
Applying Model-Integrated Computing to Provision
Middleware and Application Quality of Service

Nanbor Wang Douglas C. Schmidt Aniruddha Gokhale
Christopher D. Gill Balachandran Natarajan

�nanbor,cdgill�@cs.wustl.edu schmidt@uci.edu �a.gokhale,b.natarajan�@vanderbilt.edu

Dept. of Computer Science Dept. of Electrical Institute for Software

and Computer Engineering Integrated Systems

Washington University University of California Vanderbilt University

One Brookings Drive 616E Engineering Tower P.O. Box 36, Peabody

St. Louis, MO 63130, USA Irvine, CA 92697, USA Nashville, TN 37203, USA

Craig Rodrigues, Joseph P. Loyall, Richard E. Schantz and Richard Shapiro
�crodrigu,jloyall,schantz,rshapiro�@bbn.com

BBN Technologies

10 Moulton Street

Cambridge, MA 02138, USA

Abstract

Commercial of-the-shelf (COTS) distribution middleware is
gaining acceptance in the distributed real-time and embed-
ded (DRE) community as (1) the cost and time required to de-
velop and verify DRE applications precludes developers from
implementing DRE applications from scratch and (2) imple-
mentations of standard COTS middleware specifications, such
as CORBA, mature. Although standard COTS specifications
define the interfaces and policies to provision DRE applica-
tion resources end-to-end, they do not yet provide sufficient
abstractions to separate quality of service (QoS) policy config-
urations and adaptations from application functionality. DRE
application developers must therefore configure QoS policies
and program adaptation mechanisms in an ad hoc way. This
tight-coupling tends to scatter the code that ensures end-to-
end QoS throughout many parts of DRE applications, making
it hard to configure, validate, modify, and evolve complex DRE
applications consistently.

This paper provides three contributions to the study of the
development of QoS-enabled DRE applications. First, we il-
lustrate how standard component-based middleware can be
enhanced to flexibly compose static QoS provisioning poli-
cies with application logic. Second, we describe how standard
component-based middleware can be integrated with adaptive
middleware capabilities to flexibly compose dynamic QoS pro-
visioning and adaptation into DRE applications. Third, we il-
lustrate how the Model-Integrated Computing paradigm can
be applied to simplify the development of DRE applications
and to help generate and validate static and dynamic QoS pro-

visioning for both middleware and applications. Our qualita-
tive and quantitative results show that (1) static and dynamic
QoS provisioning improves the performance and helps ensure
the end-to-end QoS of DRE systems and (2) decoupling the
QoS provisioning logic from the application logic simplifies
the maintenance and and evolution of DRE systems.
Keywords:

QoS Provisioning, QoS Adaptation, Middleware, Model-
Integrated Computing, Model Driven Architectures, CORBA
Component Model

1 Introduction

1.1 Emerging Trends

Commercial-off-the-shelf (COTS) distribution middleware
technologies, such as the OMG’s CORBA, Sun’s EJB/J2EE,
and Microsoft’s COM+/SOAP/.NET, have matured consider-
ably in recent years. They are increasingly used to reduce the
time and effort required to develop applications in a broad
range of domains. Historically, these middleware technolo-
gies have been applied to enterprise applications [1], which
are a large class of applications that perform important busi-
ness functions, such as planning enterprise resource usage, au-
tomating key business functions, and managing supply chains
and customer relationships. Examples of enterprise applica-
tions include airline reservation systems, bank asset manage-
ment systems, and just-in-time inventory control systems.

More recently, middleware has been applied to distributed

1



real-time and embedded (DRE) applications with stringent
quality of service (QoS) requirements for predictability, la-
tency, efficiency, scalability, dependability, and security.
There are many types of DRE applications, but they have one
thing in common: the right answer delivered too late becomes
the wrong answer. Examples of DRE applications include in-
dustrial process control systems, such as hot rolling mill con-
trol systems that process molten steel in real-time, and avion-
ics systems, such as mission management computers that help
aircrafts navigate through their route legs. DRE applications
are an increasingly important domain since over 99% of all mi-
croprocessors are now used for embedded systems [2] to con-
trol physical, chemical, or biological processes and devices in
real-time.

Regardless of the domain in which middleware is applied, it
helps expedite the application development process by shield-
ing programmers from many accidental and inherent complex-
ities, such as platform and language heterogeneity, resource
location, and fault tolerance. Component middleware is a ma-
turing class of middleware that enables reusable services to
be composed, configured, and installed to create applications
rapidly and robustly. In particular, component middleware of-
fers application developers the following reusable capabilities:

� Connector mechanisms between components, such as re-
mote method invocations and message passing

� Horizontal infrastructure services, such as request bro-
kers, and

� Vertical models of domain concepts, such as common
semantics for higher-level reusable component services
ranging from transaction support to multi-level security.

Examples of COTS component middleware include the
CORBA Component Model (CCM) [3], Java 2 Enterprise Edi-
tion (J2EE) [4], and the Component Object Model (COM) [5],
which use different APIs, different protocols, and different
component models.

As the use of middleware becomes more pervasive, DRE ap-
plications are increasingly combined to form distributed sys-
tems that are joined together by the Internet and intranets.
These systems can further be combined with other distributed
systems to create “systems of systems.” Examples of these
large-scale systems of systems include:

� Just-in-time manufacturing inventory control systems that
schedule the delivery of supplies to improve efficiency
and

� Military command and control systems that gather and
assimilate information from various devices (such as un-
manned arial vehicles and wearable computers), present
and analyze the information, and coordinate the deploy-
ment of available forces and weaponry.

Figure 1 illustrates how the combination of individual man-
ufacturing information systems is fundamental to achieve the

Parts

Distribution

Assembly

Products

Engineering

Figure 1: Characteristics of Manufacturing System of Sys-
tems

efficiencies of modern “just-in-time” manufacturing supply
chains. Information from engineering systems is used to de-
sign parts, assemblies, and complete products. Parts manu-
facturing suppliers must keep pace with (1) engineering re-
quirements upstream in the supply chain and (2) distribu-
tion constraints and assembly requirements downstream. Dis-
tribution must be managed precisely to avoid parts short-
ages while keeping local inventories low. Assembly factories
must achieve high throughput, while making sure the output
matches product demand at the sales and service end of the
supply chain. Throughout this process, information gathered
at each stage of the supply chain must be integrated seamlessly
into the control processes of other stages in the chain.

Engagement System

Reconnaissance System

Command and Control

Weapon Control System

Navigation System

AWACS

Figure 2: Characteristics of Military System of Systems

Figure 2 shows how diverse military information systems
are being integrated to counter threats that are increasingly (1)
geographically dispersed, (2) elusive in time and space, and
(3) threaten asymmetric attacks against infrastructure, peo-
ple, and places. Intelligence and positioning information from

2



ground troops, surveillance aircraft, and reconnaissance satel-
lites must be fused at command-and-control centers to provide
a unified and detailed picture to command personnel. Deci-
sions, such as retasking fighter aircraft or redeploying mobile
infantry units, must be communicated rapidly to the involved
warfighters. Moreover, supporting information, such as coor-
dinates and imagery, must be assembled and analyzed on-the-
fly and sent along with retasking orders.

1.2 Unresolved Challenges

The following key technical challenges arise when developing
and deploying large-scale DRE systems outlined above:

1. Satisfying multiple quality of service (QoS) require-
ments in real-time. An increasing number of DRE ap-
plications, such as controllers for surface-mount component
pick-and-place machines [6] or total ship computing environ-
ments [7], have stringent QoS requirements that must be sat-
isfied simultaneously in real-time. Examples of these QoS re-
quirements include processing resources allocation and net-
work latency, jitter, and bandwidth. To ensure DRE appli-
cations can achieve their QoS requirements, various types of
QoS provisioning must be performed to allocate and manage
system computing and communication resources end-to-end.
QoS provisioning can be performed in the following ways:

� Statically, where the amount of resources required to sup-
port a particular degree of QoS is pre-configured into
an application. Examples of static QoS provisioning in-
clude task prioritization and communication bandwidth
reservation. Section 3.1.1 describes the range of QoS re-
sources that can be provisioned statically.

� Dynamically, where the amount of resources required are
determined and adjusted based on the runtime system sta-
tus. Examples of dynamic QoS provisioning include run-
time reallocations to handle bursty CPU load, primary
and second storage, and network traffic demands. Sec-
tion 3.2.1 describes the range of QoS resources that can
be provisioned dynamically.

QoS provisioning in large-scale DRE systems cross-cuts
multiple system layers and requires end-to-end enforcement.
Existing component middleware technologies, such as CCM,
J2EE, and .NET, were designed largely for applications with
conventional business-oriented QoS requirements, such as
data persistence, encryption, and transactional support. They
therefore do not enforce the stringent QoS requirements of
DRE applications effectively. What is needed is a QoS-
enabled component middleware that preserves existing sup-
port for heterogeneity in standard component middleware, yet
also provides multiple dimensions of QoS provisioning and
enforcement to meet the end-to-end QoS requirements of DRE
applications.

2. Accidental complexities in integrating software systems.
To reduce lifecycle costs and time-to-market, application de-
velopers today often assemble and deploy DRE applications
by manually selecting the right set of compatible COTS and
custom components, which can be a daunting task. The prob-
lem is further exacerbated by the existence of myriad strategies
for configuring and deploying the underlying component mid-
dleware to leverage special hardware and software features.
Application developers spend non-trivial amounts of time de-
bugging problems associated with the selection of incompat-
ible strategies and components. What is needed is an inte-
grated set of software development processes and tools that
can (1) select and validate a suitable configuration of middle-
ware components and (2) generate optimized configurations
automatically.

1.3 A Promising Solution

A promising way to address the DRE software development
and integration challenges in Section 1.2 is to combine Model-
Integrated Computing (MIC) technologies [8] with QoS-
enabled component middleware. Model-Integrated Comput-
ing is an emerging paradigm for expressing application func-
tionality and QoS requirements at higher levels of abstrac-
tion than is possible using third-generation programming lan-
guages, such as Visual Basic, Java, C++, or C#. In the context
of DRE applications, Model-Integrated Computing tools can
be applied to

1. Analyze different—but interdependent—characteristics
of system behavior, such as scalability, predictability,
safety, and security. Tool-specific model interpreters
translate the information specified by models into the in-
put format expected by analysis tools. These tools can
check whether the requested behavior and properties are
feasible given the specified application and resource con-
straints.

2. Synthesize platform-specific code that is customized for
particular component middleware and DRE application
properties, such as end-to-end timing deadlines, recovery
strategies to handle various runtime failures in real-time,
and authentication and authorization strategies modeled
at a higher level of abstraction.

Combining Model-Integrated Computing and QoS-enabled
component middleware effectively is essential to resolve the
static and dynamic QoS provisioning challenges of complex
DRE systems described in Section 1.2. This paper provides
the following three contributions to the successful integration
of Model-Integrated Computing and QoS-enabled component
middleware that is essential to address these challenges:

� We illustrate how enhancements to standard component
middleware can simplify the development of DRE ap-

3



plications by composing QoS provisioning policies stati-
cally with applications. Our discussion focuses on a QoS-
enabled enhancement of the standard CORBA Compo-
nent Model (CCM) [3] called the Component-Integrated
ACE ORB (CIAO), which is being developed at Washing-
ton University, St. Louis.

� We describe how dynamic QoS provisioning and adap-
tation can be addressed using middleware capabilities
called Qoskets, which are enhancements of the Quality
Objects (QuO) [9] middleware developed by BBN Tech-
nologies. Our discussion focuses on how Qoskets can
be combined with CIAO to compose adaptive QoS as-
surance into DRE applications dynamically. In particu-
lar, Qoskets manage modular QoS aspects, which can be
combined with CIAO and woven to create an integrated
QoS-enabled component model.

