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Abstract

Commercial servers, such as database or application
servers, often attempt to improve performance via multi-
threading. Improper multi-threading architectures can in-
cur contention, limiting performance improvements. Con-
tention occurs primarily at two levels: (1) blocking on locks
shared between threads at the software level and (2) con-
tending for physical resources (such as the cpu or disk) at
the hardware level. Given a set of hardware resources and
an application design, there is an optimal number of threads
that maximizes performance. This paper describes a novel
technique we developed to select the optimal number of
threads of a target-tracking application using a simulation-
based Colored Petri Nets (CPNs) model.

This paper makes two contributions to the performance
analysis of multi-threaded applications. First, the paper
presents an approach for calibrating a simulation model us-
ing training set data to reflect actual performance parame-
ters accurately. Second, the model predictions are validated
empirically against the actual application performance and
the predicted data is used to compute the optimal config-
uration of threads in an application to achieve the desired
performance. Our results show that predicting performance
of application thread characteristics is possible and can be
used to optimize performance.

1 Introduction
Emerging trends and challenges. Servers, such as
database servers or web servers, typically receive incom-
ing requests, process them, and then returns responses to
the requesting clients.

One way to improve the response time of a server is to
create multiple threads to service requests. Each incoming
request can be assigned to a thread that processes it and
prepares the response.

With the growing adoption of multi-core and multi-
processor machines, software applications require multi-
threading to leverage hardware resources effectively [10].
In theory, multi-threading can significantly improve sys-
tem performance. In practice, however, multi-threading can
incur excessive overhead due to software contention (e.g.,
mutually exclusive operations needed to mediate thread ac-

cess to shared data) and physical contention (e.g., access
to hardware resources, such as CPUs and memory). There
is a trade-off between (1) increasing the number of threads
to decrease client response time vs. (2) a larger number of
threads causing bottlenecks that can increase response time.

What is needed, therefore, is a technique for selecting
the optimal number of threads, which depends upon various
factors including the underlying hardware, multi-threading
architecture, and application logic. The following are two
phases in the software lifecycle that can benefit from such a
technique:

• Application development. Developers of multi-
threaded applications must carefully evaluate various per-
formance tradeoffs. For example, although a large num-
ber of critical sections can increase response time, critical
sections are also required for correct functionality of ap-
plications by ensuring safe access to resources shared by
multiple threads. While developing multi-threaded applica-
tions, therefore, developers must consider various factors,
such as (1) the maximum number of critical sections that
a thread can access before the performance degrades, (2)
what type of multi-threaded architecture to use (e.g., thread
pool, thread-per-request, thread-per-connection, or the Half
Sync/Half Async or Leader/Follower patterns [9]) provides
the best results for a particular application and hardware en-
vironment, (3) identifying which application components
are bottlenecks so they can be redesigned to reduce con-
tention.

• Application deployment. To prepare an application
for production use, deployers must first estimate its hard-
ware needs based on its expected workload and application
performance requirements. Once an application is installed,
its configurable parameters must be set to the appropriate
values. An important parameter is the maximum number
of concurrent threads, which is a form of admission con-
trol used to maintain the liveness of the server. The multi-
threaded architecture used in the application also has a big
impact on the number of threads that could be used effec-
tively. Deployers must therefore make decisions related to
the hardware needs of the application, the multi-threaded
architecture of the application and the optimal number of
concurrent threads.

In conventional multi-threaded systems, application de-
velopers and deployers make these decisions manually us-



ing their experience and intuition, which can be tedious
and error-prone. Moreover, when workloads change, it is
hard to estimate the effect on application performance since
there is no explicit and analyzable model application com-
ponent behavior. As a result, performance problems typi-
cally emerge late in the software life-cycle during the inte-
gration phase, where they are more costly to fix.

Solution approach → Optimize an application configu-
ration using simulation models. This paper presents and
evaluates a method for modeling the software and physi-
cal contention of multi-threaded applications to estimate the
number of threads needed to produce optimal performance
using a particular set of hardware resources. This method
constructs a simulation model of a complex multi-threaded
application using Colored Petri Nets (CPNs) [1], which
are a discrete-event modelling language that combines Petri
nets with the functional language Standard ML [8]. A CPN
model of a system is an executable model consisting of dif-
ferent states and events, along with a notation that repre-
sents the time taken to trigger events. CPNs are suited for
modeling concurrency, communication, and synchroniza-
tion among different components in a system. Our work
uses CPN tools [2], which help construct and analyze CPN
models via an engine that conduct simulation-based perfor-
mance analysis.

