
The Design and Performance of
Real-Time Java Middleware

Angelo Corsaro, Student Member, IEEE, and Douglas C. Schmidt, Member, IEEE

Abstract—More than 90 percent of all microprocessors are now used for real-time and embedded applications. The behavior of these

applications is often constrained by the physical world. It is therefore important to devise higher-level languages and middleware that

meet conventional functional requirements, as well as dependably and productively enforce real-time constraints. This paper provides

two contributions to the study of languages and middleware for real-time and embedded applications. We first describe the architecture

of jRate, which is an open-source ahead-of-time-compiled implementation of the RTSJ middleware. We then show performance results

obtained using RTJPerf, which is an open-source benchmarking suite that systematically compares the performance of RTSJ

middleware implementations. This paper shows that, while research remains to be done to make RTSJ a bullet-proof technology, the

initial results are promising. The performance and predictability of jRate provides a baseline for what can be achieved by using ahead-

of-time compilation. Likewise, RTJPerf enables researchers and practitioners to evaluate the pros and cons of RTSJ middleware

systematically as implementations mature.

Index Terms—Real-time middleware, real-time Java, QoS-enabled middleware platforms, object-oriented languages, real-time

resource management, performance evaluation.

�

1 INTRODUCTION

1.1 Current Challenges

THEvast majority of all microprocessors are now used for
embedded systems, in which computer processors

control physical, chemical, or biological processes or
devices in real-time. Examples of such systems include
telecommunication networks (e.g., wireless phone services),
telemedicine (e.g., remote surgery), manufacturing process
automation (e.g., hot rolling mills), and defense applications
(e.g., avionics mission computing systems). These real-time
embedded systems are increasingly being connected via
wireless and wireline networks.

Designing real-time embedded systems that implement
their required capabilities are dependable and predictable,
and are parsimonious in their use of limited computing
resources is hard; building them on time and within budget
is even harder. Moreover, due to global competition for
marketshare and engineering talent, many companies are
now also faced with the problem of developing and
delivering new products in short timeframes. It is therefore
essential that the production of real-time embedded
systems can take advantage of languages, middleware,
tools, and methods that enable higher software productiv-
ity, without unduly degrading the quality of service (QoS).

1.2 The State of the Art

Many real-time embedded systems are still developed in C,
and increasingly in C++. While writing in C and C++ is

more productive than assembly code, they are not the most
productive or error-free programming languages. A key
source of errors in C/C++ stems from their memory
management mechanisms, which require programmers to
allocate and deallocate memory manually. Moreover, C++
is a feature rich, complex language with a steep learning
curve, which makes it hard to find and retain experienced
real-time embedded developers who are trained to use it
well.

Real-time embedded software should ultimately be
synthesized from high-level specifications expressed with
domain-specific modeling tools [1]. Until those tools
mature, however, a considerable amount of real-time
embedded software still needs to be programmed by
software developers. Ideally, these developers should use
programming languages and middleware that shield them
from many accidental complexities, such as type errors,
memory management, real-time scheduling enforcement,
and steep learning curves. Java [2] has become an attractive
choice because of its rapidly growing programmer base, its
simplicity, its safety, and especially for its cheaper main-
tenance cost when compared to C/C++. Conventional Java
implementations are unsuitable for developing real-time
embedded systems, however, mostly due to the fact that
1) the scheduling of Java threads is purposely under-
specified, 2) Java is a garbage collected language and most
of the precise garbage collectors known in literature [3] are
not suitable for real-time systems, and 3) Java provides
coarse-grained control over memory allocation and access,
i.e., it allows applications to allocate objects on the heap, but
provides no control over the type of memory in which
objects are allocated.

To address these problems, the Real-Time Java Experts
Group has defined the RTSJ [4], which provides the
following capabilities:

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2003 1

. A. Corsaro is with the Department of Computer Science and Engineering,
Washington University, 1 Brookings Drive, Box 1045, St. Louis, MO
63130. E-mail: corsaro@cse.wustl.edu.

. D.C. Schmidt is with the Institute for Software Integrated Systems,
Vanderbilt University, Nashville, 1829, Station B, Vanderbilt University,
Nashville, TN 37235. E-mail: d.schnidt@vanderbilt.edu.

Manuscript received 8 Dec. 2002; revised 5 Aug. 2003; accepted 5 Aug. 2003.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 118752.

1045-9219/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society

. New memory management models that can be used
in lieu of garbage collection.

. Access to raw physical memory.

. A higher resolution time granularity suitable for
real-time systems.

. Stronger guarantees on thread semantics when
compared to regular Java, i.e., the most eligible
runnable thread is always run.

Until recently, there were no implementations of the RTSJ,

which hampered the adoption of Java in real-time

embedded systems. It also hampered systematic empirical

analysis of the pros and cons of the RTSJ programming

model. Several implementations of RTSJ are now available,

however, including the RTSJ RI from TimeSys [5] and jRate

from Washington University.
This paper significantly extends our earlier work [6], [7]

by providing:

. More extensive coverage of jRate capabilities, such
as its memory regions implementation and its
support for custom allocators.

. A detailed analysis and comparison of scoped
memory that quantifies the trade offs associated
with different types of scoped memory.

. Extensive new test results based on the commercial
version of Linux/RT from TimeSys, which provides
many features (such as higher resolution timer,
support for priority inversion control via priority
inheritance and priority ceiling protocols, and
resource reservation) not supported by the GPL
version of the TimeSys Linux/RT.

The main contribution of this paper is to describe the

techniques used by jRate to implement the RTSJ middle-

ware, as well as to illustrate empirically the performance

pitfalls and trade offs that certain RTSJ design decisions

incur.

1.3 Paper Organization

The remainder of the paper is organized as follows:

Section 2 provides a brief overview of the RTSJ; Section 3

describes the architecture and design rationale of jRate;

Section 4 analyzes the empirical results obtained by

benchmarking jRate and the TimeSys RTSJ RI using our

RTJPerf [6] benchmarking suite; Section 5 compares our

work on jRate with related research; and Section 6

summarizes our work and outlines future plans for

improving the next generation of RTSJ middleware for

real-time embedded applications.

2 THE REAL-TIME SPECIFICATION FOR JAVA

The RTSJ extends the Java API and refines the semantics of

certain constructs to support the development of real-time

applications. In the reminder of this section, we will provide

an overview of the RTSJ key features.

2.1 Memory

The RTSJ extends the Java memory model by providing

memory areas other than the heap. These memory areas are

characterized by the anticipated lifetime of the contained

objects (immortal, scoped) as well as the time taken for
allocation (linear, variable).

