
The Design and Performance of an I/O Subsystem
for Real-time ORB Endsystem Middleware

Douglas C. Schmidt, Fred Kuhns, Rajeev Bector, and David L. Levine
fschmidt,fredk,rajeev,levineg@cs.wustl.edu

Department of Computer Science, Washington University
St. Louis, MO 63130, USA�

Abstract

There is increasing demand to extend Object Request Bro-
ker (ORB) middleware to support applications with stringent
quality of service (QoS) requirements. However, conventional
ORBs do not define standard features for specifying or enforc-
ing end-to-end QoS for applications with deterministic real-
time requirements. This paper provides two contributions to
the study of real-time ORB middleware. First, it describes
the design of a real-time I/O (RIO) subsystem optimized for
ORB endsystems that support real-time applications running
on “off-the-shelf” hardware and software. Second, it illus-
trates how integrating a real-time ORB with a real-time I/O
subsystem can reduce latency bounds on end-to-end communi-
cation between high-priority clients without unduly penalizing
low-priority and best-effort clients.

Keywords: Real-time CORBA Object Request Broker, Qual-
ity of Service for OO Middleware, Real-time I/O Subsystems.

1 Introduction

Object Request Broker (ORB) middleware like CORBA
[1], DCOM [2], and Java RMI [3] is well-suited for re-
quest/response applications with best-effort quality of service
(QoS) requirements. However, ORB middleware has his-
torically not been well-suited for performance-sensitive, dis-
tributed real-time applications. In general, conventional ORBs
suffer from (1) lack of QoS specification interfaces, (2) lack of
QoS enforcement, (3) lack of real-time programming features,
and (4) lack of performance optimizations [4].

To address these shortcomings, we have developedThe ACE
ORB(TAO) [5]. TAO is a high-performance, real-time ORB
endsystem targeted for applications with deterministic and sta-
tistical QoS requirements, as well as best effort requirements.
The TAO ORB endsystem contains the network interface, OS,

�This work was supported in part by Boeing, NSF grant NCR-9628218,
DARPA contract 9701516, and US Sprint.

communication protocol, and CORBA-compliant middleware
components and features shown in Figure 1.

NETWORK

ORB RUN-TIME

SCHEDULER

REAL-TIME
ORB CORE

operation()

RIDL
STUBS

REAL-TIME

OBJECT

ADAPTER

RIDL
SKELETON

in args

out args + return value

CLIENT

OS KERNEL

HIGH-SPEED

NETWORK INTERFACE

REAL-TIME I/O
SUBSYSTEM

GIOP/RIOP

OBJECT
(SERVANT)

OS KERNEL

HIGH-SPEED

NETWORK INTERFACE

REAL-TIME I/O
SUBSYSTEM

ACE COMPONENTS

OBJ

REF

Figure 1: Components in the TAO Real-time ORB Endsystem

TAO’s real-time I/O (RIO) subsystem runs in the OS ker-
nel. It uses a pool of real-time threads to send/receive requests
to/from clients across high-speed networks or I/O backplanes.
TAO’s ORB Core, Object Adapter, and servants run in user-
space. TAO’s ORB Core contains a pool of real-time threads
that are co-scheduled with the RIO subsystem’s thread pool.
Together, these threads process client requests in accordance
with their QoS requirements. TAO’s Object Adapter uses per-
fect hashing [6] and active demultiplexing [7] to demultiplex
these requests to application-level servant operations in con-
stantO(1) time.

We have used TAO to research key dimensions of real-time
ORB endsystem design including static [5] and dynamic [8]
real-time scheduling, real-time request demultiplexing [7],
real-time event processing [9], and the performance of vari-
ous commercial [10] and real-time research ORBs [11]. This
paper focuses on an essential, and previously unexamined, di-

1

mension in the real-time ORB endsystem design space:the
development and empirical analysis of a real-time I/O (RIO)
subsystem that enables TAO to support the QoS requirements
of statically scheduled applications.

The paper is organized as follows: Section 2 describes the
architectural components in TAO’s ORB endsystem that sup-
port statically scheduled applications; Section 3 explains how
our real-time I/O (RIO) subsystem enhances the Solaris 2.5.1
OS kernel to support end-to-end QoS for TAO; Section 4
presents empirical results from systematically benchmarking
the efficiency and predictability of TAO and RIO over an ATM
network; and Section 6 presents concluding remarks.

2 The Design of the TAO Real-time
ORB Endsystem

2.1 Real-time Support in TAO

To support the QoS demands of distributed object computing
applications, an ORB endsystem must be flexible, efficient,
predictable, and convenient to program. To meet these re-
quirements, TAO provides end-to-end QoS specification and
enforcement mechanisms and optimizations [5, 7, 11] for ef-
ficient and predictable request dispatching. The following
overview of the real-time support in TAO’s ORB endsystem
explains how its components can be configured to support stat-
ically scheduled real-time applications.1

2.1.1 Architectural Overview

Figure 2 illustrates the key components in TAO’s ORB end-
system. TAO supports the standard OMG CORBA reference
model [1], with the following enhancements designed to over-
come the shortcomings of conventional ORBs [11] for high-
performance and real-time applications:

Real-time IDL Stubs and Skeletons: TAO’s IDL stubs and
skeletons efficiently marshal and demarshal operation param-
eters, respectively [13]. In addition, TAO’s Real-time IDL
(RIDL) stubs and skeletons extend the OMG IDL specifica-
tions to ensure that application timing requirements are speci-
fied and enforced end-to-end [14].

Real-time Object Adapter: An Object Adapter associates
servants with the ORB and demultiplexes incoming requests
to servants. TAO’s real-time Object Adapter [15] uses perfect
hashing [6] and active demultiplexing [7] optimizations to dis-
patch servant operations in constantO(1) time, regardless of
the number of active connections, servants, and operations de-
fined in IDL interfaces.

1TAO’s architecture for dynamically scheduled real-time applications is
described in [12].

RR

UU

NN

TT

II

MM

EE

 S S

CC

HH

EE

DD

UU

LL

EE

RR

SOCKETSOCKET QUEUEQUEUE DEMUXERDEMUXER

ATM PORT INTERFACE
CONTROLLER (APIC)

ZZ

EE

RR

OO

CC

OO

PP

YY

BB

UU

FF

FF

EE

RR

SS

II//OO
SUBSYSTEMSUBSYSTEM

OBJECTOBJECT
ADAPTERADAPTER

SERVANTSERVANT DEMUXERDEMUXER

CLIENTSCLIENTS
STUBS

SERVANTS
SKELETONS

U

ORBORB CORECORE

REACTORREACTOR

(20 HZ)

REACTOR

(10 HZ)

REACTOR

(5 HZ)

REACTOR

(1 HZ)

Figure 2: TAO’s Real-time ORB Endsystem Architecture

ORB Run-time Scheduler: A real-time scheduler [16]
maps application QoS requirements, such as include bound-
ing end-to-end latency and meeting periodic scheduling dead-
lines, to ORB endsystem/network resources, such as ORB
endsystem/network resources include CPU, memory, network
connections, and storage devices. TAO’s run-time scheduler
supports both static [5] and dynamic [8] real-time scheduling
strategies.

Real-time ORB Core: An ORB Core delivers client re-
quests to the Object Adapter and returns responses (if any) to
clients. TAO’s real-time ORB Core [11] uses a multi-threaded,
preemptive, priority-based connection and concurrency archi-
tecture [13] to provide an efficient and predictable CORBA
IIOP protocol engine.

Real-time I/O subsystem: TAO’s real-time I/O subsystem
extends support for CORBA into the OS. TAO’s I/O subsystem
assigns priorities to real-time I/O threads so that the schedu-
lability of application components and ORB endsystem re-
sources can be enforced. TAO also runs efficiently and rel-
atively predictably on conventional I/O subsystems that lack
advanced QoS features.

High-speed network interface: At the core of TAO’s I/O
subsystem is a “daisy-chained” network interface consisting
of one or more ATM Port Interconnect Controller (APIC)

2

chips [17]. APIC is designed to sustain an aggregate bi-
directional data rate of 2.4 Gbps. In addition, TAO runs
on conventional real-time interconnects, such as VME back-
planes, multi-processor shared memory environments, as well
as Internet protocols like TCP/IP.

TAO is developed atop lower-level middleware called
ACE [18], which implements core concurrency and distribu-
tion patterns [19] for communication software. ACE pro-
vides reusable C++ wrapper facades and framework compo-
nents that support the QoS requirements of high-performance,
real-time applications. ACE runs on a wide range of OS plat-
forms, including Win32, most versions of UNIX, and real-time
operating systems like Sun/Chorus ClassiX, LynxOS, and Vx-
Works.

2.1.2 Configuring TAO for Statically Scheduled Real-
time Applications

TAO can be configured to support different classes of applica-
tion QoS requirements. For instance, the ORB endsystem con-
figuration shown in Figure 2 is optimized for statically sched-
uled applications with periodic real-time requirements. Fig-
ure 3 illustrates an example of this type of application from the
domain of avionics mission computing, where TAO has been
deployed in mission computing applications at Boeing [9].

OBJECTOBJECT REQUESTREQUEST BROKERBROKER

2:2:PUSH PUSH ((EVENTSEVENTS))

AirAir
FrameFrame

SensorSensor
proxyproxy

HUDHUD

NavNav

SensorSensor
proxyproxy

SensorSensor
proxyproxy

3:3:PUSH PUSH ((EVENTSEVENTS))

1:1: SENSORS SENSORS

GENERATEGENERATE

DATADATA

EVENTEVENT

CHANNELCHANNEL

Figure 3: Real-time CORBA-based Avionics Mission Com-
puting Application

Mission computing applications manage sensors and opera-
tor displays, navigate the aircraft’s course, and control weapon
release. These applications require an ORB endsystem that
supports real-time scheduling and dispatching of periodic pro-
cessing operations, as well as efficient event filtering and cor-

relation mechanisms. To support these requirements, TAO’s
ORB Core supports the priority-based concurrency and con-
nection architectures described below.

� TAO’s priority-based concurrency architecture:
TAO’s ORB Core can be configured to allocate a real-time
thread2 for each application-designated priority level. Ev-
ery thread in TAO’s ORB Core can be associated with a
Reactor , which implements the Reactor pattern [21] to pro-
vide flexible and efficient endpoint demultiplexing and event
handler dispatching.

When playing the role of a server, TAO’sReactor (s) de-
multiplex incoming client requests to connection handlers that
perform GIOP processing. These handlers collaborate with
TAO’s Object Adapter to dispatch requests to application-level
servant operations. Operations can either execute with one of
the following two models [16]:

� Client propagation model– The operation is run at the
priority of the client that invoked the operation.

� Server sets model– The operation is run at the priority
of the thread in the server’s ORB Core that received the
operation.

The server sets priority model is well-suited for determinis-
tic real-time applications since it minimizes priority inversion
and non-determinism in TAO’s ORB Core [11]. In addition, it
reduces context switching and synchronization overhead since
servant state must be locked only if servants interact across
different thread priorities.

