
Techniques for Enhancing Real-time CORBA Quality of Service�

Irfan Pyaraliy Douglas C. Schmidt Ron K. Cytron
irfan@oomworks.com schmidt@uci.edu cytron@cs.wustl.edu

OOMWorks, LLC Electrical & Computer Engineering Department of Computer Science
Metuchen, NJ University of California, Irvine, CA Washington University, St. Louis, MO

Abstract

End-to-end predictability of remote operations is essential for
many fixed-priority distributed real-time and embedded (DRE)
applications, such as command and control systems, manu-
facturing process control systems, large-scale distributed in-
teractive simulations, and testbeam data acquisition systems.
To enhance predictability, the Real-time CORBA specification
defines standard middleware features that allow applications
to allocate, schedule, and control key CPU, memory, and net-
working resources necessary to ensure end-to-end quality of
service support.

This paper provides two contributions to the study of Real-
time CORBA middleware for DRE applications. First, we
identify potential problems with ensuring predictable behav-
ior in conventional middleware by examining the end-to-end
critical code path of a remote invocation and identifying
sources of unbounded priority inversions. Experimental re-
sults then illustrate how the problems we identify can yield
unpredictable behavior in conventional middleware platforms.
Second, we present design techniques for providing real-time
QoS guarantees in middleware. We show how middleware can
be redesigned to use non-multiplexed resources to eliminate
sources of unbounded priority inversion. The empirical results
in this paper are conducted using TAO, which is widely-used,
open-source, Real-time CORBA-compliant DRE middleware.

1 Introduction

The maturation of the CORBA specification [1] and CORBA-
complient object request broker (ORB) implementations have
simplified the development of distributed applications with
complexfunctional requirements. However, next-generation
distributed real-time and embedded (DRE) applications also
have complexquality of service(QoS) requirements, such as
stringent bandwidth, latency, jitter, and dependability needs,
which have not been well served by early versions of CORBA
due to the lack of QoS support. The integration of Real-

�This work was supported in part by AFOSR grant F49620-00-1-
0330, Boeing, DARPA ITO contract F33615-00-C-1697 (PCES) and
AFRL contracts F3615-97-D-1155/DO (WSOA) and F33645-97-D-1155
(ASTD/ASFD).

yWork done by the author while at Washington University.

time CORBA 1.0 [2] into the CORBA specification has there-
fore been an important step towards the creation of standard,
commercial-off-the-shelf (COTS) middleware that can deliver
end-to-end QoS support at multiple levels in DRE systems.

As shown in Figure 1, Real-time CORBA ORB endsys-

OS KERNEL

OS I/O SUBSYSTEM

NETWORK ADAPTERS

STANDARD

SYNCHRONIZERS

END-TO-END PRIORITY

PROPAGATION

ORB CORE

OBJECT ADAPTER

CLIENT

GIOP

PROTOCOL

PROPERTIES

THREAD

POOLS
EXPLICIT

BINDING

NETWORK

OS KERNEL

OS I/O SUBSYSTEM

NETWORK ADAPTERS

operation()

out args + return value

in args

OBJECT

REF

OBJECT

(SERVANT)

STUBS
SKELETON

Figure 1:Standard Capabilities in Real-time CORBA ORB
Endsystems

tems1 define standard capabilities that support end-to-end pre-
dictability for operations infixed-priority CORBA applica-
tions. These capabilities [3] include standard interfaces and
QoS policies that allow applications to configure and control
the following resources:

� Processor resourcesvia thread pools, priority mecha-
nisms, and intraprocess mutexes

� Communication resourcesvia protocol properties and ex-
plicit bindings with non-multiplexed connections and

� Memory resourcesvia buffering requests in queues and
bounding the size of thread pools.

Our prior work on Real-time CORBA has explored many
dimensions of ORB design and performance, including scal-
able event processing [4], request demultiplexing [5], I/O

1An ORB endsystem consists of network interfaces, I/O subsystem, and
other OS mechanisms, and ORB middleware capabilities.

1

subsystem [6] and protocol [7] integration, connection man-
agement [8] and explicit binding [9] architectures, asyn-
chronous [10] and synchronous [11] concurrent request pro-
cessing, and IDL stub/skeleton optimizations [12]. In this
paper, we consider how to achieveend-to-end predictability
using Real-time CORBA. We first describe the end-to-end
critical code path of remote CORBA invocations to identify
sources of unbounded priority inversions. We then present ex-
perimental results that show how the identified problems can
yield non-predictable behavior in conventional ORB middle-
ware platforms and how Real-time CORBA features can be
applied to alleviate these problems.

The vehicle for our work is TAO [13], which is a high-
quality, widely-used, open-source2 ORB compliant with most
of the CORBA 2.6 specification [1]. Although TAO-specific
capabilities have been used in mission-critical DRE applica-
tions for the past five years [14], we only recently finished
enhancing TAO to support the Real-time CORBA 1.0 specifi-
cation. TAO now implements the standard Real-time CORBA
APIs that are designed to meet the real-time requirements
of fixed priority applications by respecting and propagating
thread priorities, avoiding unbounded priority inversions, and
allowing applications to configure and control processor, com-
munication, and memory resources.

The remainder of this paper is organized as follows: Sec-
tion 2 examines the design of TAO’s Real-time CORBA ORB,
focusing on how it eliminates key sources of unbounded pri-
ority inversion; Section 3 describes the Real-time CORBA
testbed and experiments used to evaluate TAO’s end-to-end
performance; Section 4 examines the experimental results that
demonstrate the end-to-end predictability of TAO; Section 5
compares our research on TAO with related work; and Sec-
tion 6 presents concluding remarks.

2 Redesigning TAO to Achieve End-to-
End Predictability

This section examines the design of two versions of TAO—
before and after Real-time CORBA support was added—
and shows how we identified and eliminated sources of un-
bounded priority inversion in TAO. To identify sources of un-
bounded priority inversion, we first analyze the typical end-
to-end critical code path of a CORBA request within ORBs
that implement the “classic CORBA” specification (i.e., before
Real-time CORBA was adopted).3 We then show how non-
multiplexed resources can be used to eliminate key sources of
unbounded priority inversion.

2The source code, documentation, and performance tests for TAO can be
downloaded fromwww.cs.wustl.edu/˜schmidt/TAO.html .

3The Real-time CORBA 1.0 specification was officially integrated into the
baseline CORBA specification in version 2.4 [15].

2.1 Tracing a CORBA Two-Way Invocation
End-to-End

To identify sources of unbounded priority inversion within an
ORB, we analyze the end-to-end critical code path of a syn-
chronous two-way CORBA request,e.g.,

result = object !operation (arg1, arg2)
The numbered bullets below correspond to the steps illustrated
in Figure 2. Although we describe these steps in terms of a ver-

Leader/Followers

Connection Cache Memory Pool

ConnectorReactor

A B
CV2

A

POA

S

CV1

Client ORB

B S

Connection Cache Memory Pool

Acceptor
Reactor

A B

A

C

Server ORB

B C

1, 3

2

4

5

6

9

10

11

12, 14, 16

13

15

19

7, 8, 17

18, 20

Figure 2:Tracing an Invocation Through a Classic CORBA
ORB

sion of TAO that implemented only classic CORBA, other im-
plementations of classic CORBA behave similarly. Moreover,
we generalize the discussion by describing the steps in terms
of the Reactor, Acceptor-Connector, and Leader/Followers
patterns described in Sidebar 1.
Connection management. We first describe how a connec-
tion can be established between a CORBA client and server.
The following are the activities a client ORB performs to cre-
ate a connection actively when a client application invokes an
operation on an object reference to a target server object:

1. Query the client ORB’s connection cache for an existing
connection to the server designated in the object refer-
ence on which the operation is invoked.