We use CPNs in this paper to model simultaneous re-
source possession for a target tracking application contain-
ing many threads sharing multiple locks. We first profile the
application and collect runtime performance data, which is
used to parameterize the CPN model. The CPN model is
then run to predict application performance under various
configurations. We compare the predictions with measured
data to validate the CPN model. This paper describes the
challenges we addressed building the CPN model and using
it to predict the behavior of our target-tracking application.

Paper organization. The remainder of this paper is or-
ganized as follows: Section 2 describes a target-tracking
application case study designed using multiple threads and
locks; Section 3 presents and analyzes the profiled data of
the application, describes the CPN model building process,
and validates the it using the profiled data; Section 4 selects
the optimal configuration of various threads of the applica-
tion using CPN model predicted data; Section 5 discusses
related work; Section 6 presents concluding remarks and
lessons learned.

2 Application Case Study: Target Tracking
Simulator

This section describes the application we created and
used as a case study to evaluate our work on performance
prediction of multi-threaded applications.

2.1 Overview of the Target Tracker

Our case study centers on a target-tracking simulation
application composed of active objects [9], such as target,
tracker, and satellites shown in Figure 1. There can be mul-

Figure 1. Active Objects in the Target Track-
ing Simulator

tiple instances of trackers and satellites; each tracker col-
lects the target’s latest location from a satellite. To increase
the probability that the target will be found, the application
must be configured with the right number of trackers and
satellites.

Each active object has its own thread and executes meth-
ods of its own object, i.e., there is a one-to-one correspon-
dence between an active object and a thread. Every active
object, such as target, tracker, and satellite, executes its ap-
plication logic as shown in Figure 2. Sometimes an active
object interacts with the other active objects to exchange
data, e.g., each tracker collects data from the satellite during
every period. An active object therefore performs a periodic
task that sleeps for a specified length of time, wakes up and
performs some work, and goes back to sleep, as shown in
Figure 2.

As evident from the Figure 2, each type of active object
has its own logical flow and contends for shared data with
other objects thus blocking each other. An overview of the
various active objects in our application case study is shown
in Figure 1 and described below.

1. Target. This simulates a target that moves across a
given area and tries to evade its trackers. Every time
it wakes up, it randomly calculates a new direction
and velocity and goes to sleep again. While it sleeps
it moves in a particular direction with designated ve-
locity. There is only one instance of the target in the
application.

2. Trackers. The role of the trackers is to chase the target.
They obtain the latest position of the target through the
use of the location objects described below. A tracker
recalculates its new direction and velocity each period
depending upon the latest position of the target. It also
checks if it hits the target. A target is considered hit
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Figure 2. Application Logical Flows in the
Target Tracking Simulator

if its current position is within some small distance of
the target. There are multiple instances of the tracker.

3. Satellites. The satellites gather information of the lat-
est position of the target. Within the application the
latest coordinates of the target is placed in a global
variable which each satellite reads periodically.

4. Tracker location updates. These are update objects
and are created by the tracker entities. A location ob-
ject is spawned for each satellite present in the applica-
tion. The location objects periodically call on the satel-
lite, obtain the latest position of the target, and update
the local database within the tracker. There is a loca-
tion active object for each pair of satellite and tracker
object.

Although the target object does not exhibit any con-
tention with any other object, the other objects contend with
each other. As shown in Figure 2, the “Update tracker DB”
activity in the tracker flow contends with the “Update Data”
activity in the Location flow. Likewise, the “Get new posi-
tion of target” activity contends with the “Get latest target
position” activity on the satellite flow. The blocking time on
these locks increases when the number of objects increases
which also increases the number of threads.

2.2 Case Study Application Goals

Our case study application is designed to track down the
target a maximum number of times. In theory it may ap-

pear that the chances of hitting the target grows with an in-
creased number of satellites and trackers, though in practice
this approach may increase contention, which can decrease
tracker and satellite throughput, as well as decrease their ef-
fectiveness and increase the time to hit the target. In particu-
lar, increasing the number of active objects or threads might
improve application performance but it could also degrade
performance by increasing bottleneck contention. Applica-
tion deployers will therefore benefit from a technique that
can determine the optimal number of trackers and satellites
needed to hit the target in the least amount of time.

