
Component-based System Integration via (Meta)Model Composition

Blinded for Review Purposes

Abstract— This paper provides three contributions to the study
of functional integration of distributed enterprise systems. First,
we describe the challenges associated with functionally integrat-
ing the software of these systems. Second, we describe how
the composition of domain-specific modeling languages (DSMLs)
can simplify the functional integration of enterprise distributed
systems by enabling the combination of diverse middleware
technologies. Third, we demonstrate how composing DSMLs can
solve functional integration problems in an enterprise distributed
system case study by reverse engineering an existing CCM
system and exposing it as Web Service(s) to web clients who
use these services. This paper shows that functional integration
done using (meta)model composition provides significant benefits
with respect to automation, reusability, and scalability compared
to conventional integration processes and methods.

Index Terms— Integration Engineering, Model-Driven Engi-
neering, Component-based Systems, (Meta)Model Composition

I. INTRODUCTION

A. Challenges of Functional Integration

With the emergence of commercial-off-the-shelf (COTS)

component middleware technologies, such as Enterprise Java

Beans (EJB) [1], CORBA Component Model (CCM) [2],

and Microsoft .NET Framework [3], software developers are

increasingly faced with the task of integrating heterogeneous

enterprise distributed systems built using different COTS

technologies, rather than just integrating proprietary software

developed in-house. Although there are well-documented pat-

terns [4] and techniques [5] for system integration using vari-

ous component middleware technologies, system integration

is still largely a tedious and error-prone manual process.

To improve this process, component developers and system

integrators must therefore understand key properties of the

systems1 they are integrating, as well as the integration tech-

nologies they are applying.

This paper describes technologies that help simplify the

functional integration of systems built using component mid-

dleware. This type of integration operates at the logical

business layer, typically using distributed objects/components,

exposing existing functionality as services, or using messaging

middleware. Functional integration of systems is hard due to

the variety of available component middleware technologies.

These technologies differ in many ways, including the protocol

level, the data format level, the implementation language level,

and/or the deployment environment level. In general, however,

component middleware technologies are a more effective tech-

nology base than the brittle proprietary infrastructure used in

legacy systems, which have historically been built in a vertical,

stove-piped fashion.

1In the remainder of this paper, “system” refers to an enterprise distributed
system built using component middleware like EJB, Microsoft .NET, or CCM.

Despite the benefits of component middleware, key chal-

lenges in functional integration remain unresolved when in-

tegrating large-scale systems developed using heterogeneous

COTS middleware. These challenges include (1) integration

design, which involves choosing the right abstraction for

integration, (2) interface mapping, which reconciles different

datatypes, (3) technology mapping, which reconciles various

low-level issues, (4) deployment mapping, which involves

planning the deployment of heterogeneous COTS middleware,

and (5) portability incompatibilities between different imple-

mentations of the same middleware technology. The lack of

simplification and automation in resolving these challenges

significantly hinders effective system integration.

B. Solution Approach→Functional Integration using

(Meta)Model Composition

A promising approach to address the integration chal-

lenges outlined above is Model-Driven Engineering (MDE),

which involves the systematic use of models as essential

artifacts throughout the software lifecycle [6]. At the core of

MDE is the concept of domain-specific modeling languages

(DSMLs) [7], whose type systems formalize the applica-

tion structure, behavior, and requirements within particular

domains, such as software defined radios, avionics mission

computing, online financial services, warehouse management,

or even the domain of middleware platforms. DSMLs are

described using metamodels, which define the relationships

among concepts in a domain and precisely specify the key se-

mantics and constraints associated with these domain concepts.

Developers use DSMLs to build applications using elements

of the type system captured by metamodels and express design

intent declaratively rather than imperatively.

While DSMLs have been used to help software developers

create homogeneous systems [8], [9], enterprise distributed

systems are rarely homogeneous. A single DSML developed

for a particular component middleware technology, such as

EJB or CCM, may therefore not be applicable to model,

analyze, and synthesize key concepts of Web Services. To in-

tegrate heterogeneous systems successfully, therefore, system

integrators need tools that can provide them with a unified

view of the entire enterprise system, while also allowing them

fine-grained control over specific subsystems and components.

Our approach to integrating heterogeneous systems is

(meta)model composition2 [10], which (1) creates a new

DSML from multiple existing DSMLs by adding new elements

or extending elements of existing DSMLs, (2) specifies new

relationships between existing elements, and (3) defines rela-

tionships between new and existing elements. A key benefit of

(meta)model composition is its ability to add new capabilities

while simultaneously leveraging prior investments in existing

2The term “(meta)model” conveys the fact that this composition technique
can be applied to both metamodels and models.

2

tool-chains, including domain constraints and generators of

existing DSMLs. A combination of DSMLs and DSML com-

position technologies can therefore help address the challenges

outlined in Section I-A that are associated with functional

integration of component middleware technologies, without

incurring the drawbacks of conventional approaches.

This paper describes System Integration Modeling Lan-

guage (SIML), which is our open-source DSML that en-

ables functional integration of component-based systems

via (meta)model composition. We developed SIML using

the Generic Modeling Environment (GME) [11], which is

an open-source meta-programmable modeling environment.

SIML is a composite DSML that combines two existing

DSMLs: (1) the CCM profile of the Platform-Independent

Component Modeling Language (PICML),which supports

model-driven engineering of CCM systems, and (2) the Web

Services Modeling Language (WSML), which supports model-

driven engineering of Web Services systems. Since SIML is

a composite DSML, it has complete access to the semantics

of PICML and WSML (sub-DSMLs), which simplifies and

automates various tasks associated with integrating systems

built using CCM and Web Services.

The remainder of this paper is organized as follows: Sec-

tion II describes an enterprise distributed system case study

built using component middleware that we used to evaluate

functional integration technologies; Section III describes the

DSML composition framework provided by GME to simplify

the integration of heterogeneous systems; Section IV describes

SIML, which uses GME’s DSML composition framework to

integrate heterogeneous enterprise distributed systems; Sec-

tion V evaluates various approaches to system integration; and

Section VI presents concluding remarks.

