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Abstract. Middleware is increasingly used as the infrastructure for applications
with stringent quality of service (QoS) requirements, including scalability. One
way to improve the scalability of distributed applications is to use adaptive mid-
dleware to balance system processing load dynamically among multiple servers.
Adaptive middleware load balancing can help improve overall system perfor-
mance by ensuring that client application requests are distributed and processed
equitably across groups of servers.
This paper presents the following contributions to research on adaptive middle-
ware load balancing techniques: (1) it describes deficiencies with common load-
balancing techniques, such as introducing unnecessary overhead or not adapting
dynamically to changing load conditions, and (2) it describes the capabilities and
design of Cygnus, which is an adaptive load balancing service. The findings in
this paper show that adaptive middleware load balancing is a viable solution for
improving the scalability of distributed applications.

1 Introduction

As the demands of resource-intensive distributed applications have grown, the need for
improved overall scalability has also grown. For example, client requests may arrive
dynamically–not deterministically–in many distributed applications, such as automated
stock trading, e-commerce transactions, and total ship computing environments. More-
over, the amount of load incurred by each request may not be known in advance.

These conditions require that a distributed application be able to redistribute re-
quests dynamically. Otherwise, one or more backend servers may potentially become
overloaded, whereas others will be underutilized. In other words, the system mustadapt
to changing load conditions. In theory, applying adaptability in conjunction with multi-
ple backend servers can

– Allow the system to scale up gracefully to handle more clients and processing work-
load in larger configurations.



– Reduce the initial investment when the number of clients is small and
– Increase the reliability of the overall system,e.g., by redirecting requests to repli-

cated servers when failures occur.

Achieving this degree of scalability requires a sophisticated load balancing service. Ide-
ally, this service should be transparent to existing distributed application components.
Moreover, if incoming requests arrive dynamically, a load balancing service may not
benefit froma priori QoS specifications, scheduling, or admission control and must
therefore adapt dynamically to changes in run-time conditions.
Evaluating candidate solutions.Load balancing can be performed at the network, op-
erating system, middleware, or application layers, as shown in Figure 1. Network-level
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Fig. 1. Load Balancing Layers

load balancing is often provided by routers and domain name servers [1]. OS-level load
balancing is generally provided by clustering software [2]. Application-level load bal-
ancing is performed by the application itself [3]. A layer may take advantage of load
balancing in layers below it when balancing loads at its level. For instance, application-
level load balancing may employ load balancing facilities supplied by the OS.

While load balancing can be performed in the layers outlined above, these layers
have the following disadvantages that can make them unsuitable for use in distributed
applications that require dynamic adjustment to runtime load conditions:

1. The inability to take into account client request content
2. Lack of transparency and
3. High maintenance lifecycle costs.

from the first disadvantage,i.e., they cannot take into account client request content be-
cause that information is necessarily application-specific. Application-based load bal-
ancing suffers from the last two disadvantages,i.e., transparency is lost since the ap-
plication itself must be modified to support load balancing, which can complicate code
development and maintenance.



Given these deficiencies, a cost-effective way to address the application demands
listed above is to employ load balancing services based on distributionmiddleware[4],
such as CORBA [5] or Java RMI [6]. These load balancing services distribute client
workload equitably among various backend servers to obtain improved response times
and scalability.

Earlier generations of middleware load balancing services largely supported simple,
centralized distributed application configurations. For example, stateless distributed ap-
plications that require load balancing often integrate their load balancing service with
a naming service [7, 8]. In this approach, a naming service returns a reference to a dif-
ferent object each time it is accessed by a client. Implementing a load balancing service
via a naming service can be (1)overly static, e.g., if the naming service does not con-
sider dynamic load conditions when returning an object reference to its clients and/or
(2) inefficient, e.g., due to the extra (and ultimately unnecessary) levels of indirection
and round-trip latencies.

In contrast,adaptivemiddleware load balancing services that consider dynamic load
conditions when making decisions can yield the following benefits:

– An adaptive load balancing service can support a larger range of distributed systems
since it need not be designed for a specific application,i.e., it is more flexible.

– From the load balancing service implementation perspective, since a single load
balancing service can be used for many types of applications, the effort needed to
develop a load balancing service for a specific application is reduced. This generally
allows for simpler and better load balancing service implementations.

– It is possible to concentrate on the load balancing service in general, rather than a
particular aspect geared solely to one application, which can improve the quality of
optimizations used in the load balancing service.

