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Abstract 

Commercial off-the-shelf (COTS) middleware increasingly offers distributed real-time 
and embedded (DRE) applications functional support for standard interfaces, along with 
the abilit y to optimize application resource utili zation. For example, a Real-time CORBA 
object request broker (ORB) permits DRE application developers to configure server 
thread pooling policies. This flexibility makes it possible to use standard functional 
interfaces in applications where they were not applicable previously. However, the non-
standard nature of the optimization mechanisms – i.e., the "knobs and dials" – acts 
against the very product-independence that standardized COTS interfaces are intended to 
provide. This paper presents an architectural pattern called Quality Connector, which is 
a meta-programming technique that enables applications to specify the QoS they require 
from their infrastructure, and then manages the operations that optimize the middleware 
to implement those QoS requirements. 

 

The Quality Connector architectural pattern decouples application components from the 
QoS configuration mechanisms provided by infrastructure components to permit the 
infrastructure to evolve without requiring manual changes to application component 
functionality. The Quality Connector mediates between the application and non-standard 
middleware configuration and control interfaces. 

Example 

CORBA event channels [2] decouple communication between suppliers and consumers 
of data, as shown in Figure 1. An event channel logically mediates the communication 
from each supplier to all consumers, where by “ logical” mediation we mean that the 
actual communication may use any type of unicast, broadcast, or multicast protocol. In 
many implementations, however, the event channel object physically mediates these 
communications, i.e., all events are routed through a process where the event channel 

                                                

 

 



object resides. In either case, the communication between suppliers and consumers is 
decoupled in the sense that  

• It is asynchronous, i.e., consumers will receive data some time after a supplier has 
completed its push() operation, and  

• The suppliers and consumers must be aware of the event channel’s identity, but need 
not be aware of each other' s identities.  
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Figure 1. A Simple CORBA Event Channel 

 

There is no pre-defined limit on the number of suppliers and consumers that can be 
connected to a CORBA event channel at any time. Moreover, they can connect and 
disconnect at any time. There may be many event channels active at one time in a 
distributed system.3 

The CORBA specification intentionally leaves many aspects of event channel behavior 
unspecified. For example, the following properties of event delivery are not specified: 

• Latency of event delivery 
• Where and how often event data are copied 
• Threading and synchronization policies for event dispatching 
• What communication mechanism is used to convey the event data from the supplier 

to the consumers; e.g., which of several radio channels will be used 
• How and where event data are buffered, and how large the event data buffers are 
• What happens when an event data buffer overflows 
• Reliabili ty of event delivery 

                                                
3 Our discussion focuses on the “push” model of event deli very, where a supplier invokes a push(data) 
operation to supply any type of data, and the event channel causes push(data) operations to be invoked 
on the consumers registered with that event channel. In addition to the “push” model, there is also a “pull ” 
model of event deli very, which we do not address in this paper. 



• Whether events from one supplier will be delivered to each consumer in the order in 
which they were supplied 

• If supplier Alpha supplies an event E1 to an event channel, and only after consuming 
E1 does Beta, who is both a supplier and consumer, supply an event E2 to the same 
event channel, and if consumer Omega consumes both events, must Omega receive 
E1 before E2? 

• If a consumer connects to an event channel, and if an event is supplied to that channel 
one minute later, will that consumer receive that event? Does the answer depend on 
whether the supplier and consumer are on different continents? 

Consider a distributed real-time and embedded (DRE) application that uses the CORBA 
Event Service and that will meet or not meet its requirements depending on the value of 
one or more or the event delivery properties outlined above.  It should be possible to 
determine whether a given Event Service implementation will successfully support the 
application. It should also be possible to port the application easily from one 
implementation of the service implementation to another. Finally, it should be possible to 
modify the service implementation – including making changes to hardware and revising 
support software – and retain confidence that the application will continue to function 
correctly and with the appropriate quality of service. 

Context 

The Quality Connector pattern can be applied in a DRE application that has the following 
characteristics: 

• It uses components via standardized functional interfaces,  
• The qualities of the services provided by those components are critical to the 

application’s conformance to its requirements, and  
• Long-term maintainabili ty and portabili ty are necessary for the success of the 

application. 

Problem 

Implementations of services that are available through standardized functional interfaces 
expose only non-standard mechanisms for controlli ng the qualities of the services 
provided, such as throughput, latency, jitter, scalabili ty, dependabili ty, and security. 
When an application uses such a service implementation, three forces arise: 

• A quality-sensitive application should be able to monitor and control the qualities of 
its supporting services. The required qualities should be permitted to depend on the 
current system mode (see Sidebar 1). 