II. FUNCTIONAL INTEGRATION CASE STUDY

To motivate the need for model-driven functional integration

capabilities, this section describes an enterprise distributed

system case study from the domain of shipboard computing

environments [12], focusing on its functional integration chal-

lenges. A shipboard computing environment is a metropolitan

area network of computational resources and sensors that

provides on-demand situational awareness and actuation ca-

pabilities for human operators, and responds flexibly to unan-

ticipated runtime conditions. To meet such demands in a robust

and timely manner, the shipboard computing environment uses

services to

• Bridge the gap between shipboard applications and the

underlying operating systems and middleware infrastruc-

ture and

• Support multiple QoS requirements, such as survivabil-

ity, predictability, security, and efficient resource utiliza-

tion.

The shipboard computing environment that forms the basis for

our case study was originally developed using one component

middleware technology (OMG CCM) and was later enhanced

to integrate with components written using another middleware

technology (Web Services).

Gateway

Component

Gateway

Component

Naming

Service

Naming

Service

Logging

Component

Logging

Component

Coordinator

Component

Coordinator

Component

Database
Component
Database

Component
Identity

Manager

Identity

Manager

Business

Logic

Business

Logic

Client A

Client B

component Logging_Service

{

provides Logger handle;

consumes LogEvent log_event;

};

component Logging_Service

{

provides Logger handle;

consumes LogEvent log_event;

};

WS-Log

Analyzer

Log Analyzer

Logging Web Service

SOAP

Server

CCM

Client

TypeSpecific

IIOP SOAP

Fig. 1. Enterprise Distributed System Architecture

A. Architecture of the Case Study

The system in this case study consists of the following

components, which are shown in Figure 1:

• Gateway component, which provides the user interface

and main point of entry into the system for operators,

• Naming Service components, which are repositories

that hold locations of services available within the system,

• Identity Manager components, which are responsible

for user authentication and authorization,

• Business logic components, which are responsible for

implementing the business logic,

• Database components, which are responsible for

database transactions,

• Coordinator components, which act as proxies for

“business logic” components and interact with clients,

• Logging components, which are responsible for col-

lecting log messages sent by other components,

• Log Analyzer components, which analyze logs col-

lected by Logging components and display results.

Clients that use the component services outlined above first

connect to a Naming Service to obtain the Gateway’s location.

They then request services offered by the system, passing

their authentication/authorization credentials to a Gateway

component, which initiates the series of interactions shown in

Figure 1. Depending on the credentials supplied by clients the

system provides differentiated services. Areas where services

can be differentiated between various clients include the maxi-

mum number of simultaneous connections, maximum amount

of bandwidth allocated, and maximum number of requests

processed in a particular time period.

To track the performance of the system—and the quality

of service (QoS) the system offers to different clients—

developers originally wrote Log Analyzer components to

obtain information by analyzing the logs. Based on changes in

the COTS technology base and user demand, the decision was

3

made to expose a Web Service API to Logging components

so that clients could also track the QoS provided by the

system to their requests by accessing information available in

Logging components. Since the original system was written

using CCM there was a new requirement to integrate systems

that were not designed to work together, i.e., CCM-based

Logging components with the Web Service clients.

The flow of control, and the number and functionality of

the different participants, in this case study is representative

of shipboard systems that require authentication and autho-

rization from clients, and provide differentiated services to

clients, based on the credentials offered by the client. Below,

we examine this system from an integration perspective, i.e.,

how can this system—which was not designed for integration

with other middleware—be integrated with other middleware.3

B. Functional Integration Challenges

Functional integration of systems is hard and involves

activities that map between various levels of abstraction in the

integration lifecycle, including design, implementation, and

use of tools. We now describe key challenges associated with

integrating older component middleware technologies, such

as CCM and EJB, with newer technologies, such as Web

Services, and relate them to our experiences developing the

shipboard computing case study described in Section II-A.

 System Integration

CORBA

Component

Model

Subsystem

Web Services

Subsystem

CCM Deployment

descriptors

Web Service

Deployment

descriptors

Java Web

Service Client

C# Web

Service Client

TypeSpecific

IIOP SOAP
SOAP

Server

CCM

Client
CCM Component

Fig. 2. Functional Integration Challenges

Challenge 1. Choosing an appropriate level of integration.

As shown in Step 1 of Figure 2, a key activity is to identify

the right level of abstraction at which functional integration

should occur, which involves selecting elements from different

technologies being integrated that can serve as conduits for

exchanging information. Attempting integration at the wrong

level of abstraction can yield brittle integration architectures

that break when changes occur to either the source or target

system being integrated.

In our case study example, we need to integrate Logging

components such that Web Service clients can access their ser-

vices. The programming model of CCM prescribes component

3Note that this paper is not studying the system from the perspective of
application functionality or the QoS provided by Business Logic components.

ports as the primary component interconnection mechanism.

Web Services also defines ports as the primary interconnection

mechanism between a Web Service and its clients. During

functional integration of CCM with Web Services, therefore,

a mapping between CCM component ports and Web Services

ports offers an appropriate level of abstraction for integration.

In general, it is hard for system integrators to decide the

right level of abstraction, and requires expertise in all of the

technologies being integrated.

Challenge 2. Reconciling differences in interface specifi-

cations. After the level of abstraction to perform functional

integration is determined, it is necessary to map the interfaces

exposed by elements of the different technologies as shown in

Step 2 of Figure 2. Common COTS middleware technologies

usually have an interface definition mechanism that is separate

from the implementation details, e.g. CCM uses the OMG

Interface Definition Language (IDL), whereas Web Services

use W3C Web Services Definition Language (WSDL). Irre-

spective of the mechanism used to define interfaces, mapping

of interfaces between any two technologies involves at least

three tasks: (1) datatype mapping, which involves mapping a

datatype (both pre-defined and complex types) from source to

target technology, (2) exception mapping, which involves map-

ping exceptions from source to target technology; exceptions

are not clubbed together with datatypes since the source or

target technologies might not have a notion of exceptions (e.g.

