
APPLYING THE PROACTOR PATTERN
TO HIGH-PERFORMANCE WEB SERVERS

James Hu
jxh@cs.wustl,edu

Irfan Pyarali
irfan@cs.wustl.edu

Douglas C. Schmidt
schmidt@cs.wustl.edu

Department of Computer Science, Washington University
St. Louis, MO 63130, USA�

This paper is to appear at the 10th International Confer-
ence on Parallel and Distributed Computing and Systems,
IASTED, Las Vegas, Nevada, October 28-31, 1998.

ABSTRACT

Modern operating systems provide multiple concurrency
mechanisms to develop high-performance Web servers.
Synchronous multi-threading is a popular mechanism for
developing Web servers that must perform multiple oper-
ations simultaneously to meet their performance require-
ments. In addition, an increasing number of operating sys-
tems support asynchronous mechanisms that provide the
benefits of concurrency, while alleviating much of the per-
formance overhead of synchronous multi-threading.

This paper provides two contributions to the study of
high-performance Web servers. First, it examines how syn-
chronous and asynchronous event dispatching mechanisms
impact the design and performance of JAWS, which is our
high-performance Web server framework. The results re-
veal significant performance improvements when aproac-
tiveconcurrency model is used to combine lightweight con-
currency with asynchronous event dispatching.

In general, however, the complexity of the proactive con-
currency model makes it harder to program applications
that can utilize asynchronous concurrency mechanisms ef-
fectively. Therefore, the second contribution of this paper
describes how to reduce the software complexity of asyn-
chronous concurrent applications by applying theProactor
pattern. This pattern describes the steps required to struc-
ture object-oriented applications that seamlessly combine
concurrency with asynchronous event dispatching. The
Proactor pattern simplifies concurrent programming and
improves performance by allowing concurrent application
to have multiple operations running simultaneously with-
out requiring a large number of threads.

�This work was supported in part by Siemens Med and Siemens Cor-
porate Research.

1 INTRODUCTION

Computing power and network bandwidth on the Internet
has increased dramatically over the past decade. High-
speed networks (such as ATM and Gigabit Ethernet) and
high-performance I/O subsystems (such as RAID) are be-
coming ubiquitous. In this context, developing scalable
Web servers that can exploit these innovations remains a
key challenge for developers. Thus, it is increasingly im-
portant to alleviate common Web server bottlenecks, such
as inappropriate choice of concurrency and dispatching
strategies, excessive filesystem access, and unnecessary
data copying.

Our research vehicle for exploring the performance im-
pact of applying various Web server optimization tech-
niques is theJAWS Adaptive Web Server(JAWS) [1]. JAWS
is both an adaptive Web server and a development frame-
work for Web servers that runs on multiple OS platforms
including Win32, most versions of UNIX, and MVS Open
Edition.

Our experience [2] building Web servers on multiple OS
platforms demonstrates that the effort required to optimize
performance can be simplified significantly by leveraging
OS-specific features. For example, an optimized file I/O
system that automatically caches open files in main mem-
ory via mmapgreatly reduces latency on Solaris. Like-
wise, support for asynchronous event dispatching on Win-
dows NT can substantially increase server throughput by
reducing context switching and synchronization overhead
incurred by multi-threading.

Unfortunately, the increase in performance obtained
through the use of asynchronous event dispatching on ex-
isting operating systems comes at the cost of increased
software complexity. Moreover, this complexity is fur-
ther compounded when asynchrony is coupled with multi-
threading. This style of programming,i.e., proactive pro-
gramming, is relatively unfamiliar to many developers ac-
customed to the synchronous event dispatching paradigm.
This paper describes how theProactor patterncan be
applied to improve both the performance and the design
of high-performance communication applications, such as

1



Web servers.
A pattern represents a recurring solution to a software

development problem within a particular context [3]. Pat-
terns identify the static and dynamic collaborations and in-
teractions between software components. In general, ap-
plying patterns to complex object-oriented concurrent ap-
plications can significantly improve software quality, in-
crease software maintainability, and support broad reuse
of components and architectural designs [4]. In particu-
lar, applying theProactorpattern to JAWS simplifies asyn-
chronous application development by structuring the de-
multiplexing of completion events and the dispatching of
their corresponding completion routines.