Objects allocated within the (singleton) Immortal Memory
have the same lifetime as the application: They are never
collected. Each Scoped memory area is equipped with a
reference count of the number of threads active in its area.
The lifetime of objects allocated in such an area is keyed to
the reference count.

Additionally, scoped memory areas provide bounds on
the allocation time; currently, variable (VTMemory) and
linear-time (LTMemory) allocators are accommodated. For
linear allocation time, the RTSJ requires that the time
needed to allocate the n > 0 bytes to hold the class instance
must be bounded by a polynomial function fðnÞ � Cn for
some constant C > 0.1

For Java Virtual Machine (JVM) and application devel-
opers alike, scoped memory is one of the more interesting
features added to Java by the RTSJ. Objects allocated within
a scoped memory are not garbage collected individually;
instead, a reference-counting mechanism detects when all
objects in a scope should be collected. Safety of scoped
memory areas is ensured by reliance upon 1) a set of rules
imposed on entrance of scoped memories, and 2) a set of
rules that govern the legality of reference between objects
allocated in different memory areas.

2.2 Threads

The RTSJ extends the existing Java threading model with
two new types of real-time threads: RealtimeThread and
NoHeapRealtimeThread. The NoHeapRealtimeTh-

read can have an execution eligibility higher than the
garbage collector. A NoHeapRealtimeThread can there-
fore neither allocate nor reference any heap objects. The
scheduler controls the execution eligibility of the instances of
this class by using the SchedulingParameters asso-
ciated with it.

2.3 Scheduling

The RTSJ introduces the concept of a Schedulable object.
The execution of Schedulable entities is managed by the
scheduler that holds a reference to them. The RTSJ provide
a scheduling API that is sufficiently general to implement
commonly used scheduling algorithms, such as Rate
Monotonic (RM), Earliest Deadline First (EDF), Least Laxity
First (LLF), Maximum Urgency First (MAU), etc. However,
the only required scheduler for a RTSJ-compliant imple-
mentation is a priority preemptive scheduler that can
distinguish 28 different priorities.

2.4 Asynchrony

The RTSJ defines mechanisms to bind the execution of
program logic to the occurrence of internal and/or external
events. In particular, the RTSJ provides a way to associate
an asynchronous event handler to some application-specific
or external events. There are two types of asynchronous
event handlers defined in RTSJ:

. The AsyncEventHandler class, which does not
have a thread permanently bound to it—nor is it

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2003

1. This bound does not include the time taken by an object’s constructor
or a class’s static initializers.

guaranteed that there will be a separate thread for
each AsyncEventHandler. The RTSJ simply re-
quires that, after an event is fired, the execution of all
its associated AsyncEventHandlers will be dis-
patched.

. The BoundAsyncEventHandler class, which has a
real-time thread associated with it permanently. The
associated real-time thread is used throughout its
lifetime to handle event firings.

Event handlers can also be specified a no-heap, which
means that the thread used to handle the event must be a
NoHeapRealtimeThread.

The RTSJ also introduces the concept of Asynchronous
Transfer of Control (ATC), which allows a thread to
asynchronously transfer the control from a locus of
execution to another.

2.5 Time and Timers

Real-time embedded systems often use timers to perform
certain actions at a given time in the future, as well as at
periodic future intervals. For example, timers can be used to
sample data, play music, transmit video frames, etc. The
RTSJ provides two types of timers:

. OneShotTimer, which generates an event at the
expiration of its associated time interval and

. PeriodicTimer, which generates events periodi-
cally.

OneShotTimers and PeriodicTimers events are
handled by AsyncEventHandlers. The RTSJ also sup-
ports high resolution timers and high resolution clocks.

3 JRATE OVERVIEW

jRate is an open-source RTSJ-based real-time Java imple-
mentation that we are developing atWashington University.
jRate extends the open-source GNU Compiler for Java (GCJ)
front-endand runtime system[8] toprovide anahead-of-time
compiled middleware platform for developing RTSJ-com-
pliant applications.Oneof jRate’s key research goals is that of
using Generative Programming (GP) [9] in order to make it
possible to have a configurable, customizable, and yet
efficient RTSJ implementation. The jRate architecture shown
in Fig. 1a differs from the JVM model shown in Fig. 1b since
there is no JVM interpreting the Java bytecode. Instead, jRate
compiles RTSJ applications into native code. The Java and
RTSJ services, such as garbage collection, real-time threads,
and scheduling, are accessible via the GCJ and jRate runtime
systems, respectively.

jRate supports most of the RTSJ features described in
Section 2. We describe these features below and indicate
where the design and performance of these features is
discussed in subsequent sections of this paper.

3.1 Memory Areas

jRate supports scoped memory and immortal memory.
Fig. 2 shows how these memory areas are implemented in
jRate. This diagram shows how each memory area is
associated with an allocator. There are two parallel class
hierarchies: one set of Java classes for the memory areas and
one set of C++ classes for the allocators. The memory
management strategy is delegated to native allocators and
the binding between memory area and type of allocator can
be deferred until creation time. This design provides users
with the flexibility to experiment with different allocators
strategies and to choose the type of allocator that best fits
their application usage patterns.

jRate also provides a strategy that enables users to
decide which type of memory (such as linear time memory
or variable time memory) should implement immortal
memory. Although the RTSJ does not mandate how
immortal memory is implemented, we believe it is im-
portant to allow users to specify which type of implementa-
tion to configure. jRate’s immortal memory implementation
can be configured when an application is launched. Its
scoped memory implementation also exposes a nonstan-
dard extension that uses nonthread safe allocators to avoid
the overhead of unnecessary locks if a memory area is
always accessed by a single thread.

Fig. 2 illustrates a new type of scoped memory—called
CTMemory—provided by jRate. CTMemory trades off
allocation time for the memory area creation time. This
memory area is zeroed at initialization time and the amount
used is also zeroed each time the memory reference count
drops to zero.2 This feature provides constant time
allocation for objects created within the CTMemory, which
is useful for real-time applications. The structure of
CTMemory is depicted in Fig. 4. The type field distinguishes
different types of objects. Different types of objects must be
treated differently, e.g., some must be finalized, whereas

CORSARO AND SCHMIDT: THE DESIGN AND PERFORMANCE OF REAL-TIME JAVA MIDDLEWARE 3

2. The reference count associated with a scoped memory is represented
by the number of real-time threads in it that are currently active, i.e., have
entered the scoped memory but have not yet exited.

Fig. 1. The jRate architecture.

Fig. 2. The jRate memory region structure.

others need not be finalized. jRate, as described in [10], is
currently the only RTSJ implementation which implements
a constant time algorithm for checking the validity of
memory references. The performance of jRate scoped
memory implementation is analyzed in Section 4.3.1.

