
Using Design Patterns to Develop
High-Performance Object-Oriented

Communication Software Frameworks

Douglas C. Schmidtla
schmidt@cs.wustl.edu

Department of Computer Science

Washington University, St. Louis 63130
(TEL) 314-935-7538, (FAX) 314-935-7302

This paper appeared in the Proceedings of the 8th Annual
Software Technology Conference, Salt Lake City, Utah, April
21–26, 1996.

1 Introduction

Developing extensible communication software that effec-
tively utilizes concurrency on parallel platforms is a com-
plex task. Despite dramatic increases in network and host
performance, the design and implementation of communica-
tion software remains a challenging problem. Moreover,
the growing heterogeneity of hardware/software architec-
tures and diversity of operating system platforms often make
it hard to directly reuse existing algorithms, detailed designs,
interfaces, or implementations [1].

Two promising techniques for alleviating communication
software complexity are design patterns and object-oriented
frameworks. Design patterns capture the static and dy-
namic structures and collaborations among components in
successful solutions to problems that arise when building
software [2]. They help to enhance software quality by ad-
dressing fundamental challenges in large-scale system de-
velopment. These challenges include communication of ar-
chitectural knowledge among developers; accommodating
new design paradigms or architectural styles; resolving non-
functional forces such as reusability, portability, and exten-
sibility; and avoiding development traps and pitfalls that are
usually learned only by experience.

An object-oriented communication framework is an inte-
grated collection of components that cooperate to define a
reusable architecture for a family of related communication
systems [3]. A framework provide a set of “semi-complete”
applications that automate common communication software
tasks (such as event demultiplexing, event handler dispatch-
ing, connection establishment, routing, configuration of ap-
plication services, and concurrency control [4]).

The emerging focus on design patterns and communication
frameworks in the object-oriented community offers software
developers both a language of discourse and a set of directly
reusable software components for capturing the essence of
successful architectures, components, policies, services, and
programming mechanisms. Once expressed in the pattern

form, reusable communication frameworks can be recast in
new contexts to facilitate the widespread reuse of software
architectures, detailed designs, algorithms, and implementa-
tions.

The remainder of this paper is organized as follows: Sec-
tion 2 outlines how patterns and frameworks have been
applied to create a reusable object-oriented software archi-
tecture for high-performance application-level Gateways;
Section 3 outlines the components in a reusable communi-
cation software framework used to build application-level
Gateways; Section 4 examines the design patterns that
form the basis for the framework and Gateways; Section 5
compares these patterns with those described in related work;
and Section 6 presents concluding remarks.

2 A Reusable Object-Oriented Soft-
ware Architecture for Application-
level Gateways

This paper presents a case study illustrating how design pat-
terns and frameworks are being applied in practice to facil-
itate widespread reuse of software experience in production
communication systems. Patterns aid the development of
reusable components and frameworks in these systems by
capturing the structure and collaboration of participants in a
software architecture at a higher level than (1) source code
and (2) object-oriented design models that focus on indi-
vidual objects and classes. Thus, patterns enable widespread
reuse of software architecture, even when reuse of algorithms,
implementations, interfaces, or detailed designs is not feasi-
ble [1]. Likewise, frameworks can be viewed as concrete
realizations of design patterns that facilitate direct reuse of
design and code. The particular system described in this case
study is a reusable object-oriented software architecture for
high-performance application-level Gateways.

2.1 System Overview

An application-level Gateway routes messages between
Peers in a communication system (shown in Figure 1).
The Gateway serves as a Mediator [5] that decouples co-

1



PEERS

NETWORK

GATEWAY

NETWORK

PEERS

1: send() 2: recv()
3: route()
4: send()

5: recv()

Figure 1: The Structure and Collaboration of Peers and the
Gateway

operating components in a software system and allows them
to interact without having direct dependencies on each other
[6]. Messages routed through a Gateway typically contain
payloads such as commands, status messages, and bulk data
exchanged by Peers. These payloads are encapsulated in
routing messages.

This paper presents the object-oriented architecture and
design of application-levelGateways in terms of the strate-
gic design patterns and framework components used to guide
their construction. Strategic design patterns have an exten-
sive impact on the software architecture for solutions in a par-
ticular domain. For example, the Router pattern described in
Section 4.4 decouples input mechanisms from output mech-
anisms to ensure that message processing is not disrupted or
postponed indefinitely when a Gateway experiences con-
gestion or failure. This pattern greatly simplifies the design
and quality of service in single-threaded Gateways that use
connection-oriented protocols such as TCP/IP or IPX/SPX.
Application-level Gateway also utilize many tactical pat-
terns (such as Factories and Iterators [5]). Tactical patterns
have a relatively localized impact on a software architecture
compared with strategic patterns (which have more sweeping
implications on software architecture).

Due to stringent requirements for reliability, performance,
and extensibility, application-level Gateways serve as ex-
cellent exemplars for presenting the structure, participants,
and consequences of design patterns that appear in many
communication software systems. Figure 2 illustrates the
structure, associations, and internal and external collabo-
rations among objects within a reusable software architec-
ture for application-level Gateways.1 This architecture

1Relationships between componentsare illustrated throughout this paper
using Booch notation [7]. In these figures solid clouds indicate objects;
nesting indicates composition relationships between objects; and undirected
edges indicate some type of link exists between two objects. Dashed clouds
indicate classes; directed edges indicate inheritance relationships between
classes; and an undirected edge with a small circle at one end indicates either

is based on extensive experience developing connection-
oriented Gateways for various commercial and academic
projects.

2.2 Impact of Patterns and Frameworks on
Software Reuse

After building a range of communication systems, it be-
came clear that the software architecture of application-level
Gateways was largely independent of the protocols used
to route messages to Peers. This realization enabled the
components depicted in Figure 2 to be reused on many com-
munication software projects. The ability to reuse these com-
ponents so widely stems from two factors:

1. Understanding the strategic design patterns within the
domain of communication software – Some of these pat-
terns have been documented individually in the patterns
literature (such as the Reactor [8], Connector [9], and
the Acceptor [10]). Section 4 describes several of these
patterns in terms of an integrated system of design pat-
terns that characterize the structure and collaboration
of communication software patterns in the context of
application-level Gateways.

2. Implementing an object-oriented framework that imple-
ments these common patterns – The systems described
in this paper were implemented with the ADAPTIVE
Communication Environment (ACE) software [4]. The
ACE framework implements a collection of design pat-
terns that recur when building concurrent and reactive
[8] communication software. ACE provides a rich set
of reusable C++ wrappers, class categories, and frame-
works that perform common communication software
tasks (such as event demultiplexing, event handler dis-
patching, connection establishment, routing, dynamic
configuration of application services, and concurrency
control).

The design patterns and framework components described
in this paper have been used extensively throughout large-
scale telecommunication and electronic medical imaging
projects [1, 11], as well as on academic research projects
[4]. Both the patterns and the ACE components evolved
continuously over time via a continual process of “round trip
gestalt” [7].

