
NetQoPE: A Middleware-based Network QoS
Provisioning Engine for Distributed Real-time

and Embedded Systems

Jaiganesh Balasubramanian1, Sumant Tambe1, Shrirang Gadgil2, Frederick
Porter2, Balakrishnan Dasarathy2, Aniruddha Gokhale1, and Douglas C.

Schmidt1

1 Department of EECS, Vanderbilt University, Nashville, TN 37235, USA
2 Telcordia Technologies, Piscataway, NJ 08854, USA

Abstract. Developers of distributed real-time and embedded (DRE)
systems face challenges in provisioning network quality of service (QoS)
properties due to the presence of application flows that require a range of
network-level QoS properties, as well as the complexity of specifying per-
flow network QoS requirements and mapping them to network QoS en-
forcement mechanisms. This paper describes a QoS-enabling component
middleware framework called NetQoPE that addresses these challenges
via a multi-stage approach that includes (1) a model-driven framework
for declarative specification of per-flow network QoS requirements, (2) a
network resource allocation and configuration framework that maps per-
flow network QoS requirements to platform-specific network QoS provi-
sioning mechanisms, (3) a deployment and configuration framework for
deploying system components with the appropriate network QoS settings
on the platforms, and (4) a runtime framework that enforces the network
QoS properties for DRE application flows.

This paper evaluates the effectiveness of NetQoPE in the context of a
representative DRE application in an IP network testbed that supports
various types of network traffic. Our empirical results demonstrate that
the capabilities provided by NetQoPE yield flexible, predictable, and
efficient network QoS provisioning for DRE systems.

Keywords: model-driven architectures, middleware for quality-of-service,
QoS-enabling component middleware, deployment and configuration tools

1 Introduction

Distributed real-time and embedded (DRE) systems often comprise multiple
end-to-end application flows that may require various QoS properties affect-
ing CPU, memory, and network resources. Examples of such DRE systems in-
clude shipboard computing systems, supervisory control and data acquisition
(SCADA) systems, and corporate enterprises. Developers of DRE systems typi-
cally provision their network-level QoS properties via network QoS mechanisms,
such as integrated services (IntServ) [1] and differentiated services (DiffServ) [2].



Prior work has concentrated on how applications can use network QoS mech-
anisms. For example, [3] focuses on encapsulating these mechanisms within op-
erating systems and [4] focuses on modifying application business logic to work
with QoS brokers. In these approaches, applications are often tightly coupled
with the QoS APIs and the underlying network QoS mechanisms. As a re-
sult, these solutions require obtrusive application modifications when there are
changes to OS QoS APIs, network QoS mechanisms, or per-flow network QoS re-
quirements. Moreover, due to their complex APIs, network QoS mechanisms can
be tedious and error-prone to program and manage, particularly as the number
of application flows increases.

Solutions to network QoS provisioning are more effective when application
business logic is decoupled from QoS provisioning techniques [5]. Achieving this
objective requires identifying key elements in the QoS provisioning problem space
that incur variability when mapping the problem space to the solution space,
then designing solutions that address these sources of variability on behalf of
applications. Experience has shown [6] that middleware is an appropriate level
of abstraction at which to resolve these challenges, by providing services that
integrate network QoS mechanisms without tightly coupling applications to low-
level OS APIs and network QoS mechanisms.

This paper describes the design and evaluates the performance of the Network
QoS Provisioning Engine (NetQoPE), which is a set of model-driven middle-
ware frameworks designed to address variability in network QoS provisioning for
DRE systems at multiple stages, including design-, deployment-, and run-time.
NetQoPE’s design-time capabilities include (1) model-driven declarative mech-
anisms that enable the specification of application network QoS requirements
at the individual application communication flow level, e.g., 10 Mbps forward
and reverse bandwidth between peer components, and (2) a resource allocator
and provisioner, which use commonly available network QoS mechanisms, such
as DiffServ, to allocate and provision network resources.

NetQoPE’s deployment-time capabilities include deploying and configuring
the applications with the appropriate network QoS settings, such as DiffServ
codepoints (DSCP). DSCPs are used to differentiate IP packets at the routers
when applications make remote invocations. NetQoPE’s run-time capabilities
enforce the network QoS settings, such as IP packet markings with the right
set of DSCPs, when applications communicate with each other. We evaluate the
flexibility and effectiveness of NetQoPE in the context of a representative DRE
system in an IP network that uses a Bandwidth Broker [7] to manage network
resources via DiffServ QoS mechanisms.

The remainder of the paper is organized as follows: Section 2 uses a case
study to motivate common requirements associated with provisioning network
QoS for DRE systems; Section 3 describes how NetQoPE is designed to address
key challenges associated with meeting these requirements; Section 4 provides
experimental validation of NetQoPE in the context of the case study; Section 5
compares our work on NetQoPE with related research; and Section 6 presents
concluding remarks and lessons learned.



2 Motivating NetQoPE’s Network QoS Provisioning
Capabilities: A Case Study

Fig. 1: A Corporate Environment and Its Net-
work Configuration

Figure 1 shows a repre-
sentative DRE system in
a modern corporate enter-
prise, which we use as case
study to demonstrate and
validate NetQoPE’s network
QoS provisioning capabili-
ties. These corporate enter-
prises often transport net-
work traffic using an IP net-
work over high-speed Ether-
net. Network traffic in an
enterprise can be grouped
into several classes, including
(1) e-mail, videoconferencing,
and normal business traffic,
and (2) sensory and imagery

traffic of the safety/security hardware (such as fire/smoke sensors) installed in
the premises. This paper makes the reasonable assumption that safety/security
traffic is more critical than other traffic and focuses on middleware-guided mech-
anisms to assure the specified QoS for this mission-critical traffic in the presence
of other traffic that shares the same network.

As shown in Figure 1, an office enterprise has many software controllers that
manage the hardware devices, such as sensors and monitors. Each sensor/camera
software controller filters the sensory/imagery information and relays them to the
monitor software controllers that display the information. The traffic between
these software controllers requires network QoS mechanisms—our case study
uses DiffServ to provide network QoS to these applications.