Unfortunately, first-generation adaptive middleware load balancing services [9, 10],
including our own earlier work [11, 12] on the topic, do not provide solutions for key
dimensions of the problem space. In particular, they provided insufficient functionality
to satisfy advanced distributed application requirements, such as the ability to tolerate
faults, install new load balancing algorithms at run-time, and create group members
on-demand to handle bursty clients. The lack of support for this advanced functionality
in first-generation adaptive middleware load balancers has impeded distributed system
scalability. Moreover, the lack ofstandardizedinterfaces and policies have precluded
reuse of interoperable off-the-shelf adaptive middleware load balancing services. This
paper therefore explores a previously unexamined dimension in the middleware space:
the design and performance of a scalable adaptive load balancing service based on the
OMG CORBA standard.

Our work in this paper is presented in the context of one of the OMGLoad Balanc-
ing and Monitoring(LB/M) service specification proposals [13] and our Cygnus imple-
mentation of this service that guided the proposal effort. Though CORBA has standard-
ized solutions for many distributed system challenges, such as predictability, security,
transactions, and fault tolerance, it does not yet specify how to tackle load balancing
capabilities required by distributed systems architects and developers. Cygnus is avail-
able withThe ACE ORB(TAO) [14] version 5.3, which implements the CORBA 3.0
specification [5]. The software, documentation, examples, and benchmarking tests for



TAO and Cygnus are open-source and can be downloaded fromdeuce.doc.wustl.
edu/Download.html .
Paper organization.The remaining sections of this paper are organized as follows: Sec-
tion 2 describes the proposed CORBA Load Balancing and Monitoring (LB/M) service
specification and the architecture of Cygnus, which is our LB/M service implementa-
tion; and Section 4 presents concluding remarks.

2 Cygnus: An Adaptive Middleware Load Balancing and
Monitoring Service

This section motivates and describes the key components and capabilities of Cygnus,
which is the open-source middleware framework integrated with TAO that guided the
design of our proposed OMG CORBA Load Balancing and Monitoring (LB/M) ser-
vice specification [13]. Sidebar 1 defines and illustrates the load balancing concepts
and components3 used throughout this paper and the OMG LB/M proposal. TAO and
Cygnus implement all the components shown in the figure in Sidebar 1.

TAO facilitates location-transparent communication between (1) clients and instances
of the Cygnus load balancer, (2) Cygnus and the objects to be load balanced (object
group members), and (3) clients and the object group members. Cygnus also keeps
track of which members belong to each object group.

2.1 Overview of the Cygnus Load Balancing Model

In contrast to load balancing models that are process-oriented (where loads are bal-
anced between processes) or object-oriented (where loads are balanced between ob-
jects), the load balancing model employed by Cygnus islocation-oriented. For non-
adaptive Cygnus load balancing strategies, the member to receive the next client request
is based on thelocationwhere a specific member of an object group resides. The adap-
tive Cygnus load balancing case differs in that member selection is performed based on
the loads at a givenlocation. In both cases, neither process nor object characteristics
are necessarily used when making load balancing decisions.

Although hosts are often associated with locations, the location-oriented model used
in Cygnus makes no assumptions about the application’s interpretation of what a “loca-
tion” is. For example, an application could decide to associate a process with a location
instead of a host. The load balancing model would still be location-oriented in this case,
however, since the load balancer would not be aware that the location was actually a
process.

2.2 Resolving Load Balancing Challenges with Cygnus

Figure 2 illustrates the relationships among the components in the Cygnus. As shown
in this figure, the Cygnus adaptive LB/M middleware service consists of the (1)load

3 In this paper, the termcomponentis used generically,i.e., an identifiable entity in a program,
rather than more specifically,e.g., a component in the CORBA Component Model [15].



Sidebar 1: Key Load Balancing Concepts

The key load balancing concepts and components used in this paper are defined
below:

– Load balancer, which is a component that attempts to ensure application load
is balanced across groups of servers. It is sometimes referred to as a “load
balancing agent,” or a “load balancing service.” A load balancer may consist
of a single centralized server or multiple decentralized servers that collectively
form a single logical load balancer.

– Member, which is a duplicate instance of a particular object on a server that is
managed by a load balancer. It performs the same tasks as the original object.
A member can either retain state (i.e., be stateful) or retain no state at all (i.e.,
be stateless).

– Object group, which is actually a group of members across which loads are
balanced. Members in such groups implement the same remote operations.

– Session, which in the context of distribution middleware defines the period of
time that a client is connected to a given server for the purpose of invoking
remote operations on objects in that server.

The following figure illustrates the relationships between these components:
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manager, which is the application entry point for all load balancing tasks, (2)mem-
ber locator, which is the load balancing component responsible for binding a client to
a member, (3)load analyzer, which analyses load conditions and triggers load shed-
ding when necessary, (4)load monitor, which makes load reports available to the load
manager, and (5)load alert, which is a component through which load shedding is
performed.

