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Abstract

This paper provides two contributions to the study of high-
performance object-oriented (OO) Web servers. First, it out-
lines the design principles and optimizations necessary to de-
velop efficient and scalable Web servers and illustrates how
we have applied these principles and optimizations to cre-
ate JAWS. JAWS is a high-performance Web server that is de-
signed to alleviate overheads incurred by existing Web servers
on high-speed networks. In addition to its highly extensi-
ble OO design, it is also highly efficient, consistently outper-
forming existing Web servers, such as Apache, Java Server,
PHTTPD, Zeus, and Netscape Enterprise, over 155 Mbps
ATM networks on UNIX platforms.

Second, this paper describes how we have customized the
JAWS OO design to leverage advanced features of Windows
NT on multi-processor platforms linked by high-speed ATM
networks. The Windows NT features used in JAWS include
asynchronous mechanisms for connection establishment and
data transfer. Our previous benchmarking studies demonstrate
that once the overhead of disk I/O is reduced to a negligible
constant factor (e.g., via memory caches), the primary deter-
minants of Web server performance are its concurrency and
event dispatching strategies.

Our performance results over a 155 Mbps ATM network in-
dicate that certain Windows NT asynchronous I/O mechanisms
(i.e., TransmitFile ) provide superior performance for
large file transfers compared with conventional synchronous
multi-threaded servers. Conversely, synchronous event dis-
patching performed better for files less than 50 Kbytes. Thus,
to provide optimal performance, a Web server design should

�This work was supported in part by grants from OTI, Kodak, and
Siemens.

be adaptive, i.e., choosing to use different mechanisms (such
asTransmitFile ) to handle requests for large files, while
using alternative I/O mechanisms (such as synchronous event
dispatching) on requests for small files.

1 Introduction

The emergence of the World Wide Web (Web) as a mainstream
development platform has yielded many hard problems for
softwar developers, who must provide high quality of service
to application users. Strategies for improving client perfor-
mance include client-side caching and caching proxy servers
[29]. However, performance bottlenecks persist on the server-
side due to factors such as inappropriate choice of concurrency
and dispatching strategies, excessive filesystem access, and
unnecessary data copying.

As high-speed networks (such as ATM) and high-
performance I/O subsystems (such as RAID) become ubiqui-
tous, the bottlenecks of existing Web servers become increas-
ingly problematic. To alleviate these bottlenecks, Web servers
must utilize an integrated approach that combines optimiza-
tions at multiple levels. Figure 1 illustrates the general archi-
tecture of such a Web system.

This diagram provides a layered view of the architectural
components required for anHTTP clientto retrieve an HTML
file from an HTTP server. ThroughGUI interactions, the
client application user instructs the HTTP client to retrieve a
file. The requesteris the active component of the client that
communicates over thenetwork. It issues a request for the file
to the server with the appropriate syntax of thetransfer proto-
col, in this case HTTP. Incoming requests to theHTTP server
are received by thedispatcher, which is the request demulti-
plexing engine of the server. It is responsible for creating new
threads or processes (for concurrent Web servers) or managing
descriptor sets (for single-threaded concurrent servers). Each
request is processed by ahandler, which goes through alife-
cycleof parsing the request, logging the request, fetching file
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Figure 1: Overview of a Typical Web System and Optimiza-
tions

status information, updating the cache, sending the file, and
cleaning up after the request is done. When the response re-
turns to the client with the requested file, it is parsed by an
HTML parserso that the file can be rendered. At this stage,
therequestermay issue other requests on behalf of the client,
e.g., in order to fill a client-side cache.

Our experience developing Web servers for multiple OS
platforms indicates that the effort required to improve perfor-
mance can be simplified significantly by leveraging OS fea-
tures explicitly. For example, an optimized file I/O system
that automatically caches open files in main memory helps to
reduce latency. Likewise, support for asynchronous event dis-
patching [9] and the Proactor pattern [8] can increase server
throughput by reducing the context switching and synchro-
nization overhead incurred from multi-threading.

This paper presents two complementary strategies for devel-
oping optimized Web servers. First, we present empirical re-
sults demonstrating that to achieve optimal performance, Web
servers must supportdynamicadaptivity (i.e., the ability to
update behavior “online” to account for changes in run-time
conditions). Second, we describe our recent efforts at adapt-
ing a high-performance Web server (developed originally on
UNIX) to leverage the asynchronous event dispatching mech-
anisms on Windows NT. This work illustrates the importance
of an extensible Web server design that supportsstatic adap-
tivity, i.e., changing the behavior of the Web server “off-line”
to account for OS platform characteristics.

Our research vehicle for demonstrating the effectiveness of
dynamic and static adaptation isJAWS. JAWS is both an adap-
tive Web server and an OO development framework for Web
servers that run on multiple OS platforms, including Win32

(i.e., Windows NT and Windows ’95), most versions of UNIX
(e.g., SunOS 4.x and 5.x, SGI IRIX, HP-UX, DEC UNIX,
AIX, Linux, and SCO), and MVS OpenEdition.

The need for dynamic and static adaptivity in JAWS can be
motivated as follows:

The need for dynamic adaptivity: On many OS platforms,
under different workloads, a single, statically configured con-
tent transfer mechanism cannot provide optimal performance.
Results in this paper show that the performance of different
OS level I/O mechanisms varies considerably according to file
size. For instance, on Windows NT 4.0, synchronous I/O pro-
vides the best performance for transferring small files, whereas
theTransmitFile operation provides the best performance
for transferring large files under heavy loads.

The need for static adaptivity: To achieve high perfor-
mance, Web servers must be adapted statically to use native
high-performance mechanisms provided by the OS platform.
For example, different OS platforms may provide specialized
I/O mechanisms, such as asynchronous I/O or bulk data trans-
fer, or specialized devices, such as high-speed ATM network
interfaces [3]. Therefore, simply porting a Web server to use
common OS mechanisms and APIs, such as BSD sockets,
select , and POSIX threads, is not sufficient to achieve max-
imal performance on different OS platforms.