2.2.1 Predict Application Performance

The first goal of our case study is to predict the performance
of the target tracker application under configurations that
differ in terms of the number of tracker and the satellite ob-
jects. The notation we use to depict each configuration is:
# of target objects # of tracker objects # of satellite objects.
Thus, a configuration of 1 2 3 means that there is 1 target, 2
trackers, and 3 satellites. As mentioned in section 2.1 there
is a location object for each pair of tracker/satellite. As a
result, the configuration 1 2 3 would have 2x3=6 location
objects, resulting in a total of 1+2+3+6=12 objects. Since
there is a single thread per active object, this means there
are 12 threads in the application for this configuration.

We observe the application until the target performs 500
periods. In each period, the target completes one iteration
of sleep and computation, as shown in Figure 2. The ap-
plication runs under two separate scenarios: (1) with all the
locks and (2) with none of the locks. The latter method is
obviously incorrect from a functionality point of view but it
quantifies the impact of contention and blocking on perfor-
mance.

The accuracy of the prediction is not important. The im-
portant point is that the relative performance characteris-
tics should be captured by the model, i.e., the performance
patterns/trends should be predicted. For example, the model
should be able to tell if the average throughput of the tracker
decreases or increases when a particular configuration is
changed. The magnitude of the difference, however, is not
important.

2.2.2 Extract Optimal Configuration

We use the performance data predicted by a simulation
model of the application to choose the best configuration
for the application, where “best” is defined as the greatest
likelihood of the trackers hitting the target. To use the model
predicted data, we use a utility function that quantifies the
chances to hit the target the most number of times by maxi-
mizing the following factors:

• Tracker activity should maximize Ntr ∗ µtr, where
Ntr is the number of trackers configured in the ap-
plication and µtr is the average throughput of each
tracker. This expression represents the number of
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times a tracker activity takes place in unit time, e.g.,
per second.

• Location updates should maximize Ntr ∗ µloc, where
µloc is the average throughput of the location object
for each tracker. This expression represents how fre-
quently the latest position is updated to the tracker.

• Satellite throughput should maximize Nsat ∗ µsat,
where Nsat is the number of satellites configured and
µsat is the average throughput of each satellite. This
expression represents the number of times the satellite
updates the latest location of the target.

The chance of hitting the target with Ntr trackers is ex-
pressed by the function H(Ntr) and is computed as:

H(Ntr) = Ntr ∗ (µtr + µloc) + Nsat ∗ µsat (1)

where Ntr is the number of trackers, µtr is the average
throughput of the tracker, µloc is the average throughput
of the location, Nsat is the number of satellites and µsat

is the average throughput of the satellite. The configuration
that maximizes the value of this function should provide the
preferred setting for the application, which can be computed
by predicting the throughput of the tracker, location, and the
satellite and using them set the desired QoS value.

3 Experiments
This section discusses the following steps we performed

to create a model of the application case study described in
Section 2 and validate the model against profiled data:

1. Profile the application to record application activity
within critical sections of code

2. Create a Petri net model of the application logic that
captures the contention among hardware/software re-
sources

3. Validate the model by using the profile data and the
performance predicted by the model.

The remainder of this section discusses each of these activ-
ities.

3.1 Application Profiling

Experiment design. Our application case study is pro-
filed under different thread configurations to collect perfor-
mance data that is then used to calibrate and validate the
simulation model. The platform used for the experiments
is a single CPU, Intel Pentium, 1.70 GHz machine with 1
GB of RAM. The operating system used is Windows XP
Professional Version 2002 with service pack 2. As men-
tioned in Section 2.2, this application runs until the target
completed 500 iterations. The time taken by the target is
recorded (Ttg), along with the number of iterations of other
objects or threads. After this data is recorded the through-
put of satellite and location are measured. The throughput
of the satellite is defined as Nsat/Ttg, where Nsat is the

number of iterations of a satellite. Likewise, the throughput
of the location is Nsat/Tloc, where Nloc is the number of
location iterations.

To capture the throughput and response time of the dif-
ferent threads, we needed to profile the activities of their
associated active objects. Application methods of the tar-
get object were therefore instrumented to include timestamp
recording. Similarly, we inserted instrumentation code into
the satellite and tracker objects to count the number of iter-
ations.