• A long-lived application should be capable of executing without manual 
modifications on multiple implementations of infrastructure services with standard 
functional interfaces. 

• For time-critical mode transitions, infrastructure resources, by which we mean 
resources such as ATM virtual circuits, processors, or radios, must be reallocated 
quickly to provide the services required in the new mode. 
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Solution 

Implement a Quality Connector object for each infrastructure component4 that provides 
only a non-standard QoS-control interface. The Quality Connector object configures the 
infrastructure component to provide, if possible, the requested QoS in the specified 
system modes. The interface between the application and the Quality Connector object 
should be independent of the choice of infrastructure component implementation and 
should be concerned only with  

• The qualities of the service provided 
• The load that will be imposed on the service and 
•  The modes of the system. 

In detail: Before the application source code is compiled, a static application connector 
acts on that code (or on some higher-level representation of it, such as a model), inserting 

                                                
4 An “infrastructure component” is any hardware or s oftware component of the deployable system whose 
function is to provide infrastructure services to the application; an ORB together with its supporting 
computing and communication hardware is an example. 

 



hooks through which the dynamic connector will act at application run-time to configure 
the infrastructure components. In addition, a static infrastructure connector selects and 
configures the implementations of infrastructure services before the system is linked. 

If a new infrastructure component implementation is employed, then a corresponding 
Quality Connector object will be required that provides the same interface to the 
application as before. The application will therefore not require manual changes to its 
functionality. The runtime interface between the Quality Connector object and the 
component implementation depends on the infrastructure component’s QoS-control 
interface. 

Structure 

A Quality Connector consists of three components: 

• The Static Application Connector component acts on the application source code 
before it is compiled and may operate similarly to “aspect weaving” tools, such as 
AspectJ [12]. For example, the Static Application Connector scans the application 
source code to detect statements and declarations that are related to the service being 
provided. This detection process may be as sophisticated as that used in globally 
optimizing compilers or as simple as the detection of flags embedded in comments. 
The Static Application Connector then modifies the source code at certain of these 
locations, generating new source code.  

�
For example, consider an application that intends to supply events to an Event 
Service, as described above, and whose QoS requirements are known statically. 
Such an application must first create an Event Service access point called a 
ProxyPushConsumer by invoking the standard obtain_push_ 
consumer() method. The Static Application Connector component of the 
Quality Connector locates these method invocations in the application source 
code, and inserts new code after each that will request the appropriate QoS. 
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• The Static Infrastructure Connector component acts on the underlying middleware 

components before they are linked into the deployed system. This action may be as 
simple as selecting one of several implementations of an interface or it may be as 
complex as re-compiling and re-linking the middleware component using 



appropriately chosen values for configuration parameters, such as include file search 
paths, macro symbol definitions, and compiler options.  

�
For example, the TAO ORB [19], which we use for its Real-time Event Service 
[31], is highly configurable by both runtime and compile-time mechanisms [2]. 
Specifically, we exploit the efficiencies available when the target system is known 
to be homogeneous by enabling a macro in an include file that streamlines the 
marshaling and demarshaling activities.  
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• The Dynamic Connector component is linked in with the application and acts during 

its operation. This component allocates infrastructure resources to data flows. When 
the quality connector object receives a request for a specific QoS, it uses the 
Configuration object (see below) or similar mechanism to discover the infrastructure 
components that might be used to provide the requested service in the specified mode. 
It then negotiates with the infrastructure resources in an attempt to obtain support for 
the requested service. If these negotiations are successful, the quality connector object 
records the successful strategy, and directs the resources involved to record their 
commitment to this QoS in this mode.  

�
For example, since an Event Service is permitted by the CORBA specification to 
use any mechanism to propagate events from suppliers to consumers, the 
Dynamic Connector component can (and should) examine the available 
communication resources to determine the best means to propagate events.  
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The class diagram for the Quality Connector pattern is shown in the following figure: 
 

 
 
In addition to the participants of the Quality Connector pattern described above, there are 
several optional participants, including: 

• Configuration tools that assist system builders in selecting compatible sets of 
infrastructure components that implement required services, 

• Simulation tools to determine whether locally specified qualities of service will 
combine to meet system-level requirements, and 

• A Configuration object that provides visibility at run-time of the set of configuration 
items that currently comprise the executing system.  

These optional participants are not addressed further in this paper. 