Although the preceding discussion and Figure 2 outline the elements of the Cygnus,
they do not motivate what these elements do or more importantlywhy they are impor-
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Fig. 2.Components in the Cygnus LB/M Service

tant. The remainder of this section therefore justifies the need for these elements by
explaining the key challenges they address, which include:

1. Extensible load analysis and shedding
2. Flexible load reporting and
3. Facilitating transparent and scalable load shedding.

For each challenge, we describe (1) how a particular component of Cygnus resolves
problems that arise when balancing workloads in a middleware context and (2) how
load balancing and monitoring is implemented in Cygnus. Our primary focus is on the
use of adaptivity to enhance scalability.4 As discussed below, the Cygnus load manager
enables clients and servers to participate in load balancing decisions without unduly
exposing them to tasks that can and should remain internal to the load balancing service.
The member locator allows a load balancer totransparentlyinform a client that it should
issue requests to a chosen object group member.

Other LB/M implementations, such as the one found in Orbix 2000 [8], employ con-
cepts similar to the ones described below. Those implementations are less flexible than
the approach employed by Cygnus, however, and do not separate concerns as cleanly.

Challenge 1: Extensible Load Analysis and Shedding.

4 Portability and transparency issues addressed by the load manager and member locator com-
ponents are beyond the scope of this paper.



Context.The same load balancing service is used to balance loads for multiple (poten-
tially different) distributed applications.

Problem. Load balancing multiple distributed applications with different resource re-
quirements can be done in at least two ways:

– Create a different load balancing service instance for each type of distribute ap-
plication. This solution, however, is hard to maintain. For example, when a new
distributed application is deployed, a new load balancing service must be started
and configured, which is logistically complex and costly.

– Use a single shared load balancing service instance to manage loads for multiple
applications with different resource requirements. This solution requires that the
load balancing service be extensible enough to allow run-time configuration of the
load analysis and shedding mechanism on a per-object group basis, which is one of
the requirements set forth in [12].

Solution! Load analyzer.Define a load analyzer component that decides which mem-
ber will receive the next client request. The load analyzer also allows a load balancing
strategy to be selected explicitly at run-time, while still maintaining a simple and flex-
ible design. Since the load balancing strategy can be chosen at run-time, member se-
lection can be tailored to fit the dynamics of a system that is being load balanced. An
additional task the load analyzer performs is to initiate load shedding at locations where
deemed necessary. This task only occurs when using an adaptive load balancing strat-
egy.

Implementing the load analyzer in Cygnus.Cygnus implements the load analyzer com-
ponent as a logical entity,i.e., an actual load analyzer component does not exist, though
Cygnus functions as if one did exist. In particular, the tasks performed by the load an-
alyzer are handled by objects that implement load balancing algorithms and are regis-
tered with Cygnus. Cygnus uses an implementation of the Strategy [16] design pattern
to achieve this functionality. Load balancing strategies are registered with Cygnus as
CORBA object references, meaning that load balancing strategy implementations may
actually reside at remote locations.

Load balancing strategies can invoke adaptive load balancing methods on the Cygnus
load balancer to perform load shedding operations. To maximize scalability and through-
put, CORBA asynchronous method invocations (AMI) [17] are used to minimize the
amount of time other operations are blocked waiting for the adaptive load balancing
operations to complete.

Challenge 2: Flexible Load Reporting.

Context.A distributed application must be adaptively load balanced.

Problem. Adaptive load balancing requires feedback on application load conditions.
Suppose the number of client requests per second is used as load metric. Request counts
are typically tallied by the load balancer in a per-request architecture (see [11]), a very



common load balancing architecture. However, such an architecture may not be suit-
able for other load metrics. Furthermore, per-request load balancing architectures incur
a great deal of overhead in distributed applications. Now suppose, an on-demand ar-
chitecture is used to reduce network and application overhead. Request counts can no
longer be tallied by the load balancer. Furthermore, making the load balancer acquire re-
quest counts, or more generally load samples, unnecessarily restricts the types of loads
that can be handled by the load balancer. These deficiencies can adversely affect the
applicability of the adaptive load balancing support provided by a load balancer to a
distributed application.

Solution! Load monitor. Define a load monitor component that tracks the load at a
given location and reports the location load to a load balancer. As depicted in Figure 3,
a load monitor can be configured with either of the following two policies:

LoadManager LoadMonitor
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push_loads

Push
Monitoring

Pull
Monitoring

Fig. 3. Load Reporting Policies

– Pull policy – In this mode, a load balancer can query a given location load on-
demand,i.e., “pull” loads from the load monitor.