Experiment results. After inserting the instrumentation
code, we ran our application case study for 13 different
thread configurations and collected the profiled data. The
results are shown in Table 1. Each row of the Table 1 con-

With Mutex Without Mutex
Config Target

run
time
(secs)

Satellite
Through-
put
(peri-
ods/sec)

Tracker
through-
put
(peri-
ods/sec)

Location
Through-
put
(peri-
ods/sec)

Target
run
time
(secs)

Satellite
Through-
put
(peri-
ods/sec)

Tracker
Through-
put
(peri-
ods/sec)

Location
Through-
put
(peri-
ods/sec)

1 0 0 140 140
1 0 1 135 3.706 135 3.71
1 0 2 130 3.85 130 3.84
1 0 3 135 3.7 135 3.7
1 1 1 138 2.12 65.89 2.69 139.2 3.58 61.89 3.01
1 2 1 137 1.29 67.85 1.44 135.3 3.68 29.5 3.12
1 3 1 138 0.91 68.79 0.99 131.77 3.79 18.54 3.19
1 1 2 144 2.15 51.43 2.62 131.74 3.78 54.31 3.18
1 2 2 144 1.26 54.49 1.39 130.7 3.81 23.32 3.17
1 3 2 145 0.89 55.92 0.95 153.2 3.24 9.61 2.68
1 1 3 144 2.18 42.96 2.7 132.6 3.76 44.64 3.10
1 2 3 145 1.28 47.20 1.42 170.39 2.94 10.73 2.43
1 3 3 145 0.91 48.95 0.97 212.5 2.37 4.24 1.91

Table 1. Profiled Data from the application

tains the data recorded for a single configuration.

Analysis of results. The results in Table 1 show a sig-
nificant cache effect. For example, the data for the con-
figuration 1 0 1 (with 1 target and 1 satellite) in the table
shows a throughput of 3.70 iterations/sec for the satellite
active object, whereas the throughput of the satellite active
object in configuration 1 0 2 (i.e., with 1 target and 2 satel-
lites) is 3.85 iterations/sec. The throughput for satellite ob-
jects therefore increases as the number of satellites increase.
When the number of satellites increases to 3, however, the
throughput decreases since CPU utilization increases due to
higher contention.

Cache effects can also be seen from the response time of
the target in Table 1. For example, when the target active
object runs on its own (1 0 0) the time taken to complete
500 iterations is 140 secs, where when a satellite active ob-
ject runs concurrently with it (1 0 1) the time reduces to
135 secs. This difference stems from the fact that the target
and the satellite active objects perform similar arithmetic
computations, so as the number of satellite objects increase
the cache effects become apparent until the CPU utilization
reaches a certain threshold, after which the response time
starts to increase.
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3.2 Colored Petri Net Model Construction

We now explain the simulation model of the application
case study created using Colored Petri Nets (CPNs). Fig-
ure 3 shows a screenshot of the CPN tool and the model of
our application represented using CPN. The following four

Figure 3. CPN Model of the Application Case
Study

aspects of the application are part of the system modeling
process:
• Modeling application flow, which models the logic of

each object similar to the workflows shown in Figure 1.
• Modeling lock contention, which models the wait-

ing and acquiring on the software locks, i.e., process
scoped mutexes, also known on Windows as “critical
sections.”

• Modeling resource access, which models the concur-
rent access of the physical resources by each thread.

• Modeling cache effects, which models the changes
on computation time due to simultaneous threads per-
forming similar work on the CPU.

Below we elaborate on the modeling of these four aspects.

3.2.1 Modeling Application Flows

Colored Petri nets model application flows via places, tran-
sitions, and tokens. Each transition moves tokens from the
input places to the output places. The placement of a to-
ken in a place indicates the location of control within the
application thread.

Figure 4 shows the application flow of the thread in the
active object. In this figure places are connected through
transitions. Whenever the input places has a token, the con-
nected transition can fire and move the token. Control there-
fore moves from each place to the next corresponding to the
workflow shown in Figure 1.

Figure 4. A CPN Model of the Thread in the
Target active object

Figure 4 shows how sleep is used to implement a delay
that simulates the interval where the task fires. Transition
firing times of the second and third transitions model phys-
ical device access, which is the CPU in this case. As seen
in the figure, when the device access is completed control
flows back to the starting position.