For applications to obtain the required network QoS using DiffServ, multiple
steps are involved, as described below:
• QoS requirements specification. DiffServ provides different levels of ser-

vice (e.g., premium and assured) to meet the QoS demands of application
traffic. For each pair of application communication endpoints, the service
quality (e.g., assured), and the bandwidth required (e.g., 10 Mbps) must be
specified without modifying the application code.

• Network resource allocation and configuration. A Bandwidth Bro-
ker [7] manages the network resources in our DiffServ domain using admis-
sion control capabilities to ensure that admitted flows have the requisite
bandwidth and end-to-end delay, loss and jitter. Depending on QoS require-
ments for each pair of application communication end points, network-level
resources must be allocated without the intervention of the application code,
and a DSCP value should be assigned that is indicative of the required type
of service, e.g., assured vs. premium.



• Runtime communication with network QoS settings. When appli-
cation communication is in progress, the pre-assigned DSCP value must be
transmitted along with the IP packets that encapsulate the application-level
messages. The routers use the DSCP markings in the IP packets to provide
the appropriate QoS, e.g., packets marked with premium DSCP values are
given preference relative to packets marked with assured DSCP values.

Decoupling application code while meeting the three requirements above moti-
vates our 3-stage NetQoPE architecture described in Section 3.

3 Network QoS Provisioning Capabilities in NetQoPE

This section describes the design-time, deployment-time, and run-time challenges
that arose when developing a DiffServ-based prototype of the office enterprise
case study outlined in Section 2. We then describe how NetQoPE helped resolve
these challenges with its model-driven middleware frameworks.

3.1 NetQoPE’s Multistage Network QoS Provisioning Architecture

Fig. 2: NetQoPE’s Three Stage Architecture

Figure 2 shows NetQo-
PE’s three stage archi-
tecture and the tech-
niques it uses for network
QoS provisioning. Con-
ventional techniques for
adding network QoS to
applications typically m-
odify the OS [3] or ap-
plications [4]. Below we
describe the challenges
of applying such tech-
niques and summarize

how NetQoPE’s model-driven middleware frameworks address these challenges.
3.1.1 Challenge 1: Alleviating Complexities in QoS Requirements
Specification

Context. DRE applications must specify a level of service (e.g., high prior-
ity versus high reliability) and their associated bandwidth requirements so that
network elements provision resources properly. Ideally, multiple instances of the
same reusable software components should be deployed and their QoS specifi-
cations should be customizable without requiring modifications to application
code.
Problem. In our office enterprise case study, multiple fire sensors with different
QoS requirements operate at different importance levels managed by reusable
software controllers that deploy the same application code. For example, fire
sensor deployed in a parking lot have lower importance than those in the server
room. Since the fire sensors are managed by the same reusable software con-
trollers, manually specifying the different QoS requirements needed for different
important contexts is tedious, error-prone, and non-scalable.



Solution approach→Domain-specific modeling languages. Model-driven
engineering (MDE) [8] captures network QoS requirements for data and control
flows in a DRE system and helps raise the level of the abstraction of system
design to a level higher than third-generation programming languages, such as
C++ or Java. MDE also alleviates accidental complexities of using declarative
mechanisms based on XML [9].

DRE system designers can use NetQoPE’s Component QoS Modeling Lan-
guage (CQML) to describe (1) the end-to-end application structure, including
all source and destination pairs of applications, (2) the application network QoS
requirements in terms of bandwidth, network transport mechanisms used, and
traffic classes, and (3) the target environment, including the physical hosts on
which the applications will be deployed. CQML traverses the application mod-
els and their QoS requirements and generates standards-based XML descriptors
defined by the OMG Deployment and Configuration (D&C) specification [10].
Section 3.2.1 describes the design of CQML in more detail.

3.1.2 Challenge 2: Alleviating Complexities in Network Resource Al-
location and Configuration

Context. DRE systems can allocate and configure network resources based on
the QoS requirements specified by their applications.
Problem. In our office enterprise case study, a sensor monitoring a fire in a
parking lot may have minimal QoS requirements, whereas the sensor monitoring
a fire in a server room may have more stringent QoS requirements. As before,
the reusable software controllers managing the fire sensors run the same appli-
cation code. If this code were modified to use a Bandwidth Broker to allocate
network resources, applications would incur unnecessary time/space overhead.
For example, the software controller managing a fire sensor in a parking lot may
need no network QoS, and thus need not allocate network resources. Ideally,
applications should only use network QoS mechanisms when deemed necessary
by the deployment context.
Solution approach → Resource allocator framework. NetQoPE’s MDE
tools in Stage 1 (see Section 3.1.1) capture the QoS requirements of different
applications at a per-flow and per-deployment-context basis. This information is
used in Stage 2 as input to NetQoPE’s QoS resource allocator engine to provide
resource allocation to different applications. NetQoPE’s QoS resource allocation
engine uses the Bandwidth Broker’s network resource provisioners [7] to support
resource allocation requests on a per-flow and per-deployment-context basis on
behalf of applications.

After the network resources are allocated and network devices (e.g., routers
that support DiffServ) are configured, network resource provisioners provide net-
work QoS settings (e.g., DSCP markings) that applications use when interacting
with the configured underlying network. NetQoPE encodes these DSCP mark-
ings on the deployment descriptors associated with the connections between ap-
plications. Applications are thus simplified by being shielded from (1) different
network QoS mechanisms that are used to allocate network resources and (2) the



deployment contexts in which the resource allocations. Section 3.2.2 describes
NetQoPE’s QoS resource allocation engine in detail.
3.1.3 Challenge 3: Alleviating Complexities in Network QoS Settings
Configuration

Context. DRE applications need to invoke remote operations using the cho-
sen network QoS settings (e.g., DSCP markings) so that the network layer can
differentiate application traffic based on QoS,
Problem. Application developers historically have written code that instructs
the middleware to provide the appropriate runtime services, e.g., DSCP mark-
ings in IP packets. In our office enterprise case study, for example, fire sensors
can be deployed in different QoS contexts that are managed by reusable software
controllers. Modifying application code to instruct the middleware to add net-
work QoS settings would be tedious, error-prone, and non-scalable because (1)
the same application code could be used in different contexts requiring different
network QoS settings and (2) application developers might not (and should not)
know the different QoS contexts in which the applications are used during the
development process. Application-transparent mechanisms are therefore needed
to configure the middleware to add these network QoS settings depending on
the deployment context in which applications are used.
Solution approach → Deployment and runtime middleware mecha-
nisms. NetQoPE uses a deployment and configuration (D&C) engine [11] to
map application components to the appropriate nodes in a target environment.
This D&C engine is a middleware framework that processes deployment descrip-
tors generated during Stage 1 and Stage 2 and deploys application components
to their respective nodes. Since deployment descriptors capture the network QoS
settings (e.g., DSCP values) to use on a per-connection or a per-flow granularity,
the D&C engine can configure the underlying middleware to use the appropriate
settings when operations are invoked at runtime. As a result, middleware can be
configured automatically on behalf of applications on a per-flow and per-context
granularity, thereby simplifying business logic.

