
INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS 1

Applying Model-Driven Development to Distributed
Real-time and Embedded Avionics Systems
Krishnakumar Balasubramanian, Arvind S. Krishna, Emre Turkay, Jaiganesh Balasubramanian,

Jeff Parsons, Aniruddha Gokhale, and Douglas C. Schmidt

Abstract— Model-driven development (MDD) is an emerging
paradigm that uses domain-specific modeling languages (DSMLs)
and generative technologies to provide “correct-by-construction”
capabilities for many software development activities. This paper
provides two contributions to the study of applying MDD to
distributed real-time and embedded (DRE) systems that use
standards-based quality of service (QoS)-enabled component
middleware. First, it describes an MDD toolsuite called Com-
ponent Synthesis using Model-Integrated Computing (CoSMIC),
which is a collection of DSMLs and generative tools that support
the development, configuration, deployment, and validation of
component-based DRE systems. Second, it describes how we
have applied CoSMIC to an avionics mission computing appli-
cation to resolve key component-based DRE system development
challenges. Our results show that the design-, deployment- and
quality assurance (QA)-time capabilities provided by the DSMLs
and generative capabilities in CoSMIC help to eliminate key
complexities associated with specifying packaging, configuring,
validating, and deploying QoS-enabled component middleware
applications in the DRE systems domain.

Index Terms— Model-driven Development, CORBA Compo-
nent Model, CoSMIC

I. INTRODUCTION

Emerging trends and challenges: Reusable software compo-

nents and standards-based component models are increasingly

being used to develop large-scale distributed real-time and

embedded (DRE) systems [1]–[3]. This trend provides many

advantages compared with earlier forms of DRE infrastruc-

ture software. For example, components provide higher-level

abstractions than operating systems, third-generation program-

ming languages, and earlier generations of middleware, such

as distributed object computing (DOC) middleware. In par-

ticular, component middleware supports multiple views per

component, transparent navigation, greater extensibility, and a

higher-level execution environment based on containers, which

alleviate many limitations of prior middleware technologies.

The additional capabilities of component-based platforms,

however, also introduce new complexities associated with

composing and deploying DRE systems using components,

including the need to (1) design consistent component inter-

face definitions, (2) validate interactions between components

and generate valid component deployment descriptors, (3)

configure application components and the underlying mid-

dleware and platform correctly, (4) ensure that requirements

This work was sponsored in part by AFRL Contract#F33615-03-C-4112
for DARPA PCES Program, NSF ITR CCR-0312859, Raytheon, and a grant
from Siemens CT.

The authors are with the Dept. of EECS, Vanderbilt University, Nashville,
TN 37235. Contact: kitty@dre.vanderbilt.edu

of components are met by target nodes where components

are deployed, and (5) validate the selected configuration and

deployment satisfies end-to-end QoS requirements. The lack

of simplification and automation in resolving these challenges

can significantly hinder the effective transition to – and adop-

tion of – component middleware technology to develop DRE

systems.

Solution approach → Model-driven development and val-

idation of component-based DRE systems: To address the

needs of DRE system developers outlined above, we have de-

veloped an open-source model-driven development (MDD) [4]

toolsuite called Component Synthesis using Model Integrated

Computing (CoSMIC) [5].1 CoSMIC is an integrated col-

lection of domain-specific modeling languages (DSMLs) and

generative tools that support the development, configuration,

deployment, and validation of component-based DRE systems.

���������

�	�
������

���������

�������

�����������

���

�

���

�

���

�
����������

���������

����������

����������

��������

��������� ���������

��������� ���������

�����������������

����������

��������

��������� ���������

��������� ���������

����������

��������

��������� ���������

��������� ���������

��
��
�
�

�
��
�
�

���������

��������� ���������

�������������

���������

���������

� �����������

�!
���
�
���

�
�
�

�"
��
��
��
��
��
��

�#���������������������

��������

	���������

�����������

��������

��������

��$%��

�&��������������

��������������'
�

��������

������

�����(��

��
��
��
���

�
�
�
�
�
�
��

�������������

�������������

�
��
�
�
��
�

���
��
��
�

�)�����������'�

����*�������

Fig. 1. The CoSMIC MDD Toolsuite

The MDD tools provided by CoSMIC address key activities

in developing and validating component-based DRE systems

shown in Figure 1 and described below:

• Interface specification – Defining and partitioning of

application functionality as standalone components,

• Interconnection specification and validation – Com-

posing the application from individual components by

connecting them together and ensuring validity of these

interactions,

• Configuration – Configuring the middleware with the

1CoSMIC’s open-source MDD tools are available for download at www.
dre.vanderbilt.edu/cosmic.

INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS 2

appropriate parameters to satisfy the functional and sys-

temic requirements of application,

• Planning – Making appropriate deployment decisions,

including identifying the entities (such as CPUs) of the

target environment where the packages will be deployed,

• QoS assurance – Runtime validation of desired QoS

properties, as well as reconfiguration and resource man-

agement to maintain end-to-end QoS.

This paper describes how CoSMIC’s integrated MDD tool-

suite supports correct-by-construction techniques for the de-

sign, development, configuration, deployment, and validation

of DRE systems by (1) providing expressive power equivalent

to CORBA 3.x Interface Definition Language (IDL) in the

specification of component interfaces, including import/export

of IDL to/from PICML models, (2) implementing constraints

on the modeling of assemblies, e.g., ensuring certain ports of

components are always connected, and allowing connections

only between compatible ports, (3) allowing the configuration

of the underlying middleware on which the artifacts will

run, (4) modeling the deployment target at multiple levels

of abstraction, including the hardware level (where nodes are

modeled), the communication level (where the interconnects

between the nodes are modeled), and the resource level (where

resources used by the nodes are modeled), and (5) empiri-

cally evaluating the performance implications of configuring

the underlying middleware in a particular configuration and

deploying components on this middleware.

Paper organization: The remainder of this paper is organized

as follows: Section II uses an avionics mission computing

application as a representative example to describe common

challenges associated with applying QoS-enabled component

middleware to DRE systems; Section III shows how the

CoSMIC DSMLs and generative tools help resolve these chal-

lenges and analyzes the results of experiments that evaluate the

application of CoSMIC to our avionics application; Section IV

compares our work with other MDD tools that support DRE

systems; and Section V presents concluding remarks and

summarizes lessons learned.

II. CHALLENGES OF APPLYING QOS-ENABLED

COMPONENT MIDDLEWARE TO DRE SYSTEMS

Component middleware is systems software that enables

reusable service components to be composed, configured,

and installed to create applications rapidly and robustly.

Our work in this paper focuses on the CORBA Component

Model (CCM) [6], which is an OMG specification that stan-

dardizes the development, configuration, and deployment of

component-based applications. CCM uses CORBA’s distrib-

uted object computing (DOC) model [7] as its underlying

architecture to avoid coupling application components to any

particular language or platform.

In conjunction with colleagues at Washington Univer-

sity [8], we have developed the Component-Integrated ACE

ORB (CIAO) [9] CCM implementation. CIAO extends our

previous work on The ACE ORB (TAO) [10] by providing

more powerful component-based abstractions using the speci-

fication, validation, packaging, configuration, and deployment

techniques defined by the OMG CCM [6] and Deployment

and Configuration (D&C) [11] specifications. Moreover, CIAO

integrates the CCM capabilities outlined above with TAO’s

Real-time CORBA [10] features, such as thread-pools, lanes,

and client-propagated and server-declared policies.

This section describes a CIAO-based avionics DRE appli-

cation that implements the Basic Single Processor (BasicSP)

scenario from the Boeing Bold Stroke component avionics

mission computing project [1], which uses a push event and

pull data publisher/subscriber communication paradigm [12]

atop a QoS-enabled component middleware platform. We use

the BasicSP example to showcase the problems encountered

with developing DRE systems using component middleware

and motivate the need for the CoSMIC MDD tools. This

example is available in the CoSMIC and CIAO releases

at www.dre.vanderbilt.edu/cosmic and www.dre.

vanderbilt.edu/CIAO, respectively.