2. If the cache doesn’t contain a connection to the server,
use a connector factory [16] to create a new connection
S.

3. Add the newly established connectionS to the connec-
tion cache.

2

Sidebar 1: Network Programming Patterns in
TAO

TAO’s software architecture—like the architecture of many
CORBA ORBs—is based on the network programming patterns
described in [16]. Three fundamental patterns used in TAO’s ORB
are outlined below:

� Reactor is an event handling design pattern that allows an
ORB to demultiplex and dispatch incoming requests and
replies from peer ORBs. Request and reply handlers register
with a reactor, which uses a synchronous event demultiplexer
to wait for data to arrive from one or more ORBs. When
data arrives, the synchronous event demultiplexer notifies the
reactor, which then synchronously dispatches the handler as-
sociated with the data so that it can perform the requested
service.

� Acceptor-Connector is an initialization design pattern that
decouples the connection establishment between ORBs from
the processing they perform after they are connected. The
ORB initiating the connection uses aconnector factoryto es-
tablish the connection actively. The receptor ORB uses an
acceptor factoryto establish the connection passively.

� Leader/Followers is an architectural design pattern that pro-
vides an efficient concurrency model where multiple threads
take turns detecting, demultiplexing, dispatching, and pro-
cessing requests and replies from peer ORBs.

4. Also add connectionS to the client ORB’s reactor [16]
sinceS is bi-directional and the server may send requests
to the client usingS.

The server ORB activities for accepting a connection passively
are described next:

5. Use an acceptor factory [16] to accept the new connection
C from the client.

6. AddC to the server ORB’s connection cache sinceC is
bi-directional and the server can use it to send requests to
the client.

7. Also add connectionC to the server ORB’s reactor so the
server is notified when a request arrives from the client.

8. Wait in the reactor’s event loop for new connection and
data events.

Synchronous two-way request/reply processing.We now
describe the steps involved when a client invokes a syn-
chronous two-way request to a server, the server processes the
request and sends a reply, and the client processes the reply.
After the connection from client to server has been established,
the following activities are performed by a client ORB when
a client application thread invokes an operation on an object
reference that designates a target server object:

9. Allocate a buffer from a memory pool to marshal the pa-
rameters in the operation invocation.

10. Send the marshaled data to the server using connectionS.
ConnectionS is locked for the duration of the transfer.

11. Use the leader/followers manager [16] to wait for a reply
from the server. Assuming that a leader thread is already
available, the client thread waits as a follower on a con-
dition variable or semaphore.4

The server ORB activities for processing a request are de-
scribed below:

12. Read the header of the request arriving on connectionC

to determine the size of the request.
13. Allocate a buffer from a memory pool to hold the request.
14. Read the request data into the buffer.
15. Demultiplex the request to find the target portable object

adapter (POA) [17], servant, and skeleton – then dispatch
the designated upcall to the servant after demarshaling
the request parameters.

16. Send the reply (if any) to the client on connectionC.
ConnectionC is locked for the duration of the transfer.

17. Wait in the reactor’s event loop for new connection and
data events.

Finally, the client ORB performs the following activities to
process a reply from the server:

18. The leader thread reads the reply from the server on con-
nectionS.

19. After identifying that the reply belongs to the follower
thread, the leader thread hands off the reply to the fol-
lower thread by signaling the condition variable used by
the follower thread.

20. The follower thread demarshals the parameters and re-
turns control to the client application, which processes
the reply.

2.2 Identifying Sources of Unbounded Priority
Inversion

Devising predictable components and their interconnections is
essential to provide end-to-end QoS support for ORB endsys-
tems. This section identifies sources of unbounded priority
inversion that often arise in the critical path of a synchronous
CORBA two-way operation invocation outlined in Section 2.1.
The steps we refer to in our discussion below appear in Fig-
ure 2.
Connection Cache. In steps 10 and 16, other threads are de-
nied access to the connection for the duration of the data trans-
fer. This connection-level mutual exclusion prevents multiple
threads from writing to the same connection simultaneously

4The leader thread may actually be a server thread waiting for incoming
requests or another client thread waiting for its reply.

3

and corrupting request and reply data. However, the time re-
quired to send the request data depends on the availability of
network resources and the size of the request. Unless the un-
derlying network provides strict time guarantees for data deliv-
ery, serializing access to a connection can cause a higher pri-
ority thread to wait indefinitely, thereby yielding unbounded
priority inversion. Moreover, if priority inheritance [18] is not
supported by the mutual exclusion mechanism that serializes
the connection, priority inversion can be further exacerbated.

An ORB can create a new connection to the peer ORB in-
stead of waiting for existing connection to become available.
However, creating a new connection could also take an indefi-
nite amount of time and therefore would not bound the priority
inversion. Another approach would be to preallocate enough
connections to ensure the client always has a non-busy con-
nection available to the server. Unfortunately, this scheme
requires advanced knowledge of application behavior, is re-
source intensive, and scales poorly.

Memory freestore. In steps 9 and 13, buffers are allocated
to marshal and demarshal requests. While finding a suffi-
ciently large buffer, conventional ORBs lock the global free-
store to prevent multiple threads from corrupting its internal
freelist. However, the time required to allocate a new buffer
depends on freestore fragmentation and memory management
algorithms [19, 20]. Unless the freestore provides timeliness
guarantees for buffer allocation and deletion, serializing ac-
cess to the freestore can cause a higher priority thread to wait
indefinitely, leading to unbounded priority inversion. As with
connections, if priority inheritance is not supported by the mu-
tual exclusion mechanism that locks the freestore, priority in-
version can be further exacerbated.

One approach to alleviate this problem would be to use run-
time stack allocation or a memory pool in thread-specific stor-
age, which does not need mutual exclusion since neither is
shared among multiple threads. In some use cases, however,
it may not be possible to use these freestore implementations,
e.g., buffers need be shared by multiple threads in the ORB or
the application.

Leader/Followers. Assume that the leader thread is of low
priority, while the follower thread is of high priority. In steps
18 and 19, the leader thread handles the reply for the fol-
lower thread. During this time, the leader thread may be pre-
empted by some other thread of medium priority before the
reply is handed off to the follower. This priority inversion can
be avoided if the leader thread can inherit the priority of the
follower thread through a condition variable. Unfortunately,
although most real-time operating systems support priority in-
heritance for mutexes, they rarely support priority inheritance
for condition variables.

Reactor. There is no way to distinguish a high priority client
request from one of lower priority at the reactor level in step

12. This lack of information can lead to unbounded priority
inversion if a lower priority request is serviced before one of
higher priority.
POA. In step 15, the POA dispatches the upcall after locat-
ing the target POA, servant, and skeleton. The time required
to demultiplex the request may depend on the organization of
the POA hierarchy and number of POAs, servants, or opera-
tions configured in the server. The time required to dispatch
the request may depend on thread contention on a POA’s dis-
patching table. Demultiplexing and dispatching in conven-
tional CORBA implementations is typically inefficient and un-
predictable [21, 5].

In summary, this section described the typical sources of un-
bounded priority inversion in the critical path of an ORB.
Even though the details may vary between different ORB
implementations,e.g., an ORB implementation may use the
Half-Sync/Half-Async concurrency pattern [16] instead of the
Leader/Followers pattern, the key components of the ORB
(i.e., caching, memory management, concurrency, request de-
multiplexing, and dispatching components) must be evaluated
carefully to identify potential sources of unbounded priority
inversion.

2.3 Eliminating Sources of Unbounded Priority
Inversion in TAO

To address the problems described in Section 2.2, we de-
signed TAO’s Real-time CORBA implementation to use non-
multiplexed resources. In our design shown in Figure 3, each
thread lane (described in Sidebar 2) has its own connection
cache, memory pool freestore, acceptor, and leader/followers
manager (which includes a reactor). These lane-specific re-

Connector

ORB A

High Priority Lane

Leader/Followers

Connection Cache Memory Pool

Reactor
A B

CV1

CV2

A B S

S

Acceptor

Low Priority Lane

Leader/Followers

Connection Cache Memory Pool

Reactor
A B

CV1

CV2

A B S

S

Acceptor

ORB B

High Priority Lane

Leader/Followers

Connection Cache Memory Pool

Reactor
A B

CV1

CV2

A B S

S

Acceptor

Low Priority Lane

Leader/Followers

Connection Cache Memory Pool

Reactor
A B

CV1

CV2

A B S

S

Acceptor

POA Connector POA

Figure 3:The Design of the TAO Real-time CORBA

sources are shared only by the threads in the lane. Priority

4

inversion is therefore avoided since all the threads in a lane
have the same priority.