3 An Object-Oriented Framework for
the Gateway

This section describes how various communication compo-
nents in the ACE framework were reused and extended to
implement the application-levelGateway architecture. Fol-
lowing this overview,Section 4 examines the family of design
patterns that underly these reusable components.

a composition or uses relation between two classes; and a dashed directed
edge indicates template instantiation.

2



GATEWAYGATEWAY

CONNECTIONCONNECTION

REQUESTREQUEST CONNECTION

REQUEST

OUTGOING

MESSAGES

: Output: Output
ChannelChannel

: Message: Message
QueueQueue: SOCK: SOCK

StreamStream

INCOMING

MESSAGES

: Acceptor: Acceptor

: SOCK: SOCK
AcceptorAcceptor

: Connector: Connector

: SOCK: SOCK
ConnectorConnector

: Map: Map
ManagerManager

: Input: Input
ChannelChannel

: SOCK: SOCK
StreamStream

: Routing: Routing
TableTable

: Map: Map
ManagerManager

: Output: Output
ChannelChannel

: Message: Message
QueueQueue: SOCK: SOCK

StreamStream

: Input: Input
ChannelChannel

: SOCK: SOCK
StreamStream

: Reactor: Reactor

PEERS
PEERS

Figure 2: The Object-Oriented Gateway Software Archi-
tecture

3.1 Applying ACE Components to the Gate-
way

The primary ACE components used in the Gateway
include the Reactor [8], which encapsulates the UNIX
select event demultiplexingsystem call; SOCK Stream,
SOCK Connector, and SOCK Acceptor [11], which
encapsulate the socket network programming interface; and
Map Manager and Message Queue [4], which manage
communication messages efficiently. These components and
their use in the Gateway are described below.

�Reactor: The Reactor [8] is a reusable object-oriented
event demultiplexing mechanism based on the Reactor pat-
tern (outlined in Section 4.1). It channels all external event
stimuli in a Gateway to a single demultiplexing point. This
permits single-threaded Gateways to wait on events han-
dles, demultiplex events, and dispatch event handlers effi-
ciently. An event indicates to a Gateway that something
significant has occurred (e.g., the arrival of a new connection
or work request). The primary source of Gateway events is
routing messages that encapsulate various payloads (such as
commands, status messages, and bulk data). The Reactor
provides a coarse-grained form of concurrency control for
a single-threaded Gateway. It serializes the invocation of
event handlers at the level of event demultiplexing and dis-
patching within a process. This eliminates the need for addi-
tional synchronization mechanisms within a Gateway and
also minimizes context switching.

� Input Channel and Output Channel: These classes
implement the Router pattern (described in Section 4.4).
Both classes inherit from a common ancestor: base class
Channel (shown in Figure 3). This enables them to com-
municate with Peers via an ACE SOCK Stream object

Channel

Input
Channel

Output
Channel

Svc
Handler

APPLICATION-

INDEPENDENT

APPLICATION-

SPECIFIC

Figure 3: Channel Inheritance Hierarchy

provided by the Channel base class. Input Channels
are responsible for routing incoming messages to their des-
tination(s). The Reactor notifies an Input Channel
when it detects an event on that channel’s SOCK Stream
endpoint. TheInput Channel then receives and frames a
routing message from that endpoint, consults the Routing
Table to determine the set of Output Channel des-
tinations for the message, and asks the selected Output
Channels to forward the message to the appropriatePeer
destination(s).

An Output Channel is responsible for reliably deliv-
ering routing messages to their destinations. It implements a
flow control mechanism to buffer bursts of routing messages
that cannot be sent immediately due to transient network con-
gestion or lack of buffer space at a receiver. Flow control
ensures that a source Peer does not send data faster than a
destination Peer can buffer and process the data. For in-
stance, if a destinationPeer runs out of buffer space the un-
derlying TCP protocol instructs the associated Gateway’s
Output Channel to stop producing messages until the
destination Peer consumes the data.

A reusable ACE Message Queue object chains to-
gether unsent messages in the order they must be deliv-
ered when flow control mechanisms permit. Once the flow
control window opens up, the Reactor calls back to the
handle event method of the Output Channel. This
signals the channel to start draining the Message Queue
by sending messages to the Peer. If flow control occurs
again this sequence of steps is repeated until all messages are
delivered.

� Routing Table: Input Channels use the Routing
Table to map addressing information contained in routing
messages sent by Peers to the appropriate set of Output
Channels. The Routing Table reuses the ACE Map
Manager collection class. A Map Manager is a param-
eterized collection that efficiently maps external ids (e.g.,
Peer routing addresses) onto internal ids (e.g., Output
Channels).

3



� Channel Connector and Channel Acceptor: The
Channel Connector and Channel Acceptor are
reusable Factories [5] used by the Gateway to actively and
passively establish connections withPeers and produce the
connected Input Channels and Output Channels
described above. These components are based on the Con-
nector pattern (described in Section 4.2) and Acceptor pattern
(described in Section 4.3).

To increase system flexibility, connections can be estab-
lished in two ways:

1. From the Gateway to the Peers – which is typically
done when the Gateway first starts up to establish the
initial system configuration of Peers.

2. From a Peer to theGateway– which is typically done
once the system is running when a new Peer wants to
send or receive routing messages.

In a large system several hundred Peers may be connected
to a single Gateway. To expedite connection setup initi-
ated from the Gateway to all these Peers, the Gateway
uses the asynchronous connection mechanisms provided by
the Channel Connector and its underlying ACE SOCK
Connector [11]. When a SOCK Connector connects
two socket endpoints via TCP it produces a SOCK Stream
object, which is used to exchange data between that Peer
and the Gateway.

To decrease connection establishment latency, the
Gateway’s Channel Connector initiates all connec-
tions asynchronously rather than connecting each Peer syn-
chronously. Asynchrony helps decrease connection latency
over long delay paths (such as wide-area networks (WANs)
build over satellites or long haul terrestrial links).

3.2 Motivation for Using ACE

To enhance performance and interoperability, as well as to
reuse existing tracking station software and hardware, con-
nections between the Gateway control facility applications
and tracking stations are implemented using the TCP/IP
communication protocol suite. In particular, the Gateway
does not higher-level distributed object computing tools like
CORBA [12] for its communication infrastructure. There are
several reasons for this decision:

� The performance of CORBA implementations has gen-
erally not been optimized to eliminate key sources of
communication overhead for transmitting bulk data over
high-speed, long-delay networks [11, 13]. This over-
head stems from non-optimized presentation layer con-
versions, data copying, and memory management, inef-
ficient receiver-side demultiplexing and dispatching op-
erations, synchronous stop-and-wait flow control, and
non-adaptive retransmission timer schemes.

� CORBA is not well suited to handle the peer-to-peer,
asynchronous behavior of the Gateway. In partic-
ular, many CORBA implementations do not support

non-blocking method invocations (even for oneway
operations). The problem is that flow control mecha-
nisms provided by the de facto CORBA transport proto-
col (TCP) may indefinitely block a method that outputs
messages. TCP flow control ensures that a fast pro-
ducer does not send data faster than a slower consumer
can buffer and process the data. If the consumer runs
out of buffer space TCP instructs the producer to stop
transmitting until the consumer removes the data from
the OS buffer layer. Many versions of CORBA block a
sender when a TCP connection encounters flow control.
Therefore, it is hard to write a robust, single-threaded
application that will not hang indefinitely.