3.2 Real-Time Threads and Scheduling

jRate supports real-time threads of type RealtimeThread

using a priority preemptive scheduler based on the under-
lying real-time OS priority preemptive scheduler—jRate’s
threads are directly mapped to native OS threads. An
interesting characteristic of the RTSJ is that each Realti-

meThread is associated with a scope stack that 1) keeps
track of the set of memory regions that have been entered
by the thread and 2) can detect cycles in the entered scopes.
jRate’s scope stack implementation uses data structures
which allow to perform all scope stack operations in
constant time.

For example, the findFirstScope() operation de-
fined in the RTSJ, scans the scope stack from top to bottom
and returns the first scoped memory area found. If
implemented as suggested by the RTSJ specification, this
operation would have a time complexity of OðnÞ, where n is
the length of the stack. jRate enhances the stack data
structure suggested in the RTSJ by maintaining a linked list
of the scoped memory in the stack, along with the index of
the topmost scoped memory, as shown in Fig. 3. This design
allows a constant time implementation of both find-

FirstScope(), push(), and pop(). In fact, find-

FirstScope() simply has to return the value of the
pointer to the top scoped memory, while push and pop

have, respectively, to detect if the memory area being
pushed or popped is a scoped memory and, if so, update
the top pointer for the scoped memory and the pointer in
the linked list. Something else that is worth noticing is that
jRate avoids using instanceof in order to determine the type
of a the memory area being pushed or popped since this is
usually implemented as a linear time operation in the
height of the class hierarchy. To have a constant time type
identification, jRate uses its own type encoding for all those
classes that often require an instanceof .

When a scope stack is destroyed and the reference counts
of all scoped memory areas still on the stack must be
decremented, jRate knows exactly which entries are scoped
memory and which are not. This knowledge enables it to
elide a test on the type of memory area and avoids blindly
searching for scoped memories on the stack.

The size of the jRate scope stack is fixed after the real-
time thread is created. This design makes jRate more
efficient by avoiding the use of pointers to implement the
linked list. The performance of jRate thread implementation
is analyzed in Section 4.3.2.

3.3 Asynchrony

jRate provides a robust and efficient asynchronous event
handling implementation that avoids priority inversion and
provides lock free dispatch on most platforms.3 jRate uses
priority queues ordered by the execution eligibility of the
handlers to dispatch asynchronous events. Execution
eligibility is the ordering mechanism used throughout
jRate, e.g., it is used to achieve total ordering of schedulable
entities whose QoS are expressed in various ways. The
performance of jRate asynchrony implementation is ana-
lyzed in Section 4.3.3.

3.4 High Resolution Time and Clock

jRate implements the RTSJ high resolution time API.
Different implementations of real-time clocks are provided.
Depending on the underlying hardware and OS platform,
resolution from nanoseconds up to microseconds can be
obtained. In particular, on Pentium platforms, high resolu-
tion time with a resolution close to the processor frequency
is obtained by using the read time stamp counter (RDTSC)
register.

3.5 Timers

jRate implements periodic and one-shot timers in accor-
dance to the RTSJ. A thread is associated with each timer
(the RI takes a similar approach). Periodic timers are
implemented by relying on the behavior provided by
periodic threads, where as one-shot timers use a real-time
thread with custom logic to generate the event at the right
time. The priority of the thread is inherited by the priority
of the most eligible handler registered with the timer. An
analysis of the performance of the jRate timers implemen-
tation appears in [6].

4 PERFORMANCE RESULTS AND ANALYSIS

This section first describes our real-time Java testbed and
outlines the various Java implementations used for the tests.
We then present and analyze the results obtained running
most of the RTJPerf tests [6] in our testbed.

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2003

Fig. 3. The jRate scope stack structure.

3. On certain platforms, such as Compaq Alpha, the assumptions that we
rely upon to avoid locking do not hold, so for those platforms jRate must
use locks.

Fig. 4. The jRate CTMemory structure.

4.1 Overview of the Hardware and Software Testbed

The test results reported in this section were obtained on an
Intel Pentium III 733 MHz with 256 MB RAM, running
Linux RedHat 7.3 with the TimeSys Linux/RT 3.1 kernel
[11]. This is the TimeSys Linux/RT NET commercial
version that implements priority inheritance protocols, high
resolution timers, and a resource kernel that supports
resource reservation. The Java platforms used to test the
RTSJ features are described below:

1. TimeSys RTSJ RI: TimeSys has developed the official
RTSJ RI [5], which is a fully compliant implementa-
tion of Java [2], [12] that implements all the
mandatory features in the RTSJ. The RI is based on
a Java 2 Micro Edition (J2ME) (JVM) and supports an
interpreted execution mode, i.e., there is no just-in-
time (JIT) compilation. The RI runs on any Linux
platform and its threading model directly maps Java
threads onto Linux POSIX threads.

2. jRate: As described in Section 3, jRate is an open-
source RTSJ-based extension of GCJ front-end and
runtime systems that we are developing at Wa-
shington University.

4.2 Compiler and Runtime Options

The following options were used when compiling and
running the RTJPerf benchmarks.

3. TimeSys RTSJ RI:The Java code for the tests was
compiled with jikes [13] using the -O option. The
TimeSys RTSJRI Java Virtual Machine (JVM) was
always run using the -Xverify:none option. The
environment variable that controls the size of the
immortal memory was set as IMMORTAL_

SIZE=9000000.
4. jRate: The Java code for the test was compiled with

GCJ with the -O3 flag and statically linked with the
GCJ and jRate runtime libraries. The immortal
memory size was set to the same value as the RI.
jRate v0.3 was used along with GCJ 3.2.1.

4.3 RTJPerf Benchmarking Results

This section presents a description and the results obtained
for the RTJPerf tests we ran. We analyze the results and
explain why the TimeSys RI and jRate RTSJ implementa-
tions performed differently.4

We provide average and worst-case behavior, along with
dispersion indexes, for all the RTSJ Java features we
measured. For certain tests, we provide sample traces that
are representative of all the measured data. The measure-
ments performed in the tests reported in this section are
based on steady state observations, where the system is run
to a point at which the transitory behavior effects of cold
starts are negligible before executing the tests.

4.3.1 Memory Benchmark Results

Below we present and analyze the results of the RTJPerf

memory benchmarks that we ran.

Allocation Time Test: Dynamic memory allocation is
forbidden or strongly discouraged in many real-time
embedded systems to minimize memory leaks, latency,
and nonpredictability. The scoped memory specified by the
RTSJ is designed to provide a relatively fast and safe way to
allocate memory that has nearly the flexibility of dynamic
memory allocation, but the efficiency and predictability of
stack allocation. The measure of the allocation time and its
dependency on the size of the allocated memory is a good
measure of the efficiency of various types of scoped
memory implementations.