All lanes in the TAO ORB share components that are not in
the critical path (such as configuration factories) or that do not
contribute to priority inversion (such as connectors). In stan-
dard CORBA, POAs are shared, which could be a source of
non-determinism. However, our previous work on CORBA re-
quest demultiplexing [22] describes techniques to ensure pre-
dictable POA demultiplexing and reduce average- and worst-
case overheadregardlessof organization of an ORB’s POA hi-
erarchy or number of POAs, servants, or operations. Likewise,
our work on efficient, scalable, and, predictable dispatching
components [23] shows how it is possible to bound priority
inversion and hence provide timeliness guarantees to DRE ap-
plications. Moreover, our work on Real-time CORBA explicit
binding mechanisms illustrates how to design predictable con-
nection management into an ORB [9].

One potential drawback with TAO’s lane-specific resource
technique is that it is more resource intensive than multiplexed
techniques. For example, if a thread in a high priority lane has
established a connection to a particular server, and a thread in a
low priority lane wants to communicate with the same server,
the low priority thread cannot use the connection cached in
the high priority lane. DRE applications typically deal with
a small range of distinct priorities, so TAO’s lane-specific re-
source scheme is generally not a problem in practice. More-
over, when hundreds of priorities are desired, priorities can be
banded into ranges to ease resource requirements and schedu-
lability analysis of the system.

Sidebar 2: Real-time CORBA Thread Pools

Many real-time systems use multithreading to (a) distinguish be-
tween different types of service, such as high-priority vs. low-
priority tasks [14], (b) support thread preemption to prevent un-
bounded priority inversion and deadlock, and (c) support com-
plex object implementations that run for long and/or variable du-
rations. To allow real-time ORB endsystems and applications to
leverage these benefits of multithreading—while controlling the
amount of memory and processor resources they consume—Real-
time CORBA defines two types of serverthread poolmodels [24]:

� Thread pool with lanes– In this model, threads in a pool are
divided into lanesthat are assigned different priorities. The
priority of the threads generally does not change.

� Thread pool without lanes– In this model, all threads in a
pool have the same assigned priority. However, the priority is
changed to match the priority of a client making the request.

Each thread pool is then associated with one or more object
adapters. The threads in a pool process client requests targeted
at servants registered with the pool’s associated object adapter(s).

2.4 Achieving End-to-end Predictability in
TAO

After the ORB has been designed to avoid unbounded prior-
ity inversions in the critical path, end-to-end predictability can
be achieved by propagating and preserving priorities. TAO
accomplishes this by implementing the following Real-time
CORBA features:

� Thread pools, which are described in Sidebar 2 and
which are implemented in TAO [25]. TAO thread pools
use the Leader/Followers design pattern [16] to reduce
synchronization overhead and optimize memory manage-
ment, thereby resulting in reduced priority inversions and
improved dispatch latencies.

� Priority propagation models, which are described in
Sidebar 3. The client priority propagation model allows
a client to piggyback its priority with the request data to
a server. A server thread processing this request changes
its priority to match the priority of the client for the du-
ration of its request processing. The server declared pri-
ority model allows the server to specify the priority at
which requests on an object will be processed. This pri-
ority is specified when the object is registered with the
object adapter and is stored in the object adapter’s active
object table. When a server thread processes a request on
this object, its priority is changed to match the server de-
clared priority for the duration of processing the request.

� Explicit binding mechanisms, which are described in
Sidebar 4. Explicit binding enables clients to bind them-
selves to server objects using pre-allocated connections,
priority bands, and private connections. TAO offers
an implementation [11] of this feature for Real-time
CORBA. TAO’s connection cache is extended to keep
track of the QoS properties of the connections, which in-
cludes priority banding and privacy attributes.

3 Experimentation Setup

This section describes the Real-time CORBA testbed and ex-
periments used to evaluate TAO’s end-to-end performance.
We evaluate two different configurations of TAO:

� Classic CORBA— We first illustrate the limitations of
classic CORBA implementations that cannot satisfy QoS
requirements. This analysis is performed using a version
of TAO configured without Real-time CORBA support.

� Real-time CORBA — We then perform the same exper-
iments using Real-time CORBA features to show how
end-to-end predictability can be achieved when the un-
derlying middleware respects and propagates thread pri-
orities, avoids unbounded priority inversions, and allows

5

Sidebar 3: Propagating Priorities with Real-
time CORBA

Classic CORBA ORBs provide no standard mechanism for clients
to indicate the relative priorities of their requests to ORB endsys-
tems. This feature is necessary, however, to reduce end-to-end
priority inversion, as well as to bound latency and jitter for ap-
plications with deterministic real-time QoS requirements. Real-
time CORBA defines aPriorityModel policy with two values,
SERVER DECLARED andCLIENT PROPAGATED, as described be-
low:

� Server declared priorities—This model allows a server to
dictate the priority at which an invocation on a particular ob-
ject will execute. In the server declared model, the priority
is designateda priori by the server and is encoded into the
object reference published to the client.

� Client propagated priorities—This model allows a server to
process incoming requests at a priority of the client thread. In
this model, each invocation carries the CORBA priority of the
operation in the service context list that is tunneled with its
GIOP request. Each ORB endsystem along the activity path
between the client and server processes the request at this
priority. Moreover, if the client invokes a two-way operation,
its CORBA priority will determine the priority of the reply.

applications to configure and control processor, commu-
nication, and memory resources. This analysis is per-
formed using a version of TAO that supports Real-time
CORBA features.

By keeping the basic ORB capabilities (e.g., stubs, skeletons,
POA, reactor, acceptor, and connector) consistent, we can
compare the impacts of eliminating unbounded priority inver-
sions in the ORB and propagating priorities end-to-end.

3.1 Overview of the ORB Endsystem Testbed

Below we describe our ORB endsystem testbed as illustrated
in Figure 4 and described in Table 1. Here we examine the
client and server setup in terms of distribution, threading,
scheduling, and priorities. We also describe how we vary load
in our ORB endsystem testbed.
Client and server configuration. Most experiments collo-
cate the client and server on the same machine and use a single
CPU, as shown in Figure 4 (a). We focus our experiments on
a single CPU hardware configuration in order to:

� Factor out differences in network-interface driver support
and

� Isolate the impact of OS design and implementation on
ORB middleware and application performance.

We explicitly mention when the client and server are dis-
tributed across different machines or when a second CPU is
enabled, as shown in Figure 4 (b).

Sidebar 4: Explicit Binding with Real-time
CORBA

Before Real-time CORBA was standardized, the CORBA specifi-
cation supported onlyimplicit binding, where resources on the path
between a client and its server object are established on-demand,
e.g., after a client’s first invocation on the server. Implicit bind-
ing helps conserve OS and networking resources by deferring the
creation of connections until they are actually used. Although not
strictly part of the implicit binding model, many ORBs also allow
multiple client threads in a process to be multiplexed through a
shared network connection to their corresponding server.

Unfortunately, implicit binding and connection multiplexing
are inadequate for DRE applications with stringent QoS require-
ments. In particular, deferring connection establishment until run-
time can increase latency and jitter significantly. Moreover, the
use of connection multiplexing can yield substantial priority in-
version due to head-of-line blocking associated with connection
queues that are processed in FIFO order.

To avoid these problems, the Real-time CORBA specification
defines a group of orthogonal explicit binding mechanisms that
support the following capabilities:

� A connection pre-establishmentmechanism, which elimi-
nates a common source of operation jitter

� A PriorityBandedConnectionpolicy, where the invocation
priority of the client determines which connection is used and

� A PrivateConnection policy, which guarantees non-
multiplexed connections.