TAO’s priority-based concurrency architecture is optimized
for statically configured, fixed priority real-time applications.
In addition, it is well suited for scheduling and analysis tech-
niques that associate priority withrate, such as rate monotonic
scheduling (RMS) and rate monotonic analysis (RMA) [22,
23]. For instance, avionics mission computing systems com-
monly execute their tasks inrates groups. A rate group assem-
bles all periodic processing operations that occur at particular
rates,e.g., 20 Hz, 10 Hz, 5 Hz, and 1 Hz, and assigns them to
a pool of threads using fixed-priority scheduling.

� TAO’s priority-based connection architecture: Fig-
ure 4 illustrates how TAO can be configured with a priority-
based connection architecture. In this model, each client
thread maintains aConnector [24] in thread-specific stor-
age. EachConnector manages a map of pre-established
connections to servers. A separate connection is maintained
for each thread priority in the server ORB. This design en-
ables clients to preserve end-to-end priorities as requests tra-
verse through ORB endsystems and communication links [11].

2In addition, TAO’s ORB Core can be configured to support other concur-
rency architectures, including thread pool, thread-per-connection, and single-
threaded reactive dispatching [20].

3

CLIENTCLIENT ORBORB CORECORE

20 10 5 120 10 5 1

HZHZ HZHZ HZHZ HZHZ

CONNECTORCONNECTOR

20 10 5 120 10 5 1

HZHZ HZHZ HZHZ HZHZ

CONNECTORCONNECTOR

20 10 5 120 10 5 1

HZHZ HZHZ HZHZ HZHZ

CONNECTORCONNECTOR

SERVERSERVER ORBORB CORECORE

REACTORREACTOR

(20 (20 HZHZ))

REACTORREACTOR

(10 (10 HZHZ))

REACTORREACTOR

(5 (5 HZHZ))

REACTORREACTOR

(1 (1 HZHZ))

CC

OO

NN

NN

EE

CC

TT

22

AA

CC

CC

EE

PP

TT

OO

RR

CC

OO

NN

NN

EE

CC

TT

11

CC

OO

NN

NN

EE

CC

TT

33

II//OO SUBSYSTEMSUBSYSTEMI/O SUBSYSTEM

C

O

N

N

E

C

T

2

A

C

C

E

P

T

O

R

C

O

N

N

E

C

T

1

C

O

N

N

E

C

T

3

C

O

N

N

E

C

T

2

A

C

C

E

P

T

O

R

C

O

N

N

E

C

T

1

C

O

N

N

E

C

T

3

C

O

N

N

E

C

T

2

A

C

C

E

P

T

O

R

C

O

N

N

E

C

T

1

C

O

N

N

E

C

T

3

COMMUNICATION LINK

CLIENT APPLICATION

STUB STUB STUB

Figure 4: TAO’s Priority-based Connection and Concurrency
Architectures

Figure 4 also shows how theReactor that is associated
with each thread priority in a server ORB can be configured to
use anAcceptor [24]. TheAcceptor is a socket endpoint
factory that listens on a specific port number for clients to con-
nect to the ORB instance running at a particular thread priority.
TAO can be configured so that each priority level has its own
Acceptor port. For instance, in statically scheduled, rate-
based avionics mission computing systems [12], ports 10020,
10010, 10005, 10001 could be mapped to the 20 Hz, 10 Hz,
5 Hz, and 1 Hz rate groups, respectively. Requests arriving
at these socket ports can then be processed by the appropriate
fixed-priority real-time threads.

Once a client connects, theAcceptor in the server ORB
creates a new socket queue and a GIOP connection handler to
service that queue. TAO’s I/O subsystem uses the port number
contained in arriving requests as a demultiplexing key to asso-
ciate requests with the appropriate socket queue. This design
minimizes priority inversion through the ORB endsystem via
early demultiplexing[25, 26, 17], which associates requests
arriving on network interfaces with the appropriate real-time
thread that services the target servant. Early demultiplexing
is used in TAO to vertically integrate the ORB endsystem’s
QoS support from the network interface up to the application
servants.

2.2 Handling Real-time Client Requests in
TAO

Real-time applications that use the TAO ORB endsystem can
specify their resource requirements to TAO’sstatic schedul-
ing service[5]. TAO’s scheduling service is implemented as
a CORBA object,i.e., it implements an IDL interface. Ap-
plications can provide QoS information to TAO’s scheduling
service on a per-operation basis, off-line,i.e., before applica-
tion execution. For CPU requirements, the QoS requirements
are expressed byRT Operation s using the attributes of the

RTRT
OperationOperation

PERIODIC SCHEDULINGPERIODIC SCHEDULING//DISPATCHINGDISPATCHING

TT++PP

P:P: PERIOD PERIOD

C:C: REQUEST COMPUTATION TIME REQUEST COMPUTATION TIME

PP

CC CC

TIMETIME

TT TT++22PP

struct RT_Info {struct RT_Info {
 Time worstcase_exec_time_; Time worstcase_exec_time_;
 Period period_; Period period_;
 Criticality criticality_; Criticality criticality_;
 Importance importance_; Importance importance_;
};};

Figure 5: TAO’s QoS Specification Model

RT Info IDL struct shown in Figure 5.
An RT Operation is a scheduled operation, i.e., one

that has expressed its resource requirements to TAO using
an RT Info struct . RT Info attributes include worst-
case execution time, period, importance, and data dependen-
cies. Using scheduling techniques like RMS and analysis ap-
proaches like RMA, TAO’s real-time static scheduling service
determines if there is a feasible schedule based on knowledge
of all RT Info data for all theRT Operations in an appli-
cation. TAO’s QoS specification model is described further in
[5].

2.3 TAO’s Run-time Scheduling Model

The scheduling information used by TAO’s run-time scheduler
shown in Figure 2 consists ofpriorities andsubpriorities. Ap-
plications can associate these with each servant operation, as
follows:

Priority: The priority is the (OS-dependent) thread priority
of the highest priority thread that can execute the operation. It
is determined based on the maximumrateat which servant op-
erations can execute. For example, systems that are scheduled
using RMS can compute this information based on knowledge
of the computation time,Co, and period,Po, for each opera-
tion o.

Subpriority: The subpriority orders servant execution
within each rate group. This ordering is based on two factors:
(1) data dependencies between servants and (2) the relative im-
portance of servants. Data dependencies are expressed directly
to TAO’s scheduler via theRT Info QoS specification mech-
anism described in [5]. In most cases, these dependencies can
be determined automatically.

The subpriority of an operation also depends on itsimpor-
tance. Importance is an application-specific indication of rela-

4

tive operation importance. It is used by the run-time scheduler
as a “tie-breaker” when other scheduling parameters,e.g., rate
and data dependencies, are equal.

As described earlier, TAO’s static scheduling service sup-
ports RMA and RMS. Therefore, its run-time scheduler com-
ponent is simply an interface to a table of scheduling infor-
mation that is pre-computed off-line, described in [5]. TAO’s
dynamic scheduling service [12] uses the same interface to
drive more sophisticated on-line algorithms and retrieve the
scheduling parameters interactively.

3 The Design of TAO’s Real-time I/O
Subsystem on Solaris over ATM

Meeting the requirements of distributed real-time applications
requires more than defining QoS interfaces with CORBA IDL
or developing an ORB with real-time thread priorities. In par-
ticular, it requires the integration of the ORB and the I/O sub-
system to provide end-to-end real-time scheduling and real-
time communication to the ORB endsystem.

This section describes how we have developed a real-time
I/O (RIO) subsystem for TAO by customizing the Solaris 2.5.1
OS kernel to support real-time network I/O over ATM/IP net-
works [27]. Below, we examine the components that affect
the performance and determinism of the RIO subsystem. Our
main focus is on techniques that alleviate key sources of end-
system priority inversion to reduce non-deterministic applica-
tion and middleware behavior.

3.1 Overview of Solaris

3.1.1 From VxWorks to Solaris

TAO’s original real-time I/O subsystem ran over a proprietary
VME backplane protocol integrated into VxWorks running on
a 200 MHz PowerPC CPU [9]. All protocol processing was
performed at interrupt-level in a VxWorks device driver. This
design was optimized for low latency,e.g., two-way ORB op-
erations were�350�secs.

Unfortunately, the VME backplane driver is not portable to
a broad range of real-time systems. Moreover, it is not suit-
able for more complex transport protocols, such as TCP/IP,
which cannot be processed entirely at interrupt-level without
incurring excessive priority inversion [28]. Therefore, we de-
veloped a real-time I/O (RIO) subsystem that is integrated into
a standard protocol processing framework: theSTREAMS[29]
communication I/O subsystem on Solaris.

We used Solaris as the basis for our research on TAO and
RIO for the following reasons:

Real-time support: Solaris attempts to minimize dispatch
latency [30] for real-time threads. Moreover, its fine-grained
locking of kernel data structures allows bounded thread pre-
emption overhead.

Multi-threading support: Solaris supports a scalable
multi-processor architecture, with both kernel-level (kthreads)
and user-level threads.

Dynamic configurability: Most Solaris kernel components
are dynamically loadable modules, which simplifies debug-
ging and testing of new kernel modules and protocol imple-
mentations.

Compliant to open system standards: Solaris supports the
POSIX 1003.1c [31] real-time programming application pro-
gramming interfaces (APIs), as well as other standard POSIX
APIs for multi-threading [32] and communications.

Tool support: There are many software tools and li-
braries [18] available to develop multi-threaded distributed,
real-time applications on Solaris.

Availability: Solaris is widely used in research and industry.

Kernel source: Sun licenses the source code to Solaris,
which allowed us to modify the kernel to support the multi-
threaded, real-time I/O scheduling class described in Sec-
tion 3.3.

In addition to Solaris, TAO runs on a wide variety of
real-time operating systems, such as LynxOS, VxWorks, and
Sun/Chorus ClassiX, as well as general-purpose operating sys-
tems with real-time extensions, such as Digital UNIX, Win-
dows NT, and Linux. We plan to integrate the RIO subsystem
architecture described in this section into other operating sys-
tems that implement theSTREAMSI/O subsystem architecture.

3.1.2 Synopsis of the Solaris Scheduling Model

Scheduling classes: Solaris extends the traditional UNIX
time-sharing scheduler [33] to provide a flexible framework
that allows dynamic linking of customscheduling classes. For
instance, it is possible to implement a new scheduling policy
as a scheduling class and load it into a running Solaris kernel.
By default, Solaris supports the four scheduling classes shown
ordered by decreasing global scheduling priority below:

Scheduling Class Priorities Typical purpose

Interrupt (INTR) 160-169 Interrupt Servicing
Real-Time (RT) 100 - 159 Fixed priority scheduling
System (SYS) 60-99 OS-specific threads
Time-Shared (TS) 0-59 Time-Shared scheduling

5

The Time-Sharing (TS)3 class is similar to the traditional
UNIX scheduler [33], with enhancements to support interac-
tive windowing systems. The System class (SYS) is used to
schedule system kthreads, including I/O processing, and is not
available to user threads. The Real-Time (RT) scheduling class
uses fixed priorities above the SYS class. Finally, the highest
system priorities are assigned to the Interrupt (INTR) schedul-
ing class [34].

By combining a threaded, preemptive kernel with a fixed
priority real-time scheduling class, Solaris attempts to pro-
vide a worst-case bound on the time required to dispatch user
threads or kernel threads [30]. The RT scheduling class sup-
ports both Round-Robin and FIFO scheduling of threads. For
Round-Robin scheduling, a time quantum specifies the maxi-
mum time a thread can run before it is preempted by another
RT thread with the same priority. For FIFO scheduling, the
highest priority thread can run for as long as it chooses, until
it voluntarily yields control or is preempted by an RT thread
with a higher priority.

