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1 Intent

The Reactor design pattern handles service requests that are
delivered concurrently to an application by one or more
clients. Each service in an application may consist of
serveral methods and is represented by a separate event han-
dler that is responsible for dispatching service-specific re-
quests. Dispatching of event handlers is performed by an ini-
tiation dispatcher, which manages the registered event han-
dlers. Demultiplexing of service requests is performed by a
synchronous event demultiplexer.

2 Also Known As

Dispatcher, Notifier

3 Example

To illustrate the Reactor pattern, consider the event-driven
server for a distributed logging service shown in Figure 1.
Client applications use the logging service to record informa-
tion about their status in a distributed environment. This sta-
tus information commonly includes error notifications, de-
bugging traces, and performance reports. Logging records
are sent to a central logging server, which can write the
records to various output devices, such as a console, a printer,
a file, or a network management database.

The logging server shown in Figure 1 handles logging
records and connection requests sent by clients. Logging
records and connection requests can arrive concurrently on
multiple handles. A handle identifies network communica-
tion resources managed within an OS.

The logging server communicates with clients using a
connection-oriented protocol, such as TCP [1]. Clients that
want to log data must first send a connection request to the
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Figure 1: Distributed Logging Service

server. The server waits for these connection requests using
a handle factorythat listens on an address known to clients.
When a connection request arrives, the handle factory es-
tablishes a connection between the client and the server by
creating a new handle that represents an endpoint of the con-
nection. This handle is returned to the server, which then
waits for client service requests to arrive on the handle. Once
clients are connected, they can send logging records concur-
rently to the server. The server receives these records via the
connected socket handles.

Perhaps the most intuitive way to develop a concurrent
logging server is to use multiple threads that can process
multiple clients concurrently, as shown in Figure 2. This
approach synchronously accepts network connections and
spawns a “thread-per-connection” to handle client logging
records.

However, using multi-threading to implement the process-
ing of logging records in the server fails to resolve the fol-
lowing forces:

� Efficiency: Threading may lead to poor performance due
to context switching, synchronization, and data movement
[2];
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Figure 2: Multi-threaded Logging Server

� Programming simplicity: Threading may require com-
plex concurrency control schemes;

� Portability: Threading is not available on all OS plat-
forms.

As a result of these drawbacks, multi-threading is often not
the most efficient nor the least complex solution to develop a
concurrent logging server.

4 Context

A server application in a distributed system that receives
events from one or more clients concurrently.

5 Problem

Server applications in a distributed system must handle mul-
tiple clients that send them service requests. Before invok-
ing a specific service, however, the server application must
demultiplex and dispatch each incoming request to its corre-
sponding service provider. Developing an effective server
mechanisms for demultiplexing and dispatching client re-
quests requires the resolution of the following forces:

� Availability: The server must be available to handle in-
coming requests even if it is waiting for other requests to ar-
rive. In particular, a server must not block indefinitely han-
dling any single source of events at the exclusion of other
event sources since this may significantly delay the respon-
seness to other clients.

� Efficiency: A server must minimize latency, maximize
throughput, and avoid utilizing the CPU(s) unnecessarily.

� Programming simplicity: The design of a server should
simplify the use of suitable concurrency strategies.

� Adaptability: Integrating new or improved services,
such as changing message formats or adding server-side
caching, should incur minimal modifications and mainte-
nance costs for existing code. For instance, implementing
new application services should not require modifications
to the generic event demultiplexing and dispatching mech-
anisms.

� Portability: Porting a server to a new OS platform
should not require significant effort.

6 Solution

Integrate the synchronous demultiplexing of events and the
dispatching of their corresponding event handlers that pro-
cess the events. In addition, decouple the application-
specific dispatching and implementation of services from
the general-purpose event demultiplexing and dispatching
mechanisms.

For each service the application offers, introduce a sep-
arate Event Handler that processes certain types of
events. AllEvent Handlers implement the same inter-
face. Event Handler s register with anInitiation
Dispatcher , which uses aSynchronous Event
Demultiplexer to wait for events to occur. When events
occur, the Synchronous Event Demultiplexer
notifies the Initiation Dispatcher , which syn-
chronously calls back to theEvent Handler associated
with the event. TheEvent Handler then dispatches the
event to the method that implements the requested service.