� We discuss how QoS-enabled component middleware en-
ables Model-Integrated Computing tools to rapidly de-
velop, generate, assemble, and deploy flexible DRE ap-
plications, yet can be tailored readily to meet the needs
of multiple simultaneous QoS requirements. Our discus-
sion focuses on the Component Synthesis with Model-
Integrated Computing (CoSMIC) tools being developed
by the Institute for Software Integrated Systems (ISIS) at
Vanderbilt University.

1.4 Paper Organization

The remainder of this paper is organized as follows: Sec-
tion 2 describes how component middleware addresses key
limitations of object-oriented middleware, as well as how con-
ventional component middleware fails to support DRE ap-
plication development effectively; Section 3 illustrates how
CIAO component middleware and BBN’s QuO middleware
framework expand the capability of conventional component
middleware to facilitate static and dynamic QoS provision-
ing and enforcement for DRE applications; Section 4 explains
how Model-Integrated Computing and QoS-enabled compo-
nent middleware can be combined to resolve key challenges
associated with DRE application integration and how we are
applying these technologies to synthesize component-based
applications from high-level models in the CIAO and CoSMIC
projects; Section 5 presents empirical results that show how
QoS provisioning helps a surveillance and reconnaissance ap-
plication meet its multimedia mission requirements in a tac-
tical environment; Section 6 compares our work on CIAO,
Qoskets, and CoSMIC with related research; and Section 7
presents concluding remarks.

2 Component Middleware: A Power-
ful Approach to Building DRE Appli-
cations

This section motivates the need for component middleware
and then presents an overview of component middleware. It
also discusses why conventional component middleware fails
to support key QoS provisioning needs of DRE applications.

2.1 Overview of Middleware Capabilities

Middleware is reusable software that resides between appli-
cations and underlying operating systems, network protocol
stacks, and hardware [10]. Middleware’s primary role is to
bridge the gap between application programs and the lower-
level hardware and software infrastructure, to coordinate how
parts of applications are connected and how they interoperate.
When implemented properly, middleware can help to:

� Shield application developers from low-level, tedious,
and error-prone platform details, such as socket-level net-
work programming.

� Simplify the development of distributed applications by
providing a consistent set of capabilities that are closer to
application design-level abstractions than to the underly-
ing computing and communication mechanisms.

� Provide higher-level abstraction interfaces for managing
system resources, such as instantiation and management
of interface implementations and provisioning of QoS re-
sources.

� Amortize software lifecycle costs by leveraging previous
development expertise and capturing implementations of
key patterns in reusable frameworks, rather than rebuild-
ing them manually for each use.

� Provide a wide array of developer-oriented services, such
as transactional logging and security, that have proven
necessary to operate effectively in a distributed environ-
ment.

� Ease the integration of software artifacts developed by
multiple technology suppliers.

Various technologies, such as OSF’s Distributed Comput-
ing Environment (DCE) [11], IBM’s MQ Series [12], and
CORBA [13], have emerged over the past two decades to al-
leviate complexities associated with developing software for
enterprise applications. Their successes have added the mid-
dleware paradigm to the familiar operating system, program-
ming language, networking, and database offerings used by
previous generations of software developers. By decoupling
application-specific functionality and logic from the acciden-
tal complexities inherent in the infrastructure, middleware en-
ables application developers to concentrate on programming

4



application-specific functionality, rather than wrestling repeat-
edly with lower-level infrastructure challenges.

2.2 Limitations with Object-oriented Middle-
ware

The Object Management Architecture (OMA) in the CORBA
2.x specification [14] defines an object-oriented middleware
standard for building portable distributed applications. The
CORBA 2.x specification focuses on interfaces, which are
contracts between clients and servers that define how clients
view and access object services provided by a server. Objects
can either be collocated or distributed throughout a network.

Although the CORBA object model has certain virtues, such
as location and implementation language transparency, it also
has the following limitations [15]:

Lack of functional boundaries. The CORBA 2.x object
model treats all interfaces as client/server contracts. This ob-
ject model does not, however, provide sufficient mechanisms
to prevent tight coupling among collaborating object imple-
mentations. For example, object implementations that depend
on other objects need to discover and connect to those objects
explicitly. To build complex distributed applications, there-
fore, application developers need to program the connections
among interdependent services, which can yield brittle and
non-reusable implementations.

Lack of generic component servers. CORBA 2.x does not
specify a generic component server framework to perform
common “bookkeeping” work, including initializing the bro-
ker and its QoS policies, providing common services such as
an event service, and managing the runtime environment of
each component. Although CORBA 2.x standardized the in-
teractions between object implementations and object request
brokers (ORBs), server developers are still responsible for de-
termining how object implementations are installed in an ORB
and the interaction between the ORB and object implementa-
tions. The lack of a generic component server standard has
yielded tightly coupled, ad-hoc server implementations, which
increase the complexity of software upgrades and reduce the
reusability and flexibility of CORBA-based applications.

2.3 Promising Solution: Component Middle-
ware

In recent years, component middleware [16] has emerged to
address the limitations with object-oriented middleware out-
lined above. Component middleware addresses these issues
by (1) creating a virtual boundary around application compo-
nents that interact with each others only through well-defined
interfaces and (2) then composing and executing components
in generic component servers. The OMG’s CCM addresses the

limitations with object-oriented middleware described above.
It has many similarities to other component middleware frame-
works, e.g., EJB and COM+. Sidebar 1 explains the reasons
why we base our work on CCM.

Sidebar 1: Motivation for Using the CCM

We base our work on the CCM since CORBA is the only standards-
based COTS middleware that has made a substantial progress in
satisfying the QoS requirements of DRE systems. For instance,
the OMG has adopted the following DRE-related specifications in
recent several years:

� Minimum CORBA, which removes non-essential features
from the full OMG CORBA specification to reduce footprint
so that CORBA can be used in memory-constrained embed-
ded systems.

� Real-time CORBA, which includes features that allow ap-
plications to reserve and manage network, CPU, and memory
resources predictably end-to-end.

� CORBA Messaging, which exports additional QoS policies,
such as asynchronous invocations, timeouts, request priori-
ties, and queueing disciplines, to DRE applications.

� Fault-tolerant CORBA, which uses entity redundancy of
objects to support replication, fault detection, and failure re-
covery.

These QoS specification and enforcement capabilities are essen-
tial to support DRE systems. Moreover, multiple interoperable and
robust implementations of these CORBA capabilities and services
are now available. Many of these CORBA implementations are
freely-available in open-source format, which is conducive to re-
search and whitebox evaluation. For these reasons, our work fo-
cuses on the CCM as the basis for QoS-enabled component models
to support DRE systems.

Figure 3 shows an overview of the runtime architecture of
the CCM model. Components are implementation entities that
export a set of interfaces to clients. Components can also
express their intent to collaborate with other components by
defining ports, which consist of the following types of inter-
faces:

� Facets, which define an interface that accepts method in-
vocations from other components synchronously,

� Receptacles, which indicate dependencies on syn-
chronous method interfaces provided by other compo-
nents, and

� Event sources/sinks, which indicate a willingness to ex-
change messages with other components asynchronously.

A container provides the runtime environment for a com-
ponent. It contains various pre-defined hooks that provide
strategies, such as persistence, event notification, transaction,
and security, to the component it manages. Each container
manages one type of component and is responsible for initial-
izing this component and connecting it to other components

5



Container

Container

Component
Front Panelhud info

overheat

radar engine

safe modethrottle pos.

thrust

F
acets

R
ec

ep
ta

cl
es

refresh
rate

A
tt

ri
bu

te
Component

Engine Mgnt.air temp

em stop

N1

curr thrust

output

F
acets

E
vents

type

A
tt

ri
bu

te

uses

uses

Notification Service

Event Channel
Price Changes

Event Channel
Offer Prices

consumespublishes
consumes publishes

E
vents

Transaction
Security

Persistent

ORB

Figure 3: Overview of the CCM Run-time Architecture

and ORB services. Developer-specified metadata is used to
instruct the CCM deployment mechanism how to create these
containers.

In addition to the building blocks outlined above, the
CCM also standardizes component implementation, packag-
ing, and deployment. The CCM Component Implementation
Framework (CIF) helps generate the component implementa-
tion skeletons and persistent state management automatically
using the Component Implementation Definition Language
(CIDL). The CCM also extends the Open Software Descrip-
tion (OSD) [17], which is a vocabulary of XML defined by
W3C to specify component packaging and assembly descrip-
tors. OSD is used by the CCM deployment mechanisms to
configure the component connections and containers declara-
tively.

The tools and mechanisms defined by the CCM collaborate
together to address the limits described in Section 2.2. The
CCM programming paradigm separates many common con-
cerns of composing and provisioning reusable software com-
ponents to build an application. This separation of concerns
enables programmers to concentrate on the work at hand and
separate the role of developers in the application development
process. The CCM differentiates the following roles:

� Component designers, who define the component fea-
tures by defining the component interfaces

� Component implementors, who develop component
implementations

� Component packagers, who package component imple-
mentations with their default properties

� Component assemblers, who select component imple-
mentations and compose them into applications

� System deployers, who deploy component assemblies
into component servers

Although the CCM specification has recently been finalized
by the OMG, it still has not been fully incorporated into the
core CORBA specification.1 A number of CCM implemen-
tations are available based on the current draft [3], including
OpenCCM by the Universite des Sciences et Technologies de
Lille, France, K2 Containers by iCMG, MicoCCM by FPX,
and CIAO by the DOC groups at Washington University in St.
Louis. The architectural patterns used in CCM are also used
in other popular component middleware technologies, such as
J2EE [18] and .NET.

2.4 Limitations with Component Middleware
for DRE Systems

Large-scale DRE applications require seamless integration of
many hardware and software systems. Figure 4 shows a repre-
sentative air traffic control system that collects and processes
real-time flight status from multiple regional radars across an
entire country. Based on the real-time flight data, the system
then reschedules flights, issues air traffic control commands to
airplanes in flight, notifies airports, and updates the displays in
an airport’s flight bulletin boards.

The types of systems shown in Figure 4 require compli-
cated application provisioning where developers must con-
nect numerous distributed or collocated subsystems together
and define the functionality of each subsystem. Component
middleware can reduce the software development effort for
these types of systems by enabling application development
through composition. Conventional component middleware
frameworks, however, are designed with business applications
in mind and do not yet support QoS provisioning for DRE
applications. Developers are therefore forced to configure and
control these mechanisms imperatively in their component im-
plementations.

Although it is possible for component developers to take ad-
vantage of certain features in middleware or OS to implement
QoS-enabled components by embedding certain QoS provi-
sioning code in component implementations, most features
are simply not possible to implement within component im-
plementations. In particular, the following limitations restrict
the effectiveness of conventional component models:
� QoS provisioning must be done end-to-end, i.e., it needs

to be applied to all interacting components. Implement-
ing QoS provisioning logic internally to a component
greatly hampers its reusability.

1The latest CORBA 3.0 specification [13] released by the OMG includes
only changes in IDL definition and Interface Repository changes from the
Component specification.

6



Component Server

Container Container

Flight
Scheduling
Processing

Web
Gateway

Component
Deployment

&
Configuration
Mechanism

Middleware Framework

Deployment
&

Configuration
Metadata

Real-Time
Component
Repository

Compose Deploy

Client

Middleware Bus

Central
Data
Store

System Development

Field Radar
Control
System

Real-Time
Flight
Status
Bulletin
Board

Chicago
Data

Center

Component
Assembly

Flight
Scheduling

Airport
Approach
Control

WWW

Figure 4: Integrating DRE Applications with Component
Middleware

� Certain resources, such as thread pools in Real-time
CORBA, can only be provisioned within an execution
unit, i.e., a component server. Since component devel-
opers often have no a priori idea of which other compo-
nents a component implementation will collaborate, the
component implementation is not the right level at which
to perform QoS provisioning.