� Legacy communication applications and protocol stacks
do not conform to the CORBA interface nor its wire
protocol [14]. When combined with the output block-
ing problem described above, the level of effort required
to port legacy applications to CORBA clearly exceeds
the benefits of using a single OO communication infras-
tructure.

Since the use of CORBA was infeasible, the ACE framework
was combined with the design patterns described below to
build a robust, extensible, and high-performance Gateway.

4 A System of Design Patterns for the
Gateway

A design pattern is a recurring solution to a design problem
within a particular domain (such as business data processing,
telecommunications, graphical user interfaces, databases, or
distributed communication software). A design pattern de-
scription typically conveys the following information [5]:

� The intent of the pattern

� The design forces that motivate the pattern

� The solution to these forces

� The related classes and their roles in the solution

� The responsibilities and dynamic collaborations among
classes

� The positive and negative consequences of using the
pattern

� Guidance for implementors of the pattern

� Example source code illustrating how the pattern is ap-
plied

� References to related work.

A family of design patterns (also called a “pattern lan-
guage” [15] or a “pattern system” [6]) is a set of related
patterns that collaborate to solve a broader set of problems
that arise in a domain. A pattern family description illus-
trates how the constituent patterns interact to form a web of
design solutions [6]. Figure 4 illustrates the key strategic and

4



ConnectorConnector
ActiveActive
ObjectObject

ReactorReactor

BuilderBuilderIteratorIterator AdapterAdapter
TemplateTemplate
MethodMethod

TACTICALTACTICAL

PATTERNSPATTERNS

STRATEGIC

PATTERNS

AcceptorAcceptor

RouterRouter

ProxyProxy

Figure 4: The Family of Patterns for the Gateway

tactical patterns in a family of patterns for singled-threaded,
connection-oriented application-level Gateways. The fol-
lowing four strategic patterns related to connection-oriented,
application-level Gateways are examined in this section:

� The Reactor pattern – decouples event demultiplexing
and event handler dispatching from services performed
in response to events;

� The Connector pattern – decouples active service ini-
tialization from the tasks service performed once the
service is initialized.

� The Acceptor pattern – decouples passive service ini-
tialization from the tasks performed once the service is
initialized;

� The Router pattern – decouples input mechanisms from
output mechanisms to prevent blocking in a single-
threaded Gateway.

These patterns form the family of patterns underlying
the object-oriented software architecture of application-level
Gateways described in Section 2. This paper focuses
on these strategic patterns since they are crucial to the ar-
chitecture, design, and implementation of communication
Gateways. Moreover, these strategic patterns express de-
sign expertise that can be reused across a broad range of com-
munication software. This family of patterns was discovered
based on extensive design and implementation experience
with communication systems (including on-line transaction
processing systems [16], telecommunication switch manage-
ment systems [1], electronic medical imaging systems [11],
and parallel communication subsystems [4]).

Due to space limitations, the strategic Gateway patterns
are not described as thoroughly as the patterns in catalogs
such as [5, 6], nor are sample implementations provided.
Likewise, the tactical patterns shown in Figure 4 are not de-
scribed in detail either. In contrast to strategic patterns (which

Reactor

handle_events()
register_handler(eh, type)
remove_handler(eh, type) Event HandlerEvent Handler

handle_event(type)
get_handle()

Ann

11

select (handles)
foreach h in handles loop
   table[h]->handle_event (type)
end loop

nn

11

A
PPLIC

A
TIO

N

A
PPLIC

A
TIO

N--SPEC
IFIC

SPEC
IFIC

A
PPLIC

A
TIO

N

A
PPLIC

A
TIO

N--IN
D

E
PE

N
D

E
N

T

IN
D

E
PE

N
D

E
N

T

HandlesHandles

11

11

ConcreteConcrete
EventEvent

HandlerHandler

Figure 5: Structure and Participants in the Reactor Pattern

are often domain-specific and have sweeping design impli-
cations), tactical patterns are generally domain-independent
and have a relatively localized impact on a software architec-
ture. For instance, Iterator [5] is a tactical pattern used in the
Gateway to allow Channels in the Routing Table
to be processed sequentially without violating data encap-
sulation. Although this pattern is domain-independent and
thus widely applicable, the problem it addresses does not
impact the application-level Gateway software architec-
ture as strongly as the strategic patterns described in this
paper. Other tactical patterns used extensively throughout
the Gateway include the following:

� Factory Methods – which decouple object creation from
object use.

� Iterators – which decouple sequential access to a con-
tainer from the representation of the container.

� Adapters – which encapsulate existing procedural inter-
faces to make them object-oriented.

� Template Method – where an algorithm is written such
that some steps are supplied by a derived class.

As described below, many of these tactic patterns form the
basis for the strategic patterns presented in this paper.

4.1 The Reactor Pattern

Intent: The Reactor pattern decouples event demultiplex-
ing and event handler dispatching from the services per-
formed in response to events.

Forces: The Reactor pattern resolves the following forces
that impact the design of event-driven communication soft-
ware:

1. The need to demultiplex multiple types of events from
multiple sources of events efficiently within a single

5



mainmain
programprogram

REGISTER  HANDLER

DISPATCH  HANDLER(S)

RUN  EVENT  LOOP

EXTRACT  HANDLE

INITIALIZE

callback :
Concrete

Event_Handler

handle_events()

handle_event(event_type)

reactor :
Reactor

get_handle()

Reactor()

register_handler(callback)

select()

: Handles

WAIT  FOR  EVENTS

IN
IT

IA
L

IZ
A

T
IO

N
IN

IT
IA

L
IZ

A
T

IO
N

M
O

D
E

M
O

D
E

E
V

E
N

T
  H

A
N

D
L

IN
G

E
V

E
N

T
  H

A
N

D
L

IN
G

M
O

D
E

M
O

D
E

Figure 6: Object Interaction Diagram for the Reactor Pattern

thread of control – A Reactor serializes application event
handling within a process at the level of event demul-
tiplexing. By using the Reactor pattern the need for
more complicated threading, synchronization, or lock-
ing within an application is often eliminated.

2. The need to extend application behavior without requir-
ing changes to the event dispatching framework – The
Reactor factors out the demultiplexing and dispatching
mechanisms (which are independent of an application
and thus reusable) from the event handler processing
policies (which are specific to an application).

Structure and Participants: Figure 5 illustrates the struc-
ture and participants in the Reactor pattern. The Reactor
defines an interface for registering, removing, and dispatch-
ing Concrete Event Handler objects. An imple-
mentation of this interface provides a set of application-
independent mechanisms. These mechanisms perform event
demultiplexing and dispatching of application-specific event
handlers in response to events.

An Event Handler specifies an abstract interface used
by the Reactor to dispatch callback methods defined by
objects that register to handle input, output, signal, and time-
out events of interest. Each Concrete Event Handler
selectively implements callback method(s) to process events
in an application-specific manner.