The remainder of this paper is organized as follows: Sec-
tion 2 provides an overview of the JAWS server framework
design; Section 3 discusses alternative event dispatching
strategies and their performance impacts; Section 4 ex-
plores how to leverage the gains of asynchronous event dis-
patching through application of the Proactor pattern; and
Section 5 presents concluding remarks.

2 JAWS FRAMEWORK OVERVIEW

Figure 1 illustrates the major structural components and
design patterns that comprise the JAWS framework [1].
JAWS is designed to allow the customization of various

Framework Framework

Tilde

Framework
Cached Virtual
Filesystem

StrategyProtocol Pipeline
Concurrency

Expander

I/O Strategy

~
/home/...

M
em

en
to

Reactor/Proactor Strategy Singleton

S
ta

te
S

er
vi

ce
 C

o
n

fi
g

u
ra

to
r

S
ta

te

StrategyActive ObjectPipes and Filters

A
d

ap
ter

Service Configurator

Protocol
Handler

Protocol
Filter

A
ccep

to
r

Event Dispatcher

Asynchronous Completion Token

Figure 1: Architectural Overview of the JAWS Framework

Web server strategies in response to environmental factors.
These factors includestatic factors (e.g., number of avail-
able CPUs, support for kernel-level threads, and availabil-
ity of asynchronous I/O in the OS), as well asdynamicfac-
tors (e.g., Web traffic patterns and workload characteris-
tics).

JAWS is structured as aframework of frameworks. The
overall JAWS framework contains the following compo-
nents and frameworks: anEvent Dispatcher, Concurrency

Strategy, I/O Strategy, Protocol Pipeline, Protocol Han-
dlers, andCached Virtual Filesystem. Each framework is
structured as a set of collaborating objects implemented us-
ing components in ACE [5]. The collaborations among
JAWS components and frameworks are guided by a family
of patterns, which are listed along the borders in Figure 1.
An outline of the key frameworks, components, and pat-
terns in JAWS is presented below; Section 4 then focuses
on the Proactor pattern in detail.1

Event Dispatcher: This component is responsible for co-
ordinating JAWS’Concurrency Strategywith its I/O Strat-
egy. The passive establishment of connection events with
Web clients follows theAcceptorpattern [6]. New incom-
ing HTTP request events are serviced by a concurrency
strategy. As events are processed, they are dispatched to
the Protocol Handler, which is parameterized by an I/O
strategy. JAWS ability to dynamically bind to a particu-
lar concurrency strategy and I/O strategy from a range of
alternatives follows theStrategypattern [3].

Concurrency Strategy: This framework implements con-
currency mechanisms (such as single-threaded, thread-per-
request, or thread pool) that can be selected adaptively at
run-time using theStatepattern [3] or pre-determined at
initialization-time. TheService Configuratorpattern [7] is
used to configure a particular concurrency strategy into a
Web server at run-time. When concurrency involves multi-
ple threads, the strategy creates protocol handlers that fol-
low theActive Objectpattern [8].

I/O Strategy: This framework implements various I/O
mechanisms, such as asynchronous, synchronous and re-
active I/O. Multiple I/O mechanisms can be used simulta-
neously. In JAWS, asynchronous I/O is implemented using
theProactorpattern [9], while reactive I/O is accomplished
through theReactorpattern [10]. These I/O strategies may
utilize theMemento[3] andAsynchronous Completion To-
ken [11] patterns to capture and externalize the state of a
request so that it can be restored at a later time.

Protocol Handler: This framework allows system devel-
opers to apply the JAWS framework to a variety of Web
system applications. AProtocol Handler is parameter-
ized by a concurrency strategy and an I/O strategy. These
strategies are decoupled from the protocol handler using
the Adapterpattern [3]. In JAWS, this component imple-
ments the parsing and handling of HTTP/1.0 request meth-
ods. The abstraction allows for other protocols (such as
HTTP/1.1, DICOM, and SFP [12]) to be incorporated eas-
ily into JAWS. To add a new protocol, developers simply
write a newProtocol Handlerimplementation, which is
then configured into the JAWS framework.