To measure the allocation time and its dependency on
the size of the memory allocation request, RTJPerf provides
a test that allocates fixed-sized objects repeatedly from a
scoped memory region whose type is specified by a
command-line argument. To control the size of the object
allocated, the test allocates an array of bytes. It is possible to
determine the allocation time associated with each type of
scoped memory by running this test with different alloca-
tion sizes.

1. Test Settings: To measure the average allocation time
incurred by the RI implementation of LTMemory

and VTMemory, we ran the RTJPerf allocation time
test for allocation sizes ranging from 32 to 16,384
bytes. Each test samples 1,000 values of the alloca-
tion time for the given allocation size. This test also
measured the average allocation time of jRate’s
CTMemory implementation described in Section 3.1.

2. Test Results: The data obtained by running the
allocation time tests were processed to obtain an
average, dispersion, and worst-case measure of the
allocation time. We compute both the average and
dispersion indexes since they indicate the following
information:

. how predictable is the behavior of a scope
memory implementation,

. how much variation in allocation time can
occur, and

. how the worst-case behavior compares to the
average-case and to the case that provides a
99 percent upper bound.5

Fig. 5 shows the resulting average allocation time for
the different test runs, and it also shows the standard
deviation of the allocation time measured in the
various test settings.

3. Results Analysis: We now analyze the results of the
tests that measured the average and worst-case
allocation times, along with the dispersion for the
different test settings:

. Average Measures—As shown in Fig. 5, both
LTMemory and VTMemory provide linear time
allocation with respect to the allocated memory
size. Since similar results were found for other
measured statistical parameters, we infer that
the RI implementation of LTMemory and
VTMemory are similar, so we focus primarily

CORSARO AND SCHMIDT: THE DESIGN AND PERFORMANCE OF REAL-TIME JAVA MIDDLEWARE 5

4. Explaining certain behaviors requires inspection of the source code of
a particular Java Virtual Machine (JVM) feature, which is not always
feasible for Java implementations that are not open-source.

5. By “99 percent upper bound,” we mean that value that represents an
upper bound for the measured values in the 99th percentile of the cases.

on the LTMemory since our results also apply to
VTMemory. jRate has an average allocation time
that is independent of the allocated chunk,
which helps analyze the timing of RTSJ code,
even without knowing the amount of memory
that will be needed. From Fig. 5, it can be easily
seen that for small memory chunks the jRate
memory allocator is nearly 20 times faster than
RI’s LTMemory. For the largest chunk we tested,
jRate’s CTMemory is � 120 times faster RI’s
LTMemory.

. Dispersion Measures—The standard deviation
of the different allocation time cases is shown in
Fig. 5. This deviation increases with the chunk
size allocated for both LTMemory and VTMem-

ory until it reaches 4 Kbytes, where it suddenly
drops and then it starts growing again. On
Linux, a virtual memory page is exactly 4 Kby-
tes, but when an array of 4 Kbytes is allocated,
the actual memory is slightly larger in order to
store freelist management information. In con-
trast, the CTMemory implementation has the
smallest variance and the flattest trend.

The plots in Fig. 6 show the cumulative
relative frequency distribution of the allocation
time for some of the different cases discussed
above. These plots illustrate how the allocation
time is distributed for different types of
memory and different allocation sizes. For
any given point t on the x axis, the value on
the y axis indicates the relative frequency of
allocation time for which AllocationTime � t.
The standard deviations shown in Figs. 6 and
5 provide insights on how the measured
allocation time is dispersed and distributed.
It is interesting to note that the cumulative
frequency distribution for jRate is S-shaped.
Moreover, the values are mostly concentrated
in the two flat regions of the “S.” The shape of
distribution in Fig. 6 reveals a characteristic of
jRate’s allocator implementation. The GCJ
runtime requires all the objects to be allocated

at the 8-byte boundaries.6 As a result, padding
may need to be computed, depending whether
the size of the object plus the size of the
header is a multiple of 8 or not (see Fig. 4).
The two regions in the cumulative distribution
show the two different cases.

. Worst-Case Measures—Fig. 5 shows the bounds
on the allocation time for jRate’s CTMemory and
the RI LTMemory. Each of these graphs depicts
the average and worst-case allocation times,
along with the 99 percent upper bound of the
allocation time. Fig. 5 illustrates how the worst-
case execution time for jRate’s CTMemory is at
most � 1.8 times larger than its average execu-
tion time. Fig. 5 shows how the maximum,
average, and the 99 percent case for the RI
LTMemory converge as the size of the allocated
chunk increases. The minimum ratio between
the worst and average-case allocation times is
� 1.8 for a chunk size of 16K. Figs. 5 and 6 also
characterize the distribution of the allocation
time. Fig. 6 shows how, for some allocation
sizes, the allocation time for the RI LTMemory is
centered around two points.

Scoped Memory Lifetime Test: Scoped memory is one of the
key features introduced by the RTSJ. It enables applications
to circumvent the garbage collector, yet still use automatic
memory management, by 1) associating with each memory
scope a reference count that depends on the number of real-
time threads within the memory area (i.e., that have entered
the scope but yet not exited it), and 2) ensuring that all the
objects allocated in the scope are finalized and the space
reclaimed, as soon as the reference count associated with
the memory area drops to zero. Since most RTSJ applica-
tions use scoped memory heavily, it is essential to
characterization its performance precisely.

RTJPerf provides a test that measures 1) the time needed
to create a memory scope, 2) the time needed to enter it, and
3) the time needed to exit it. The time needed to create a
scoped memory area depends on the following factors:

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2003

Fig. 5. Scoped memory allocation time statistics.

Fig. 6. Allocation time cumulative relative frequency distribution.

6. This is done because the lowest three bits are used to store locking
information.

. The allocation context of the thread that creates the
memory scope. The Allocation Time Test measures
this aspect of memory scope creation time.

. The native C/C++ implementation of scoped mem-
ory. The Scoped Memory Lifetime Test measures the
efficiency and predictability of the native C/C++
implementation of scoped memory.7

The time needed to exit a memory scope is measured by

the case in which its reference count drops to zero as a

result of the thread exiting the scope. In this case, the

memory scope must finalize all the objects allocated within

it and reclaim the used storage.
To determine the time needed to enter, exit, and create a

memory scope—and to determine how efficient the im-

plementation is—this test creates a memory scope, enters it,

fills it with objects, and then exits the scope. The test can be

run by configuring the type of scoped memory to be used

and by having the object allocated selectively override the

default finalize method. Measuring this latter point is

important since some Java implementations are smarter

than others in handling the case where an object does not

override the finalizer.