The results in this paper are based on extensions to JAWS’
original synchronous event dispatching model, which was
based on the POSIX threading model and BSD sockets.
These extensions support the asynchronous event dispatch-
ing and communication mechanisms available on Windows
NT (JAWS-NT). The Windows NT mechanisms incorporated
into JAWS-NT include overlapped I/O, I/O completion ports,
TransmitFile , GetQueueCompletionStatus , and
AcceptEx .1 It was fairly straightforward to customize JAWS
to support the new asynchronous mechanisms because JAWS
was developed as an extensible OO Web server framework.

As shown in Section 4, the performance measurements of
JAWS-NT over a�155 Mbps ATM link indicate significant
throughput and latency variance between the synchronous and
asynchronous event dispatching and concurrency models on
Windows NT. In addition, our experience with the Windows
NT asynchronous event dispatching mechanisms has revealed
other benefits besides improved throughput and latency. For
instance, asynchronous event dispatching allows Web servers
to significantly reduce the number of threading resources re-
quired to handle client requests concurrently.

The remainder of this paper is organized as follows: Sec-
tion 2 provides an overview of the JAWS’ OO server frame-
work design and explains the optimizations we have applied to
it; Section 3 outlines the concurrency strategies supported by

1These Windows NT mechanisms are described in Section 3.3.2.
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JAWS-NT and describes the key differences between the syn-
chronous and asynchronous event dispatching models; Sec-
tion 4 analyzes our performance measurements of JAWS-NT
over an ATM network; Section 5 compares a highly optimized
JAWS implementation against Netscape Enterprise and Mi-
crosoft Internet Information Server (IIS); Section 6 compares
JAWS with related work; and Section 7 presents concluding
remarks.

2 The Object-Oriented Design of
JAWS

The UNIX version of JAWS (described in [6]) consistently
outperforms other servers in our test suite of Web servers over
155 Mbps ATM networks. This section briefly outlines the
design principles and optimizations used by JAWS to achieve
such high performance.

2.1 Determinants of Web Server Performance

JAWS is both a Web server and an OO framework [26] written
in C++ that facilitates the development of flexible and adap-
tive high-performance Web systems. The optimizations, OO
design principles, and patterns used in JAWS are guided by re-
sults from our empirical analysis [6, 7, 8] of Web server perfor-
mance bottlenecks over high-speed ATM networks. Assum-
ing sufficiently high network bandwidth and large file system
caching, our experiments have identified the following deter-
minants of Web server performance:

Concurrency strategy and event dispatching: Request
dispatching occupies a large portion (i.e., �50%) of non-I/O
related Web server overhead. Therefore, the choice of concur-
rency strategy, such as thread/process pool vs. thread/process-
per-request, and dispatching strategy, such as asynchronous
vs. synchronous, has a major impact on performance.

Avoiding the filesystem: Web servers that implement so-
phisticated file data and file stats caching strategies, such as
PHTTPD and JAWS, perform much better than those that do
not, such as earlier versions of Apache [6].

2.2 Applying Patterns and Frameworks

Developers of Web servers strive to build fast, scalable, and
configurable systems. However, there are some common pit-
falls encountered by these developers. Common pitfalls in-
clude (1) coping with tedious and error-prone low-level pro-
gramming details, (2) lack of portability, and (3) the complex-
ity of navigating the wide range of server design alternatives.
By carefully utilizing patterns and frameworks, these hazards

can be avoided, by allowing developers to leverage reuse of
design and code.

Figure 2 illustrates the major structural components and de-
sign patterns that comprise the JAWS Adaptive Web Server
(JAWS) framework. JAWS is designed to allow the customiza-
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Figure 2: Architectural Overview of the JAWS Framework

tion of various Web server strategies in response to environ-
mental factors. These factors includestaticfactors, such as the
number of available CPUs, support for kernel-level threads,
and availability of asynchronous I/O in the OS anddynamic
factors, such as Web traffic patterns and workload characteris-
tics.

2.3 Components and Patterns in JAWS

JAWS is structured as aframework of frameworks. The over-
all JAWS framework contains the following components and
frameworks based on the referenced patterns:

� theEvent Dispatcher, predominantly follows theAccep-
tor pattern,

� a Concurrency Strategy, usingStateand Active Object
patterns,

� an I/O Strategy, incorporatingReactorandProactorpat-
terns,

� aProtocol Pipeline, which implements thePipes and Fil-
terspattern,

� theProtocol Handlers, which adopt theAdapterpattern,
and

� Cached Virtual Filesystem, which uses theStrategypat-
tern.
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Each framework is structured as a set of collaborating ob-
jects implemented using components in ACE [23]. The collab-
orations among JAWS components and frameworks are guided
by a family of patterns, which are listed along the borders in
Figure 2. An outline of the key frameworks, components, and
patterns in JAWS is presented below, along with illustrations
of how the patterns are implemented withing JAWS. These il-
lustrations should be regarded as example implementations of
these patterns by JAWS.2

Event Dispatcher: This component is responsible for coor-
dinating JAWS’Concurrency Strategywith its I/O Strategy.
As illustrated in Figure 3, the passive establishment of con-

notifies

Acceptor

accept()
peer_acceptor_

Protocol Handler
create

+ activate
Protocol Handler
peer_stream_
open()

ConcurrencyEvent Dispatcher

Task

Figure 3: Structure of the Acceptor Pattern in JAWS

nection events with Web clients follows theAcceptorpattern
[25]. New incoming HTTP request events are serviced by a
concurrency strategy. As events are processed, they are dis-
patched to theProtocol Handler, which is parameterized by
an I/O strategy. JAWS ability to dynamically bind to a par-
ticular concurrency strategy and I/O strategy from a range of
alternatives follows theStrategypattern [4].

Concurrency Strategy: This framework implements con-
currency mechanisms, such as single-threaded, thread-per-
request, or thread pool, that can be selected adaptively at
run-time using theState pattern [4] or pre-determined at
initialization-time. TheService Configuratorpattern [10] is
used to configure a particular concurrency strategy into a
Web server at run-time. When concurrency involves multi-
ple threads, the strategy creates protocol handlers that follow
theActive Objectpattern [12], as illustrated in Figure 4.