7 Structure

The key participants in the Reactor pattern include the fol-
lowing:
Handles

� Identify resources that are managed by an OS.
These resources commonly include network connec-
tions, open files, timers, synchronization objects, etc.
Handles are used in the logging server to identify
socket endpoints so that aSynchronous Event
Demultiplexer can wait for events to occur on
them. The two types of events the logging server is in-
terested in areconnectionevents andreadevents, which
represent incoming client connections and logging data,
respectively. The logging server maintains a separate
connection for each client. Every connection is repre-
sented in the server by a sockethandle .

Synchronous Event Demultiplexer

� Blocks awaiting events to occur on a set ofHandles .
It returns when it is possible to initiate an operation
on aHandle without blocking. A common demulti-
plexer for I/O events isselect [1], which is an event
demultiplexing system call provided by the UNIX and
Win32 OS platforms. Theselect call indicates which
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Handle s can have operations invoked on them syn-
chronously without blocking the application process.

Initiation Dispatcher

� Defines an interface for registering, removing, and
dispatching Event Handler s. Ultimately, the
Synchronous Event Demultiplexer is respon-
sible for waiting until new events occur. When
it detects new events, it informs theInitiation
Dispatcher to call back application-specific event
handlers. Common events include connection accep-
tance events, data input and output events, and timeout
events.

Event Handler

� Specifies an interface consisting of a hook method [3]
that abstractly represents the dispatching operation for
service-specific events. This method must be imple-
mented by application-specific services.

Concrete Event Handler

� Implements the hook method, as well as the meth-
ods to process these events in an application-specific
manner. Applications registerConcrete Event
Handlers with the Initiation Dispatcher to
process certain types of events. When these events ar-
rive, the Initiation Dispatcher calls back the
hook method of the appropriateConcrete Event
Handler .

There are twoConcrete Event Handler s in the
logging server:Logging Handler and Logging
Acceptor . The Logging Handler is responsi-
ble for receiving and processing logging records. The
Logging Acceptor creates and connectsLogging
Handler s that process subsequent logging records
from clients.

The structure of the participants of the Reactor pattern is
illustrated in the following OMT class diagram:

Initiation DispatcherInitiation Dispatcher

handle_events()
register_handler(h)
remove_handler(h)

select (handlers);
foreach h in handlers loop
     h.handle_event(type)
end loop

Event HandlerEvent Handler

handle_event(type)
get_handle()

handlers

HandleHandle ownsuses

notifies

ConcreteConcrete
EventEvent

HandlerHandler

Synchronous EventSynchronous Event
DemultiplexerDemultiplexer

select()

1 N

8 Dynamics

8.1 General Collaborations

The following collaborations occur in the Reactor pattern:

� When an application registers aConcrete Event
Handler with the Initiation Dispatcher the
application indicates the type of event(s) thisEvent
Handler wants theInitiation Dispatcher to
notify it about when the event(s) occur on the associated
Handle .

� The Initiation Dispatcher requests each
Event Handler to pass back its internalHandle .
This Handle identifies theEvent Handler to the
OS.

� After all Event Handler s are registered, an applica-
tion callshandle events to start theInitiation
Dispatcher ’s event loop. At this point, the
Initiation Dispatcher combines theHandle
from each registeredEvent Handler and uses the
Synchronous Event Demultiplexer to wait
for events to occur on theseHandles . For in-
stance, the TCP protocol layer uses theselect syn-
chronous event demultiplexing operation to wait for
client logging record events to arrive on connected
socketHandle s.

� TheSynchronous Event Demultiplexer no-
tifies the Initiation Dispatcher when a
Handle corresponding to an event source becomes
“ready,”e.g., that a TCP socket is “ready for reading.”

� The Initiation Dispatcher triggers Event
Handler hook method in response to events on
the ready Handles . When events occur, the
Initiation Dispatcher uses theHandles ac-
tivated by the event sources as “keys” to locate and
dispatch the appropriateEvent Handler ’s hook
method.

� The Initiation Dispatcher calls back to
the handle event hook method of theEvent
Handler to perform application-specific functionality
in response to an event. The type of event that occurred
can be passed as a parameter to the method and used
internally by this method to perform additional service-
specific demultiplexing and dispatching. An alternative
dispatching approach is described in Section 9.4.

The following interaction diagram illustrates the collabo-
ration between application code and participants in the Re-
actor pattern:
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8.2 Collaboration Scenarios

The collaborations within the Reactor pattern for the logging
server can be illustrated with two scenarios. These scenarios
show how a logging server designed using reactive event dis-
patching handles connection requests and logging data from
multiple clients.