1Due to space limitations it is not possible to describe all the patterns
mentioned below in detail. The references provide complete coverage of
each pattern, however.

2



Protocol Pipeline: This framework allows filter operations
to be incorporated easily with the data being processed by
theProtocol Handler. This integration is achieved by em-
ploying theAdapterpattern. Pipelines follow thePipes and
Filters pattern [13] for input processing. Pipeline compo-
nents can be linked dynamically at run-time using theSer-
vice Configuratorpattern.

Cached Virtual Filesystem: This component improves
Web server performance by reducing the overhead of
filesystem access. Various caching strategies, such as LRU,
LFU, Hinted, and Structured, can be selected following the
Strategypattern [3]. This allows different caching strate-
gies to be profiled and selected based on their performance.
Moreover, optimal strategies to be configured statically or
dynamically using theService Configuratorpattern. The
cache for each Web server is instantiated using theSingle-
tonpattern [3].

Tilde Expander: This component is another cache com-
ponent that uses a perfect hash table [14] that maps abbre-
viated user login names (e.g., �schmidt ) to user home
directories (e.g., /home/cs/faculty/schmidt ).
When personal Web pages are stored in user home directo-
ries, and user directories do not reside in one common root,
this component substantially reduces the disk I/O overhead
required to access a system user information file, such as
/etc/passwd . By virtue of theService Configurator
pattern, the Tilde Expander can be unlinked and relinked
dynamically into the server when a new user is added to
the system.

Our previous work on high-performanceWeb servers has
focused on (1) the design of the JAWS framework [1] and
(2) detailed measurements on the performance implications
of alternative Web server optimization techniques [2]. In
our earlier work, we discovered that a concurrent proactive
Web server can achieve substantial performance gains [15].

This paper focuses on a previously unexamined point in
the high-performance Web server design space:the appli-
cation of the Proactor pattern to simplify Web server soft-
ware development, while maintaining high-performance.
Section 3 motivates the need for concurrent proactive ar-
chitectures by analyzing empirical benchmarking results
of JAWS and outlining the software design challenges in-
volved in developing proactive Web servers. Section 4 then
demonstrates how these challenges can be overcome by de-
signing the JAWS Web server using the Proactor pattern.

3 CONCURRENCY ARCHITECTURES

Developing a high-performance Web server like JAWS re-
quires the resolution of the following forces:

� Concurrency: The server must perform multiple client
requests simultaneously;

� Efficiency: The server must minimize latency, maximize
throughput, and avoid utilizing the CPU(s) unnecessarily.

� Adaptability: Integrating new or improved transport
protocols (such as HTTP 1.1 [16]) should incur minimal
enhancement and maintenance costs.

� Programming simplicity: The design of the server
should simplify the use of various concurrency strategies,
which may differ in performance on different OS plat-
forms;

The JAWS Web server can be implemented using sev-
eral concurrency strategies, such as multiple synchronous
threads, reactive synchronous event dispatching, and proac-
tive asynchronous event dispatching. Below, we compare
and contrast the performance and design impacts of using
conventional multi-threaded synchronous event dispatch-
ing versus proactive asynchronous event dispatching, us-
ing our experience developing and optimizing JAWS as a
case-study.

3.1 CONCURRENT SYNCHRONOUS EVENTS

Overview: An intuitive and widely used concurrency ar-
chitecture for implementing concurrent Web servers is to
usesynchronous multi-threading. In this model, multiple
server threads can process HTTPGETrequests from mul-
tiple clients simultaneously. Each thread performs connec-
tion establishment, HTTP request reading, request parsing,
and file transfer operations synchronously. As a result, each
operation blocks until it completes.

The primary advantage of synchronous threading is the
simplification of server code. In particular, operations per-
formed by a Web server to service client A’s request are
mostly independent of the operations required to service
client B’s request. Thus, it is easy to service different
requests in separate threads because the amount of state
shared between the threads is low, which minimizes the
need for synchronization. Moreover, executing application
logic in separate threads allows developers to utilize intu-
itive sequential commands and blocking operations.