Network

(a) (b)

Figure 4:Overview of Real-time CORBA Testbed

As discussed in Section 3.2, clients in these experiments use
two types of threads:

� Real-time threads of various priorities making invoca-
tions at periodic intervals and

� Best-effort threads that try to disrupt system predictabil-
ity by stealing resources from real-time threads.

6

Name hermes.doc.wustl.edu

OS Linux 2.4 (Redhat 7.1)
Processor (2) Intel Pentium III 930 MHz
Memory 500 Megabytes
CPU Cache 256 KB

ORBSchedPolicy SCHED_FIFO
ORBScopePolicy SYSTEM
ORBPriorityMapping linear

High Priority Lane 32767
Medium Priority Lane 21844
Low Priority Lane 10922
Best Effort Lane 0

Hardware Profile

Threads Profile

Priority Profile

Table 1:Description of Real-time CORBA Testbed

The servers in these experiments are configured with thread
pools both with and without lanes.
Rate-based threads. Rate-based threads are identified by
their frequency of invocation. For example, anH Hertz thread
tries to makeH invocations to the server every second. The
periodP of a rate-based thread is the multiplicative inverse of
its frequency.E is the time it takes for an invocation to com-
plete and it depends on thework and the QoS it receives from
the client ORB endsystem, the network, and the server ORB
endsystem.

The following are three scenarios of an invocation’s execu-
tion with respect to its period:

� Invocation completes within period. In this scenario,
a rate-based thread sleeps for timeS equal to(P � E)
before making its next invocation, as shown in Figure 5.
No deadlines are missed in this case.

PN PN+1 PN+2 PN+3

EN

SN

EN+1

SN+1

EN+2

SN+2

Figure 5:Invocation Completes Within Its Period

� Invocation execution time exceeds period.In this sce-
nario, the execution time of invocationN (EN) is such
that invocationN +1 is invoked immediately since there
is no time to sleep,i.e., (P � E) � 0, as shown in Fig-
ure 6. Note that since the invocations are synchronous
two-way CORBA calls, in any given thread a second in-
vocation can only be made after the first one completes.
In presenting the performance results, invocationsN and
N + 1 are not considered to have missed their dead-
lines. An invocation is considered to have missed its

PN PN+1 PN+2 PN+3

EN EN+1

Figure 6:Invocation Takes Longer Than Its Period

deadline only when it cannot be started within its period.
If the execution time is consistently greater than the pe-
riod, however, thenE�P

E
fraction of the deadlines will be

missed. These experiments can also be configured with
more stringent requirements,e.g., where an invocation is
considered to miss its deadline when it cannot complete
execution within its period.

� Invocation misses deadline.In this scenario, the execu-
tion time of invocationN (EN) is such that invocation
N + 1 could not be made during timePN+1 through
PN+2, as shown in Figure 7. In this case, invocation

PN PN+1 PN+2 PN+3

EN

Figure 7:Invocation Misses Deadline

N + 1 missed its deadline and was not invoked.

Continuous threads. Continuous client threads use a flood-
ing model of invocations on a server,i.e., they do not pause
between successive invocations.
FIFO scheduling. Threads used in the real-time experi-
ments are placed in the OS FIFO scheduling class and sys-
tem scheduling scope. The FIFO scheduling class provides
the most predictable behavior since threads scheduled using
this policy will run to completion unless they are preempted
by a higher priority thread.
Linear mapping. CORBA priorities are linearly mapped
to native OS priorities and vice versa. For example, on
Linux 2.45 theRTCORBA::maxPriority of 32,767 maps
to the maximum priority in the FIFO scheduling class of 99,
RTCORBA::minPriority of 0 maps to the minimum pri-
ority in the FIFO scheduling class of 1, and everything in be-
tween is evenly apportioned. The CORBA priority range is
divided evenly such that the priority lanes are assigned the fol-
lowing CORBA priorities:

5Equivalent performance results were obtained when these experiments
were conducted on Solaris 2.7 and similar behavior is expected on other plat-
forms with comparable real-time characteristics.

7

� The high priority thread lane is assigned 32,767;
� The medium priority lane is assigned 21,844;
� The low priority lane is assigned 10,922; and
� The best-effort thread lane is assigned 0.

Operation invocation. The signature of the operation in-
voked by the client on the server is:

void method (in unsigned long work);

The work parameter specifies the amount of CPU intensive
work the server will perform to service this invocation. The
higher the value ofwork , therefore, the more the number of
iterations of a CPU consuming loop in the servant upcall, re-
sulting in increased load on the server.

3.2 Overview of the Real-time ORB Experi-
ments

The experiments presented here measure the degree of real-
time, deterministic, and predictable behavior of CORBA mid-
dleware. End-to-end predictability of timeliness in a fixed pri-
ority CORBA system is defined as:

� Respecting thread priorities for resolving resource con-
tention during the processing of CORBA invocations.

� Bounding the duration of thread priority inversions dur-
ing end-to-end processing.

� Bounding operation invocations latencies.

The following experiments demonstrate the degree of end-
to-end predictability exhibited by different ORB configura-
tions by showing the extent to which they can propagate and
preserve priorities, exercise control over the management of
resources, and avoid unbounded priority inversions. Our ex-
periments vary different aspects and parameters of the ORB
endsystem testbed (described in Section 3.1) to measure how
well these conditions are met by the ORB middleware. The
following nine experiments measure system reaction to in-
creased workload, ranging from unloaded to an overloaded sit-
uation, as well as ORB endsystem reaction to increased best-
effort work:

1. Increasing workload
2. Increasing invocation rate
3. Increasing client and server concurrency
4. Increasing workload in classic CORBA
5. Increasing workload in Real-time CORBA with lanes

Increasing priority! Increasing rate
6. Increasing workload in Real-time CORBA with lanes

Increasing priority! Decreasing rate
7. Increasing best-effort work in classic CORBA
8. Increasing best-effort work in Real-time CORBA with

lanes

Figure 8: Configuration for Measuring the Effect of In-
creasing Workload

9. Increasing workload in Real-time CORBA without lanes

The first three experiments are basic non-real-time tests that
provide a baseline for general characteristics of the ORB end-
system testbed. All threads in these three experiments have the
default OS priority and are scheduled in the default schedul-
ing class. Experiment 1 measures throughput as the workload
increases. Experiment 2 measures deadlines made/missed as
the target invocation rate goes beyond the ORB endsystem ca-
pacity. Experiment 3 measures throughput as client and server
concurrency increases, while also adding additional CPU sup-
port.

The remaining six experiments contain several client
threads of different importance. The importance of each thread
is mapped to its relative priority. Experiments 4–6 measure
throughput with and without Real-time CORBA as the work-
load increases. Experiments 7 and 8 measure throughput with
and without Real-time CORBA, as best-effort work increases.
Finally, Experiment 9 measures throughput with Real-time
CORBA thread pools without lanes as workload increases.
Experiments 5, 6, and 8 use Real-time CORBA thread pools
with lanes.

All the Real-time CORBA experiments exercise the
CLIENT PROPAGATEDpolicy to preserve end-to-end priority.
The priority of threads in a thread pool with lanes is fixed.
However, the priority of threads in a thread pool without lanes
is adjusted to match the priority of the client when processing
the CORBA request. After processing completes, the ORB
restores the thread’s priority to the priority of the thread pool.

4 Experimention Results

This section presents the results of an empirical analysis of
end-to-end ORB behavior based on the testbed described in
Section 3. We describe the configurations used and the per-
formance results obtained for the various real-time CORBA
experiments we conducted.

Experiment 1: Increasing Workload

This experiment measures the effect of increasing workload in
the ORB endsystem testbed. As shown in Figure 8, the server
has one thread handling incoming requests and the client has
one continuous thread making invocations. Workload is in-

8

creased by increasing thework parameter in the invocation,
which makes the server perform more work for every client
request. The performance graph in Figure 9 plots the through-
put achieved (invocations/second) as the workload increases.
Not surprisingly, as the workload increases, the throughput de-
creases.