8.2.1 Client Connects to a Reactive Logging Server

The first scenario shows the steps taken when a client con-
nects to the logging server.

NETWORKNETWORK

SERVERSERVER LOGGING  SERVERLOGGING  SERVER

4: connect()

LoggingLogging
AcceptorAcceptor

1: register
    handler()

2: handle_events()
3: select()

CLIENTCLIENT

5: handle
    event()

6: accept()
7: create()

8: register
    handler()

InitiationInitiation
DispatcherDispatcher

LoggingLogging
HandlerHandler

This sequence of steps can be summarized as follows:

1. The logging server (1) registers theLogging
Acceptor with theInitiation Dispatcher to
handle connection requests;

2. The logging server invokes thehandle events
method (2) of theInitiation Dispatcher ;

3. The Initiation Dispatcher invokes the syn-
chronous event demultiplexingselect (3) operation
to wait for connection requests or logging data to arrive;

4. A client connects (4) to the logging server;

5. The Logging Acceptor is no-
tified by theInitiation Dispatcher (5) of the
new connection request;

6. TheLogging Acceptor accepts (6) the new con-
nection;

7. The Logging Acceptor creates (7) aLogging
Handler to service the new client;

8. Logging Handler registers (8) its socket handle
with the Initiation Dispatcher and instructs
the dispatcher to notify it when the socket becomes
“ready for reading.”

8.2.2 Client Sends Logging Record to a Reactive Log-
ging Server

The second scenario shows the sequence of steps that the
reactive logging server takes to service a logging record.

NETWORKNETWORK

SERVERSERVER LOGGING  SERVERLOGGING  SERVER

1: send()
CLIENTCLIENT

AA

InitiationInitiation
DispatcherDispatcher

3: recv()
4: write()

CLIENTCLIENT
BB

2: handle
    event()

5: return

LoggingLogging
HandlerHandler

for Afor A

LoggingLogging
HandlerHandler

for Bfor B

This sequence of steps can be summarized as follows:

1. The client sends (1) a logging record;

2. TheInitiation Dispatcher notifies (2) the as-
sociatedLogging Handler when a client logging
record is queued on its socket handle by OS;

3. The record is received (3) in a non-blocking manner
(steps 2 and 3 repeat until the logging record has been
received completely);

4. The Logging Handler processes the logging
record and writes (4) it to the standard output.

5. The Logging Handler returns (5) control to the
Initiation Dispatcher ’s event loop.

9 Implementation

This section describes how to implement the Reactor pattern
in C++. The implementation described below is influenced
by the reusable components provided in the ACE communi-
cation software framework [2].

9.1 Select the Synchronous Event Demulti-
plexer Mechanism

The Initiation Dispatcher uses aSynchronous
Event Demultiplexer to wait synchronously until one
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or more events occur. This is commonly implemented us-
ing an OS event demultiplexing system call likeselect .
The select call indicates whichHandle (s) are ready to
perform I/O operations without blocking the OS process in
which the application-specific service handlers reside. In
general, theSynchronous Event Demultiplexer
is based upon existing OS mechanisms, rather than devel-
oped by implementers of the Reactor pattern.

9.2 Develop an Initiation Dispatcher

The following are the steps necessary to develop the
Initiation Dispatcher :

Implement the Event Handler table: A Initiation
Dispatcher maintains a table ofConcrete Event
Handler s. Therefore, theInitiation Dispatcher
provides methods to register and remove the handlers from
this table at run-time. This table can be implemented in var-
ious ways,e.g., using hashing, linear search, or direct index-
ing if handles are represented as a contiguous range of small
integral values.

Implement the event loop entry point: The entry point
into the event loop of theInitiation Dispatcher
should be provided by ahandle events method. This
method controls theHandle demultiplexing provided by
theSynchronous Event Demultiplexer , as well as
performingEvent Handler dispatching. Often, the main
event loop of the entire application is controlled by this entry
point.

When events occur, theInitiation Dispatcher
returns from the synchronous event demultiplexing call
and “reacts” by dispatching theEvent Handler ’s
handle event hook method for each handle that is
“ready.” This hook method executes user-defined code and
returns control to theInitiation Dispatcher when it
completes.