Microsoft’s COM uses a HRESULT to convey errors instead of

using exceptions), and (3) language mapping, which involves

mapping datatypes between two technologies while accounting

for differences in languages at the same time.4

In our case study example, Logging components handle

CORBA datatypes, whereas Web Service clients exchange

XML datatypes. Performing these mappings is non-trivial,

requires expertise in both the source and target technologies,

and exposes severe scalability problems due to their tedium

and error-proneness if they are not automated.

Challenge 3. Managing differences in implementation tech-

nologies. The interface mapping described above addresses the

high-level details of how information is exchanged between

different technologies being integrated. As shown in Step 3

of Figure 2, however, low-level technology details such as

networking, authentication and authorization et al. are respon-

sible to actually delivering such integration. This involves a

technology mapping and includes the following activities: (1)

protocol mapping, which reconciles the differences between

the protocols used for communication between the two tech-

nologies, (2) discovery mapping, which allows bootstrapping

and discovery of components/services between source and

target technologies, and (3) QoS mapping, which maps QoS

mechanisms between source and target technologies to ensure

that service-level agreements (SLAs) are maintained.

In our case study example, Logging components only un-

derstand IIOP, which is completely different from the SOAP

protocol understood by Web Service clients. While the Log-

ging component is exposed to clients as a CORBA Object

4Functional integration is very limited when attempting the latter mapping,
which is often done via inter-process communication.

4

Reference registered with a Naming Service, a Web Service

client typically expects a Uniform Resource Identifier (URI)

registered with a Universal Description Discovery and Integra-

tion (UDDI) service, to indicate where it can obtain a service.

Mapping of protocol, discovery, and QoS technology details

requires not only expertise in the source/target technologies,

but also intimate knowledge of the implementation details of

these technologies.

Challenge 4. Managing deployment of subsystems. Compo-

nent middleware technologies use declarative notations (such

as XML descriptors, source-code attributes, and annotations)

to capture various configuration options. Example metadata

include EJB deployment descriptors, .NET assembly mani-

fests, and CCM deployment descriptors. As shown in Step 4 of

Figure 2, system integrators must track and configure metadata

correctly during integration and deployment. In many cases,

the correct functionality of the integrated system depends on

correct configuration of the metadata.

In our case study example, Logging components are (1)

associated with CCM descriptors needed to configure their

functionality, (2) deployed using the CCM deployment in-

frastructure, and (3) run on a dedicated network testbed.

If Web Service clients need to access functionality exposed

by Logging components, however, certain services (such as

a Web Server to host the service and a firewall) must be

configured. This coupling between the deployment information

of Logging components and the services exposed to Web

Service clients means that changes to Logging component

necessitates corresponding changes to Logging Web Service.

Failure to keep these elements in sync usually results in loss

of service to clients of one or both technologies.

Challenge 5. Dealing with interoperability issues. Unless

a middleware technology has only one version implemented

by one provider, there may be multiple implementations from

different providers. As shown in Step 5 of Figure 2, differences

between these implementations will likely arise due to non-

conformant extension to standards, different interpretations

of the same (often vague) specification, or implementation

bugs. Regardless of the reasons for incompatibility, however,

problems arise that often manifest themselves only during

system integration. Examples of such differences are high-

lighted by the presence of efforts like the Web Services-

Interoperability Basic Profile (WS-I) [13], which is a standard

aimed at ensuring compatibility between the Web Services

implementations from different vendors.

In our case study example, not only do Logging components

need to expose their services in WSDL format, they must

also ensure that Web Service clients developed using different

Web Services implementations (e.g., Microsoft .NET vs. Java)

are equally able to access their services. Logging components

therefore need to expose their services using an interoperable

subset of WSDL defined by WS-I, so clients are not affected

by incompatibilities, such as using SOAP RPC encoding.

Due to the challenges described above, significant inte-

gration effort is spent on configuration activities, such as

modifying deployment descriptors, and interoperability activ-

ities, such as handcrafting protocol adapters to link different

systems together, which does not scale up as the number of

components in the system increases or the number of adap-

tations required increases. Problems discovered at integration

stage often require changes to the implementation, and thus

necessitate interactions between developers and integrators.

These interactions are often inconvenient, and even infeasible

(especially when using COTS products), and can significantly

complicate integration efforts. The remainder of this paper

shows how our GME-based (meta)model composition frame-

work and associated tools help address these challenges.

III. DSML COMPOSITION USING GME

This section describes the (meta)model composition frame-

work in the Generic Modeling Environment (GME) [11].

GME is a meta-programmable modeling environment with a

general-purpose editing engine, separate view-controller GUI,

and a configurable persistence engine. Since GME is meta-

programmable, it can be used to design DSMLs, as well as

build models that conform to a DSML.

DSMLs are defined by metamodels, hence, DSML composi-

tion is defined by (meta)model composition. The specification

of how metamodels should be composed, i.e., what concepts

in the metamodels that are composed relate to each other and

how, can be specified via normal association relationships and

additional composition operators, as described in GME [10].

A key property of a composite DSML is that it supports the

open-closed principle [14], which states that a class should

be open for extension but closed with respect to its public

interface. In GME, elements of the sub-DSMLs are closed,i.e.,

their semantics cannot be altered in the composite DSML. The

composite DSML itself, however, is open, i.e., it allows the

definition of new interactions and the creation of new derived

elements. All tools that are built for each sub-DSML work

without any modifications in the composite DSML and all

the models built in the sub-DSMLs are also usable in the

composite DSML.