0

20

40

60

80

100

120

140

160

180

200

25 30 35 40 45 50 55 60 65 70 75 80 85

Work

In
vo

ca
tio

ns
 /

se
c

Figure 9:Effect of Increasing Workload

Experiment 2: Increasing Invocation Rate

This experiment measures the impact of increasing the target
frequency for a rate-based thread beyond the capacity of the
system. As shown in Figure 10, the server has one thread
handling incoming requests and the client has one rate-based
thread making invocations. As the frequency of the rate-based

Figure 10: Configuration for Measuring the Effect of In-
creasing Invocation Rate

thread is increased, it eventually exceeds the capacity of the
system. Workload is held constant in this experiment at 30.
Figure 9 shows that in Experiment 1, the continuous thread
could make�150 invocations/second with a workload of 30.
ORB endsystem capacity is therefore estimated at�150 invo-
cations/second with this workload.

The performance graph in Figure 11 plots the percentage of
deadlines made as the target frequency of the rate-based thread
increases. Until the target frequency increases to�150 invo-
cations/second, the rate-based thread is able to meet 100% of
its deadlines. After the target frequency goes beyond 150 in-
vocations/second, however, the rate-based thread starts to miss
deadlines. The number of deadlines missed increases with the
increased target frequency.

0

10

20

30

40

50

60

70

80

90

100

50 75 100 125 150 175 200 225 250

Invocation Rate

%
 o

f D
ea

dl
in

es
 M

ad
e

Figure 11:Effect of Increasing Invocation Rate

Experiment 3: Increasing Client and Server Concurrency

This experiment measures the impact of increasing the concur-
rency of both the client and the server as shown in Figure 12.
The following three server configurations are used in this ex-

Figure 12: Configuration for Measuring the Effect of In-
creasing Concurrency

periment:

1. One thread to handle incoming requests;
one CPU utilized.

2. Two threads to handle incoming requests;
one CPU utilized.

3. Two threads to handle incoming requests;
two CPUs utilized.

For each of these server configurations, the number of client
threads making continuous invocations is increased from 1 to
20. As with Experiment 2, workload is held constant at 30.

The performance graph in Figure 13 plots the collec-
tive/cumulative throughput achieved for all the client threads
as the number of client threads increases. The results are de-

0

50

100

150

200

250

300

350

0 5 10 15 20

Continuous Workers

In
vo

ca
tio

ns
 /

se
c

Collective (CPUs=1, Threads=1) Collective (CPUs=1, Threads=2)

Collective (CPUs=2, Threads=2)

Figure 13:Effect of Increasing Concurrency

scribed below.

9

Configuration 1 (one server thread, one CPU). Increasing
client concurrency does not impact collective throughput of
the client threads. Thus, as the number of client threads in-
creases, the throughput per thread decreases, but the collective
throughput remains constant. This result occurs because the
server performs most of the processing, so increasing client
concurrency does not impact the collective throughput for the
client threads.

Configuration 2 (two server threads, one CPU). The re-
sults are almost identical to server configuration 1 (one server
thread, one CPU). Increasing server concurrency without im-
proving hardware support does not improve throughput when
the work is CPU bound. In fact, the throughput degrades
slightly since the server must now coordinate and synchronize
the two threads on one CPU.

Configuration 3 (two server threads, two CPUs). After the
number of client threads reaches two, the collective through-
put doubles since the second client thread engages the second
server thread, thereby doubling the throughput.6 Increasing
the number of client threads further does not improve collec-
tive throughput since both server threads are already engaged.

Experiment 4: Increasing Workload in Classic CORBA

This experiment measures the disruption caused by increas-
ing workload in classic CORBA. As shown in Figure 14, the
server has three threads handling incoming requests.7 The

Figure 14: Configuration for Measuring the Effect of In-
creasing Workload in Classic CORBA

client has three rate-based threads running at different impor-
tance levels,i.e., the high priority thread runs at 75 Hertz, the
medium priority thread runs at 50 Hertz, and the low priority
thread runs at 25 Hertz.

6Some applications may not be able to double the throughput using this
configuration if synchronization is required in the servant code while process-
ing the CORBA requests.

7It is not necessary to have three threads handling incoming requests on the
server. As shown in Figure 13, one thread is sufficient since increasing server
concurrency without increasing CPU support does not improve throughput
when the work is CPU bound.

The performance graph in Figure 15 plots the throughput
achieved for each of the three client threads as the workload
increases. The combined capacity desired by the three client
threads is 150 invocations/second (75 + 50 + 25). Correlating
this desired throughput of 150 invocations/second to the per-
formance graph in Experiment 1 (Figure 9), note that the con-
tinuous thread achieved that throughput with a workload of 30
or less. Therefore, each of the three client threads achieved
their desired frequency for workloads of 25 and 30 in Fig-
ure 15 since the ORB endsystem capacity was not exceeded.
After the workload increased beyond 30, however, deadlines

0

10

20

30

40

50

60

70

80

25 30 35 40 45 50 55 60 65 70 75 80 85

Work

In
vo

ca
tio

ns
 /

se
c

25 Hertz (low priority) 50 Hertz (medium priority) 75 Hertz (high priority)

Figure 15: Effect of Increasing Workload in Classic
CORBA

start being missed. The expected behavior of most DRE appli-
cations is to drop requests from client threads of lower priority
before dropping requests from those of higher priority. Un-
fortunately, since all three clients are treated equally by the
classic CORBA server, the first to be affected is the high pri-
ority 75 Hertz client thread, followed by the medium priority
50 Hertz client thread, and finally by the low priority 25 Hertz
client thread. This behavior is clearly unacceptable for most
DRE applications.

Experiment 5: Increasing Workload in Real-time CORBA
with Lanes: Increasing Priority ! Increasing Rate

This experiment measures the disruption caused by increasing
workload in Real-time CORBA with lanes. As shown in Fig-
ure 16, the server has three thread lanes of high, medium, and
low priorities to handle incoming requests. Each lane has one
thread. The client is identical to the client in Experiment 4.

The performance graph in Figure 17 plots the throughput
achieved for each of the three client threads as the workload
increases. Each of the three client threads achieved its desired
frequency for workloads of 25 and 30 since the ORB end-
system capacity has not been exceeded. After the workload
increases beyond 30, however, deadlines start being missed.
Unlike the classic CORBA experiment (Figure 15), the first
deadline affected is the low priority 25 Hertz client thread,
followed by the medium priority 50 Hertz client thread, and

10

Figure 16:Increasing Workload in Real-time CORBA (In-
creasing Priority ! Increasing Rate): Configuration of
Testbed

0

10

20

30

40

50

60

70

80

25 30 35 40 45 50 55 60 65 70 75 80 85

Work

In
vo

ca
tio

ns
 /

se
c

25 Hertz (low priority) 50 Hertz (medium priority) 75 Hertz (high priority)

,

Figure 17: Effect of Increasing Workload in Real-time
CORBA: Increasing Priority ! Increasing Rate (Client
and Server are on the Same Machine)

finally the high priority 75 Hertz client thread. This behavior
is what a DRE application expects.

Figure 18 shows the performance graph of the same ex-
periment, except the client and server are distributed on two
different machines on the network. The results are similar to

0

10

20

30

40

50

60

70

80

25 30 35 40 45 50 55 60 65 70 75 80 85

Work

In
vo

ca
tio

ns
 /

se
c

25 Hertz (low priority) 50 Hertz (medium priority) 75 Hertz (high priority)

Figure 18: Effect of Increasing Workload in Real-time
CORBA: Increasing Priority ! Increasing Rate (Client
and Server are Remote)

those obtained when the client and server are on the same ma-
chine (Figure 17). However, between the time the high prior-
ity server thread sent a reply to the high priority client thread
and before it receives a new request from it, the server can
process a request from a client thread of lower priority. The
medium priority 50 Hertz client thread can therefore make
some progress.