� Certain QoS assurance mechanisms, such as config-
uration of non-multiplexed connections between com-
ponents, affect component interconnections. Since a
reusable component implementation may not know how
it will be composed with other components, it is not gen-
erally possible for component implementations to per-
form these types of QoS provisioning in isolation.

� Many QoS provisioning policies and mechanisms require
the installation of customized ORB modules to work cor-
rectly. Some of these policies and mechanisms, such as
high throughput and low latency, however, may be inher-
ently incompatible. It is hard for QoS provisioning mech-
anisms implemented within components to foresee these
incompatibility without knowing the end-to-end QoS re-

quirements a priori.

In general, forcing QoS provisioning functionality into
component implementations prematurely commits each im-
plementation to a QoS provisioning scenario in a system’s life-
cycle. This tight coupling defeats one of the key benefits of
component models: separating component functionality from
system management. By creating dependencies between appli-
cation components and the underlying component framework,
component implementations become hard to reuse, particu-
larly in DRE applications with stringent QoS requirements.

3 QoS Provisioning and Enforcement
with CIAO and QuO Qoskets

In traditional DRE systems, code for provisioning and enforc-
ing QoS properties is often spread throughout the software and
tangled with the application logic. This tangling makes the
DRE applications hard to maintain or to extend with new QoS
mechanisms and behaviors. As discussed in Section 2.4, a
key challenge in QoS provisioning is to decouple the reusable,
multi-purpose, off-the-shelf, resource management aspects of
the middleware from aspects that need customization and tai-
loring to the specific preferences of the application.

QoS
Systemic Path

Operating System

Middleware

Sys
Condition

Mechanism & Properties
Manager

Applications

Operating System

QoS
Descriptions

Interceptor

Middleware

Applications

Local
Resource
Manage-

ment

Interceptor
Sys

Condition
Sys

Condition
Sys

Condition

QoS
Descriptions

} {

Endsystem Endsystem

Local
Resource
Manage-

ment

Functional Path

Infrastructure Middleware

Distributed Middleware

Common Services

Domain-Specific Services

Infrastructure Middleware

Distributed Middleware

Common Services

Domain-Specific Services

Figure 5: Decoupling the Functional Path from the Sys-
temic QoS Path

Based on our experience developing dozens of research and
production DRE systems over the past two decades, we have
found that it is most effective to separate the programming of
QoS concerns along the two dimensions shown in Figure 5 and
discussed below:

Functional paths, which are flows of information between
client and remote server applications. Distributed middle-
ware is responsible to ensure that this information is ex-
changed efficiently, predictably, scalably, dependably, and se-
curely between remote nodes. The information itself is largely
application-specific and determined by the functionality being
provided (hence the term “functional path”).

7



QoS systemic paths, which are responsible for determining
how well the functional interactions behave end-to-end with
respect to key DRE QoS properties, such as

1. When, how, and what resources are committed to
client/server interactions at multiple levels of distributed
systems,

2. The proper application and system behavior if available
resources are less than expected, and

3. The failure detection and recovery strategies necessary to
meet end-to-end dependability requirements.

In next-generation DRE systems, the middleware – rather
than operating systems or networks alone – will be responsi-
ble for separating QoS systemic properties from functional ap-
plication properties and coordinating the QoS of various DRE
system and application resources end-to-end. The architecture
shown in Figure 5 enables these properties and resources to
change independently, e.g., over different distributed system
configurations for the same application.

The architecture in Figure 5 assumes that QoS systemic
paths will be provisioned by a different set of specialists (such
as systems engineers, administrators, operators, and possibly
automated computing agents) and tools than those custom-
arily responsible for programming functional paths in DRE
systems. In conventional component middleware, such as
CCM that we described in Section 2.3, there are multiple soft-
ware development roles, such as component designers, as-
semblers, and packagers. QoS-enabled component middle-
ware identifies yet another development role called qoske-
teer [9] that is responsible for performing QoS provisioning,
such as preallocating CPU resources, reserving network band-
width/connections, and monitoring/enforcing the proper use of
system resources at runtime.

This section describes middleware technologies based on
the architecture in Figure 5 that we have developed to

1. Statically provision QoS resources end-to-end to meet
key requirements. Some DRE systems, such as avionics
mission computing applications, require strict allocation
of critical resources via static QoS provisioning.

2. Monitor and manage the QoS of the end-to-end func-
tional application interactions.

3. Enable the adaptive and reflective decision-making
needed to dynamically provision QoS resources robustly
and enforce the QoS requirements of applications in the
face of rapidly changing mission requirements and envi-
ronmental conditions.

3.1 Static Qos Provisioning and Enforcement
via QoS-enabled Component Middleware
and CIAO

3.1.1 Overview of Static QoS Provisioning

Static QoS provisioning refers to pre-determining the re-
sources needed to satisfy certain QoS requirements and allo-
cating the resources of a system before or during start-up time.
Certain applications use static QoS provisioning because they
require tightly bounded predictability for certain functionality
in the systems. For example, in avionic control systems, the
commands for control surfaces should be assured access to re-
sources e.g., through planned scheduling of those operations or
assigning them the highest priority. In contrast, the handling
of secondary functions such as flight path calculation, can be
delayed without significant impact on the overall system func-
tioning. On other occasions, static QoS provisioning may be
used for its simplicity, e.g., a video streaming application for
the unmanned air vehicle (UAV) described in Section 5 may
choose to simply reserve a fixed network bandwidth for the
audio and video streams.

To address the limitations of existing middleware outlined
in Section 2.4, it is necessary to make QoS provisioning poli-
cies an integral part of component middleware to decouple
QoS provisioning policies from component functionality. This
separation of concerns relieves component developers from
tangling the code to manage QoS resources with the com-
ponent implementation. It simplifies QoS provisioning that
cross-cut multiple interacting components to better ensure
end-to-end QoS behavior. Specifically,

� To perform QoS provisioning end-to-end throughout a
component middleware system robustly, the static QoS
provisioning specifications should be decoupled from
component implementations and specified instead in
component composition metadata. This separation of
concerns helps improve component reusability by pre-
venting a premature commitment to specific QoS provi-
sioning parameters.

� To provision QoS resources that need to be allocated in
a component server, component assembly metadata need
to be extended to allow allocation and configuration for
these resources global to a component server, and be able
to associate them with component instances that share
these resources.

� Component assembly metadata must also be extended to
provision QoS resources for component interconnections.

� To ensure a component server is configured with the
mechanisms needed to support the provisioned QoS re-
quirements, component assembly metadata need to be ex-
tended to include middleware modules that can configure
component servers.

8



Client Component Server

RT-ORB

in args

out args + return value

operation ()

QoS
Mechanism

Plug-ins

QoS
Mechanism

Plug-ins

Container

CORBA
Component

Component
Home

Object
Reference

Real-Time POA

Thread
Pool

End-to-End Priority
Propagation

Explicit
Binding

Protocol
Properties

Standard
Synchronizers

Scheduling
Service

Figure 6: Examples of Static QoS Provisioning

Figure 6 illustrates the types of static QoS provisioning that
are necessary in large-scale DRE applications:

1. CPU resources, which need to be allocated to various
competing tasks in a system to make sure these tasks fin-
ish on time,

2. Communication resources, which the middleware uses
to pass messages around to “connect” distributed system
together, and

3. Distributed middleware configurations, which are
middleware plug-ins that a middleware framework uses
to realize QoS assurance.

3.1.2 Static QoS Provisioning with CIAO

Figure 7 shows the key elements of the Component-Integrated
ACE ORB (CIAO), which is a QoS-enabled implementation
of CCM developed at Washington University, St. Louis by
extending the TAO ORB [19]. TAO is an open-source, high-
performance, highly configurable Real-time CORBA ORB
that implements key patterns [20] to meet the demanding
QoS requirements of distributed systems. CIAO enhances
TAO to simplify the development of DRE applications by en-
abling developers to statically provision QoS policies end-to-
end declaratively when assembling a system.

To support the role of the qosketeer, CIAO makes the fol-
lowing extensions to the CCM to support static QoS provision-
ing:
Component assembly. A component assembly describes
how components are composed into a system. We extend
the notion of component assembly to include server-level QoS
provisioning and implementations for required QoS support-
ing mechanisms. We also extend the assembly descriptor for-
mat to allow QoS provisioning at the component-connection
level.
Client configuration aggregates. We define client-side
configuration specifications to configure the client-side ORB

Client Component Server

Deployment
&

Configuration
Mechanism

Component Assembly

RT-ORB

in args

out args + return value

Operation ()

QoS
Mechanism

Plug-ins

QoS
Mechanism

Plug-ins

Client
Configuration

Aggregate

QoS
Adaptation

Container

CORBA
Component

Component
Home

Real-Time POA

QoS Property
Adaptor

QoS Policies

R
ef

le
ct

QoS
Adaptation

QoS
Adaptation

QoS
Mechanism

Plug-ins

Named
Policy

Aggregate

Named
Policy

Aggregate

Object
Reference

QoS
Adaptation

QoS
Mechanism

Plug-ins

QoS Policies

Component Connection
Specifications

Component & Home Impls

Figure 7: Key Elements in CIAO

for support of various QoS provisioning policies. Clients can
then associate with named QoS provisioning policies defined
in an aggregate, interact with servers, and provide end-to-end
QoS assurance. Client configuration aggregates can be in-
stalled into a client ORB transparently in CIAO.
QoS-aware containers. They provide the centralized inter-
face for managing provisioned component QoS policies and
interacting with QoS assurance mechanisms required by the
QoS policies.
QoS adaptations. CIAO also supports installation of meta-
programming hooks which can be used to perform dynamic
QoS provisioning.

To support these capabilities, CIAO extends the CCM pack-
aging and deployment framework so that system developers
can specify the necessary features in component assembly de-
scriptors as various policies. These capabilities enable CIAO
to statically provision the types of QoS resources outlined in
Section 3.1.1 as follows:

1. CPU resources – These policies specify how to allocate
CPU resources when running certain tasks, e.g., priority
model of a component instance;

2. Communication resources – These policies specify
ways to reserve and allocate communication resources for
component connections, e.g., an assembly can demand
a private connection between two critical components in
the system, and reserve bandwidth for the connection us-
ing the RSVP protocol;

9



3. Distributed middleware configuration – These policies
specify the required software modules that control the
QoS mechanisms for:

� ORB configurations: The ORB needs to know
how to support the functionality required to enable
higher level policies, e.g., installing and configuring
customized communication protocol.

� Meta-programming mechanisms: Software mod-
ules, such as those developed with the QuO Qosket
middleware framework, which implement dynamic
QoS provisioning and adaptation can be installed
statically at system composition time via meta-
programming mechanisms, such as smart proxies
and interceptors [21].

System developers can use CIAO to decouple QoS pro-
visioning functionality from component implementation and
compose these static QoS provisioning requirements into a
system at some later point of the development cycle.

3.2 Dynamic QoS Provisioning and Enforce-
ment via QuO Adaptive Middleware and
Qoskets

3.2.1 Overview of Dynamic QoS Provisioning

Dynamic QoS provisioning involves the allocation and man-
agement of resources at run-time to satisfy certain application
QoS requirements. Certain events, such as fluctuations in re-
source availability or changes in QoS requirements, can trig-
ger reevaluation and reallocation of resources. The following
middleware capabilities are needed to support dynamic QoS
provisioning:

� To detect changes in available resources, middleware
must monitor the system status to determine if realloca-
tions are required. For example, network bandwidth is
usually shared by multiple applications on modern com-
puters. It is important that middleware for bandwidth-
sensitive applications, such as video conferencing, to no-
tice changes in available bandwidth.

� When available resources change, an application may
need to adapt to the change by adjusting the resources
required. For instance, a video conferencing applica-
tion may choose to lower the resolution temporarily when
there is less available network bandwidth to support the
original resolution, and switch back to user requested res-
olution when sufficient bandwidth is available.