I/O Strategy: This framework implements various I/O
mechanisms, such as asynchronous, synchronous and reac-
tive I/O. Multiple I/O mechanisms can be used simultaneously.
In JAWS, asynchronous I/O is implemented using theAsyn-
chronous Completion Token[19] pattern andProactor[9] pat-
tern, as illustrated in Figure 5. Reactive I/O is accomplished

2Due to space limitations it is not possible to describe each pattern in de-
tail. The references provide additional information on each pattern mentioned
in this section.
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through theReactorpattern [24]. Reactive I/O utilizes theMe-
mentopattern [4] to capture and externalize the state of a re-
quest so that it can be restored at a later time.

Protocol Handler: This framework allows system develop-
ers to apply the JAWS framework to a variety of Web system
applications. AProtocol Handleris parameterized by a con-
currency strategy and an I/O strategy. These strategies are de-
coupled from the protocol handler using theAdapter[4] pat-
tern. In JAWS, this component implements the parsing and
handling of HTTP/1.0 request methods. The abstraction al-
lows for other protocols, such as HTTP/1.1, DICOM, and SFP
[18], to be incorporated easily into JAWS. To add a new pro-
tocol, developers simply write a newProtocol Handlerimple-
mentation, which is then configured into the JAWS framework.

Protocol Pipeline: This framework allows filter operations
to be incorporated easily with the data being processed by the
Protocol Handler. This integration is achieved by employing
the Adapter pattern. Pipelines follow thePipes and Filters
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pattern [1] for input processing. Pipeline components can be
linked dynamically at run-time using theService Configurator
pattern, as shown in Figure 6.

Service Repository
services

LRU Strategy LFU Strategy

Protocol Pipeline

Filter Repository

Cache Strategy Repository

Service
init()
fini()
suspend()
resume()
info()

Filecache

Protocol Handler

...

FilterRead Request

Parse Request Log Request

DLL Cache Strategy...

Figure 6: The Service Configurator Pattern in JAWS

Cached Virtual Filesystem: This component improves
Web server performance by reducing the overhead of filesys-
tem access. Various caching strategies, such as LRU, LFU,
Hinted, and Structured, can be selected following theStrategy
pattern [4]. This allows different caching strategies to be pro-
filed and selected based on their performance. Moreover, opti-
mal strategies to be configured statically or dynamically using
the Service Configuratorpattern, as shown in Figure 6. The
cache for each Web server is instantiated using theSingleton
pattern [4].

Tilde Expander: This component is another cache compo-
nent that uses a perfect hash table [22] to map abbreviated
user login names (e.g., �schmidt ) to user home directo-
ries (e.g., /home/cs/faculty/schmidt ). When per-
sonal Web pages are stored in user home directories, and user
directories do not reside in one common root, this component
substantially reduces the disk I/O overhead required to access
a system user information file, such as/etc/passwd . By
virtue of theService Configuratorpattern, the Tilde Expander
can be unlinked and relinked dynamically into the server when
a new user is added to the system.

3 Event Dispatching and Concurrency
Strategies for Web Servers

The JAWSEvent Dispatcher is a flexible component
that can be configured to use multiple Concurrency Strategies,

such as thread pool and thread-per-request. The initial de-
sign of JAWS used asynchronousevent dispatching model be-
cause it was developed on Solaris 2.5, which does not provide
efficient asynchronous I/O support. This section describes
how the JAWS framework was enhanced to support theasyn-
chronousevent dispatching model provided by Windows NT
4.0.

3.1 Event Dispatching Strategies

3.1.1 Synchronous Event Dispatching

A common Web server architecture uses synchronous event
dispatching. This architecture consists of two layers: theI/O
Subsystem, and theProtocol Handlers, as shown in Figure 7.
The I/O Subsystem typically resides in the kernel and is imple-

read() read() read() read()write() write() accept()

I/O Subsystem

Protocol Handlers (HTTP)

Figure 7: Synchronous Event Dispatching

mented with sockets. One socket plays the role of the acceptor,
which is a factory that creates new data sockets. Protocol Han-
dlers, having its own thread of control, reads and processes the
data coming from the socket that was created from a newly ac-
cepted connection. Synchronous event dispatching dedicates
the selected thread to the new client for the duration of the file
transfer.

3.1.2 Asynchronous Event Dispatching

The asynchronous event dispatching architecture also consists
of both I/O subsystem and protocol handler layers, as shown in
Figure 8. However, in asynchronous I/O, each I/O operation is
“handed off” to the kernel, where it runs to completion. Thus,
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the initiating thread does not block. When the kernel has com-
pleted the operation, the kernel notifies the process through an
I/O completion port. An I/O completion port is a kernel-level
thread-safe queue of I/O completion notifications.

The primary benefits of using I/O completion ports include
the following:

Increased flexibility and scalability: The thread initiating
the asynchronous I/O operation and the thread dequeueing the
completion status from the port can be different. This makes it
possible to tune the level of concurrency in an application by
simply increasing the number of completion handler threads.

Fewer threads and less overhead: The asynchronous
thread pool requires significantly fewer threads than the syn-
chronous thread pool because threads no longer block on I/O
operations. The reduction of threads in the system reduces
context switching and synchronization overhead.

The primary drawback of I/O completion ports is the com-
plexity of the asynchronous programming model. Servers pro-
grammed to use I/O completion ports directly require extra
data structures in addition to the run-time stack. These data
structures are used to save and restore state explicitly when
event completions are dispatched asynchronously.

The complexity of asynchronous I/O and I/O completion
ports can be alleviated by applying the Proactor pattern [8].
This pattern supports both efficient and flexible asynchronous
event dispatching strategies for high-performance concurrent

applications. In general, applying this pattern enables devel-
opers to leverage the performance benefits of executing oper-
ations concurrently, without exposing the complexity of I/O
completion ports and asynchronous I/O directly. In our ex-
perience, applying the Proactor pattern to the JAWS Web OO
server framework made it considerably easier to design, de-
velop, test, and maintain.

3.2 Concurrency Strategies

Existing Web servers use a wide range of concurrency strate-
gies. These strategies include single-threaded concurrency
(e.g., Roxen), process concurrency (e.g., Apache), and thread
concurrency (e.g., PHTTPD and Zeus). Single-threaded
servers cannot take advantage of multi-CPU hardware con-
currency. Likewise, servers that use multiple processes in-
cur higher process creation overhead. Our discussion focuses
on threading strategies because process creation incurs signif-
icantly greater overhead than thread creation.