Dynamics 

The dynamic sof the Quality Connector pattern is illustrated in Figure 2. These 
interactions can be divided into the three phases as described below:  

1. Pre-runtime. When the identities of the services to which QoS requests will be made 
are known, the application source code can be modified automatically to insert the 
code that makes the runtime requests. Infrastructure components are selected and 
constructed using whatever information is known about the QoS requirements and 
load imposed on the service. 

2. Runtime preparation. The runtime dynamics of the Quality Connector are illustrated 
in Figure 2. At runtime, the application requests a QoS in a specified mode, 
including the specification of a load. The code included by the Quality Connector 
determines whether that request could be satisfied using the presently available 
infrastructure, considering any extant QoS agreements. If the request would be 
feasible, the QoS request is granted, and the strategy by which the service would be 
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provided is recorded. Moreover, listeners are attached to the configuration items 
whose mode changes might signal transition to or from the relevant mode. 

3. Runtime employment. After a QoS agreement has been established and the system 
enters the mode in which that agreement applies, the code included by the Quality 
Connector receives notification of the mode change and reallocates infrastructure 
resources immediately according to its pre-computed strategy.  
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Figure 2. Dynamics of the Quality Connector 

 

Implementation 

After a configurable infrastructure service has been selected, a quality connector for that 
service can be implemented as follows:  

1. Define a small language in which acceptable values (or sets of acceptable values) of 
the service’s qualities can be specified, depending on the system mode. This 
language is the form in which data flows over the “Specifies QoS” arrow in the 
figure below. Consider defining this language using XML so that it can be 
understood readily by humans and parsed easily by COTS tools. This activity can 
take place even in advance of the system design; ideally the language will be defined 
by an open standard, as are, for example, UML and XML. 

2. Provide configuration-time tools to check for feasibili ty and consistency of the 
requested quality values, and to set the properties of the Runtime Components to 
provide the required qualities, as ill ustrated below.  



3. Implement the Dynamic Connector. This is the Dynamic Connector component of 
the  Quality Connector, described above; it carries out the runtime allocation of 
resources. This function is performed in the Middleware Service box below. 

 
The following figure outlines how these activities interact when implementing the 
Quality Connector pattern: 
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We describe each of these implementation activities below.  

Step 1: Specify the Quality Connector QoS Language  

Define a Quality Connector QoS language that is capable of specifying  
• Values for all qualities of the service that are of interest in the system 
• Values for all relevant parameters of the load that the clients will impose on the 

service 
• Relative priorities of clients, for use when not all requests can be supported and 
• System modes in which quality requests apply. 

 �

A QoS language that applies to a CORBA Event Service is illustrated in Figure 3. 
We have not used worst-case bounds for qualities such as latency, on the ground that 
if “worst case” is interpreted literally, then resource utilization may be too low to be 
effective for production DRE applications. Rather, we assume that latencies will be 
constrained by a conjunction of one or more conditions of the form “<proportion> of 
latencies shall be less than or equal to <time-interval>.” For example, a QoS 
specification for latency might be “99% of latencies less than or equal to 1.0 seconds 
and 99.99% of latencies less than or equal to 4.0 seconds.”6  

                                                
6 It should be noted that the preceding is a special case of a much more general and powerful technique, 
which we call density intervals. A  density interval specifies a distribution of values by the assertion that its 
cumulative density function lies entirely between an upper bounding function and a lower bounding 
function. In the preceding example, only an upper bounding function is specified, and it is a step function. 
Since the generality of density intervals is not essential to the present discussion, this subject will not be 
treated in detail here. 



 
Proposal applies in this 
mode 

There are QoS types other 
than latency -- e.g., jitter 

Priority determines how 
this request will compete 
with others for resources 

Flow is periodic 

<proposal> 
   <mode> 
      <or> 
         <ci name="radioVHF" state="onLine"/> 
         <ci name="radioUHF" state="onLine"/> 
      </or> 
   </mode> 
   <QoS type="latency"> 
      <upperPoint secs="1.0" prob="0.99"/> 
      <upperPoint secs="4.0" prob="0.9999"/> 
   </QoS> 
   <load type="interMessageTime"> 
      <upperPoint secs="1.0" prob="0.0001"/> 
      <lowerPoint secs="1.0" prob="0.9999"/> 
   </load> 
   <load type="messageSize"> 
      <upperPoint bytes="256" prob="1.0"/> 
      <upperPoint bytes="32"  prob="0.5"/> 
   </load> <load type="priority"> 
      <urgency val="10"/> 
      <importance val="2"/> 
   </load> 
 
</proposal> 

 

Figure 3. A QoS Request in XML 

The load that will be imposed by the event service is specified in terms of a 
distribution of event sizes, in bytes, and a distribution of the times between event-
push invocations.  