A. Applying QoS-enabled Component Middleware to a DRE

Avionics System

The BasicSP application comprises four avionics mission

computing components that periodically send GPS position

updates to a pilot and navigator cockpit displays. As shown

in Figure 2, a Timer component triggers a GPS navigation

sensor component, which in turn publishes position infor-

mation to an Airframe component. Upon receiving the

data availability event, the Airframe component pulls data

from the GPS, and informs a Nav Display component. The

Nav Display component then updates the display by pulling

position data from the Airframe component. The system

requests new inputs from the GPS component at a rate of 20

Hz, and updates the display outputs with new aircraft position

data at a rate of 20 Hz. The latency between the inputs to the

system and the output display should be less than a single 20

Hz frame.

For the BasicSP scenario to satisfy the QoS requirement

of ensuring display refresh rate of 20 Hz, it is necessary

to examine the end-to-end critical path and configure the

components appropriately. In particular, the latency between

the Airframe and Nav Display components needs to be

minimized. To achieve this goal, it is necessary to determine

the appropriate configurations for the individual components

and then validate these configurations empirically to determine

which one(s) satisfy the end-to-end QoS requirements.

Several characteristics of the BasicSP components are im-

portant in determining the configuration space. For example,

the Nav Display component receives updates only from the

Airframe component and does not send messages back to

the sender, i.e., it just plays the role of a client. Likewise, the

Airframe component communicates with both the GPS and

the Nav Display components, playing the role of a peer,

though not concurrently processing requests since the events

are handled sequentially.

In conjunction with colleagues at The Boeing Company [1]

and Washington University [8], we have developed a prototype

of the BasicSP application described above using the CCM

and Real-time CORBA capabilities provided by CIAO [9].

INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS 3

The steps involved in developing this CIAO-based BasicSP

application are described below:

1. Identify the components in the system and define their

interfaces, which involves defining component ports and at-

tributes, using the CORBA 3.x IDL features provided by CCM.

In the BasicSP example, the control and data interfaces for the

Timer, GPS, Airframe, Nav Display components need

to be specified. The control signals are published as events

using a “push-based” model and the data is consumed using

a “pull-based” model. This hybrid push/pull architecture is

designed to minimize the execution dependencies in the Bold

Stroke product-line architecture [13].

2. Define interactions between components and compose

the BasicSP application, which involves keeping track of

the types of each component’s ports and ensuring that the

interconnected components have matching ports defined. The

BasicSP application is composed by selecting a set of com-

ponent implementations from a library and generating XML

deployment descriptors that contain connection information

between component instances. Figure 2 shows the component

interaction for the BasicSP example. This scenario begins

TIMER

20Hz

GPS NAV DISP
AIRFRAME

TIMER

20Hz

GPS NAV DISP
AIRFRAME

timeout
data_avail

get_data ()

data_avail

get_data ()

Fig. 2. The BasicSP Navigation Display Example

with the GPS being time-triggered by the TAO ORB’s Real-

time Event Service [14], shown as a Timer component. The

pulse event from the Timer is received by the GPS, which

is connected to the Timer component as an event consumer.

The GPS generates its data and pushes a data available event to

the Airframe, which is also connected as an event consumer

to the GPS. TAO’s Real-time Event Service then forwards the

event to the Airframe component, which pulls the data using

its receptacle connected to the GPS component, updates its

state, and pushes a data available event. The Event Service

forwards the event to the Nav Display component, which

in turn pulls the data through its receptacle from the GPS,

updates its state, and displays it.

3. Configure the QoS-enabled component middleware

where the BasicSP components will run, which involves

configuring each of the Timer, Nav Display, GPS, and

Airframe components. To ensure the refresh rate of 20

Hz required by the applications, it is necessary to configure

the middleware suitably. The problem, however, is that QoS-

enabled middleware, such as CIAO, provides scores of config-

uration options, so choosing the right set from these options

can be a daunting task. This problem is exacerbated by the

fact that not all combinations of options form a semantically

compatible set.

4. Deploy the BasicSP application onto its runtime plat-

form, which involves ensuring that the implementation arti-

facts and the associated deployment descriptors are available

on the actual target platform, and initiating the deployment

process using the standard OMG D&C [11] framework and

tools. In the BasicSP example, this activity involves using

hand-written XML descriptors to deploy the application.

