
Evaluating the Performance of Publish/Subscribe Platforms for
Information Management in Distributed Real-time and Embedded Systems

Ming Xiong, Jeff Parsons, James Edmondson, Hieu Nguyen, and Douglas C Schmidt,

Vanderbilt University, Nashville TN, USA

Abstract1

Recent trends in distributed real-time and embed-
ded (DRE) systems motivate the development of infor-
mation management capabilities that ensure the right
information is delivered to the right place at the right
time to satisfy quality of service (QoS) requirements in
heterogeneous environments. A promising approach to
building and evolving large-scale and long-lived DRE
information management systems are standards-based
QoS-enabled publish/subscribe (pub/sub) platforms
that enable participants to communicate by publishing
information they have and subscribing to information
they need in a timely manner. Since there is little exist-
ing evaluation of how well these platforms meet the
performance needs of DRE information management,
this paper provides two contributions: (1) it describes
three common architectures for the OMG Data Distri-
bution Service (DDS), which is a QoS-enabled pub/sub
platform standard, and (2) it evaluates implementa-
tions of these architectures to investigate their design
tradeoffs and compare their performance with each
other and with other pub/sub middleware. Our results
show that DDS implementations perform significantly
better than non-DDS alternatives and are well-suited
for certain classes of data-critical DRE information
management systems.

Keywords: DRE Information Management; QoS-en-
abled Pub/Sub Platforms; Data Distribution Service;

1 Introduction
The OMG Data Distribution Service (DDS) [6]

specification is a standard for QoS-enabled pub/sub
communication aimed at mission-critical distributed
real-time and embedded (DRE) systems. It is designed
to provide (1) location independence via anonymous
pub/sub protocols that enable communication between
collocated or remote publishers and subscribers, (2)
scalability by supporting large numbers of topics, data
readers, and data writers, and (3) platform portability
and interoperability via standard interfaces and trans-
port protocols. Multiple implementations of DDS are
now available, ranging from high-end COTS products
to open-source community-supported projects. DDS is
used in a wide range of DRE systems, including traffic
monitoring [14], control of unmanned vehicle commu-

1 This work was sponsored in part by the AFRL/IF Pollux
project and Vanderbilt University’s Summer Undergraduate
Research program.

nication with ground stations [16], and semiconductor
fabrication devices [15].

Although DDS is designed to be scalable, efficient,
and predictable, few researchers have evaluated and
compared the performance of DDS implementations
empirically for common DRE information management
scenarios. Likewise, little published work has system-
atically compared DDS with alternative non-DDS
pub/sub middleware platforms. This paper addresses
this gap in the R&D literature by describing the results
of the Pollux project, which is evaluating a range of
pub/sub platforms to compare how their architecture
and design features affect their performance and suit-
ability of DRE information management. This paper
also describes the design and application of an open-
source DDS benchmarking environment we developed
as part of Pollux to automate the comparison of
pub/sub latency, jitter, throughput, and scalability.

The remainder of this paper is organized as fol-
lows: Section 2 summarizes the DDS specification and
the architectural differences of three popular DDS im-
plementations; Section 3 describes our ISISlab hard-
ware testbed and open-source DDS Benchmark Envi-
ronment (DBE); Section 4 analyzes the results of
benchmarks conducted using DBE in ISISlab; Section
5 presents the lessons learned from our experiments;
Section 6 compares our work with related research on
pub/sub platforms; and Section 7 presents concluding
remarks and outlines our future R&D directions.

2 Overview of DDS
2.1 Core Features and Benefits of DDS
The OMG Data Distribution Service (DDS) specifica-
tion provides a data-centric communication stan-
dard for a range of DRE computing environments,
from small networked embedded systems up to large-
scale information backbones. At the core of DDS is the
Data-Centric Publish-Subscribe (DCPS) model, whose
specification defines standard interfaces that enable
applications running on heterogeneous platforms to
write/read data to/from a global data space in a DRE
system. Applications that want to share information
with others can use this global data space to declare
their intent to publish data that is categorized into one
or more topics of interest to participants. Similarly,
applications can use this data space to declare their
intent to become subscribers and access topics of inter-
est. The underlying DCPS middleware propagates data
samples written by publishers into the global data space,
where it is disseminated to interested subscribers [6].

The DCPS model decouples the declaration of informa-
tion access intent from the information access itself,
thereby enabling the DDS middleware to support and
optimize QoS-enabled communication.

Topic Topic Topic

Data
Reader

Data
Writer

Data
Writer

Data
Reader

Data
Reader

Data
Writer

Subscriber PublisherPublisher Subscriber

Application

Communication Network

Data Store + QoS Mechanisms

Transport Protocol

Topic Topic Topic

Data
Reader

Data
Writer

Data
Writer

Data
Reader

Data
Reader

Data
Writer

Subscriber PublisherPublisher Subscriber

Application

Communication Network

Data Store + QoS Mechanisms

Transport Protocol

Figure 1: Architecture of DDS

The following DDS entities are involved in a
DCPS-based application, as shown in Figure 1:
• Domains. DDS applications send and receive data

within a domain. Only participants within the same
domain can communicate, which helps isolate and
optimize communication within a community that
shares common interests.

• Data Writers/Readers and Publishers/Subscribers.
Applications use data writers to publish data values
to the global data space of a domain and data readers
to receive data. A publisher is a factory that creates
and manages a group of data writers with similar be-
havior or QoS policies. A subscriber is a factory that
creates and manages data readers.