Composite DSML

(AB)

Component

DSML (B)
Component

DSML (A)

B::Foo

A::Foo

A::Foo

Fig. 3. Domain-Specific Modeling Language Composition in GME

We use the following GME (meta)model composition fea-

tures to support the SIML-based integration of systems built

using different middleware technologies, as described in Sec-

tion IV:

5

• Representation of independent concepts. To enable

complete reuse of models and tools of the sub-DSMLs, the

composition must be done in such a way that all concepts

defined in the sub-DSMLs are preserved. As shown in Step 1

of Figure 3, no elements from either sub-DSMLs should be

merged together in the composite DSML. GME’s composition

operators [10] can be used to create new elements in the

composite DSML, but the sub-DSMLs as a whole must remain

untouched. As a consequence, any model in a sub-DSML can

be imported into the composite language, and vice versa. All

models in the composite language that are using concepts

from the sub-DSMLs can thus be imported back into the sub-

DSML. Existing tools for sub-DSMLs can be reused as well

in the composite environment. This technique of composing

DSMLs is referred to as metamodel interfacing [15] since

we create new elements and relationships that provide the

interface between the sub-DSMLs.

• Supporting (meta)model evolution. DSML composi-

tion enables reuse of previously defined (sub-)DSMLs. Just

like code reuse in software development, (meta)model reuse

can also benefit from the concept of libraries. If an ex-

isting (meta)model is simply copied into new composite

(meta)models, any changes or upgrades to the original will

not propagate to the places where they are used. As shown in

Step 2 of Figure 3, if the original (meta)model is imported

as a library, GME provides seamless support to update it

when new versions become available (libraries are supported in

any DSML with GME, not just the metamodeling language)

Libraries are read-only projects imported to a host project.

Components in the host project can create references to

and derivations of library components. The library import

process creates a copy of the reused project, so subsequent

modifications to the original project are not updated auto-

matically. To update a library inside a host project, a user-

initiated refresh operation is required. To achieve unambiguous

synchronization, elements inside a project have unique ids,

which facilitates correct restoration of all relationships that

are established among host project components and the library

elements.

• Partitioning (meta)model namespaces. When two or

more (meta)models are composed, name clashes may occur.

To alleviate this problem, (meta)model libraries (and hence

the corresponding components DSMLs) can have their own

namespaces specified by (meta)modelers, as shown in Step

3 of Figure 3. External software components, such as code

generators or model analysis tools that were developed for

the composite DSML, must use the fully qualified names. But

tools that were developed for component DSMLs will still

work because GME sets the context correctly before invoking

such a component.

• Handling constraints. The syntactic definitions of a

metamodel in GME can be augmented by static semantics

specifications in the form of Object Constraint Language

(OCL) constraint expressions. When metamodels are com-

posed together, the predefined OCL expressions coming from

a sub-DSML should not be altered. Therefore GME’s Con-

straint Manager uses namespace specifications to avoid any

possible ambiguities, and these expressions are evaluated by

the Constraint Manager with the correct types and priorities

as defined by the sub-DSML as shown in Step 4 of Figure 3.

The composite DSML can also define new OCL expressions

to specify the static semantics that augment the specifications

originating in the metamodels of the sub-DSMLs.

IV. INTEGRATING SYSTEMS WITH SIML

This section describes how we created and applied the

System Integration Modeling Language (SIML), which is our

open-source composite DSML that simplifies functional inte-

gration of component-based systems built using heterogeneous

middleware technologies.

A. The Design and Functionality of SIML

Applying GME’s (meta)model composition features to

SIML. To support integration of systems built using different

middleware technologies, SIML uses the GME (meta)model

composition features described in Section III and shown in

Figure 4. SIML is thus a composite DSML that allows

CCM

DSML

Web Services
DSML

CCM Models

Web Service

Models

System

Integration
DSML

Model

Composition

CCM Deployment

descriptors

Web Service

Deployment

descriptors

CCM Deployment

descriptors

Web Service

Deployment

descriptors

Integration

Glue code

Imported Entity

Exported Entity

Fig. 4. Design of System Integration Modeling Language

integration of systems by composing multiple DSMLs, each

representing a different middleware technology. Each sub-

DSML is responsible for managing the metadata (creation, as

well as generation) of the middleware technology it represents.

The composite DSML defines the semantics of the integration,

which might include reconciling differences between the di-

verse technologies, as well as representing characteristics of

various implementations. System integrators therefore have a

single environment that allows the creation and specification

of elements in each sub-DSML, as well as interconnecting

them as if they were elements of a single domain.

Applying SIML to compose CCM and Web Services. Our

initial use of SIML was to help integrate CCM with Web

6

Services in the context of the shipboard computing case study

described in Section II. The two sub-DSMLs we needed

to integrate to support the new requirements described in

Section II were:

• The Platform-Independent Component Modeling

Language (PICML), which enables developers of CCM-

based systems to define application interfaces, QoS pa-

rameters, and system software building rules, as well as

generate valid XML descriptor files that enable automated

system deployment.

• The Web Services Modeling Language (WSML),

which enables development of Web Services, and sup-

ports key activities in Web Service development, such as

creating a model of a Web Services from existing WSDL

files, specifying details of a Web Service including defin-

ing new bindings, and auto-generating artifacts required

for Web Service deployment.

The case study described in Section II provided the moti-

vation to integrate them together using GME’s (meta)model

composition framework.

Since SIML is a composite DSML, all valid elements and

interactions from both PICML and WSML are valid in SIML.

It is therefore possible to design both CCM components (and

assemblies of components), as well as Web Services (and fed-

erations of Web Services) using SIML, just as if either PICML

or WSML were used independently. The whole is greater

than the sum of its parts, however, because SIML defines

new interactions that allow connecting a CCM component (or

assembly) with a Web Service and automates generation of

necessary gateways, which are capabilities that exist in neither

PICML nor WSML.

B. Resolving Functional Integration Challenges using SIML

We now show how we applied SIML to resolve the func-

tional integration challenges discussed in Section II-B in the

context of our case study example described in Section II.

Although we focus on the initial version of SIML that supports

integration of CCM and Web Services, its design is sufficiently

general that it can be applied to integrate many other middle-

ware technologies without undue effort. Figure 5 shows how

SIML resolves the following challenges to generate a gateway

given an existing CCM application:

Resolving challenge 1. Choosing an appropriate level of

integration. To allow interactions between CCM components

and Web Services, SIML defines interactions between ports

of CCM components and ports exposed by the Web Services.