5. Empirically validate the configuration and deployment,

which involves ensuring that the chosen component deploy-

ment and middleware configurations satisfy the system QoS.

In the BasicSP scenario, this activity involves ensuring that all

timer updates provided by the GPS component and delivered

to the Nav Display component in a lossless manner. In

general, addressing the QoS validation challenges of DRE

systems fielded in a particular environment requires a suite

of benchmarking tests that are customized to the system’s

requirements and environment.

B. Challenges of Developing the BasicSP Application using

QoS-enabled Component Middleware

The remainder of this section describes five common chal-

lenges that arises when applications, such as BasicSP and our

earlier work on unmanned air vehicle (UAV) applications [15],

are developed using QoS-enabled CCM in the absence of

MDD tool support.

1) Alleviating Complexities in Component Interface Defini-

tion: The CORBA 3.x IDL used for CCM defines extensions

to the syntax and semantics of CORBA 2.x IDL. Developers of

CCM-based applications must therefore master the differences

between CORBA 2.x IDL and CORBA 3.x IDL. For example,

while CORBA 2.x interfaces can have multiple inheritance,

CCM components can have only a single parent, so equivalent

units of composition (i.e., interfaces in CORBA 2.x and

components in CCM) can have subtle semantic differences.

Moreover, any component interface that needs to be accessed

by component-unaware CORBA clients should be defined as

a supported interface as opposed to a provided interface.

In any project that transitions from an object-oriented archi-

tecture to a component-based architecture, there is a likelihood

of simultaneous existence of simple CORBA objects and

more sophisticated CCM components. Design of component

interfaces must therefore be done carefully. For example, the

Airframe components receives events from the GPS compo-

nent and sends events to the Nav Display component. Since

events are point-to-point, the Airframe component should

use emits rather than publishes.

2) Validating Component Interactions and Deployment De-

scriptors: Even for DRE system developers well-versed in

CORBA 3.x IDL, it is hard to keep track of components

and their types using text-based IDL files, which provide

no visual feedback to identify differences between compo-

nents. Moreover, an IDL compiler will not be able to catch

mismatches in the port types of two components that are

connected together since component connection information is

not defined in IDL. In addition to ensuring type compatibility

between interconnected component types as part of interface

definition, component developers must also ensure the same

compatibility between instances of these component types in

the XML descriptor files needed for deployment. Ensuring this

compatibility is more problematic than ensuring type com-

patibility since the number of component instances typically

INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS 4

dwarfs the number of component types in large-scale DRE

systems.

A CCM assembly file, which is an XML file illustrating

component interconnections, is not well-suited to manual edit-

ing. In addition to learning IDL, DRE system developers must

also learn XML to compose component-based DRE systems.

In our BasicSP example, simply increasing the number of

processors, or introducing sensors that operate at multiple rates

increases the number of component instances and hence the

component interconnections. The increase in component inter-

connections often grows faster than the number of component

instances. Any errors in this step are therefore likely to go

undetected until the deployment of the system at run-time.

3) Ensuring Suitable Middleware Configurations: QoS-

enabled component middleware provides a range of configu-

ration options that can be used to customize and tune the QoS

properties of the middleware. For example, the CIAO QoS-

enabled middleware provides ∼500 configuration options that

can be used to tune its behavior [16]. DRE system developers

need to configure and tune the performance of CIAO at

multiple levels, including lower-level messaging and transport

mechanisms, the object request broker (ORB) itself, up to

higher-level middleware services (such as event notification,

scheduling, and load balancing). This problem is exacerbated

by the fact that not all combinations of options form a

semantically compatible set.

In our BasicSP application scenario, components playing

role of a client Nav Display do not require locking and

concurrency. Similarly, the Airframe component can disable

locking for both its client and server side roles. Fine-tuning

middleware performance is key to ensuring application level

QoS is met. Errors in configuration can manifest in different

forms, such as run-time crashes, undefined behavior, or in

decreased QoS.

4) Associating Components with the Proper Deployment

Target: In component-based systems there is often a dis-

connect between software implementation-related activities

and the actual target system since (1) the software artifacts

and the physical system are developed independently and (2)

there is no way to associate these two entities using standard

component middleware features. This disconnect can result

in run-time failures due to the target environment’s lack of

capabilities to support the deployed component’s requirements.