Collaborations: Figure 6 illustrates the collaborations be-
tween participants in the Reactor pattern. These collabora-
tions are divided into the following two phases:

1. Initialization phase – where Concrete Event
Handler objects are registered with the Reactor

2. Event handling phase – where methods on the objects
are called back to handle particular types of events.

Uses: Figure 7 outlines how the Reactor is used in a
Gateway. A Reactor object dispatches incoming routing
messages to the associated Input Channel, where they
are routed to Output Channels. The Reactor also en-
sures that outgoing routingmessages are eventually delivered
on flow controlled Output Channels (described in Sec-
tion 4.4). In addition, the Reactor dispatches events that

:: Reactor Reactor

REGISTEREDREGISTERED

OBJECTSOBJECTS

F
R

A
M

E
W

O
R

K
F

R
A

M
E

W
O

R
K

L
E

V
E

L
L

E
V

E
L

K
E

R
N

E
L

K
E

R
N

E
L

L
E

V
E

L
L

E
V

E
L

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
E

V
E

L
L

E
V

E
L

OS  EVENT  DEMULTIPLEXING  INTERFACE

:Timer:Timer
QueueQueue

: Signal: Signal
HandlersHandlers

: Handle: Handle
TableTable

: Event: Event
HandlerHandler

: Output: Output
ChannelChannel

: Event: Event
HandlerHandler

: Output: Output
ChannelChannel

: Event: Event
HandlerHandler

: Input: Input
ChannelChannel

1: handle_event()1: handle_event()

4: send(msg)4: send(msg)

2: recv(msg)2: recv(msg)
3: route(msg)3: route(msg)

Figure 7: Using the Reactor Pattern in the Gateway

indicate the completion status of connections actively initi-
ated asynchronously (used by the Channel Connector
described in Section 4.2), as well as to accept passively ini-
tiated connections (used by the Channel Acceptor de-
scribed in Section 4.3).

The Reactor pattern has been used in many single-threaded
event-driven frameworks (such as the Motif, Interviews [17],
System V STREAMS [18], the ASX object-oriented commu-
nication framework [4], and implementations of DCE and
CORBA). In addition, it forms as the foundation for the other
strategic patterns for application-levelGateways presented
below.

4.2 The Connector Pattern

Intent: The Connector pattern decouples active2 service
initialization from the tasks performed once a service is ini-
tialized.

Forces: The Connector pattern resolves the following
forces that impact the design of connection-oriented com-
munication software (particularly clients) when using lower-
level network programming interfaces (like sockets [19] and
TLI [20]):

1. The need to reuse active connection establishment code
for each new service – The Connector pattern permits
key characteristics of services (such as the concurrency
strategy or the data format) to evolve independently and
transparently from the mechanisms used to establish the
connections. Since service characteristics change more
frequently than connection establishment mechanisms

2Communication software is typified by asymmetric roles for estab-
lishing connections between clients and servers. In general, servers (who
play a passive role) listen for clients (who play an active role) to initiate
connections.

6



ReactorReactor11nn

EventEvent
HandlerHandler

ConnectorConnector
connect_svc_handler()
activate_svc_handler()
handle_output()
connect(sh, addr)

SVC_HANDLERSVC_HANDLER

PEER_CONNECTORPEER_CONNECTOR

ConcreteConcrete
ConnectorConnector

Concrete_Svc_HandlerConcrete_Svc_Handler

SOCK_ConnectorSOCK_Connector11

ConcreteConcrete
Svc HandlerSvc Handler

SOCK StreamSOCK Stream

open()

nn

R
E

A
C

T
IV

E
R

E
A

C
T

IV
E

L
A

Y
E

R
L

A
Y

E
R

C
O

N
N

E
C

T
IO

N
C

O
N

N
E

C
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

handle_output()

AA

connect_svc_handlerconnect_svc_handler

   (sh, addr);   (sh, addr);1:1:

Svc HandlerSvc Handler

PEER_STREAMPEER_STREAM

open() AA

INITS

activate_svc_handleractivate_svc_handler

   (sh);   (sh);2:2:

nn

Figure 8: Structure and Participants in the Connector Pattern

this separation of concerns helps reduce software cou-
pling and increases code reuse.

2. The need to make the connection establishment code
portable across platforms that contain different network
programming interfaces – This is particularly important
for asynchronous connection establishment, which is
hard to program portably and correctly using lower-
level network programming interfaces (such as sockets
and TLI).

3. The need to actively establish connections with large
number of peers efficiently – The Connector pattern can
employ asynchrony to initiate and complete multiple
connections in non-blocking mode. By using asyn-
chrony, the Connector pattern enables applications to
actively establish connections with a large number of
peers efficiently over long-delay WANs.

4. The need to enable flexible service concurrency policies
– Once a connection is established, peer applications use
the connection to exchange data to perform some type
of service (e.g., remote login, WWW HTML document
transfer, etc.). A service can run in a single-thread, in
multiple threads, or multiple processes, regardless of
how the connection was established.

Structure and Participants: Figure 8 illustrates the struc-
ture and participants in the Connector pattern. As shown
in the figure, the participants in this pattern leverage off the
Reactor pattern by inheriting from its Event Handler
interface. Using the Reactor pattern enables multiple con-
nections to be actively established asynchronously within a
single thread of control.

ClientClient

FOREACH  CONNECTIONFOREACH  CONNECTION

      INITIATE  CONNECTION      INITIATE  CONNECTION

      ASYNC  CONNECT      ASYNC  CONNECT

      INSERT  IN  REACTOR      INSERT  IN  REACTOR

START  EVENT  LOOPSTART  EVENT  LOOP

FOREACH  EVENT  DOFOREACH  EVENT  DO

handle_events()

select()

CONNECTION  COMPLETECONNECTION  COMPLETE

INSERT  IN  REACTORINSERT  IN  REACTOR

con :con :
ConnectorConnector

handle_input()

reactor :reactor :
ReactorReactor

sh:sh:
Svc_HandlerSvc_Handler

handle_output()

register_handler(sh)

get_handle()
EXTRACT  HANDLEEXTRACT  HANDLE

DATA  ARRIVESDATA  ARRIVES

svc()PROCESS  DATAPROCESS  DATA

connect(sh, addr)

connect()

ACTIVATE  OBJECTACTIVATE  OBJECT

register_handler(con)

peer_stream_peer_stream_
: SOCK: SOCK

ConnectorConnector

C
O

N
N

E
C

T
IO

N
C

O
N

N
E

C
T

IO
N

IN
IT

IA
T

IO
N

IN
IT

IA
T

IO
N

  P
H

A
S

E
P

H
A

S
E

S
E

R
V

IC
E

S
E

R
V

IC
E

IN
IT

IA
L

IZ
A

T
IO

N
IN

IT
IA

L
IZ

A
T

IO
N

P
H

A
S

E
P

H
A

S
E

S
E

R
V

IC
E

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G
P

R
O

C
E

S
S

IN
G

P
H

A
S

E
P

H
A

S
E

activate_svc_handler(sh)

connect_svc_handler(sh, addr)

open()

Figure 9: Object Interaction Diagram for the Connector Pat-
tern

The Connector is a factory that assembles the resources
necessary to create, connect, and activate a service handler. In
addition, it implements the strategy for establishing connec-
tions with Peers asynchronously. It is parameterized by a
particular type of PEER CONNECTOR and SVC HANDLER.
The PEER CONNECTOR supplies the underlying transport
mechanism (such as C++ wrappers for sockets or TLI) used
to actively establish the connection asynchronously. TheSVC
HANDLER specifies an abstract interface for defining a ser-
vice that communicates with a connected Peer. Moreover, a
SVC HANDLER is parameterized by a PEER STREAM end-
point. The Connector connects this endpoint to its Peer
when a connection is established successfully. Note that by
inheriting from Event Handler, a SVC HANDLER can
register with a Reactor in order to demultiplex data within
a single event-driven thread of control.

