
Quality Connector
An Architectural Pattern to

 Enhance QoS and Alleviate Dependencies in
Distributed Real-time and Embedded Middleware

Joseph K. Cross
Lockheed Martin Tactical Systems

P.O. Box 64525, M.S. U2N29
St. Paul, MN 55164-0525, USA

joseph.k.cross@lmco.com

Douglas C. Schmidt
Electrical & Computer Engineering Dept.

University of California, Irvine
Irvine, CA 92697-2625, USA

schmidt@uci.edu

Abstract

Commercial off-the-shelf (COTS) middleware increasingly offers distributed real-time
and embedded (DRE) applications functional support for standard interfaces, along with
the abilit y to optimize application resource utili zation. For example, a Real-time CORBA
object request broker (ORB) permits DRE application developers to configure server
thread pooling policies. This flexibility makes it possible to use standard functional
interfaces in applications where they were not applicable previously. However, the non-
standard nature of the optimization mechanisms – i.e., the "knobs and dials" – acts
against the very product-independence that standardized COTS interfaces are intended to
provide. This paper presents an architectural pattern called Quality Connector, which is
a meta-programming technique that enables applications to specify the QoS they require
from their infrastructure, and then manages the operations that optimize the middleware
to implement those QoS requirements.

The Quality Connector architectural pattern decouples application components from the
QoS configuration mechanisms provided by infrastructure components to permit the
infrastructure to evolve without requiring manual changes to application component
functionality. The Quality Connector mediates between the application and non-standard
middleware configuration and control interfaces.

Example

CORBA event channels [2] decouple communication between suppliers and consumers
of data, as shown in Figure 1. An event channel logically mediates the communication
from each supplier to all consumers, where by “ logical” mediation we mean that the
actual communication may use any type of unicast, broadcast, or multicast protocol. In
many implementations, however, the event channel object physically mediates these
communications, i.e., all events are routed through a process where the event channel

object resides. In either case, the communication between suppliers and consumers is
decoupled in the sense that

• It is asynchronous, i.e., consumers will receive data some time after a supplier has
completed its push() operation, and

• The suppliers and consumers must be aware of the event channel’s identity, but need
not be aware of each other' s identities.

Supplier 1

Supplier 2

Consumer 1

Consumer 2

Consumer 3
E

vent C
hannel

push()
Proxy

Consumer

Proxy
Consumer

Proxy
Supplier

Proxy
Supplier

Proxy
Supplier

push()

push()

push()

push()

Figure 1. A Simple CORBA Event Channel

There is no pre-defined limit on the number of suppliers and consumers that can be
connected to a CORBA event channel at any time. Moreover, they can connect and
disconnect at any time. There may be many event channels active at one time in a
distributed system.3

The CORBA specification intentionally leaves many aspects of event channel behavior
unspecified. For example, the following properties of event delivery are not specified:

• Latency of event delivery
• Where and how often event data are copied
• Threading and synchronization policies for event dispatching
• What communication mechanism is used to convey the event data from the supplier

to the consumers; e.g., which of several radio channels will be used
• How and where event data are buffered, and how large the event data buffers are
• What happens when an event data buffer overflows
• Reliabili ty of event delivery

3 Our discussion focuses on the “push” model of event deli very, where a supplier invokes a push(data)
operation to supply any type of data, and the event channel causes push(data) operations to be invoked
on the consumers registered with that event channel. In addition to the “push” model, there is also a “pull ”
model of event deli very, which we do not address in this paper.

• Whether events from one supplier will be delivered to each consumer in the order in
which they were supplied

• If supplier Alpha supplies an event E1 to an event channel, and only after consuming
E1 does Beta, who is both a supplier and consumer, supply an event E2 to the same
event channel, and if consumer Omega consumes both events, must Omega receive
E1 before E2?

• If a consumer connects to an event channel, and if an event is supplied to that channel
one minute later, will that consumer receive that event? Does the answer depend on
whether the supplier and consumer are on different continents?

Consider a distributed real-time and embedded (DRE) application that uses the CORBA
Event Service and that will meet or not meet its requirements depending on the value of
one or more or the event delivery properties outlined above. It should be possible to
determine whether a given Event Service implementation will successfully support the
application. It should also be possible to port the application easily from one
implementation of the service implementation to another. Finally, it should be possible to
modify the service implementation – including making changes to hardware and revising
support software – and retain confidence that the application will continue to function
correctly and with the appropriate quality of service.

Context

The Quality Connector pattern can be applied in a DRE application that has the following
characteristics:

• It uses components via standardized functional interfaces,
• The qualities of the services provided by those components are critical to the

application’s conformance to its requirements, and
• Long-term maintainabili ty and portabili ty are necessary for the success of the

application.

Problem

Implementations of services that are available through standardized functional interfaces
expose only non-standard mechanisms for controlli ng the qualities of the services
provided, such as throughput, latency, jitter, scalabili ty, dependabili ty, and security.
When an application uses such a service implementation, three forces arise:

• A quality-sensitive application should be able to monitor and control the qualities of
its supporting services. The required qualities should be permitted to depend on the
current system mode (see Sidebar 1).

• A long-lived application should be capable of executing without manual
modifications on multiple implementations of infrastructure services with standard
functional interfaces.

• For time-critical mode transitions, infrastructure resources, by which we mean
resources such as ATM virtual circuits, processors, or radios, must be reallocated
quickly to provide the services required in the new mode.