Timer mechanisms: Many kernel components use the So-
laris timeout facilities. To minimize priority inversion, So-
laris separates its real-time and non-real-time timeout mecha-
nisms [30]. This decoupling is implemented via two callout
queue timer mechanisms: (1)realtime timeout , which
supports real-time callouts and (2)timeout , which supports
non-real-time callouts.

The real-time callout queue is serviced at the lowest inter-
rupt level, after the current clock tick is processed. In con-
trast, the non-real-time callout queue is serviced by a thread
running with a SYS thread priority of 60. Therefore, non-real-
time timeout functions cannot preempt threads running in the
RT scheduling class.

3.1.3 Synopsis of the Solaris Communication I/O Subsys-
tem

The Solaris communication I/O subsystem is an enhanced
version of the SVR4STREAMS framework [29] with proto-
cols like TCP/IP implemented usingSTREAMS modules and
drivers.STREAMSprovides a bi-directional path between user
threads and kernel-resident drivers. In Solaris, theSTREAMS

framework has been extended to support multiple threads of
control within a Stream [35] and TCP/IP is based on the Men-
tat TCP/IP implementation for SVR4STREAMS.

Below, we outline the key components of theSTREAMS

framework and describe how they affect communication I/O
performance and real-time determinism.

3In this discussion we include the Interactive (IA) class, which is used
primarily by Solaris windowing systems, with the TS class since they share
the same range of global scheduling priorities.

General structure of a STREAM: A Stream is composed
of a Stream head, a driver and zero or more modules linked to-
gether by read queues (RQ) and write queues (WQ), as shown
in Figure 6. The Stream head provides an interface between a

NETWORK INTERFACENETWORK INTERFACE

OR PSEUDOOR PSEUDO--DEVICESDEVICES

STREAMSTREAM
TailTail

MultiplexorMultiplexor

APPLICATIONAPPLICATION

StreamStream

STREAMSTREAM
HeadHead

APPLICATIONAPPLICATION

StreamStream

U
P
S
T
R
E
A
MD

O
W
N
S
T
R
E
A
M

MESSAGEMESSAGE WRITEWRITE

QUEUEQUEUE

READREAD

QUEUEQUEUE
MODULEMODULE

open()=0
close()=0
put()=0
svc()=0

USERUSER

KERNELKERNEL

Figure 6: General Structure of a Stream

user process and a specific instance of a Stream in the kernel.
It copies data across the user/kernel boundary, notifies user
threads when data is available, and manages the configuration
of modules into a Stream.

Each module and driver must define a set of entry points
that handleopen /close operations and process Stream mes-
sages. The message processing entry points areput andsvc ,
which are referenced through the read and write queues. The
put function provides the mechanism to send messagessyn-
chronouslybetween modules, drivers, and the Stream head.

In contrast, thesvc function processes messagesasyn-
chronouslywithin a module or driver. A background thread
in the kernel’s SYS scheduling class runssvc functions at
priority 60. In addition,svc functions will run after certain
STREAMS-related system calls, such asread , write , and
ioctl . When this occurs, thesvc function runs in the con-
text of the thread invoking the system call.

Flow control: Each module can specify a high and low wa-
termark for its queues. If the number of enqueued messages
exceeds theHIGH WATERMARK the Stream enters the flow-
controlled state. At this point, messages will be queued up-
stream or downstream until flow control abates.

6

For example, assume aSTREAM driver has queued
HIGH WATERMARK+1 messages on its write queue. The first
module atop the driver that detects this will buffer messages
on its write queue, rather than pass them downstream. Be-
cause the Stream is flow-controlled, thesvc function for the
module will not run. When the number of messages on the
driver’s write queue drops below theLOW WATERMARK the
Stream will be re-enable automatically. At this point, thesvc
function for this queue will be scheduled to run.

STREAM Multiplexors: Multiple STREAMScan be linked
together using a special type of driver called amultiplexor.
A multiplexor acts like a driver to modules above it and as
a Stream head to modules below it. Multiplexors enable
theSTREAMSframework to support layered network protocol
stacks [36].

Figure 7 shows how TCP/IP is implemented using the So-
laris STREAMS framework. IP behaves as a multiplexor by

Reactor - 5Hz

Std RT

Callout Queues

ATM Driver

FIFO Queuing

user

kernel

rQ

rQ rQ rQ
<timers> <timers> <timers>

UDP/TCP UDP/TCP UDP/TCP

wQ wQ wQ

rQwQ

wQ wQ rQ wQ rQ

wQ rQ

IP - Multiplexor
(routing tables)

STREAM head STREAM head STREAM head

Protocol Processing
in Interrupt Context

Object Adaptor

Servants

user threaduser thread

Run/Sleep Queues
Scheduler

Thread3

thread0
Thread1

other

ORB Core

Figure 7: Conventional Protocol Stacks in SolarisSTREAMS

joining different transport protocols with one or more link
layer interfaces. Thus, IP demultiplexes both incoming and
outgoing datagrams.

Each outgoing IP datagram is demultiplexed by locating
its destination address in the IP routing table, which deter-
mines the network interface it must be forwarded to. Likewise,
each incoming IP datagram is demultiplexed by examining the

transport layer header in aSTREAMS message to locate the
transport protocol and port number that designates the correct
upstream queue.

Multi-threaded STREAMS: SolarisSTREAMSallows mul-
tiple kernel threads to be active inSTREAMS I/O modules,
drivers, and multiplexors concurrently [37]. This multi-
threadedSTREAMSframework supports several levels of con-
currency, which are implemented using theperimeters[35]
shown below:

Per-module with single threading
Per-queue-pair single threading
Per-queue single threading
Any of the above with unrestrictedput and svc
Unrestricted concurrency

In Solaris, the concurrency level of IP is “per-module” with
concurrentput , TCP andsockmod are “per-queue-pair,”
and UDP is “per-queue-pair” with concurrentput . These
perimeters provide sufficient concurrency for common use-
cases. However, there are cases where IP must raise its locking
level when manipulating global tables, such as the IP routing
table. When this occurs, messages entering the IP multiplexor
are placed on a special queue and processed asynchronously
when the locking level is lowered [35, 34].

Callout queue callbacks: The SolarisSTREAMSframework
provides functions to set timeouts and register callbacks. The
qtimeout function adds entries to the standard non-real-
time callout queue. This queue is serviced by a system thread
with a SYS priority of 60, as described in Section 3.1.2. So-
laris TCP and IP use this callout facility for their protocol-
specific timeouts, such as TCP keepalive and IP fragmenta-
tion/reassembly.

Another mechanism for registering a callback function is
bufcall . Thebufcall function registers a callback func-
tion that is invoked when a specified size of buffer space be-
comes available. For instance, when buffers are unavailable,
bufcall is used by aSTREAM queue to register a function,
such asallocb , which is called back when space is available
again. These callbacks are handled by a system thread with
priority SYS 60.

Network I/O: The Solaris network I/O subsystem provides
service interfaces that reflect the OSI reference model [36].
These service interfaces consist of a collection of primitives
and a set of rules that describe the state transitions.

Figure 7 shows how TCP/IP is structured in the Solaris
STREAMS framework. In this figure, UDP and TCP imple-
ment the Transport Protocol Interface (TPI) [38], IP the Net-
work Provider Interface (NPI) [39] and ATM driver the Data
Link Provider Interface (DLPI) [40]. Service primitives are
used (1) to communicate control (state) information and (2)

7

to pass data messages between modules, the driver, and the
Stream head.

Data messages (as opposed to control messages) in the So-
laris network I/O subsystem typically follow the traditional
BSD model. When a user thread sends data it is copied into
kernel buffers, which are passed through the Stream head to
the first module. In most cases, these messages are then passed
through each layer and into the driver through a nested chain
of put s [35]. Thus, the data are sent to the network interface
driver within the context of the sending process and typically
are not processed asynchronously by modulesvc functions.
At the driver, the data are either sent out immediately or are
queued for later transmission if the interface is busy.

When data arrive at the network interface, an interrupt is
generated and the data (usually referred to as a frame or
packet) is copied into kernel buffer. This buffer is then passed
up through IP and the transport layer in interrupt context,
where it is either queued or passed to the Stream head via
the socket module. In general, the use ofsvc functions is
reserved for control messages or connection establishment.

3.2 Limitations of the Solaris I/O Subsystem
for Real-time Scheduling and Protocol Pro-
cessing

Section 3.1.3 outlined the structure and functionality of the ex-
isting Solaris 2.5.1 scheduling model and communication I/O
subsystem. Below, we review the limitations of Solaris when
it is used as the I/O subsystem for real-time ORB endsystems.
These limitations stem largely from the fact that the Solaris
RT scheduling class is not well integrated with the Solaris
STREAMS-based network I/O subsystem. In particular, Solaris
only supports the RT scheduling class for CPU-bound user
threads, which yields the priority inversion hazards for real-
time ORB endsystems described in Sections 3.2.1 and 3.2.2.

3.2.1 Thread-based Priority Inversions

Thread-based priority inversion can occur when a higher prior-
ity thread blocks awaiting a resource held by a lower priority
thread [41]. In Solaris, this type of priority inversion gener-
ally occurs when real-time user threads depend on kernel pro-
cessing that is performed at the SYS or INTR priority levels
[30, 28, 41]. Priority inversion may not be a general problem
for user applications with “best-effort” QoS requirements. It
is problematic, however, for real-time applications that require
bounded processing times and strict deadline guarantees.

The SolarisSTREAMS framework is fraught with opportu-
nities for thread-based priority inversion, as described below:

STREAMS-related svc threads: When used inappropri-
ately, STREAMS svc functions can yield substantial un-

bounded priority inversion. The reason is thatsvc functions
are called from a kernelsvc thread, known as theSTREAMS

background thread. This thread runs in the SYS scheduling
class with a global priority of 60.

In contrast, real-time threads have priorities ranging from
100 to 159. Thus, it is possible that a CPU-bound RT thread
can starve thesvc thread by monopolizing the CPU. In this
case, thesvc functions for the TCP/IP modules and multi-
plexors will not run, which can cause unbounded priority in-
version.

For example, consider a real-time process control applica-
tion that reads data from a sensor at a rate of 20 Hz and sends
status messages to a remote monitoring system. Because this
thread transmits time-critical data, it is assigned a real-time
priority of 130 by TAO’s run-time scheduler. When this thread
attempts to send a message over a flow-controlled TCP con-
nection, it will be queued in theTCPmodule for subsequent
processing by thesvc function.

Now, assume there is another real-time thread that runs
asynchronously for an indeterminate amount of time respond-
ing to external network management trap events. This asyn-
chronous thread has an RT priority of 110 and is currently ex-
ecuting. In this case, the asynchronous RT thread will prevent
the svc function from running. Therefore, the high-priority
message from the periodic thread will not be processed until
the asynchronous thread completes, which can cause the un-
bounded priority inversion depicted in Figure 8.