For instance, our measurements revealed that the time re-
quired to create a thread on a 180 MHz, dual-CPU Pentium
PRO2 running Windows NT 4.0 is�0.4ms. However, the time
required to create a process is�4.5ms, which is an order of
magnitude higher. As a result, JAWS implements concurrency
via the threading strategies described below.

3.2.1 Thread-per-Request

In the thread-per-request model, a new thread is spawned to
handle each incoming request. As shown in Figure 9, one
thread blocks on the acceptor socket. This acceptor thread is a
factory that creates a new handler thread to interact with each
client.

After creating a new handler thread, the acceptor thread
continues to wait for new connections on the acceptor socket.
In contrast, the handler thread reads the HTTP request, ser-
vices it, and transmits the result to the client. The lifecycle of
a handler thread completes after the data transfer operation is
finished.

The thread-per-request model is useful for long-duration re-
quests from multiple clients. It is less useful for short-duration
requests due to the overhead of creating a new thread for each
request. In addition, it can consume a large number of OS re-
sources if many clients simultaneously perform requests dur-
ing periods of peak load.

3.2.2 Thread Pool

In the thread pool model, a group of threads are pre-spawned
during Web server initialization, as shown in Figure 10. Pre-
spawning eliminates the overhead of creating a new thread for
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Figure 10: Thread Pool

each request. Each thread blocks inaccept waiting for con-
nection requests to arrive from clients. When a new connec-
tion arrives, the OS selects a thread from the pool toaccept
it and return a data socket handle.

The thread then performs a synchronousread from the
newly connected data socket handle. Once the entire HTTP
request has been read, the thread performs the necessary com-
putation and filesystem operations to service the request. The
requested data is then transmitted synchronously to the client.
The thread returns to the thread pool and reinvokesaccept
after the data transmission completes.

Synchronous thread pool is useful for bounding the num-
ber of OS resources consumed by a Web server. Client re-
quests can execute concurrently until the number of simulta-
neous requests exceeds the number of threads in the pool. At
this point, additional requests must be queued until a thread
becomes available. This queue is typically maintained in the
OS kernel’s TCP layer.

To reduce latency, the thread pool can be configured to al-
ways have threads available to service new requests. The num-
ber of threads needed to support this policy can be very high
during peak loads because threads block in long-duration syn-
chronous I/O operations. The asynchronous thread pool ap-
proach (described in Section 3.2.3) improves this model by
considerably reducing the number of threads in the system.

Incidentally, in some operating systems, such as versions of
Solaris before 2.6, it is not possible to have multiple threads in
a process all blocking simultaneously inaccept on the same
acceptor socket. Therefore, on these OS platforms, it is nec-
essary to protectaccept with a mutex lock in a thread pool
Web server. In contrast, Windows NT 4.0 supports simulta-
neousaccept calls, so additional synchronization is not re-
quired in JAWS-NT.

3.2.3 Asynchronous Thread Pool

Figure 8 shows the asynchronous thread pool model. Like
the synchronous model, the asynchronous thread pool is cre-
ated during Web server initialization. Unlike the synchronous
model, however, the threads wait on acompletion portrather
than waiting onaccept . The OS queues up results on the
completion port from all asynchronous operations, such as
asynchronous accepts, reads, and writes.

The result of each asynchronous operation is handled by a
thread the OS selects from the pool of threads waiting on the
completion port. This asynchronous model is useful because
the same programming model works for a single thread, as
well as multiple threads. The thread that initiated the asyn-
chronous operation need not be the one selected to handle
its completion, however. Therefore, it is hard to implement
concurrency strategies other than thread pool with an asyn-
chronous event dispatching model.
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3.2.4 Thread-per-Connection

In the thread-per-connection model the newly created handler
thread is responsible for the lifetime of the client connection,
rather than just a single request from the client. Therefore, the
new thread may serve multiple requests before terminating.
Thread-per-connection is not suitable for HTTP 1.0 because
it establishes a new connection for each request. This con-
currency modelis applicable, however, in HTTP 1.1, which
supports persistent connections [15, 20].

Thread-per-connectionprovides good support for prioritiza-
tion of client requests. For instance, higher priority clients can
be associated with higher priority threads. Thus, request from
high priority clients will be served ahead of other requests be-
cause the OS can preempt lower priority threads.

One drawback to thread-per-connection is that if certain
connections receive considerably more requests than others,
they can become a performance bottleneck. In contrast, thread
pool and thread-per-request provide better support for load
balancing.

3.3 Optimizing JAWS for Windows NT

The performance results presented in Section 4 were con-
ducted using a version of JAWS that was customized for Win-
dows NT (JAWS-NT). The NT-specific optimizations applied
in JAWS are described below.

3.3.1 Overview of Windows NT Asynchronous I/O

The Windows NT asynchronous I/O model supportsproactive
semantics, which allow applications to actively initiate I/O-
related operations, such asReadFile , WriteFile , and
TransmitFile . The following steps are required to pro-
gram asynchronous I/O on Windows NT:

1. Create I/O and event handles: First, aHANDLEis cre-
ated that corresponds to an I/O channel for the type of net-
working mechanism, such as a socket or named pipe, used by
the application.

Next, an application creates aHANDLEto a Win32 event ob-
ject and uses this event object’sHANDLEto initialize an over-
lapped I/O structure. The event object will be signaled when
asynchronous operations on theHANDLEcomplete.

2. Asynchronous operation invocation: The HANDLE
to the I/O channel and the overlapped I/O structure are
then passed to the asynchronous I/O operation, such as
WriteFile , ReadFile , or AcceptEx . The initiated op-
eration proceeds asynchronously and does not block the caller.

3. Asynchronous operation completion: When an asyn-
chronous operation completes, the event object speci-
fied inside the overlapped I/O structure is set to the

“signaled” state. Subsequently, Win32 demultiplex-
ing functions, such asWaitForSingleObject or
WaitForMultipleObjects , can be used to detect the
signaled state of the Win32 event object. These functions in-
dicate when an outstanding asynchronous operation has com-
pleted.