• Topics. A topic connects a data writer with a data
reader. Communication happens only if the topic
published by a data writer matches a topic subscribed
to by a data reader. Communication via topics is
anonymous and transparent, i.e., publishers and sub-
scribers need not be concerned with how topics are
created nor who is writing/reading them since the
DDS DCPS middleware manages these issues.

The remainder of this subsection describes the benefits
of DDS relative to conventional pub/sub middleware
and client/server-based Service Oriented Architecture
(SOA) platforms.

Figures 2 and 3 show DDS capabilities that make
it better suited than other standard middleware plat-
forms as the basis of DRE information management.
Figure 2(A) shows that DDS has fewer layers than con-
ventional SOA standards, such as CORBA, .NET, and
J2EE, which can reduce latency and jitter significantly,
as shown in Section 4. Figure 2(B) shows that DDS
supports many QoS policies, such as the lifetime of
each data sample, the degree and scope of coherency
for information updates, the frequency of information
updates, the maximum latency of data delivery, the
priority of data delivery, the reliability of data delivery,
how to arbitrate simultaneous modifications to shared

data by multiple writers, mechanisms to assert and de-
termine liveliness, parameters for filtering by data re-
ceivers, the duration of data validity, and the depth of
the ‘history’ included in updates.

Data
Reader

R

Data
Writer

R

Publisher Subscriber

Topic

R

Tactical
Network & RTOS

DDS Pub/Sub
Infrastructure

RT Info to Cockpit &
Track Processing

Data
Reader

R

Data
Writer

R

Publisher Subscriber

S1

S2

S3

S4

S5

S6

S7

S6 S5 S4 S3 S2 S1

Topic

R

S7 S7X

HISTORY

RELIABILITY
COHERENCY

RESOURCE LIMITS

LATENCY

(A) Fewer Layers in the DDS
Architecture (B) DDS QoS Policies

Figure 2: DDS Optimizations & QoS Capabilities

These QoS policies can be configured at various
levels of granularity (i.e., topics, publishers, data writ-
ers, subscribers, and data readers) thereby allowing
application developers to construct customized con-
tracts based on the specific QoS requirements of indi-
vidual entities. Since the identity of publishers and sub-
scribers are unknown to each other, the DCPS middle-
ware is responsible for determining whether QoS poli-
cies offered by a publisher are compatible with those
required by a subscriber, allowing data distribution
only when compatibility is satisfied.

Data
Reader

R

Data
Writer

R

Publisher Subscriber

S1

S2

S3

S4

S5

S6

S7

Topic

R

SOURCE

FILTER

DESTINATION

FILTER

TIME-BASED

FILTER

Data
Reader

R

Data
Writer

R

Publisher Subscriber

Topic

R
NEW TOPIC

NEW

SUBSCRIBER

NEW

PUBLISHER

(A) Moving Processing
Closer to the Data

(B) Subscribing to
Meta-Events

Figure 3: DDS Filtering & Meta-event Capabilities

Figure 3(A) shows how DDS can migrate process-
ing closer to the data source, which reduces bandwidth
in resource-constrained network links. Figure 3(B)
shows how DDS enables clients to subscribe to meta-
events that they can use to detect dynamic changes in
network topology, membership, and QoS levels. This
mechanism helps DRE information management sys-
tems adapt to environments that change continuously.

2.2 Alternative DDS Implementations
The DDS specification defines a wide range of

QoS policies (outlined in Section 2.1) and interfaces
used to exchange topic instances between participants.
The specification intentionally does not address how to

 2

implement the services or manage DDS resources in-
ternally, so DDS providers are free to innovate. Natu-
rally, the communication models, distribution architec-
tures, and implementation techniques used by DDS
providers significantly impact application behaviour
and QoS, i.e., different choices affect the suitability of
DDS implementations and configurations for various
types of DRE information management applications.

Table 1: Supported DDS Communication Models

Impl Unicast Multicast Broadcast
DDS1 Yes (default) Yes No
DDS2 No Yes Yes (default)
DDS3 Yes (default) No No

By design, the DDS specification allows DCPS
implementations and applications to take advantage of
various communication models, such as unicast, multi-
cast, and broadcast transports. The communication
models supported for the three most popular DDS im-
plementations we evaluated are shown in Table 1.2
DDS1 supports unicast and multicast, DDS2 supports
multicast and broadcast, whereas DDS3 supports only
unicast. These DDS implementations all use layer 3
network interfaces, i.e., IP multicast and broadcast, to
handle the network traffic for different communication
models, rather than more scalable multicast protocols,
such as Richocet [5], which combine native IP group
communication with proactive forward error correction
to achieve high levels of consistency with stable and
tunable overhead. Our evaluation also found that these
three DDS implementations have different architectural
designs, as described in the remainder of this section.

2.2.1 Federated Architecture
The federated DDS architecture shown in Figure 4

uses a separate DCPS daemon process for each net-
work interface. This daemon must be started on each
node before domain participants can communicate.
Once started, it communicates with DCPS daemons
running on other nodes and establishes data channels
based on reliability requirements (e.g., reliable or best-
effort) and transport addresses (e.g., unicast or multi-
cast). Each channel handles communication and QoS
for all the participants requiring its particular properties.
Using a daemon process decouples the applications
(which run in a separate user process) from DCPS con-
figuration and communication-related details. For ex-
ample, the daemon process can use a configuration file
to store common system parameters shared by com-
munication endpoints associated with a network inter-
face, so that changing the configuration does not affect
application code or processing.