Experiment 6: Increasing Workload in Real-time CORBA
with Lanes: Increasing Priority ! Decreasing Rate

This experiment is similar to Experiment 5 except that the high
priority thread runs at 25 Hertz, the medium priority thread
runs at 50 Hertz, and the low priority thread runs at 75 Hertz,
as shown in Figure 19. The performance graph in Figure 20

Figure 19: Configuration for Measuring the Effect of In-
creasing Workload in Real-time CORBA: Increasing Pri-
ority ! Decreasing Rate

shows that the low priority 75 Hertz client thread is affected
first, followed by the medium priority 50 Hertz client thread.
The high priority 25 Hertz client thread is unaffected since

11

the ORB endsystem capacity never dropped below 25 invoca-
tions/second. This behavior is expected from a DRE applica-
tion.

0

10

20

30

40

50

60

70

80

25 30 35 40 45 50 55 60 65 70 75 80 85

Work

In
vo

ca
tio

ns
 /

se
c

25 Hertz (high priority) 50 Hertz (medium priority) 75 Hertz (low priority)

Figure 20: Effect of Increasing Workload in Real-time
CORBA: Increasing Priority ! decreasing rate

Experiment 7: Increasing Best-effort Work in Classic
CORBA

This experiment measures the disruption caused by increasing
best-effort work in classic CORBA. As shown in Figure 21,
the server has four threads handling incoming requests.8 The

Figure 21: Configuration for Measuring the Effect of In-
creasing Best-effort Work in Classic CORBA

client has three rate-based threads of different priorities,i.e.,
the high priority thread runs at 75 Hertz, the medium prior-
ity thread runs at 50 Hertz, and the low priority thread runs
at 25 Hertz. The client also has a variable number of best-
effort threads making continuous invocations. Workload is
held constant at 30 and the number of best-effort continuous
client threads is increased from 0 through 10. Recall from
Experiment 1 that the ORB endsystem capacity is 150 invoca-
tion/second for a workload of 30. Any progress made by the
best-effort continuous client threads will therefore cause the
rate-based threads to miss their deadlines.

The performance graph in Figure 22 plots the throughput
achieved for each of the three rate-based client threads and the

8For the same reasons noted in Experiment 4, one server thread is sufficient
for handling incoming requests.

collective throughput achieved by the all the best-effort contin-
uous threads on the client as the number of best-effort contin-
uous threads increases. When there are no best-effort threads,

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10

Continuous Workers

In
vo

ca
tio

ns
 /

se
c

25 Hertz (high priority) 50 Hertz (medium priority)

75 Hertz (low priority) Continuous Workers

Figure 22:Effect of Increasing Best-effort Work in Classic
CORBA

the three rate-based threads achieve their desired frequency.
After best-effort threads are added to the client, however, the
classic CORBA server treats all the client threads equally, so
the collective throughput of the best-effort threads increases
at the expense of the higher priority threads. This behavior is
clearly unacceptable for most DRE applications.

Experiment 8: Increasing Best-effort Work in Real-time
CORBA with Lanes

This experiment measures the disruption caused by increasing
best-effort work in Real-time CORBA configured to use thread
pools with lanes. As shown in Figure 23, the server processes
requests using four thread lanes of high, medium, low, and
best-effort priorities. Each lane has one thread. The client is

Figure 23: Configuration for Measuring the Effect of In-
creasing Best-effort Work in Real-time CORBA

identical to the client in Experiment 7.
The performance graph in Figure 24 shows that best-effort

continuous threads do not affect the higher priority rate-based
threads. This behavior is expected from a DRE application.

Figure 25 shows the performance graph of the same experi-
ment with a slightly lower workload(work = 28) . Note
that the slack produced by the lower workload is used by

12

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10

Continuous Workers

In
vo

ca
tio

ns
 /

se
c

25 Hertz (low priority) 50 Hertz (medium priority)

75 Hertz (high priority) Continuous Workers

Figure 24: Effect of Increasing Best-effort Work in Real-
time CORBA: System Running at Capacity (Work = 30);
Client and Server are on the Same Machine

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10

Continuous Workers

In
vo

ca
tio

ns
 /

se
c

25 Hertz (low priority) 50 Hertz (medium priority)

75 Hertz (high priority) Continuous Workers

Figure 25: Effect of Increasing Best-effort Work in Real-
time CORBA: System Running Slightly Below Capacity
(Work = 28); Client and Server are on the Same Machine

the best-effort threads. Moreover, increasing the number of
best-effort threads does not yield any increase in the collec-
tive throughput of the best-effort threads and the best-effort
threads are not able to disrupt the higher priority rate-based
threads. This behavior is expected from a DRE application.

Figure 26 shows the performance graph of the same experi-
ment(work = 28) , but with the client and server on differ-
ent machines across a network. Note that the slack available

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10

Continuous Workers

In
vo

ca
tio

ns
 /

se
c

25 Hertz (low priority) 50 Hertz (medium priority)

75 Hertz (high priority) Continuous Workers

Figure 26: Effect of Increasing Best-effort Work in Real-
time CORBA: System Running Slightly Below Capacity
(Work = 28); Client and Server are Remote

for the best-effort threads increases since all the client pro-

cessing is now performed on the machine hosting the client,
freeing up the server to do additional work.

Experiment 9: Increasing Workload in Real-time CORBA
without Lanes

Our final experiment measures the disruption caused by in-
creasing workload in Real-time CORBA without lanes. As
shown in Figure 27, the server has a thread pool of three
threads handling incoming requests. The client is identical to

Figure 27: Configuration for Measuring the Effect of In-
creasing Workload in Real-time CORBA without Lanes

the client in Experiments 4 and 5.
The performance graphs in Figures 28, 29, and 30 plot the

throughput achieved for each of the three client threads as the
workload increases. The difference between the three graphs
is the priority of the server thread pool. In Figure 28 the thread
pool runs at low priority, in Figure 29 the thread pool priority
runs at medium priority, and in Figure 30 the thread pool runs
at high priority. Below, we discuss each of these results in
more depth.

Server thread pool priority = low. Assume that one of the
server threads is processing a request from a client thread of
low priority. During that time, a request arrives at the server
from a higher priority client thread. Unfortunately, since the
request-processing thread has the same priority as the waiting
thread, the waiting thread is unable to preempt the process-
ing thread. The request from the higher priority client thread
must therefore wait until the low priority client thread request
has been processed completely, which leads to the three client
threads being treated equally by the server, as shown in Fig-
ure 28. This behavior is clearly unacceptable for most DRE
applications.

Server thread pool priority = medium. Assume that one of
the server threads is processing a request from a client thread
of medium priority. During this time, a request arrives at
the server from the high priority client thread. Unfortunately,
since the request-processing thread has the same priority as
the waiting thread, the waiting thread is unable to preempt the

13

0

10

20

30

40

50

60

70

80

25 30 35 40 45 50 55 60 65 70 75 80 85

Work

In
vo

ca
tio

ns
 /

se
c

25 Hertz (low priority) 50 Hertz (medium priority) 75 Hertz (high priority)

Figure 28: Effect of Increasing Workload in Real-time
CORBA Without Lanes: Server Thread Pool Priority =
Low

request processing thread. The request from the high prior-
ity client thread must therefore wait until the medium priority
client thread request has been processed completely. When a
medium or high priority request arrives while a low priority
request is being processed, however, the behavior is different.
Since the priority of the waiting thread is greater than that of
the priority of the request processing thread, it can preempt
the request processing thread and handle the higher priority
request.

This behavior leads to the medium and high priority client
threads being treated equally but are given preference over the
low priority client thread, as shown in Figure 29. This behav-
ior is also unacceptable for a DRE application.