3.3.2 Overview of Windows NT Functions Relevant to
Web Servers

The following Win32 functions are particularly relevant for
developers of asynchronous Web Servers on Windows NT:

GetQueueCompletionStatus: The function GetQueue-
CompletionStatus attempts to dequeue an I/O comple-
tion result from a specified completion port. If there are no
completion results queued on the port, the function blocks the
calling thread waiting for asynchronous operations associated
with the completion port to finish. The blocking thread returns
from theGetQueuedCompletionStatus function when
(1) it can dequeue a completion packet or (2) when the func-
tion times out.

Windows NT selects the thread that has executed most re-
cently from among the waiter threads on the completion port
to handle the new connection. This reduces context switching
overhead because it increases the likelihood that thread con-
text information is still cached in the CPU and OS.

AcceptEx: The AcceptEx function combines several
socket functions into a single API/kernel transition. When
it completes successfully,AcceptEx performs the follow-
ing three tasks: (1) a new connection is accepted, (2) both
the local and remote addresses for the connection are returned,
and (3) the first block of data sent by the remote client is re-
ceived. Microsoft [14] claims that programs establishing con-
nections withAcceptEx will perform better than those using
theaccept function. However, our results in Section 4 show
that over high-speed networks there is not much difference in
performance.

TransmitFile: TransmitFile is a custom Win32 func-
tion that sends file data over a network connection, either syn-
chronously or asynchronously. The function uses the Win-
dows NT virtual memory cache manager to retrieve the file
data. As shown in Section 4, the asynchronous form of
TransmitFile is the most efficient mechanism for trans-
ferring large amounts of data over sockets on Windows NT.

In addition to transmitting files,TransmitFile allows
data to be prepended and appended before and after the file
data, respectively. This is particularly well-suited for Web
servers because they typically sendHTTPheader and trailer
data with the requested file. Hence, all the data to the client
can be sent in a single system call, which minimizes mode
switching overhead.

8



The Windows NTServeroptimizesTransmitFile for
high performance; all our benchmarks were run on NT Server.
The Windows NTWorkstationoptimizes the function for min-
imum memory and resource utilization. Our measurements
confirm that thatTransmitFile on Windows NTServer
substantially outperformsTransmitFile on Windows NT
Workstation.

3.3.3 Customizing JAWS for Windows NT Asynchronous
I/O

We modified the original Solaris implementation of JAWS to
use the Windows NT asynchronous event dispatching model
described above. Figure 11 shows the interactions between
components in the resulting JAWS-NT model.

Protocol Handlers (HTTP)

I/O Subsystem

I/O Completion
Port

5: write
completed

2: accept
completed

1: AcceptEx() 3: serve_request()
4: WriteFile()

6: GetQueued
CompletionStatus()

Figure 11: Asynchronous Event Dispatching (Windows NT)

When a JAWS Web server process begins execution,
the main thread initiates multipleAcceptEx calls asyn-
chronously. All threads in the process block on the com-
pletion port by callingGetQueuedCompletionStatus .
When a new connection arrives, the kernel places the result
from AcceptEx onto the completion port. If the initial
data block received byAcceptEx does not contain the en-
tire HTTP request, the selected handler thread must initiate an
asynchronous read usingReadFile .

After the entire HTTP request is received from the client,
the handler thread services the request by locating the file to
transmit to the client. If the server is usingWriteFile to

transmit the file data to the client, it memory maps the re-
quested file first.3 After initiating the asynchronous transfer
usingWriteFile or TransmitFile , the handler thread
blocks on the completion port. When the asynchronous trans-
fer completes, the result is queued up at the completion port.
The OS then selects a thread from those waiting on the com-
pletion port. This thread dequeues the result and performs the
necessary cleanup (e.g., closes the data socket) to finalize the
HTTP transaction.

It is possible that the thread initiatingAcceptEx , the
thread initiatingWriteFile or TransmitFile , and the
thread dequeueing the completion status from the port might
be different. This increases the adaptivity of JAWS because
it is possible to tune the level of concurrency simply by in-
creasing the number of completion handler threads. Moreover,
due to the patterns-oriented OO design of the JAWSEvent
Dispatcher framework, these changes do not require any
modifications to its concurrency architecture.

4 Benchmarking Testbed and Results

4.1 Hardware Testbed

Our benchmarking hardware testbed is shown in Figure 12.
This testbed consists of two Micron Millennia PRO2 plus

�������������
�
�
�

Lifecycle

ATM Switch

Start

�� ����������

Request

Start

Web Client

Requests

Web Server

Micron Millennia
Pro2

Micron Millennia
Pro2

Figure 12: Benchmarking Testbed Overview

workstations. Each PRO2 has 128 MB of RAM and is
equipped with 2 PentiumPro processors. The client machine
has a clock speed of 200 MHz, while the server machine runs
180 MHz. In addition, each PRO2 has an ENI-155P-MF-S
ATM card made by Efficient Networks, Inc. and is driven by

3If the server is usingTransmitFile , there is no need to memory map
the requested file becauseTransmitFile uses the operating system’s vir-
tual memory cache manager to retrieve the file data.
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Orca 3.01 driver software. The two workstations were con-
nected via an ATM network running through a FORE Sys-
tems ASX-200BX, with a maximum bandwidth of 622 Mbps.
However, due to limitations of LAN emulation mode, the peak
bandwidth of our testbed is approximately 120 Mbps.

4.2 Software Request Generator

We used the WebSTONE [5] v2.0 benchmarking software to
collect client- and server-side metrics. These metrics included
average server throughput, andaverage client latency. Web-
STONE is a standard benchmarking utility, capable of gener-
ating load requests that simulate typical Web server file access
patterns. Our experiments used WebSTONE to generate loads
and gather statistics for particular file sizes in order to deter-
mine the impacts of different concurrency and event dispatch-
ing strategies.

The file access pattern used in the tests is shown in Table 1.

Document Size Frequency
500 bytes 35%
5 Kbytes 50%
50 Kbytes 14%
5 Mbytes 1%

Table 1: File Access Patterns

This table represents actual load conditions on popular servers,
based on a study of file access patterns conducted by SPEC [2].