The following C++ class illustrates the core methods on
theInitiation Dispatcher’s public interface:

enum Event_Type
// = TITLE
// Types of events handled by the
// Initiation_Dispatcher.
//
// = DESCRIPTION
// These values are powers of two so
// their bits can be efficiently ‘‘or’d’’
// together to form composite values.

{
ACCEPT_EVENT = 01,
READ_EVENT = 02,
WRITE_EVENT = 04,
TIMEOUT_EVENT = 010,
SIGNAL_EVENT = 020,
CLOSE_EVENT = 040

};

class Initiation_Dispatcher
// = TITLE
// Demultiplex and dispatch Event_Handlers
// in response to client requests.

{
public:

// Register an Event_Handler of a particular
// Event_Type (e.g., READ_EVENT, ACCEPT_EVENT,
// etc.).
int register_handler (Event_Handler *eh,

Event_Type et);

// Remove an Event_Handler of a particular
// Event_Type.
int remove_handler (Event_Handler *eh,

Event_Type et);

// Entry point into the reactive event loop.
int handle_events (Time_Value *timeout = 0);

};

Implement the necessary synchronization mechanisms:
If the Reactor pattern is used in an application with only one
thread of control it is possible to eliminate all synchroniza-
tion. In this case, theInitiation Dispatcher serial-
izes theEvent Handler handle event hooks within
the application’s process.

However, the Initiation Dispatcher can also
serve as a central event dispatcher in multi-threaded applica-
tions. In this case, critical sections within theInitiation
Dispatcher must be serialized to prevent race conditions
when modifying or activating shared state variables (such as
the table holding theEvent Handler s). A common tech-
nique for preventing race conditions uses mutual exclusion
mechanisms like semaphores or mutex variables.

To prevent self-deadlock, mutual exclusion mechanisms
can userecursive locks[4]. Recursive locks hold prevent
deadlock when locks are held by the same thread across
Event Handler hook methods within theInitiation
Dispatcher . A recursive lock may be re-acquired
by the thread that owns the lockwithout blocking the
thread. This property is important since the Reactor’s
handle events method calls back on application-specific
Event Handler s. Application hook method code may
subsequently re-enter theInitiation Dispatcher
via its register handler and remove handler
methods.

9.3 Determine the Type of the Dispatching
Target

Two different types ofEvent Handlers can be as-
sociated with aHandle to serve as the target of an
Initiation Dispatcher ’s dispatching logic. Imple-
mentations of the Reactor pattern can choose either one or
both of the following dispatching alternatives:

Event Handler objects: A common way to associate an
Event Handler with a Handle is to make theEvent
Handler an object. For instance, the Reactor pattern imple-
mentation shown in Section 7 registersEvent Handler
subclass objects with anInitiation Dispatcher .
Using an object as the dispatching target makes it convenient
to subclassEvent Handlers in order to reuse and extend
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existing components. In addition, objects integrate the state
and methods of a service into a single component.

Event Handler functions: Another way to associate an
Event Handler with a Handle is to register a function
with the Initiation Dispatcher . Using functions as
the dispatching target makes it convenient to register call-
backs without having to define a new class that inherits from
Event Handler .

The Adapter pattern [5] be employed to support both
objects and functions simultaneously. For instance, an
adapter could be defined using an event handler object that
holds a pointer to an event handler function. When the
handle event method was invoked on the event handler
adapter object, it could automatically forward the call to the
event handler function that it holds.

9.4 Define the Event Handling Interface

Assuming that we useEvent Handler objects rather than
functions, the next step is to define the interface of the
Event Handler . There are two approaches:

A single-method interface: The OMT diagram in Sec-
tion 7 illustrates an implementation of theEvent
Handler base class interface that contains a single
method, calledhandle event , which is used by the
Initiation Dispatcher to dispatch events. In this
case, the type of the event that has occurred is passed as a
parameter to the method.

The following C++ abstract base class illustrates the
single-method interface:

class Event_Handler
// = TITLE
// Abstract base class that serves as the
// target of the Initiation_Dispatcher.

{
public:

// Hook method that is called back by the
// Initiation_Dispatcher to handle events.
virtual int handle_event (Event_Type et) = 0;

// Hook method that returns the underlying
// I/O Handle.
virtual Handle get_handle (void) const = 0;

};

The advantage of the single-method interface is that it is
possible to add new types of events without changing the in-
terface. However, this approach encourages the use of switch
statements in the subclass’shandle event method, which
limits its extensibility.