NetQoPE also uses runtime middleware mechanisms [6] to invoke remote op-
erations. Its D&C engine provisions and configures the middleware to provide
the required application-specific connection services and associated network QoS
settings, e.g., DSCP values. At runtime, these network QoS settings are auto-
matically added to the IP packets when applications invoke remote operations.
Section 3.2.3 describes NetQoPE’s D&C and runtime capabilities in detail.

3.2 A Concrete Instantiation of the NetQoPE Architecture

Section 3.1 described the NetQoPE’s model-driven middleware architecture for
network QoS provisioning. To prototype the concepts described in Section 3.1—
and showcase how middleware can simplify the provisioning of network QoS ca-
pabilities for DRE applications—we used the Lightweight CORBA Component
Model (LwCCM), which provides QoS-enabling component middleware capa-
bilities for DRE systems. We have extensive experience developing and apply-
ing LwCCM-based QoS-enabling middleware infrastructure, such as the CIAO



LwCCM middleware [6] and the DAnCE LwCCM D&C engine [11], and model-
driven tools, such as CoSMIC [9], that simplified our NetQoPE prototype.

The remainder of this section describes a concrete realization of the NetQoPE
architecture using LwCCM as the component middleware platform and DiffServ
as the network-level QoS mechanism. NetQoPE uses a Bandwidth Broker [7] that
reserves and allocates DiffServ-related network resources for DRE applications.
Note that this concrete instantiation is just one way to realize the multi-stage
NetQoPE architecture. In particular, the concepts described in Section 3.1 could
also be used to provision network QoS for other QoS-enabling component mid-
dleware platforms and tools [8, 12,13].
3.2.1 Network QoS Modeling Language The Component QoS Model-
ing Language (CQML) is a domain-specific modeling language (DSML) [14]
NetQoPE uses to specify network QoS requirements of LwCCM-based DRE ap-
plications that use DiffServ. CQML annotates connections between components
in DRE applications with the following attributes: (1) network QoS classes, such
as high priority (hp), high reliability (hr), multimedia (mm), and best
effort (be), (2) bi-directional bandwidth requirements, and (3) transport pro-
tocol used. Figure 3 shows a CQML model for key flows in our case study from
Section 2. If multiple flows require the same network QoS class, CQML enhances
scalability by allowing models with different flows to share the network QoS class
attribute, which significantly reduces the effort of modeling traffic flows.

Fig. 3: NetQoPE’s Network QoS Requirements
Specification Capabilities

CQML’s network QoS
classes correspond to the
DiffServ levels of service
provided by a Bandwidth
Broker [7]. For example,
the hp class represents the
highest importance and low-
est latency traffic (e.g.,
fire sense reporting in the
server room). The hr class
represents traffic with low
drop rate (e.g., surveillance
data). CQML also supports
the mm class for sending
multimedia data and the be
class for sending traffic with
no QoS requirements.

Clients make forward and reverse bandwidth reservations to assure network
QoS when they invoke remote operations with server applications. In some sce-
narios, however, the clients cannot dictate the network QoS and must rely on the
network QoS guarantees provided by server applications. For example, some ap-
plications in the office enterprise might have many clients, so the network could
be overloaded if all clients reserve forward and reverse bandwidth. In these sce-
narios, clients invoke remote operations on the server applications, and the server
applications reply according to priorities based on the available resources.



To support these types of scenarios, CQML allows DRE system design-
ers to designate two endpoints of component-to-component communication via
NetQoPE’s network priority models, which are inspired by Real-time CORBA’s
request priority models. The two network priority models supported by NetQoPE
include (1) client propagated network priority model, where the client dic-
tates the priorities at which the requests and replies are sent, and (2) server dec-
lared network priority model, where the server dictates the priority at which
the requests and replies are sent. When connections are made, CQML ensures
that endpoints of the connection have semantically consistent priority models.
In particular, CQML detects and prevents designating one end of a connection
to have the client propagated network priority model and the other end of
the connection to have the server declared network priority model.
Generation of deployment metadata. CQML is part of the CoSMIC model-
ing tool suite [9], which allows developers to specify the computing nodes for de-
ploying application components. CQML generates standards-based deployment
descriptors [10] that capture the application deployment details, as well as their
network QoS requirements. As described in Section 3.2.2, these requirements are
used by NetQoPE’s network resource allocators to provision the needed network
QoS.
Benefits of the approach. Multiple instances of the same applications could
be deployed in different/same deployment contexts with different QoS require-
ments. CQML captures the context-specific per-flow QoS requirements by virtue
of modeling a deployment context that includes all applications and their com-
munications. Application developers can thus focus on writing their business
logic without being tightly coupled to the context in which it will be used.
Specifying those QoS requirements manually or programmatically is tedious
and error-prone. CQML auto-generates XML descriptors that capture inter-
component communications and QoS requirements, thereby enabling per-flow
resource allocations that are “correct-by-construction.” Section 4.2.2 describes
an experiment that evaluates CQML empirically.
3.2.2 Network Resource Reservation and Device Configuration NetQo-
PE’s network resource allocator middleware is integrated with a Bandwidth
Broker [7] that allocates and manages network resources in DiffServ networks.
Figure 4 illustrates the architecture of NetQoPE’s network resource allocator.