SIML thus extends the list of valid interactions of both CCM

components and Web Services, which is an example of a

composite DSML defining interactions that does not exist in

its sub-DSMLs. SIML can also partition a large system into

hierarchies via the concept of “modules,” which can be either

CCM components (and assemblies of CCM components) or

Web Services.

In our case study example, we use SIML to define in-

terconnections between the CCM and Web Service logging

capabilities by connecting the ports of the CCM Logging

Component to the ports of the Logging Web Service. These

connections automate a number of activities that arise during

System Integration Modeling Language (SIML)

CORBA

Component

Model DSML

Web Services

DSML

CCM Deployment

descriptors

Web Service

Deployment

descriptors

CORBA Component

Application

IDL 2 WSDL

Generator

IDL 2 PICML

Generator

WSDL Importer

Web Service

Client

Web Service

Client

TypeSpecific

IIOP SOAP
SOAP

Server

CCM

Client
CCM Component

Invokes

Imports

Generates

Converts

Fig. 5. Generating a Web Service Gateway Using SIML

integration including generation of resource adapters, such as

the gateways shown in step 7 of Figure 5 and described in item

3 below. SIML therefore provides a ready-made framework for

system integrators to define the points of interaction in their

system, and avoids having to deal with low-level mechanics

of the integration design.

SIML’s architecture can be enhanced to support integration

of many middleware technologies, by extending the list of

interactions defined by SIML to integrate new technologies.

For example, SIML could be extended to support interactions

between CCM and EJB, or even between Web Services and

EJB. The only requirement is to have a DSML that describes

the elements and interactions of EJB.

Resolving challenge 2. Reconciling differences in interface

specifications. To map interfaces between CCM and Web

Services, SIML provides a tool called IDL2WSDL, which

automatically converts any valid CORBA IDL file to a cor-

responding WSDL file. As part of this conversion process,

IDL2WSDL performs both datatype mapping, which maps

CORBA datatypes to WSDL datatypes, and exception map-

ping, which maps both CORBA exceptions to WSDL faults.

System integrators are therefore relieved from the intricacies of

the mapping. As shown in Figure 5, both IDL and WSDL can

also be imported into the DSML environment corresponding

to CCM (PICML) and Web Services (WSML), allowing

integrators to define interactions between CCM components

and Web Services. SIML also supports language mapping

between ISO/ANSI C++ and Microsoft C++/CLI, which is

the .NET framework extension to C++.

In our example scenario, IDL2WSDL can automatically

generate the WSDL files of the Logging Web Service from the

7

IDL files of the Logging Component. The generated WSDL

file can then be imported into SIML, and annotated with

information used during deployment. SIML can also generate

a WSDL file back from the model, so that WSDL stubs and

skeletons can be generated. SIML therefore automates much of

the tedious and error-prone details of the interface mapping,

thereby allowing system integrators to focus largely on the

business logic of the application being integrated.

Resolving challenge 3. Managing differences in implemen-

tation technologies. While the rules defined in SIML allow

definition of interaction at the modeling level, this feature is

not very useful if these definitions cannot be translated into

runtime entities that actually perform the interactions. SIML

therefore generates resource adapters, which automatically

convert SOAP requests into IIOP requests, and vice-versa. A

resource adapter in SIML is implemented as a gateway.

SIML allows system integrators to define connections be-

tween ports of a CCM component and a Web Service, as

shown in Figure 5. These connections are then used by a

model interpreter, which automatically determines the oper-

ation/method signatures of operations/methods of the ports

on either end of a connection, and uses this information

to automatically generate a gateway. The generated gateway

contains all the “glue code” necessary to perform datatype

mapping, exception mapping, and language mapping between

CCM and Web Services.

The gateway generator is configurable and can currently

generate Web Service gateways for two different implementa-

tion of Web Services: GSOAP [16] and Microsoft ASP.NET.

The generated gateway also performs the necessary proto-

col mapping (i.e., between IIOP and SOAP) and discovery

mapping (i.e. automatically connecting to a Naming Service

to obtain object references to CCM components). Our initial

implementation does not yet support QoS mapping, which is

the focus of future work, as described in Section VI.

In our case study example, SIML can automatically generate

the Logging Web Service gateway conforming to GSOAP

and/or Microsoft ASP.NET, by running the SIML model

interpreter. Auto-generation of gateways eliminates the tedious

and error-prone programming effort that would have other-

wise been required to integrate CCM components with Web

Services.

Resolving challenge 4. Managing deployment of subsys-

tems. After the necessary integration gateways have been

generated, system integrators also need to deploy and con-

figure the application and the middleware using a variety

of metadata in the form of XML descriptors. Since SIML

is built using (meta)model composition it can automatically

use the tools developed for the sub-DSMLs (i.e., PICML to

handle deployment of CCM applications and WSML to handle

deployment of Web Services) directly from within SIML.

In our example scenario, SIML can thus be used to auto-

matically generate the necessary deployment descriptors for all

CCM components, as well as the Logging Web Service. SIML

therefore relieves the system integrator from understanding

low-level details of the formats of the different descriptors

as well as the number of such descriptors required to deploy

a CCM component or a Web Service.

By encapsulating the required resource adapters inside a

a Web Service or CCM component, SIML allows reuse of

deployment techniques available for any given middleware

system. System integrators therefore do not need to deploy

resource adapters separately. While this approach works for

in-process resource adapters (such as those generated by

SIML), out-of-process resource adapters need support from

a deployment descriptor generator. Since SIML is a DSML

itself, this support could be added to SIML so it can generate

deployment support for out-of-process resource adapters.

Resolving challenge 5. Dealing with interoperability issues.