4.3 Experimental Results

The results presented below compare the performance of sev-
eral different adaptations of the JAWS Web server. We dis-
cuss the effect of different event dispatching and I/O models
on throughputandlatency, which are measured as follows:

Throughputis defined as the average number of bits re-
ceived per second by the client. A high-resolution timer for
throughput measurement was started before the client bench-
marking software sent the HTTP request. The high-resolution
timer stops just after the connection is closed at the client end.
The number of bits received includes the HTML headers sent
by the server.

Latencyis defined as the average amount of delay in mil-
liseconds seen by the client from the time it sends the request
to the time it completely receives the file. It measures how
long an end user must wait after sending an HTTPGETre-
quest to a Web server, and before the content begins to arrive
at the client. The timer for latency measurement is started just
before the client benchmarking software sends the HTTP re-
quest and stops just after the client receives the first response
from the server.
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Figure 13: Experiment Results from 500 Byte File
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Figure 17: Experiment Results from 5M File

The five graphs shown for each of throughput and la-
tency represent different file sizes used in each experiment,
500 bytes through 5 Mbytes by factors of 10. These files sizes
represent the spectrum of files sizes used in our experiments
to discover what impact file size has on performance.
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4.3.1 Throughput Comparisons

Figures 13-17 demonstrate the variance of throughput as the
size of the requested file and the server hit rate are increased
systematically. As expected, the throughput for each con-
nection generally degrades as the connections per second in-
creases. This stems from the growing number of simultaneous
connections being maintained, which decreases the throughput
per connection.

As shown in Figure 15, the throughput of thread-per-request
can degrade rapidly for smaller files as the connection load
increases. In contrast, the throughput of the synchronous
thread pool implementation degrade more gracefully. The rea-
son for this difference is that thread-per-request incurs higher
thread creation overhead because a new thread is spawned for
eachGET request. In contrast, thread creation overhead in
the thread pool strategy is amortized by pre-spawning threads
when the server begins execution.

The results in figures 13-17 illustrate thatTransmitFile
performs poorly for small files (i.e.,< 50 Kbytes). Our ex-
periments indicate that the performance ofTransmitFile
depends directly upon the number of simultaneous requests.
We believe that during heavy server loads (i.e., high hit rates),
TransmitFile is forced to wait while the kernel services
incoming requests. This creates a high number of simultane-
ous connections, degrading server performance.

As the size of the file grows, however,TransmitFile
rapidly outperforms the synchronous dispatching models. For
instance, at heavy loads with the 5 Mbyte file (shown in
Figure 17), it outperforms the next closest model by nearly
40%. TransmitFile is optimized to take advantage of
Windows NT kernel features, thereby reducing the number of
data copies and context switches.

4.3.2 Latency Comparisons

Figures 13-17 demonstrate the variance of latency perfor-
mance as the size of the requested file and the server hit rate
increase. As expected, as the connections per second increase,
the latency generally increases as well. This reflects the ad-
ditional load placed on the server, which reduces its ability to
service new client requests.

As before, TransmitFile performs extremely poorly
for small files. However, as the file size grows, its latency
rapidly improves relative to synchronous dispatching during
light loads.

4.3.3 Summary of Benchmark Results

As illustrated in the results presented above, there is sig-
nificant variance in throughput and latency depending on
the concurrency and event dispatching mechanisms. For

small files, the synchronous thread pool strategy provides
better overall performance. Under moderate loads, the syn-
chronous event dispatching model provides slightly better la-
tency than the asynchronous model. Under heavy loads and
with large file transfers, however, the asynchronous model us-
ing TransmitFile provides better quality of service. Thus,
under Windows NT, an optimal Web server should adapt it-
self to either synchronous or asynchronous event dispatching
and file I/O model, depending on the server’s workload and
distribution of file requests.

5 Comparing JAWS With Other High-
performance Web Servers on Win-
dows NT

This section compares a highly optimized JAWS implemen-
tation against Netscape Enterprise and Microsoft Internet In-
formation Server (IIS). The results shown in Figures 18-22.
demonstrate that JAWS is competitive with state-of-the-art
commercial Web server implementations. The figures reveal
that JAWS does not perform as well as Enterprise or IIS for
small files. However, as the file size grows, JAWS overtakes
the other servers in performance.

Two conclusions can be drawn from these results. First,
there are still performance issues beyond the scope of this pa-
per that require research to determine how to improve JAWS
performance for transferring small files. Second, it affirms our
hypothesis that a Web server can only achieve optimal perfor-
mance by employing adaptive techniques.

6 Related Work

As shown in Figure 1, the JAWS framework focuses on opti-
mizing a range of layers in a Web system. Therefore, it is in-
fluenced by a variety of related efforts. This section describes
existing work that is most relevant to JAWS.

6.1 Performance Evaluation

The need for high-capacity servers has spurred commercial
sector activity and many server implementations are available
on the market [27]. The growing number of Web servers has
prompted the need for assessing their relative performance.
The current standard benchmarks available are WebStone [5]
(by SGI) and SPECweb96 [2] (by SPEC), both heavily influ-
enced by the design of LADDIS [31].

WebStone and SPECweb96 are designed to measure overall
performance. They rate the performance of a server with a
single number (a higher number indicates better performance).
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Figure 18: Performance Results from 500 Byte File
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Figure 19: Performance Results from 5K File
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Figure 20: Performance Results from 50K File
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Figure 21: Performance Results from 500K File

0

20

40

60

80

100

120

1 5 10 15

Concurrent Clients

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

JAWS
Microsoft
Netscape

0

1000

2000

3000

4000

5000

6000

7000

8000

1 5 10 15

Concurrent Clients

L
at

en
cy

 (
m

se
c)

JAWS
Microsoft
Netscape

Figure 22: Performance Results from 5M File

These benchmarks are based on a process-based concurrency
model and utilize multiple machines to simulate heavy loads.
We have found that a thread-based concurrency model allows
a single client machine to generate higher loads, thus requiring
fewer machines in the benchmarking testbed.