Relative priorities of clients are specified by the following two integral values:  
• The urgency of a request determines which of several eligible requests will get 

access to a shared resource. For example, if either of two packets of data could be 
sent over a communication link, the packet with the higher urgency will be sent.  

• The importance of a request determines which of two requests not both of which 
can be supported will be accepted. For example, if both of two requests for event 
data propagation cannot be supported on the present infrastructure, then the 
request with the higher importance will be accepted and the other will be rejected. 
Moreover, if a new request for service is received, and that request can be 
accommodated only if some currently operating, lower importance service is shut 
down, then that will be done; in this case, we say that the lower importance 
request is abrogated. 

The proposal in Figure 3 applies only when either of a pair of tactical military or 
emergency response team radios is on-line. In that case, the time between a supplier' s 
push() call and all consumers' corresponding push() calls for every event are to 
be less than 1.0 second 99% of the time and less than 4 seconds 99.99% of the time. 
The sizes of the event data are always at most 256 bytes and 50% of the time are less 
than or equal to 32 bytes. The supplier' s push() calls occur periodically, once per 
second. Note that the priority of the request consists of the two integral values defined 
above. 



Step 2: Provide Configuration-time Tools 

Procure or build tools to help the programmers conduct the configuration-time and 
runtime Quality Connector activities. The decisions concerning which tools to use, if any, 
are subject to cost/benefit tradeoffs, such as the cost to build or buy the tool plus the tool 
maintenance cost vs. the anticipated productivity improvement and risk reduction from its 
use. Consider using design tools, such as design-tool interfaces, QoS language checkers, 
simulators, and source code generators, such as AspectJ [12] or scripts. 
 �

For our Event Channel service, our QoS language is in XML, so schemas are a 
natural mechanism for language checking. Our application is written in C++, so 
we explicitly mark locations in the source code where modifications are to be 
applied, and we use a Perl script to insert the QoS requests automatically. 

 
Step 3: Implement the Dynamic Connector 

The Dynamic Connector component implements the runtime functionality of the Quality 
Connector. This component is therefore responsible for 

• Receiving QoS requests from the application, 
• Negotiating with the available infrastructure resources for support, 
• Replying to the application’s request for QoS with either acquiescence or an explicit 

denial, and, if acquiesced, then 
• Distributing strategies to the components that will employ them when the applicable 

mode is entered. 
�

In our CORBA Event Service, QoS requests are made by the application through 
the ProxyPushSupplier and ProxyPushConsumer objects. These forward 
the request to the event channel object, which negotiates with the infrastructure 
resources.  

The event channel object first requests service from the infrastructure components 
with a parameter called pullRank set to false, which has the effect of attempting 
to provide the requested service without disrupting any existing QoS agreements. If 
this negotiation fails, then the event channel object tries the negotiation again but with 
pullRank set to true; which has the effect that if this second round of negotiation 
succeeds, then at the time when the presently negotiated QoS is required, then 
agreements of less importance than the present request may be abrogated. 

If the negotiation process succeeds, then a collection of resources will be allocated for 
the event flow in the specified mode. The event channel object distributes strategy 
objects, represented as XML strings, to the affected service objects. For example, the 
strategy given to a ProxyPushConsumer might direct the immediate creation of a 
socket with specified parameters to which supplied events should be written. 

Example Resolved 

We can apply the Quality Connector pattern to enhance the CORBA Event Service so 
applications can control qualities of the event service without being unduly affected by its 
implementation. To accomplish this, we permit the application to submit a QoS request 



of the form shown in Figure 3 with each consumer and supplier proxy. These requests 
support the requirement that QoS be permitted to depend on system mode.  

To avoid manual modifications to the application source code, we can apply automatic 
tools possessing aspect-oriented programming (AOP) [4] capabilities to insert the 
required calls to request QoSs, following the creation of each Event Service proxy. The 
rejection of a QoS request raises an exception. As a result, no manual modification of 
application code is required when a different event service implementation is used. 