Parameterized types are used to decouple the Connector
pattern’s connection establishment strategy from the type of
service and the type of connection mechanism. Develop-
ers produce Concrete Connectors by supplying argu-
ments for these types. This enables the wholesale replace-
ment of these types, without affecting the Connector pattern’s
connection establishment strategy.

Collaborations: The collaborations among participants in
the Connector pattern are divided into three phases:

1. Connection initiation phase – which actively connects
one or more Svc Handlers with their peers. Con-
nections can either be initiated synchronously or asyn-
chronously. The Connector determines the strategy
for actively establishing connections.

2. Service initialization phase – which activates a Svc
Handler by calling its open method when the con-
nection associated with it completes successfully. The

7



openmethod of the Svc Handler performs service-
specific initialization.

3. Service processing phase – which performs the
application-specific service processing using the data
exchanged between the Svc Handler and its con-
nected peer. Depending on the open method of Svc
Handler, this phase may employ the Reactor pattern
(or some other type of concurrency mechanisms such
as Active Objects [21]) to process incoming events.
For example, when commands arrive at a Command
Handler in the Gateway, the Reactor dispatches
Event Handlers to frame the commands, determine
outgoing routes, and deliver the commands to their des-
tinations.

Figure 9 illustrates the collaboration among participants in
the Connector pattern using asynchronous connection estab-
lishment.

Uses: The Gateway uses the Connector pattern to sim-
plify the task of connecting to a large number of Peers.
During Gateway initialization, a list of Peer port ad-
dresses are read from a configuration file. These addresses
are bound to dynamically created Channels (which inherit
from Svc Handler). All connections are then initiated
asynchronously and the connections are completed in paral-
lel.

Figure 10 illustrates the relationship between participants
in the Connector pattern after four connections have been
established. Three other connections that have not yet
completed are owned by the Connector. As shown in
this figure, the Connector maintains a table of the three
Channels whose connections are pending completion. As
connections complete, the Connector removes the con-
nected Channel from its table and activates it. Once ac-
tivated, Input Channels register themselves with the
Reactor. Henceforth, when routing messages arrive,
Input Channels receive and forward them to Output
Channels, which deliver the messages to their destina-
tions (these activities are described in Section 4.4). Input
Channels and Output Channels are objects residing
in the Gateway. In contrast, the original source and the
intended destination(s) of routing messages reside on other
hosts across the network.

In addition to establishing connections, a Gateway can
use the Connector in conjunction with the Reactor to
ensure that connections are restarted when errors occur. This
enhances the Gateway’s fault tolerance by ensuring that
channels are automatically reinitiated when they disconnect
unexpectedly (e.g., if a Peer crashes or an excessive amount
of data is queued at an Output Channel due to net-
work congestion). If a connection fails unexpectedly, an
exponential-backoff algorithm can be implemented using the
Reactor to restart the connection efficiently.

4.3 The Acceptor Pattern

: Connector

: Reactor
PENDING

CONNECTIONS

ACTIVE

CONNECTIONS

: Svc
Handler

: Channel

: Svc
Handler

: Channel

: Svc
Handler

: Channel

: Svc
Handler

: Channel

: Svc
Handler

: Channel

: Svc
Handler

: Channel
: Svc

Handler

: Channel

Figure 10: Using the Connector Pattern in the Gateway

ReactorReactor11

AcceptorAcceptor

SERVICE_HANDLER

PEER_ACCEPTOR

ConcreteConcrete
AcceptorAcceptor

Concrete_Service_HandlerConcrete_Service_Handler

SOCK_AcceptorSOCK_Acceptor11
ConcreteConcrete
ServiceService
HandlerHandler

SOCK StreamSOCK Streamnn

R
E

A
C

T
IV

E
R

E
A

C
T

IV
E

L
A

Y
E

R
L

A
Y

E
R

C
O

N
N

E
C

T
IO

N
C

O
N

N
E

C
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

ACTIVATES

sh = make_service_handler();sh = make_service_handler();

accept_service_handler (sh);accept_service_handler (sh);

activate_service_handler (sh);activate_service_handler (sh);

nn

EventEvent
HandlerHandler

AA

make_service_handler()
accept_service_handler()
activate_service_handler()
open()
accept()

ServiceService
HandlerHandler

PEER_STREAMPEER_STREAM

open() AA

Figure 11: Structure and Participants in the Acceptor Pattern

8



Intent: The Acceptor pattern decouples passive service ini-
tialization from the tasks performed once the service is ini-
tialized.

Forces: The Acceptor pattern resolves the following forces
that impact the design of connection-oriented communica-
tion software (particularly servers) when using lower-level
network programming interfaces (like sockets [19] and TLI
[20]):

1. The need to reuse passive connection establishment code
for each new service – The Acceptor pattern permits
key characteristics of services (such as the concurrency
strategy or the data format) to evolve independently and
transparently from the mechanisms used to establish the
connections. Since service characteristics change more
frequently than connection establishment mechanisms
this separation of concerns helps reduce software cou-
pling and increases code reuse.

2. The need to make the connection establishment code
portable across platforms that contain different network
programming interfaces – Parameterizing the Accep-
tor’s mechanisms for accepting connections and per-
forming services helps to improve portability by allow-
ing the wholesale replacement of these mechanisms.
This makes the connection establishment code portable
across platforms that contain different network program-
ming interfaces (such as sockets but not TLI, or vice
versa).

3. The need to enable flexible service concurrency policies
– Once a connection is established, peer applications use
the connection to exchange data to perform some type
of service (e.g., remote login, WWW HTML document
transfer, etc.). A service can run in a single-thread, in
multiple threads, or multiple processes, regardless of
how the connection was established.

4. The need to ensure that a passive-mode I/O handle is
not accidentally used to read or write data – By strongly
decoupling the Connector from the Svc Handler
passive-mode listener endpoints cannot accidentally be
used incorrectly (e.g., to try to read or write data on
a passive-mode listener socket used to accept connec-
tions).

The Acceptor pattern is the “dual” of the Connector pat-
tern described in Section 4.2. Unlike the Connector pattern
(which establishes connections actively), the Acceptor pat-
tern establishes connections passively.