Interrupt (INTR)

Real-Time (RT)

System (SYS)

Time-Shared (TS)

Interrupt thread - protocol processing for low-priority thread

Preempts

High Priority I/O-bound RT thread (130)

Low-Priority CPU-bound RT thread (110)

STREAMS thread at SYS priority (60)

Depends on

Figure 8: Common Sources of Priority Inversion in Solaris

In addition, two otherSTREAMS-related system kthreads
can yield priority inversions when used with real-time appli-
cations. These threads run with a SYS priority of 60 and han-
dle the callback functions associated with thebufcall and
qtimeout system functions described in Section 3.1.3. This
problem is further exacerbated by the fact that the priority of
the thread that initially made the buffer request is not consid-
ered when thesesvc threads process the requests on their re-
spective queues. Therefore, it is possible that a lower priority
connection can receive buffer space before a higher priority
connection.

8

Protocol processing with interrupt threads: Another
source of thread-based priority inversion in SolarisSTREAMS

occurs when protocol processing of incoming packets is per-
formed in interrupt context. Traditional UNIX implementa-
tions treat all incoming packets with equal priority, regardless
of the priority of the user thread that ultimately receives the
data.

In BSD UNIX-based systems [33], for instance, the in-
terrupt handler for the network driver deposits the incoming
packet in the IP queue and schedules a software interrupt that
invokes theip input function. Before control returns to the
interrupted user process, the software interrupt handler is run
andip input is executed. Theip input function executes
at the lowest interrupt level and processes all packets in its in-
put queue. Only when this processing is complete does control
return to the interrupted process. Thus, not only is the process
preempted, but it will be charged for the CPU time consumed
by input protocol processing.

In STREAMS-based systems, protocol processing can either
be performed at interrupt context (as in Solaris) or withsvc
functions scheduled asynchronously. Usingsvc functions
can yield the unbounded priority inversion described above.
Similarly, processing all input packets in interrupt context can
cause unbounded priority inversion.

Modern high-speed network interfaces can saturate the sys-
tem bus, memory, and CPU, leaving little time available for
application processing. It has been shown that if protocol pro-
cessing on incoming data is performed in interrupt context this
can lead to a condition known asreceive [28]. Livelock is a
condition where the overall endsystem performance degrades
due to input processing of packets at interrupt context. In ex-
treme cases, an endsystem can spend the majority of its time
processing input packets, resulting in little or no useful work
being done. Thus, input livelock can prevent an ORB endsys-
tem from meeting its QoS commitments to applications.

3.2.2 Packet-based Priority Inversions

Packet-based priority inversion can occur when packets for
high-priority applications are queued behind packets for low-
priority user threads. In the Solaris I/O subsystem, for in-
stance, this can occur as a result of serializing the processing
of incoming or outgoing network packets. To meet deadlines
of time-critical applications, it is important to eliminate, or at
least minimize, packet-based priority inversion.

Although TCP/IP in Solaris is multi-threaded, it incurs
packet-based priority inversion since it enqueues network data
in FIFO order. For example, TAO’s priority-based ORB Core,
described in Section 2.1.2, associates all packets destined for
a particular TCP connection with a real-time thread of the ap-
propriate priority. However, different TCP connections can be
associated with different thread priorities. Therefore, packet-

based priority inversion will result when the OS kernel places
packets from different connections in the same queue and pro-
cesses sequentially. Figure 7 depicts this case, where the
queues shared by all connections reside in the IP multiplexor
and interface driver.

To illustrate this problem, consider an embedded system
where Solaris is used for data collection and fault man-
agement. This system must transmit both (1) high-priority
real-time network management status messages and (2) low-
priority bulk data radar telemetry. For the system to operate
correctly, status messages must be delivered periodically with
strict bounds on latency and jitter. Conversely, the bulk data
transfers occur periodically and inject a large number of radar
telemetry packets into the I/O subsystem, which are queued at
the network interface.

In Solaris, the packets containing high-priority status mes-
sages can be queued in the network interfacebehindthe lower
priority bulk data radar telemetry packets. This situation yields
packet-based priority inversion. Thus, status messages may ar-
rive too late to meet end-to-end application QoS requirements.

3.3 RIO – An Integrated I/O Subsystem for
Real-time ORB Endsystems

Enhancing a general-purpose OS like Solaris to support the
QoS requirements of a real-time ORB endsystem like TAO
requires the resolution of the following design challenges:

1. Creating an extensible and predictable I/O subsystem
framework that can integrate seamlessly with a real-time
ORB.

2. Alleviating key sources of packet-based and thread-based
priority inversion.

3. Implementing an efficient and scalable packet classifier
that performs early demultiplexing in the ATM driver.

4. Supporting high-bandwidth network interfaces, such as
the APIC [17].

5. Supporting the specification and enforcement of QoS re-
quirements, such as latency bounds and network band-
width.

6. Providing all these enhancements to applications via the
standardSTREAMSnetwork programming APIs [36].

This section describes the RIO subsystem enhancements we
applied to the Solaris 2.5.1 kernel to resolve these design chal-
lenges. Our RIO subsystem enhancements provide a highly
predictable OS run-time environment for TAO’s integrated
real-time ORB endsystem architecture, which is shown in Fig-
ure 9.

Our RIO subsystem enhances Solaris by providing QoS
specification and enforcement features that complement

9

Classifier

user

kernel

ATM Driver

RTStd

Thread3

thread0
Thread1

other

user thread user thread

wQ
IP - Mod

wQ
IP - Mod

wQ

wQ rQ
(routing tables)

IP - Multiplexor
wQ

UDP/TCP

wQrQ

UDP/TCP

wQ
<timers>

UDP/TCP

wQ

UDP/TCP

wQ rQ

reactor 5Hz

V
C

I=
20

0

rQ rQ

rQ
<timers><timers><timers>

rQ

rQrQ

Callout Queues

Run/Sleep Queues
Scheduler

RIO Scheduler

ut-2-kt

Best Effort

TS ClassTS Class

ORB Core

Object Adaptor

Servants

STREAM headSTREAM headSTREAM headSTREAM head

SYS:61

reactor 5Hz

RT:110 RT:105

RT:105RT:110

V
C

I=
11

0

V
C

I=
10

5

2 1 0

012rkt rkt rkt

rQ rQ rQ

Figure 9: Architecture of the RIO Subsystem and Its Relation-
ship to TAO

TAO’s priority-based concurrency and connection architecture
discussed in Section 2.1.2. The resulting real-time ORB end-
system contains user threads and kernel threads that can be
scheduled statically. As described in Section 2.2, TAO’s static
scheduling service [5] runs off-line to map periodic thread re-
quirements and task dependencies to a set of real-time global
Solaris thread priorities. These priorities are then used on-line
by the Solaris kernel’s run-time scheduler to dispatch user and
kernel threads on the CPU(s).

To develop the RIO subsystem and integrate it with TAO,
we extended our prior work on ATM-based I/O subsystems to
provide the following features:

Early demultiplexing: This feature associates packets with
the correct priorities and a specific Stream early in the packet
processing sequence,i.e., in the ATM network interface
driver [17]. RIO’s design minimizes thread-based priority in-
version by vertically integrating packets received at the net-
work interface with the corresponding thread priorities in
TAO’s ORB Core.

Schedule-driven protocol processing: This feature per-
forms all protocol processing in the context of kernel threads
that are scheduled with the appropriate real-time priorities [25,

26, 42, 28]. RIO’s design schedules network interface band-
width and CPU time to minimize priority inversion and de-
crease interrupt overhead during protocol processing.

Dedicated Streams: This feature isolates request packets
belonging to different priority groups to minimize FIFO
queueing and shared resource locking overhead [43]. RIO’s
design resolves resource conflicts that can otherwise cause
thread-based and packet-based priority inversions.

Below, we explore each of RIO’s features and explain how
they alleviate the limitations with Solaris’ I/O subsystem de-
scribed in Section 3.2. Our discussion focuses on how we re-
solved the key design challenges faced when building the RIO
subsystem.

3.3.1 Early Demultiplexing

Context: ATM is a connection-oriented network protocol
that uses virtual circuits (VCs) to switch ATM cells at high
speeds [27]. Each ATM connection is assigned a virtual cir-
cuit identifier (VCI).

Problem: In Solaris STREAMS, packets received by the
ATM network interface driver are processed sequentially and
passed in FIFO order up to the IP multiplexor. Therefore, any
information regarding the packets priority or specific connec-
tion is lost.

Solution: The RIO subsystem uses a packet classifier [44] to
exploit the early demultiplexing feature of ATM [17] by verti-
cally integrating its ORB endsystem architecture, as shown in
Figure 10. Early demultiplexing uses the VCI field in a request
packet to determine its final destination thread efficiently.

Early demultiplexing helps alleviate packet-based priority
inversion because packets need not be queued in FIFO order.
Instead, RIO supportspriority-based queueing, where packets
destined for high-priority applications are delivered ahead of
low-priority packets. In contrast, the Solaris default network
I/O subsystem processes all packets at the same priority, re-
gardless of the user thread they are destined for.

Implementing early demultiplexing in RIO: The RIO
endsystem can be configured so that protocol processing for
each Stream is performed at different thread priorities. This
design alleviates priority inversion when user threads run-
ning at different priorities perform network I/O. In addition,
the RIO subsystem minimizes the amount of processing per-
formed at interrupt level. This is necessary since Solaris does
not consider packet priority or real-time thread priority when
invoking interrupt functions.

At the lowest level of the RIO endsystem, the ATM driver
distinguishes between packets based on their VCIs and stores
them in the appropriate RIO queue (rQ). Each RIO queue pair
is associated with exactly one Stream, but each Stream can be

10

������������������������������

PROCESSING

DEVICE
QUEUE

NETWORK

1. INTERRUPT

2. LOOK-UP

Priority1 Priority 4Priority 3

2

VCI QueueID(ptr)

1 3232323

3435345

32323554

PACKET
CLASSIFIER

3. ENQUEUE

PACKET

THREADS
(RIO kthreads)

reactor 5Hz reactor 10Hz

user threadORB Core

Figure 10: Early Demultiplexing in the RIO Subsystem

associated with zero or more RIO queues,i.e., there is a many
to one relationship for the RIO queues. The RIO protocol pro-
cessing kthread associated with the RIO queue then delivers
the packets to TAO’s ORB Core, as shown in Figure 9.

Figure 9 also illustrates how all periodic connections are
assigned a dedicated Stream, RIO queue pair, and RIO kthread
for input protocol processing. RIO kthreads typically service
their associated RIO queues at the periodic rate specified by an
application. In addition, RIO can allocate kthreads to process
the output RIO queue.

For example, Figure 9 shows four active connections: one
periodic with a 10 Hz period, one periodic with a 5 Hz pe-
riod, and two best-effort connections. Following the standard
rate monotonic scheduling (RMS) model, the highest priority
is assigned to the connection with the highest rate (10 Hz).
In this figure, all packets entering on VCI 110 are placed in
RIO queuerQ2. This queue is serviced periodically by RIO
kthreadrkt2, which runs at real-time priority 110.

After it performs protocol processing, threadrkt2 delivers
the packet to TAO’s ORB Core where it is processed by a pe-
riodic user thread at real-time priority 110. Likewise, the 5 Hz
connection transmits all data packets arriving on VCI 105 and
protocol processing is performed periodically by RIO kthread
rkt1, which passes the packets up to the user thread.

The remaining two connections handle best-effort network
traffic. The best-effort RIO queue (rQ0) is serviced by a rel-
atively low-priority kthreadrkt0. Typically this thread will

be assigned a period and computation time4 to bound the total
throughput allowed on the best-effort connections.