The runtime result of a QoS request is that the request is forwarded from the Event 
Service proxy to the Event Channel object, where the negotiation for infrastructure 
support takes place with the infrastructure resources or their proxies. If the mode 
specified in the request is not the current mode, then the strategy for the specified mode is 
retained in the proxy object, for use when the specified mode is entered. As a result, the 
infrastructure resources are reallocated quickly when the mode is entered, as required for 
time-critical mode transitions. These interactions are shown in the following figure: 
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In summary, the following figure illustrates the tool interactions (e.g., the instrumentation 
and weaving of aspects). 
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Known Uses 

Meta-INterface for Real-time Embedded Systems (MINERS). There is an ongoing 
independent research and development project at Lockheed Martin Tactical Systems in 
Eagan, Minnesota, USA, called MINERS. MINERS is investigating the use of meta-
programming techniques to provide DRE applications with an open interface through 
which they can configure and control the underlying middleware as they require.  

QuO. The BBN Quality Objects (QuO) framework [6] uses QoS definition languages [7] 
that are based on the separation of concerns promoted by AOP [4]. In particular, QuO 
includes the notion of a connection between a client and an object, which encapsulates 
QoS requirements and intended usage patterns; this is analogous to MINERS QoS 
requests. QuO provides system condition objects, which are similar to MINERS modes. 
QuO provides a Quality Description Language (QDL) that includes three aspect 
languages:  

1. A contract description language (CDL) that describes contracts as outlined above, 
2. A structure description language (SDL) that describes the internal structure of 

object implementations and the amount of resources they require, and  
3. A resource description language (RDL) that describes the available resources and 

their status.  
These languages perform functions similar to the MINERS QoS language described 
above.  

QuO has in the past emphasized reactive resource allocation [32], which monitors the 
QoS being provided and acting to correct contract violations or anticipated violations.  
There is nothing inherent in the structure of QuO, however, that prohibits implementing 
the proactive resource allocation style described in this paper.  

                                                

 



Human uses. Applications behave analogously to an executive who gives a package to 
his staff with direction that it must be delivered by a specified time. The Quality 
Connector acts, analogously to the staff, by selecting mechanisms for transport and 
setting the controllable parameters of those mechanisms.  

Consequences 

The Quality Connector pattern has the following benefits: 
• Infrastructure independence. The Quality Connector pattern decouples an application 

from dependencies on the infrastructure it executes upon, even when that 
infrastructure requires explicit configuration to provide the QoS that the application 
requires. 

• Fast response to mode changes. The Quality Connector negotiates requests for 
service in modes other than the current mode, and in so doing performs the possibly 
long and difficult determination of the necessary resource allocations. When the new 
mode in fact arises, the resources can then be reallocated quickly. 

The Quality Connector pattern also has the following liabilities: 
• Reimplementation. When a new infrastructure is deployed, a new Quality Connector 

object may be required. 
• Potential for low utilization. Resource utilization may be low if the Quality 

Connector implementations are unduly conservative in rejecting QoS requests. 
• Requires source code. This pattern require access to the source code of the 

application and/or infrastructure implementation in order to instrument it. 
 

See Also 

The Quality Connector pattern is related to the Component Configurator [26] and the 
Virtual Component [37] patterns, which permit component implementations to be linked 
into and unlinked from a running application without shutting down the application. Both 
the Quality Connector pattern and these other two patterns provide a means to change the 
behavior of a service during application execution. The Component Configurator and 
Virtual Component patterns are concerned with one mechanism – dynamic linking – for 
doing so, while the Quality Connector focuses on policies and mechanisms that ensure 
rapid response to changing system state by switching present components among pre-
computed strategies. 

The goal of the Quality Connector pattern is similar to that of the Interceptor pattern [26], 
in that both adjust infrastructure behavior without modifying the application manually. 
The Interceptor pattern accomplishes this by a highly flexible method of adding services 
that are triggered automatically when specified events occur. The Interceptor pattern 
applies to the design of a framework, specifying that it expose application-callback 
interfaces, and that it open aspects of its internal state and behavior to control by the 
application. The Quality Connector pattern imposes no design requirements on its 
constituent components (although if the service components expose only weak 
configuration controls, then the Quality Connector will be unable to provide good 
resource utilization.) The Quality Connector is concerned with service quality, while the 
Interceptor pattern is more general, and can provide functions such as event logging. 



The Reflection pattern [30] provides for the inclusion in a running application of meta-
objects that provide information about, and control over, the objects that implement the 
application “logic .”   This pattern is clearly a basis on which the Quality Connector 
pattern depends since the latter requires that the infrastructure services support reflective 
capabilities. 

The Proxy pattern [29] shields an application from details of the implementation of a 
service, e.g., it hides the physical location of a service implementation from its clients. 
The Quality Connector pattern serves to modify the behavior of existing, fully visible, 
service-providing components. 
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