3.2.2 Modeling Lock Contention

Colored Petri nets can also model contentions. For exam-
ple, Figure 5 shows a portion of a CPN model where the
threads in the satellite and location active objects contend
for a shared lock. The place named “lock” represents the

Figure 5. The Model of Contention for a Soft-
ware Lock

software lock, which is available if a token is present in that
place. The places in the thread flow named “Wait on lock”
model the thread waiting on the lock. If the token is avail-
able, the transition on a single thread is executed and the
token moves out of the place “lock,” which causes the other
thread to block until the token again becomes available.

3.2.3 Modeling Resource Access

CPNs can model resources (such as the CPU) similarly to
locks. Multiple objects contend for the CPU, but only one
thread at a time can access it. A place is therefore created
in the model to represent the CPU and every object has a
connection to it.

Since the CPU is accessed by all threads, the model be-
comes visually cluttered. A feature of hierarchical nets of
the CPN tool can be used, however, to move the place repre-
senting the CPU to a different page of the CPN model. It is
then referred from every flow. The broken arrows connect-
ing the two places shown in the Figure 4 represent the un-
derlying contention for the CPU. Figure 6 shows the model
of the CPU.
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Figure 6. The CPN Model of the CPU

3.2.4 Modeling Cache Effects

Cache effects were observed during profiling, as discussed
in Section 3.1. These effects should be incorporated within
the CPN model so the model predicted performance data
is as close to the actual values as possible. Figure 7 gives
an empirical formula that is implemented within the place
representing the CPU. This formula calibrates the execution

Figure 7. The Formula to Implement Cache
Effects

time of a thread running on the CPU. The formula decreases
the execution time of a thread as the inter-arrival time be-
tween threads decreases.

The ’tint’ variable in the formula represents the current
inter-arrival time. If the value of ’tint’ is less than 180 the
execution time is modified to 94% of the original. In the
extreme, if it is less than 35, the execution time is modi-
fied to 40% of the original. The percentage numbers above
were computed by calibrating the CPN model via repeat-
edly running it with the data from configurations 1 0 0,
1 0 1, 1 0 2, 1 0 3 in Table 1.

3.3 Calibrating the Model

The techniques described in Section 3.2 helped imple-
ment the CPN model of the application. We now describe
how the CPN model is calibrated using the profile data gath-
ered as described in Section 3.1. Some of the profile data are
used as a training set to tune the model parameter; the rest of
the data are used to validate the model. The data for the con-
figurations 1 0 0, 1 0 1, 1 0 2, 1 0 3 in Table 1 are used to
train the model. These timing data were used to tune the for-
mula to model the caching shown in Figure 7. The model is

repeatedly run with the different configurations and the var-
ious percentage values in the formula is tweaked multiple
times to converge to the above values shown in Figure 7.

Once the model is properly calibrated, it is run for the
remaining configurations. For each configuration, the re-
sponse time of the target thread and the throughput of the
satellites and the location threads are calculated. Table 2
gives the resulting model prediction data,

With Mutex Without Mutex
Config Target

run
time
(secs)

Satellite
Through-
put
(peri-
ods/sec)

Tracker
Through-
put
(peri-
ods/sec)

Location
Through-
put
(peri-
ods/sec)

Target
run
time
(secs)

Satellite
Through-
put
(peri-
ods/sec)

Tracker
Through-
put

Location
Through-
put
(peri-
ods/sec)

1 0 0 140 140
1 0 1 135 3.69 135 3.70
1 0 2 130 3.83 130 3.85
1 0 3 135 3.69 135 3.69
1 1 1 132 3.59 73.12 2.77 130 3.83 51.22 3.26
1 2 1 132 3.69 77.41 1.54 135 3.70 25.67 3.16
1 3 1 132 3.79 76.74 1.02 144 3.49 11.06 2.87
1 1 2 143 3.78 30.58 2.25 143 3.48 8.30 2.89
1 2 2 144 3.81 38.49 1.35 170 2.96 4.94 2.18
1 3 2 144 3.24 39.49 0.92 191 2.57 4.05 1.66
1 1 3 153 3.76 7.19 1.54 170 2.94 4.62 2.05
1 2 3 162 2.94 13.10 1.12 209 2.37 3.39 1.26
1 3 3 162 2.37 13.79 0.79 237.77 1.99 2.79 0.95

Table 2. Model Predicted Data
3.4 Model Validation

We now compare the results obtained from profiling the
actual application (Section 3.1) with the results from the
model prediction (Section 3.2). These results are explained
from the perspective of two conflicting factors: (1) the CPU
that is the hardware resource bottleneck and (2) the soft-
ware lock contention due to shared data accessed by various
threads. Results are presented with different thread config-
urations on the x-axis and the runtime performance metric
on the y-axis.