���������
	�� � ������������� � ���������� �!�"$#&%(')��*�+-,/.�01*
'
243 565)3 7
8 9 :);=< >?< :6@�ACBEDFBE>HG�IJBK@$;LGNM�OP>HG�Q/:)RS@�;T@�:E>HG�;=< UVG�W�@�BX@YRC< Z�[]\$[L^)_�`Na�bdcS\�[]e=fJe?_S\)ehgiZN^6\�j�j kElCmCnLo prqFsutCvPo�lCm
w�xPyFzJ{ |&}�~V�
����� �
���T�)�?� �
��� �=�����J�)���S� �)������� �=�)�S�S���F�K�Y�J�� ?�S¡�¢=£S�C��¢L¤�¥�¦/�N�V�
��§C�� =¡�¢u¨©�
¢ ª�«�¬L
® �=�)�S�)�
¯�°N¯�°S±C²�³�´�µ�¶¸·6¹
º¼»�² ½
¾C¿]¯)ÀÁ² ¹
ºÂ² ÀHÃ�ÄÅÄJ¯)Æ�Ã)Ç$² °EÀ °EÀ=¯SÀ?² ·V¯$È�È Æ É=¯�°NÊC¹CÃ�°N¯Ë¿L¹
¾�À=Ã�¿u´J¹&¿ÌÄJ¯)ÆÎÍ)Ã�·)¿LÃ�¯SÀ=Ã�Ê�¯�ºSÊ
ÊCÃ�°EÀÁ¿L¹�Æ�Ã�Ê Ê�Æ$ºS¯�Ä�² ·V¯�È�È Æ É Ï�Ð�Ñ Ð�Ï�Ò?ÓCÔLÕ�Ï�Ö�×JÑ Ò?ÓCÑ�Ø�ÏÂÙCÔLÚCÛVÕFÐVÐ�Ü�Ý�Þ
Ú
Ø�ßàÑ á
âCÔ]ÏSÒ?Ñ Ú
Ø�Ñ Ò=Õ�ãJÐNãJÏSä�ÛVÚ
Ø�Ò=Ï�Ñ�ØåÚ�Ò?ÓSÕ�Ô
æVç
è�é�ê ë
ì�íTî)ï?ê ç
èËê ïHð�ñJò)ódï?ôCê ò�æVç
è�ï=î�ê�èCñJð�è�ï/íLð�õ î)ïÁê ç
èYéuç&í=ñJò�î öC÷�ø=ùCúVûLù�öËüCú�ý�ú�þ�÷�ú ÿ
øuü���� ���	��
 ���������������
����
�
�� ���	� ������������ � !�" � ���#� ��$� �%
���&���
'
)(*��)�+�, � �-�.� �
'
� � &�
��/)�0� �
)
'&1&�������
�&����
�����2� � !�" � � �#� ��
3 4%576�896�:�;=<�5=>�:�?@4BA)CD8�5�E'5�?F:�G'A)4#H�5�?F8�I�5�J�KLJMI�:ONQPDR�6�:�;S<�5O>�:�?@4TAUC�4#H�5WV�A�6W<�:�4T8Q;'8Q4%576XV�A�Y2C 3 K�Z�?F:�4#3 A�Y
3 4%576X:7Y�[=>�:�?@4DA)C�4#H�5WV�A�6W6�:�Y�[\:�Y�[]V�A�Y�4	?FA�G�8^;)8^4%5�6_V�A�Y�C 3 K�Z`?F:�4#3 A�Y]3 4�5�6 a J
b\ced)f�f�g�h�c�i#j�d�ikc�l)c7m@neo�p�q�r s t�g�m@d�i	s p�q$s i�c�hus f=d�v wxd�n'fys�qzp�q�c�p)r�dyr s {�c)|7}~r s�q�s i%c�f�c�i�p)r�f^i �����)�)�x�����
���'���W��� ���L�\�����%���Q�����#� ���O�����=���=���W�W�#�@�7���`�����O�^�%�����]�������W�������@���	� �����7�)�Q�����%�U�L�����O�=�@�)�����B�����=���1���
�����)���F���O�Q�����%�U�T�#� �)�����������^�%�������¡����� ¢ £ �%�)�^�x�Q�%���%���D���B�)¢F¢ £ ¤�¥�¦�§=¨Q©�ª�©%§¬«�¯®�§=¨Q©%ª�©%§=°)±²ª=³�°�¦�± ¥ ´�µ�¶ ª�©#¥ °�¦�¥ ©�§�·
·�ª�¸9¹»º�µ�©²¦�§)§)¼=¦�°U©¾½~º�§Wª�± µ�¦�³^©#¥ °�¦/°U±�©#®�§W¨^©%ª�©�§)¨ °)±¯¥ ©�¨0³�°�¦�©%ª7¥�¦�§'¼]³�°�¦�± ¥ ´�µ�¶@ª�©	¥ °�¦\¥ ©%§7·�¨)«
¿ §X³�ª�¦À¦�°�ÁÂ¼`§�±Ã¥�¦�§_ªX¨^¸)¨^©%§�· ÄWÅ�Æ`Ç È)É$ÈÀÊ�Ë�Ë�Ì Í)È�Î$ÏÃÐ�Î�ÑQÒ	Ó Ë�Î*Ë�Î$Ò#Ô�ÍÕÉQÒ�È�Ò%Í)ÉÖËUÏ×Ó Ò%ÉÖÑ�Ë�Î�ÉQÒ#Ó Ò	Ð�Í�Î�Ò