Structure and Participants: Figure 11 illustrates the
structure and participants in the Acceptor pattern. This pat-
tern leverages off the Reactor pattern’s Reactor to pas-
sively establish multiple connections within a single thread
of control. The Acceptor implements the strategy for
establishing connections with Peers. It is parameterized
by concrete types that conform to the interfaces of the for-
mal template arguments SVC HANDLER (which performs a

ServerServer

REGISTER  HANDLERREGISTER  HANDLER

START  EVENT  LOOPSTART  EVENT  LOOP

CONNECTION  EVENTCONNECTION  EVENT

REGISTER  HANDLERREGISTER  HANDLER

FOR  CLIENT  FOR  CLIENT  I/OI/O

FOREACH  EVENT  DOFOREACH  EVENT  DO

EXTRACT  HANDLEEXTRACT  HANDLE

INITIALIZE  PASSIVEINITIALIZE  PASSIVE

ENDPOINTENDPOINT

acc :acc :
AcceptorAcceptor

handle_event()

handle_close()

reactor :reactor :
ReactorReactor

select()

sh:sh:
Svc_HandlerSvc_Handler

handle_event()

register_handler(sh)

get_handle()
EXTRACT  HANDLEEXTRACT  HANDLE

DATA  EVENTDATA  EVENT

CLIENT  SHUTDOWNCLIENT  SHUTDOWN

svc()
PROCESS  MSGPROCESS  MSG

open()

CREATECREATE,, ACCEPT ACCEPT,,
AND  ACTIVATE  OBJECTAND  ACTIVATE  OBJECT

SERVER  SHUTDOWNSERVER  SHUTDOWN
handle_close()

: SOCK: SOCK
AcceptorAcceptor

handle_events()

get_handle()

register_handler(acc)

sh = make_svc_handler()
accept_svc_handler (sh)
activate_svc_handler (sh)

open()

E
N

D
P

O
IN

T
E

N
D

P
O

IN
T

IN
IT

IA
L

IZ
A

T
IO

N
IN

IT
IA

L
IZ

A
T

IO
N

P
H

A
S

E
P

H
A

S
E

S
E

R
V

IC
E

S
E

R
V

IC
E

IN
IT

IA
L

IZ
A

T
IO

N
IN

IT
IA

L
IZ

A
T

IO
N

P
H

A
S

E
P

H
A

S
E

S
E

R
V

IC
E

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G
P

R
O

C
E

S
S

IN
G

P
H

A
S

E
P

H
A

S
E

Figure 12: Object Interaction Diagram for the Acceptor Pat-
tern

service in conjunction with a connected Peer) and PEER
ACCEPTOR (which is the underlying mechanism used to
passively establish the connection). The Svc Handler
shown in Figure 11 is a concrete type that defines the in-
terface for an application-specific service. It inherits from
Event Handler (shown in Figure 5), which allows it to
be dispatched by the Reactor when connection events oc-
cur. In addition,Svc Handler is parameterized by aPEER
STREAM endpoint. The Acceptor associates this endpoint
with its Peer when a connection is established successfully.

As with the Connector pattern, parameterized types are
used to enhance portability since the Acceptor pattern’s con-
nection establishment strategy is independent of the type of
service and the type of IPC mechanism. Programmers supply
concrete arguments for these types to produce a Concrete
Acceptor. Note that a similar degree of decoupling could
be achieved via inheritance and dynamic binding by using
the Abstract Factory or Factory Method patterns described in
[5]. Parameterized types were used to implement this pattern
since they improve run-time efficiency at the expense of ad-
ditional compile-time and link-timetime and space overhead.

Collaboration: Figure 12 illustrates the collaboration
among participants in the Acceptor pattern. These collab-
orations are divided into three phases:

1. Endpoint initialization phase – which creates a passive-
mode endpoint (encapsulated by PEER ACCEPTOR)
that is bound to a network address (such as an IP address
and port number). The passive-mode endpoint listens
for connection requests from peers. This endpoint is
registered with the Reactor, which then goes into
an event loop waiting on that endpoint for connection
requests to arrive from peers.

2. Service activation phase – Since an Acceptor in-
herits from an Event Handler the Reactor can

9



: Input: Input
AcceptorAcceptor

:: Reactor Reactor

ACTIVE

CONNECTIONS

: Svc
Handler

: Input: Input
ChannelChannel

: Svc: Svc
HandlerHandler

: Output: Output
ChannelChannel

: Svc: Svc
HandlerHandler

: Output: Output
ChannelChannel

: Svc: Svc
HandlerHandler

: Input: Input
ChannelChannel

PASSIVE

LISTENERS: Output: Output
AcceptorAcceptor

Figure 13: Using the Acceptor Pattern in the Gateway

dispatch the Acceptor’s handle event method
when connection events arrive. When connections
arrive, the Reactor calls back to the Acceptor’s
handle event method. This Template Method [5]
performs the Acceptor’s Svc Handler activation
strategy. This strategy assembles the resources neces-
sary to create a new Concrete Svc Handler ob-
ject, accept the connection into this object, and activate
the Svc Handler by calling its open method.

3. Service processing phase – once activated, the Svc
Handler processes incoming event messages arriving
on thePEER STREAM. ASvc Handlerwill process
incoming event messages using the Reactor pattern or
some other form of concurrent event handling such as
the Active Object pattern [21]. The concurrency strat-
egy used by a Svc Handler is defined by its open
method.

Uses: Figure 13 illustrates how the Acceptor pattern is used
by the Gateway. The Gateway uses this pattern when it
plays the passive connection role. In this case, the Peers
connect to Gateway, which uses the Acceptor pattern to
decouple the activity of connecting passively from the routing
service provided once the connection is established.

The intent and general architecture of the Acceptor pattern
is also found in network server management tools likeinetd
[19] and listen [20]. These tools utilize a master acceptor
process that listens for connections on a set of communica-
tion ports. Each port is associated with a communication-
related service (such as the standard Internet services ftp,
telnet, daytime, and echo). When a service request
arrives on a monitored port, the acceptor process accepts the
request and dispatches an appropriate pre-registered handler
that performs the service.

RoutingRouting
TableTable

find()

OutputOutput
ChannelChannel

send_msg()
put()

InputInput
ChannelChannel

recv_msg()

1

nn

I/
O

I/
O

L
A

Y
E

R
L

A
Y

E
R

R
O

U
T

IN
G

R
O

U
T

IN
G

L
A

Y
E

R
L

A
Y

E
R

MessageMessage
QueueQueue

EVENT  SOURCE  AND  SINKEVENT  SOURCE  AND  SINK

Figure 14: Structure and Participants in the Router Pattern

4.4 The Router Pattern

Intent: The Router pattern decouples multiple sources of
input from multiple sources of output to prevent blocking in
a single-threaded Gateway.

Forces: This pattern resolves the following force that
impacts the design of single-threaded connection-oriented
Gateways.

1. The need to prevent misbehaving connections from dis-
rupting the quality of service for well-behaved connec-
tions – It is paramount that Gateway message routing
is not disrupted or postponed indefinitely when conges-
tion or failure occurs on incoming and outgoing links.
For example, if outgoing connections flow control due
to network congestion or Peer failure, the Gateway
must not perform blockingsend operations on any sin-
gle channel. Otherwise, messages on other channels
could not be sent or received and the end-to-end quality
of service provided to Peers would degrade.