In general, a federated architecture allows applica-

2 The specific DDS product names are “shrouded” pending
final approval from the companies that produce them. The
actual names will appear in the published paper.

tions to scale to a larger number of DDS participants on
the same node, e.g., by bundling messages that origi-
nate from different DDS participants. Moreover, using
a separate daemon process to mediate access to the
network can (1) simplify application configuration of
policies for a group of participants associated with the
same network interface and (2) prioritize messages
from different communication channels.

Figure 4: Federated DDS Architecture

A disadvantage of the daemon-based approach,
however, is that it introduces an extra configuration
step—and possibly another point of failure. Moreover,
applications must cross extra process boundaries to
communicate, which can increase latency and jitter, as
shown in Section 4.

2.2.2 Decentralized Architecture
The decentralized DDS architecture shown in Fig-

ure 5 places the communication- and configuration-
related capabilities into the same user process as the
application itself. These capabilities execute in separate
threads (rather than in a separate daemon process) that
the DCPS middleware library uses to handle communi-
cation and QoS.

Figure 5: Decentralized DDS Architecture

The advantage of a decentralized architecture is
that each application is self-contained, without needing
a separate daemon. As a result, latency and jitter are
reduced, and there is one less configuration and failure
point. A disadvantage, however, is that specific con-
figuration details, such as multicast address, port num-
ber, reliability model, and parameters associated with
different transports, must be defined at the application
level, which is tedious and error-prone. This architec-

 3

ture also makes it hard to buffer data sent between mul-
tiple DDS applications on a node, and thus does not
provide the same scalability benefits as the federated
architecture described in Section 2.2.1.

2.2.3 Centralized Architecture
The centralized architecture shown in Figure 6

uses a single daemon server running on a designated
node to store the information needed to create and
manage connections between DDS participants in a
domain. The data itself passes directly from publishers
to subscribers, whereas the control and initialization
activities (such as data type registration, topic creation,
and QoS value assignment, modification and matching)
require communication with this daemon server.

Figure 6: Centralized DDS Architecture

The advantage of the centralized approach is its
simplicity of implementation and configuration since
all control information resides in a single location. The
disadvantage, of course, is that the daemon is a single
point of failure, as well as a potential performance bot-
tleneck in a highly loaded system.

The remainder of this paper investigates how the
architecture differences described above can affect the
performance experienced by DRE information manage-
ment applications.

3 Methodology for Pub/Sub Platform
Evaluation

This section describes our methodology for
evaluating pub/sub platforms to determine how well
they support various classes of DRE information
management applications, including systems that
generate small amounts of data periodically (which
require low latency and jitter), systems that send larger
amount of data in bursts (which require high
throughput), and systems that generate alarms (which
require asynchronous, prioritized delivery).

3.1 Evaluated Pub/Sub Platforms
In our evaluations, we compare the performance of the
C++ implementations of DDS shown in Table 2 against
each other. We also compare these three DDS imple-
mentations against three other pub/sub middleware
platforms, which are shown in Table 3.

Table 2: DDS Versions Used in Experiments

Impl Version Distribution Architecture
DDS1 4.1c Decentralized Architecture
DDS2 2.0 Beta Federated Architecture
DDS3 8.0 Centralized Architecture

Table 3: Other Pub/Sub Platforms in Experiments

Platform Version Summary
CORBA
Notification
Service

TAO 1.5 OMG data interoperability
standard that enables events
to be sent & received be-
tween objects in a decoupled
fashion

SOAP gSOAP
2.7.8

W3C standard for an XML-
based Web Service

JMS J2EE 1.4
SDK/
JMS 1.1

Enterprise messaging stan-
dards that enable J2EE com-
ponents to communicate
asynchronously & reliably

We compare the performance of these pub/sub
mechanisms by using the following metrics:
• Latency, which is defined as the roundtrip time be-

tween the sending of a message and reception of an
acknowledgment from the subscriber. In our test, the
roundtrip latency is calculated as the average value
of 10,000 round trip measurements.

• Jitter, which is the standard deviation of the latency.
• Throughput, which is defined as the total number of

bytes received per unit time in different 1-to-n (i.e.,
1-to-4, 1-to-8, and 1-to-12) publisher/subscriber con-
figurations.

We also compare the performance of the DDS asyn-
chronous listener-based and synchronous waitset-based
subscriber notification mechanisms. The listener-based
mechanism uses a callback routine (the listener) that
the DDS service invokes when data is available. The
waitset-based mechanism sets up a sequence (the wait-
set) containing user-defined conditions. A designated
application thread will sleep on the waitset until these
conditions are met.

3.2 Benchmarking Environment

3.2.1 Hardware and Software Infrastructure
The computing nodes we used to run our experi-

ments are hosted on ISISlab [19], which is a testbed of
computers and network switches that can be arranged
in many configurations. ISISlab consists of 6 Cisco
3750G-24TS switches, 1 Cisco 3750G-48TS switch, 4
IBM Blade Centers each consisting of 14 blades (for a
total of 56 blades), 4 gigabit network IO modules and 1
management modules. Each blade has two 2.8 GHz
Xeon CPUs, 1GB of ram, 40GB HDD, and 4 independ-
ent Gbps network interfaces. In our tests, we used up to
14 nodes (1 pub, 12 subs, and a centralized server in
the case of DDS3). Each blade ran Fedora Core 4
Linux, version 2.6.16-1.2108_FC4smp. The DDS ap-

 4

plications were run in the Linux real-time scheduling
class to minimize extraneous sources of memory, CPU,
and network load.