Ø�Ù�Ú�Û Ü Ý�Þ`ß à�á#Ü Ù�Ú×Ü á%â�ã�ä'å¡æ�Ù�ßBâ�ç'à�ãWè�é â�êLë^á#ì�âOä�ì�Ü�è=Ü ä]Ü�Ú=í�à�á,á#é âOä^á%à�á�â�î+Ü ä�à×ã�Ù`ï�â�êðà�Ú�ï\ë�à�é�é)ñ'ò¯óÀí�à)Ø�ô�í�Ù�Ú�â
Ø�Ù�Ú�Û Ü Ý�Þ`ß à�á#Ü Ù�Ú.Ü á�â�ã�ä]à7ßFâ�Ü�ÚOá#ì�â�Ü�ßBÙ è�â�ß@à�á	Ü Ù�Ú�à7é�ä^á%à�á�â)ä�î�Ü äWà.ã�Ù�ï`â¬å�ò¯ì�âOõ�à�é�Þ�â1Ù)Ûöàyã�Ù�ï�â=Ø�à�ÚSØ�ì�à�Ú�Ý�â
à�í�ß%Þ�è�á#é ÷�å�æ�Ù�ß�â�ç'à�ãWè�é â�ê�á#ì�â�ÛFà�Ü�é�Þ�ßFâWÙ)ÛðàWØ�Ù�ãWè�Ù�Ú�â�Ú�áDØ�à�Ú�à�ÛøÛ,â)Ø^áðá#ì�âOã�Ù�ï�â)ä0Ù)Û�àWäQ÷'äQá%â7ã\å
ù¯ú�ûWü�ý�þ7ÿ�� ��� û������
	�� ���������ý��%û�	��������Wý���� ��þ���� ������û����� ��û�� �	ú�þ!�Dþ�"�"�ÿ�� ��þ!�#� ���!�$Fû)ü�ý%��Fû�&'��ÿ�ÿ�	�� �(�,û�)���'	�� �(� û�Fû����
�'��	�û���* +������!� 	�û�)�#ú�ûOû�,)þ���"�ÿ û ���Bþ-��Fû�&Xû��.��û���%þ����%��û��.�/��� 	�û��-&�ú!����û0"��� ���� �213	�(��"��4&�ú�û����	ú�û3��ú���"
5�6�7�5�8(9�:�;!727#< 5-='>%?�5�@�A�B�=�B�< ;�8�< C�D�7�E�5-B�=�F�>�8�7�;�6�GH5�>�IJF�8(>%G�5�9H9�5�9LK4B 7#E%B�6';36�M!G�< 5�;�8)8(5�;�G�7N>�8OGH>�6�7�8(>�<�9�C�9�7N5�=
=�B P�E�7Q:�5�5!R�F�5�GS7�5�?�7�>3G!E�;�6�P�5�K'E!5�647#E!5-8(5�;�G�7N>�8 5�6�7N5�8(9 7�E�5'TH>�U�5�8 V 7�5�=�F!5�8�;!7#M%8(5XW ='>%?�5�@
Y E�50='>�?�5 V G�E!;�6!P�5ZF�8(>�:�< 5�=[GH;�6\:!53;�?�?�8(5�9H9�5�?]:�CZF�5�8�=�B 727#B�6�P-;�F�F�<�B GH;!7#B >�6�9�7�>\9!F�5�G!B I^C 7�E�5�B�8 _Q`�a b�c�b
dfe�g!hSi�j ` g ` dJk `�l�m�n!oqp�m-r(m�c e�s iQj c i p�b i r(m�cH` e r h m�b s�s ` h b i�j ` g c h b g�t m k b�l�m j g b�l�u�b g�h m�` dvi p�m j r g m�m�lwn
x r(m s b i m lzy�r(` t�s m k b�r j cHm�c${4p�m g b k `�l�m h p�b g�| m�c t%e�i _Q`�aZr(m�} e%j r(m k m g�i c'l�` g ` iJh p!b g!| m�n�~�p�m g$i p�m
d b j�s�e r(m�` d b�r(m�c�` e r h m��0c e!h p�b�c�b�� x/� �0` h�h!e r(c�b g l�r(m�} e�j r(m k m g�i c�{'p j h p i p�b i � x/� p�b�l t m�m g
c e y�y�`�r i�j�g�| r(m k b j�g\j�g m d(d m h�i � i p�m g-g m�{�r(m�cH` e r h m�c k�e c iLt m j l�m g�i#j d�j m�l-b g l h ` g�dfj |�e r(m�l j�g�i `3` y�m�r^b i�j ` g
b�c�} e�j h!��s � b�c�y�`%c�c j�t�s m�n�oqp j c�`�y!m�r�b i#j ` g3j c�` d(i m g$h b s�s m�l�� d b e�s i r(m h ` g�dfj |�e r�b i#j ` g n �

Solution

Implement a Quality Connector object for each infrastructure component4 that provides
only a non-standard QoS-control interface. The Quality Connector object configures the
infrastructure component to provide, if possible, the requested QoS in the specified
system modes. The interface between the application and the Quality Connector object
should be independent of the choice of infrastructure component implementation and
should be concerned only with

• The qualities of the service provided
• The load that will be imposed on the service and
• The modes of the system.

In detail: Before the application source code is compiled, a static application connector
acts on that code (or on some higher-level representation of it, such as a model), inserting

4 An “infrastructure component” is any hardware or s oftware component of the deployable system whose
function is to provide infrastructure services to the application; an ORB together with its supporting
computing and communication hardware is an example.

hooks through which the dynamic connector will act at application run-time to configure
the infrastructure components. In addition, a static infrastructure connector selects and
configures the implementations of infrastructure services before the system is linked.

If a new infrastructure component implementation is employed, then a corresponding
Quality Connector object will be required that provides the same interface to the
application as before. The application will therefore not require manual changes to its
functionality. The runtime interface between the Quality Connector object and the
component implementation depends on the infrastructure component’s QoS-control
interface.

Structure

A Quality Connector consists of three components:

• The Static Application Connector component acts on the application source code
before it is compiled and may operate similarly to “aspect weaving” tools, such as
AspectJ [12]. For example, the Static Application Connector scans the application
source code to detect statements and declarations that are related to the service being
provided. This detection process may be as sophisticated as that used in globally
optimizing compilers or as simple as the detection of flags embedded in comments.
The Static Application Connector then modifies the source code at certain of these
locations, generating new source code.

�
For example, consider an application that intends to supply events to an Event
Service, as described above, and whose QoS requirements are known statically.
Such an application must first create an Event Service access point called a
ProxyPushConsumer by invoking the standard obtain_push_
consumer() method. The Static Application Connector component of the
Quality Connector locates these method invocations in the application source
code, and inserts new code after each that will request the appropriate QoS.

Class
 S ta t ic A pp lica tio n C on necto r

Collaborator

Responsibility

!

!

A c c ep ts Q o S sp e cific a tion s fo r
in fras truc tu re se rv ice s
M o dif ies th e a pp l ica t ion s o u rc e
co de as requ ire d by the D yna m ic
C o nne c to r

!
!

A p plica t ion
D y nam ic C o nn ec to r

• The Static Infrastructure Connector component acts on the underlying middleware

components before they are linked into the deployed system. This action may be as
simple as selecting one of several implementations of an interface or it may be as
complex as re-compiling and re-linking the middleware component using

appropriately chosen values for configuration parameters, such as include file search
paths, macro symbol definitions, and compiler options.

�
For example, the TAO ORB [19], which we use for its Real-time Event Service
[31], is highly configurable by both runtime and compile-time mechanisms [2].
Specifically, we exploit the efficiencies available when the target system is known
to be homogeneous by enabling a macro in an include file that streamlines the
marshaling and demarshaling activities.

Class
 S ta tic In f ra struc tu re C onn ecto r

Collaborator

Responsibility

!

!

A cc ep ts Q oS spe cifica t ion s fo r
in frast ru c tu re se rv ice s
S e lec ts o r m od ifies the
m idd lew are co m po nen ts th a t w il l
be avai lab le to the D yna m ic
C on ne cto r

!
!

M id d lew a re C om pon e n ts
D y nam ic C onne cto r

• The Dynamic Connector component is linked in with the application and acts during

its operation. This component allocates infrastructure resources to data flows. When
the quality connector object receives a request for a specific QoS, it uses the
Configuration object (see below) or similar mechanism to discover the infrastructure
components that might be used to provide the requested service in the specified mode.
It then negotiates with the infrastructure resources in an attempt to obtain support for
the requested service. If these negotiations are successful, the quality connector object
records the successful strategy, and directs the resources involved to record their
commitment to this QoS in this mode.

�
For example, since an Event Service is permitted by the CORBA specification to
use any mechanism to propagate events from suppliers to consumers, the
Dynamic Connector component can (and should) examine the available
communication resources to determine the best means to propagate events.

Cla ss
 D y n am ic C on ne cto r

Collaborator

Responsibility

!

!

!

N eg o tia tes w ith in fras tru c tu re
reso urces (o r th e ir p ro x ies)
A llo ca tes in f ra struc tu re res o urce s
to da ta f lo w s
C o n figu re s m idd le w a re
co m po ne n ts d u ring app lica t io n
ex ec u tion

!
!

!

A pp lica t io n
In fras tru c tu re re so u rc es
(o r th e ir p ro x ie s)
M id d lew a re c om p on en ts

The class diagram for the Quality Connector pattern is shown in the following figure:

In addition to the participants of the Quality Connector pattern described above, there are
several optional participants, including:

• Configuration tools that assist system builders in selecting compatible sets of
infrastructure components that implement required services,

• Simulation tools to determine whether locally specified qualities of service will
combine to meet system-level requirements, and

• A Configuration object that provides visibility at run-time of the set of configuration
items that currently comprise the executing system.

These optional participants are not addressed further in this paper.

Dynamics

The dynamic sof the Quality Connector pattern is illustrated in Figure 2. These
interactions can be divided into the three phases as described below:

1. Pre-runtime. When the identities of the services to which QoS requests will be made
are known, the application source code can be modified automatically to insert the
code that makes the runtime requests. Infrastructure components are selected and
constructed using whatever information is known about the QoS requirements and
load imposed on the service.