NetQoPE’s network resource allocation uses a two-phase process. In the first
phase, i.e., before deploying the applications, the network resource allocator
parses the deployment descriptors generated by CQML (Section 3.2.1) to acquire
the DRE application flows being deployed. NetQoPE next invokes the Bandwidth
Broker admission control capabilities by feeding it one application flow at a time.
If all flows can be admitted, NetQoPE then proceeds with the configuration of
network resources for those flows. Conversely, if not all flows can be admitted,
NetQoPE enables application developers to change the deployment (e.g., change
component implementation to consume less resources) since applications have
not yet been deployed.

In the second phase, NetQoPE instructs the Bandwidth Broker to reserve all
resources in the specified classes, and provide the DSCPs used by application



operation invocations. The Bandwidth Broker uses its Flow Provisioner to con-
figure the routers to provide the appropriate per-hop behavior when they receive
IP packets with the specified DSCP values. The DSCPs used by communicat-
ing components are encoded as connection attributes in deployment descriptors.
Section 3.2.3 discusses how NetQoPE adds these DSCPs to communicating com-
ponents without modifying application code.

Fig. 4: NetQoPE’s Network Resource Allocation and
Configuration Capabilities

Benefits of the ap-
proach. Rather than mod-
ifying applications or the
operating systems to inte-
grate network QoS mech-
anisms, NetQoPE’s middl-
eware-based network re-
source allocators allows
application developers to
focus on writing busi-
ness logic, rather than
wrestling with complex

network QoS APIs. NetQoPE’s capability to determine if sufficient resources
can be provisioned before deploying applications also provides an opportunity
to change the deployment (e.g., node, implementation, etc.), thereby allowing
DRE application designers to plan for a degraded QoS prior to runtime. Sec-
tion 4.2.3 describes an experiment that evaluates NetQoPE’s network resource
allocator empirically.

3.2.3 Component Middleware Mechanisms to Configure Application
QoS Settings NetQoPE leverages the DAnCE [11] deployment and configu-
ration (D&C) engine to create a network configurator for configuring network
QoS policies of DRE applications developed using the CIAO [6] component mid-
dleware. DAnCE automates the configuration of semantically consistent QoS
policies for application and service components. For example, NetQoPE’s net-
work configurator parses the deployment descriptors and annotated DSCPs on
the connections to add the following QoS policies automatically:
• The client propagated network policy, which allows clients to define

the forward and reverse DSCPs used for communication. This policy corre-
sponds to the client propagated network priority model defined in the
CQML model described in Section 3.2.1.

• The server declared network policy, which allows servers to define
the forward and reverse DSCPs used for communication. This policy cor-
responds to the server declared network priority model defined in the
CQML model.

Honoring of policies. As mentioned above, NetQoPE supports both the serve-
r declared and client propagated network priority policies. To support
the server declared network policy, NetQoPE encodes the request and reply
DSCPs in a CCM interoperable object reference (IOR). When a client makes a
call on the object using the IOR, NetQoPE uses the underlying CIAO middle-



ware to decode the request DSCP from the IOR and add it to the IP packets.
Likewise, CIAO’s portable object adapter (POA) in the server checks the policy
on the IOR and adds the reply DSCP to the IP packets. NetQoPE’s network
configurator is part of the DAnCE D&C engine that configures the POA as part
of creating the component containers and IORs. Its network configurator can
therefore automatically add the designated policies to the IOR and configure
the POA to reply with the right set of DSCPs for each object it hosts.

Fig. 5: NetQoPE’s Network QoS Settings
Configuration Capabilities

Likewise, to support the clien-
t propagated network policy,
NetQoPE uses the container pro-
gramming model shown in Fig-
ure 5, where component A obtains
the IOR of a remote component
B using the container. To allow
component A to dictate the re-
quest and reply priorities of the
remote communication, NetQoPE
applies the client propagated net-

work policy on the object reference of component B provided to component A.
The policy specifies the request and reply DSCPs to be used. When component
A makes a call on component B via the IOR, NetQoPE uses CIAO to decode
the request DSCP from the policy associated with the IOR and add it to the IP
packets. Moreover, it also decodes the reply DSCP from the policy, and sends it
along with the request as part of the service context. Before the server sends the
reply, the POA checks the request service context and adds the reply DSCP on
the reply IP packets. To allow the container to add the request and reply DSCPs
to the IOR at deployment time, NetQoPE’s network configurator configures the
containers with the DSCP values for all the components hosted by the container.
Benefits of the approach. Using the NetQoPE D&C engine to provision net-
work QoS settings allows DRE application developers to focus on their business
logic, rather than wrestling with low-level mechanisms for provisioning network
QoS. Moreover, the NetQoPE container programming model provides an ef-
fective means to apply the correct policies when components communicate. For
example, NetQoPE’s D&C engine can automatically configure containers to pro-
vide semantically consistent priority model support (e.g., server declared or
client propagated) for components they hosts. This capability allows reuse
of components in multiple contexts, e.g., the middleware and MDE tools declar-
atively specify the priority rather than having clients imperatively program the
priority into application code.

Section 4.2.2 describes an experiment that evaluates how reusable software
components deployed in multiple contexts with different priority models can
provide different end-to-end network QoS to applications that invoke remote op-
erations. Section 4.2.1 describes an experiment that evaluates the overhead of
adding support for client propagated and server declared network pri-



ority models within the runtime middleware applications use for making remote
communications.

4 Empirical Validation of NetQoPE

This section empirically evaluates the network QoS provisioning capabilities pro-
vided by the NetQoPE model-driven frameworks described in Section 3.

4.1 Hardware/Software Testbed and Experiment Configurations
The empirical evaluation of NetQoPE was conducted at ISISlab (www.dre.
vanderbilt.edu/ISISlab), which consists of (1) 56 dual-CPU blades running
2.8 Gz XEONs with 1 GB memory, 40 GB disks, and 4 NICs per blade, and (2)
6 Cisco 3750G switches with 24 10/100/1000 MPS ports per switch. As shown in
Figure 6, our experiments were conducted on 16 of those dual CPU blades, with
8 of them hosting linux router software, and the rest hosting software controllers
(e.g., a fire sensor controller) developed using our NetQoPE middleware.

Fig. 6: Experimental Setup

Our evaluations used DiffServ QoS
and the associated Bandwidth Bro-
ker [7] software was hosted on blade
C. All blades ran Fedora Core 4 Linux
distribution configured using the real-
time scheduling class. The blades were
connected over a 1 Gbps LAN with
virtual 100 Mbps links. The NetQoPE
middleware frameworks were imple-
mented atop CIAO and DAnCE ver-
sion 0.5 and CoSMIC version 0.4.8.