3.3.2 Schedule-driven Protocol Processing

Context: Many real-time applications require periodic I/O
processing. For example, avionics mission computers must
process sensor data periodically to maintain accurate situa-
tional awareness [9]. If the mission computing system fails
unexpectedly, corrective action must occur immediately.

Problem: Protocol processing of input packets in Solaris
STREAMS is demand-driven[36], i.e., when a packet arrives
the STREAMS I/O subsystem suspends all user-level process-
ing and performs protocol processing on the incoming packet.
Demand-driven I/O can incur priority inversion,e.g., when the
incoming packet is destined for a thread with a priority lower
than the currently executing thread. Thus, the ORB endsys-
tem may become overloaded and fail to meet application QoS
requirements.

When sending packets to another host, protocol processing
is typically performed within the context of the user thread
that performed thewrite operation. The resulting packet is
passed to the driver for immediate transmission on the network
interface link. With ATM, a pacing value can be specified for
each active VC, which allows simultaneous pacing of multiple
packets out the network interface. However, pacing may not
be adequate in overload conditions since output buffers can
overflow, thereby losing or delaying high-priority packets.

Solution: RIO’s solution is to performschedule-driven,
rather than demand–driven, protocol processing of network
I/O requests. We implemented this solution in RIO by
adding kernel threads that areco-scheduledwith real-time user
threads in the TAO’s ORB Core. This design vertically inte-
grates TAO’s priority-based concurrency architecture through-
out the ORB endsystem.

Implementing Schedule-driven protocol processing in
RIO: The RIO subsystem uses athread pool [20] con-
currency model to implement its schedule-driven kthreads.
Thread pools are appropriate for real-time ORB endsystems
since they (1) amortize thread creation run-time overhead and
(2) place an upper limit on the percentage of CPU time used
by RIO kthreads [11].

Figure 11 illustrates the thread pool model used in RIO.
This pool of protocol processing kthreads, known as RIO
kthreads, is created at I/O subsystem initialization. Initially
these threads are not bound to any connection and are inactive
until needed.

Each kthread in RIO’s pool is associated with a queue. The
queue links the various protocol modules in a Stream. Each

4Periodic threads must specify both a periodP and a per period computa-
tion timeT .

11

user

kernel

...

ORB Core3. The reactor thread consumes
the data

2. RIO kthread
executes the TCP/IP
code and delivers
the packet to the
ORB Core/Application

1. Interrupt thread consults the Packet
Classifier to enqueue the packet in
the appropriate queue

Packet Classifier

TCP/IP
Code

ATM Driver

Demultiplexing

V
C

I
#1

V
C

I
#2

V
C

I
#n

Figure 11: RIO Thread Pool Processing of TCP/IP with QoS
Support

thread is assigned a particularrate, based on computations
from TAO’s static scheduling service [5]. This rate corre-
sponds to the frequency at which requests are specified to ar-
rive from clients. Packets are placed in the queue by the ap-
plication (for clients) or by the interrupt handler (for servers).
Protocol code is then executed by the thread to shepherd the
packet through the queue to the network interface card or up
to the application.

An additional benefit of RIO’s thread pool design is its abil-
ity to bound the network I/O resources consumed by best-
effort user threads. Consider the case of an endsystem that
supports both real-time and best-effort applications. Assume
the best-effort application is a file transfer utility likeftp . If
an administrator downloads a large file to an endsystem, and
no bounds are placed on the rate of input packet protocol pro-
cessing, the system may become overloaded. However, with
the RIO kthreads the total throughput allowed for best-effort
connections can be bounded by specifying an appropriate pe-
riod and computation time.

In statically scheduled real-time systems, kthreads in the
pool are associated with differentrate groups. This design
complements theReactor -based thread-per-priority concur-
rency model described in Section 2.1.2. Each kthread corre-
sponds to a different rate of execution and hence runs at a dif-
ferent priority.

To minimize priority inversion throughout the ORB end-
system, RIO kthreads are co-scheduled with ORB Reactor
threads. Thus, a RIO kthread processes I/O requests in the
STREAMSframework and its user thread equivalent processes
client requests in the ORB. Figure 12 illustrates how thread-

based priority inversion is minimized in TAO’s ORB endsys-
tem by (1) associating a one-to-one binding between TAO user
threads andSTREAMS protocol kthreads and (2) minimizing
the work done at interrupt context.

INTR

High Priority I/O-bound thread

Interrupt thread (Packet Classification)

SYS

RT

TS

STREAMS thread

Depends On

Low-Priority CPU bound thread

Preempts

RIO thread at same priority

Figure 12: Alleviating Priority Inversion in TAO’s ORB End-
system

Both the ORB CoreReactor user thread and its associ-
ated RIO protocol kthread use Round-Robin scheduling. In
this scheme, after either thread has a chance to run, its associ-
ated thread is scheduled. For instance, if the protocol kthread
has packets for the application, theReactor ’s user thread
in the ORB Core will consume the packets. Similarly if the
application has consumed or generated packets, the protocol
kthread will send or receive additional packets.

3.3.3 Dedicated Streams

Context: The RIO subsystem is responsible for enforcing
QoS requirements for statically scheduled real-time applica-
tions with deterministic requirements.

Problem: Unbounded priority inversions can result when
packets are processed asynchronously in the I/O subsystem
without respect to their priority.

Solution: The effects of priority inversion in the I/O subsys-
tem is minimized by isolating data paths throughSTREAMS

such that resource contention is minimized. This is done in
RIO by providing adedicatedStream connection path that (1)
allocates separate buffers in the ATM driver and (2) associates
kernel threads with the appropriate RIO scheduling priority
for protocol processing. This design resolves resource con-
flicts that can otherwise cause thread-based and packet-based
priority inversions.

Implementing Dedicated Streams in RIO: Figure 9 de-
picts our implementation of DedicatedSTREAMS in RIO. In-
coming packets are demultiplexed in the driver and passed to

12

the appropriate Stream. A map in the driver’s interrupt han-
dler determines (1) the type of connection and (2) whether the
packet should be placed on a queue or processed at interrupt
context.

Typically, low-latency connections are processed in inter-
rupt context. All other connections have their packets placed
on the appropriate Stream queue. Each queue has an associ-
ated protocol kthread that processes data through the Stream.
These threads may have different scheduling parameters as-
signed by TAO’s scheduling service.

A key feature of RIO’s DedicatedSTREAMSdesign is its use
of multiple output queues in the client’s ATM driver. With this
implementation, each connection is assigned its own transmis-
sion queue in the driver. The driver services each transmis-
sion queue according to its associated priority. This design
allows RIO to associate low-latency connections with a rela-
tively high-priority thread to assure that its packets are pro-
cessed before all other packets in the system.

4 Empirical Benchmarking Results

This section presents empirical results from two groups of ex-
periments. First, we show that the RIO subsystem decreases
the upper bound on round-trip delay for latency-sensitive ap-
plications and provides periodic processing guarantees for
bandwidth-sensitive applications. Second, we combine RIO
and TAO to quantify the ability of the resulting ORB endsys-
tem to support applications with real-time QoS requirements.

4.1 Hardware Configuration

Our experiments were conducted using a FORE Systems
ASX-1000 ATM switch connected to two SPARCs: a uni-
processor 300 MHz UltraSPARC2 with 256 MB RAM and a
170 MHz SPARC5 with 64 MB RAM. Both SPARCs ran So-
laris 2.5.1 and were connected via a FORE Systems SBA-200e
ATM interface over an OC3 155 Mbps port on the ASX-1000.
This benchmarking testbed is shown in Figure 13.

4.2 Measuring the End-to-end Real-time Per-
formance of the RIO Subsystem

This section presents results that quantify (1) the cost of us-
ing kernel threads for protocol processing and (2) the benefits
gained in terms of bounded latency response times and peri-
odic processing guarantees. RIO uses a periodic processing
model to provide bandwidth guarantees and to bound maxi-
mum throughput on each connection.

����������������
����������������

2

OC3 OC3
155 Mbps

Ultra

155 Mbps

ATM Switch

FORE ASX-1000

Sparc 5

Figure 13: ORB Endsystem Benchmarking Testbed

4.2.1 Benchmarking Configuration

Our experiments were performed using the endsystem config-
uration shown in Figure 13. To measure round-trip latency
we use a client application that opens a TCP connection to
an “echo server” located on the SPARC5. The client sends a
64 byte data block to the echo server, waits on the socket for
data to return from the echo server, and records the round-trip
latency.

The client application performs 10,000 latency measure-
ments, then calculates the mean latency, standard deviation,
and standard error. Both the client and server run at the same
thread priority in the Solaris real-time (RT) scheduling class.

Bandwidth tests were conducted using a modified version
of ttcp [45] that sent 8 KB data blocks over a TCP con-
nection from the UltraSPARC2 to the SPARC5. Threads that
receive bandwidth reservations are run in the RT scheduling
class, whereas best-effort threads run in the TS scheduling
class.

4.2.2 Measuring the Relative Cost of Using RIO kthreads

Benchmark design: This set of experiments is designed to
measure the relative cost of using RIO kthreads versus inter-
rupt threads (i.e., the default Solaris behavior) to process net-
work protocols. The results show that it is relative efficient
to perform protocol processing using RIO kthreads in the RT
scheduling class.

The following three test scenarios used to measure the rela-
tive cost of RIO kthreads are based on the latency test in Sec-
tion 4.2.1:

1. The default Solaris network I/O subsystem.

2. RIO enabled with the RIO kthreads in the real-time
scheduling class with a global priority of 100.

3. RIO enabled with the RIO kthreads in the system

13

scheduling class with a global priority of 60 (system pri-
ority 0).

In all three cases, 10,000 samples were collected with the
client and server user threads running in the real-time schedul-
ing class with a global priority of 100.

Benchmark results and analysis: In each test, we deter-
mined the mean, maximum, minimum, and jitter (standard de-
viation) for each set of samples. The benchmark configuration
is shown in Figure 14 and the results are summarized in the

ATM DriverATM Driver

Ultra2 SPARC5

TCP

IP

TCP

IP

latency echo svr

INT/RIOINT/RIO

Figure 14: RIO kthread Test Configuration

table below:

Mean Max Min Jitter
Default behavior 653�s 807�s 613�s 19.6
RIO RT kthreads 665�s 824�s 620�s 18.8
RIO SYS kthreads 799�s 1014�s 729�s 38.0

As shown in this table, when the RIO kthreads were run in the
RT scheduling class the average latency increased by 1.8% or
12�s. The maximum latency value, which is a measure of the
upper latency bound, increased by 2.1% or 17�s. The jitter,
which represents the degree of variability, actually decreased
by 4.1%. The key result is that jitter was not negatively af-
fected by using RIO kthreads.

As expected, the mean latency and jitter increased more sig-
nificantly when the RIO kthreads ran in the system scheduling
class. This increase is due to priority inversion between the
user and kernel threads, as well as competition for CPU time
with other kernel threads running in the system scheduling

class. For example, theSTREAMS background threads, call-
out queue thread, and deferred bufcall processing all run with
a global priority of 60 in the system scheduling class.