2. Runtime preparation. The runtime dynamics of the Quality Connector are illustrated
in Figure 2. At runtime, the application requests a QoS in a specified mode,
including the specification of a load. The code included by the Quality Connector
determines whether that request could be satisfied using the presently available
infrastructure, considering any extant QoS agreements. If the request would be
feasible, the QoS request is granted, and the strategy by which the service would be

Sta tic A p plica t ion C o nn ec tor

r e q u ire Q o S ()

Sta tic I n fr a stru cture C o nn ecto r

r e q u ire Q o S ()

r e q u ire Q o S ()

D yn a m ic C o n n ecto r

A p p lica tio n R u n tim e
In fras tr uc tu re

B u ild -t im e
In fras tr uc tu re

in stru m e n ts c o n fig u re s

c o n fig u re sre q u e s ts str a te g iz e s

d e r iv e su s e s

provided is recorded. Moreover, listeners are attached to the configuration items
whose mode changes might signal transition to or from the relevant mode.

3. Runtime employment. After a QoS agreement has been established and the system
enters the mode in which that agreement applies, the code included by the Quality
Connector receives notification of the mode change and reallocates infrastructure
resources immediately according to its pre-computed strategy.

re ques tQoS() re ques tQoS()

re ques tQoS()

m odify() configure()

configure()

s t ra t e g i z e ()

Q o S Q o S

Q o S

s e rv i c e s e rv i c e

s e rv i c e

: S t a t i c A p p l i c a t i o n
C o n n e c t o r

: D y n a m i c
C o n n e c t o r

:A p p lica tion

:R u n tim e
Infr a stru c tur e

:B uild -tim e
Infr a stru c tur e

:Sta tic In fra str u ctu re
C on n e cto r

Figure 2. Dynamics of the Quality Connector

Implementation

After a configurable infrastructure service has been selected, a quality connector for that
service can be implemented as follows:

1. Define a small language in which acceptable values (or sets of acceptable values) of
the service’s qualities can be specified, depending on the system mode. This
language is the form in which data flows over the “Specifies QoS” arrow in the
figure below. Consider defining this language using XML so that it can be
understood readily by humans and parsed easily by COTS tools. This activity can
take place even in advance of the system design; ideally the language will be defined
by an open standard, as are, for example, UML and XML.

2. Provide configuration-time tools to check for feasibili ty and consistency of the
requested quality values, and to set the properties of the Runtime Components to
provide the required qualities, as ill ustrated below.

3. Implement the Dynamic Connector. This is the Dynamic Connector component of
the Quality Connector, described above; it carries out the runtime allocation of
resources. This function is performed in the Middleware Service box below.

The following figure outlines how these activities interact when implementing the
Quality Connector pattern:

Application

Program
Generation

Specifications

Configuration
Parameters

Middleware
Service

Quality Connector

Runtime
Components

Aspect
Weaving

Tools

Cross-Cutting
PoliciesSpecifies

QoSRequests
Service

selects

generates

configures

generates

Service
Implementation

We describe each of these implementation activities below.

Step 1: Specify the Quality Connector QoS Language

Define a Quality Connector QoS language that is capable of specifying
• Values for all qualities of the service that are of interest in the system
• Values for all relevant parameters of the load that the clients will impose on the

service
• Relative priorities of clients, for use when not all requests can be supported and
• System modes in which quality requests apply.

 �

A QoS language that applies to a CORBA Event Service is illustrated in Figure 3.
We have not used worst-case bounds for qualities such as latency, on the ground that
if “worst case” is interpreted literally, then resource utilization may be too low to be
effective for production DRE applications. Rather, we assume that latencies will be
constrained by a conjunction of one or more conditions of the form “<proportion> of
latencies shall be less than or equal to <time-interval>.” For example, a QoS
specification for latency might be “99% of latencies less than or equal to 1.0 seconds
and 99.99% of latencies less than or equal to 4.0 seconds.”6

6 It should be noted that the preceding is a special case of a much more general and powerful technique,
which we call density intervals. A density interval specifies a distribution of values by the assertion that its
cumulative density function lies entirely between an upper bounding function and a lower bounding
function. In the preceding example, only an upper bounding function is specified, and it is a step function.
Since the generality of density intervals is not essential to the present discussion, this subject will not be
treated in detail here.

Proposal applies in this
mode

There are QoS types other
than latency -- e.g., jitter

Priority determines how
this request will compete
with others for resources

Flow is periodic

<proposal>
 <mode>
 <or>
 <ci name="radioVHF" state="onLine"/>
 <ci name="radioUHF" state="onLine"/>
 </or>
 </mode>
 <QoS type="latency">
 <upperPoint secs="1.0" prob="0.99"/>
 <upperPoint secs="4.0" prob="0.9999"/>
 </QoS>
 <load type="interMessageTime">
 <upperPoint secs="1.0" prob="0.0001"/>
 <lowerPoint secs="1.0" prob="0.9999"/>
 </load>
 <load type="messageSize">
 <upperPoint bytes="256" prob="1.0"/>
 <upperPoint bytes="32" prob="0.5"/>
 </load> <load type="priority">
 <urgency val="10"/>
 <importance val="2"/>
 </load>

</proposal>

Figure 3. A QoS Request in XML

The load that will be imposed by the event service is specified in terms of a
distribution of event sizes, in bytes, and a distribution of the times between event-
push invocations.

Relative priorities of clients are specified by the following two integral values:
• The urgency of a request determines which of several eligible requests will get

access to a shared resource. For example, if either of two packets of data could be
sent over a communication link, the packet with the higher urgency will be sent.