2. The need to allow different concurrency strategies for
Input and Output Channels – although this paper fo-
cuses on single-threaded Gateways there are alterna-
tive concurrency strategies such as (1) spawning a sep-
arate thread for every Input Channel and Output
Channel, (2) spawning a thread for each Output
Channel but multiplexing all Input Channels in
a single thread, or (3) using a pool of pre-spawned
threads. Different strategies are appropriate under dif-
ferent situations, depending on factors such as the num-
ber of CPUs, context switching overhead, and number
of Peers. By decoupling Input Channels from
Output Channels the Router pattern allows vari-
ous concurrency strategies to be configured flexibly into
a Gateway.

Structure and Participants: Figure 14 illustrates the
structure and participants in the Router pattern. As with
the Connector pattern, the Router pattern uses a Reactor

10



to allow multiple events on different connections to be de-
multiplexed within a single thread of control. The Input
Channels and Output Channels inherit indirectly
from Event Handler. This enables the Reactor to
dispatch their handle event methods when messages ar-
rive and flow control conditions subside, respectively. An
Input Channel uses a Routing Table to map rout-
ing messages onto one or moreOutput Channels. Since
the Input Channels are separate from the Output
Channels their implementations may vary independently.
This decoupling is important since it allows different concur-
rency strategies to be used for input and output.

Although TCP connections are bi-directional, data sent
from Peer to the Gateway use a different connection than
data sent from the Gateway to the Peer. There are sev-
eral advantages to separating input connections from output
connections in this manner. First, it simplifies the construc-
tion of Gateway Routing Tables. Second, it allows
more flexibility in connection configuration and concurrency
strategies. Finally, it enhances reliability if errors occur on a
connection (since Input and Output Channels can be
reconnected independently).

Collaborations: Figure 15 illustrates the collaboration
among participants in the Router pattern. These collabo-
rations may be divided into three phases:

1. Input processing – in this phase Input Channels
use non-blocking I/O to incrementally reassemble in-
coming TCP segments into complete routing messages;

2. Route selection – in this phase Input Channels
consult a Routing Table to select the Output
Channels responsible for sending the routing mes-
sages;

3. Output processing – in this phase the selected Output
Channels transmit the routing messages to their des-
tination(s) without blocking the process.

Uses: Figure 16 illustrates how the Router pattern is used in
theGateway. Input Channel andOutput Channel
processing routes messages within a single thread of control
by using the Reactor object. The use of single-threading
eliminates the overhead of synchronization (since access to
shared objects like the Routing Table need not be seri-
alized) and context switching (since message routing occurs
in a single thread).

The primary challenge of building a reliable, single-
threaded, connection-oriented Gateway revolves around
avoiding blocking I/O. This is necessary to reliably man-
age flow control on Output Channels. If the Gateway
were to block indefinitely when sending on a congested
connections incoming messages could not be routed, even
if those messages were destined for non-flow controlled
Output Channels.

Figure 16 illustrates the sequence of collaborations be-
tween Router pattern participants in a single-threaded

: Routing: Routing
TableTable

recv_msg()

find ()

I/OI/O
LayerLayer

: Input: Input
ChannelChannel

FIND  DESTINATIONSFIND  DESTINATIONS

ROUTE  MSGROUTE  MSG

main()main()

SEND  MSGSEND  MSG

((QUEUE  IF  FLOWQUEUE  IF  FLOW

CONTROLLEDCONTROLLED))

put()

wakeup()
FLOW  CONTROLFLOW  CONTROL

ABATESABATES

DEQUEUE  AND  SENDDEQUEUE  AND  SEND

MSG  MSG  ((REQUEUE  IFREQUEUE  IF

FLOW  CONTROLLEDFLOW  CONTROLLED))

: Output: Output
ChannelChannel

RECV  MSGRECV  MSG

send_msg()

IN
P

U
T

P
R

O
C

E
S

S
IN

G
P

H
A

S
E

R
O

U
T

E
S

E
L

E
C

T
IO

N
P

H
A

S
E

O
U

T
P

U
T

P
R

O
C

E
S

S
IN

G
P

H
A

S
E

dequeue()

enqueue()

send_msg()

schedule_wakeup()

Figure 15: Object Interaction Diagram for the Router Pattern

Gateway. First, Input and Output Channel descrip-
tors are set into non-blocking mode after the Connector
activates them. Message are subsequently received in frag-
ments byInput Channels. When anInput Channel
successfully receives and frames an entire message it uses
the Routing Table to determine the appropriate set of
Output Channels. It then passes the message to these
Output Channels, which try to send the message to the
destination Peer.

To avoid blocking, all send operations in Output
Channels must check to see flow control is enabled. If
not, an entire message can be sent successfully (depicted by
the Output Channel in the upper right-hand corner of
Figure 16). The Router pattern must use a different strategy,
however, when a send encounters a flow controlled con-
nection (depicted by the Output Channel in the lower
right-hand corner of Figure 16).

To handle flow control, the Output Channel inserts
the message it is trying to send into its Message Queue.
It then instructs the Reactor to call back to the Output
Channel when the flow control conditions abate, and re-
turns to the main event loop. When it is possible to try to
send again, the Reactor dispatches the handle event
method on the Output Channel, which then retries the
operation. This sequence of steps may be repeated multiple
times until the entire message is transmitted successfully.

Note that the Gateway always returns control to its main
event loop immediately after every I/O operation, regardless
of whether it sent or received an entire message. This is the
essence of the Router pattern – it never blocks on any single
I/O channel.

5 Related Work

[5, 6, 22] identify, name, and catalog many fundamental
object-oriented design patterns. This section examines how
the patterns described in this paper relate to other patterns in

11



: Routing: Routing
TableTable

: Input: Input
ChannelChannel

7: put (msg)7: put (msg)

1: handle_event()1: handle_event()
2: recv_msg(msg)2: recv_msg(msg)

3: find()3: find()

::  MessageMessage
QueueQueue

: Output: Output
ChannelChannel

5: nonblk_put(msg)5: nonblk_put(msg)
6: send_msg(msg)6: send_msg(msg)

ROUTEROUTE
IDID

SubscriberSubscriber
SetSet

4:
 p

ut (
m

sg
)

4:
 p

ut (
m

sg
)

: Output: Output
ChannelChannel

8: nonblk_put(msg)8: nonblk_put(msg)
9: send_msg(msg)9: send_msg(msg)
10: enqueue(msg)10: enqueue(msg)
11: schedule_wakeup()11: schedule_wakeup()
------------------------------
12: wakeup()12: wakeup()
13: dequeue(msg)13: dequeue(msg)
14: send_msg(msg)14: send_msg(msg)

::  MessageMessage
QueueQueue

Figure 16: Using the Router Pattern in the Gateway

the literature.
The Reactor pattern is related to the Observer pattern [5].

In the Observer pattern, multiple dependents are updated au-
tomatically when a subject changes. In the Reactor pattern,
a single handler is dispatched automatically when an event
occurs. Thus, For each event the Reactor dispatches a sin-
gle handler (though there can be multiple sources of events).
The Reactor pattern also provides a Facade [5]. The Fa-
cade pattern presents an interface that shields applications
from complex object relationships within a subsystem. The
Reactor pattern shields applications from complex mecha-
nisms that perform event demultiplexing and event handler
dispatching.