A multi-method interface: Another way to implement the
Event Handler in-
terface is to define separate virtual hook methods for each
type of event (such ashandle input , handle output ,
or handle timeout ).

The following C++ abstract base class illustrates the
single-method interface:

class Event_Handler
{
public:

// Hook methods that are called back by
// the Initiation_Dispatcher to handle
// particular types of events.
virtual int handle_accept (void) = 0;
virtual int handle_input (void) = 0;
virtual int handle_output (void) = 0;
virtual int handle_timeout (void) = 0;
virtual int handle_close (void) = 0;

// Hook method that returns the underlying
// I/O Handle.
virtual Handle get_handle (void) const = 0;

};

The benefit of the multi-method interface is that it is
easy to selectively override methods in the base class and
avoid further demultiplexing,e.g.,via switch or if state-
ments, in the hook method. However, it requires the frame-
work developer to anticipate the set ofEvent Handler
methods in advance. For instance, the varioushandle *
methods in theEvent Handler interface above are tai-
lored for I/O events available through the UNIXselect
mechanism. However, this interface is not broad enough
to encompass all the types of events handled via the Win32
WaitForMultipleObjects mechanism [6].

Both approaches described above are examples of the
hook method pattern described in [3] and the Factory Call-
back pattern described in [7]. The intent of these patterns is
to provide well-defined hooks that can be specialized by ap-
plications and called back by lower-level dispatching code.

9.5 Determine the Number of Initiation Dis-
patchers in an Application

Many applications can be structured using just one instance
of the Reactor pattern. In this case, theInitiation
Dispatcher can be implemented as a Singleton [5]. This
design is useful for centralizing event demultiplexing and
dispatching into a single location within an application.

However, some operating systems limit the number of
Handles that can be waited for within a single thread
of control. For instance, Win32 allowsselect and
WaitForMultipleObjects to wait for no more than 64
Handles in a single thread. In this case, it may be neces-
sary to create multiple threads, each of which runs its own
instance of the Reactor pattern.

Note thatEvent Handlers are only serializedwithin
an instance of the Reactor pattern. Therefore, multiple
Event Handlers in multiple threads can run in parallel.
This configuration may necessitate the use of additional syn-
chronization mechanisms ifEvent Handlers in different
threads access shared state.

9.6 Implement the Concrete Event Handlers

The concrete event handlers are typically created by appli-
cation developers to perform specific services in response to
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particular events. The developers must determine what pro-
cessing to perform when the corresponding hook method is
invoked by the initiation dispatcher.

The following code implements theConcrete Event
Handlers for the logging server described in Section 3.
These handlers providepassive connection establishment
(Logging Acceptor ) and data reception(Logging
Handler ).

The Logging Acceptor class: This class is an example
of the Acceptor component of the Acceptor-Connector
pattern [8]. The Acceptor-Connector pattern decouples the
task of service initialization from the tasks performed after a
service is initialized. This pattern enables the application-
specific portion of a service, such as theLogging
Handler , to vary independently of the mechanism used to
establish the connection.

A Logging Acceptor passively accepts connec-
tions from client applications and creates client-specific
Logging Handler objects, which receive and process
logging records from clients. The key methods and data
members in theLogging Acceptor class are defined be-
low:

class Logging_Acceptor : public Event_Handler
// = TITLE
// Handles client connection requests.

{
public:

// Initialize the acceptor_ endpoint and
// register with the Initiation Dispatcher.
Logging_Acceptor (const INET_Addr &addr);

// Factory method that accepts a new
// SOCK_Stream connection and creates a
// Logging_Handler object to handle logging
// records sent using the connection.
virtual void handle_event (Event_Type et);

// Get the I/O Handle (called by the
// Initiation Dispatcher when
// Logging_Acceptor is registered).
virtual HANDLE get_handle (void) const
{

return acceptor_.get_handle ();
}

private:
// Socket factory that accepts client
// connections.
SOCK_Acceptor acceptor_;

};

TheLogging Acceptor class inherits from theEvent
Handler base class. This enables an application to reg-
ister the Logging Acceptor with an Initiation
Dispatcher .

The Logging Acceptor also contains an instance of
SOCK Acceptor . This is a concrete factory that enables
theLogging Acceptor to accept connection requests on
a passive mode socket that is listening to a communication
port. When a connection arrives from a client, theSOCK
Acceptor accepts the connection and produces aSOCK
Stream object. Henceforth, theSOCK Stream object is

used to transfer data reliably between the client and the log-
ging server.