4. Test Settings: To measure scoped memory creation,
enter, and exit time, we ran the RTJPerf scoped
memory timing test for memory sizes ranging from
4,096 to 1,048,576 bytes. The test was designed to
ensure that the allocated objects overrode the
finalizer, which enabled a worst-case measurement
of the exit time. For each test, 500 values were
sampled for each of the measured variables. This test
was run to get the relevant measures for the RI’s
LTMemory and jRate’s CTMemory.

5. Test Results: Figs. 7, 8, and 9 contain the average,
99 percent, maximum, and standard deviation trend
for memory scope creation, enter, and exit time.
Fig. 10 shows the execution time, measured as the
time needed to fill the memory with the objects.

6. Results Analysis: Below, we analyze the results of the
test that measure the creation, enter, and exit time
for a scoped memory area.

. Average Measures—From Fig. 7, we can see
how the jRate CTMemory has better creation
times, on average, than the RTSJ RI for scoped
memory with size less or equal than 64 KBytes.
After this point, jRate starts performing worse
than the RI. The explanation of this behavior
stems from the fact that the CTMemory maps the
Linux /dev/zero device and then locks the
allocated chunk. Simply locking the memory
does not reserve physical memory for the calling
process; however, since the pages might be
copy-on-write. To improve the predictability of
an application, therefore, it is usually a good
habit to make sure that at least a byte each page
of the locked chunk of memory is accessed. The
time taken to write at least one byte per each

CORSARO AND SCHMIDT: THE DESIGN AND PERFORMANCE OF REAL-TIME JAVA MIDDLEWARE 7

7. The memory used by the scoped memory to allocate an object is not
retrieved by the current allocation context, but is allocated in a platform-
specific way, e.g., using malloc() or mmap().

Fig. 7. Average, 99 percent, maximum, and standard deviation of the

creation time (�sec).

Fig. 8. Average, 99 percent, maximum, and standard deviation of the

enter time (�sec).

Fig. 9. Average, 99 percent, maximum, and standard deviation of the

exit time (�sec).

allocated page, has a time complexity of OðnÞ in
the size of the scoped memory allocated, which
makes creation time depend linearly on memory
size.

Fig. 8 shows the enter time trend for jRate’s
CTMemory and for the RI’s LTMemory. From
this diagram, we can see that, while the RI enter
time varies only slightly with the scoped
memory size, for jRate, the enter time depends
more on the size. This behavior stems from the
fact that jRate’s scoped memory puts pressure
on the cache and induces cache misses in
succeeding instructions, which degrades the
execution time of the first enter (which is the
one measured by the test).

Fig. 9 shows the results for the exit time.
From this diagram, we see that, even if jRate’s
CTMemory has to zero the allocated memory
other than finalizing the allocated objects, its
performance is close to the RI. Exit time depends
primarily on the efficiency of JNI and on the
efficiency of the native implementation that
manages the scope stack, the finalization, and
the cleanup of the memory, if any is needed. In
this case, jRate’s ahead-of-time compilation
model plays a minor role, especially as the size
of the memory grows.

. Dispersion Measures—Figs. 7, 8, 9, and 10
show how jRate and the RI have very low
dispersion values for small memory sizes. These
dispersion values grow with the size of the
scoped memory for both implementations. The
RI becomes less predictable as the size of the
memory scope increases, culminating in patho-
logical cases shown in Figs. 7 and 10.

. Worst-Case Measures—The results for all the
measured variables show that the worst-case
measures are very close to the average-case for
jRate. In contrast, the RI’s worst-case values can
be quite large compared to its average-case

values. The largest difference between average
and worst-case measures appeared in the crea-
tion time and in the execution time.

We cannot give a precise answer to the
reason of this behavior since the code of the RI
was not available for inspection. A reasonable
guess, however, is that the RI allocators rely
directly on the system provided malloc() for
each of the allocated objects. This explanation
justifies both the relatively small creation time,
and also the degradation of the predictability
when the allocator creates many objects to fill
the scoped memory.

4.3.2 Thread Benchmark Results

Below, we present and analyze the results from the RTJPerf
yield and thread creation latency benchmarks.

Yield Context Switch Test: High levels of thread context
switching overhead can significantly degrade application
responsiveness and predictability. Minimizing this over-
head is therefore an important goal of any runtime
environment for real-time embedded systems. To measure
context switching overhead, RTJPerf provides a test in
which two real-time threads characterized by the same
execution eligibility yield to each other. Since there are just
two real-time threads, whenever one thread yields, the
other thread will have the highest execution eligibility, so it
will be chosen to run.

1. Test Settings: For each RTSJ platform we evaluated,
we collected 1,000 samples of the the context switch
time, which we forced by explicitly yielding the
CPU. Real-time threads were used for the RI and
jRate, and immortal memory was used as allocation
context for the threads.

2. Test Results: Table 1 reports the average and
standard deviation for the measured context switch
in the various platforms.

3. Results Analysis: Below, we analyze the results of the
tests that measure the average context switch time,
its dispersion, and its worst-case behavior for the
different test settings:

. Average Measures—Table 1 shows how the RI
performs fairly well in this test, i.e., its context
switch time is only � 2 �s larger than jRate’s.
The main reason for jRate’s better performance
stems from its use of ahead-of-time compilation.
The last row of Table 1 reports the results of a
C++-based context switch test described in [14].
The table shows how the context switch time
measured for the RI and jRate is similar to that
for C++ programs on TimeSys Linux/RT. The
context switching time for the RI is less than
three times larger than that found for C++,

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2003

Fig. 10. Average, 99 percent, maximum, and standard deviation of the

execution time (�sec).

TABLE 1
Yield Context Switch Statistics

whereas the times for jRate are roughly the
same as those for C++.

. Dispersion Measures—The third column of
Table 1 reports the standard deviation for the
context switch time. Both jRate and the RI
exhibit tight dispersion indexes, indicating that
context switching overhead is predictable for
these implementations. In general, the context
switch time for jRate is as predictable as C++ on
our Linux testbed platform.

. Worst-Case Measures—The fourth and fifth
column of Table 1 represent the maximum and
the 99 percent bound for the context switch time,
respectively. jRate and the RI have 99 percent
bound and worst-case context switching times
that are close to their average-case values.

4. Thread Creation Latency Test: This test measures the
time needed to create a thread, which consists of the
time to create the thread instance itself and the time
to start it. For this test, RTJPerf provides two
variants; here, we refer to the test that creates and
starts a real-time thread from another real-time
thread. The results we obtained are presented and
analyzed below.

5. Test Settings: For each platform in our test suite, we
collected 1,000 samples of the thread creation time
and thread start time. Real-time threads were used
for the RI and jRate. Since we are interested in
measuring the time taken to create and start a
thread—while limiting the effects of other de-
lays—the threads had immortal memory as their
allocation context, so to avoid garbage collection
overhead.