The mechanism the Reactor uses to dispatch Event
Handlers is similar to the Factory Callback pattern [23].
The intent of both patterns is to decoupling event reception
from event processing. The primary different is that the Fac-
tory Callback is a creational pattern, whereas the Reactor
dispatching is a behavioral pattern.

The Connector pattern is a variation of the Template
Method and Factory Method patterns [5]. In the Template
Method pattern, an algorithm is written such that some steps
are supplied by a derived class. In the Factory Method pat-
tern, a method in a subclass creates an associate that performs
a particular task, but the task is decoupled from the protocol
used to create the task. The Connector pattern is a Factory
that use Template Methods to create, connect, and activate
handlers for communication channels. In the Connector pat-
tern, the connectmethod implements a standard algorithm
for initiating a connection and activating a handler when the
connection is established. The intent of the Connector pattern
is similar to the Client/Dispatcher/Serverpattern described in
[6]. They both are concerned with separating active connec-
tion establishment from the subsequent service. The primary
difference is that the Connector pattern addresses both syn-

chronous and asynchronous connection establishment.
The Acceptor pattern can also be viewed as a variation of

the Template Method and Factory Method patterns [5]. The
Acceptor pattern is a connection factory that uses a template
method (handle event) to create handlers for communi-
cation channels. The handle event method implements
the algorithm that passively listens for connection requests,
then creates and activates a handler when the connection is
established. The handler performs a service using data ex-
changed on the connection. Thus, the service is decoupled
from the network programming interface and the transport
protocol used to establish the connection.

The Router pattern is a specialization of the Gateway pat-
tern in [6]. The Gateway pattern decouples cooperating com-
ponents of a software system and allows them to interact
without having direct dependencies among each other. The
Router pattern decouples the mechanisms used to process
input messages from the mechanisms used to process output
mechanisms to prevent blocking. In addition, this pattern
allows the use of different concurrency strategies for input
and output channels.

6 Concluding Remarks

This paper describes a system of design patterns and frame-
work components used to build high-performance commu-
nication Gateways. The design patterns presented in this
paper capture the collaboration between framework compo-
nents that perform common communication software tasks
(such as event demultiplexing, event handler dispatching,
connection establishment, routing, configuration of applica-
tion services, and concurrency control). The family of design
patterns and the ACE framework components described in
this paper have been reused by the author and his colleagues
in a number of production communication software systems.

In general, our experience applying reuse strategies based
on design patterns and frameworks has been positive. For
instance, the ability to document the intent, structure, and
behavior of components in the ACE framework in terms
of patterns has significantly reduced software development
effort for projects where it has been applied. An in-depth dis-
cussion of our experiences and lessons learned using patterns
appeared in [2].

The object-oriented ACE components described in
this paper are freely available via the WWW at
http://www.cs.wustl.edu/�schmidt/ACE.html.
This distributioncontains complete source code, documenta-
tion, and example test drivers for the C++ components devel-
oped as part of the ADAPTIVE project [4] at the University
of California, Irvine and Washington University.

References
[1] D. C. Schmidt and P. Stephenson, “Experiences Using De-

sign Patterns to Evolve System Software Across Diverse OS
Platforms,” in Proceedings of the 9th European Conference

12



on Object-Oriented Programming, (Aarhus, Denmark), ACM,
August 1995.

[2] D. C. Schmidt, “Experience Using Design Patterns to Develop
Reuseable Object-Oriented Communication Software,” Com-
munications of the ACM (Special Issue on Object-Oriented
Experiences), vol. 38, October 1995.

[3] R. Johnson and B. Foote, “Designing Reusable Classes,”
Journal of Object-Oriented Programming, vol. 1, pp. 22–35,
June/July 1988.

[4] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6th USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture - A System of
Patterns. Wiley and Sons, 1996.

[7] G. Booch, Object Oriented Analysis and Design with Ap-
plications (2nd Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

[8] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design (J. O.
Coplien and D. C. Schmidt, eds.), Reading, MA: Addison-
Wesley, 1995.

[9] D. C. Schmidt, “Connector: a Design Pattern for Actively
Initializing Network Services,” C++ Report, vol. 8, January
1996.

[10] D. C. Schmidt, “A Family of Design Patterns For Flexibly
Configuring Network Services in Distributed Systems,” in In-
ternational Conference on Configurable Distributed Systems,
May 6–8 1996.

[11] D. C. Schmidt, T. H. Harrison, and E. Al-Shaer, “Object-
Oriented Components for High-speed Network Program-
ming,” in Proceedings of the 1st Conference on Object-
Oriented Technologies and Systems, (Monterey, CA),
USENIX, June 1995.

[12] Object Management Group,The Common Object Request Bro-
ker: Architecture and Specification, 1.2 ed., 1993.

[13] D. C. Schmidt, T. H. Harrison, and I. Pyarali, “Experi-
ence Developing an Object-Oriented Framework for High-
Performance Electronic Medical Imaging using CORBA and
C++,” in Proceedings of the “Software Technology Applied
to Imaging and Multimedia Applications mini-conference” at
the Symposium on Electronic Imaging in the International
Symposia Photonics West, SPIE, January 1996.

[14] Object Management Group,Universal Networked Objects,TC
Document 95-3-xx ed., Mar. 1995.

[15] J. O. Coplien, “A Development Process Generative Pattern
Language,” in Pattern Languages of Programs (J. O. Coplien
and D. C. Schmidt, eds.), Reading, MA: Addison-Wesley, June
1995.

[16] D. C. Schmidt, “Acceptor and Connector: Design Patterns
for Actively and Passively Initializing Network Services,” in
Workshop on Pattern Languages of Object-Oriented Programs
at ECOOP ’95, (Aarhus, Denmark), August 1995.

[17] M. A. Linton, J. Vlissides, and P. Calder, “Composing User
Interfaces with InterViews,” IEEE Computer, vol. 22, pp. 8–
22, February 1989.

[18] D. Ritchie, “A Stream Input–OutputSystem,” AT&T Bell Labs
Technical Journal, vol. 63, pp. 311–324, Oct. 1984.

[19] W. R. Stevens, UNIX Network Programming. Englewood
Cliffs, NJ: Prentice Hall, 1990.

[20] S. Rago, UNIX System V Network Programming. Reading,
MA: Addison-Wesley, 1993.

[21] R. G. Lavender and D. C. Schmidt, “Active Object: an Object
Behavioral Pattern for ConcurrentProgramming,” in Proceed-
ings of the 2nd Annual Conference on the Pattern Languages
of Programs, (Monticello, Illinois), pp. 1–7, September 1995.

[22] J. O. Coplien and D. C. Schmidt, eds., Pattern Languages of
Program Design. Reading, MA: Addison-Wesley, 1995.

[23] S. Berczuk, “A Pattern for Separating Assembly and Process-
ing,” in Pattern Languages of Program Design (J. O. Coplien
and D. C. Schmidt, eds.), Reading, MA: Addison-Wesley,
1995.

13