We evaluated NetQoPE in a scenario where a number of sensory and imagery
software controllers send their monitored information to monitor controllers so
that appropriate control actions could be taken by enterprise supervisors mon-
itoring abnormal events. For example, as shown in Figure 6, several fire sensor
controller components are deployed in blades A and B. These components send
their monitored information to monitor controller components deployed in blades
D and F. The communications between these software controllers could use one
of the traffic classes defined in Section 3.2.1 with the following capacities on all
links: hp = 20 Mbps, hr = 30 Mbps, and mm = 30 Mbps for the experiments.
The be class used the remaining available bandwidth in the network.

To emulate the network traffic behavior of the software components created
using NetQoPE, we developed a “TestNetQoPE” performance test, which is dis-
tributed with CIAO. For a component A to communicate with component B,
this test creates a session with a configurable number of invocations and sleep
time. All experiments use high resolution timer probes to accurately measure
the roundtrip latency for each invocation made by the client.

4.2 Experimental Results and Analysis

Below we describe the experiments performed using the ISISlab configuration
described in Section 4.1 and analyze the results.



4.2.1 Evaluating the Overhead of NetQoPE for Normal Operations
Rationale. NetQoPE provides network QoS to applications by using the three
stage architecture shown in Figure 2. Since all the DRE applications require
network QoS, it is worthwhile to evaluate the overhead of NetQoPE when it is
used to design, deploy, and configure applications with no QoS requirements.
Methodology. The NetQoPE CQML, network resource allocator, and network
configurator described in Section 3 are used at design- and deployment-time,
and hence incur no additional run-time overhead. DRE application designers
can use CQML, which is part of the CoSMIC tool suite [9], to model the DRE
application structure and generate deployment descriptors used by the DAnCE
D&C engine to deploy and configure component-based applications. NetQoPE’s
network resource allocators and network configurator thus are invoked only if
network QoS attributes are modeled using CQML. As a result, NetQoPE incurs
no design-time and deployment-time overhead if network QoS is not needed.

NetQoPE enhances CIAO to support the client propagated and serv-
er declared network priority models. To measure runtime overhead, we ran
the experiment with the following variants: (1) a CIAO client calling a CIAO
server with no network QoS, (2) a CIAO client configured with the client propa-
gated network policy calling a CIAO server, and (3) a CIAO client calling a
CIAO server configured with the server declared network policy.

TestNetQoPE was configured to make 200,000 invocations that generated a
load of 6 Mbps, and average roundtrip latency was calculated. For all experiment
variants, there was no background network load. The client propagated and
server declared network priority models were configured with DSCP values
of 0, which indicates no QoS preferences were given for IP packets. The routers
were not configured to do DiffServ processing (provide routing behavior based
on the DSCP markings), and hence no edge router processing overhead was
incurred.

Fig. 7: Overhead of NetQoPE’s Pol-
icy Framework

Analysis of results. Figure 7 shows
the different average roundtrip laten-
cies experienced by clients in the three
different variants of the experiment,
which are all are similar. To honor the
client propagated and server de-
clared network policy models, the
NetQoPE middleware added the request
and reply DSCPs to the IP packets. As
shown by these results, these enhance-
ments are quite efficient and add little
overhead to DRE applications that do not
require any network QoS.

Network QoS was not needed in this experiment, and therefore network re-
sources were not allocated and a DSCP value of 0 was used. If a different variant
of the experiment is run with background network loads, and network QoS is re-
quired for some of the application flows, network resources will be allocated, and



appropriate DSCP values will be used in those application flows. However, the
middleware overhead will remain the same, as the same middleware infrastruc-
ture is used, but different DSCP values are added. Applications with network
resource reservations will perform with smaller latencies than the applications
without network resource reservations, and network QoS can be added with
no runtime middleware overhead. Moreover, the priority models provide con-
siderable flexibility in deploying reusable components in different deployment
contexts without modifying the software. The following Section 4.2.2 evaluates
these capabilities in detail.

4.2.2 Evaluating NetQoPE’s QoS Customization Capabilities
Rationale. NetQoPE provides network QoS capabilities to applications with-

out modifying the applications, thereby enhancing flexibility by allowing the
deployment of DRE applications in different contexts with different QoS re-
quirements. This experiment empirically validates the adequacy and efficacy of
network QoS classes, which is essential to support network QoS in diverse de-
ployment contexts, i.e., without changes in application code.
Methodology. We deployed multiple instances of the same pair of applications,
and show the following types of application-transparent QoS customizations:
(1) different network QoS classes, (2) same network QoS class, but different
bandwidth requirements, and (3) different priority access models. We identified
four different flows from Figure 6 as described below:
• Two instances of fire sensor controller components deployed in blades A and

B send fire alarm information to the monitor controller components deployed
in blades D and F. The fire sensor controller component on blade A monitors
fire in the parking lot, whereas fire sensor controller component on blade B
monitors the fire in server room. Even though the same set of application
components are deployed, the traffic between blades A and D has a higher
priority than traffic between blades B and F due to the importance of sensors
involved.

• A camera controller component deployed in blade E sends imagery informa-
tion to the monitor controller component in blade G, and requires multimedia
QoS. Finally, a temperature sensor controller component on blade A sends
temperature readings to the monitor controller component on blade F, and
does not require any QoS.

We used CQML to model the four different flows in the experiment and their
associated network QoS requirements. CQML then synthesized deployment de-
scriptors that capture the DRE system structure and their deployed blades.

In the first experiment, the flows between the fire sensor and monitor con-
troller components were configured to use the high priority (hp) and high reliabil-
ity (hr) traffic classes. The flow between the camera and monitor controllers was
configured to use the multimedia (mm) class, and the flow between the temper-
ature sensor and monitor controller components was configured to use the best
effort (be) class. For each type of QoS traffic, 20 Mbps of forward and reverse
bandwidth was requested, TCP transport protocol was used, and NetQoPE’s
network resource allocator determined the DSCP values to use.