• The importance of a request determines which of two requests not both of which
can be supported will be accepted. For example, if both of two requests for event
data propagation cannot be supported on the present infrastructure, then the
request with the higher importance will be accepted and the other will be rejected.
Moreover, if a new request for service is received, and that request can be
accommodated only if some currently operating, lower importance service is shut
down, then that will be done; in this case, we say that the lower importance
request is abrogated.

The proposal in Figure 3 applies only when either of a pair of tactical military or
emergency response team radios is on-line. In that case, the time between a supplier' s
push() call and all consumers' corresponding push() calls for every event are to
be less than 1.0 second 99% of the time and less than 4 seconds 99.99% of the time.
The sizes of the event data are always at most 256 bytes and 50% of the time are less
than or equal to 32 bytes. The supplier' s push() calls occur periodically, once per
second. Note that the priority of the request consists of the two integral values defined
above.

Step 2: Provide Configuration-time Tools

Procure or build tools to help the programmers conduct the configuration-time and
runtime Quality Connector activities. The decisions concerning which tools to use, if any,
are subject to cost/benefit tradeoffs, such as the cost to build or buy the tool plus the tool
maintenance cost vs. the anticipated productivity improvement and risk reduction from its
use. Consider using design tools, such as design-tool interfaces, QoS language checkers,
simulators, and source code generators, such as AspectJ [12] or scripts.
 �

For our Event Channel service, our QoS language is in XML, so schemas are a
natural mechanism for language checking. Our application is written in C++, so
we explicitly mark locations in the source code where modifications are to be
applied, and we use a Perl script to insert the QoS requests automatically.

Step 3: Implement the Dynamic Connector

The Dynamic Connector component implements the runtime functionality of the Quality
Connector. This component is therefore responsible for

• Receiving QoS requests from the application,
• Negotiating with the available infrastructure resources for support,
• Replying to the application’s request for QoS with either acquiescence or an explicit

denial, and, if acquiesced, then
• Distributing strategies to the components that will employ them when the applicable

mode is entered.
�

In our CORBA Event Service, QoS requests are made by the application through
the ProxyPushSupplier and ProxyPushConsumer objects. These forward
the request to the event channel object, which negotiates with the infrastructure
resources.

The event channel object first requests service from the infrastructure components
with a parameter called pullRank set to false, which has the effect of attempting
to provide the requested service without disrupting any existing QoS agreements. If
this negotiation fails, then the event channel object tries the negotiation again but with
pullRank set to true; which has the effect that if this second round of negotiation
succeeds, then at the time when the presently negotiated QoS is required, then
agreements of less importance than the present request may be abrogated.

If the negotiation process succeeds, then a collection of resources will be allocated for
the event flow in the specified mode. The event channel object distributes strategy
objects, represented as XML strings, to the affected service objects. For example, the
strategy given to a ProxyPushConsumer might direct the immediate creation of a
socket with specified parameters to which supplied events should be written.

Example Resolved

We can apply the Quality Connector pattern to enhance the CORBA Event Service so
applications can control qualities of the event service without being unduly affected by its
implementation. To accomplish this, we permit the application to submit a QoS request

of the form shown in Figure 3 with each consumer and supplier proxy. These requests
support the requirement that QoS be permitted to depend on system mode.

To avoid manual modifications to the application source code, we can apply automatic
tools possessing aspect-oriented programming (AOP) [4] capabilities to insert the
required calls to request QoSs, following the creation of each Event Service proxy. The
rejection of a QoS request raises an exception. As a result, no manual modification of
application code is required when a different event service implementation is used.

The runtime result of a QoS request is that the request is forwarded from the Event
Service proxy to the Event Channel object, where the negotiation for infrastructure
support takes place with the infrastructure resources or their proxies. If the mode
specified in the request is not the current mode, then the strategy for the specified mode is
retained in the proxy object, for use when the specified mode is entered. As a result, the
infrastructure resources are reallocated quickly when the mode is entered, as required for
time-critical mode transitions. These interactions are shown in the following figure:

:A pp lica tion
(m od ified)

re qu es t Qo S

re qu es t resou rces

re qu es t Qo S

a cq uiescen ce

tra nsm it

p ush even t

Event P roxy Event C hanne l

:D ynam ic
C onnector

s t ra t e g y

Q o S R e q u e s t

:B u ild -tim e
In frastruc ture

In summary, the following figure illustrates the tool interactions (e.g., the instrumentation
and weaving of aspects).

applications specify
required QoS

quality connector sets the
attributes of the middleware

components to provide
the required QoS

App App

Operating System

Network

DRE
middleware

layer

Known Uses

Meta-INterface for Real-time Embedded Systems (MINERS). There is an ongoing
independent research and development project at Lockheed Martin Tactical Systems in
Eagan, Minnesota, USA, called MINERS. MINERS is investigating the use of meta-
programming techniques to provide DRE applications with an open interface through
which they can configure and control the underlying middleware as they require.

QuO. The BBN Quality Objects (QuO) framework [6] uses QoS definition languages [7]
that are based on the separation of concerns promoted by AOP [4]. In particular, QuO
includes the notion of a connection between a client and an object, which encapsulates
QoS requirements and intended usage patterns; this is analogous to MINERS QoS
requests. QuO provides system condition objects, which are similar to MINERS modes.
QuO provides a Quality Description Language (QDL) that includes three aspect
languages:

1. A contract description language (CDL) that describes contracts as outlined above,
2. A structure description language (SDL) that describes the internal structure of

object implementations and the amount of resources they require, and
3. A resource description language (RDL) that describes the available resources and

their status.
These languages perform functions similar to the MINERS QoS language described
above.