6. Test Results: Tables 2 and 3 report the average,
standard deviation, maximum, and 99 percent
bound for the thread creation time and thread start
time, respectively.

7. Results Analysis: Below, we analyze the results of the
tests that measure the average-case, the dispersion,
and the worst-case for thread creation time and
thread start time.

. Average Measures—The second column of
Tables 2 and 3 show that jRate has the best
average thread creation time and thread start
time. The RI’s creation time grows linearly in the
RT test, which is unusual and may reveal a
problem in how the RI manages the scope stack.
The smallest creation time experienced by the RI
is around 500 �s (which is much higher than
jRate) and one reason may be the RI’s scope
stack implementation.

. Dispersion Measures—The third column of
Tables 2 and 3 present the standard deviation
for thread creation time and thread start time,
respectively. jRate has the smallest dispersion of

values for the thread startup time and creation
time.

The standard deviation associated with the
thread creation time is influenced by the
predictability of the time the memory allocator
takes to provide the memory needed to create
the thread object. In contrast, the standard
deviation of the thread start time depends
largely on the OS, whereas the rest of thread
start time depends on the details of the thread
startup method implementation.

. Worst-Case Measures—The fourth and fifth
column of Tables 2 and 3 present the maximum
and the 99 percent bound for the thread creation
time, and the thread startup time, respectively.
These tables clearly show how jRate has a more
predictable startup time than creation time. The
jitter introduced in the creation time likely stems
from the fact that jRate allocates several data
structure via malloc(), and does not take yet
advantage of custom allocators. The RI also has
fairly good startup time, though we cannot make
any comparison with its creation time due to an
RImemory leak exposedby this test. Theproblem
is related to RI’s management of the scope stack
since it appearsonlywhenaRealtimeThread is
created by another RealtimeThread.

Periodic Thread Test: Real-time embedded systems often
have activities (such as data sampling and control law
evaluation) that must be performed periodically. The RTSJ
provides programmatic support for these activities via its
APIs for scheduling real-time thread execution periodically.
To program this RTSJ feature, an application specifies the
proper release parameters and uses the waitForNext-

Period() method to schedule thread execution at the
beginning of the next period (the period of the thread is
specified at thread creation time via PeriodicPara-

meters). The accuracy with which successive periodic
computation are executed is important since excessive jitter
is detrimental to most real-time applications.

RTJPerf provides a test that measures the precision at
which the periodic execution of real-time thread logic is
managed. This test measures the actual time that elapses
from one execution period to the next.

8. Test Settings: This test runs a RealtimeThread that
does nothing but reschedule its execution for the
next period. The actual time between each activation
was measured and 1,000 of these measurements
were made for the periods 1ms, 5ms, 10ms, 50ms,
100ms, and 500ms.

9. Test Results: Fig. 11 shows average and dispersion
values that we measured for this test.8

CORSARO AND SCHMIDT: THE DESIGN AND PERFORMANCE OF REAL-TIME JAVA MIDDLEWARE 9

TABLE 2
Thread Creation Time Statistics

TABLE 3
Thread Startup Time Statistical Indexes

8. Whenever the plot for jRate and the RI overlap, the values for jRate
are shown above the graph and the value for the RI are shown below the
graph.

10. Results Analysis: Below, we analyze the results of the
test that measures the accuracy with which periodic
a thread’s logic is activated:

. Average Measures—Fig. 11 shows that both
jRate and the RI have an average period that is
quite close to the target period. Whereas RI is
always at least several hundreds of microse-
conds early, however, jRate is at most several
tens of microseconds late. To understand the
reason for this behavior, we inspected the RI
implementation of periodic threads, (i.e., at the
implementation of waitForNextPeriod()),
and found that a Java Native Interface (JNI)
method call is used to wait for the next period.
Without the source for the RI’s JVM, it is hard to
tell exactly how the native method is imple-
mented. On the TimeSyS Linux/RT kernel, jRate
relies on the nanosleep() system call to
implement periodic thread behavior. To pro-
duce more accurate periods, a calibration test
can be run at configuration time to obtain a slack
time that should be considered as an approx-
imation of the overhead of calling the wait-

ForNextPeriod() and then getting the
control back.

As stated near the beginning of Section 4.3,

the measure for each test are made in stationary

conditions. The Periodic Thread Test was inter-

esting since the RI took a relatively long time to

reach the steady state, particularly for small

periods.
. Dispersion Measures—Fig. 11 shows the dis-

persion of the measured period for both jRate
and the RI has the same trend. While jRate
generally has less dispersed values than the RI,
both implementations are quite predictable.

. Worst-Case Measures—As shown in Fig. 11,
both jRate and the RI have worst-case behavior
that is close to the average-case values and the
99 percent bound. In general, jRate’s worst-case
values are closer to the average, but the RI
values are not much further away.

4.3.3 Asynchrony Benchmark Results

Below, we present and analyze the results of the RTJPerf
asynchrony tests that we ran.

Asynchronous Event Handler Dispatch Delay Test: Several
performance parameters are associated with asynchronous
event handlers. One of the most important is the dispatch
latency, which is the time fromwhen an event is fired towhen
its handler is invoked. Events are often associated with
alarms or other critical actions that must be handled within a
short time and with high predictability. This RTJPerf test
measures the dispatch latency for the different types of
asynchronous event handlers prescribed by the RTSJ.

1. Test Settings: To measure the dispatch latency
provided by different types of asynchronous event
handlers defined by the RTSJ, we ran the test
described above with a fire count of 1,000 for both
RI and jRate. To ensure that each event firing causes
a complete execution cycle, we ran the test in
“lockstep mode,” where one thread fires an event
and only after the thread that handles the event is
done is the event fired again. To avoid the
interference of the Garbage Collector (GC) while
performing the test, the real-time thread that fires
and handles the event uses scoped memory as its
current memory area.

2. Test Results: Fig. 12 shows the trend of the dispatch
latency for successive event firings (since the RI’s
AsyncEventHandler trend is completely off the
scale, it is reported in a separate plot in Fig. 12). The
data obtained by running the dispatch delay tests
were processed to obtain average and worst-case
behavior, and the dispersion measure of the dispatch
latency. Tables 4 and 5 show the results found for
jRate and the RI, respectively.

3. Results Analysis: Below, we analyze the results of the
tests that measure the average-case and worst-case
dispatch latency, as well as its dispersion, for the
different test settings:

. Average Measures—Table 5 illustrates the large
average dispatch latency incurred by the RTSJ
RI AsyncEventHandler. The results in Fig. 12
show how the actual dispatch latency increases
as the event count increases. By tracing the
memory used when running the test using heap
memory, we found that not only did memory
usage increased steadily, but even invoking the
GC explicitly did not free any memory.