Evaluation: Although the synchronous multi-threaded
model is intuitive and maps relatively efficiently onto
multi-CPU platforms, it has the following drawbacks:

� The threading policy is tightly coupled to the concur-
rency policy: The synchronous model requires a dedicated
thread for each connected client. A concurrent application
may be better optimized by aligning its threading strategy
to available resources (such as the number of CPUs) rather
than to the number of clients being serviced concurrently;

� Increased synchronization complexity:Threading can
increase the complexity of synchronization mechanisms
necessary to serialize access to a server’s shared resources
(such as cached files and logging of Web page hits);

3



� Increased performance overhead:Threading can per-
form poorly due to context switching, synchronization, and
data movement among CPUs [5];

� Non-portability: Threading may not be available on all
OS platforms. Moreover, OS platforms differ widely in
terms of their support for preemptive and non-preemptive
threads. Consequently, it is hard to build multi-threaded
servers that behave uniformly across OS platforms.

As a result of these drawbacks, multi-threading may not
always be the most efficient nor the least complex solu-
tion to develop concurrent Web servers. The solution may
not be obvious, since the disadvantages may not result in
any actual performance penalty except under certain con-
ditions, such as a particularly high number of long running
requests intermixed with rapid requests for smaller files.
Therefore, it is important to explore alternative Web server
architecture designs, such as the concurrent asynchronous
architecture described next.

3.2 CONCURRENT ASYNCHRONOUS EVENTS

Overview: When the OS platform supports asyn-
chronous operations, an efficient and convenient way to
implement a high-performance Web server is to useproac-
tive event dispatching. Web servers designed using this dis-
patching model handle thecompletionof asynchronous op-
erations with one or more threads of control.

JAWS implements proactive event dispatching by first
issuing an asynchronous operation to the OS and regis-
tering a callback (which is theCompletion Handler )
with theEvent Dispatcher.2 ThisEvent Dispatchernotifies
JAWS when the operation completes. The OS then per-
forms the operation and subsequently queues the result in a
well-known location. TheEvent Dispatcheris responsible
for dequeuing completion notifications and executing the
appropriateCompletion Handler .

Evaluation: The primary advantage of using proactive
event dispatching is that multiple operations can be initi-
ated and run concurrentlywithoutrequiring the application
to have as many threads as there are simultaneous I/O op-
erations. The operations are initiated asynchronously by
the application and they run to completion within the I/O
subsystem of the OS. Once the asynchronous operation is
initiated, the thread that started the operation become avail-
able to service additional requests.

In the proactive example above, for instance, theEvent
Dispatchercould be single-threaded, which may be desir-
able on a uniprocessor platform. When HTTP requests ar-
rive, the singleEvent Dispatcherthread parses the request,
reads the file, and sends the response to the client. Since the

2In our discussion, JAWS framework components presented in Sec-
tion 2 appear initalics and pattern participants presented in Section 4 ap-
pear intypewriter font.

response is sent asynchronously, multiple responses could
potentially be sent simultaneously. Moreover, the syn-
chronous file read could be replaced with an asynchronous
file read to further increase the potential for concurrency.
If the file read is performed asynchronously, the only syn-
chronous operation performed by aProtocol Handleris the
HTTP protocol request parsing.

The primary drawback with the proactive event dispatch-
ing model is that the application structure and behavior can
be considerably more complicated than with the conven-
tional synchronous multi-threaded programming paradigm.
In general, asynchronous applications are hard to develop
since programmer’s must explicitly retrieve OS notifica-
tions when asynchronous events complete. However, com-
pletion notifications need not appear in the same order
that the asynchronous events were requested. Moreover,
combining concurrency with asynchronous events is even
harder since the thread that issues an asynchronous request
may ultimately handle the completion of an event started by
a different thread. The JAWS framework alleviates many
of the complexities of concurrent asynchronous event dis-
patching by applying the Proactor pattern described in Sec-
tion 4.

3.3 SUMMARY OF PERFORMANCE RESULTS

In our empirical measurements [15] we have observed there
is significant variance in throughput and latency depending
on the concurrency and event dispatching mechanisms. For
small files, the synchronous Thread Pool strategy provides
better overall performance. Under moderate loads, the syn-
chronous event dispatching model provides slightly better
latency than the asynchronous model. Under heavy loads
and with large file transfers, however, the asynchronous
model usingTransmitFile provides better quality of
service. Thus, under Windows NT, an optimal Web server
should adapt itself to either event dispatching and file I/O
model, depending on the server’s workload and distribution
of file requests.