TheSOCK Acceptor andSOCK Stream classes used
to implement the logging server are part of the C++ socket
wrapper library provided by ACE [9]. These socket wrappers
encapsulate theSOCK Stream semantics of the socket in-
terface within a portable and type-secure object-oriented in-
terface. In the Internet domain,SOCK Stream sockets are
implemented using TCP.

The constructor for theLogging Acceptor registers
itself with theInitiation Dispatcher Singleton [5]
for ACCEPTevents, as follows:

Logging_Acceptor::Logging_Acceptor
(const INET_Addr &addr)

: acceptor_ (addr)
{

// Register acceptor with the Initiation
// Dispatcher, which "double dispatches"
// the Logging_Acceptor::get_handle() method
// to obtain the HANDLE.
Initiation_Dispatcher::instance ()->

register_handler (this, ACCEPT_EVENT);
}

Henceforth, whenever a client connection arrives, the
Initiation Dispatcher calls back to theLogging
Acceptor ’s handle event method, as shown below:

void
Logging_Acceptor::handle_event (Event_Type et)
{

// Can only be called for an ACCEPT event.
assert (et == ACCEPT_EVENT);

SOCK_Stream new_connection;

// Accept the connection.
acceptor_.accept (new_connection);

// Create a new Logging Handler.
Logging_Handler *handler =

new Logging_Handler (new_connection);
}

Thehandle event method invokes theaccept method
of the SOCK Acceptor to passively establish aSOCK
Stream . Once theSOCK Stream is connected with
the new client, aLogging Handler is allocated dy-
namically to process the logging requests. As shown
below, theLogging Handler registers itself with the
Initiation Dispatcher , which will demultiplex all
the logging records of its associated client to it.

The Logging Handler class: The logging server uses the
Logging Handler class shown below to receive logging
records sent by client applications:

class Logging_Handler : public Event_Handler
// = TITLE
// Receive and process logging records
// sent by a client application.

{
public:
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// Initialize the client stream.
Logging_Handler (SOCK_Stream &cs);

// Hook method that handles the reception
// of logging records from clients.
virtual void handle_event (Event_Type et);

// Get the I/O Handle (called by the
// Initiation Dispatcher when
// Logging_Handler is registered).
virtual HANDLE get_handle (void) const
{

return peer_stream_.get_handle ();
}

private:
// Receives logging records from a client.
SOCK_Stream peer_stream_;

};

Logging Handler inherits from Event Handler ,
which enables it to be registered with theInitiation
Dispatcher , as shown below:

Logging_Handler::Logging_Handler
(SOCK_Stream &cs)

: peer_stream_ (cs)
{

// Register with the dispatcher for
// READ events.
Initiation_Dispatcher::instance ()->

register_handler (this, READ_EVENT);
}

Once it’s created, aLogging Handler registers itself
for READ events with theInitiation Dispatcher
Singleton. Henceforth, when a logging record arrives,
the Initiation Dispatcher automatically dispatches
the handle event method of the associatedLogging
Handler , as shown below:

void
Logging_Handler::handle_event (Event_Type et)
{

if (et == READ_EVENT) {
Log_Record log_record;

peer_stream_.recv ((void *) log_record, sizeof log_record);

// Write logging record to standard output.
log_record.write (STDOUT);

}
else if (et == CLOSE_EVENT) {

peer_stream_.close ();
delete (void *) this;

}
}

When a READ event occurs on a socketHandle ,
the Initiation Dispatcher calls back to the
handle event method of the Logging Handler .
This method receives, processes, and writes the logging
record to the standard output (STDOUT). Likewise, when
the client closes down the connection theInitiation
Dispatcher passes aCLOSE event, which informs the
Logging Handler to shut down itsSOCK Stream and
delete itself.

9.7 Implement the Server

The logging server contains a singlemain function.