– Push policy– In this mode, a load monitor can “push” load reports to the load
balancer.

The sole task of a load monitor component is to collect and report loads to the
load balancing service. This separation of concerns greatly simplifies potential load
balancing service designs and implementations, with the added benefits of improving
flexibility of load reporting and reducing load sampling and reporting overhead.

Implementing the load monitor in Cygnus.Load monitors are generally application-
defined objects. Consequently, Cygnus is designed to be load-metric neutral. For con-
venience, Cygnus is shipped with aLoadMonitor utility that simplifies registration
of custom load monitors with its load manager. This utility also supplies a convenient
means to use built-in load monitors that monitor common types of load, such as CPU
load, disk load, network load, memory load, and application workload.

Challenge 3: Facilitate Transparent and Scalable Load Shedding.

Context.A load balancer decides that it must shed load at given a location.



Problem. Adaptive load balancing requires the ability to shed load at a given location.
It also requires a server to redirect client requests sent to its location back to the load
balancer for reassignment to another location. To achieve this level of control, the load
balancer must communicate with the application server(s) at a given location. However,
communication with the application server(s) violates server-side transparency [12].

Solution! Load alert. Define a component that facilitates load shedding and dele-
gate all load shedding communication to this component, rather than the application
server(s). This load alert component responds toalert conditions set by the load an-
alyzer component described in Challenge 1. If the load analyzer requires reduction
in load (i.e., it must shed load) from an object group member location, it enables an
“alert” condition on the load alert component residing at that same location. After the
alert is enabled, the load alert component rejects client requests. Requests are rejected
by a server request interceptor that throws aCORBA::TRANSIENTexception. When a
client ORB receives that exception, it will transparently reissue the request to the origi-
nal target,i.e., the load balancer. The load balancer will then transparently reassign the
client’s request to another member in the object group.

Implementing load alerts in Cygnus.Applications may register load alert objects with
Cygnus. Cygnus maps load alert objects to object group members using an efficient
hash map. This design minimizes load alert object lookup, which enhances the overall
scalability of Cygnus itself.

Cygnus invokes the application-defined load alert objects to enable or disable load
shedding on a given object group member. It uses AMI to improve overall throughput
in Cygnus, as outlined in Challenge 1. The use of AMI reduces the overhead of Cygnus
by minimizing blocking time.

A load alert object consists of (1) a servant that the load balancer can invoke re-
quests on and (2) a server request interceptor that performs the actual load shedding
by intercepting client requests and determining whether or not they should be rejected.
The amount of overhead incurred by the interception of client requests depends largely
on the efficiency of TAO’s Portable Interceptor5 implementation. For example, when an
alert is not enabled an interception can be reduced to an instantiation of a small object
and a simple atomic boolean flag check.

2.3 Dynamic Interactions in the Proposed OMG Load Balancing and
Monitoring Service

Section 2.2 describes the static relationships among the components in Cygnus. This
section augments this discussion by describing the dynamic interactions among these
components. Although the following discussion is not comprehensive, the scenario fo-
cuses on the case where the location an object group member resides at has become

5 A Portable Interceptor is an instance of the Interceptor design pattern [18], with an interface
defined by the OMG, designed to be registered with an application’s ORB and invoked at
various request processing points with the intention of either examining the contents of the
request or preventing the request from continuing.



overloaded, causing requests to be redirected. This scenario was chosen since it illus-
trates all interactions that occur between a client, adaptive load balancing service, and
a group of objects or servers comprising an object group.6

Selecting a target member using a non-adaptive balancing policy can yield non-
uniform loads across group members. In contrast, selecting a member adaptively for
each request can incur excessive overhead and latency. To avoid either extreme, Cygnus
therefore provides a hybrid solution [11], whose interactions are shown in Figure 4.
Each interaction in Figure 4 is outlined below.

Client Load
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3: next_member

4: LOCATION_FORWARD

5: send_request

6: push_loads

7: is_overloaded
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Fig. 4. Cygnus Load Balancing and Monitoring Interactions

1. A client obtains an object reference to what it believes to be a CORBA object
and invokes an operation. In actuality, however, the client transparently invokes the
request on the load manager itself.

2. After the request is received from the client, the load manager’s POA dispatches
the request to its servant locator,i.e., the member locator component.

3. Next, the member locator queries the load analyzer for an appropriate group mem-
ber.

4. The member locator then transparently redirects the client to the chosen member.
5. Requests will continue to be sentdirectly to the chosen member until the load ana-

lyzer detects a high load at the location the member resides. The additional indirec-
tion and overhead incurred by per-request load balancing architectures (see [11]) is
eliminated since the client communicates with the member directly.