Despite the potential for substantial performance im-
provements, it is considerably harder to develop a Web
server that manages concurrency using asynchronous event
dispatching, compared with traditional synchronous ap-
proaches. This is due to the additional details associated
with asynchronous programming (e.g. explicitly retriev-
ing OS notifications that may appear in non-FIFO order),
and the added complexity of combining the approach with
multi-threaded concurrency. Moreover, proactive event
dispatching can be difficult to debug since asynchronous
operations are often non-deterministic. Our experience
with designing and developing a proactive Web server indi-
cates that theProactorpattern provides an elegant solution
to managing these complexities.

4



4 THE PROACTOR PATTERN

In general, patterns help manage complexity by providing
insight into known solutions to problems in a particular
software domain. In the case of concurrent proactive archi-
tectures, the complexity of the additional details of asyn-
chronous programming are compounded by the complex-
ities associated with multi-threaded programming. For-
tunately, patterns identified in software solutions to other
proactive architectures have yielded theProactor pattern,
which is described below.3

4.1 INTENT

The Proactor pattern supports the demultiplexing and dis-
patching of multiple event handlers, which are triggered by
the completionof asynchronous events. This pattern sim-
plifies asynchronous application development by integrat-
ing the demultiplexing of completion events and the dis-
patching of their corresponding event handlers.

4.2 APPLICABILITY

Use the Proactor pattern when one or more of the following
conditions hold:

� An application needs to perform one or more asyn-
chronous operations without blocking the calling
thread;

� The application must be notified when asynchronous
operationscomplete;

� The application needs to vary its concurrency strategy
independent of its I/O model;

� The application will benefit by decoupling the
application-dependent logic from the application-
independent infrastructure;

� An application will perform poorly or fail to meet its
performance requirements when utilizing either the
multi-threaded approach or the reactive dispatching
approach.

4.3 STRUCTURE AND PARTICIPANTS

The structure of the Proactor pattern is illustrated in Fig-
ure 2 using OMT notation.

The key participants in the Proactor pattern include the
following:

3For brevity, portions of the complete description have been elided.
Detailed coverage of implementation and sample code are available in
[9].

Completion
Dispatcher

Proactive
Initiator

Asynchronous
Operation
Processor

Asynchronous
Operation

Completion
Handler

Figure 2: Participants in the Proactor Pattern

Proactive Initiator (Web server application’s
main thread ):

� A Proactive Initiator is any entity in
the application that initiates anAsynchronous
Operation . TheProactive Initiator regis-
ters aCompletion Handler and aCompletion
Dispatcher with a Asynchronous
Operation Processor , which notifies it
when the operation completes.

Completion Handler (the Acceptor and HTTP
Handler ):

� The Proactor pattern usesCompletion Handler
interfaces that are implemented by the application for
Asynchronous Operation completion notifica-
tion.

Asynchronous Operation (the methodsAsync Read,
Async Write , andAsync Accept ):

� Asynchronous Operations are used to exe-
cute requests (such as I/O and timer operations) on
behalf of applications. When applications invoke
Asynchronous Operations , the operations are
performedwithoutborrowing the application’s thread
of control.4 Therefore, from the application’s perspec-
tive, the operations are performedasynchronously.
When Asynchronous Operations complete,
the Asynchronous Operation Processor
delegates application notifications to aCompletion
Dispatcher .

Asynchronous Operation Processor (theOperating
System ):

� Asynchronous Operations are run to com-
pletion by the Asynchronous Operation
Processor . This component is typically imple-
mented by the OS.

4In contrast, the reactive event dispatching model [10] steals the appli-
cation’s thread of control to perform the operation synchronously.

5



Completion Dispatcher (the Notification
Queue):

� The Completion Dispatcher is responsible
for calling back to the application’sCompletion
Handlers when Asynchronous Operations
complete. When theAsynchronous Operation
Processor completes an asynchronously initiated
operation, theCompletion Dispatcher per-
forms an application callback on its behalf.