3.4.1 Target Thread Response Time

Figure 8 shows that the response time of the thread in the
target active object remains nearly constant as the number of
objects are varied in the application case study. This result

Figure 8. Response Time of Target Thread
with Locks

occurs for the following two reasons:
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• The target does not contend with other objects, so it
does not face any extra blocking as the number of other
objects increases.

• As the number of objects increases, the threads in these
objects block each other due to software locks, which
keeps the CPU relatively free so the target thread can
use the CPU when needed.

This result seems non-intuitive since the underlying
hardware is a single CPU machine. It seems reasonable that
increasing the number of threads in an application running
on a single CPU should increase the overhead and reduce
the performance of each thread. The results in Figure 8,
however, show how the performance of a thread that uses
no software locks will increase when more threads that do
use locks are added to the application.

3.4.2 Throughput of Satellite and Tracker

Figure 9 shows the behavior of the satellite thread when
there are locks in the system. Each set of three configura-

Figure 9. Throughput of Satellite Thread with
Locks

tions in this graph should be considered together, e.g., data
for configuration 1 1 2, 1 2 2 and 1 3 2 should be con-
sidered together. Between the former configurations the
number of location threads are increased, which increases
contention and decreases throughput since the threads now
spend more time blocked on the locks. The location thread
also exhibits a similar trend as the satellite data, as shown
in Figure 10.

The tracker throughput is shown in Figure 11. The er-
ror percent in model data is larger compared to other data,
but the general trend of the application behavior is cap-
tured. For example, in each set of three successive read-
ings with one satellite (1 1 1, 1 2 1 and 1 3 1), two satel-
lites (1 1 2, 1 2 2 and 1 3 2), and three satellites (1 1 3,
1 2 3 and 1 3 3) the throughput increases as the number
of trackers increase. This trend of the application behavior
corresponding to each thread configuration helps identify
the optimal configuration. The accuracy of the prediction is
less important since we are only interested in determining if

Figure 10. Throughput of Location Thread
with Locks

Figure 11. Throughput of Tracker Thread with
Locks

a configuration is better than another, not how much better
they are.

3.4.3 Performance Metrics with the Locks Removed

For this experiment we removed all the locks in the applica-
tion, which clearly compromised its behavior since shared
data could be corrupted due to simultaneous modifications
by multiple threads. We removed the locks, however, to
compare the performance of each thread and show the im-
pact of using locks in the system. We also modified the CPN
model and used it to predict the performance of the system.
The model predicted data is shown along with the measured
data in the Figures 13, 14 and 12.

Figure 13 shows the target thread response time, which
increased as the number of objects increased. In this case,
when the number of other objects increased they do not
block each other and directly contend for the CPU, which
increases the waiting time of the target at the CPU and its
response time. Figure 14 shows the behavior of the satel-
lite thread when there are no locks in the system. When
the data in Figure 14 is compared with Figure 9, it is clear
that throughput degrades less as the number of threads or
objects increase due to the fact that there are no bottleneck
due to locks. Nevertheless, the throughput still goes down
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Figure 12. Throughput of Location Thread
without Locks

Figure 13. Response Time of Target Thread
without Locks

due to the increased CPU contention.

3.4.4 Model Prediction

Although the CPN model accurately predicted the under-
lying trend in application behavior in the experiments de-
scribed above there were errors in the model prediction.
Some specific points have inconsistencies, e.g., configura-
tion 1 1 3 seems to indicate problems since the throughput
of tracker and location predicted by the CPN model is much
less than the actual value. Figures 11, 10 and 12 show
that the model prediction differs significantly from the ac-
tual data. Potential reasons for these differences include (1)
there is increased OS activity due to context switching or
other activities that increase the throughput of the thread
and/or (2) some form of cache effects cause this behavior.
Overall, however, the CPN model mimics the application
behavior, so developers and deployer can use these models
to estimate application behavior accurately.