3.2.2 DDS Benchmark Environment (DBE)
To facilitate the growth of our tests both in variety

and complexity, we created the DDS Benchmarking
Environment (DBE), which is an open-source frame-
work for automating our DDS testing. The DBE con-
sists of (1) a repository that contains scripts, configura-
tion files, test ids, and test results, (2) a hierarchy of
Perl scripts to automate test setup and execution, (3) a
tool for automated graph generation, and (4) a shared
library for gathering results and calculating statistics.

The DBE has three levels of execution designed to
enhance flexibility, performance, and portability, while
incurring low overhead. Each level of execution has a
specific purpose: the top level is the user interface, the
second level manipulates the node itself, and the bot-
tom level is comprised of the actual executables (e.g.,
publishers and subscribers for each DDS
implementation). DBE runs all test executables locally,
and if Ethernet saturation is reached during our testing,
the saturation is due to DDS data transmissions, not to
DBE test artifacts.

4 Empirical Results
This section analyzes the results of benchmarks

conducted using DBE in ISISlab. We first evaluate 1-
to-1 roundtrip latency performance of DDS pub/sub
implementations within a single blade and compare
them with the performance of non-DDS pub/sub im-
plementations in the same configuration. We then ana-
lyze the results of 1-to-n scalability throughput tests for
each DDS implementations, where n is 4, 8, or 12
blades on ISISlab. All graphs of empirical results use
logarithmic axes since the latency/throughput of some
pub/sub implementations cover such a large range of
values that linear axes display unreadably small values
over part of the range of payload sizes.

4.1 Latency and Jitter results
Benchmark design. Latency is an important

measurement to evaluate DRE information manage-
ment performance. Our test code measures roundtrip
latency for each pub/sub middleware platform de-
scribed in Section 3.1. We ran the tests on both simple
and complex data types to see how well each platform
handles the extra (de)marshaling overhead introduced
by the latter. The IDL structure for the simple and com-
plex data types are shown below.
// Simple Sequence Type
Struct data
{ long index; sequence<octet> data; }

// Complex Sequence Type
struct Inner { string info; long index; };
typedef sequence<Inner> InnerSeq;

struct Outer
{ long length; InnerSeq nested_member; };
typedef sequence<Outer> ComplexSeq;

The publisher writes a simple or complex data se-
quence of a certain payload size. When the subscriber
receives the topic data it replies with a 4-byte acknowl-
edgement. The payload length for both simple and
complex data ranges from 4 to 16,384 by powers of 2.

The basic building blocks of the JMS test codes
consist of administrative objects used by J2EE Appli-
cation server, a message publisher, and a message sub-
scriber. JMS supports both point-to-point and pub-
lish/subscribe message domains. Since we are measur-
ing the latency of one publisher to one subscriber, we
chose a point-to-point message domain that uses a syn-
chronous message queues to send and receive data.

TAO’s Notification Service uses a Real-time
CORBA threadpool lane to create a priority path be-
tween publisher and subscriber. The publisher creates
an event channel and specifies a lane with priority 0.
The subscriber also chooses a lane with priority 0. The
Notification Service then matches the lane for the sub-
scriber and sends the event to the subscriber using the
CLIENT_PROPAGATED priority model. .

The publisher test code measures latency by time-
stamping the data transmission and subtracting that
from the timestamp value when it receives the sub-
scriber ack. This test is to evaluate how fast data gets
transferred from one pub/sub node to another at differ-
ent payload sizes. To eliminate factors other than dif-
ferences among the middleware implementations that
affect latency/jitter, we tested a single publisher send-
ing to a single subscriber running in separate processes
on the same node. Since each node has two CPUs the
publisher and subscriber can execute in parallel.

Results. Figure 7 and Figure 8 compare la-
tency/jitter results for simple/complex data types for all
pub/sub platforms. These figures show how DDS la-
tency/jitter is much lower than conventional pub/sub
middleware for both simple and complex data types. In
particular, DDS1 has much lower latency and jitter
than the other pub/sub mechanisms.

Analysis. There are several reasons for the results
in Figures 7 and 8. As discussed in Section 2.1, DDS
has fewer layers than other standard pub/sub platforms,
so it incurs lower latency and jitter. Since in each test
the publisher and subscriber reside on the same blade,
DDS1 and DDS2 both switch to shared memory trans-
port to improve performance. The particularly low la-
tency of DDS1 stems largely from its mature imple-
mentation, as well as its decentralized architecture
shown in Figure 5, in which publishers communicate to
subscribers without going through a separate daemon
process. In contrast, DDS2’s federated architecture
involves an extra hop through a pair of daemon proc-
esses (one on the publisher and one on the subscriber),
which helps explain why its latency is higher than
DDS1’s when sending small simple data types.