The logging server main function: This function imple-
ments a single-threaded, concurrent logging server that waits
in the Initiation Dispatcher ’s handle events
event loop. As requests arrive from clients, the
Initiation Dispatcher invokes the appropriate
Concrete Event Handler hook methods, which ac-
cept connections and receive and process logging records.
The main entry point into the logging server is defined as
follows:

// Server port number.
const u_short PORT = 10000;

int
main (void)
{

// Logging server port number.
INET_Addr server_addr (PORT);

// Initialize logging server endpoint and
// register with the Initiation_Dispatcher.
Logging_Acceptor la (server_addr);

// Main event loop that handles client
// logging records and connection requests.
for (;;)

Initiation_Dispatcher::instance ()->
handle_events ();

/* NOTREACHED */
return 0;

}

The main program creates aLogging Acceptor , whose
constructor initializes it with the port number of the log-
ging server. The program then enters its main event-loop.
Subsequently, theInitiation Dispatcher Singleton
uses theselect event demultiplexing system call to syn-
chronously wait for connection requests and logging records
to arrive from clients.

The following interaction diagram illustrates the collabo-
ration between the objects participating in the logging server
example:

LoggingLogging
ServerServer

REGISTER  HANDLERREGISTER  HANDLER

FOR  ACCEPTSFOR  ACCEPTS

START  EVENT  LOOPSTART  EVENT  LOOP

CONNECTION  EVENTCONNECTION  EVENT

ACCEPT  ANDACCEPT  AND

CREATE  HANDLERCREATE  HANDLER

FOREACH  EVENT  DOFOREACH  EVENT  DO

EXTRACT  HANDLEEXTRACT  HANDLE

INITIALIZEINITIALIZE

la :la :
LoggingLogging
AcceptorAcceptor

handle_events()

handle_event(READ_EVENT)

InitiationInitiation
DispatcherDispatcher

get_handle()

Initiation_Dispatcher()

register_handler(la, ACCEPT_EVENT)

select()

lh :lh :
LoggingLogging
HandlerHandler

handle_event(ACCEPT_EVENT)

sock = acceptor_.accept()
lh = new Logging_Acceptor (sock);

get_handle()
EXTRACT  HANDLEEXTRACT  HANDLE

LOGGING  RECORDLOGGING  RECORD

HandlesHandles

REGISTER  HANDLERREGISTER  HANDLER

FOR  INPUTFOR  INPUT
register_handler(lh, READ_EVENT)
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Once theInitiation Dispatcher object is initial-
ized, it becomes the primary focus of the control flow within
the logging server. All subsequent activity is triggered by
hook methods on theLogging Acceptor andLogging
Handler objects registered with, and controlled by, the
Initiation Dispatcher .

When a connection request arrives on the network
connection, theInitiation Dispatcher calls back
the Logging Acceptor , which accepts the network
connection and creates aLogging Handler . This
Logging Handler then registers with theInitiation
Dispatcher for READ events. Thus, when a client sends
a logging record, theInitiation Dispatcher calls
back to the client’sLogging Handler to process the in-
coming record from that client connection in the logging
server’s single thread of control.

10 Known Uses

The Reactor pattern has been used in many object-oriented
frameworks, including the following:

� InterViews: The Reactor pattern is implemented by
the InterViews [10] window system distribution, where
it is known as theDispatcher . The InterViews
Dispatcher is used to define an application’s main event
loop and to manage connections to one or more physical GUI
displays.

� ACE Framework: The ACE framework [11] uses the
Reactor pattern as its central event demultiplexer and dis-
patcher.

The Reactor pattern has been used in many commercial
projects, including:

� CORBA ORBs: The ORB Core layer in many single-
threaded implementations of CORBA [12] (such as VisiBro-
ker, Orbix, and TAO [13]) use the Reactor pattern to demul-
tiplex and dispatch ORB requests to servants.

� Ericsson EOS Call Center Management System: This
system uses the Reactor pattern to manage events routed by
Event Servers [14] between PBXs and supervisors in a Call
Center Management system.

�Project Spectrum: The high-speed medical image trans-
fer subsystem of project Spectrum [15] uses the Reactor pat-
tern in a medical imaging system.

11 Consequences

11.1 Benefits

The Reactor pattern offers the following benefits:

Separation of concerns: The Reactor pattern decou-
ples application-independent demultiplexing and dispatch-
ing mechanisms from application-specific hook method
functionality. The application-independent mechanisms be-
come reusable components that know how to demultiplex
events and dispatch the appropriate hook methods defined
by Event Handlers . In contrast, the application-specific
functionality in a hook method knows how to perform a par-
ticular type of service.