4.4 COLLABORATIONS

There are several well-defined steps that occur for all
Asynchronous Operations . At a high level of ab-
straction, applications initiate operations asynchronously
and are notified when the operations complete. Figure 3
shows the following interactions that must occur between

Completion
Dispatcher

Proactive
Initiator

Asynchronous
Operation
Processor

Asynchronous
operation initiated

Completion
Handler

Operation performed
asynchronously

Operation completes

Completion Handler
notified

handle event

Asynchronous
Operation

register (operation, handler, dispatcher)

execute

dispatch

Figure 3: Interaction Diagram for the Proactor Pattern

the pattern participants:

1. Proactive Initiators initiates operation: To per-
form asynchronous operations, the application initiates
the operation on theAsynchronous Operation
Processor . For instance, a Web server might ask the
OS to transmit a file over the network using a particular
socket connection. To request such an operation, the Web
server must specify which file and network connection to
use. Moreover, the Web server must specify (1) which
Completion Handler to notify when the operation
completes and (2) whichCompletion Dispatcher
should perform the callback once the file is transmitted.

2. Asynchronous Operation Processor performs op-
eration: When the application invokes operations on
theAsynchronous Operation Processor it runs
them asynchronously with respect to other application op-
erations. Modern operating systems (such as Solaris and
Windows NT) provide asynchronous I/O subsystems with
the kernel.

3. The Asynchronous Operation Processor no-
tifies the Completion Dispatcher: When opera-
tions complete, the Asynchronous Operation
Processor retrieves the Completion Handler
and Completion Dispatcher that were specified
when the operation was initiated. TheAsynchronous
Operation Processor then passes theCompletion
Dispatcher the result of the Asynchronous
Operation and the Completion Handler to
call back. For instance, if a file was transmitted
asynchronously, the Asynchronous Operation
Processor may report the completion status (such as
success or failure), as well as the number of bytes written
to the network connection.

4. Completion Dispatcher notifies the application:
The Completion Dispatcher calls the completion
hook on theCompletion Handler , passing it any com-
pletion data specified by the application. For instance,
if an asynchronous read completes, theCompletion
Handler will typically be passed a pointer to the newly
arrived data.

4.5 CONSEQUENCES

This section details the consequences of using the Proactor
Pattern.

4.5.1 BENEFITS

The Proactor pattern offers the following benefits:

Increased separation of concerns: The Proactor pat-
tern decouples application-independent asynchrony mech-
anisms from application-specific functionality. The
application-independent mechanisms become reusable
components that know how to demultiplex the completion
events associated withAsynchronous Operations
and dispatch the appropriate callback methods defined
by the Completion Handlers . Likewise, the
application-specific functionality knows how to perform a
particular type of service (such as HTTP processing).

Improved application logic portability: It improves ap-
plication portability by allowing its interface to be reused
independently of the underlying OS calls that perform
event demultiplexing. These system calls detect and re-
port the events that may occur simultaneously on multiple
event sources. Event sources may include I/O ports, timers,
synchronization objects, signals, etc. On real-time POSIX
platforms, the asynchronous I/O functions are provided by
theaio family of APIs [17]. In Windows NT, I/O comple-
tion ports and overlapped I/O are used to implement asyn-
chronous I/O [18].

6



The Completion Dispatcher encapsulates the con-
currency mechanism: A benefit of decoupling the
Completion Dispatcher from theAsynchronous
Operation Processor is that applications can config-
ure Completion Dispatchers with various concur-
rency strategies without affecting other participants. The
Completion Dispatcher can be configured to use
several concurrency strategies including single-threaded
and Thread Pool solutions.

Threading policy is decoupled from the concur-
rency policy: Since theAsynchronous Operation
Processor completes potentially long-running opera-
tions on behalf ofProactive Initiators , applica-
tions are not forced to spawn threads to increase concur-
rency. This allows an application to vary its concurrency
policy independently of its threading policy. For instance,
a Web server may only want to have one thread per CPU,
but may want to service a higher number of clients simul-
taneously.

Increased performance: Multi-threaded operating sys-
tems perform context switches to cycle through multiple
threads of control. While the time to perform a con-
text switch remains fairly constant, the total time to cycle
through a large number of threads can degrade application
performance significantly if the OS context switches to an
idle thread. For instance, threads may poll the OS for com-
pletion status, which is inefficient. The Proactor pattern can
avoid the cost of context switching by activating only those
logical threads of control that have events to process. For
instance, a Web server does not need to activate an HTTP
Handler if there is no pendingGETrequest.