These mismatches can also often be a source of missed opti-

mization opportunities since knowledge of the target platform

can help optimize component implementations and customize

the middleware accordingly.

In our BasicSP application, the components can all reside

on a single processor and hence can use collocation facilities

provided by ORBs to eliminate unnecessary (de)marshaling.

Without the ability to associate components with targets, errors

due to incompatible component connections and incorrect

XML descriptors are likely to show up only during system

deployment at run-time.

5) Validating the QoS of the Selected Configuration and

Deployment: QoS-enabled component middleware runs on

a multitude of hardware, OS, and compiler platforms. DRE

system developers often use trial-and-error methods to select

the set of configuration options that maximizes the QoS

attainable by the middleware. Unfortunately, the settings that

maximize performance for a particular group of platforms

and applications may not be suitable for different ones. QoS

validation of the end system requires rigorous validation of the

deployment plan and middleware configuration. This process

historically involves tedious and error-prone handcrafting of

low-level source, benchmarking, build, and script files [16].

An example benchmarking test for the BasicSP applica-

tion could validate the configurations of the Nav Display

component. Similarly, measuring end-to-end latency via asso-

ciating timers from when the GPS component sends out its

position update to when Nav Display component receives

it, measures how configuration of all components affects end-

to-end latency. Tuning the components and middleware to

maximize QoS is hard without the ability to add timing

information and measure different metrics, such as latency,

throughput, or jitter.

C. Summary of Challenges

A common theme underlying the evaluation of component

middleware challenges above is that errors and sources of

performance overhead often go undetected until late in the

development cycle. Even when these errors and overheads are

eventually detected, fixing them often involves backtracking to

multiple prior lifecycle steps, which impedes productivity and

increases the level of effort. Without support from higher-level

tools and techniques, therefore, the advantages of transitioning

from DOC middleware to component middleware can be

reduced significantly. These observations underscore the im-

portance of enhancing design-time MDD tool support for DRE

systems built using component middleware, which includes the

importance of automating the configuration, validation, and

deployment of DRE systems.

III. RESOLVING BASICSP APPLICATION CHALLENGES

WITH COSMIC

This section examines how features of CoSMIC’s DSMLs

and generative tools can be applied to address the challenges

discussed in Section II-B that arise when developing QoS-

enabled component middleware-based DRE systems, such as

our BasicSP application, without MDD tool support. Figure 3

describes the sequence of activities involved in using the CoS-

MIC MDD toolsuite to develop component-based DRE appli-

cations. At the heart of CoSMIC is the Platform-Independent

Component Modeling Language (PICML). PICML is a

DSML that provides capabilities to handle complex component

engineering tasks, such as component interface specification,

validation of component interactions, deployment planning,

and composition of application using hierarchical component

assemblies. PICML assists component developers with the

packaging and planning phases shown in Figure 1.

Another important DSML in CoSMIC is the Options Con-

figuration Modeling Language (OCML), which simplifies

the specification and validation of complex DRE middleware

and application configurations. OCML provides (1) generic

modeling elements (such as numeric, boolean and string

INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS 5

Component

Developer

IDL Files

Domain Expert

Define options and

valid configurations

Import/Export

 IDL

Define interfaces

Associate rules with

meta-model elements

Model Application

Application

Model/

Deployment

Descriptors

Application

Developer

Q/A Specialist

Define experiments

Refine application

QoS based on

experiments

Generate

experiments

Benchmarking

Application

1 3

4

2

5
6

7

9

8Select

Components

Model interfaces

Fig. 3. Domain-Specific Modeling Languages in CoSMIC

options) to represent different middleware options and (2)

generic constraint elements (such as rules) to capture option

dependencies. OCML assists component developers in the

configuration phase of developing component-based systems.

The Benchmark Generation Modeling Language

(BGML) is a third DSML provided by CoSMIC to synthesize

benchmarking testsuites that analyze the QoS performance

of OCML-configured DRE systems. BGML can be used in

the configuration phase to validate PICML assemblies and

OCML configurations. It can also be used in the planning

phase to validate deployment plans (which map components

to nodes) to provide feedback to developers as to whether a

particular plan meets end-to-end QoS requirements or not.