0

10

20

30

40

50

60

70

80

25 30 35 40 45 50 55 60 65 70 75 80 85

Work

In
vo

ca
tio

ns
 /

se
c

25 Hertz (low priority) 50 Hertz (medium priority) 75 Hertz (high priority)

Figure 29: Effect of Increasing Workload in Real-time
CORBA without Lanes: Server Thread Pool Priority =
Medium

Server thread pool priority = high. Assume that one of the
server threads is processing a request from a client thread of
low priority. During this time, a request arrives at the server
from a higher priority client thread. Since the priority of the
waiting thread is greater than the priority of the request pro-
cessing thread, it can preempt the request-processing thread
and handle the higher priority request. Note that a high priority
request can preempt both low and medium priority requests.

This behavior ensures (1) the high priority client thread is

preferred over the low and medium priority client threads and
(2) the medium priority client thread is preferred over the low
priority client thread, as shown in Figure 30. This behavior is
expected from a DRE application.

0

10

20

30

40

50

60

70

80

25 30 35 40 45 50 55 60 65 70 75 80 85

Work

In
vo

ca
tio

ns
 /

se
c

25 Hertz (low priority) 50 Hertz (medium priority) 75 Hertz (high priority)

Figure 30: Effect of Increasing Workload in Real-time
CORBA without Lanes: Server Thread Pool Priority =
High

Notes on using Real-time CORBA without lanes. Experi-
ment 9 showed that the most desirable behavior is achieved in
Figure 30 where the server thread pool priority is equal to the
highest request processing priority. However, a server using
a thread pool without lanes can incur priority inversion. Con-
sider the case where the server thread pool priority is high.
Assume that one of the server threads is processing a request
from a client thread of medium priority. During this time, a
request arrives at the server from the low priority client thread.
Since the priority of the waiting thread is greater than the pri-
ority of the request processing thread, it is able to preempt
the request processing thread to read the incoming request. If
the request includes a large amount of data, it can take a sig-
nificant amount of time to read the request. After this thread
reads the request, it sets its priority low to match the client
propagated priority. The medium priority request-processing
thread is now able to preempt the low priority thread and re-
sume processing.

The interruption caused by the low priority request leads to
priority inversion for the medium priority thread. Depending
on the number of waiting threads in the server thread pool and
the time it takes to read the incoming request, the priority in-
version can be significant or even unbounded.

4.1 Summary of Empirical Results

Experiments 4 and 7 illustrate that classic CORBA implemen-
tations cannot preserve priorities end-to-end, which makes
them inappropriate for DRE applications with strict pre-
dictability requirements. Conversely, the experiments that use
TAO with Real-time CORBA features enabled (Experiments
5, 6, 8, and 9) preserve priorities end-to-end since TAO was
able to

14

� Avoid unbounded priority inversions in the critical path,
as discussed in Section 2.3 and

� Propagate and preserve priorities end-to-end, as dis-
cussed in Section 2.4.

Thread pools in Real-time CORBA are an important feature
that allows application developers and end-users to configure
and control processor resources. A server using thread pools
without lanes is more flexible than a server using thread pools
with lanes since the former can adapt to any priority propa-
gated by the client. As we have shown, however, there are
cases when this configuration can incur priority inversion. A
client invoking requests on a server using thread pools with
lanes is restricted to priorities used in the lanes by the server.9

This configuration provides the most predictable execution
and does not exhibit unbounded priority inversions.

5 Related Work

Real-time middleware is an emerging field of study. An in-
creasing number of research efforts are focusing on integrating
QoS and real-time scheduling into distribution middleware,
such as CORBA. In this section, we compare our work on
Real-time CORBA and TAO with related work.

Dynamic Scheduling Services and Resource Managers.
Real-time CORBA is well suited for applications using fixed
priority scheduling. However, for applications that execute
under dynamic load conditions [26] and cannot determine
the priorities of various operationsa priori without signifi-
cantly underutilizing various resources, the Object Manage-
ment Group (OMG) is standardizing dynamic scheduling [27]
techniques, such as deadline-based [28] or value-based [29]
scheduling. Work is currently underway to integrate TAO with
dynamic scheduling services, such as the Kokyu scheduling
framework [30], and adaptive resource management systems,
such as the RT-ARM [31] framework.

Timed Distributed Invocations. Wolfe et al. developed a
real-time CORBA system at the US Navy Research and De-
velopment Laboratories (NRaD) and the University of Rhode
Island (URI) [32]. The system supports expression and en-
forcement of dynamic end-to-end timing constraints through
timed distributed method invocations (TDMIs) [33]. A dif-
ference between TAO and the URI approaches is thatTDMIs
express required timing constraints,e.g., deadlines relative to
the current time, whereas the TAO ORB is based on the fixed-
priority scheduling features defined in the Real-time CORBA
specification.

9Priority bands can be used to map a range of client priorities to a server
lane. However, the server lane priority is fixed and therefore, request process-
ing priorities are limited to the priorities of the lanes.

Quality Objects. TheQuality Objects(QuO) distributed ob-
ject middleware is developed at BBN Technologies [34]. QuO
is based on CORBA and provides the following support for
QoS-enabled applications:

� Run-time performance tuning and configurationthrough
the specification of operating regions, behavior alterna-
tives, and reconfiguration strategies that allows the QuO
run-time to trigger reconfiguration adaptively as system
conditions change (represented by transitions between
operating regions); and

� Feedbackacross software and distribution boundaries
based on a control loop in which client applications and
server objects request levels of service and are notified of
changes in service.

The QuO model employs severalQoS definition languages
(QDLs) that describe the QoS characteristics of various ob-
jects, such as expected usage patterns, structural details of
objects, and resource availability. QuO’s QDLs are based on
the separation of concerns advocated by Aspect-Oriented Pro-
gramming (AoP) [35]. The QuO middleware adds significant
value to adaptive real-time ORBs such as TAO. We are cur-
rently collaborating [36] with the BBN QuO team to integrate
the TAO and QuO middleware as part of the DARPA Quorum
project [37].

6 Concluding Remarks

The Real-time CORBA 1.0 specification [2] has introduced
several novel concepts and requirements to the CORBA ob-
ject model. These new requirements for providing end-to-end
predictability have added to the challenges faced by the ORB
developers. This paper described how we identified and elim-
inated sources of unbounded priority inversion in the critical
code path of the TAO ORB. TAO’s Real-time CORBA im-
plementation uses non-multiplexed resources where possible.
Moreover, it is designed to bound priority inversions for re-
sources that must be shared.

The empirical analysis presented in this paper illustrated
that ORBs lacking Real-time CORBA features are unsuitable
for DRE applications that require predictable behavior. The
experimental results also validate the end-to-end real-time be-
havior of TAO. Even when using a real-time ORB, however,
careful consideration must be given to several other factors
to ensure end-to-end system predictability and scalability, in-
cluding:

� The configuration and structure of the client and server
� The use of lanes in thread pools
� The priorities assigned to the thread pools and lanes used

in the server and
� The priority propagation and banding policies used.

15

In general, thread pools with lanes are not as flexible as their
counterparts without lanes because the priority of the threads
in lanes are fixed. However, thread pools with lanes provide
the most predictable execution and do not exhibit unbounded
priority inversions.

References
[1] Object Management Group,The Common Object Request Broker:

Architecture and Specification, 2.6 ed., Dec. 2001.

[2] Object Management Group,Real-time CORBA Joint Revised
Submission, OMG Document orbos/99-02-12 ed., March 1999.

[3] D. C. Schmidt and F. Kuhns, “An Overview of the Real-time CORBA
Specification,”IEEE Computer Magazine, Special Issue on
Object-oriented Real-time Computing, vol. 33, June 2000.

[4] C. O’Ryan, D. C. Schmidt, and J. R. Noseworthy, “Patterns and
Performance of a CORBA Event Service for Large-scale Distributed
Interactive Simulations,”International Journal of Computer Systems
Science and Engineering, vol. 17, Mar. 2002.

[5] A. Gokhale and D. C. Schmidt, “Measuring and Optimizing CORBA
Latency and Scalability Over High-speed Networks,”Transactions on
Computing, vol. 47, no. 4, 1998.