As described in Section 1, conventional middleware tries to
isolate applications functionality behavioral aspects, such as
operation invocations, by abstracting these behavioral aspects
under the interface interaction semantic. Although there are
ways to implement dynamic QoS provisioning functionality

Protocol Infrastructure

Design Time

Client Object
(Servant)

IDL
Stubs

IDL
Skeletons

ORB Core

Object Adapter

operation ()

ORB Core

in args

out args + return
value

OBJ
REF

Contract
Delegate Delegate

SysCond

Network

Mechanism/property
Manager

IIOP IIOP

SysCond
SysCond

SysCond

Contract

Code
Generator

Adaptation Specification
Language (ASL)

Contract Description
Language (CDL)

CORBA IDL

Runtime

Delegate Contracts

IIOP
Glue

IIOP
Glue

Group Replication (AQuA)

Bandwidth Reservation (DIRM)

IIOP over TCP/IP (default)C
li

en
t-

S
id

e 
O

R
B

Se
rv

er
-S

id
e 

O
R

BControl Control

IIOPIIOP

Runtime

1

2

3

Callback Callback

Figure 8: Examples of Dynamic QoS Provisioning

in existing applications which use conventional middleware,
naı̈ve approaches can yield non-portable code that depends on
specific OS features, tangled implementations that are tightly
coupled with the application software, and other problems that
make it hard to adapt the application to changing requirements.
It is therefore essential to separate the functionality of dynamic
QoS provisioning from both middleware and application func-
tionality.

Figure 8 illustrates the kinds of dynamic QoS provisioning
abstractions and mechanisms that are necessary in large-scale
DRE applications:

1. A design time formalism to specify the level of service
desired by a client, the level of service an object expects
to provide, operating regions indicating possible mea-
sured QoS, and actions to take when the level of QoS
changes.

2. A runtime mechanism to adapt application behavior
based upon the current state of QoS in the system.

3. A set of interfaces to resources and mechanisms in the
protocol infrastructure that need to be measured and con-
trolled dynamically.

10



Client
Object

(Servant)

IDL
Stubs

IDL
Skeletons

ORB Core

Object Adapter

operation ()

ORB Core

in args

out args + return value

OBJ
REF

Contract
Delegate Delegate

SysCond

Network

Mechanism/property
Manager

IIOP IIOP

SysCond
SysCond

SysCond

Contract

Callback
Callback

Figure 9: Elements in the QuO Architecture

3.2.2 Overview of QuO

Quality Objects (QuO) [9] is an adaptive middleware frame-
work developed by BBN Technologies that allows the DRE
developer to use aspect-oriented software development [22]
techniques to separate the concerns of QoS programming from
application logic in DRE applications. The QuO framework
allows DRE developers to specify (1) their QoS requirements,
(2) the system elements that must be monitored and controlled
to measure and provide QoS, and (3) the behavior for adapting
to QoS variations that occur at runtime.

Figure 9 illustrates how the elements in QuO support the
following dynamic QoS provisioning needs:

� Contracts specify the level of service desired by a client,
the level of service an object expects to provide, operating
regions indicating possible measured QoS, and actions to
take when the level of QoS changes.

� Delegates act as local proxies for remote objects. Each
delegate provides an interface similar to that of the re-
mote object stub, but adds locally adaptive behavior
based upon the current state of QoS in the system, as
measured by the contract.

� System condition objects provide interfaces to re-
sources, mechanisms, and ORBs in the system that need
to be measured and controlled by QuO contracts.

QuO applications can also use resource or property managers
that manage given QoS resources, such as CPU or bandwidth,
or properties, such as availability or security, for a set of QoS-
enabled server objects on behalf of the QuO clients using those
server objects. In some cases, managed properties require
mechanisms at lower levels in the protocol stack, such as repli-
cation or access control. To support this, QuO includes a gate-
way mechanism [23], which enables special-purpose transport
protocols and adaptation below the ORB.

For more information about the QuO adaptive middleware,
see [9, 23, 24, 25].

3.2.3 Qoskets: QuO Support for Reusing Systemic Be-
havior

One goal of QuO is to separate the role of the systemic QoS
programmer from that of an application programmer. A com-
plementary goal of this separation of programming roles is that
systemic behaviors can be encapsulated into reusable units that
are not only developed separately from the applications that
use them, but that can be reused by selecting, customizing,
and binding them to an application program. To support this
goal, we have defined Qoskets as a unit of encapsulation and
reuse of systemic behavior in QuO applications. A Qosket is
each of the following, simultaneously:
� A collection of cross-cutting implementations, i.e., a

Qosket is a set of QoS specifications and implementations
that are woven throughout a distributed application and
its constituent components to monitor and control QoS
and systemic adaptation.

� A packaging of behavior and policy, i.e., a Qosket gen-
erally encapsulates elements of an adaptive QoS behavior
and a policy for using that behavior, in the form of con-
tracts, measurements and code to provide adaptive behav-
ior

� A unit of behavior reuse, largely focused on a single
property, i.e., a Qosket can be used in multiple applica-
tions, or in multiple ways within a single application, but
typically deals with a single attribute (e.g., performance,
dependability, security)

Qoskets are a first step towards individual behavior pack-
aging and reuse, as well as a significant step toward the more
desirable (and much more complex) ability to compose behav-
iors within an application context. They are a means toward
the larger goal of flexible design tradeoffs at runtime among
properties such as real time performance, dependability and
security, varying with current operating conditions. Qoskets
are used to bundle in one place all of the specifications and
objects for controlling systemic behavior, independent of the
application in which the behavior might end up being used,
and whether or not the behavior will be used in-band or out-
of-band.

Qoskets encapsulate the following systemic QoS aspects:
� Adaptation policies, as expressed in QuO contracts
� Measurement and control, as defined by system condi-

tion objects and callback objects
� Adaptive behaviors, as defined by ASL specifications,

partially specified as templates until they are specialized
to a functional interface, and by contract transitions and
states.

� QoS implementation, as defined by Qosket methods.
A Qosket is a collection of the interfaces, contracts, system

condition objects, callback objects, unspecialized adaptive be-
havior, and implementation code associated with a reusable

11



piece of systemic behavior. A Qosket is specified by defining
the following:

� The contracts, system condition objects, and callback ob-
jects it encapsulates;

� ASL template code, defining partial specifications of
adaptive behavior.

� Implementation code for instantiating the Qosket’s en-
capsulated objects, for initializing the Qosket, and for im-
plementing the Qosket’s defined systemic measurement,
control, and adaptation;

� The interfaces that the Qosket exposes.

A Qosket can be instantiated and used in either or both of
two ways:

1. Used by the application through an adapter to provide
out-of-band adaptation and QoS management.

2. Used in conjunction with a QuO delegate, i.e., special-
ized to a particular functional interface to provide in-band
adaptation and QoS control.

The general structure of Qoskets, objects they encapsulate,
and interfaces they expose are illustrated in Figure 10. The

Oosket

Qosket
Implementation

Adapter
Interface

Callback
Objects

Delegate
Templates

System
Condition
Objects

Contracts

Delegate
Interface

Helper
Methods

Figure 10: Qoskets Encapsulate QuO Objects into
Reusable Behaviors

two interfaces that qoskets expose correspond to these two use
cases:

� The adapter interface, which is an application program-
mer interface. This interface provides access to QoS mea-
surement, control, and adaptation features in the Qosket
(such as the system condition objects, contracts, and so
forth) so that they can be used anywhere in an applica-
tion.

� The delegate interface, which is an interface to the in-
band method adaptation code. In-band adaptive behav-
iors of delegates are conveniently specified in the QuO
ASL language. The adaptation strategies of the delegate
are conveniently encapsulated, and woven into the appli-
cation using code generation techniques.

3.3 Integrated QoS provisioning via CIAO and
Qoskets

As discussed in Section 3.2.3, Qoskets provide abstractions for
dynamic QoS provisioning and adaptive behaviors. However,
the current implementation of Qoskets in QuO requires appli-
cation developers to modify their application code manually
to “plug in” the behavior into existing applications. Instead
of retrofitting DRE applications to use Qosket specific inter-
faces, it would be more desirable to use existing and emerging
COTS component technologies and standards to encapsulate
QoS management.

Conversely, although CIAO allows system developers to
compose static QoS provisioning, adaptation behaviors, and
middleware support for QoS resources allocating and manag-
ing mechanisms into DRE applications transparently as de-
picted in Section 3.1.2, CIAO does not provide an abstrac-
tion to model, define, and specify dynamic QoS provisioning.
We can take advantage of CIAO’s capability to transparently
configure Qoskets into component servers and provide an in-
tegrated QoS provisioning solution, which enables the compo-
sition of both static and dynamic QoS provisioning into DRE
applications.

The static QoS provisioning mechanisms of CIAO enables
the composition of qoskets into applications as part of com-
ponent assemblies. As shown in Figure 11, CIAO installs a

Component Assembly

QoS Mechanism
Plug-ins

QoS Policies

Component
Connection

Specifications

QuO Mechanism/
property
Manager

Qosket
Implementation

QuO Helper
Methods

Component & Home Impls

QoS Adaptation
(Smart Proxies/

Interceptors)

QuO DelegateQuO DelegateQuO Delegate

Comp. Impl.

QuO
Callback
Objects

SysCond

ContractContract

SysCondSysCond

Figure 11: Composing a qosket using CIAO

qosket using using the following mechanisms:
� QuO delegates can be implemented as smart proxies or

portable interceptors [21] and injected into component
servers using assembly descriptors and the client-side
configuration aggregates described in Section 3.1.2;

� Likewise, developers can specify Qosket specific ORB
configuration and assemble QoS mechanisms into the
component server or client ORB;

� Out-of-band provisioning and adaptation modules, such
as contracts, system conditions, and callback objects can

12



be implemented as CCM components and be assembled
into component servers.

While the use of CIAO to compose Qoskets into compo-
nent assemblies simplifies retrofitting, a significant problem
remains open: component cross-cutting. Qoskets are adept at
separating concerns between systemic QOS properties and ap-
plication logic, as well as implementing limited cross-cutting
between a single client/object pair. Neither Qoskets nor CIAO
currently provides the ability to cross-cut application compo-
nents, however. Many QOS-related adaptations will need to
modify the behavior of several components at once, possibly
in a distributed way. Some form of dynamic aspect-oriented
programming might be used to handle this, but this research is
ongoing.

4 Model-Integrated Synthesis of QoS-
enabled Component Middleware: A
Powerful Approach to Resolving
DRE Application QoS Provisioning
Challenges

Section 1.2 outlined the key challenges associated with devel-
oping DRE applications with multidimensional QoS require-
ments. Sections 2 and 3 addressed some of these challenges
by describing middleware mechanisms for provisioning and
enforcing DRE application QoS requirements. These mech-
anisms do not, however, resolve the challenge of choosing,
configuring, and assembling the appropriate set of semanti-
cally compatible QoS-enabled DRE middleware components,
such as CIAO and Qoskets, tailored to the application’s QoS
requirements. Moreover, the mechanisms described earlier do
not resolve the challenge posed by obsolescence of infrastruc-
ture technologies and its impact on long-term DRE system
lifecycle costs.

This section explains how Model-Integrated Computing
technologies can help to address the unresolved challenges
outlined above. We first present an overview of Model-
Integrated Computing and then show how it can be integrated
with the QoS-enabled component middleware discussed in
Section 3. Finally, we describe how we are developing a MIC
toolsuite called CoSMIC (Component Synthesis using MIC)
to address the aforementioned DRE application challenges.

4.1 Overview of Model-Integrated Computing

Model-Integrated Computing (MIC) [8] is a development
paradigm that applies domain-specific modeling languages
systematically to engineer computing systems ranging from

small-scale real-time embedded systems to large-scale dis-
tributed enterprise applications. MIC provides rich, domain-
specific modeling environments, including model analysis
and model-based program synthesis tools [26]. In the MIC
paradigm, application developers model an integrated, end-to-
end view of the entire application, including the interdepen-
dencies of its components. Rather than focusing on a single,
custom application, MIC models capture the essence of a class
of applications. MIC also allows the modeling languages and
environments themselves to be modeled by so-called meta-
models [27], which help to synthesize domain-specific mod-
eling languages that can capture the nuances of domains they
are designed to model.