Figure 15 plots the distribution of the latency values for the
latency experiments. This figure shows the number of samples

0

50

100

150

200

250

300

350

400

450

600 650 700 750 800 850 900 950 1000 1050

N
um

be
r

of
 S

am
pl

es

micro seconds

Default Behavior
Real-Time Priority

System Priority (60)

Figure 15: Latency Measurements versus Priority of kthreads

obtained at a given latency value+=�5 �s. The distribution
of the default behavior and RIO with RT kthreads are virtually
identical, except for a shift of�12�s.

Section 3.1.3 describes the default Solaris I/O subsystem
behavior. These measurements reveal the effect of performing
network protocol processing at interrupt context versus per-
forming it in a RIO kthread. With the interrupt processing
model, the input packet is processed immediately up through
the network protocol stack. Conversely, with the RIO kthreads
model, the packet is placed in a RIO queue and the interrupt
thread exits. This causes a RIO kthread to wake up, dequeue
the packet, and perform protocol processing within its thread
context.

A key feature of using RIO kthreads for protocol process-
ing is their ability to assign appropriate kthread priorities and
to defer protocol processing for lower priority connections.
Thus, if a packet is received on a high-priority connection, the
associated kthread will preempt lower priority kthreads to pro-
cess the newly received data.

The results shown in Figure 15 illustrate that using RIO
kthreads in the RT scheduling class results in a slight increase
of 13-15�s in the round-trip processing times. This latency
increase stems from RIO kthread dispatch latencies and queu-
ing delays. However, the significant result is that latency jitter
decreases for real-time RIO kthreads.

14

4.2.3 Measuring Low-latency Connections with Compet-
ing Traffic

Benchmark design: This experiment measures the deter-
minism of the RIO subsystem while performing prioritized
protocol processing on a heavily loaded server. The results il-
lustrate how RIO behaves when network I/O demands exceed
the ability of the ORB endsystem to process all requests. The
SPARC5 is used as the server in this test since it can process
only �75% of the full link speed on an OC3 ATM interface
usingttcp with 8 KB packets.

Two different classes of data traffic are created for this test:
(1) a low-delay, high-priority message stream and (2) a best-
effort (low-priority) bulk data transfer stream. The message
stream is simulated using the latency application described
in Section 4.2.1. The best-effort, bandwidth intensive traffic
is simulated using a modified version of thettcp program,
which sends 8 KB packets from the client to the server.

The latency experiment was first run with competing traffic
using the default Solaris I/O subsystem. Next, the RIO subsys-
tem was enabled, RIO kthreads and priorities were assigned to
each connection, and the experiment was repeated. The RIO
kthreads used for processing the low-delay, high-priority mes-
sages were assigned a real-time global priority of 100. The
latency client and echo server were also assigned a real-time
global priority of 100.

The best-effort bulk data transfer application was run in the
time-sharing class. The corresponding RIO kthreads ran in
the system scheduling class with a global priority of 60. In
general, all best effort connections use a RIO kthread in the
SYS scheduling class with a global priority of 60.

Figure 16 shows the configuration for the RIO latency
benchmark.

Benchmark results and analysis: The results from collect-
ing 1,000 samples in each configuration are summarized in the
table below:

Mean Max Min Jitter
Default 1072�s 3158�s 594�s 497�s
RIO 946�s 2038�s 616�s 282�s

This table compares the behavior of the default Solaris I/O
subsystem with RIO. It illustrates how RIO lowers the upper
bound on latency for low-delay, high-priority messages in the
presence of competing network traffic. In particular, RIO low-
ered the maximum round-trip latency by 35% (1,120�s), the
average latency by 12% (126�s), and jitter by 43% (215�s).
The distribution of samples are shown in Figure 17. This fig-
ure highlights how RIO lowers the upper bound of the round-
trip latency values.

These performance results are particularly relevant for real-
time systems where ORB endsystem predictability is cru-
cial. The ability to specify and enforce end-to-end priorities

IP

TCP

IP

TCP TCP TCP

IPIP

TTCP
latencyTTCP

Ultra2 SPARC5

RT 0 RT 0SYS 0

High Priority VCI = 130
Low Priority VCI = 100

ATM Driver ATM Driver

echo svr

Figure 16: RIO Low-latency Benchmark Configuration

0

10

20

30

40

50

60

70

80

0.5 1 1.5 2 2.5 3 3.5

N
um

be
r

of
 S

am
pl

es

milli seconds

Default Behavior
Using RIO

Figure 17: Latency with Competing Traffic

15

over transport connections helps ensure that ORB endsystems
achieve end-to-end determinism.

Another advantage of RIO’s ability to preserve end-to-end
priorities is that the overall system utilization can be increased.
For instance, the experiment above illustrates how the upper
bound on latency was reduced by using RIO to preserve end-
to-end priorities. For example, system utilization may be un-
able to exceed 50% while still achieving a 2 ms upper bound
for high-priority message traffic. However, higher system uti-
lization can be achieved when an ORB endsystem supports
real-time I/O. This situation is demonstrated by the results
in this section, where RIO achieved latencies no greater than
2.038 ms, even when the ORB endsystem was heavily loaded
with best-effort data transfers.

Figure 18 shows the average bandwidth used by the mod-
ified ttcp applications during the experiment. The dip in

6

7

8

9

10

11

12

13

0 10 20 30 40 50 60

B
an

dw
id

th
 in

 M
B

ps

Sample Number

Default Behavior
RIO Enabled

Figure 18: Bandwidth of Competing Traffic

throughput between sample numbers 10 and 20 occured when
the high-priority latency test was run, which illustrates how
RIO effectively reallocates resources when high-priority mes-
sage traffic is present. Thus, the best-effort traffic obtains
slightly lower bandwidth when RIO is used.

4.2.4 Measuring Bandwidth Guarantees for Periodic
Processing

Benchmark design: RIO can enforce bandwidth guarantees
since it implements the schedule-driven protocol processing
model described in Section 3.3.2. In contrast, the default So-
laris I/O subsystem processes all input packets on-demand at
interrupt context,i.e., with a priority higher than all other user
threads and non-interrupt kernel threads.

The following experiment demonstrates the advantages and
accuracy of RIO’s periodic protocol processing model. The

experiment was conducted using three threads that receive spe-
cific periodic protocol processing,i.e., bandwidth, guarantees
from RIO. A fourth thread sends data using only best-effort
guarantees.

All four threads run thettcp program, which sends 8 KB
data blocks from the UltraSPARC2 to the SPARC5. For each
bandwidth-guaranteed connection, a RIO kthread was allo-
cated in the real-time scheduling class and assigned appro-
priate periods and packet counts,i.e., computation time. The
best-effort connection was assigned the default RIO kthread,
which runs with a global priority of 60 in the system schedul-
ing class. Thus, there were four RIO kthreads, three in the
real-time scheduling class and one in the system class. The
following table summarizes the RIO kthread parameters for
the bandwidth experiment.

RIO Config Period Priority Packets Bandwidth
kthread 1 10 ms 110 8 6.4 MBps
kthread 2 10 ms 105 4 3.2 MBps
kthread 3 10 ms 101 2 1.6 MBps
kthread 4 Async 60 Available Available
(best-effort)

The three user threads that received specific bandwidth
guarantees were run with the same real-time global priorities
as their associated RIO kthreads. These threads were assigned
priorities related to their guaranteed bandwidth requirements
– the higher the bandwidth the higher the priority. Thettcp
application thread and associated RIO kthread with a guaran-
teed 6.4 MBps were assigned a real-time priority of 110. The
application and RIO kernel threads with a bandwidth of 3.2
MBps and 1.6 MBps were assigned real-time priorities of 105
and 101, respectively.

As described in Section 3.3.1, the RIO kthreads are awak-
ened at the beginning of each period. They first check their
assigned RIO queue for packets. After processing their as-
signed number of packets they sleep waiting for the start of
the next period.

The best-effort user thread runs in the time sharing class. Its
associated RIO kthread, called the “best-effort” RIO kthread,
is run in the system scheduling class with a global priority
of 60. The best-effort RIO kthread is not scheduled period-
ically. Instead, it waits for the arrival of an eligible network
I/O packet and processes it “on-demand.” End-to-end prior-
ity is maintained, however, since the best-effort RIO kthread
has a global priority lower than either the user threads or RIO
kthreads that handle connections with bandwidth guarantees.

Benchmark results and analysis: In the experiment, the
best-effort connection starts first, followed by the 6.4 MBps,
3.2 MBps and 1.6 MBps guaranteed connections, respectively.
The results are presented in Figure 19 where the effect of the

16

guaranteed connection on the best-effort connection can be ob-
served.

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

M
B

ps

sec

Requested BW = 6.4 MBps
Requested BW = 3.2 MBps
Requested BW = 1.6 MBps

Best Effort

Figure 19: Bandwidth Guarantees in RIO

This figure clearly shows that the guaranteed connections
received their requested bandwidths. In contrast, the best-
effort connection loses bandwidth proportional to the band-
width granted to guaranteed connections. The measuring in-
terval was small enough for TCPs “slow start” algorithm [46]
to be observed.

Periodic protocol processing is useful to guarantee band-
width and bound the work performed for any particular con-
nection. For example, we can specify that the best-effort con-
nection in the experiment above receive no more than 40% of
the available bandwidth on a given network interface.

4.3 Measuring the End-to-end Real-time Per-
formance of the TAO/RIO ORB Endsystem

Section 4.2 measures the performance of the RIO subsystem
in isolation. This section combines RIO and TAO to create a
vertically integrated real-time ORB endsystem and then mea-
sures the impact on end-to-end performance when run with
prototypical real-time ORB application workloads [11].

Benchmark design: The benchmark outlined below was
performed twice: (1) without RIO,i.e., using the unmodified
default Solaris I/O subsystem and (2) using our RIO subsys-
tem enhancements. Both benchmarks recorded average la-
tency and the standard deviation of the latency values,i.e.,
jitter. The server and client benchmarking configurations are
described below.

� Server benchmarking configuration: As shown in
Figure 20, the server host is the 170 MHz SPARC5. This
host runs the real-time ORB with two servants in the Object
Adapter. Thehigh-priority servant runs in a thread with an RT

2Ultra

OC3
155 Mbps

����������������
���� ����������

OC3
155 Mbps ��

ATM Switch

FORE ASX-1000

Sparc 5

Client

...

C1 CnC0

Server
Object Adapter

Services

Figure 20: End-to-End ORB Endsystem Benchmark

priority of 130. Thelow-priority servant runs in a lower prior-
ity thread with an RT thread priority of 100. Each thread pro-
cesses requests sent to it by the appropriate client threads on
the UltraSPARC2. The SPARC5 is connected to a 155 Mpbs
OC3 ATM interface so the UltraSPARC2 can saturate it with
network traffic.

�Client benchmarking configuration: As shown in Fig-
ure 20, the client is the 300 MHz, uni-processor UltraSPARC2,
which runs the TAO real-time ORB with one high-priority
client C0 andn low-priority clients,C1. . . Cn. The high-
priority client is assigned an RT priority of 130, which is the
same as the high-priority servant. It invokes two-way CORBA
operations at a rate of 20 Hz.

All low-priority clients have the same RT thread priority of
100, which is the same as the low-priority servant. They in-
voke two-way CORBA operations at 10 Hz. In each call the
client thread sends a value of typeCORBA::Octet to the
servant. The servant cubes the number and returns the result.