[6] F. Kuhns, D. C. Schmidt, and D. L. Levine, “The Design and
Performance of a Real-time I/O Subsystem,” inProceedings of the5th

IEEE Real-Time Technology and Applications Symposium, (Vancouver,
British Columbia, Canada), pp. 154–163, IEEE, June 1999.

[7] C. O’Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J. Parsons, “The
Design and Performance of a Pluggable Protocols Framework for
Real-time Distributed Object Computing Middleware,” inProceedings
of the Middleware 2000 Conference, ACM/IFIP, Apr. 2000.

[8] P. Jain and D. C. Schmidt, “Service Configurator: A Pattern for
Dynamic Configuration of Services,” inProceedings of the3rd

Conference on Object-Oriented Technologies and Systems, USENIX,
June 1997.

[9] C. O’Ryan, D. C. Schmidt, F. Kuhns, M. Spivak, J. Parsons, I. Pyarali,
and D. L. Levine, “Evaluating Policies and Mechanisms to Support
Distributed Real-Time Applications with CORBA,”Concurrency and
Computing: Practice and Experience, vol. 13, no. 2, pp. 507–541,
2001.

[10] A. B. Arulanthu, C. O’Ryan, D. C. Schmidt, M. Kircher, and
J. Parsons, “The Design and Performance of a Scalable ORB
Architecture for CORBA Asynchronous Messaging,” inProceedings of
the Middleware 2000 Conference, ACM/IFIP, Apr. 2000.

[11] C. O’Ryan, D. C. Schmidt, F. Kuhns, M. Spivak, J. Parsons, I. Pyarali,
and D. Levine, “Evaluating Policies and Mechanisms for Supporting
Embedded, Real-Time Applications with CORBA 3.0,” inProceedings
of the6th IEEE Real-Time Technology and Applications Symposium,
(Washington DC), IEEE, May 2000.

[12] A. Gokhale and D. C. Schmidt, “Optimizing a CORBA IIOP Protocol
Engine for Minimal Footprint Multimedia Systems,”Journal on
Selected Areas in Communications special issue on Service Enabling
Platforms for Networked Multimedia Systems, vol. 17, Sept. 1999.

[13] Center for Distributed Object Computing, “The ACE ORB (TAO).”
www.cs.wustl.edu/�schmidt/TAO.html, Washington University.

[14] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-time CORBA Event Service,” inProceedings of
OOPSLA ’97, (Atlanta, GA), pp. 184–199, ACM, October 1997.

[15] Object Management Group,The Common Object Request Broker:
Architecture and Specification, 2.4 ed., Oct. 2000.

[16] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture: Patterns for Concurrent and
Networked Objects, Volume 2. New York: Wiley & Sons, 2000.

[17] I. Pyarali and D. C. Schmidt, “An Overview of the CORBA Portable
Object Adapter,”ACM StandardView, vol. 6, Mar. 1998.

[18] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance
Protocols: An Approach to Real-time Synchronization,”IEEE
Transactions on Computers, vol. 39, September 1990.

[19] S. M. Donahue, M. P. Hampton, M. Deters, J. M. Nye, R. K. Cytron,
and K. M. Kavi, “Storage allocation for real-time, embedded systems,”
in Embedded Software: Proceedings of the First International
Workshop(T. A. Henzinger and C. M. Kirsch, eds.), pp. 131–147,
Springer Verlag, 2001.

[20] S. Donahue, M. Hampton, R. Cytron, , M. Franklin, and K. Kavi,
“Hardware support for fast and bounded-time storage allocation,”
Second Annual Workshop on Memory Performance Issues (WMPI
2002), 2002.

[21] A. Gokhale and D. C. Schmidt, “Measuring the Performance of
Communication Middleware on High-Speed Networks,” inProceedings
of SIGCOMM ’96, (Stanford, CA), pp. 306–317, ACM, August 1996.

[22] I. Pyarali, C. O’Ryan, D. C. Schmidt, N. Wang, V. Kachroo, and
A. Gokhale, “Applying Optimization Patterns to the Design of
Real-time ORBs,” inProceedings of the5th Conference on
Object-Oriented Technologies and Systems, (San Diego, CA),
USENIX, May 1999.

[23] I. Pyarali, C. O’Ryan, and D. C. Schmidt, “A Pattern Language for
Efficient, Predictable, Scalable, and Flexible Dispatching Mechanisms
for Distributed Object Computing Middleware,” inProceedings of the
International Symposium on Object-Oriented Real-time Distributed
Computing (ISORC), (Newport Beach, CA), IEEE/IFIP, Mar. 2000.

[24] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Software Architectures for Reducing Priority Inversion and
Non-determinism in Real-time Object Request Brokers,”Journal of
Real-time Systems, special issue on Real-time Computing in the Age of
the Web and the Internet, vol. 21, no. 2, 2001.

[25] I. Pyarali, M. Spivak, R. K. Cytron, and D. C. Schmidt, “Optimizing
Threadpool Strategies for Real-Time CORBA,” inProceedings of the
Workshop on Optimization of Middleware and Distributed Systems,
(Snowbird, Utah), pp. 214–222, ACM SIGPLAN, June 2001.

[26] C. D. Gill, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-Time CORBA Scheduling Service,”Real-Time
Systems, The International Journal of Time-Critical Computing
Systems, special issue on Real-Time Middleware, vol. 20, March 2001.

[27] Object Management Group,Dynamic Scheduling, OMG Document
orbos/99-03-32 ed., March 1999.

[28] Y.-C. Wang and K.-J. Lin, “Implementing A General Real-Time
Scheduling Framework in the RED-Linux Real-Time Kernel,” inIEEE
Real-Time Systems Symposium, pp. 246–255, IEEE, December 1999.

[29] E. D. Jensen, “Eliminating the Hard/Soft Real-Time Dichotomy,”
Embedded Systems Programming, vol. 7, Oct. 1994.

[30] C. D. Gill, R. Cytron, and D. C. Schmidt, “Middleware Scheduling
Optimization Techniques for Distributed Real-Time and Embedded
Systems,” inProceedings of the7th Workshop on Object-oriented
Real-time Dependable Systems, (San Diego, CA), IEEE, Jan. 2002.

[31] J. Huang and R. Jha and W. Heimerdinger and M. Muhammad and S.
Lauzac and B. Kannikeswaran and K. Schwan and W. Zhao and R.
Bettati, “RT-ARM: A Real-Time Adaptive Resource Management
System for Distributed Mission-Critical Applications,” inWorkshop on
Middleware for Distributed Real-Time Systems, RTSS-97, (San
Francisco, California), IEEE, 1997.

[32] V. F. Wolfe, L. C. DiPippo, R. Ginis, M. Squadrito, S. Wohlever,
I. Zykh, and R. Johnston, “Real-Time CORBA,” inProceedings of the
Third IEEE Real-Time Technology and Applications Symposium,
(Montréal, Canada), June 1997.

[33] V. Fay-Wolfe, J. K. Black, B. Thuraisingham, and P. Krupp, “Real-time
Method Invocations in Distributed Environments,” Tech. Rep. 95-244,
University of Rhode Island, Department of Computer Science and
Statistics, 1995.

16

[34] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support for
Quality of Service for CORBA Objects,”Theory and Practice of Object
Systems, vol. 3, no. 1, pp. 1–20, 1997.

[35] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-Oriented Programming,” in
Proceedings of the 11th European Conference on Object-Oriented
Programming, June 1997.

[36] J. Loyall, J. Gossett, C. Gill, R. Schantz, J. Zinky, P. Pal, R. Shapiro,
C. Rodrigues, M. Atighetchi, and D. Karr, “Comparing and Contrasting
Adaptive Middleware Support in Wide-Area and Embedded Distributed
Object Applications,” inProceedings of the 21st International
Conference on Distributed Computing Systems (ICDCS-21),
pp. 625–634, IEEE, April 2001.

[37] DARPA, “The Quorum Program.”
www.darpa.mil/ito/research/quorum/index.html, 1999.

17