When implemented properly, MIC technologies help to:

� Free application developers from dependencies on par-
ticular software APIs, which ensures that the models can
be used for a long time, even as existing software APIs
become obsolete and replaced by newer ones.

� Provide correctness proofs for various algorithms by ana-
lyzing the models automatically and offering refinements
to satisfy various constraints.

� Synthesize code that is highly dependable and robust
since the tools can be built using provably correct tech-
nologies.

� Rapidly prototype new concepts and applications that can
be modeled quickly using this paradigm, compared to the
effort required to prototype them manually.

� Save companies and projects significant amounts of time
and effort in design and maintenance, thereby also reduc-
ing application time-to-market.

Early computer-aided software engineering (CASE) tech-
nologies have evolved into sophisticated tools, such as objec-
tiF and in-Step from MicroTool and Paradigm Plus, VISION,
and COOL from Computer Associates. This class of products
has evolved over the past two decades to alleviate complex-
ities associated with developing software for enterprise ap-
plications. Their successes have added the Model-Integrated
Computing paradigm to the familiar programming languages
and language processing tool offerings used by previous gen-
erations of software developers. Popular examples of MIC
tools being used today include the Generic Modeling Environ-
ment (GME) [26] and Ptolemy [28] (which are used primarily
in the real-time and embedded domain) and UML/XML tools
based on the OMG Model Driven Architecture (MDA) [29]
(used primarily in the enterprise application domain thus far).

As shown in Figure 12, MIC uses a set of tools to

� Analyze the interdependent features of the system cap-
tured in a model and

� Determine the feasibility of supporting different non-
functional system aspects, such as QoS requirements, in
the context of the specified constraints.

13



Integrated
Model

Model
Interpreter &

Code
Synthesizer

System
Constraints

Executable
Specifications

Platform-
Specific

Code
Generator

Integrate &
Generate

Synthesize
Application

Code

Figure 12: The Model-Integrated Computing Process

Another set of tools then translates models into executable
specifications that capture the platform behavior, constraints,
and interactions with the environment. These executable spec-
ifications can in turn be used to synthesize application soft-
ware.

4.2 Combining Model-Integrated Computing
and QoS-enabled Component Middleware

MIC and component middleware have evolved independently
from different perspectives. Although each of these two
paradigms have been successful independently, each also has
its limitations, as discussed below:
Complexity due to heterogeneity. Conventional compo-
nent middleware is developed using separate tools and in-
terfaces written and optimized manually for each middle-
ware technology, such as CORBA, J2EE, and .NET, and for
each target deployment, such as various OS, network, and
hardware configurations. Developing, assembling, validating,
and evolving all this middleware manually is costly, time-
consuming, tedious, and error-prone, particularly for runtime
platform variations and complex application use-cases. This
problem is exacerbated as more middleware, target platforms,
and complex applications continue to emerge.
Lack of sophisticated modeling tools. Previous efforts at
model-based development and code synthesis attempted by
CASE tools generally failed to deliver on their potential for
the following reasons [30]:

� They attempted to generate entire applications, including
the infrastructure and the application logic, which often
led to inefficient, bloated code that was hard to optimize,
validate, evolve, or integrate with legacy code.

� Due to the lack of sophisticated domain-specific lan-
guages and associated modeling tools, it was hard to
achieve round-trip engineering, i.e., moving back and
forth seamlessly between model representations and the
synthesized code.

Integrated
Model

Model
Interpreter &

Code
Synthesizer

System
Constraints

Executable
Specifications

Platform Component
Repository

Component
Assembly/

Code
Generator

Middleware
Specific Code

Middleware
Specific

Component
Assembly

Integrate &
Generate

Select
Components

Synthesize &
Assemble

Figure 13: Integrating Model-Integrated Computing and
Component Middleware

� Since CASE tools and modeling languages dealt primar-
ily with a restricted set of platforms (such as mainframes)
and legacy programming languages (such as COBOL)
they did not adapt well to the distributed computing
paradigm that arose from advances in PC and Internet
technology and newer object-oriented programming lan-
guages, such as Java, C++, and C#.

The limitations with Model-Integrated Computing and com-
ponent middleware outlined above can largely be overcome by
integrating them as follows:

� Combining MIC with component middleware helps to
overcome problems with earlier-generation CASE tools
since it does not require the modeling tools to generate
all the code. Instead, large portions of applications can be
composed from reusable, prevalidated middleware com-
ponents, as shown in Figure 13.

� Combining MIC and component middleware helps ad-
dress environments where control logic and procedures
change at rapid pace, by synthesizing and assembling
newer extended components that implement the new pro-
cedures and processes.

� Combining component middleware with MIC helps to
make middleware more flexible and robust by automating
the configuration of many QoS-critical aspects, such as
concurrency, distribution, resource reservation, security,
and dependability. Moreover, MIC-synthesized code can
help bridge the interoperability and portability problems
between different middleware for which standard solu-
tions do not yet exist.

14



� Combining component middleware with MIC helps to
model the interfaces among various components in terms
of standard middleware, rather than language-specific
features or proprietary APIs.

� Changes to the underlying middleware or language map-
ping for one or many of the components modeled can
be handled easily as long as they interoperate with other
components. Interfacing with other components can be
modeled as constraints that can be validated by model
checkers.

Figure 14 illustrates seven points at which Model-Integrated
Computing can be integrated into component middleware ar-
chitectures, such as the integrated CIAO and Qoskets middle-
ware suite, and applied to DRE applications. We describe each
of these seven integration points below:
1. Configuring and deploying application services end-to-
end. As discussed earlier in the explanation of Figure 4, de-
veloping complex DRE applications requires application de-
velopers to handle a variety of configuration and deployment
challenges, such as
� Locating the appropriate existing services
� Partitioning and distributing application processes among

component servers using the same middleware technolo-
gies and

� Provisioning the QoS required for each service that com-
prises an application end-to-end.

It is a daunting task to identify and deploy all these capabilities
into an efficient, correct, and scalable end-to-end application
configuration. For example, to maintain correctness and effi-
ciency, services may change or migrate when the DRE appli-
cation requirements change. Careful analysis is therefore re-
quired to partition collaborating services on distributed nodes
so the information can be processed efficiently, dependably,
and securely.

Integrating MIC and component middleware to deploy DRE
application services end-to-end can help developers configure
the right set of services into the right part of an application in
the right way. MIC analysis tools can help determine the ap-
propriate partitioning of functionality that should be deployed
into various component servers throughout a network. For ex-
ample, tools like Matlab, Simulink, TimeWiz, and RapidRMA
allow DRE application developers to model and visualize their
end-to-end application and QoS requirements. In particular,
the Simulink tool allows DRE application developers to model,
analyze, simulate, verify, and rapidly prototype applications.
2. Composing components into component servers. Inte-
grating MIC with component middleware provides capabilities
that help application developers to compose components into
application servers by
� Selecting a set of suitable, semantically compatible com-

ponents from reuse repositories.

Component Server

Containers Containers

Flight
Scheduling
Processing

Web
Gateway

Component
Deployment

&
Configuration
Mechanism

Middleware Framework

Deployment
&

Configuration
Metadata

Component
Repository

Compose Deploy

Middleware
Configuration Metadata 6

4

3

1

2

3

4

6

Configuring and deploying an application services end-to-end

Synthesizing application component implementations

Configuring application component containers

Composing components into application server components

Synthesizing middleware-specific configurations

Business
Logic

7

7 Synthesizing middleware implementations

Client

Middleware Bus

Central
Data
Store

1

System Development

Field Radar
Control

Systems
Real-time

Flight
Status
Bulletin
Board

Chicago
Data

Center

Component
Assembly

Flight
Scheduling

2
Airport

Approach
Control

5 Synthesizing dynamic QoS provisioning and adaptation logic

5

Figure 14: Integrating Model-Integrated Computing with
Component Middleware

� Specifying the functionality required by new components
to isolate the details of DRE systems that (1) operate in
environments where DRE processes change periodically
and/or (2) interface with third-party software associated
with external systems.

� Determining the interconnections and interactions be-
tween components in metadata.

� Packaging the selected components and metadata into an
assembly that can be deployed into the component server.

MIC tools, such as Matlab and Simulink, provide visual tools
for composing DRE component servers.

15



3. Configuring application component containers. Appli-
cation components use containers to interact with the compo-
nent servers in which they are configured. As discussed in
Section 2.3, containers manage many policies that distributed
applications can use to fine-tune underlying component mid-
dleware behavior, such as its priority model, required service
priority level, security, and other quality of service properties.
Since DRE applications consist of many interacting compo-
nents, their containers must be configured with consistent and
compatible QoS policies.

Due to the number of policies and the intricate interactions
among them, it is tedious and error-prone for a DRE appli-
cation developer to manually specify and maintain compo-
nent policies and semantic compatibility with policies of other
components. MIC tools can help automate the validation and
configuration of these container policies by allowing system
designers to specify the required system properties as a set of
models. Other MIC tools can then analyze the models and
generate the necessary policies and ensure their consistency.

The Embedded Systems Modeling Language (ESML) [31]
developed as part of the DARPA MoBIES program uses MIC
technology to model the behavior of, and interactions between,
avionics components. Moreover, the ESML model generators
synthesize fault management and thread policies in component
containers.
4. Synthesizing application component implementations.
Developing complex DRE applications today involves pro-
gramming new components that add application-specific func-
tionality. Likewise, new components must be programmed
to interact with external systems and sensors, such as a ma-
chine vision module controller, that are not internal to the ap-
plication. Since these components involve substantial knowl-
edge of application domain concepts, such as mechanical de-
signs, manufacturing process, workflow planning, and hard-
ware characteristics, it would be ideal if they could be devel-
oped in conjunction with mechanical engineers or domain ex-
perts, rather than programmed manually in isolation by soft-
ware developers.

The shift toward high-level design languages and modeling
tools is creating an opportunity for increased automation in
generating and integrating application components. The goal
is to bridge the gap between specification and implementation
via sophisticated aspect weavers [22] and generator tools [26]
that can synthesize platform-specific code customized for spe-
cific application properties, such as resilience to equipment
failure, prioritized scheduling, and bounded worst-case exe-
cution under overload conditions.

The Adaptive Quality Modeling Environment (AQME) [32]
developed as part of the DARPA PCES program uses MIC
technology to provide a model-driven approach for QoS adap-
tation in DRE applications. In particular, AQME is used in
conjunction with QuO/Qoskets to provide adaptive QoS poli-

cies for an unmanned aerial vehicle (UAV) real-time video dis-
tribution application. Section 5 describes this UAV application
in more detail.

5. Synthesizing dynamic QoS provisioning and adaptation
logic. Based on the overall system model and constraints,
MIC tools may decide to plug in existing dynamic QoS pro-
visioning and adaptation modules, using appropriate parame-
ters. When none is readily available, the MIC tools can assist
in creating the new behavior by synthesizing the logic using
the Qosket QDL languages. The generated dynamic QoS be-
havior can then be used in system simulation dynamically to
verify its validity. It can then be composed into the system as
described above.

The AQME [32] modeling language mentioned at the end of
integration point 4 above models the QuO/Qosket middleware
by modeling system conditions and service objects. Moreover,
interactions between the sender and receiver of the UAV video
streaming applications, as well as parameters that instrument
the middleware and application components, are modeled. We
are building upon this work in current research exploring the
modeling of higher level adaptation strategies and the con-
stituent pieces comprising them. The dynamic QoS manage-
ment strategies developed in AQME can be simulated exten-
sively in the Simulink tool, before being applied to a real sys-
tem.