Background Traffic in Mbps
Traffic Type

BE HP HR MM

BE (TS - MS) 85 to 100

HP (FS - MS) 30 to 40 28 to 33 28 to 33

HR (FS - MS) 30 to 40 12 to 20 14 to 15 30 to 31

MM (CS - MS) 30 to 40 12 to 20 14 to 15 30 to 31

Table 1: Application Background Traffic

To add DSCP values to
the IP packets, the cli-
ent propagated network
policy was used for all com-
ponent communication, ex-
cept for the temperature sen-
sor and monitor controller

component communication, which used the server declared network policy.
For each application flow, TestNetQoPE was configured to generate a load of
20 Mbps, and the average roundtrip latency over 200,000 iterations was calcu-
lated. To evaluate application performance in the presence of background net-
work loads, several other applications were run, as described in Table 1, where TS
stands for “temperature sensor controller,” MS stands for “monitor controller”,
FS stands for “fire sensor controller,” and CS stands for “camera controller.”

In the second experiment, all four flows were created with fire sensor and
monitor controller components and configured to use the hr class. For each
application flow, TestNetQoPE was configured to generate a load of 20 Mbps,
the average roundtrip latency over 200,000 iterations were calculated, and TCP
transport protocol was used. Four application flows were made with the follow-
ing forward and reverse bandwidth reservations in Mbps: 4, 8, 12, and 16. No
background load was generated and the client propagated network policy
was used.

Fig. 8: Average Latency under Different
Network QoS Classes

Fig. 9: Average Latency under Different
Reservations

Analysis of results. Figure 8 shows the results of experiments when the de-
ployed applications were configured with different network QoS classes. The
results show that the average latency experienced by the fire sensor controller
component using the hp network QoS class is lower than the average latency
experienced by the fire sensor controller component using the hr network QoS
class. Moreover, the latency increases while using the mm and be classes. This
result shows that the different network QoS classes supported are adequate to
provide varied network QoS performance to DRE applications deployed in dif-
ferent contexts.

Figure 9 shows the results of experiments when the deployed applications
were configured with different bandwidth reservations. The figure shows that



the latency increases as the reservation decreases. NetQoPE’s network resource
allocator used the traffic policing features provided by the Flow Provisioner [7]
to configure the network devices to allow no more flows than the reserved band-
width. 20 Mbps are sent and reservations use no more than 16 Mbps. When
packet loss is detected, the TCP protocol at the sending end halves the trans-
mission window size, thereby causing application to experience more network
delay than before (since the window size was halved) while making the invoca-
tions, i.e., lower the reserved bandwidth size, the higher the delay. These results
indicate that NetQoPE can efficiently integrate the DiffServ network QoS mech-
anisms to provide different levels of network QoS services to applications.

The Figure 8 results also indicate that the same set of application commu-
nications (fire sensor and monitor controller components) could get different
network QoS depending on their deployed contexts (e.g., hp communication
between A and D, and hr communication between blades B and F). These re-
sults demonstrate that the declarative capabilities of CQML allow modeling and
deploying the same applications (without any source modifications) with differ-
ent QoS requirements. CQML’s “write once, deploy multiple times for different
QoS” capabilities greatly increase deployment flexibility for environments like
the office enterprise where many reusable software components are deployed.

To provide this flexibility, CQML generated XML-based deployment descrip-
tors that captured context-specific QoS requirements of applications so that
context-specific network QoS can be provided. For the experiment, communica-
tion between fire sensor and monitor controllers was deployed in multiple de-
ployment contexts, i.e., hr and hp QoS requirements. In DRE systems like the
office enterprise case study, however, the same communication patterns between
components could occur in many deployment contexts.

For example, the same communication patterns could use any of the four
network QoS classes (hp, hr, mm, and be). The communication patterns that use
the same network QoS class (e.g., hp) could make different forward and reverse
bandwidth reservations (e.g., 4, 8, 10 Mbps). In such scenarios, as shown in
Table 2, CQML auto-generates∼1,300 lines of XML code, which would otherwise
be handcrafted by application developers.

Deployment contexts
Number of communications

2 5 10 20

1 23 50 95 185

5 47 110 215 425

10 77 185 365 725

20 137 335 665 1325

Table 2: Generated Lines of Code

As shown in the Figure 8
results, different average laten-
cies are experienced by the fire
sensor controller and the tem-
perature sensor controller com-
ponents when they communi-
cated with the monitor con-
troller component. The fire sen-

sor controller component used the client propagated network policy to
dictate the priority of the requests and replies to ensure lower average la-
tency and hence better network QoS. However, when the temperature sensor
controller component communicated with the monitor controller component,
the latter (server) dictated the priority of the requests and replies using the



server declared network priority policy. This result shows that the same
component (i.e., the monitor controller component) can be accessed using dif-
ferent priority models to dictate different network QoS in the system, thereby
enhancing flexibility.
4.2.3 Evaluating NetQoPE’s Resource Allocation Capabilities

Rationale. NetQoPE’s network resource allocator works in two phases (see
Section 3.2.2), where the first phase determines if sufficient network resources
are available for all network flows. This experiment empirically validates the ad-
mission control capabilities of NetQoPE that enables DRE application designers
to change deployment options to assure the required QoS.
Methodology. A fire sensor controller component deployed on blade A sends fire
alarm information to the monitor controller component on blade D. At design-
time, DRE application designers do not know how many pairs of the fire sensor
and monitor controller components can be used to share the network link be-
tween blades A and D. We therefore deployed the following number of pairs of
fire sensor and monitor controller components between A and D: 1, 2, 3, 4, 5,
10, and 20. The goal is to check if NetQoPE’s admission control capabilities can
help designers determine the right number of pairs of fire sensor and monitor
controller components between A and D, so that all the pairs of communications
can obtain the required network QoS.

The allocated link capacity for the hr class between blades A and D is 30
Mbps. We allocated 6 Mbps of forward and reverse bandwidth for each pair of fire
sensor and monitor controller component communication. NetQoPE’s admission
control capabilities were used to deploy up to 4 pairs of fire sensor and monitor
controller components. Admission control capabilities were not used when more
than 4 pairs of fire sensor and monitor controller components were deployed
since deploying 5 pairs will utilize 30 Mbps, which would saturate the link.