 5

Figure 7: Simple Latency Vs Complex Latency

Figure 8: Simple Jitter Vs Complex Jitter

Figures 7 and 8 also show that sending complex
data types incurs more overhead for all pub/sub imple-
mentations, particularly as payload size increases. For
complex data types we observe that although DDS1
outperforms DDS2 for smaller payloads, DDS2 catches
up at 512 bytes and performs better for payload sizes
above 512 bytes. This behavior is explained by the fact
that DDS1 performs (de)marshaling even in the local
blade, whereas DDS2 optimizes local blade perform-
ance by making a simple C++ call and bypassing
(de)marshaling. The benefits of this DDS2 optimiza-
tion, however, are apparent only for large data sizes on

the same blade, as shown by the curve in Figure 7
comparing DDS1 and DDS2. We have run the same
latency tests on two different blades and the results
shown in [19] indicate that DDS1 performs better for
all payload sizes tested since remote communication
obviates the DDS2 optimization.

Simple Type

Interestingly, the latency increase rate of GSOAP
is nearly linear as payload size increases, i.e., if the
payload size doubles, the latency nearly doubles as
well. GSOAP’s poor performance with large payloads
stems largely from its XML representation for se-
quences, which (de)marshals each element of a se-
quence using a verbose text-based format rather than
(de)marshaling the sequence in blocks as DDS and
CORBA do.

Complex Type

4.2 Throughput Results
Benchmark design. Throughput is another impor-

tant performance metric for DRE information manage-
ment systems. The primary goals of our throughput
tests were therefore to measure how each DDS imple-
mentation handles scalability of subscribers and how
different communication models (e.g., unicast, multi-
cast, and broadcast) affect performance, and how the
performance of synchronous (waitset-based) data de-
livery differs from that of asynchronous (listener-based)
data delivery. To maximize scalability in our through-
put tests, the publisher and subscriber(s) reside in dif-
ferent processes on different blades.

The remainder of this subsection first evaluates the
performance results of three DDS implementations as
we vary the communication models they support, as
per the constraints outlined in Table 1. We then
compare the multicast performance of DDS1 and
DDS2, as well as the unicast performance of DDS1 and
DDS3, which are the only common points of
evaluation currently available. We focused our
throughput tests on the DDS implementations and did
not measure throughput for the other pub/sub platforms
because our results in Section 4.1 show they were
significantly outperformed by DDS.

The remainder of this section presents our
throughput results. For each figure, we include a small
text box with a brief description of the DDS QoS used
for that particular test. Any parameter that is not
mentioned in the box has the default value specified in
the DDS specification [6]. Note that we have chosen
the best-effort QoS policy for data delivery reliability,
as mentioned in Section 1. The reason we focus on
best-effort is that we are evaluating DRE information
management scenarios where (1) information is
updated frequently and (2) the overhead of
retransmitting lost data samples is acceptable.

Simple Type

Complex Type

4.2.1 DDS1 Unicast/Multicast
Results. Figure 9 shows the results of our scalability
tests for DDS1 unicast/multicast with 1 publisher and
multiple subscribers. This figure shows that unicast

 6

performance degrades when scaling up the number of
subscribers, whereas multicast throughput scales up
more gracefully.

Analysis. Figure 9 shows that the overhead of uni-
cast degrades performance as the number of subscrib-
ers increases, since the middleware sends a copy to
each subscriber. It also indicates how multicast im-
proves scalability, since only one copy of the data is
delivered, regardless of the number of subscribers in
the domain.

Figure 9: DDS1 Unicast vs Multicast

4.2.2 DDS2 Broadcast/Multicast
Results. Figure 10 shows the scalability test re-

sults for DDS2 broadcast/multicast with 1 publisher
and multiple subscribers (i.e., 4 and 12 blades). The
figure shows that both multicast and broadcast scales
well as the number of subscribers increases and multi-
cast performs slightly better than broadcast.

Analysis. Figure 10 shows that sending messages
to a specific group address rather than every subnet
node is slightly more efficient. Moreover, using broad-
cast instead of multicast may be risky since sending
messages to all blades can saturate network bandwidth
and blade processors.

Figure 10: DDS2 Multicast vs Broadcast

4.2.3 Comparing DDS Implementation Per-
formance

Results. Figure 11 shows multicast performance
comparison of DDS1 and DDS2 with 1 publisher and
12 subscriber blades. Since DDS3 does not support
multicast, we omit it from the comparison. Figure 12
shows unicast performance comparison of DDS1 and
DDS3. Since DDS2 does not support unicast, we omit
it from this comparison.

Figure 11: 1-12 DDS1 Multicast vs. DDS2 Multicast

Analysis. Figures 11 and 12 indicate that DDS1
outperforms DDS2 for smaller payload sizes. As the
size of the payload increases, however, DDS2 performs
better. It appears that the difference in the results stems
from the different distribution architectures (decentral-
ized and federated, respectively) used to implement
DDS1 and DDS2.

Figure 12: 1-12 DDS1 Unicast vs. DDS3 Unicast

5 Key Challenges and Lessons Learned
This section describes the challenges we encountered
when conducting the experiments presented in Section
4 and summarizes the lessons learned from our efforts.

 7

5.1 Resolving DBE Design and Execution
Challenges

Challenge 1: Synchronizing Distributed Clocks
Problem. It is hard to precisely synchronize clocks

among applications running on blades distributed
throughout ISISlab. Even when using the Network
Time Protocol (NTP), we still experienced differences
in time that led to inconsistent results and forced us to
constantly repeat the synchronization routines to ensure
the time on different nodes was in sync. We therefore
needed to avoid relying on synchronized clocks to
measure latency, jitter, and throughput.