These results reveal a problem with how the
RI manages the resources associated to threads.
The RI’s AsyncEventHandler creates a new
thread to handle a new event, and the problem
appears to be a memory leak in the underlying
RI memory manager associated with threads,
rather than a limitation with the model used to
handle the events. In contrast, the RI’s Boun-

dAsyncEventHandler performs quite well,
i.e., its average dispatch latency is slightly less
than twice as large as the average dispatch
latency for jRate.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2003

Fig. 11. Measured period statistics.

Fig. 12 and Table 4 show that the average
dispatch latency of jRate’s AsyncEventHand-

ler is the same order of magnitude as its
BoundAsyncEventHandler. The difference
between the two average dispatch latency stems
from jRate’s AsyncEventHandler implemen-
tation, which uses an executor [15] thread from a
pool of threads to perform the event firing,
rather than having a thread permanently bound
to the handler.

. Dispersion Measures—The results in Tables 5
and 4, Fig. 12, and Fig. 13 illustrate how jRate’s
BoundAsyncEventHandler dispatch latency
incurs the least jitter. The dispatch latency value
dispersion for the RTSJ RI BoundAsyncE

ventHandler is also quite good, though its
jitter is higher than jRate’s AsyncEventHand

ler and BoundAsyncEventHandler. The
higher jitter in RI may stem from the fact that
the RI stores the event handlers in a java.u

til.Vector. This data structure achieves
thread-safety by synchronizing all method that
get(), add(), or remove() elements from it,
which acquires and releases a lock associated
with the vector for each method.

To avoid the locking overhead incurred by the
RI, jRate uses a data structure that associates the
event handler list with a given event and allows
the contents of the data structure to be read
without acquiring/releasing a lock. Only mod-
ifications to the data structure itself must be
serialized. As a result, jRate’s AsyncE

ventHandler dispatch latency is relatively

predictable, even though the handler has no
thread bound to it permanently. The jRate thread
pool implementation uses LIFO queues for its
executor, i.e., the last executor that has completed
executing is the first one reused. This technique is
often applied in thread pool implementations to
leverage cache affinity benefits [16].

. Worst-Case Measures—Table 4 illustrates how
the jRate’s BoundAsyncEventHandler and
AsyncEventHandler have worst-case execu-
tion time that is close to its average-case. The
worst-case dispatch delay of the RI’s BoundA

syncEventHandler is not as low as the one
provided by jRate due to differences in how their
event dispatchingmechanisms are implemented.

4. Asynchronous Event Handler Priority Inversion Test: If
the right data structure is not used to maintain the
list of event handlers associated with an event, an
unbounded priority inversion can occur during the
dispatching of the event. This test therefore mea-
sures the degree of priority inversion that occurs
when multiple handlers with different Scheduling-
Parameters are registered for the same event. This
test registers N handlers with an event in order of
increasing importance. The time between the firing
and the handling of the event is then measured for
the highest priority event handler.

By comparing the results for this test with the
result of the test described above, RTJPerf can
determine the degree of priority inversion present in
the underlying RTSJ event dispatching implementa-
tion. Section 4.3.3 provides an analysis of the
implementation of the current RI and presents how
jRate overcomes some RI shortcomings.

CORSARO AND SCHMIDT: THE DESIGN AND PERFORMANCE OF REAL-TIME JAVA MIDDLEWARE 11

Fig. 12. Dispatch latency trend for successive event firing.

TABLE 4
jRate Event Handler’s Dispatch Latency Statistics

TABLE 5
RI Event Handler’s Dispatch Latency Statistics

Fig. 13. Cumulative dispatch latency distribution.

5. Test Settings: This test uses the same settings as the
asynchronous event handler dispatch delay test.
Only the BoundAsyncEventHandler performance
is measured, however, because the RI’s AsyncE-

ventHandlers are essentially unusable since their
dispatch latency grows linearly with the number of
events handled (see Fig. 12), which masks any
priority inversions. Moreover, jRate’s AsyncE-

ventHandler performance is similar to its Boun-

dAsyncEventHandler performance, so the results
obtained from testing one applies to the other. The
current test uses the following two types of
asynchronous event handlers:

. The first is identical to the one used in the
previous test, i.e., it gets a time stamp after the
handler is called and measures the dispatch
latency. This logic is associated with H.

. The second does nothing and is used for the
lower priority handlers.

6. Test Results: Fig. 14 shows how the average, standard
deviation, maximum, and 99 percent bound of the
dispatch delay changes for H as the number of low-
priority handlers increase.

7. Results Analysis: Below, we analyze the results of the
tests that measure average-case and worst-case
dispatch latency, as well as its dispersion, for jRate
and the RI.

. Average Measures—Fig. 14 illustrates that the
average dispatch latency experienced by H is
essentially constant for jRate, regardless of the
number of low-priority handlers. It grows
rapidly; however, as the number of low-priority
handlers increase for the RI. The RI’s event
dispatching priority inversion is problematic for
real-time applications and stems from the fact
that its queue of handlers is implemented with a
java.util.Vector, which is not ordered by
the execution eligibility. In contrast, the priority
queues in jRate’s event dispatching are ordered
by the execution eligibility of the handlers.

Execution eligibility is the ordering mechan-
ism used throughout jRate. For example, it is
used to achieve total ordering of schedulable
entities whose QoS are expressed in different
ways.

. Dispersion Measures—Fig. 14 illustrates how
H’s dispatch latency dispersion grows as the
number of low-priority handlers increases in the
RI. The dispatch latency incurred by H in the RI
therefore not only grows with the number of
low-priority handlers, but its variability in-
creases, i.e., its predictability decreases. In
contrast, jRate’s standard deviation increases
very little as the low-priority handlers increase.
As mentioned in the discussion of the average
measurements above, the difference in perfor-
mance stems from the proper choice of priority
queue.

. Worst-Case Measures—Fig. 14 illustrates how
the worst-case dispatch delay is largely inde-
pendent of the number of low-priority handlers
for jRate. In contrast, worst-case dispatch delay
for the RI increases as the number of low-
priority handlers grows. The 99 percent bound
is close to the average for jRate and relatively
close for the RI.

5 RELATED WORK

Although the RTSJ was adopted as a standard fairly
recently [4], there are already a number of related research
projects. The following projects are particularly interesting:

. The FLEX [17] provides a Java compiler written in
Java, along with an advanced code analysis frame-
work. FLEX generates native code for StrongARM or
MIPS processors, and can also generate C code. It
uses advanced analysis techniques to automatically
detect the portions of a Java application that can take
advantage of certain real-time Java features, such as
memory areas or real-time threads.