Improve modularity, reusability, and configurability of
event-driven applications: The pattern decouples appli-
cation functionality into separate classes. For instance, there
are two separate classes in the logging server: one for es-
tablishing connections and another for receiving and pro-
cessing logging records. This decoupling enables the reuse
of the connection establishment class for different types of
connection-oriented services (such as file transfer, remote
login, and video-on-demand). Therefore, modifying or ex-
tending the functionality of the logging server only affects
the implementation of the logging handler class.

Improves application portability: The Initiation
Dispatcher ’s interface can be reused independently of
the OS system calls that perform event demultiplexing.
These system calls detect and report the occurrence of one
or more events that may occur simultaneously on multi-
ple sources of events. Common sources of events may in-
clude I/O handles, timers, and synchronization objects. On
UNIX platforms, the event demultiplexing system calls are
calledselect andpoll [1]. In the Win32 API [16], the
WaitForMultipleObjects system call performs event
demultiplexing.

Provides coarse-grained concurrency control: The Re-
actor pattern serializes the invocation of event handlers at
the level of event demultiplexing and dispatching within
a process or thread. Serialization at theInitiation
Dispatcher level often eliminates the need for more com-
plicated synchronization or locking within an application
process.

11.2 Liabilities

The Reactor pattern has the following liabilities:

Restricted applicability: The Reactor pattern can only be
applied efficiently if the OS supportsHandles . It is pos-
sible to emulate the semantics of the Reactor pattern using
multiple threads within theInitiation Dispatcher ,
e.g.one thread for eachHandle . Whenever there are events
available on a handle, its associated thread will read the event
and place it on a queue that is processed sequentially by the
initiation dispatcher. However, this design is typically very
inefficient since it serializes allEvent Handler s, thereby
increasing synchronization and context switching overhead
without enhancing parallelism.
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Non-preemptive: In a single-threaded application pro-
cess,Event Handlers are not preempted while they are
executing. This implies that anEvent Handler should
not perform blocking I/O on an individualHandle since
this will block the entire process and impede the respon-
siveness for clients connected to otherHandles . There-
fore, for long-duration operations, such as transferring multi-
megabyte medical images [15], the Active Object pattern
[17] may be more effective. An Active Object uses multi-
threading or multi-processing to complete its tasks in parallel
with the Initiation Dispatcher ’s main event-loop.

Hard to debug: Applications written with the Reactor pat-
tern can be hard to debug since the inverted flow of con-
trol oscillates between the framework infrastructure and the
method callbacks on application-specific handlers. This in-
creases the difficulty of “single-stepping” through the run-
time behavior of a framework within a debugger since appli-
cation developers may not understand or have access to the
framework code. This is similar to the problems encountered
trying to debug a compiler lexical analyzer and parser writ-
ten with LEX and YACC. In these applications, debugging
is straightforward when the thread of control is within the
user-defined action routines. Once the thread of control re-
turns to the generated Deterministic Finite Automata (DFA)
skeleton, however, it is hard to follow the program logic.

12 See Also

The Reactor pattern is related to the Observer pattern [5],
where all dependents are informed when a single subject
changes. In the Reactor pattern, a single handler is informed
when an event of interest to the handler occurs on a source
of events. The Reactor pattern is generally used to demul-
tiplex events from multiple sources to their associated event
handlers, whereas an Observer is often associated with only
a single source of events.

The Reactor pattern is related to the Chain of Responsibil-
ity (CoR) pattern [5], where a request is delegated to the re-
sponsible service provider. The Reactor pattern differs from
the CoR pattern since the Reactor associates a specific Event
Handler with a particular source of events, whereas the CoR
pattern searches the chain to locate the first matching Event
Handler.

The Reactor pattern can be considered asynchronousvari-
ant of the asynchronous Proactor pattern [18]. The Proac-
tor supports the demultiplexing and dispatching of multiple
event handlers that are triggered by thecompletionof asyn-
chronousevents. In contrast, the Reactor pattern is respon-
sible for demultiplexing and dispatching of multiple event
handlers that are triggered when it is possible toinitiate an
operationsynchronouslywithout blocking.

The Active Object pattern [17] decouples method execu-
tion from method invocation to simplify synchronized access
to a shared resource by methods invoked in different threads
of control. The Reactor pattern is often used in place of the

Active Object pattern when threads are not available or when
the overhead and complexity of threading is undesirable.

An implementation of the Reactor pattern provides a Fa-
cade [5] for event demultiplexing. A Facade is an interface
that shields applications from complex object relationships
within a subsystem.
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