6. The load monitor monitors a location’s load. Depending on the load reporting pol-
icy (seeload monitordescription in Section 2.2) that is configured, the load monitor
will either report the load(s) to the load analyzer (via the load manager) or the load
manager will query the load monitor for the load(s) at a given location.

6 Since the non-adaptive case is a subset of the adaptive case, we omit such scenarios, such as
the interactions that occur between a client, anon-adaptive load balancing service, and group
of objects or servers.



7. As loads are collected by the load manager, the load analyzer analyzes the load at
all known locations.

8. To fulfill the transparency requirements, the load manager does not communicate
with the client application when forwarding it to another member after it has been
bound to a member. Instead, the load manager issues an “alert” to theLoadAlert
object residing at the location the member resides at. Depending on the contents
of the alert issued by the load manager, theLoadAlert object will either cause
request be accepted or redirected.

9. When instructed by the load analyzer, theLoadAlert object uses the GIOPLO-
CATION FORWARD message to dynamically and transparently redirect subsequent
requests sent by one or more clients back to the load manager.

After all these steps, the load balancing cycle begins again. Note that this hybrid ap-
proach doesnotperform load balancing on a per-request basis. It performs load balanc-
ing on-demand, thus avoiding a major bottleneck found in many other load balancing
implementations.

3 The Design of Cygnus: the TAO CORBA Load Balancing
Service

This section describes the design of the Cygnus adaptive load balancing service that is
distributed with The ACE ORB (TAO) [14] (which is a CORBA-compliant ORB that
supports applications with stringent QoS requirements). TAO’s Cygnus load balanc-
ing service makes it easier to develop distributed applications in heterogeneous envi-
ronments by providing application transparency, high flexibility, scalability, run-time
adaptability, and interoperability. The Cygnus load balancing service drove the model,
architecture, and content of the proposed CORBA LB/M specification.

3.1 Design Challenges and Solutions

The following design challenges were identified during the development ofCygnus:

1. Enhancing load control
2. Supporting modular load balancing strategies
3. Complete server transparency and
4. Maximizing throughput and minimizing network and resource overhead.

The solutions that were applied to address each of these challenges are discussed be-
low. These solutions manifest themselves within the load balancing service components
described in Section 2.2.

.

Challenge 1: Enhancing Load Control

Context. A load balancing service performs load control decisions and actions based
on load feedback.



Problem. A load balancer must react to various load conditions to ensure that loads
across members are balanced. For example, when high load conditions occur, a mem-
ber must be instructed to forward the client request back to the load balancer so that
subsequent requests can be reassigned to a less loaded member. However, this should
be done in a manner that transparent to both clients and servers.

Solution! the Mediator pattern.A load alert component responds to load balancing
requests sent by the load balancer. Depending on the type of request the load balancer
sends to the load alert component, the member will either be forced to continue accept-
ing client requests or redirect the client back to the load balancer. The load balancer
never interacts with the member directly – all interaction occurs via the load alert com-
ponent, as shown in Figure 5. Similarly, the member never interacts with the load bal-
ancer directly. TheLoadAlert componentmediatesall load control interactions with
the load balancer.

Location/NodeLoadManager

LoadAnalyzer

Member

LoadAlert

Client

Interceptor

Fig. 5. TheLoadAlert Mediator

Applying the solution in Cygnus.When enabling adaptive load balancing in a partic-
ular distributed application, a load monitor (in the “pull” monitoring case) and a load
component are registered with the load balancer. As shown in Figure 6, the load bal-

LoadManager

LoadMonitor1: pull_loads

LoadAlert

2: enable_alert

Fig. 6.Feedback and Control When Balancing Loads



ancer queries the load monitor for the load at the location the current member resides
at, assuming that pull-based load monitoring is being used (see Section 2.2). In other
words, the load balancer receivesfeedbackfrom the load monitor. Load balancing con-
trol requests–calledload alerts–are then sent to the load alert component from the load
balancer to set the “alert” state of the member’s location to one of the following values
when load shedding,i.e., reduction in load, is either unnecessary or necessary:

– Not Alerted– When load shedding isnot required, the member continues to accept
requests.

– Alerted – When load shedding is required to reduce the load at the location, an
“alert” causes the load alert component to redirect client requests back to the load
balancer, at which point the load balancer forwards the request to a less loaded
member.