. The Real-Time Java for Embedded Systems (RTJES)
program [18] is working to mature and demonstrate
real-time Java technology. A key objective of the
RTJES program is to assess important real-time
capabilities of real-time Java technology via a
comprehensive benchmarking effort. This effort is
examining the applicability of real-time Java within
the context of real-time embedded system require-
ments derived from Boeing’s Bold Stroke avionics
mission computing architecture [19].

6 CONCLUDING REMARKS

TheRTSJ is an important emergingmiddlewareplatform that
defines a standard, high-level, and productive environment
for developing real-time embedded applications. RTSJ
encapsulates much of the complexity and platform-specific
details in the middleware, and provides a powerful set of
programming abstractions to application developers. This
paper presented the architecture of jRate, which is an open-
source ahead-of-time compiled RTSJ middleware that we
have created atWashington University. This paper also used
the open-source RTJPerf benchmarking suite to empirically

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2003

Fig. 14. H’s dispatch latency statistics.

evaluate the performance of RTSJ middleware features in
jRate and the TimeSys RTSJ RI that are crucial to the
development of real-time embedded applications.

RTJPerf is one of the first open-source benchmarking
suites designed to evaluate RTSJ-compliant Java implemen-
tations empirically. We believe it is important to have an
open benchmarking suite to measure the quality of service
of RTSJ implementations. RTJPerf not only helps guide
application developers to select RTSJ features that are
suited to their requirements, but also helps developers of
RTSJ implementations evaluate and improve the perfor-
mance of their products.

Although much work remains to ensure predictable and
efficient performance under heavy workloads and high
contention, our test results indicate that real-time Java is
maturing to the point where it can be applied to certain types
of real-time applications. In particular, the performance and
predictability of jRate is approaching C++ for some tests. The
TimeSys RTSJ RI also performed relatively well in some
aspects, though it has problems with AsyncEventHandler
dispatching delays and priority inversion.

ACKNOWLEDGMENTS

The authors would like to thank Ron Cytron, Peter Dibble,
David Holmes, Doug Lea, Doug Locke, Carlos O’Ryan, John
Regehr, and Gautam Thaker for their constructive sugges-
tions that helped to improve earlier drafts of this paper.

REFERENCES

[1] J. Sztipanovits and G. Karsai, “Model-Integrated Computing,”
Computer, vol. 30, no. 4, pp. 110-112, Apr. 1997.

[2] K. Arnold, J. Gosling, and D. Holmes, The Java Programming
Language. Boston: Addison-Wesley, 2000.

[3] R. Jones and R. Lins, Garbage Collection Algorithms for Automatic
Dynamic Memory Management. New York: Wiley & Sons, 1996.

[4] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, D. Hardin, and
M. Turnbull, The Real-Time Specification for Java. Addison-Wesley,
2000.

[5] TimeSys, Real-Time Specification for Java Reference Implementa-
tion, www.timesys.com/rtj, 2001.

[6] A. Corsaro and D.C. Schmidt, “Evaluating Real-Time Java
Features and Performance for Real-time Embedded Systems,”
Proc. Eighth IEEE Real-Time Technology and Applications Symp.,
Sept. 2002.

[7] “The Design and Performance of the jRate Real-Time Java
Implementation,” On the Move to Meaningful Internet Systems
2002: CoopIS, DOA, and ODBASE, R. Meersman and Z. Tari, eds.,
pp. 900-921,Springer Verlag, 2002.

[8] GNU is Not Unix, GCJ: The GNU Complier for Java, http://
gcc.gnu.org/java, 2002.

[9] K. Czarnecki and U. Eisenecker, Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[10] A. Corsaro and R.K. Cytron, “Efficient Memory-Reference Checks
for Real-Time Java,” Proc. ACM SIGPLAN Conf. Language,
Compiler, and Tool for Embedded Systems, pp. 51-58, 2003.

[11] TimeSys, TimeSys Linux/RT 3.0, www.timesys.com, 2001.
[12] J. Gosling, B. Joy, and G. Steele, The Java Programming Language

Specification. Addison-Wesley, 1996.
[13] IBM, Jikes 1.17, http://www.research.ibm.com/jikes/, 2001.
[14] D.C. Schmidt, M. Deshpande, and C. O’Ryan, “Operating System

Performance in Support of Real-Time Middleware,” Proc. Seventh
Workshop Object-Oriented Real-Time Dependable Systems, Jan. 2002.

[15] D. Lea, Concurrent Programming in Java: Design Principles and
Patterns, second ed. Addison-Wesley, 2000.

[16] J.D. Salehi, J.F. Kurose, and D. Towsley, “The Effectiveness of
Affinity-Based Scheduling in Multiprocessor Networking,” Proc.
IEEE INFOCOM, Mar. 1996.

[17] M.Rinardetal.,“FLEXCompilerInfrastructure,” http://www.flex-
compiler.lcs.mit.edu/Harpoon/, 2002.

[18] J. Lawson, “Real-Time Java for Embedded Systems (RTJES),”
http://www.opengroup.org/rtforum/jan2002/slides/java/law
son.pdf, 2001.

[19] D.C. Sharp, “Reducing Avionics Software Cost through Compo-
nent Based Product Line Development,” Proc. 10th Ann. Software
Technology Conf., Apr. 1998.

Angelo Corsaro received the Laurea degree in
computer engineering in 1999 from the Univer-
sity of Catania, and the MS degree in computer
science from Washington University in 2001.
Currently, he is a PhD candidate in the
Computer Science Department of Washington
University. His research focuses on real-time
Java extensions and optimizations, program-
ming languages, generative programming, real-
time distributed systems, software patterns,

optimization techniques, and empirical analysis of object-oriented
frameworks and middleware platforms. He is a student member of the
IEEE.

Douglas C. Schmidt is a professor in the
Electrical Engineering and Computer Science
Department at Vanderbilt University. His re-
search focuses on patterns, optimization techni-
ques, and empirical analysis of object-oriented
frameworks that facilitate the development of
distributed real-time and embedded (DRE) mid-
dleware running over high-speed networks and
embedded system interconnects. Dr. Schmidt
has served as a Deputy Office Director and a

Program Manager at DARPA, where he led the national R&D effort on
DRE middleware. Dr. Schmidt has also served as the cochair for the
Software Design and Productivity (SDP) Coordinating Group of the US
government’s multiagency Information Technology Research and
Development (IT R&D) Program, which formulated the multiagency
research agenda in software design. He is a member of the IEEE and
the IEEE Computer Society

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

CORSARO AND SCHMIDT: THE DESIGN AND PERFORMANCE OF REAL-TIME JAVA MIDDLEWARE 13