Simplification of application synchronization: As long
as Completion Handlers do not spawn additional
threads of control, application logic can be written with lit-
tle or no regard to synchronization issues.Completion
Handlers can be written as if they existed in a conven-
tional single-threaded environment. For instance, a Web
server’s HTTPGETHandler can access the disk through
an Async Read operation (such as the Windows NT
TransmitFile function [15]).

4.5.2 DRAWBACKS

The Proactor pattern has the following drawbacks:

Hard to debug: Applications written with the Proactor
pattern can be hard to debug since the inverted flow of con-
trol oscillates between the framework infrastructure and the
method callbacks on application-specific handlers. This in-
creases the difficulty of “single-stepping” through the run-
time behavior of a framework within a debugger since ap-
plication developers may not understand or have access to
the framework code. This is similar to the problems en-
countered trying to debug a compiler lexical analyzer and

parser written withLEX andYACC. In these applications,
debugging is straightforward when the thread of control is
within the user-defined action routines. Once the thread of
control returns to the generated Deterministic Finite Au-
tomata (DFA) skeleton, however, it is hard to follow the
program logic.

Scheduling and controlling outstanding operations:
Proactive Initiators may have no control over
the order in whichAsynchronous Operations are
executed. Therefore, theAsynchronous Operation
Processor must be designed carefully to support
prioritization and cancellation ofAsynchronous
Operations .

4.6 KNOWN USES

The following are some widely documented uses of the
Proctor pattern:

I/O Completion Ports in Windows NT: The Windows
NT operating system implements the Proactor pattern. Var-
ious Asynchronous Operations such as accepting
new network connections, reading and writing to files and
sockets, and transmission of files across a network con-
nection are supported by Windows NT. The operating sys-
tem is theAsynchronous Operation Processor .
Results of the operations are queued up at the I/O com-
pletion port (which plays the role of theCompletion
Dispatcher ).

ACE Proactor: The Adaptive Communications En-
vironment (ACE) [5] implements a Proactor compo-
nent that encapsulates I/O Completion Ports on Win-
dows NT. The ACE Proactor abstraction provides an
OO interface to the standard C APIs supported by
Windows NT. The source code for this implemen-
tation can be acquired from the ACE website at
www.cs.wustl.edu/ �schmidt/ACE.html .

The UNIX AIO Family of Asynchronous I/O Opera-
tions: On some real-time POSIX platforms, the Proac-
tor pattern is implemented by theaio family of APIs
[17]. These OS features are very similar to the ones de-
scribed above for Windows NT. One difference is that
UNIX signals can be used to implement an truly asyn-
chronousCompletion Dispatcher (the Windows NT
API is not truly asynchronous).

Asynchronous Procedure Calls in Windows NT: Some
systems (such as Windows NT) support Asynchronous Pro-
cedure Calls (APC)s. An APC is a function that executes
asynchronously in the context of a particular thread. When
an APC is queued to a thread, the system issues a soft-
ware interrupt. The next time the thread is scheduled, it
will run the APC. APCs made by operating system are
calledkernel-modeAPCs. APCs made by an application
are calleduser-modeAPCs.

7



5 CONCLUDING REMARKS

Over the past several years, computer and network perfor-
mance has improved substantially. However, the develop-
ment of high-performance Web servers has remained ex-
pensive and error-prone. The JAWS framework described
in this paper aims to support Web server developers by sim-
plifying the application of various server designs and opti-
mization strategies.

This paper illustrates that a Web server based on tradi-
tional synchronous event dispatching performs adequately
under light server loads. However, when the Web server
is subject to heavy loads, a design based on a concurrent
proactive architecture provides significantly better perfor-
mance. However, programming this model adds complex-
ity to the software design and increases the effort of devel-
oping high-performance Web servers.

Much of the development effort stems from the repeated
rediscovery and reinvention of fundamental design pat-
terns. Design patterns describe recurring solutions found
in existing software systems. Applying design patterns to
concurrent software systems can reduce software develop-
ment time, improve code maintainability, and increase code
reuse over traditional software engineering techniques.