In addition to applying modeling to the specification of
higher level adaptation strategies, we are simultaneously ap-
plying AQME modeling techniques to solve more complex
QoS resource management problems in the UAV application.
For example, we are enhancing the UAV application by us-
ing AQME to model a QoS resource management strategy for
the CPU reservation capability offered by the Timesys Linux
real-time kernel [33]. A Timesys Linux CPU reservation guar-
antees that a thread will have a certain amount of CPU time,
irrespective of the priorities of other threads in the system. We
hope to show that the CPU reservation strategy developed us-
ing AQME modeling techniques will be more robust (i.e., of-
fer end-to-end QoS without priority inversion problems) than
a strategy developed using ad hoc coding techniques and that
AQME modeling can be used to model more comprehensive,
cross-cutting adaptation strategies than are reasonable using
hand-coding methods.

6. Synthesizing middleware-specific configurations. The
infrastructure middleware technologies used by component
middleware provide a wide range of policies and options to
configure and tune their behavior. For example, CORBA
ORBs often provide the following options and tuning parame-
ters:

� Various types of transports and protocols
� Various levels of fault tolerance
� Middleware initialization options

16



� Efficiency of (de)marshaling event parameters
� Efficiency of demultiplexing incoming method calls
� Threading models and thread priority settings and
� Buffer sizes, flow control, and buffer overflow handling

Certain combinations of the options provided by the middle-
ware may be semantically incompatible when used to achieve
multiple QoS properties.

For example, a component middleware implementation
could offer a range of security levels to the application. In the
lowest security level, the middleware exchanges all the mes-
sages over an unsecure channel. The highest security level, in
contrast, encrypts and decrypts messages exchanged through
the channel using a set of dynamic keys. The same middleware
could also provide an option to use zero-copy optimizations to
minimize latency. A modeling tool could automatically detect
the incompatibility of trying to compose the zero-copy opti-
mization with the highest security level (which makes another
copy of the data during encryption and decryption).

Advanced meta-programming techniques, such as adaptive
and reflective middleware [34, 35, 36, 37] and aspect-oriented
programming [22], are being developed to configure middle-
ware options so they can be tailored for particular DRE appli-
cation use cases.
7. Synthesizing middleware implementations. Model-
Integrated Computing can also be integrated with component
middleware by using MIC tools to generate custom middle-
ware implementations. This integration is a more aggres-
sive use of modeling and synthesis than integration point 5
described above since it affects middleware implementations,
rather than their configurations. Application integrators could
use these capabilities to generate highly customized imple-
mentations of component middleware so that

� It only includes the features actually needed for a partic-
ular application and

� It is carefully fine-tuned to the characteristics of particu-
lar programming languages, operating systems, and net-
works.

The customizable middleware architectural framework
Quarterware [38] is an example of this type of integration.
Quarterware abstracts basic middleware functionality and al-
lows application-specific specializations and extensions. The
framework can generate core facilities of CORBA, RMI, and
MPI. The framework-generated code is optimized for perfor-
mance, which the authors demonstrate is comparable—and of-
ten better—than many commercially available middleware im-
plementations.

4.3 Overview of CoSMIC

The Component Synthesis with Model-Integrated Computing
(CoSMIC) project is a MIC toolset being developed by the

Component
Repository

Compose Deploy

Client

Middleware Bus

Central
Data
Store

1

System Development

Field Radar
Control
System

Real-time
Flight
Status
Bulletin
Board

Chicago
Data

Center

Component
Assembly

Flight
Scheduling

2

Airport
Approach
Control

1

2

3

4

6

Configuring and deploying an application services end-to-
end

Synthesizing application component implementations

Configuring application component containers

Composing components into application server
components

Synthesizing middleware-specific configurations

7 Synthesizing middleware implementations

CoSMIC
Model

Interpreter &
Synthesizer

UML Model

select
components

CIAO

Container
CORBA

Component

Component
Home

POA

QoS Property
Adaptor

QoS Policies

R
ef

le
ct

4

CCM Component Library

1

ORB

ORB QoS Interfaces
(Scheduling,

Timeliness,Priority,...)

ORB Plugins

ORB
Metadata

6

7

3

5

5 Synthesizing dynamic QoS provisioning and adaptation logic

Figure 15: Synthesizing CCM Middleware from MIC Tools

Institute for Software Integrated Systems (ISIS) at Vanderbilt
University to (1) model and analyze distributed real-time and
embedded application functionality and QoS requirements and
(2) synthesize CCM-specific deployment metadata required to
deliver end-to-end QoS. Figure 15 illustrates the key elements
in CoSMIC process.

The CoSMIC toolsuite provides modeling of DRE systems,
their QoS requirements, and QoS adaptation policies used for
DRE application QoS management. The component behav-
ior, their interactions, and QoS requirements are modeled us-
ing a language similar to ESML [31]. Whereas ESML en-
ables modeling a proprietary avionics component middleware,

17



Integrated
Model

CoSMIC
Model Interpreter

& Code
Synthesizer

System
Constraints

Executable
Specifications

CIAO Component
Repository

CoSMIC
Component

Assembly/Code
Generator

CIAO Plug-ins

CIAO
CCM

 Assembly

Integrate &
Generate

Select
Components

Synthesize &
Assemble

CIAO
Component

Server

Deploy
CIAO

Package
Deployment

Tools

Figure 16: Interaction betwwen CoSMIC and CIAO

CoSMIC enables modeling the standards-based CCM compo-
nents. Moreover, CoSMIC provides modeling languages to
model the adaptive QoS behavior supported by QuO/Qoskets.

The CoSMIC project is developing synthesis tools tar-
geted at the CIAO component middleware described in Sec-
tion 3.1.2. CIAO abstracts component QoS requirements into
metadata that can be specified in a component assembly after
a component has been implemented. Decoupling QoS require-
ments from component implementations greatly simplifies the
conversion and validation of an application model with multi-
ple QoS requirements into CCM deployment of DRE applica-
tions.

The remainder of this section describes how we are combin-
ing the CoSMIC design tools and procedures with the CIAO
component middleware platform to address key challenges
faced by the developers of DRE applications. Figure 16 il-
lustrates the interfaction between CoSMIC and CIAO.

Challenge 1: Satisfying Multiple Quality of Service (QoS)
Requirements Simultaneously

Problem. DRE applications demand stringent QoS support
from their middleware. For example, DRE applications such
as controller for high-speed surface mount component pick-
and-place machines require real-time predictability and per-
formance guarantees. Due to (1) the complexity of these QoS
requirements, (2) the heterogeneity of the environments in
which they are deployed, and (3) the existing legacy systems
and data, it is infeasible to develop a single-vendor, end-to-
end solution that can address all these challenges. Instead,
integrating highly configurable, flexible, and optimized COTS
components from several different providers based on stan-
dard component middleware enables developers to assemble
and deploy these systems rapidly and robustly. Ensuring ap-
plication QoS requirements end-to-end, however, can be com-
plicated.
Solution. A benefit of MIC is its ability to employ complex
modeling tools that can check for certain properties of the im-
plementation, e.g., check the correctness of an algorithm or
ensure that a series of constraints are enforced.

There does not yet exist standards-based MIC technology
that adequately addresses a broad spectrum of DRE applica-
tion QoS issues. In particular, the integration of static and
dynamic Qos provisioning mechanisms, such as priority prop-
agation, resource allocations, dependability, predictability, and
adaptation that are crucial to DRE applications are not yet ad-
dressed.

The tools we are developing in CoSMIC are therefore de-
signed to model and analyze both the application functionality
and its end-to-end QoS requirements. With CIAO’s support
for QoS-enabled, reusable CCM components, it is possible to
� Model the QoS requirements of applications using UML
� Associate the model with different static and dynamic

QoS profiles
� Simulate and analyze dynamic behaviors and
� Synthesize the QoS-enabled application functionality in

component assemblies.
Figure 15 illustrates how CoSMIC can be used to synthesize
and assemble QoS-enabled, CCM middleware for DRE appli-
cations. This synthesis uses the following iterative process to
assemble and deploy QoS-enabled distributed applications:

1. Model the overall application using CoSMIC visual
modeling tools and specify the application’s QoS require-
ments as constraints. This step defines and partitions the
functionality and QoS requirements demanded by each
application module based on the overall model of the ap-
plication, as described by integration point 1 of Figure 15

2. Compose component servers using CoSMIC compo-
nent server composition tools to combine component as-
semblies by mixing and matching existing off-the-shelf

18



components and partitioning or defining the functionality
of new components, as needed, as shown in Point 2 of
Figure 15. The metadata in a component assembly also
contain QoS requirements for each components that the
composition tools derived from the model.

3. Model and synthesize components—If new component
implementations are needed from the previous step, each
can be modeled by using CoSMIC’s modeling tool. CoS-
MIC’s component implementation synthesizer will gen-
erate the actual implementations based on the models, as
indicated by integration point 4 of Figure 15.

4. Validate and simulate applications via’s CoSMIC tools
that check whether an application composition imple-
ments its model definitions correctly.

5. Deploy the resulting system for testing and tuning via
tools that fine-tune CIAO’s QoS requirements for assem-
blies. Later iterations of this process can use these adjust-
ments as feedback to improve the overall system model.

Challenge 2: Addressing Accidental Complexities in Inte-
grating Software Systems

Problem. QoS-enabled component middleware, such as
CIAO, provides libraries of reusable, configurable components
that can be used to assemble and deploy QoS-aware DRE ap-
plications. However, a naive approach to assemble and con-
figure these components can yield components with incom-
patible, non-interoperable QoS requirements, thereby increas-
ing accidental complexities. Manual assembling components
and configuring their QoS requirements are tedious and error-
prone, which adversely affects application lifecycle costs and
time-to-market. Moreover, to ensure these requirements are
met end-to-end across a DRE application, component servers
often explicitly require complex policies and customized mid-
dleware plugins. Manually specifying and configuring these
policies makes the development process even more vexing.
Solution. The iterative process described in the solution for
Challenge 2 above helps DRE application developers manage
the accidental complexity of assembling components by pro-
viding rich semantics in models and automatically propagat-
ing these semantics into assemblies through metadata. There
is, however, a need to ensure that the component servers and
the underlying middleware are configured properly to satisfy
the QoS requirements demanded by the installed components.

The CCM specification does not yet address how to as-
sociate component QoS requirements with a component de-
ployment. Our CCM implementation (CIAO) therefore sup-
ports the configuration of certain component QoS properties
via the component deployment metadata shown by integra-
tion point 2 of Figure 15. Since we providing component
QoS management services through containers in our CCM
implementation[39], the synthesizing tools will also generate

container configurations in a component assembly, as depicted
in Point 3 of Figure 15.

To support QoS requirements that were not foreseen by
the component middleware implementation, CoSMIC can also
synthesize middleware modules that CIAO uses to customize
its behavior to support non-native QoS supports required by
other systems. CIAO’s deployment framework then uses these
customized modules to configure component servers before
deploying the components, as shown by integration point 6
of Figure 15. The automation of semantic propagation de-
scribed here ensures that all component servers consisting an
integrated DRE application perform their work as specified in
the overall model, without undue programmer intervention.

5 Adaptive Video Streaming: An Un-
manned Air Vehicle (UAV) Prototype

5.1 Overview

This section presents a case study of an unmanned aerial ve-
hicle (UAV) real-time video distribution prototype, in which
static and dynamic QoS provisioning must be applied to en-
sure an MPEG video flow can meet its mission QoS require-
ments, such as timeliness, jitter, and image resolution. We dis-
cuss behaviors that adapt to restrictions in processing power
and network bandwidth, i.e., reduction of the video flow vol-
ume by dropping frames and bandwidth reservation to ensure
a desired level of network bandwidth. We have developed this
prototype UAV application by applying the component mid-
dleware technologies discussed in earlier sections, as well as
the TAO Audio/Video (A/V) Streaming Service [40]. This re-
sulting application establishes and adaptively controls video
transmission from a live camera via a distribution process to
viewers on computer displays.