Since knowledge of the underlying middleware technologies is

built into SIML, it can automatically compensate for incompat-

ibilities during design time. For example, IDL2WSDL allows

generation of WSDL that supports SOAP RPC encoding or an

interoperable subset defined in the WS-I Basic Profile. System

integrators therefore are better prepared to handle incompat-

ibilities that only show up during integration testing. SIML

can also define constraints on WSDL definition as prescribed

by the WS-I Basic Profile, so that violations can also be

checked at modeling time. Similarly, gateway generation can

add workarounds for quirks of particular implementations au-

tomatically, thereby relieving system integrators from finding

these problems during final integration testing.

In our case study example, SIML can generate a Logging

Web Service gateway that either supports a WS-I subset or

uses SOAP RPC encoding. The DSML composition-based

approach to integrating systems therefore relieves system

integrators from developing more code during integration. The

automation of gateway generation also scales the integration

activity since developers need not write system specific in-

tegration code. In addition, SIML allows evolution of the

integrated system by incrementally adding more components,

or targeting different middleware implementations as future

needs dictate.

C. Evaluating SIML

To evaluate the benefits of SIML, we first define a tax-

onomy for evaluating technologies that assist the functional

integration of CCM and Web Services. We then use this

taxonomy to compare SIML with tools that are supplied by

vendors for either technology, referred to in Table I as Native

tools. Examples of native tools include the Microsoft Visual

Studio and the IBM Eclipse suite, which developers using

middleware technologies like .NET and EJB are likely to use.

This table depicts the different mapping activities described

in Section IV-B that are typical in functional integration of

middleware systems. For each activity the table describes the

level of support in SIML and whether the activity is automated.

It also describes the level of automation measured as the

number of distinct steps performed by a system integrator.

Table I further decomposes the level of automation into

three broad categories: (1) design, which denotes that system

integrators need to perform a design activity that might include

domain analysis, requirement analysis, etc., (2) implementa-

tion, which denotes that system integrators need to implement

some functionality usually by writing code, and (3) tool use,

8

TABLE I

Evaluating Functional Integration using SIML

Level of Automation (# of distinct steps)
Using SIML Using Native Tools

Integration Activity Supported? Automated? Design Implementation Tool Use Design Implementation Tool Use

Integration Design Yes No 0 0 1 1 1 0

Interface Mapping

DataType Mapping Yes Yes 0 0 1 1 1 0

Exception Mapping Yes Yes 0 0 1 1 1 0

Language Mapping Yes Yes 0 0 1 1 1 0

Technology Mapping

Protocol Mapping Yes Yes 0 0 1 1 1 0

Discovery Mapping Yes Yes 0 0 1 1 1 0

QoS Mapping No No 1 1 0 1 1 0

Deployment Mapping

Descriptor Generation Yes Yes 0 0 1 0 0 1

Gateway Placement No No 1 1 0 1 1 0

Interoperability Mapping Yes Yes 0 0 1 0 1 0

which denotes that a tool needs to be used by the system inte-

grators to perform that activity. This categorization assigns a

weight commensurate to the skills of the individual responsible

for carrying out the task in a particular organization.

Our taxonomy also assumes that design and implementation

are orders of magnitude more difficult/time-consuming than

tool use. In Table I, therefore, multiple activities of the same

category are considered equal (and the table only uses 1

or 0), since the magnitude difference will likely dwarf any

small number of steps of any particular category. To estimate

the amount of effort required, we sum up each of the three

columns (i.e., design, implementation, and tool) and then

multiply the result by the weight assigned to each category. For

example, a reasonable assignment of weight for these activities

might be 10, 5 and 1, for each of design, implementation

and tool use. With this assignment, we can see that using

SIML requires 2 × 10 + 2 × 5 + 8 × 1 = 38 distinct steps to

achieve functional integration. In comparison, using just the

native tools would result in 8 × 10 + 9 × 5 + 1 × 1 = 126

distinct steps to achieve the same. It should be noted that the

number of steps will get reduced drastically as (and when)

native tools add support for integration activities.

The numbers in Table I are for each unique unit of work

per unique pair of source and target technologies, i.e., for

a single datatype mapping, a single exception mapping, a

single protocol mapping. To calculate the total cost of integra-

tion, we must take into account both the number of distinct

types/exceptions/languages, and the number of unique pairs of

technologies being integrated.

Table I shows that SIML helps reduce the effort by reducing

the design and/or implementation activities associated with

integration to ordinary tool usage activities. For example,

SIML effectively reduces the design and implementation effort

required to perform the datatype, exception and language

mapping, to a single step of tool use. This table also shows

that similar gains can be achieved for complex tasks, such as

protocol mapping (conversion between IIOP and SOAP in this

case) and discovery mapping (conversion between CORBA

Object References and Web Service URIs). Finally, the table

reveals current gaps in our toolchain, i.e., SIML does not

perform QoS mapping or help with placement of resource

adapters (or gateways), which remains as future work.

V. RELATED WORK

This section surveys the technologies that provide the con-

text of our work on system integration in the domain of large-

scale distributed enterprise systems. We classify techniques

and tools in the integration space according to the role played

by the technique/tool in system integration.

Integration evaluation tools enable system integrators to

specify the systems/technologies being integrated and evaluate

the integration strategy and tools used to achieve integration.

For example, IBM’s WebSphere [17] supports modeling of

integration activities and runs simulations of the data that is

exchanged between the different participants to help predict

the effects of the integration. System execution modeling [18]

tools help developers conduct “what if” experiments to dis-

cover, measure, and rectify performance problems early in

the lifecycle (e.g., in the architecture and design phases),

as opposed to the integration phase. While these tools help

identify potential integration problems and evaluate the overall

integration strategy, they do not replace the actual task of

integration itself since these tools use simulation-/emulation-

based abstractions of the actual systems. SIML’s role is com-

plementary to these tools: once the integration evaluation has

been done using these tools, SIML can be used to design the

integration, as well as generating the various artifacts required

for integration.