The load shedding interactions are depicted in Figure 7. This figure shows the two

Client ServerRequestInterceptor LoadAlertClientRequestInterceptor Member

send_request

add_request_service_context

send_request

is_alerted

LOCATION_FORWARD

Fig. 7.Load Shedding Interactions

additional entities that were not discussed previously:

– theClientRequestInterceptor and
– theServerRequestInterceptor .

These entities expose a standard CORBA interface and are used in the figure to illus-
trate how to transparently and portably shed load. Descriptions of how they are used in
Cygnus’ overall load shedding interactions follow:

1. A client request is intercepted by theClientRequestInterceptor .
2. TheClientRequestInterceptor determines that the target is a load bal-

anced one based on pre-configured application settings. It injects the “out-of-band”
data that identifies the target object as a load balanced one.

3. The client request is allowed to proceed.



4. TheServerRequestInterceptor checks the “out-of-band” data for the iden-
tification information injected on the client side, and if the load alert component has
been told that it should reject requests.

5. If the information exists and requests are to be rejected, the appropriate exception
will be issued by theServerRequestInterceptor to force the client to re-
invoke its request on the load balancer.

Armed with a load monitor and load alert component, such a load balancer isadap-
tive due to the bidirectional feedback/control channel between the load monitor, load
alert component and the load balancer. Since the load monitor is decoupled from the
load balancer it is also possible to balance loads across locations, and hence members,
based on various types of load metrics. For instance, one type of load monitor could
report CPU loads, whereas another could report I/O resource load or both. The fact
that the type of load presented to the load balancer is opaque allows the same load
balancer–specifically the load analysis algorithm–to be reused for any load metric.

Challenge 2: Supporting Modular Load Balancing Strategies

Context. A distributed system employs a load balancing service to improve overall
throughput by ensuring that loads across locations are as uniform as possible. In some
applications, loads may peak in a predictable fashion, such as at certain times of the day
or days of the week. In other applications, loads cannot be predicted easilya priori.

Problem.Since certain load analysis techniques are not suitable for all use-cases, it may
be useful to analyze a set of location loads in different ways depending on the situation.
For example, to predict future location loads it may be useful to analyze the history
of loads at locations where members of given object group reside, thereby anticipating
high load conditions. Conversely, this level of analysis may be too costly in other use-
cases,e.g., if the duration of the analysis exceeds the time required to complete client
request processing.

In some applications it may even be necessary to change the load analysis algorithm
dynamically,e.g., to adapt to new application workloads. Moreover, bringing the system
down to reconfigure the load balancing strategy may be unacceptable for applications
with stringent 24�7 availability requirements. Likewise, application developers may
be interested in evaluating several alternative load balancing policies, in which case re-
quiring a full recompilation or relink cycle would unduly increase system development
effort. A load balancing service cannot simply implement all possible load balancing
strategies, however,e.g., application developers may wish to define application-specific
or ad-hocload balancing algorithms during testing or deployment.

So, how can we allow dynamic (re)configurations of the load balancing service,
such as the load monitor and load analyzer, without requiring expensive system recom-
pilations or interruptions of service?

Solution! the Strategy pattern.The Strategydesign pattern, as mentioned earlier,
allows applications to install and uninstall different behavior run-time. In the proposed
CORBA LB/M service this pattern can be used to change the member selection strategy



dynamically. A load balancer can therefore use this pattern to adapt to different load
balancing use-cases, without being hard-coded to handle those specifically.

At times it may be necessary to load balance only a few members, in which case a
simple load balancing strategy may suffice. In other situations, such as during periods
of peak activity during the workday, a load balancing strategy may need modifications
to account for increased load. In such cases, a more complex strategy may be necessary.
The Strategy pattern makes it easy to dynamically configure load balancing algorithms
appropriate for different use-caseswithoutstopping and restarting the load balancer.

Applying the solution in Cygnus.The load analyzer uses the Strategy pattern to cus-
tomize the load balancing algorithm used when making load balancing decisions, as
depicted in Figure 8. The proposed OMG load balancing service can be configured

LoadManager

CustomStrategy1 CustomStrategy2

LoadAnalyzer

«interface»
Strategy

«interface»
Strategy

RoundRobin

Random

LeastLoaded

«interface»
CustomStrategy

RoundRobin

Random

LeastLoaded

Fig. 8. Applying the Strategy Pattern to the OMG Load Balancing Service

dynamically to use the followingbuilt-in strategies:

– Round-robin – This non-adaptive strategy is straightforward and does not take
load into account. Instead, it simply causes a request to be forwarded to the next
member in the object group being load balanced [8].

– Random– This non-adaptive strategy also does not take load into account. It sim-
ply forwards clients requests to an object group member residing at a random lo-
cation. Of course, only locations with members residing at them are considered for
selection.

