Adaptive Middleware Support in Wide-Area
and Embedded Distributed Object Applications. Proceedings of

21st IEEE Intern'l Conference on Distributed Computing Sys-
tems (ICDCS-21), April, 2001, Phoenix, AZ.

[RT-ARM] Huang, Jim Jiandong; Jha, R.; Muhammad, Mustafa;
Lauzac, S.; Kannikeswaran, B.; Schwan, K.; Zhao, W.; Bettati,
R. RT-ARM: a real-time adaptive resource management system
for distributed mission-critical applications. IEEE Workshop on
Middleware for Distributed Real-time Systems and Services, 2
December 1997, San Francisco, CA.

[Kokyu] Christopher D. Gill, David L. Levine, and Douglas C.
Schmidt The Design and Performance of a Real-Time CORBA
Scheduling Service, Real-Time Systems: the International Jour-
nal of Time-Critical Computing Systems, special issue on Real-
Time Middleware, guest editor Wei Zhao, March 2001, Vol. 20
No. 2

[TAO] D. C. Schmidt, D. L. Levine, and S. Mungee. The Design
and Performance of Real-Time Object Request Brokers. Com-
puter Communications, 21(4):294–324, Apr. 1998.

[CORBA-AV:97] OMG. Control and Management of
Audio/Video Streams, OMG RFP Submission (Revised), OMG
Technical Document 98-10-05. Object Management Group,
Framingham. MA, Oct 1998.

[QuO] Loyall J, Schantz R, Zinky J, Bakken D. “Specifying and
Measuring Quality of Service in Distributed Object Systems”,
Proceedings of The 1st IEEE International Symposium on Ob-
ject-oriented Real-time distributed Computing (ISORC 98), 1998.