Integration design tools. OMG’s UML profile for Enterprise

Application Integration (EAI) [19] defines a Meta Object

Facility (MOF) [20] based metamodel for collaboration mod-

eling, as well as activity modeling. MOF provides facilities for

modeling the integration architecture focusing on connectivity,

composition and behavior. The EAI UML profile also defines

a MOF-based standardized data format to be used by the

different systems to exchange data during integration, which

is achieved by defining an EAI application metamodel that

handles interfaces and metamodels for programming languages

such as C, C++, PL/I and COBOL, to aid the automation of

transformation. While standardizing on MOF is a step in the

right direction, the lack of widespread support for MOF by

various tools, and the differences between versions of XML

9

Metadata Interchange (XMI) support in tools lead to problems

in practice. The primary difference between SIML and these

tools is that SIML not only allows such integration design,

but also automates the generation of key integration artifacts,

such as gateways.

Integration patterns [21] provides guidance to system inte-

grators in the form of best patterns and practices with examples

of using a particular vendor’s products. [4] catalogs common

integration patterns with an emphasis on system integration

via Message-Oriented Middleware (MOM) using different

commercial products. These efforts do not directly provide

tools for integration, but instead provide critical guidance to

using existing tools to achieve integration. We are enhancing

SIML to support modeling integration patterns and using them

to enhance the generative capabilities of SIML to enable

widely-accepted solutions to common integration problems.

Resource adapters are used during integration to transform

data and services exposed by service producers to a form

that is amenable to service consumers. Examples include

data transformation (mapping from one schema to another),

protocol transformation (mapping from one network protocol

to another), or adaptation of interfaces (which includes both

data and protocol transformation). While existing standards

(such as the Java Messaging Specification [22] and J2EE

Connector Architecture Specification [23]) and tools (such as

IBM’s MQSeries [24]) provide the architectural framework for

performing the required adaptations, these tools approach the

integration from a middleware and programming perspective,

i.e., system integrators are still required to handcraft the “glue”

code that invokes the resource adapter frameworks to connect

system components together. In contrast, SIML uses syntactic

information present in the DSMLs to automatically perform

the required mapping/adaptation by generating the necessary

“glue” code, and relies on user input only for tool use.

Integration frameworks. Composition in the context of the

semantic web and the Web Ontology Language (OWL) [25]

has focused on composition of services from unambiguous,

formal descriptions of capabilities as exposed by services on

the web. Research on service composition has focused on

automation and dynamism [26], optimizing the composition

such that it is QoS-aware [27], as well as integration on large-

scale “system-of-systems” like the GRID [28]. Since these au-

tomated composition techniques rely on unambiguous, formal

representations of capabilities, system integrators need to make

their legacy systems available as Web Services or provide

alternate formal mappings of capabilities of the system to be

integrated, which may not always be feasible. Our approach to

(meta)model composition, however, is not restricted to a single

domain, though the semantics are bound at design time. While

both approaches rely on metadata, SIML’s use of metadata

focuses on the generative capabilities possible rather than on

the semantic knowledge extracted from metadata.

Integration quality analysis. As the integration process

evolves, it is necessary to validate whether the results are sat-

isfactory from functional and QoS perspectives. Research on

QoS issues associated with integration has yielded languages

and infrastructure for evaluating Service-Level Agreements

(SLAs). Examples include the Web Service Level Agree-

ment language (WSLA) [29] framework, which defines an

architecture to define service-level agreements using an XML

Schema, and provides associated infrastructure to monitor

the conformance of the running system to the desired SLA.

Other efforts have focused on defining processes for distributed

continuous quality assurance [30] of integrated systems to

identify the impact on performance during system evolution.

Information from these analysis tools should be incorporated

into future integration activities. While these tools can be

used to provide input to design-time integration activities,

they themselves do not support automated feedback loops.

We are adding support for modeling SLAs in SIML to allow

evaluation of SLAs before/after integration.

VI. CONCLUDING REMARKS

The development of enterprise distributed systems increas-

ingly involves more integration of existing COTS software

and less in-house development from scratch. With the increase

in capabilities of COTS component middleware technologies,

the complexity of integration of systems built upon such

frameworks is also increasing. This paper shows how a

model-driven approach to functional integration of component

middleware technologies enhances conventional approaches to

system integration, which are tedious, error-prone, and non-

scalable for enterprise distributed systems. We then show how

DSMLs and (meta)model composition can help to address

these limitations.

To demonstrate the viability of our approach, we developed

the System Integration Modeling Language (SIML), which

is a DSML composed from two other DSMLs, the CCM

profile of Platform-Independent Component Modeling Lan-

guage (PICML) and the Web Services Modeling Language

(WSML). Finally, we evaluated the benefits of our approach

by generating a gateway from the model, which automates key

steps needed to functionally integrate CCM components with

Web Services.

The following is a summary of lessons learned thus far

from our work applying (meta)model composition to integrate

heterogeneous middleware technologies:

• Integration tools are becoming as essential as design

tools. SIML is designed to bridge the gap between existing

component technologies (in which the majority of software

systems are built) and integration middleware (which facilitate

the integration of such systems). SIML elevates the activity of

integration to the same level as system design by providing

tools which allow integration design of systems built using

heterogeneous middleware technologies. Since SIML is a

DSML, it can potentially be used as the infrastructure to define

constraints on the actual integration process itself, thereby

allowing evaluation of service-level agreements prior to the

actual integration itself.

• Automating key portions of the integration process

is critical to building large-scale distributed systems.

Compared with conventional approaches, our model-driven

approach to system integration automates key aspects of

system integration, including gateway “glue code” generation,

metadata management, and design-time support for expressing

unique domain and/or implementation assumptions. It supports

10

seamless migration of existing investment in models and

allows incremental integration of new systems. Moreover, our

model-driven approach is general-purpose and can be applied

to tool-chains other than GME, as well as help integrate

systems other than CCM or Web Services.