The Proactor pattern described in this paper embodies a
powerful technique that supports both efficient and flexible
event dispatching strategies for high-performance concur-
rent applications. In general, applying this pattern enables
developers to leverage the performance benefits of execut-
ing operations concurrently, without constraining them to
synchronous multi-threaded or reactive programming. In
our experience, applying the Proactor pattern to the JAWS
Web server framework has made it considerably easier to
design, develop, test, and maintain.

REFERENCES

[1] D. C. Schmidt and J. Hu, “Developing Flexible and High-
performance Web Servers with Frameworks and Patterns,”
ACM Computing Surveys, vol. 30, 1998.

[2] J. Hu, S. Mungee, and D. C. Schmidt, “Principles for Devel-
oping and Measuring High-performance Web Servers over
ATM,” in Proceeedings of INFOCOM ’98, March/April
1998.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

[4] D. C. Schmidt, “Experience Using Design Patterns to
Develop Reuseable Object-Oriented Communication Soft-
ware,” Communications of the ACM (Special Issue on
Object-Oriented Experiences), vol. 38, October 1995.

[5] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” inProceedings of the
6
th USENIX C++ Technical Conference, (Cambridge, Mas-

sachusetts), USENIX Association, April 1994.

[6] D. C. Schmidt, “Acceptor and Connector: Design Patterns
for Initializing Communication Services,” inPattern Lan-
guages of Program Design(R. Martin, F. Buschmann, and
D. Riehle, eds.), Reading, MA: Addison-Wesley, 1997.

[7] P. Jain and D. C. Schmidt, “Service Configurator: A Pat-
tern for Dynamic Configuration of Services,” inProceedings
of the3rd Conference on Object-Oriented Technologies and
Systems, USENIX, June 1997.

[8] R. G. Lavender and D. C. Schmidt, “Active Object: an
Object Behavioral Pattern for Concurrent Programming,”
in Pattern Languages of Program Design(J. O. Coplien,
J. Vlissides, and N. Kerth, eds.), Reading, MA: Addison-
Wesley, 1996.

[9] T. Harrison, I. Pyarali, D. C. Schmidt, and T. Jordan, “Proac-
tor – An Object Behavioral Pattern for Dispatching Asyn-
chronous Event Handlers,” inThe4th Pattern Languages of
Programming Conference (Washington University technical
report #WUCS-97-34), September 1997.

[10] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” inPattern Languages of Program Design(J. O.
Coplien and D. C. Schmidt, eds.), pp. 529–545, Reading,
MA: Addison-Wesley, 1995.

[11] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Asyn-
chronous Completion Token: an Object Behavioral Pat-
tern for Efficient Asynchronous Event Handling,” inPattern
Languages of Program Design(R. Martin, F. Buschmann,
and D. Riehle, eds.), Reading, MA: Addison-Wesley, 1997.

[12] Object Management Group,Control and Management of
Audio/Video Streams: OMG RFP Submission, 1.2 ed., Mar.
1997.

[13] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal,Pattern-Oriented Software Architecture - A System
of Patterns. Wiley and Sons, 1996.

[14] D. C. Schmidt, “GPERF: A Perfect Hash Function Genera-
tor,” in Proceedings of the2nd C++ Conference, (San Fran-
cisco, California), pp. 87–102, USENIX, April 1990.

[15] J. Hu, I. Pyarali, and D. C. Schmidt, “Measuring the Im-
pact of Event Dispatching and Concurrency Models on Web
Server Performance Over High-speed Networks,” inPro-
ceedings of the2nd Global Internet Conference, IEEE,
November 1997.

[16] J. C. Mogul, “The Case for Persistent-connection HTTP,”
in Proceedings of ACM SIGCOMM ’95 Conference in
Computer Communication Review, (Boston, MA, USA),
pp. 299–314, ACM Press, August 1995.

[17] “Information Technology – Portable Operating System In-
terface (POSIX) – Part 1: System Application: Program In-
terface (API) [C Language],” 1995.

[18] Microsoft Developers Studio, Version 4.2 - Software Devel-
opment Kit, 1996.

8