Solution. For our latency experiments, we have
the subscriber send a minimal reply to the publisher,
and use on the clock on the publisher side to calculate
the roundtrip time. For throughput, we use the sub-
scriber’s clock to measure the time required to receive
a designated number of samples. Both methods provide
us with common reference points and minimize timing
errors through the usage of effective latency and
throughput calculations based on a single clock.

Challenge 2: Automating Test Execution
Problem. Achieving good coverage of a test space

where parameters can vary in several orthogonal di-
mensions leads to a combinatorial explosion of test
types and configurations. Manually running tests for
each configuration and each middleware implementa-
tion on each node is tedious, error-prone, and time-con-
suming. The task of managing and organizing test re-
sults also grows exponentially along with the number
of distinct test configuration combinations.

Solution. The DBE described in Section 3.2.2
stemmed from our efforts to manage the large number
of tests and the associated volume of result data. Our
efforts to streamline test creation, execution and analy-
sis are ongoing, and include work on several fronts,
including a hierarchy of scripts, several types of con-
figuration files, and test code refactoring.

Challenge 3: Handling Packet Loss
Problem. Since our DDS implementations use the

UDP transport, packets can be dropped at the publisher
and/or subscriber side. We therefore needed to ensure
that the subscribers get the designated number of sam-
ples despite packet loss.

Solution. One way to solve this problem is to have
the publisher send the number of messages subscribers
expect to receive and then to stop the timer when the
publisher is done. The subscriber could then use only
the number of messages that were actually received to
calculate the throughput. However, this method has
two drawbacks: (1) the publisher must send extra noti-
fication messages to stop the subscribers, but since
subscribers may not to receive this notification mes-
sage, the measurement may never happen and (2) the
publisher stops the timer, creating a distributed clock

synchronization problem discussed in Challenge 1 that
could affect the accuracy of the evaluation. To address
these drawbacks we therefore adopted an alternative
that ensures subscribers a deterministic number of mes-
sages by having the publishers “oversend” an appropri-
ate amount of extra data.. With this method, we avoid
extra “pingpong” communication between publishers
and subscribers. More importantly, we can measure the
time interval entirely at the subscriber side without
relying on the publisher’s clock. The downside of this
method is that we had to conduct experiments to deter-
mine the appropriate amount of data to oversend.

Challenge 4: Ensuring Steady Communication
State

Problem. Our benchmark applications must be in
a steady state when collecting statistical data.

Solution. We send primer samples to “warm up”
the applications before actually measuring the data.
This warmup period allows time for possible discovery
activity related to other subscribers to finish, and for
any other first-time actions, on-demand actions, or lazy
evaluations to be completed, so that their extra over-
head does not affect the statistics calculations.

5.2 Summary of Lessons Learned

Based on our test results, experience developing
the DBE, and numerous DDS experiments, we learned
the following:
• DDS Performs significantly better than other

pub/sub implementations. Figure 7 in Section 4.1
shows that even the slowest DDS was about twice
as fast as non-DDS pub/sub services. Figure 7 and
Figure 8 show that DDS pub/sub middleware
scales better to larger payloads compared to non-
DDS pub/sub middleware. This performance mar-
gin is due in part to the fact that DDS decouples the
information intent from information exchange. In
particular, XML-based pub/sub mechanisms, such
as SOAP, are optimized for transmitting strings,
whereas the data types we used for testing were se-
quences. GSOAP’s poor performance with large
payloads is due to the fact that GSOAP
(de)marshals each element of a sequence, which
may be as small as a single byte, while DDS im-
plementations send and receive these data types as
blocks.

• Individual DDS architectures and implementa-
tions are optimized for different use cases. Fig-
ures 7 and 11 show that DDS1’s decentralized ar-
chitecture is optimized for smaller payload sizes
compared to DDS2’s federated architecture. As
payload size increases, especially for the complex
date type in Figure 7, DDS2 catches up and sur-
passes DDS1 in performance on the same blade.
When the publisher and subscriber run on different
blades, however, DDS1 outperforms DDS2 for all
tested payload sizes.

 8

• Apples-to-apples comparisons of DDS im-
plementations are hard. The reasons for this dif-
ficulty fall into the following categories: (1) no
common transport protocol – the DDS imple-
mentations that we investigated share no common
application protocol, e.g., DDS1 uses a RTPS-like
protocol on top of UDP, DDS2 will add RTPS
support soon, and DDS3 simply uses raw TCP and
UDP, (2) no universal support for uni-
cast/broadcast/multicast – Table 1 shows the dif-
ferent mechanisms supported by each DDS im-
plementations, from which we can see DDS3 does
not support any group communication transport,
making it hard to maintain performance as the
number of subscribers increases, (3) DDS applica-
tions are not yet portable, which stem partially
from the fact that the specification is still evolving
and vendors use proprietary techniques to fill the
gaps (a portability wrapper façade would be a great
help to any DDS application developer, and a huge
help to our efforts in writing and running large
numbers of benchmark tests), and (4) arbitrary de-
fault settings for DDS implementations, which in-
cludes network-specific parameters, not covered by
the DDS specification, that can significantly impact
performance.

6 Related Work
To support emerging DRE information manage-

ment systems, pub/sub middleware in general, and
DDS in particular, have attracted an increasing number
of research efforts (such as COBEA [20] and Siena
[12]) and commercial products and standards (such as
JMS [10], WS_NOTIFICATION [13], and the CORBA
Event and Notification services [17]). This section de-
scribes several projects that are related to the work pre-
sented in this paper.