QuO has in the past emphasized reactive resource allocation [32], which monitors the
QoS being provided and acting to correct contract violations or anticipated violations.
There is nothing inherent in the structure of QuO, however, that prohibits implementing
the proactive resource allocation style described in this paper.

Human uses. Applications behave analogously to an executive who gives a package to
his staff with direction that it must be delivered by a specified time. The Quality
Connector acts, analogously to the staff, by selecting mechanisms for transport and
setting the controllable parameters of those mechanisms.

Consequences

The Quality Connector pattern has the following benefits:
• Infrastructure independence. The Quality Connector pattern decouples an application

from dependencies on the infrastructure it executes upon, even when that
infrastructure requires explicit configuration to provide the QoS that the application
requires.

• Fast response to mode changes. The Quality Connector negotiates requests for
service in modes other than the current mode, and in so doing performs the possibly
long and difficult determination of the necessary resource allocations. When the new
mode in fact arises, the resources can then be reallocated quickly.

The Quality Connector pattern also has the following liabilities:
• Reimplementation. When a new infrastructure is deployed, a new Quality Connector

object may be required.
• Potential for low utilization. Resource utilization may be low if the Quality

Connector implementations are unduly conservative in rejecting QoS requests.
• Requires source code. This pattern require access to the source code of the

application and/or infrastructure implementation in order to instrument it.

See Also

The Quality Connector pattern is related to the Component Configurator [26] and the
Virtual Component [37] patterns, which permit component implementations to be linked
into and unlinked from a running application without shutting down the application. Both
the Quality Connector pattern and these other two patterns provide a means to change the
behavior of a service during application execution. The Component Configurator and
Virtual Component patterns are concerned with one mechanism – dynamic linking – for
doing so, while the Quality Connector focuses on policies and mechanisms that ensure
rapid response to changing system state by switching present components among pre-
computed strategies.

The goal of the Quality Connector pattern is similar to that of the Interceptor pattern [26],
in that both adjust infrastructure behavior without modifying the application manually.
The Interceptor pattern accomplishes this by a highly flexible method of adding services
that are triggered automatically when specified events occur. The Interceptor pattern
applies to the design of a framework, specifying that it expose application-callback
interfaces, and that it open aspects of its internal state and behavior to control by the
application. The Quality Connector pattern imposes no design requirements on its
constituent components (although if the service components expose only weak
configuration controls, then the Quality Connector will be unable to provide good
resource utilization.) The Quality Connector is concerned with service quality, while the
Interceptor pattern is more general, and can provide functions such as event logging.

The Reflection pattern [30] provides for the inclusion in a running application of meta-
objects that provide information about, and control over, the objects that implement the
application “logic .” This pattern is clearly a basis on which the Quality Connector
pattern depends since the latter requires that the infrastructure services support reflective
capabilities.

The Proxy pattern [29] shields an application from details of the implementation of a
service, e.g., it hides the physical location of a service implementation from its clients.
The Quality Connector pattern serves to modify the behavior of existing, fully visible,
service-providing components.

References

[0] Richard E. Schantz and Douglas C. Schmidt, “Middleware for Distributed Systems:
Evolving the Common Structure for Network-centric Applications,” Encyclopedia of
Software Engineering, Wiley and Sons, 2002.

[1] Guidelines for Successful Acquisition and Management of Software Intensive
Systems: Volume 1 -- Version 3.0, May 2000, Department of the Air Force, Software
Technology Support Center.
http://web2.deskbook.osd.mil/reflib/DAF/035GZ/013/035GZ013DOC.HTM#T2

[2] Carlos O' Ryan, Douglas C. Schmidt, and J. Russell Noseworthy, “Patterns and
Performance of a CORBA Event Service for Large-scale Distributed Interactive
Simulations,” International Journal of Computer Systems Science and Engineering,
CRL Publishing, 2001.

[3] General Characterization Parameters for Integrated Service Network Elements,
TOKEN_BUCKET_TSPEC. IETF Integrated Services, RFC 2215 (section 3.6.)
http://www.ietf.org/rfc/rfc2215.txt?number=2215.

[4] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin, “Aspect Oriented Programming.”
Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), Finland, June 1997.
http://www.parc.xerox.com/spl/groups/eca/pubs/papers/Kiczales-ECOOP97/for-
web.pdf, and also http://www.parc.xerox.com/csl/projects/aop/.

[5] The Quorum Project, DARPA Information Technology Office.
http://www.darpa.mil/ito/research/quorum/index.html

[6] Quality Objects website, BBN Technologies. http://www.dist-
systems.bbn.com/tech/QuO/

[7] Pal PP, Loyall JP, Schantz RE, Zinky JA, Shapiro R, Megquier J. “Using QDL to
Specify QoS Aware Distributed (QuO) Application Configuration. Proceedings of
ISORC 2000,” The Third IEEE I nternational Symposium on Object-Oriented Real-
time Distributed Computing, March 15-17, 2000, Newport Beach, CA.

[8] Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6
Headers. IETF Differentiated Services.
http://www.ietf.org/rfc/rfc2474.txt?number=2474

[9] An Architecture for Differentiated Services. IETF Differentiated Services.
http://www.ietf.org/rfc/rfc2475.txt?number=2475

[10] Specification of Guaranteed Quality of Service, IETF Integrated Services, RFC
2212. http://www2.ietf.org/rfc/rfc2212.txt

[11] Real-Time CORBA (Chapter 24). Common Object Request Broker Architecture 2.5.
http://www.omg.org/cgi-bin/doc?formal/01-09-61

[12] The AspectJ website at http://aspectj.org.