4 Application Configuration
This section demonstrates how the performance data pre-

dicted by the model can be leveraged to optimize applica-
tion thread configurations. In particular, our case study used
the results presented in Table 2 to find the optimal thread

Figure 14. Throughput of Satellite Thread
without Locks

Config Tracker
Num.

Tracker
Through-
put
(peri-
ods/sec)

Location
Through-
put
(peri-
ods/sec)

Satellite
Num-
ber

Satellite
Through-
put
(peri-
ods/sec)

Hit
chance

1 0 0 0 0 0
1 0 1 0 1 3.69 3.69
1 0 2 0 2 3.83 7.67
1 0 3 0 3 3.69 11.09
1 1 1 1 73.11 2.77 1 2.32 78.20
1 2 1 2 77.41 1.54 1 1.38 159.28
1 3 1 3 76.74 1.01 1 1.36 234.63
1 1 2 1 30.58 2.25 2 2.18 37.19
1 2 2 2 38.49 1.35 2 1.37 82.43
1 3 2 3 39.49 0.91 2 1.26 123.75
1 1 3 1 7.19 1.53 3 2.16 15.22
1 2 3 2 13.10 1.12 3 1.30 32.37
1 3 3 3 13.79 0.79 3 1.13 47.18

Table 3. Target hit chances for different con-
figurations

configuration. To verify the decision made using the model,
we profiled the application and calculated the number of
hits made by the trackers for each configuration.

We first used Equation(1) described in section 2 to com-
pute the hit chance value for each configuration, as shown
in Table 3. The average throughput values of the tracker
and satellite is used from the model predicted data given
in Table 2. Table 3 shows that configuration 1 3 1 has best
chance of the trackers hitting the target, as explained in Sec-
tion 2. This configuration should therefore be optimal for
the application.

To verify whether the above configuration is optimal, the
running application was then profiled to record the number
of times the trackers hit the target. The results of this pro-
filing is shown in Table 4. This table shows that configura-
tion 1 3 3 has the highest number of hits, which validates
that the configuration chosen using the modeled data and
the utility function given by equation(1) is optimal.

The results above show how a simulation model can be
used to determine the optimal configuration of threads for
our case study application. Combining simulations with
profiling helps application deployers optimize the perfor-
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Config Tracker
1

Tracker
2

Tracker
3

Total
Hits

1 0 0 0
1 0 1 0
1 0 2 0
1 0 3 0
1 1 1 212 212
1 2 1 127 142 269
1 3 1 220 222 230 672
1 1 2 163 163
1 2 2 111 121 232
1 3 2 183 190 179 552
1 1 3 130 130
1 2 3 159 144 303
1 3 3 148 153 161 462

Table 4. Actual Runtime Target Hit Occur-
rences

mance of application thread configurations without the need
for tedious and error-prone manual effort.

5 Related Work
Prior work has explored techniques for modeling soft-

ware contention using analytical techniques and modeling
thread contention using Petri nets. This section compares
and contrasts our work with this related work.

In [5] and [6] two queueing network models are created:
(1) a hardware queueing network model of the physical con-
tention and (2) a software queueing network model of the
software contention. Each model is solved iteratively un-
til the results from the two converge to within a predefined
value.

Our CPN-based approach uses a simulation model rather
than an analytical model to improve model accuracy. Al-
though simulation models require more time to predict per-
formance [6] they are appropriate for our purposes since
we analyze the models before application deployment. Our
solution is also based upon modeling of the application
flow and does not require detailed knowledge of queueing-
theoretic techniques or simultaneous resource possession.
Domain experts with good knowledge of the application can
therefore readily create a simulation model using CPN.

Queuing Petri Nets are used in [4] to model the perfor-
mance of distributed component-based systems. That pa-
per conducts a case study of the performance evaluation of
a J2EE application server and then presents a performance
evaluating method for modeling thread contention in a load
balancer used with the application server. The focus in [4] is
on modeling the number of threads in a thread pool for the
load balancer. In contrast, our work models the thread con-
tention caused from software locks and hardware resources,
which is complementary to the work in [4].

Analytic performance models of software servers are de-

veloped in [7], which also studies the thread contention due
to usage of thread pools. This paper develops a queueing-
theoretic analytical model to obtain the optimal number of
threads in a software server that uses a fixed number of
threads in a pool. The underlying assumption in the use
case is that each service provided by a thread does not con-
tend with any other thread for software locks. Unlike our
work with CPNs, that paper does not evaluate the problem
of software contention due to software locks.