The benchmark program creates all the client threads at
startup time. The threads block on a barrier lock until all client
threads complete their initialization. When all threads inform
the main thread that they are ready, the main thread unblocks
the clients. The client threads then invoke 4,000 CORBA two-
way operations at the prescribed rates.

� RIO subsystem configuration: When the RIO subsys-
tem is used, the benchmark has the configuration shown in
Figure 21. With the RIO subsystem, high- and low-priority
requests are treated separately throughout the ORB and I/O
subsystem.

17

IP IP

TCPTCP

Ultra2 SPARC5

Low Priority VCI = 100

10Hz
Reactor

...

Connector

Client Application

ORB Core

20Hz

High Priority VCI = 130

TCP TCP

Reactor

Server ORB Core

IPIP

ATM Driver ATM Driver

INTPeriodic
RT

Periodic
RT

INT

Figure 21: ORB Endsystem Benchmarking Configuration

Low-priority client threads transmit requests at 10 Hz.
There are several ways to configure the RIO kthreads. For in-
stance, we could assign one RIO kthread to each low-priority
client. However, the number of low-priority clients varies from
0 to 50. Plus all clients have the same period and send the same
number of requests per period, so they have the same priori-
ties. Thus, only one RIO kthread is used. Moreover, since it
is desirable to treat low-priority messages as best-effort traffic,
the RIO kthread is placed in the system scheduling class and
assigned a global priority of 60.

To minimize latency, high-priority requests are processed
by threads in the Interrupt (INTR) scheduling class. Therefore,
we create two classes of packet traffic: (1) low-latency, high
priority and (2) best-effort latency, low-priority. The high-
priority packet traffic preempts the processing of any low-
priority messages in the I/O subsystem, ORB Core, Object
Adapter, and/or servants.

Benchmark results and analysis: This experiment shows
how RIO increases overall determinism for high-priority, real-
time applications without sacrificing the performance of best-
effort, low-priority, and latency-sensitive applications. RIO’s
impact on overall determinism of the TAO ORB endsystem
is shown by the latency and jitter results for the high-priority
client C0 and the average latency and jitter for 0 to 49 low-
priority clients,C1 . . . Cn.

Figure 22 illustrates the average latency results for the high-
and low-priority clients both with and without RIO. This figure

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35 40 45 50

m
ic

ro
se

co
nd

s

Number of Low Priority Clients

Default High Priority Clients
Default Low Priority Clients

RIO High Priority Client
RIO Low Priority Client

Figure 22: Measured Latency for All Clients with and without
RIO

shows how TAO eliminates many sources of priority inversion
within the ORB. Thus, high-priority client latency values are
relatively constant, compared with low-priority latency values.
Moreover, the high-priority latency values decrease when the
the RIO subsystem is enabled. In addition, the low-priority
clients’ average latency values track the default I/O subsys-
tems behavior, illustrating that RIO does not unduly penalize
best-effort traffic. At 44 and 49 low-priority clients the RIO-
enabled endsystem outperforms the default Solaris I/O subsys-
tem.

Figure 23 presents a finer-grained illustration of the round-
trip latency and jitter values for high-priority client vs. the
number of competing low-priority clients. This figure illus-

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

0 5 10 15 20 25 30 35 40 45 50

m
ic

ro
se

co
nd

s

Number of Clients

Default High Priority Clients
RIO High Priority Client

Figure 23: High-priority Client Latency and Jitter

18

trates how not only did RIO decrease average latency, but its
jitter results were substantially better, as shown by the error
bars in the figure. The high-priority clients averaged a 13%
reduction in latency with RIO. Likewise, jitter was reduced by
an average of 51%, ranging from a 12% increase with no com-
peting low-priority clients to a 69% reduction with 44 compet-
ing low-priority clients.

In general, RIO reduced average latency and jitter because
it used RIO kthreads to process low-priority packets. Con-
versely, in the default SolarisSTREAMS I/O subsystem, ser-
vant threads are more likely to be preempted because threads
from the INTR scheduling class are used for all protocol pro-
cessing. Our results illustrate how this preemption can signif-
icantly increase latency and jitter values.

Figure 24 shows the average latency of low-priority client
threads. This figure illustrates that the low-priority clients in-

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

0 5 10 15 20 25 30 35 40 45 50

m
ic

ro
se

co
nd

s

Number of Clients

Default Low Priority Clients
RIO Low Priority Client

Figure 24: Low-priority Client Latency

curred no appreciable change in average latency. There was a
slight increase in jitter for some combinations of clients due to
the RIO kthreads dispatch delays and preemption by the higher
priority message traffic. This result demonstrates how the RIO
design can enhance overall end-to-end predictability for real-
time applications while maintaining acceptable performance
for traditional, best-effort applications.

4.4 Summary of Empirical Results

Our empirical results presented in Section 4 illustrate how RIO
provides the following benefits to real-time ORB endsystems:

1. Reduced latency and jitter: RIO reduces round-trip la-
tency and jitter for real-time network I/O, even during high
network utilization. RIO prioritizes network protocol process-
ing to ensure resources are available when needed by real-time
applications.

2. Enforced bandwidth guarantees: The RIO periodic pro-
cessing model provides network bandwidth guarantees. RIO’s
schedule-driven protocol processing enables an application to
specify periodic I/O processing requirements which are used
to guarantee network bandwidth.

3. Fine-grained resource control: RIO enables fine-
grained control of resource usage,e.g., applications can set
the maximum throughput allowed on a per-connection basis.
Likewise, applications can specify their priority and process-
ing requirements on a per-connection basis. TAO also uses
these specifications to create off-line schedules for statically
configured real-time applications.

4. End-to-end priority preservation: RIO preserves end-
to-end operation priorities by co-scheduling TAO’s ORB Re-
actor threads with RIO kthreads that perform I/O processing.

5. Supports best-effort traffic: RIO supports the four
QoS features described above without unduly penalizing best-
effort, i.e., traditional network traffic. RIO does not mo-
nopolize the system resources used by real-time applications.
Moreover, since RIO does not use a fixed allocation scheme,
resources are available for use by best-effort applications when
they are not in use by real-time applications.

5 Related Work on I/O Subsystems

Our real-time I/O (RIO) subsystem incorporates advanced
techniques [47, 17, 42, 43, 48] for high-performance and real-
time protocol implementations. This section compares RIO
with related work on I/O subsystems.

I/O subsystem support for QoS: The Scout OS [49, 50]
employs the notion of apath to expose the state and resource
requirements of all processing components in aflow. Simi-
larly, our RIO subsystem reflects the path principle and in-
corporates it with TAO and Solaris to create a vertically inte-
grated real-time ORB endsystem. For instance, RIO subsys-
tem resources like CPU, memory, and network interface and
network bandwidth are allocated to an application-level con-
nection/thread during connection establishment, which is sim-
ilar to Scout’s binding of resources to a path.

Scout represents a fruitful research direction, which is com-
plementary with our emphasis on demonstrating similar ca-
pabilities in existing operating systems, such as Solaris and
NetBSD [25]. At present, paths have been used in Scout
largely for MPEG video decoding and display and not for pro-
tocol processing or other I/O operations. In contrast, we have
successfully used RIO for a number of real-time avionics ap-
plications [9] with deterministic QoS requirements.

SPIN [51, 52] provides an extensible infrastructure and a
core set of extensible services that allow applications to safely

19

change the OS interface and implementation. Application-
specific protocols are written in a typesafe language,Plexus,
and configured dynamically into the SPIN OS kernel. Because
these protocols execute within the kernel, they can access net-
work interfaces and other OS system services efficiently. To
the best of our knowledge, however, SPIN does not support
end-to-end QoS guarantees.

Enhanced I/O subsystems: Other related research has fo-
cused on enhancing performance and fairness of I/O subsys-
tems, though not specifically for the purpose of providing real-
time QoS guarantees. These techniques are directly applicable
to designing and implementing real-time I/O and providing
QoS guarantees, however, so we compare them with our RIO
subsystem below.

[43] applies several high-performance techniques to a
STREAMS-based TCP/IP implementation and compares the
results to a BSD-based TCP/IP implementation. This work
is similar to RIO since they parallelize theirSTREAMS im-
plementation and implement early demultiplexing and dedi-
catedSTREAMS, known as Communication Channels (CC).
The use of CC exploits the built-in flow control mechanisms
of STREAMS to control how applications access the I/O sub-
system. This work differs from RIO, however, since it focuses
entirely on performance issues and not sources of priority in-
versions. For example, minimizing protocol processing in in-
terrupt context is not addressed.

[28, 42] examines the effect of protocol processing with in-
terrupt priorities and the resulting priority inversions and live-
lock [28]. Both approaches focus on providing fairness and
scalability under network load. In [42], a network I/O sub-
system architecture calledlazy receiver processing(LRP) is
used to provide stable overload behavior. LRP uses early
demultiplexing to classify packets, which are then placed
into per-connection queues or on network interface channels.
These channels are shared between the network interface and
OS. Application threads read/write from/to network interface
channels so input and output protocol processing is performed
in the context of application threads. In addition, a scheme
is proposed to associate kernel threads with network interface
channels and application threads in a manner similar to RIO.
However, LRP does not provide QoS guarantees to applica-
tions.

[28] proposed a somewhat different architecture to min-
imize interrupt processing for network I/O. They propose a
polling strategy to prevent interrupt processing from consum-
ing excessive resources. This approach focuses on scalability
under heavy load. It did not address QoS issues, however, such
as providing per-connection guarantees for fairness or band-
width, nor does it charge applications for the resources they
use. It is similar to our approach, however, in that (1) inter-
rupts are recognized as a key source of nondeterminism and

(2) schedule-driven protocol processing is proposed as a solu-
tion.

While RIO shares many elements of the approaches de-
scribed above, we have combined these concepts to create the
first vertically integrated real-time ORB endsystem. The re-
sulting ORB endsystem provides scalable performance, peri-
odic processing guarantees and bounded latency, as well as an
end-to-end solution for real-time distributed object computing
middleware and applications.

6 Concluding Remarks

Conventional operating systems and ORBs do not provide ad-
equate support for the QoS requirements of distributed, real-
time applications. Meeting these needs requires an integrated
ORB endsystem architecture that delivers end-to-end QoS
guarantees at multiple levels. The ORB endsystem described
in this paper addresses this need by combining a real-time I/O
(RIO) subsystem with the TAO ORB Core [11] and Object
Adapter [53], which are explicitly designed to preserve QoS
properties end-to-end in distributed real-time systems.

This paper focuses on the design and performance of RIO.
RIO is a real-time I/O subsystem that enhances the Solaris
2.5.1 kernel to enforce the QoS features of the TAO ORB end-
system. RIO provides QoS guarantees for vertically integrated
ORB endsystems that increase (1) throughput and latency per-
formance and (2) end-to-end determinism. RIO supports peri-
odic protocol processing, guarantees I/O resources to applica-
tions, and minimizes the effect of flow control in a Stream.

A novel feature of the RIO subsystem is its integration of
real-time scheduling and protocol processing, which allows
RIO to support guaranteed bandwidth and low-delay applica-
tions. To accomplish this, we extended the concurrency archi-
tecture and thread priority mechanisms of TAO into the RIO
subsystem. This design minimizes sources of priority inver-
sion that cause nondeterministic behavior.