• QoS integration is a complex problem, and requires

additional R&D advances. Though SIML helped map func-

tional aspects of a system from a source technology to a target

technology, our work is not complete until the non-functional

QoS-related aspects of a system also map seamlessly. For

example, technologies like the Real-time CORBA Component

Model (RT-CCM) [31] support many QoS-related features

(such as thread pools, lanes, priority banded connections, and

standard static/dynamic scheduling services) that allow system

developers to configure the middleware to build systems with

desired QoS features. When systems based on RT-CCM are

integrated with other technologies, it is critical to automatically

map the QoS-related features used by an application in the

source technology to the set of QoS features available in the

target technology. For example, a number of specifications

have been released for Web Services that target QoS features,

such as reliable messaging, security, and notification. The

focus of our future efforts in integration involves extending

SIML to automatically map QoS features from one technology

to another using DSMLs, such that the integration is automated

in all aspects – both functional and non-functional.

REFERENCES

[1] Sun Microsystems, “Enterprise JavaBeans Specification.”
java.sun.com/products/ejb/docs.html, Aug. 2001.

[2] Object Management Group, CORBA Components, OMG Document
formal/2002-06-65 ed., June 2002.

[3] Microsoft Corporation, “Microsoft .NET Development.”
msdn.microsoft.com/net/, 2002.

[4] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,

Building, and Deploying Messaging Solutions. Addison-Wesley
Professional, October 2003.

[5] C. Britton and P. Bye, IT Architectures and Middleware: Strategies for

Building Large, Integrated Systems. Addison-Wesley Professional,
May 2004.

[6] D. C. Schmidt, “Model-Driven Engineering,” IEEE Computer, vol. 39,
no. 2, pp. 41–47, 2006.

[7] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-integrated
development of embedded software,” Proceedings of the IEEE,
vol. 91, pp. 145–164, Jan. 2003.

[8] G. Karsai, S. Neema, B. Abbott, and D. Sharp, “A Modeling
Language and Its Supporting Tools for Avionics Systems,” in
Proceedings of 21st Digital Avionics Systems Conf., Aug. 2002.

[9] J. A. Stankovic, H. Wang, M. Humphrey, R. Zhu, R. Poornalingam,
and C. Lu, “VEST: Virginia Embedded Systems Toolkit,” in
Proceedings of the IEEE Real-time Embedded Systems Workshop,
(London, UK), IEEE, Dec. 2001.

[10] Ákos Lédeczi, G. Nordstrom, G. Karsai, P. Volgyesi, and M. Maroti,
“On Metamodel Composition,” in Proceedings of the 2001 IEEE

International Conference on Control Applications (CCA), (Mexico
City, Mexico), pp. 756–760, IEEE, 2001.

[11] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom,
J. Sprinkle, and G. Karsai, “Composing Domain-Specific Design
Environments,” IEEE Computer, pp. 44–51, November 2001.

[12] Anonymous, “Citation removed to assist blind review,”

[13] K. Ballinger, D. Ehnebuske, C. Ferris, M. Gudgin, C. K. Liu,
M. Nottingham, and P. Yendluri, “WS-I Basic Profile.”
www.ws-i.org/Profiles/BasicProfile-1.1.html, April
2006.

[14] B. Meyer, “Applying Design By Contract,” Computer (IEEE), vol. 25,
pp. 40–51, Oct. 1992.

[15] M. Emerson and J. Sztipanovits, “Techniques for metamodel
composition,” in The 6th OOPSLA Workshop on Domain-Specific

Modeling, OOPSLA 2006, (Portland, OR), ACM, Oct 2006.
[16] R. van Engelen and K. Gallivan, “The gSOAP Toolkit for Web

Services and Peer-to-Peer Computing Networks,” in CCGRID,
pp. 128–135, IEEE Computer Society, 2002.

[17] IBM, “WebSphere.”
www.ibm.com/software/info1/websphere/index.jsp.

[18] C. Smith and L. Williams, Performance Solutions: A Practical Guide

to Creating Responsive, Scalable. Addison-Wesley Professional, Sept.
2001.

[19] Object Management Group, UML Profile for Enterprise Application

Integration (EAI), omg document formal/04-03-26 ed., March 2004.
[20] Object Management Group, MetaObject Facility (MOF) 2.0 Core

Specification, OMG Document ptc/03-10-04 ed., Oct. 2003.
[21] D. TrowBridge, U. Roxburgh, G. Hohpe, D. Manolescu, and E. G.

Nadhan, “Integration Patterns.”
msdn.microsoft.com/library/default.asp?url=

/library/en-us/dnpag/html/intpatt.asp, June 2004.
[22] SUN, “Java Messaging Service Specification.”

java.sun.com/products/jms/, 2002.
[23] S. Microsystems, “J2EE Connector Architecture Specification.”

java.sun.com/j2ee/connector/, November 2003.
[24] IBM, “MQSeries Family.”

www-4.ibm.com/software/ts/mqseries/, 1999.
[25] W. W. W. Consortium, “Web Ontology Language.”

www.w3.org/2004/OWL/, Feb 2004.
[26] S. R. Ponnekanti and A. Fox, “SWORD: A Developer Toolkit for Web

Service Composition,” Jan. 01 2002.
[27] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and

H. Chang, “QoS-Aware Middleware for Web Services Composition,”
IEEE Trans. Softw. Eng., vol. 30, no. 5, pp. 311–327, 2004.

[28] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, “Grid Services for
Distributed System Integration,” Computer, vol. 35, no. 6, pp. 37–46,
2002.

[29] H. Ludwig, A. Keller, A. Dan, R. P. King, and R. Franck, “Web
Service Level Agreement Language Specification.”
researchweb.watson.ibm.com/wsla/documents.html,
January 2003.

[30] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. C. Schmidt, and
B. Natarajan, “Skoll: Distributed Continuous Quality Assurance,” in
Proceedings of the 26th IEEE/ACM International Conference on

Software Engineering, (Edinburgh, Scotland), IEEE/ACM, May 2004.
[31] N. Wang and C. Gill, “Improving Real-time System Configuration via

a QoS-aware CORBA Component Model,” in Hawaii International

Conference on System Sciences, Software Technology Track,

Distributed Object and Component-based Software Systems Minitrack,

HICSS 2004, (Kona, HW), HICSS, Jan. 2004.