Figure 17 illustrates the architecture of the prototype. The

Control Station  Host 5

CORBA A/V 
Streaming Service

UAV Host 1

����

����

����

����

Host 4

Wired

Wireless
Ethernet

	�
��

����������

�������

	�
��

����������

�������

	�
��

����������

�������

�����
����	�

��	���

������

������
��	��
��

UAV Host 2

����

����

����

����

�����
����	�

��	���

������

������
��	��
��

UAV Host 3
�����
����	�

��	���

��
��
��������

��
����
��	��
��

�
	������
�
	
����	�

�
	������
�
	
����	�

�
	������
�
	
����	�

��������
������	��

��������

Control Station  Host 6

��������
������	��

��������

Control Station  Host 7

���
������	�

ATR
�������

Figure 17: Architecture of the UAV Prototype

19



prototype uses a three-stage pipeline, with simulated UAVs or
live UAV surrogates (such as airships with mounted cameras)
sending video to processes (distributors) that distribute the
video to the proper control stations. The UAVs in our proto-
types are simulated by processes that are capturing video from
live camera feeds and by processes that read MPEG video
from a file. In addition, the prototype uses both wired and
wireless Ethernet connections to simulate the data links from
the UAVs to the distributor host. The wireless links from the
second and third UAV surrogates contend for the same wire-
less Ethernet connection and provide a forum for experiment-
ing with wireless video adaptation strategies. The wired Eth-
ernet connection provides a higher bandwidth connection sim-
ulating current and emerging higher-capacity wireless trans-
ports.

The video distributor processes send the video streams to
control stations on a land- or ship-based network. The con-
trol stations include video display processes and other video
processing applications, such as automatic target recognition
(ATR), each with their own mission requirements.

5.2 Benefits of QoS Provisioning

The current UAV application can manage QoS by engaging
application adaptive behavior, such as frame dropping and
setting network bandwidth reservations (RSVP). We are also
adding network QoS management capability by prioritizing
data streams at the network level (Diffserv). To test the effec-
tiveness of the middleware controlled adaptation in the UAV
application we performed the following experiment, which
consists of following three runs:

1. A control run, with no adaptation
2. A second run, where adaptation is implemented by frame

dropping and
3. A third run, which utilized both frame dropped and RSVP

bandwidth management.

All runs were configured with (1) the sender and distributor
on the same Pentium III 933 MHz processor and 512 MB of
RAM and (2) the receiver on a separate laptop, with a Pentium
II 200 MHz processor and 144 MB of RAM, all running Linux,
with a 10 Mbps link between them. We started the video run-
ning and after 60 seconds we applied a load to the network link
for 60 seconds, then removed the load. After another 180 sec-
onds (300 seconds in all) the experiment terminated. The data
collector recorded each MPEG I frame (2 per second, 600 in
all) that was sent from the sender, and each that was received
at the receiver, and the time elapsed from send to receive.

The results of each test run are shown in Figure 18 and de-
scribed below:
Test run 1, which as the control run without any adaptation,
lost 119 of the 121 I frames sent while the system was under

�

���

���

���

���

���

���

���

� ��� ��� ��� ��� ��� ���

� � �

	
��������
�

�������
�����

�������
��������

����
������������
�

�������������������

�
�

�
�

�
�
��

��
��

�
�

�


��
�

�
�

��
�




Figure 18: QuO adaptation ensured successful delivery of
all video under load

load, i.e., only 481 of the 600 I frames sent made it through.
The average delay of the frames that made it through was
56.58 ms, with a median delay of 55 ms, a minimum delay
of 38 ms, and a maximum delay of 121 ms. The average de-
lay of the frames sent through when the system was not under
load was 56.33 ms, with a median of 55 ms, a minimum of 38
ms, and a maximum of 67 ms. 1.65 percent of the I frames
sent made it through when the system was under load (2 out of
121), with 98.35% of the I frames being lost by the UDP trans-
port. The average delay of the two that did make it through
under load was 115.5 ms.

Test run 2, with frame dropping as its only adaptation, got all
600 of its I frames through despite the load on the system. The
average delay of all the frames was 70.01 ms, with a median
delay of 57 ms, a minimum delay of 50 ms, and a maximum
delay of 143 ms. The average delay of the frames sent through
when the system was not under load was 57.01 ms, with a
median of 55 ms, a minimum of 50 ms, and a maximum of
68 ms. 100 percent of the I frames sent made it through when
the system was under load (120 out of 120), with 0% of the
I frames being lost by the UDP transport. The average delay
of the frames delivered while the system was under load was
122.15 ms.

Test run 3, with adaptation using both frame dropping and
network reservation (RSVP), also got all 600 of its I frames
through despite the load on the system. The average delay of
all the frames was 64.2 ms, with a median delay of 59 ms, a
minimum delay of 52 ms, and a maximum delay of 106 ms.
The average delay of the frames sent through when the system
was not under load was 58.1 ms, with a median of 56 ms, a
minimum of 52 ms, and a maximum of 71 ms. 100 percent of
the I frames sent made it through when the system was under
load (120 out of 120), with 0% of the I frames being lost by
the UDP transport. The average delay of the frames delivered
while the system was under load was significantly lower than

20



the other two runs, 88.5 ms.

Figure 18 illustrates the improvements afforded by the adap-
tation under load. The test runs that included QuO adapta-
tion were able to recover from the load imposed on the system
to keep the video flowing and not lose any important (i.e., I)
frames. In contrast, the test runs where the video stream did
not have adaptive control lost nearly all the video sent during
the time when load was imposed on the system. The combi-
nation of frame filtering and resource reservation significantly
reduced the latency of the video delivery.

6 Related Work

This section first reviews previous research on Model-
Integrated Computing and describes how modeling tools are
being used to model and provision QoS requirements. It then
reviews other research on QoS provisioning mechanisms using
a taxonomy depicted in Figure 19. One dimension depicted in

QoS Provisioning
Static Dynamic

A
bs

tr
ac

tio
n M

id
dl

ew
ar

e
P

ro
gr

am
m

in
g

La
ng

ua
ge

s

QoS-Enabled
Component
Middleware

(RTCCM-CIAO,
QoS EJB Containers)

Dynamic QoS
Provisioning
(QuO  Qosket,
dynamicTAO)

Aspect-Oriented
Languages

(AspectJ,
AspectC++)

Figure 19: Taxonomy of QoS Provisioning Enabling Mech-
anisms

Figure 19 is when QoS provisioning is performed, i.e., static
versus dynamic QoS provisioning, as described in Section 1.
Some enabling mechanisms allow static QoS provisioning be-
fore the startup of a system, whereas and others provide ab-
stractions to define dynamic QoS provisioning behaviors dur-
ing runtime based on resources available at the time.

Another dimension depicted in Figure 19 is the level of ab-
straction. Both middleware-based approaches shown in the
figure, i.e., CIAO and BBN’s QuO Qoskets, offer higher levels
of abstraction for QoS provisioning specification and model-
ing. Conversely, the programming language-based approach
offers meta-programming mechanisms for injecting QoS pro-
visioning behaviors. We will review previous research in the

area of QoS provisioning mechanisms along these two dimen-
sions.

Model-based software development. Our research extends
earlier work on Model-Integrated Computing [8, 41, 42, 43]
to model and synthesize component middleware code for
DRE applications. The MIC infrastructure provides a uni-
fied software architecture and framework for creating a Model-
Integrated Program Synthesis (MIPS) environment [26], as de-
scribed in Section 4.

Examples of MIC technology used today include GME [26]
and Ptolemy [28] – used primarily in the real-time and embed-
ded domain, and MDA [29] based on UML [44] and XML [45]
– used primarily in the business domain. Our work on CoS-
MIC combines the GME tool and UML modeling language to
model and synthesize component middleware for use in pro-
visioning collaborative DRE applications. In particular, we
are enhancing the GME tool to produce meta-models for DRE
applications, as well as developing and validating new UML
profiles to support DRE applications.

As part of an ongoing research collaboration between Van-
derbilt University, University of Utah, and BBN Technologies,
work is being done to apply GME MIC techniques to model
an effective resource management strategy for CPU resources
on the Timesys Linux real-time operating system. Timesys
Linux allow an application to specify CPU reservations for an
executing thread which guarantee that a thread will have a cer-
tain amount of CPU time, regardless of the priorities of other
threads in the system. By using GME modeling to develop
the QoS management strategy, it will be easier to simulate and
verify the strategy for its correctness and ability to meet end-
to-end QoS requirements for CPU processing.

Dynamic QoS Provisioning. In their dynamicTAO project,
Kon and Campbell [34] apply reflective middleware tech-
niques to extend TAO to reconfigure the ORB at runtime by
dynamically linking selected modules, according to the fea-
tures required by the applications. Their work falls into the
same category as Qoskets as shown in Figure 19 in that both
provide the mechanisms to realizing QoS provision in the mid-
dleware level. Qoskets offers a more comprehensive QoS pro-
visioning abstraction, however, whereas Kon and Campbell’s
work concentrates on configuring the middleware capability.

Moreover, although Kon and Campbell’s work can also pro-
vide QoS adaptation behavior by dynamically (re)configuring
middleware framework, their research may not be suitable for
DRE applications since dynamic loading and unloading ORB
components can incur non-deterministic overhead and prevent
the ORB from meeting application deadlines. Our work on
the Component-Integrated ACE ORB (CIAO) relies upon MIC
tools to analyze the required ORB components and their con-
figurations. This approach ensures the ORB in an application
server contains only the required components, without com-
promising end-to-end predictability.

21



QoS-enabled Component Middleware. Middleware can
apply the Quality Connector pattern [37] to apply meta-
programming techniques [39] and specify the QoS behav-
iors and the configuring the supporting mechanisms for these
QoS behaviors. The container architecture in component-
based middleware frameworks provide the vehicle for apply-
ing meta-programming techniques that provide QoS assurance
control in component middleware, as previously identified
in [39]. Containers can also help applying Aspect-Oriented
Software Development (AOSD) [22] techniques to plug in dif-
ferent non-functional behaviors [46]. These projects are simi-
lar to CIAO in that they provide the mechanism to inject “as-
pects” into applications statically at the middleware level.

de Miguel further extended the work on QoS-enabled con-
tainers by extending an QoS EJB container interface to support
QoSContext interface which allow exchanging QoS related
information with component instances [47]. To take advan-
tage of the QoS-container, however, a component must im-
plement QoSBean and QoSNegotiation interfaces. This
requirement, however, adds unnecessary dependency on com-
ponent implementations. Section 2.4 presents the limitations
of implementing QoS behavior logic in component implemen-
tations.

Aspect-Oriented Programming Languages. Aspect-
Oriented programming (AOP) [22] languages provide
language-level abstraction to weave different aspects that
cross-cut multiple layers of a system. Example of AOP
languages includes AspectJ [48] and AspectC++ [49]. Similar
to AOPs, CIAO supports injection of aspects into systems
at middleware level using meta-programming technique.
Both CIAO and AOP weave in aspects statically, i.e., before
programming execution and neither define an abstraction for
dynamic QoS provisioning behaviors.

7 Concluding Remarks

Distributed real-time and embedded (DRE) applications pos-
sess stringent support for QoS properties such as predictabil-
ity, latency, and dependability. To meet these requirements,
DRE applications have historically been custom-programmed
to implement their QoS provisioning needs, making them ex-
pensive to build and maintain that they cannot adapt readily
to meet new functional or different QoS provisioning strategy,
hardware/software technology innovations, or market opportu-
nities. This approach is increasingly infeasible, however, since
the tight coupling between custom DRE software modules in-
creases the time and effort required to develop and evolve
DRE software. Moreover, QoS provisioning cross-cuts multi-
ple layers in applications and requires end-to-end enforcement
which make DRE applications even harder to develop, main-
tain, and adapt.