The background traffic was kept sufficiently high during this experiment so
that the hr communications between blades A and D do not use all the band-
width from other classes. NetQoPE’s network resource allocator provided the
DSCP values used for each communication. These allocated values were config-
ured as policies (the client propagated model was used and clients dictated
the DSCPs to be used in both the directions) by NetQoPE’s policy framework,
and the designated DSCP value was added to the IP packets by the CIAO mid-
dleware when application components communicated.
Analysis of results. Figure 10 and Figure 11 show the average roundtrip la-
tencies experienced by different pairs of fire sensor and monitor controller com-
ponents. When admission control is enabled for up to 4 pairs of components,
the total link bandwidth used is 24 Mbps (each fire sensor and monitor con-
troller component pair requested for 6Mbps bandwidth). Since the requested
bandwidth (24 Mbps) is less than the total available bandwidth (30 Mbps), all
4 pairs of communications obtained the required resources, and thus achieved
their required network QoS. Figure 10 shows that all 4 pairs of communicating
components obtained similar average latencies.



Fig. 10: Average Invocation Latencies with
Admission Control

Fig. 11: Average Invocation Latencies
without Admission Control

When the experiment was run without admission control, the bandwidth
requirements of the different pairs of fire sensor and monitor controller commu-
nications far exceeded the total bandwidth (30 Mbps). When 5 pairs of these
components were deployed, even though admission control was not used, the re-
quired bandwidth (30 Mbps) equaled the total available bandwidth (30 Mbps).
Hence in Figure 11 the average latency for 5 pairs of fire sensor and monitor con-
troller component communications is nearly equivalent to the average latency for
4 pairs of these communications shown in figure 10. When more than 5 pairs of
fire sensor and monitor controller components are deployed, the required band-
width exceeds the available bandwidth, causing the applications to compete for
the bandwidth. Hence the average latencies for these pairs increase as shown in
Figure 11, causing no pairs to meet their required network QoS.

These results demonstrate that NetQoPE’s network resource allocator not
only shields applications from interacting with network QoS mechanisms, but
also provides design-time suggestions on how many pairs of application com-
ponents can be deployed between two blades. As shown in the experiment, if
NetQoPE’s admission control capabilities were used throughout, not more than
4 pairs of fire sensor and monitor controller components would have been de-
ployed between blades A and D. For the other pairs, DRE system designers are
given the option to change the deployment (e.g., change blades), thereby assur-
ing network QoS. As shown in Figure 11, when more than 5 pairs of fire sensor
and monitor controller components were deployed without NetQoPE’s admission
control capabilities, no pairs obtained their required network QoS.

5 Related Work

This section compares our R&D activities on NetQoPE with related work on
middleware-based QoS implementation, management, and enforcement.

QoS management in middleware. Other research has focused on adding
various types of QoS capabilities to middleware. For example, [5] illustrates
mechanisms added to J2EE containers to allow application isolation by allowing
uniform and predictable access to the CPU resources, thereby providing CPU
availability assurances to applications. Likewise, 2K [15] provides QoS to appli-
cations from varied domains using a component-based runtime middleware. In
addition, [16] extends EJB containers to integrate QoS features by providing
negotiation interfaces which the application developers need to implement to



receive desired QoS support. NetQoPE differs from related work on QoS man-
agement in middleware by (1) using model-driven tools to specify and verify
network QoS capabilities at design time, (2) automating deployment and run-
time mechanisms to negotiate and adapt QoS, and (3) enforcing network QoS
at runtime in a manner transparent to the application.

Network QoS management in middleware. Earlier work [17, 18] on
integrating network QoS with middleware focused on priority and reservation-
based OS and network QoS management using IntServ with standards-based
middleware, such as Real-time CORBA, to provide end-to-end QoS for DRE
systems. This work, however, modified applications to dictate QoS behavior for
the various flows. NetQoPE enhances prior work on network QoS management
in middleware by transparently marking packet QoS and configuring network
elements for desired QoS in the middleware.

QoS-aware composition of applications. Research has produced QoS ar-
chitectures for multimedia and stream processing applications that require pre-
dictable QoS from endsystems and network elements. For example, Synergy [19]
describes a distributed stream processing middleware that provides QoS to data
streams in real time by efficient reuse of data streams and processing components.
Likewise, [20,21] focus on appropriate component placement in stream process-
ing applications to exploit efficient use of network resources and maximize query
performance. NetQoPE differs from related work on QoS-aware composition of
applications via its (1) model-driven tools that reserve QoS at a per-flow level
and (2) middleware-based runtime capabilities that integrate and deploy network
QoS settings automatically with application communication flows.

QoS-aware deployment of applications. NetQoPE is also related to
work on QoS-aware deployment of applications in heterogeneous and dynam-
ically changing distributed environments. For example, GARA [22] focuses on
identifying and reserving appropriate network resources to satisfy application
requirements. Likewise, Petstore [23] describes how the service usage patterns of
J2EE-based web applications can be analyzed to determine how to deploy them
in wide-area environments so that access time can be minimized. In addition, [24]
focuses on improving J2EE performance by collocating applications that commu-
nicate frequently. NetQoPE differs from related work on QoS-aware deployment
of applications by providing standard network QoS assurance, rather than trying
to collocate components or discern application service usage patterns.
6 Concluding Remarks
This paper describes the design and evaluation of NetQoPE, which is a set of
model-driven middleware frameworks that manage network QoS for component-
based DRE systems. The following is a summary of our lessons learned:

•NetQoPE’s domain-specific modeling languages help capture per-deployment
network QoS requirements of applications so that network resources can be allo-
cated appropriately. Application business logic consequently need not be modi-
fied to specify deployment-specific QoS requirements, thereby increasing software
reuse across a range of deployment contexts.

• Programming network QoS mechanisms directly in application code re-
quires that applications are deployed and running before they can determine if



the required network resources are available to meet QoS needs. Providing these
capabilities via NetQoPE’s model-driven middleware frameworks helps guide re-
source allocation strategies before application deployment, thereby simplifying
validation and adaptation decisions.

• NetQoPE’s deployment and configuration tools help transparently config-
ure the underlying middleware on behalf of applications to add context-specific
network QoS settings. These settings can be enforced by NetQoPE’s runtime
middleware mechanisms without modifying the middleware programming model
used by applications. Applications consequently need not change the way they
communicate at runtime since network QoS settings can be added transparently.