Open Architecture Benchmark. Open Architec-
ture Benchmark (OAB) [8] is a DDS benchmark effort
along with Open Architecture Computing Environment,
an open architecture initiated by the US Navy. Joint
efforts have been conducted in OAB to evaluate DDS
products, in particular RTI’s NDDS and PrismTech’s
OpenSplice, to understand the ability of these DDS
products to support the bounded latencies required by
Naval systems. Their results indicate that both products
perform quite well and meet the requirements of typical
Naval systems. Our DDS work extends that effort by (1)
comparing DDS with other pub/sub middleware and (2)
examining DDS throughput performance.

S-ToPSS. There has been an increasing demand for
content-based pub/sub applications, where subscribers
can use a query language to filter the available infor-
mation and receive only a subset of the data that is of
interest. Most solutions support only syntactic filtering,
i.e., matching based on syntax, which greatly limits the
selectivity of the information. In [7] the authors inves-

tigated how current pub/sub systems can be extended
with semantic capabilities, and proposed a prototype of
such middleware called the Semantic - Toronto Pub-
lish/Subscribe System (S-ToPSS). For a highly intelli-
gent semantic-aware system, simple synonym trans-
formation is not sufficient. S-ToPSS extends this model
by adding another two layers to the semantic matching
process, concept hierarchy and matching functions.
Concept hierarchy makes sure that events (data mes-
sages, in the context of this paper) that contain general-
ized filtering information do not match the subscrip-
tions with specialized filtering information, and that
events containing more specialized filtering than the
subscriptions will match. Matching functions provide a
many-to-many structure to specify more detailed
matching relations, and can be extended to heterogene-
ous systems. DDS also provides QoS policies that sup-
port content-based filters for selective information sub-
scription, but they are currently limited to syntactic
match. Our future work will explore the possibility of
introducing semantic architectures into DDS and evalu-
ate their performance.
 PADRES. The Publish/subscribe Applied to Dis-
tributed Resource Scheduling (PADRES) [1] is a dis-
tributed, content-based publish/subscribe messaging
system. A PADRES system consists of a set of brokers
connected by an overlay network. Each broker in the
system employs a rule-based engine to route and match
publish/subscribe messages, and is used for composite
event detection. PADRES is intended for business
process execution and business activity monitoring,
rather than for DRE systems. While not conforming to
the DDS API, its publish/subscribe model is close to
that of DDS, so we plan to explore how a DDS imple-
mentation might be based on PADRES.

7 Concluding Remarks
This paper first evaluated the architectures of three

implementations of the OMG Data Distribution Service
(DDS). We then presented the DDS Benchmarking
Environment (DBE) and showed how we use the DBE
to compare the performance of these DDS implementa-
tions, as well as non-DDS pub/sub platforms. Our re-
sults indicate that DDS performs significantly better
than other pub/sub implementations for the following
reasons: (1) DDS’s communication model provides a
range of QoS parameters that allow applications to
control many aspects of data delivery in a network, (2)
implementations can be optimized heavily, (3) DDS
can be configured to leverage fast transports, e.g., using
shared memory to minimize data copies within a single
node, and to improve scalability, e.g., by using multi-
cast to communicate between nodes.

As part of the ongoing Pollux project, we will con-
tinue to evaluate other interesting features of DDS
needed by large-scale DRE information management
systems. Our future work will include (1) tailoring our

 9

DBE benchmarks to explore key classes of applications
in DRE information management systems, (2) devising
generators that can emulate various workloads and use
cases, (3) empirically evaluating a wider range of QoS
configurations, e.g. durability, reliable vs. best-effort,
and integration of durability, reliability and history
depth, (4) designing mechanisms for migrating proc-
essing toward data sources, (5) measuring participant
discovery time for various entities, (6) identifying sce-
narios that distinguish performance of QoS policies and
features (e.g., collocation of applications), and (7)
evaluating the suitability of DDS in heterogeneous dy-
namic environments, e.g., mobile ad hoc networks,
where system resources are limited and dynamic topol-
ogy and domain participant changes are common.

References
1. A. Cheung, H. Jacobsen, “Dynamic Load Balanc-

ing in Distributed Content-based Pub-
lish/Subscribe,” ACM/IFIP/USENIX Middleware
2006, December, Melborne, Australia.

2. D. C. Schmidt and C. O'Ryan, “Patterns and Per-
formance of Distributed Real-time and Embedded
Publisher/Subscriber Architectures,” Journal of
Systems and Software, Special Issue on Software
Architecture -- Engineering Quality Attributes, ed-
ited by Jan Bosch and Lars Lundberg, Oct 2002.

3. C. Gill, J. M. Gossett, D. Corman, J. P. Loyall, R.
E. Schantz, M. Atighetchi, and d. C. Schmidt, “In-
tegrated Adaptive QoS Management in Middle-
ware: An Empirical Case Study,” Proceedings of
the 10th Real-time Technology and Application
Symposium, May 25-28, 2004, Toronto, CA.

4. G. Pardo-Castellote, “DDS Spec Outfits Publish-
Subscribe Technology for GIG,” COTS Journal,
April 2005.

5. M. Balakrishnan, K. Birman, A. Phanishayee, and
Stefan Pleisch, “Ricochet: Low-Latency Multicast
for Scalable Time-Critical Services,” Cornell Uni-
versity Technical Report, www.cs.cornell.edu/
projects/quicksilver/ public_pdfs/ricochet.pdf.