[13] P. Tarr, H. Ossher, W. Harrison and S.M. Sutton, Jr. "N Degrees of Separation:
Multi-Dimensional Separation of Concerns." Proceedings of the International
Conference on Software Engineering (ICSE' 99), May, 1999.
http://www.acm.org/pubs/articles/proceedings/soft/302405/p107-tarr/p107-tarr.pdf

[14] Robert E. Filman, Stuart Barrett, Diana D. Lee, Ted Linden, “Inserting Ilities by
Controlling Communications,” Communications of the ACM, in press.
http://ic-www.arc.nasa.gov/ic/darwin/oif/leo/filman/text/oif/oif-cacm-final.pdf.

[15] Robert E. Filman, “Applying Aspect -Oriented Programming to Intelligent
Synthesis,” Research Institute for Advanced Comp uter Science, NASA Ames
Research Center. June 2000.

[16] The Demeter Project homepage at http://www.ccs.neu.edu/research/demeter/

[17] TRESE Aspects and advanced separation of concerns homepage
http://trese.cs.utwente.nl/aspects_asoc/index.htm

[18] K. Czarnecki and U. Eisenecker, "Generative Programming : Methods, Tools, and
Applications." Addison-Wesley, June 2000.

[19] Douglas C. Schmidt, David Levine, and Sumedh Mungee "The Design and
Performance of Real-Time Object Request Brokers," Computer Communications,
Elsivier, Vol. 21, No. 4, April 1998.

[20] Chris Gill, David Levine, and Douglas C. Schmidt, “The Design and Performance of
a Real-time CORBA Scheduling Service,” Real-time Systems, Kluwer, Vol. 20, No.
2, March, 2001.

[21] Gordon S. Blair, G. Coulson, P. Robin, and M. Papathomas, "An architecture for
next generation middleware," in Proceedings of the IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing, Springer-Verlag,
London, 1998.

[22] Fabio M. Costa and Gordon S. Blair, "A Reflective Architecture for Middleware:
Design and Implementation," in ECOOP' 99 PhDOOS Workshop, Lisbon, Portugal,
1999.

[23] F. Kon and R. H. Campbell, "Supporting Automatic Configuration of Component-
Based Distributed Systems," in Proceedings of the 5th Conference on Object-
Oriented Technologies and Systems, (San Diego, CA), USENIX, May 1999.

[24] Nanbor Wang, Douglas C. Schmidt, Kirthika Parameswaran, and Michael Kircher,
“Towards a Reflective Middleware Framework for QoS-enabled CORBA
Component Model Applications,” IEEE Distributed Systems Online special issue on
Reflective Middleware, 2001.

[25] F. J. Hauck, U. Becker, M. Geier, E. Meier, U. Rastofer, and M. Steckermeier, “T he
AspectIX Approach to Quality-of-Service Integration into CORBA,” Technical
Report TR-I4-99-09, Operating Systems Dept., Friedrich-Alexander University,
Erlangen-Nürnberg, Germany, 1999.

[26] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann, Pattern-
Oriented Software Architecture,: Patterns for Concurrent and Networked Objects,
Wiley and Sons, 2000.

[27] The Programmable Composition of Embedded Software (PCES) Project, DARPA
Information Technology Office. http://www.darpa.mil/ito/research/pces/index.html

[28] J. Clapp and A Taub, “A Management Guide to Software Maintenance in COTS-
Based Systems,” MP 98B0000069, The MITRE Corporation, Bedford, MA,
November 1998.

[29] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[30] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal, Pattern-Oriented Software Architecture: A System of Patterns, Wiley and Sons,
1996.

[31] Timothy H. Harrison and David L. Levine and Douglas C. Schmidt, “The Design
and Performance of a Real-time CORBA Event Service,” Proceedings of OOPSLA
' 97, Atlanta, GA, October 1997.

[32] Joseph K. Cross and Patrick J. Lardieri, Proactive and Reactive Resource
Reallocation in DoD DRE Systems, submitted to the 9th Annual Conference on
Pattern Languages of Programs focused topic session “Towards Patterns and Pattern
Languages,” Monticello, IL, September, 2002.

[33] About Global Air Traffic Management, http://www.hanscom.af.mil/esc-
gat/aboutgatm.htm.

[34] Greg Bollella and James Gosling, "The Real-Time Specification for Java", IEEE
Computer, June, 2000, pp. 47-54.

[35] Nanbor Wang, Douglas C. Schmidt, Ossama Othman, and Kirthika Parameswaran,
“Evaluating Meta-Programming Mechanisms for ORB Middleware,” IEEE
Communication Magazine, special issue on Evolving Communications Software:
Techniques and Technologies, 2001.

[36] Bill Gallmeister, POSIX.4 Programming for the Real World, O’Reill y, 1995.

[37] Carlos O' Ryan and Angelo Corsaro and Raymond Klefstad and Douglas C. Schmidt,
“Virtual Component : : a Design Pattern for Memory-Constrained Systems,”
submitted to the 9th Annual Conference on the Pattern Languages of Programs",
focused topic session “Towards Patterns and Pattern Languages,” Monticello,
Illi nois, September 2002.