• NetQoPE’s strategy of allocating network resources to applications before
they are deployed may be too limiting for certain types of DRE systems. In
particular, applications in so-called “open” DRE systems might not consume
the allocated resources at runtime, which may underutilize system resources.
We are extending NetQoPE to deploy more applications even though resources
might not be available by providing runtime adaptations that change the service
levels of low-priority applications to make resources available for mission-critical
applications.

NetQoPE’s model-driven middleware platforms and tools are available in
open-source format from www.dre.vanderbilt.edu.

References
1. L. Zhang and S. Berson and S. Herzog and S. Jamin: Resource ReSerVation

Protocol (RSVP) Version 1 Functional Specification. Network Working Group
RFC 2205 (September 1997) 1–112

2. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An Architecture
for Differentiated Services. Internet Society, Network Working Group RFC 2475
(December 1998) 1–36

3. Mehra, A., Verma, D.C., Tewari, R.: Policy-based diffserv on internet servers: The
AIX approach (on the wire). IEEE Internet Computing 4(5) (2000) 75–80

4. El-Gendy, M.A., Bose, A., Park, S.T., Shin, K.G.: Paving the first mile for QoS-
dependent applications and appliances. In: Proceedings of the International Work-
shop on Quality of Service (IWQOS’2004), Montreal, Canada (June 2004)

5. Jordan, M., Czajkowski, G., Kouklinski, K., Skinner, G.: Extending a J2EE Server
with Dynamic and Flexible Resource Management. In: Proceedings of the Inter-
national Middleware Conference (Middleware 2004), Toronto, Canada. (2004)

6. Wang, N., Gill, C., Schmidt, D.C., Subramonian, V.: Configuring Real-time As-
pects in Component Middleware. In: Proc. of the International Symposium on Dis-
tributed Objects and Applications (DOA’04). Volume 3291., Agia Napa, Cyprus,
Springer-Verlag (October 2004) 1520–1537

7. Dasarathy, B., Gadgil, S., Vaidyanathan, R., Neidhardt, A., Coan, B.,
Parameswaran, K., McIntosh, A., Porter, F.: Adaptive network qos in layer-3/layer-
2 networks for mission-critical applications as a middleware service. Journal of Sys-
tems and Software: special issue on Dynamic Resource Management in Distributed
Real-time Systems (2006)

8. Gu, Z., Kodase, S., Wang, S., Shin, K.G.: A model-based approach to system-
level dependency and real-time analysis of embedded software. In: Proc. of IEEE
Real-time and Embedded Tech. and Applications Symp. (RTAS’03). (2003)



9. Balasubramanian, K., Balasubramanian, J., Parsons, J., Gokhale, A., Schmidt,
D.C.: A Platform-Independent Component Modeling Language for Distributed
Real-time and Embedded Systems. Elsevier Journal of Computer and System
Sciences (2006) 171–185

10. Object Management Group: Deployment and Configuration Adopted Submission.
OMG Document mars/03-05-08 edn. (July 2003)

11. Deng, G., Balasubramanian, J., Otte, W., Schmidt, D.C., Gokhale, A.: DAnCE:
A QoS-enabled Component Deployment and Configuration Engine. In: Proc. of
the 3rd Working Conf. on Component Deployment (CD 2005), Grenoble, France
(2005)

12. Ritter, T., Born, M., Unterschütz, T., Weis, T.: A QoS Metamodel and its Re-
alization in a CORBA Component Infrastructure. In: Proc. of the 36th Hawaii
International Conference on System Sciences (HICSS’03), Honolulu, HW (2003)

13. Akkerman, A., Totok, A., Karamcheti, V.: Infrastructure for Automatic Dynamic
Deployment of J2EE Applications in Distributed Environments. In: 3rd Interna-
tional Working Conference on Component Deployment (CD 2005). (2005)

14. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-Integrated Development
of Embedded Software. Proceedings of the IEEE 91(1) (January 2003) 145–164

15. Wichadakul, D., Nahrstedt, K., Gu, X., Xu, D.: 2K: An Integrated Approach of
QoS Compilation and Reconfigurable, Component-Based Run-Time Middleware
for the Unified QoS Management Framework. In: Proc. of the IFIP/ACM Inter-
national Conference on Distributed Systems Platforms (Middleware 2001). (2001)

16. de Miguel, M.A.: Integration of QoS Facilities into Component Container Archi-
tectures. In: Proceedings of the Fifth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC 2002). (2002)

17. R. Schantz and J. Loyall and D. Schmidt and C. Rodrigues and Y. Krishnamurthy
and I. Pyarali: Flexible and Adaptive QoS Control for Distributed Real-time and
Embedded Middleware. In: Proc. of the IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware 2003), Rio de Janeiro, Brazil (2003)

18. Florissi, P.G.S., Yemini, Y., Florissi, D.: Qosockets: a new extension to the sockets
api for end-to-end application qos management. Comput. Networks 35(1) (2001)
57–76

19. Repantis, T., Gu, X., Kalogeraki, V.: Synergy: Sharing-Aware Component Com-
position for Distributed Stream Processing Systems. In: Proc. of the IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware 2006)

20. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.:
Network-aware operator placement for stream-processing systems. In: Proc. of the
22nd International Conference on Data Engineering (ICDE’06). (2006)

21. Seshadri, S., Kumar, V., Cooper, B.F.: Optimizing multiple queries in distributed
data stream systems. In: Proc. of the 22nd International Conference on Data
Engineering Workshops (ICDEW’06). (2006)

22. Foster, I., Fidler, M., Roy, A., Sander, V., Winkler, L.: End-to-end Quality of
Service for High-end Applications. Computer Communications 27(14) (September
2004) 1375–1388

23. Llambiri, D., Totok, A., Karamcheti, V.: Efficiently Distributing Component-Based
Applications Across Wide-Area Environments. In: Proc. of the 23rd International
Conference on Distributed Computing Systems (ICDCS 2003). (2003)

24. Stewart, C., Shen, K.: Performance Modeling and System Management for Multi-
component Online Services. In: Proc. 2nd USENIX/ACM Symposium on Net-
worked Systems Design and Implementation (NSDI 2005), Boston, MA. (2005)