6.2 Optimization Strategies

An important goal of benchmarking Web servers is to discover
bottlenecks that require optimization to improve performance.
One way to improve performance is by removing overhead
in the protocol itself. The W3C is currently standardizing
HTTP/1.1, which multiplexes multiple requests over a single
connection. This “connection-caching” strategy can signifi-
cantly enhance the performance over HTTP/1.0 by reducing
unnecessary connection set up and termination [28, 20]. The
need for persistent connections to improve latency has been
noted in [15].

Latency can be improved by using caching proxies and
caching clients, although the removal policy must be consid-
ered carefully [30]. The efforts presented in this paper are or-
thogonal to work on client-side caching. Our attempts to op-
timize performance have focused on (1) server-side caching,
e.g.,via JAWS’ Cached Virtual File system and (2) utilizing
concurrency and event dispatching processing routines that are
customized for the OS platform to reduce server load and im-
prove end-to-end quality of service.

6.3 Web Server Design and Implementation

Design patterns are re-usable software abstractions that have
been observed to occur many times in actual solutions [4]. A
design pattern is intended to solve a general design problem
for a specific context. Many patterns have been observed in the
context of concurrent, parallel and distributed systems. Many
of these ideas are applicable to Web server design.

Katz presents an NCSA prototype of a scalable Web server
design [11]. This design was prompted by the growing num-
ber of requests being made to the NCSA server machine.
Many commercial server implementations arose to meet the
demand for high-performance Web servers. Higher end im-
plementations, such as Netscape Enterprise and Zeus, use
multi-threading to scale for high-end architectures with mul-
tiple CPUs. Other implementations (e.g., Roxen, BOA and
thttpd) use a single thread of control to optimize performance
on single CPU architectures. Yeager and McGrath of NCSA
discuss the tradeoffs of some Web server designs and their per-
formance in [17].

Our work attempts to apply design patterns and concurrency
strategies to provide a design which is both scalable and adap-
tive. We achieve static adaptation through start-up time con-
figuration options, and dynamic adaptation through use of dy-
namically loadable modules which alter the behavior of the
server.
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6.4 Concurrency Strategies

A concurrency strategy specifies the policies and mechanisms
for allowing multiple tasks to execute simultaneously. For
Web servers, a task is an object that encapsulates server re-
quest handling. There are four general classes of Web server
concurrency strategies:

Iterative: An iterative server is a server that has no
application-level concurrency: each task that begins runs to
completion.

Single-threaded concurrent: A single-threaded concurrent
server has one thread of control, but only partially serves each
unfinished task until a pre-determined amount of work is done,
or until a timer has expired.

Thread-per-Request: The thread-per-request strategy al-
lows each task to execute in its own thread of control.

Thread Pool: A thread pool approach fixes the number of
executing threads and assigns tasks to available threads.

Surprisingly, Web server literature contains relatively lit-
tle information on the performance of alternative concurrency
strategies. This may result from the fact that most Web
server implementations tightly couple their concurrency strat-
egy with the other components in the server. In contrast, con-
currency strategies have been studied extensively in the con-
text of parallel protocol stacks that run on shared memory plat-
forms.

[13] measured the impact of synchronization on thread-per-
request implementations of TCP and UDP transport protocols
built within a multi-processor version of thex-kernel; [16]
examined performance issues in parallelizing TCP-based and
UDP-based protocol stacks using a thread-per-request strategy
in a different multi-processor version of thex-kernel; and [21]
measured the performance of the TCP/IP protocol stack using
a thread-per-connection strategy in a multi-processor version
of System V STREAMS.

The results presented in this paper extend existing research
on protocol stack parallelism in several ways. First, we mea-
sure the performance of a variety of representative concur-
rency strategies. Second, our experiments report the impact
of synchronous and asynchronous event dispatching strategies
on Web server performance, whereas existing work on paral-
lel protocol stacks has focused on synchronous event dispatch-
ing. Our results illustrate how operating systems like Windows
NT that support asynchronous event dispatching strategies and
customized file/network transfer operations can perform sig-
nificantly better than purely synchronous strategies under var-
ious workloads (e.g., transfers involving large files).

7 Concluding Remarks

This paper describesstatic anddynamicadaptations that can
be applied to develop high-performance Web servers. Com-
mon static adaptations include configuring an event dispatch-
ing model that is customized for OS platform-specific fea-
tures, such as the I/O completion ports andTransmitFile
on Windows NT. Common dynamic adaptations include pri-
oritized request handling, caching strategies, and threading
strategies. We illustrate the results of adapting the JAWS
Web server framework to leverage the native asynchronous
dispatching mechanisms provided by Windows NT.

Our results demonstrate that to alleviate bottlenecks, Web
servers must utilize an integrated approach that combines op-
timizations at multiple levels of a Web endsystem. For exam-
ple, a Web server should take advantage of special I/O system
calls, specialized hardware and knowledge of the file access
patterns.

As illustrated in Section 4, there is significant variance
in throughput and latency under different server load condi-
tions. For small files, the synchronous thread pool strategy
provides better overall performance. However, under heavy
loads and with large file transfers, the asynchronous model us-
ing TransmitFile provides more consistent quality of ser-
vice. Thus, under Windows NT, an optimal Web server should
adapt itself dynamically to either event dispatching and file I/O
model, depending on the server’s workload.

Acknowledgements

The authors thank the reviewers for their thoughtful comments
and suggestions for improvement. We would also like to thank
Chris Dawson and Dan Swanger of FORE Systems, Inc., for
providing the ATM cards and ATM switch used for our bench-
marking testbed. In addition, we would like to thank Sumedh
Mungee, Darrell Brunsch, Everett Anderson, Tim Harrison,
and John DeHart for helping to develop our ATM Web server
testbed.

References
[1] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Som-

merlad, and Michael Stal.Pattern-Oriented Software Architec-
ture - A System of Patterns. Wiley and Sons, 1996.

[2] Alexander Carlton. An Explanation of the SPECweb96 Bench-
mark. Standard Performance Evaluation Corporation whitepa-
per, 1996. www.specbench.org/.

[3] Zubin D. Dittia, Guru M. Parulkar, and Jerome R. Cox, Jr. The
APIC Approach to High Performance Network Interface De-
sign: Protected DMA and Other Techniques. InProceedings of
INFOCOM ’97, Kobe, Japan, April 1997. IEEE.