6. OMG, “Data Distribution Service for Real-Time
Systems Specification,”
www.omg.org/docs/formal/04-12-02.pdf.

7. I. Burcea, M. Petrovic, H. Jacobsen, “S-ToPSS:
Semantic Toronto Publish/Subscribe System,” In-
ternational Conference on Very Large Databases
(VLDB). p. 1101-1104. Berlin, Germany, 2003.

8. B. McCormick, L. Madden, “Open Architecture
Publish-Subscribe Benchmarking,” OMG Real-
Time Embedded System Work Shop 2005,
www.omg.org/news/meetings/workshops/RT_200
5/03-3_McCormick-Madden.pdf.

9. A. S. Krishna, D. C. Schmidt, R. Klefstad, and A.
Corsaro, “Real-time CORBA Middleware,” in

Middleware for Communications, edited by Qusay
Mahmoud, Wiley and Sons, New York, 2003.

10. Hapner, M., Burridge, R., Sharma, R., Fialli, J.,
and Stout, K. 2002. Java Message Service. Sun
Microsystems Inc., Santa Clara, CA.

11. Fox, G., Ho,A., Pallickara, S., Pierce, M., and
Wu,W, “Grids for the GiG and Real Time Simula-
tions,” Proceedings of Ninth IEEE International
Symposium DS-RT 2005 on Distributed Simula-
tion and Real Time Applications, 2005.

12. D.S.Rosenblum, A.L.Wolf, “A Design Framework
for Internet-Scale Event Observation and Notifica-
tion,” 6th European Software Engineering Confer-
ence. Lecture Notes in Computer Science 1301,
Springer, Berlin, 1997, pages 344-360.

13. S. Pallickara, G. Fox, “An Analysis of Notification
Related Specifications for Web/Grid Applica-
tions,” International Conference on Information
Technology: Coding and Computing (ITCC'05) -
Volume II pp. 762-763.

14. Real-Time Innovation, “High-reliability Commu-
nication Infrastructure for Transportation,”
www.rti.com/markets/transportation.html.

15. Real-Time Innovation, “High-Performance Dis-
tributed Control Applications over Standard IP
Networks,”
www.rti.com/markets/industrial_automation.html.

16. Real-Time Innovation, “Unmanned Georgia Tech
Helicopter files with NDDS,”
controls.ae.gatech.edu/gtar/2000review/rtindds.pdf.

17. P. Gore, D. C. Schmidt, C. Gill, and I. Pyarali,
“The Design and Performance of a Real-time Noti-
fication Service,” Proceedings of the 10th IEEE
Real-time Technology and Application Sympo-
sium (RTAS '04), Toronto, CA, May 2004.

18. N. Abu-Ghazaleh, M. J. Lewis, and M. Govinda-
raju, “Differential Serialization for Optimized
SOAP Performance,” Proceedings of HPDC-13:
IEEE International Symposium on High Perform-
ance Distributed Computing, Honolulu, Hawaii,
pp. 55-64, June 2004.

19. Distributed Object Computing Group, “DDS
Benchmark Project,”
www.dre.vanderbilt.edu/DDS.

20. C.Ma and J.Bacon “COBEA: A CORBA-Based
Event Architecture,” In Proceedings of the 4rd
Conference on Object-Oriented Technologies and
Systems, USENIX, Apr.1998

21. P. Gore, R. K. Cytron, D. C. Schmidt, and C.
O’Ryan, “Designing and Optimizing a Scalable
CORBA Notification Service,” in Proceedings of
the Workshop on Optimization of Middleware and
Distributed Systems, (Snowbird, Utah), pp. 196–
204, ACM SIGPLAN, June 20

 10

http://www.msrg.utoronto.ca/padres/LBMW06.pdf
http://www.msrg.utoronto.ca/padres/LBMW06.pdf
http://www.msrg.utoronto.ca/padres/LBMW06.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/ricochet.pdf
http://www.cs.cornell.edu/projects/quicksilver/public_pdfs/ricochet.pdf
http://www.msrg.utoronto.ca/member-details.mhtml?ID=51
http://www.msrg.utoronto.ca/member-details.mhtml?ID=20
http://www.msrg.utoronto.ca/member-details.mhtml?ID=1
http://www.msrg.utoronto.ca/publication-details.mhtml?ID=64
http://www.msrg.utoronto.ca/publication-details.mhtml?ID=64
http://www.cs.wustl.edu/%7Eschmidt/PDF/Real-time-Middleware.pdf
http://search2.computer.org/advanced/Author_Result.jsp?qtype=3&select=50&qOpt1=DC_CREATOR&sortOrder=d&queryName=Shrideep%20Pallickara
http://search2.computer.org/advanced/Author_Result.jsp?qtype=3&select=50&qOpt1=DC_CREATOR&sortOrder=d&queryName=Geoffrey%20Fox
http://csdl.computer.org/comp/proceedings/itcc/2005/2315/02/231520762.pdf
http://csdl.computer.org/comp/proceedings/itcc/2005/2315/02/231520762.pdf
http://csdl.computer.org/comp/proceedings/itcc/2005/2315/02/231520762.pdf
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/itcc/&toc=comp/proceedings/itcc/2005/2315/02/2315toc.xml
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/itcc/&toc=comp/proceedings/itcc/2005/2315/02/2315toc.xml
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/itcc/&toc=comp/proceedings/itcc/2005/2315/02/2315toc.xml