One way to address these coupling issue is by refactor-
ing common application logic into object-oriented application
frameworks [50]. This solution has limitations, however, since
application objects can still interact directly with each other,
which encourages tight coupling. Moreover, framework-
specific bookkeeping code is also required within the appli-
cations to manage the framework, which can tightly couple
applications to the framework they are developed upon. It is
therefore non-trivial to reuse application objects and port them
to different frameworks.

Component middleware [16] has emerged as a promising
solution to many limitations with object-oriented application
frameworks. This type of middleware consists of reusable
software artifacts that can be distributed or collocated through-
out a network. Existing component middleware, however,
does not address DRE application’s QoS provisioning needs
as they often spread beyond component boundary. A QoS-
enabled middleware is necessary to separate the QoS provi-
sioning concerns from application functional concerns.

This paper describes how the standard CCM specification
is being augmented by the CIAO middleware to support static
QoS provisioning that pre-allocates resources for DRE appli-
cation. We also describe how BBN’s QuO Qoskets middle-
ware framework provides powerful abstractions that help de-
fine and implement reusable dynamic QoS provisioning be-
haviors. By combining QuO Qoskets and CIAO, we are pro-
viding an integrated QoS provisioning solution for DRE appli-
cations.

When augmented with Model-Integrated Computing tools,
such as CoSMIC, QoS-enabled component middleware and
applications can be provisioned even more effectively.

References
[1] Aniruddha Gokhale, Douglas C. Schmidt, Balachandra Natarajan, and

Nanbor Wang, “Applying Model-Integrated Computing to Component
Middleware and Enterprise Applications,” The Communications of the
ACM Special Issue on Enterprise Components, Service and Business
Rules, vol. 45, no. 10, Oct. 2002.

[2] Alan Burns and Andy Wellings, Real-Time Systems and Programming
Languages, 3rd Edition, Addison Wesley Longmain, Mar. 2001.

[3] Object Management Group, CORBA 3.0 New Components Chapters,
OMG TC Document ptc/2001-11-03 edition, Nov. 2001.

[4] Sun Microsystems, “Java�� 2 Platform Enterprise Edition,”
http://java.sun.com/j2ee/index.html, 2001.

[5] Don Box, Essential COM, Addison-Wesley, Reading, MA, 1998.

[6] Bruce Trask, “A Case Study on the Application of CORBA Products
and Concepts to an Actual Real-Time Embedded System,” in OMG’s
First Workshop On Real-Time & Embedded Distributed Object
Computing, Washington, D.C., July 2000, Object Management Group.

[7] Douglas C. Schmidt, Rick Schantz, Mike Masters, Joseph Cross, David
Sharp, and Lou DiPalma, “Towards Adaptive and Reflective
Middleware for Network-Centric Combat Systems,” CrossTalk, Nov.
2001.

[8] Janos Sztipanovits and Gabor Karsai, “Model-Integrated Computing,”
IEEE Computer, vol. 30, no. 4, pp. 110–112, Apr. 1997.

22



[9] John A. Zinky, David E. Bakken, and Richard Schantz, “Architectural
Support for Quality of Service for CORBA Objects,” Theory and
Practice of Object Systems, vol. 3, no. 1, pp. 1–20, 1997.

[10] Richard E. Schantz and Douglas C. Schmidt, “Middleware for
Distributed Systems: Evolving the Common Structure for
Network-centric Applications,” in Encyclopedia of Software
Engineering, John Marciniak and George Telecki, Eds. Wiley & Sons,
New York, 2002.

[11] Ward Rosenberry, David Kenney, and Gerry Fischer, Understanding
DCE, O’Reilly and Associates, Inc., 1992.

[12] IBM, “MQSeries Family,” www-4.ibm.com/software/ts/mqseries/,
1999.

[13] Object Management Group, The Common Object Request Broker:
Architecture and Specification, 3.0 edition, June 2002.

[14] Object Management Group, The Common Object Request Broker:
Architecture and Specification, 2.6.1 edition, May 2002.

[15] Nanbor Wang, Douglas C. Schmidt, and Carlos O’Ryan, “An
Overview of the CORBA Component Model,” in Component-Based
Software Engineering, George Heineman and Bill Councill, Eds.
Addison-Wesley, Reading, Massachusetts, 2000.

[16] George T. Heineman and Bill T. Councill, Component-Based Software
Engineering: Putting the Pieces Together, Addison-Wesley, Reading,
Massachusetts, 2001.

[17] Arthur van Hoff, Hadi Partovi, and Tom Thai, “The Open Software
Description Format (OSD),” http://www.w3c.org/TR/NOTE-OSD.html.

[18] Floyd Marinescu and Ed Roman, EJB Design Patterns: Advanced
Patterns, Processes, and Idioms, John Wiley & Sons, New York, 2002.

[19] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee, “The
Design and Performance of Real-Time Object Request Brokers,”
Computer Communications, vol. 21, no. 4, pp. 294–324, Apr. 1998.

[20] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann, Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, Volume 2, Wiley & Sons, New
York, 2000.

[21] Nanbor Wang, Douglas C. Schmidt, Ossama Othman, and Kirthika
Parameswaran, “Evaluating Meta-Programming Mechanisms for ORB
Middleware,” IEEE Communication Magazine, special issue on
Evolving Communications Software: Techniques and Technologies, vol.
39, no. 10, Oct. 2001.

[22] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin,
“Aspect-Oriented Programming,” in Proceedings of the 11th European
Conference on Object-Oriented Programming, June 1997.

[23] Richard E. Schantz, John A. Zinky, David A. Karr, David E. Bakken,
James Megquier, and Joseph P. Loyall, “An object-level gateway
supporting integrated-property quality of service,” in Proceedings of
The 2nd IEEE International Symposium on Object-oriented Real-time
distributed Computing (ISORC 99), May 1999.

[24] Joseph P. Loyall, David E. Bakken, Richard E. Schantz, John A. Zinky,
David Karr, Rodrigo Vanegas, and Ken R. Anderson, “QoS Aspect
Languages and Their Runtime Integration,” Proceedings of the Fourth
Workshop on Languages, Compilers and Runtime Syste,s for Sclable
Components, May 1998.

[25] Rodrigo Vanegas, John A. Zinky, Joseph P. Loyall, David Karr,
Richard E. Schantz, and David E. Bakken, “QuO’s Runtime Support
for Quality of Service in Distributed Objects,” Proceedings of
Middleware 98, the IFIP International Conference on Distributed
Systems Platform and Open Distributed Processing, September 1998.

[26] Akos Ledeczi, Arpad Bakay, Miklos Maroti, Peter Volgysei, Greg
Nordstrom, Jonathan Sprinkle, and Gabor Karsai, “Composing
Domain-Specific Design Environments,” IEEE Computer, Nov. 2001.

[27] Jonathan M. Sprinkle, Gabor Karsai, Akos Ledeczi, and Greg G.
Nordstrom, “The New Metamodeling Generation,” in IEEE
Engineering of Computer Based Systems, Washington, DC, Apr. 2001,
IEEE.

[28] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A
Framework for Simulating and Prototyping Heterogeneous Systems,”
International Journal of Computer Simulation, Special Issue on
Simulation Software Development Component Development Strategies,
vol. 4, Apr. 1994.

[29] Object Management Group, Model Driven Architecture (MDA), OMG
Document ormsc/2001-07-01 edition, July 2001.

[30] Paul Allen, “Model Driven Architecture,” Component Development
Strategies, vol. 12, no. 1, Jan. 2002.

[31] Gabor Karsai, Sandeep Neema, Arpad Bakay, Akos Ledeczi, Feng Shi,
and Aniruddha Gokhale, “A Model-based Front-end to ACE/TAO: The
Embedded System Modeling Language,” in Proceedings of the Second
Annual TAO Workshop, Arlington, VA, July 2002.

[32] Sandeep Neema, Ted Bapty, Jeff Gray, and Aniruddha Gokhale,
“Generators for Synthesis of QoS Adaptation in Distributed Real-Time
Embedded Systems,” in Proceedings of the ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and Component Engineering
(GPCE’02), Pittsburgh, PA, Oct. 2002.

[33] Timesys, “Predictable Performance for Dynamic Load and Overload,”
http://www.timesys.com/prodserv/whitepaper/
Predictable_Performance_1_0.%pdf, 2002.

[34] Fabio Kon, Fabio Costa, Gordon Blair, and Roy H. Campbell, “The
Case for Reflective Middleware,” Communications of the ACM, vol.
45, no. 6, pp. 33–38, June 2002.

[35] Gordon S. Blair and G. Coulson and P. Robin and M. Papathomas, “An
Architecture for Next Generation Middleware,” in Proceedings of the
IFIP International Conference on Distributed Systems Platforms and
Open Distributed Processing, London, 1998, pp. 191–206,
Springer-Verlag.

[36] Fábio M. Costa and Gordon S. Blair, “A Reflective Architecture for
Middleware: Design and Implementation,” in ECOOP’99, Workshop
for PhD Students in Object Oriented Systems, June 1999.

[37] Joseph K. Cross and Douglas C. Schmidt, “Applying the Quality
Connector Pattern to Optimize Distributed Real-time and Embedded
Middleware,” in Patterns and Skeletons for Distributed and Parallel
Computing, Fethi Rabhi and Sergei Gorlatch, Eds. Springer Verlag,
2002.

[38] Roy Campbell, Ashish Singhai, and Aamod Sane, “Quarterware for
Middleware,” in Proceedings of ICDCS 98. IEEE, 1998.

[39] Nanbor Wang, Douglas C. Schmidt, Michael Kircher, and Kirthika
Parameswaran, “Towards a Reflective Middleware Framework for
QoS-enabled CORBA Component Model Applications,” IEEE
Distributed Systems Online, vol. 2, no. 5, July 2001.

[40] Sumedh Mungee, Nagarajan Surendran, Yamuna Krishnamurthy, and
Douglas C. Schmidt, “The Design and Performance of a CORBA
Audio/Video Streaming Service,” in Design and Management of
Multimedia Information Systems: Opportunities and Challenges,
Mahbubur Syed, Ed. Idea Group Publishing, Hershey, PA, 2000.

[41] David Harel and Eran Gery, “Executable Object Modeling with
Statecharts,” in Proceedings of the 18th International Conference on
Software Engineering. 1996, pp. 246–257, IEEE Computer Society
Press.

[42] Man Lin, “Synthesis of Control Software in a Layered Architecture
from Hybrid Automata,” in HSCC, 1999, pp. 152–164.

[43] Jeffery Gray, Ted Bapty, and Sandeep Neema, “Handling Crosscutting
Constraints in Domain-Specific Modeling,” Communications of the
ACM, pp. 87–93, Oct. 2001.

[44] Object Management Group, Unified Modeling Language (UML) v1.4,
OMG Document formal/2001-09-67 edition, Sept. 2001.

[45] W3C Architecture Domain, “Extensible Markup Language (XML),”
http://www.w3c.org/XML.

[46] Denis Conan, Erik Putrycz, Nicolas Farcet, and Miguel DeMiguel,
“Integration of Non-Functional Properties in Containers,” Proceedings
of the Sixth International Workshop on Component-Oriented
Programming (WCOP), 2001.

[47] Miguel A. de Miguel, “QoS-Aware Component Frameworks,” in The
��
�� International Workshop on Quality of Service (IWQoS 2002),

Miami Beach, Florida, May 2002.
[48] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey

Palm, and William G. Griswold, “An overview of AspectJ,” Lecture
Notes in Computer Science, vol. 2072, pp. 327–355, 2001.

[49] Olaf Spinczyk and Andreas Gal and Wolfgang Schröder-Preikschat,
“AspectC++: An Aspect-Oriented Extension to C++,” in Proceedings
of the 40th International Conference on Technology of Object-Oriented
Languages and Systems (TOOLS Pacific 2002), Feb. 2002.

[50] Ralph Johnson, “Frameworks = Patterns + Components,”
Communications of the ACM, vol. 40, no. 10, Oct. 1997.

23