After integrating RIO with TAO, we measured a significant
reduction in average latency and jitter. Moreover, the latency
and jitter of low-priority traffic was not affected adversely. As
a result of our RIO enhancements to the Solaris kernel, TAO
is the first ORB to support end-to-end QoS guarantees over
ATM/IP networks [27].

In addition, implementing RIO allowed us to experiment
with alternative concurrency strategies and techniques for pro-
cessing network I/O requests. Our results illustrate how con-
figuring periodic protocol processing [54] strategies in the So-
laris kernel can provide significant improvements in system
behavior, compared with the conventional Solaris I/O subsys-
tem.

The TAO and RIO integration focused initially on stat-
ically scheduled applications with deterministic QoS re-

20

quirements. We have extended the TAO ORB endsys-
tem to support dynamically scheduling [8] and applications
with statistical QoS requirements. The C++ source code
for ACE, TAO, and our benchmarks is freely available at
www.cs.wustl.edu/ �schmidt/TAO.html . The RIO
subsystem is available to Solaris source licensees.

References
[1] Object Management Group,The Common Object Request Bro-

ker: Architecture and Specification, 2.2 ed., Feb. 1998.

[2] D. Box, Essential COM. Addison-Wesley, Reading, MA, 1997.

[3] A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object
Model for the Java System,”USENIX Computing Systems,
vol. 9, November/December 1996.

[4] D. C. Schmidt, A. Gokhale, T. Harrison, and G. Parulkar,
“A High-Performance Endsystem Architecture for Real-time
CORBA,” IEEE Communications Magazine, vol. 14, February
1997.

[5] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”Computer
Communications, vol. 21, pp. 294–324, Apr. 1998.

[6] D. C. Schmidt, “GPERF: A Perfect Hash Function Generator,”
in Proceedings of the2nd C++ Conference, (San Francisco,
California), pp. 87–102, USENIX, April 1990.

[7] A. Gokhale and D. C. Schmidt, “Evaluating the Performance
of Demultiplexing Strategies for Real-time CORBA,” inPro-
ceedings of GLOBECOM ’97, (Phoenix, AZ), IEEE, November
1997.

[8] C. D. Gill, D. L. Levine, and D. C. Schmidt, “Evaluating Strate-
gies for Real-Time CORBA Dynamic Scheduling,”submitted to
the International Journal of Time-Critical Computing Systems,
special issue on Real-Time Middleware, 1998.

[9] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The De-
sign and Performance of a Real-time CORBA Event Service,”
in Proceedings of OOPSLA ’97, (Atlanta, GA), ACM, October
1997.

[10] A. Gokhale and D. C. Schmidt, “Measuring the Performance
of Communication Middleware on High-Speed Networks,” in
Proceedings of SIGCOMM ’96, (Stanford, CA), pp. 306–317,
ACM, August 1996.

[11] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Alleviating Priority Inversion and Non-determinism in Real-
time CORBA ORB Core Architectures,” inProceedings of the
4
th IEEE Real-Time Technology and Applications Symposium,

(Denver, CO), IEEE, June 1998.

[12] D. L. Levine, C. D. Gill, and D. C. Schmidt, “Dynamic Schedul-
ing Strategies for Avionics Mission Computing,” inProceed-
ings of the 17th IEEE/AIAA Digital Avionics Systems Confer-
ence (DASC), Nov. 1998.

[13] A. Gokhale and D. C. Schmidt, “Techniques for Optimizing
CORBA Middleware for Distributed Embedded Systems,” in
Proceedings of INFOCOM ’99, Mar. 1999.

[14] V. F. Wolfe, L. C. DiPippo, R. Ginis, M. Squadrito, S. Wohlever,
I. Zykh, and R. Johnston, “Real-Time CORBA,” inProceedings
of the Third IEEE Real-Time Technology and Applications Sym-
posium, (Montréal, Canada), June 1997.

[15] A. Gokhale, I. Pyarali, C. O’Ryan, D. C. Schmidt, V. Kachroo,
A. Arulanthu, and N. Wang, “Design Considerations and Per-
formance Optimizations for Real-time ORBs,” inSubmitted to
the5th Conference on Object-Oriented Technologies and Sys-
tems, (San Diego, CA), USENIX, May 1999.

[16] Object Management Group,Realtime CORBA 1.0 Joint Submis-
sion, OMG Document orbos/98-11-03 ed., November 1998.

[17] Z. D. Dittia, G. M. Parulkar, and J. Jerome R. Cox, “The APIC
Approach to High Performance Network Interface Design: Pro-
tected DMA and Other Techniques,” inProceedings of INFO-
COM ’97, (Kobe, Japan), IEEE, April 1997.

[18] D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-
nication Systems,”IEE/BCS Distributed Systems Engineering
Journal (Special Issue on Configurable Distributed Systems),
vol. 2, pp. 280–293, December 1994.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[20] D. C. Schmidt, “Evaluating Architectures for Multi-threaded
CORBA Object Request Brokers,”Communications of the ACM
special issue on CORBA, vol. 41, Oct. 1998.

[21] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dispatch-
ing,” in Pattern Languages of Program Design(J. O. Coplien
and D. C. Schmidt, eds.), pp. 529–545, Reading, MA: Addison-
Wesley, 1995.

[22] C. Liu and J. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment,”JACM, vol. 20,
pp. 46–61, January 1973.

[23] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Har-
bour,A Practitioner’s Handbook for Real-Time Analysis: Guide
to Rate Monotonic Analysis for Real-Time Systems. Norwell,
Massachusetts: Kluwer Academic Publishers, 1993.

[24] D. C. Schmidt, “Acceptor and Connector: Design Patterns for
Initializing Communication Services,” inPattern Languages of
Program Design(R. Martin, F. Buschmann, and D. Riehle,
eds.), Reading, MA: Addison-Wesley, 1997.

[25] C. Cranor and G. Parulkar, “Design of Universal Continuous
Media I/O,” in Proceedings of the 5th International Workshop
on Network and Operating Systems Support for Digital Audio
and Video (NOSSDAV ’95), (Durham, New Hampshire), pp. 83–
86, Apr. 1995.

[26] R. Gopalakrishnan and G. Parulkar, “Bringing Real-time
Scheduling Theory and Practice Closer for Multimedia Com-
puting,” in SIGMETRICS Conference, (Philadelphia, PA),
ACM, May 1996.

[27] G. Parulkar, D. C. Schmidt, and J. S. Turner, “a
I
t
P
m: a Strategy

for Integrating IP with ATM,” inProceedings of the Symposium
on Communications Architectures and Protocols (SIGCOMM),
ACM, September 1995.

21

[28] J. C. Mogul and K. Ramakrishnan, “Eliminating Receive Live-
lock in an Interrupt-driver Kernel,” inProceedings of the
USENIX 1996 Annual Technical Conference, (San Diego, CA),
USENIX, Jan. 1996.

[29] D. Ritchie, “A Stream Input–Output System,”AT&T Bell Labs
Technical Journal, vol. 63, pp. 311–324, Oct. 1984.

[30] S. Khanna and et. al., “Realtime Scheduling in SunOS 5.0,” in
Proceedings of the USENIX Winter Conference, pp. 375–390,
USENIX Association, 1992.

[31] “Information Technology – Portable Operating System Inter-
face (POSIX) – Part 1: System Application: Program Interface
(API) [C Language],” 1995.

[32] IEEE,Threads Extension for Portable Operating Systems (Draft
10), February 1996.

[33] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarter-
man,The Design and Implementation of the 4.4BSD Operating
System. Addison Wesley, 1996.

[34] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalingiah,
M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams, “Be-
yond Multiprocessing... Multithreading the SunOS Kernel,” in
Proceedings of the Summer USENIX Conference, (San Antonio,
Texas), June 1992.

[35] S. Saxena, J. K. Peacock, F. Yang, V. Verma, and M. Krishnan,
“Pitfalls in Multithreading SVR4 STREAMS and other Weight-
less Processes,” inProceedings of the Winter USENIX Confer-
ence, (San Diego, CA), pp. 85–106, Jan. 1993.

[36] S. Rago,UNIX System V Network Programming. Reading, MA:
Addison-Wesley, 1993.

[37] Sun Microsystems,STREAMS Programming Guide. Sun Mi-
crosystems, Inc., Mountain View, CA, August 1997. Revision
A.

[38] OSI Special Interest Group,Transport Provider Interface Spec-
ification, December 1992.

[39] OSI Special Interest Group,Network Provider Interface Speci-
fication, December 1992.

[40] OSI Special Interest Group,Data Link Provider Interface Spec-
ification, December 1992.

[41] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance
Protocols: An Approach to Real-time Synchronization,”IEEE
Transactions on Computers, vol. 39, September 1990.

[42] P. Druschel and G. Banga, “Lazy Receiver Processing (LRP): A
Network Subsystem Architecture for Server Systems,” inPro-
ceedings of the1st Symposium on Operating Systems Design
and Implementation, USENIX Association, October 1996.

[43] T. B. Vincent Roca and C. Diot, “Demultiplexed Architec-
tures: A Solution for Efficient STREAMS-Based Communica-
tion Stacks,”IEEE Network Magazine, vol. 7, July 1997.

[44] M. L. Bailey, B. Gopal, P. Sarkar, M. A. Pagels, and L. L. Pe-
terson, “Pathfinder: A pattern-based packet classifier,” inPro-
ceedings of the1st Symposium on Operating System Design and
Implementation, USENIX Association, November 1994.

[45] USNA, TTCP: a test of TCP and UDP Performance, Dec 1984.

[46] W. R. Stevens,TCP/IP Illustrated, Volume 1. Reading, Mas-
sachusetts: Addison Wesley, 1993.

[47] T. v. Eicken, A. Basu, V. Buch, and W. Vogels, “U-Net: A User-
Level Network Interface for Parallel and Distributed Comput-
ing,” in 15th ACM Symposium on Operating System Principles,
ACM, December 1995.

[48] J. Mogul and S. Deering, “Path MTU Discovery,”Network In-
formation Center RFC 1191, pp. 1–19, Apr. 1990.

[49] A. B. Montz, D. Mosberger, S. W. O’Malley, L. L. Peterson,
T. A. P. sting, and J. H. Hartman, “Scout: A communications-
oriented operating system,” Tech. Rep. 94-20, Department of
Computer Science, University of Arizona, June 1994.

[50] D. Mosberger and L. Peterson, “Making Paths Explicit in the
Scout Operating System,” inProceedings of OSDI ’96, Oct.
1996.

[51] B. Bershad, “Extensibility, Safety, and Performance in the Spin
Operating System,” inProceedings of the15th ACM SOSP,
pp. 267–284, 1995.

[52] M. Fiuczynski and B. Bershad, “An Extensible Protocol Archi-
tecture for Application-Specific Networking,” inProceedings of
the 1996 Winter USENIX Conference, Jan. 1996.

[53] I. Pyarali and D. C. Schmidt, “An Overview of the CORBA
Portable Object Adapter,”ACM StandardView, vol. 6, Mar.
1998.

[54] R. Gopalakrishnan and G. Parulkar, “A Real-time Upcall Facil-
ity for Protocol Processing with QoS Guarantees,” in15

th Sym-
posium on Operating System Principles (poster session), (Cop-
per Mountain Resort, Boulder, CO), ACM, Dec. 1995.

22