A Petri net model of an application is presented in [3],
which captures software contentions and models software
locks in a manner similar to ours. The main difference is
that [3] does not consider the case of multi-level resource
contention, i.e., a thread performs its entire computation
once it acquires a software lock. In contrast, in our approach
a thread waits for a software lock and then contends for the
hardware resource, which is more representive of common
multi-threading scenarios.

Simulation-based performance of web servers [11] has
created a simulation based model of a web server. That pa-
per models physical resources, such as CPU, disk, and net-
work, but does not consider the complex interation between
software resources and hardware resources. In contrast, our
approach also models both these resources.

6 Concluding Remarks

The work presented in this paper describes a technique
we developed to model and simulate software contention.
We used Colored Petri Nets (CPN) to validate the model
data with the results captured by profiling the application.
CPN models the non-determinism inherent in the case of
multiple threads contending on a single lock. Profiling is
performed to measure application runtime performance and
the resulting data is validated against data predicted by the
CPN model. The results show that the CPN model accu-
rately predicts the pattern of behavior in the application
within certain error limits.

We learned the following lessons based on our research
conducted thus far:

• The effect of using locks in multi-threaded applica-
tions is not obvious. The use of a lock in one component can
affect performance in apparently non-related components.
It is seen from the profile data that locks can increase per-
formance of some application components at the expense of
others. For example, Section 3.4 showed that as the num-
ber of satellites grow in our case study the performance of
the target thread improves, whereas the performance of the
satellite and location degrades.

• The optimal number of threads in an application de-
pends upon the application logic and the underlying hard-
ware involved, which requires extensive dynamic and static
analysis to determine. Section 4 showed how we could de-
termine the optimal configuration of threads based on the
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interaction of multiple threads, such as target and satellite,
in a single processor system.

• Petri net simulations are helpful in pinpointing per-
formance bottlenecks. Simulation techniques combined
with profiled data can help predict and understand appli-
cation behavior, which helps developers and deployers tune
the proper number of threads to optimize performance. We
developed a CPN model of our case study application that
was calibrated using profiled data and which helped us to
extract the optimal configuration of threads, as shown in
Section 4.

• The performance of multi-threaded applications is
hard to predict when the underlying hardware changes.
For example, the throughput of the satellite threads de-
grades as the number of satellites grow, even when there
are no locks in the system, as shown in Section 3.4. This
behavior depends on various factors, such as the number of
processors in the system, the priority of the threads, and
the scheduling strategy used by the OS. Multi-processor
and multi-core hardware infrastructure along with various
scheduling mechanisms will be used for further experi-
ments.

• Capturing the effects of both hardware/software
cache and OS effects (such as overhead of context switch
or memory (de)allocation) is complex using conventional
profiling techniques. These effects are generally captured
by monitoring system activity (such as performance mon-
itoring on Windows, which is external to any application),
so it is hard to connect them to application-specific events,
such as the response time of the target thread or the through-
put of the satellite thread, as discussed in Section 3.1. OS-
specific settings, such as virtual memory allocation policies,
also require further study since they determine the amount
of cache effects present in the system. To ensure that model
predicted performance is closer to actual performance, our
future work will quantify these effects and included them in
the CPN models.

• Automated generation of Colored Petri-net models is
useful since manually creating Colored Petri net models is
time consuming and hard to debug, calibrate, and validate.
For example, it required a substantial amount of time to cre-
ate the CPN model for the case study application described
in Section 3.2. In future work we will therefore create au-
tomated tools to parse the code for the application and gen-
erate the CPN model. Likewise, CPN models of various
hardware platforms, such as multi-core processors and disk
drives, will be pre-constructed and combined with the ap-
plication logic model to generate the complete CPN model.

• Application bottlenecks due to software and hard-
ware resource contention can be identified from CPN
models of an application. For example, Section 3.4
showed how satellite throughput degrades as the number of
threads increased due to longer waiting time on software

locks and the processor. Further analysis of model predic-
tion data is required, however, to identify all critical sections
and pinpoint where each thread spends most of its time. Our
future work will therefore focus on identifying the bottle-
necks in the system at the software and hardware levels.

The CPN model of the application and the appli-
cation code used in this paper are available as open-
source software from www.dre.vanderbilt.edu/
˜nilabjar/SoftwareContention.
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