– Least loaded– This adaptive strategy is more sophisticated than the round-robin
and random algorithms described above. The goal of this strategy is to ensure load
differences fall within a certain tolerance,i.e., it attempts to ensure that the average
difference in load between each location/member is minimized. The member at the
least loaded location is selected.7

7 An earlier, less refined, version of this load balancing strategy first appeared in TAO’s initial
load balancer prototype. That balancing strategy was calledMinimum Dispersion.



The proposed CORBA LB/M specification is not limited to these built-in strategies,
however. Any custom strategy unknown to the load balancer may be “plugged in” at
any point during the load balancer’s lifetime since all strategies, including the built-in
ones, implement the same strategy interface. A large amount of work on load balancing
strategies [19] has already been done. Many of those same strategies can be integrated in
to the load balancing service via the Strategy pattern implementation described above.

Challenge 3: Complete Server Transparency

Context.Distributed applications can suffer from poor performance due to a bottleneck
at a single overloaded server. To address this performance bottleneck, anadaptiveload
balancing service is used to (1) distribute client requests equitably among a group of
members and (2) actively monitor and control loads on members in that group.

Problem. An adaptive load balancing service must communicate with members so it
can force them to either accept or reject requests. To achieve this level of communi-
cation, application servers must be programmed to accept load balancing requests (as
well as client requests) from the adaptive load balancing service. However, most dis-
tributed applications are not designed with this ability, nor should they necessarily be
designed with that ability in mind since it complicates the responsibilities of application
developers.

Solution! the Component Configurator and Interceptor Patterns.If adaptive load
balancing is to be used transparently on the server-side of a distributed application,
there must be some way to install feedback/control mechanisms into the server with-
out altering the server application software. Fortunately, most ORB middleware–and
in particular CORBA–provide a meta-programming mechanism based on the Intercep-
tor pattern [18]. These mechanisms can alter the behavior of a client or a server when
processing a given client request [20]. An interceptor can be installed at run-time to
provide the functionality necessary to (1) communicate with the load balancing service
and (2) accept load control requests from the load balancing service. Since the intercep-
tor mechanism is part of the middleware implementation, server application software
need not be modified.

To provide true server-side transparency, however, there must be some means of
installing interceptors transparently to control requests from the adaptive load balanc-
ing service. The Component Configurator pattern [18] can be used to dynamically load
a service into an application at run-time. In particular, a Component Configurator can
be used to transparently install a load balancing interceptor into an application’s un-
derlying middleware at run-time, as illustrated in Figure 9. Using this approach, the
overall throughput of a distributed application can be improved without modifications
to distributed application server code.

Applying the Solution in Cygnus.The functionality required to install a load balancing
interceptor transparently at run-time is available in most CORBA ORBs, such as TAO.
This functionality includesportable interceptorsand theCORBA Component Model, as
outlined below:
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Fig. 9. Transparent Server-side Adaptive Load Balancing

– Portable interceptors: Portable interceptors [5] can capture client requests transpar-
ently before they are dispatched to an object group member. For example, aserver
request interceptorcould be added to the ORB where a given member runs. Since
interceptors reside within the ORB no modification to server application code is
necessary, other than registering the interceptor with the ORB when it starts run-
ning.

– CORBA Component Model (CCM): The CCM [21] introducescontainersto de-
couple application component logic from the configuration, initialization, and ad-
ministration of servers. In the CCM, a container creates the POA8 and interceptors
required to activate and control a component. These are the same CORBA mecha-
nisms used to implement the server components in TAO’s load balancing service.
The standard CCM containers can be extended to implement automatic load bal-
ancinggenericallywithout changing application component behavior.

Challenge 4: Maximizing Throughput and Minimizing Network and Resource
Overhead

Context. A distributed application is suffering from degraded performance due to lim-
ited resources. This is basically the same scenario used in Section 3.1.

Problem. Simply integrating a load balancing service into a distributed application
does not necessarily mean that performance will improve significantly. This is partic-
ularly true if the load balancing service implementation has its own inefficiencies. For
instance, it may continuously attempt to make load balancing decisions despite the fact
that no additional client invocations have been made to perturb the overall load con-
ditions. Such an implementation would typically be slower in making load balancing
decisions under its own heavy load. Moreover, the increased load analysis more than
likely requires the load balancer to query loads at all locations it is aware of. This in-
creases network utilization, for example, more than necessary and leaves less bandwidth
available for the application being load balanced.