13



[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides.Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading, MA, 1995.

[5] Gene Trent and Mark Sake. WebSTONE: The First Generation
in HTTP Server Benchmarking. Silicon Graphics, Inc. whitepa-
per, February 1995. ww.sgi.com/.

[6] James Hu, Sumedh Mungee, and Douglas C. Schmidt. Prin-
ciples for Developing and Measuring High-performance Web
Servers over ATM. InProceeedings of INFOCOM ’98,
March/April 1998.

[7] James Hu, Irfan Pyarali, and Douglas C. Schmidt. Measuring
the Impact of Event Dispatching and Concurrency Models on
Web Server Performance Over High-speed Networks. InPro-
ceedings of the2nd Global Internet Conference. IEEE, Novem-
ber 1997.

[8] James Hu, Irfan Pyarali, and Douglas C. Schmidt. Applying
the Proactor Pattern to High-Performance Web Servers. InPro-
ceedings of the 10th International Conference on Parallel and
Distributed Computing and Systems. IASTED, October 1998.

[9] Prashant Jain and Douglas C. Schmidt. Dynamically Config-
uring Communication Services with the Service Configurator
Pattern.C++ Report, 9(5), June 1997.

[10] Prashant Jain and Douglas C. Schmidt. Service Configurator:
A Pattern for Dynamic Configuration of Services. InProceed-
ings of the3rd Conference on Object-Oriented Technologies
and Systems. USENIX, June 1997.

[11] Eric Dean Katz, Michelle Butler, and Robert McGrath. A Scal-
able HTTP Server: The NCSA Prototype. InProceedings of
the First International Conference on the World-Wide Web, May
1994.

[12] R. Greg Lavender and Douglas C. Schmidt. Active Object:
an Object Behavioral Pattern for Concurrent Programming. In
James O. Coplien, John Vlissides, and Norm Kerth, editors,
Pattern Languages of Program Design. Addison-Wesley, Read-
ing, MA, 1996.

[13] Mats Bjorkman and Per Gunningberg. Locking Strategies in
Multiprocessor Implementations of Protocols.Transactions on
Networking, 3(6), 1996.

[14] Microsoft Developers Studio, Version 4.2 - Software Develop-
ment Kit, 1996.

[15] Jeffrey C. Mogul. The Case for Persistent-connection HTTP. In
Proceedings of ACM SIGCOMM ’95 Conference in Computer
Communication Review, pages 299–314, Boston, MA, USA,
August 1995. ACM Press.

[16] Erich M. Nahum, David J. Yates, James F. Kurose, and Don
Towsley. Performance Issues in Parallelized Network Protocols.
In Proceedings of the1st Symposium on Operating Systems
Design and Implementation. USENIX Association, November
1994.

[17] Nancy J. Yeager and Robert E. McGrath.Web Server Tech-
nology: The Advanced Guide for World Wide Web Information
Providers. Morgan Kaufmann, 1996.

[18] Object Management Group.Control and Management of Au-
dio/Video Streams: OMG RFP Submission, 1.2 edition, March
1997.

[19] Irfan Pyarali, Timothy H. Harrison, and Douglas C. Schmidt.
Asynchronous Completion Token: an Object Behavioral Pattern
for Efficient Asynchronous Event Handling. In Robert Martin,
Frank Buschmann, and Dirk Riehle, editors,Pattern Languages
of Program Design. Addison-Wesley, Reading, MA, 1997.

[20] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee.
Hypertext Transfer Protocol – HTTP/1.1. Standards Track RFC
2068, Network Working Group, January 1997. www.w3.org/.

[21] Sunil Saxena, J. Kent Peacock, Fred Yang, Vijaya Verma, and
Mohan Krishnan. Pitfalls in Multithreading SVR4 STREAMS
and other Weightless Processes. InProceedings of the Winter
USENIX Conference, pages 85–106, San Diego, CA, January
1993.

[22] Douglas C. Schmidt. GPERF: A Perfect Hash Function Genera-
tor. In Proceedings of the2nd C++ Conference, pages 87–102,
San Francisco, California, April 1990. USENIX.

[23] Douglas C. Schmidt. ACE: an Object-Oriented Framework
for Developing Distributed Applications. InProceedings of
the6th USENIX C++ Technical Conference, Cambridge, Mas-
sachusetts, April 1994. USENIX Association.

[24] Douglas C. Schmidt. Reactor: An Object Behavioral Pattern
for Concurrent Event Demultiplexing and Event Handler Dis-
patching. In James O. Coplien and Douglas C. Schmidt, ed-
itors, Pattern Languages of Program Design, pages 529–545.
Addison-Wesley, Reading, MA, 1995.

[25] Douglas C. Schmidt. Acceptor and Connector: Design Patterns
for Initializing Communication Services. In Robert Martin,
Frank Buschmann, and Dirk Riehle, editors,Pattern Languages
of Program Design. Addison-Wesley, Reading, MA, 1997.

[26] Douglas C. Schmidt and James Hu. Developing Flexible and
High-performance Web Servers with Frameworks and Patterns.
ACM Computing Surveys, 30, 1998.

[27] David Strom. Web Compare. webcompare.iworld.com/, 1997.

[28] T. Berners-Lee, R. T. Fielding, and H. Frystyk. Hypertext
Transfer Protocol – HTTP/1.0. Informational RFC 1945, Net-
work Working Group, May 1996. www.w3.org/.

[29] Stephen Williams, Marc Abrams, Charles R. Standridge,
Ghalleb Abdulla, and Edward A. Fox. Removal Policies in Net-
work Caches for World Wide Web Documents. InProceedings
of SIGCOMM ’96, pages 293–305, Stanford, CA, August 1996.
ACM.

[30] Stephen Williams, Marc Abrams, Charles R. Standridge,
Ghalleb Abdulla, and Edward A. Fox. Removal Policies in Net-
work Caches for World Wide Web Documents. InProceedings
of SIGCOMM ’96, pages 293–305, Stanford, CA, August 1996.
ACM.

[31] Mark Wittle and Bruce E. Keith. LADDIS: The Next Genera-
tion in NFS File Server Benchmarking. InUSENIX Association
Conference Proceedings ’93, April 1993.

14