8 The Portable Object Adapter (POA) is responsible for dispatching client requests to the in-
tended target server.



Solution! lazy evaluation and asynchronous method invocation.The lazy evaluation
approach can be used to reduce the self-incurred load caused by the load balancer’s load
analysis. Specifically, load analysis will only occur when it is necessary to bind a client
to an object group member. Basically, a client invocation on an object group through
the load balancer will trigger the load analysis and shedding process to occur.

However, this lazy evaluation approach has the disadvantage where the client must
wait for the complete load analysis and shedding procedure to complete before it can
be forwarded to the actual member. The load analysis wait cannot be avoided since it is
an integral part of the member selection process. The load shedding procedure, on the
other hand, can be performed in parallel. It need delay the client from being forward to
the actual member. Load shedding can be an expensive procedure since it requires that
the load balancer make invocations on the typically remoteLoadAlert component
described in Section 3.1.

One technique to avoid this delay is to use non-blocking CORBAone wayinvo-
cations. Such invocations are not guaranteed to arrive at the intended target, however,
nor is it possible to convey exceptional conditions back to the load balancer. The ability
to determine the health of the remoteLoadAlert component is important since load
shedding is not possible without it.

A better way to avoid delaying the client forward is to use CORBA standardasyn-
chronous method invocations(AMI) [17]. AMI allows an invocation to be made asyn-
chronously without blocking the caller, such as the client in the above scenario, until a
reply from the invocation target arrives. Not only does it avoid the delays, it also allows
exceptional conditions to be reported back to the load balancer.

Using both the lazy evaluation and AMI approach allows load balancing decisions
(member selection) and load balancing control (load shedding) procedures to be com-
pleted in parallel, which reduces resource utilization and improves the ability of the
load balancer to bind clients to members more quickly.

Yet another approach would be to spawn a separate thread to handle load shedding
in parallel. Doing so, however, may be costly in terms of thread activation overhead.
Certainly, pre-activation of the thread will help but not all platforms support threads. In
those cases, AMI is currently the only portable solution.

Applying the Solution in Cygnus.Applying lazy evaluation to TAO’s load balancer is
relatively straightforward. Load analysis, member selection and load shedding functions
are simply not called until a client makes an invocation on the load balancer. After the
member locator is invoked, load analysis, member selection and load shedding begin.

Incorporating AMI into the remote load shedding invocations is also straightfor-
ward. A reply handler is implemented to handle the asynchronously returned replies,
and the synchronous load shedding method calls were replaces by their asynchronous
counterparts; the only difference being an additional reply handler callback9 parameter
passed to them.

9 AMI requires that a reply handler be supplied so that it may be called on when the invocation
reply returns.



4 Concluding Remarks

As networks become more pervasive and applications become more distributed, the de-
mand for greater scalability is increasing. Distributed system scalability can degrade
significantly, however, when servers become overloaded by the volume of client re-
quests. To alleviate such bottlenecks, adaptive load balancing mechanisms can be used
to distribute system load across object group members residing on multiple servers.

Load can be balanced at several layers, including the network, OS, middleware, and
application. Network-level and OS-level load balancing architectures are generally in-
flexible since they cannot supportapplication-definedmetrics at run-time when making
load balancing decisions. They also lack adaptability due to the absence of load-related
feedback from a given set of object group members, as well as the inability to control
if and when a given member should accept additional requests. Likewise, application-
level load balancing suffers from lack of transparency, increased code complexity, and
increased maintenance burden.

To address these limitations, we have devised an adaptive middleware load bal-
ancing architecture – called Cygnus – to overcome the limitations with network-based
and OS-based load balancing mechanisms outlined above. This paper motivates and
describes the design and performance of Cygnus, which is an implementation of a
CORBA Load Balancing and Monitoring (LB/M) service proposal developed using the
standard CORBA features provided by the TAO ORB [14].

The Cygnus LB/M service implementation is based entirely on standard CORBA
features, such as location forwarding, servant locators and asynchronous method invo-
cation (AMI), which demonstrates that CORBA technology has matured to the point
where many higher-level services can be implemented efficiently without requiring ex-
tensions to the ORB or its communication protocols. Exploiting the rich set of primi-
tives available in CORBA still requires specialized skills, however, along with the use
of somewhat poorly documented features. Further research and documentation of the
effective architectures and patterns used in the implementation of higher-level CORBA
services is therefore needed to advance the state of the practice and to allow application
developers to make better decisions when designing their systems.

TAO and Cygnus have been applied to a wide range of distributed applications do-
mains. Chief among these domains include telecommunications, aerospace, defense,
online financial trading, medical, and manufacturing process control. PrismTechnolo-
gies has developed a Java implementation of the proposed OMG CORBA LB/M speci-
fication that interoperates with the Cygnus C++ implementation provided with TAO.
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