A. Visual Component Interface Definition

A set of component, interface, and other datatype definitions

may be created in PICML using either of the following two

approaches shown in steps 1 and 2 of Figure 3:

• Adding to existing definitions imported from IDL. In

this approach, existing CORBA software systems can be

easily migrated to PICML using its IDL Importer, which

takes any number of CORBA IDL files as input, maps

their contents to the appropriate PICML model elements,

and generates a single XML file that can be imported as a

PICML model. This model can then be used as a starting

point for modeling assemblies and generating deployment

descriptors.

• Creating IDL definitions from scratch. In this ap-

proach, PICML’s graphical modeling environment pro-

vides support for designing the interfaces using an in-

tuitive “drag and drop” technique, making this process

largely self-explanatory and independent of platform-

specific technical knowledge. Most of the grammatical

details are implicit in the visual language, e.g., when the

model editor screen is showing the “scope” of a defini-

tion, only icons representing legal members of that scope

will be available for dragging and dropping. CORBA IDL

can be generated from PICML enabling generation of

software artifacts in languages having a CORBA IDL

mapping.

Application to the BasicSP example scenario. By modeling

the BasicSP components using PICML, the problems asso-

ciated with multiple inheritance and semantics of IDL are

flagged at design time. By providing a visual environment

for defining the interfaces, PICML therefore resolves many

problems described in Section II-B.1 associated with defi-

nition of component interfaces. In particular, by modeling

the interface definitions, PICML alleviates the need to model

a subset of interfaces for analysis purposes, which has the

added advantage of preventing skew between the models of

interfaces used by analysis tools and the interface used in

implementations.

B. Valid component interaction definition and descriptor gen-

eration

PICML defines the static semantics of a system using a

constraint language and enforces these semantics early in the

development cycle, i.e., at design-time. Static semantics refer

to the “well-formedness” rules of the language. By elevating

the level of abstraction via MDD techniques, however, the

corresponding well-formedness rules of DSMLs like PICML

actually capture semantic information, such as constraints on

composition of models, and constraints on allowed interac-

tions.

There is a significant difference in the early detection of

errors in the MDD paradigm compared with traditional object-

oriented or procedural development using a conventional pro-

gramming language compiler. In PICML, OCL constraints are

used to define the static semantics of the modeling language,

thereby disallowing invalid systems to be built using PICML,

i.e., PICML enforces the correct-by-construction paradigm.

Application to the BasicSP example scenario. In the context

of our BasicSP application all the components can be mod-

eled as a CCM assembly as shown in step 5 of Figure 3.

PICML enables the visual inspection of types of ports of

components and the connection between compatible ports,

including flagging error when attempting connection between

incompatible ports. PICML also differentiates different types

of connections using visual cues, such as dotted lines and

color, to quickly compare the structure of an assembly. By

providing a visual environment coupled with rules defining

valid constructs, PICML therefore resolves many problems de-

scribed in Section II-B.2 with ensuring consistent component

interactions. By enforcing the constraints during creation of

component models and interconnections – and by disallowing

connections to be made between incompatible ports – PICML

completely eliminates the manual effort required to perform

these kinds of checks.

In addition to ensuring design-time integrity of systems

built using OCL constraints, PICML also generates the com-

plete set of deployment descriptors that are needed as input

to the component deployment mechanisms. Since the rules

determining valid assemblies are encoded into PICML via its

metamodel and enforced using constraints, PICML ensures

that the generated XML describes a valid system. Generation

INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS 6

of XML is done in a programmatic fashion by writing a

Visitor class that uses the Visitor pattern [17] to traverse

the elements of the model and generate XML. The generated

XML descriptors also ensure that the names associated with

instances are unique so that individual component instances

can be identified unambiguously at run-time.

C. Configuration of QoS-enabled Component Middleware

The first step in ensuring end-to-end QoS is to configure

the component and the underlying middleware and platform

appropriately. Component configuration is done via associating

Property and Requirement elements with the com-

ponents. To ensure both syntactic and semantically correct

configuration of underlying middleware, PICML leverages the

OCML tool. OCML defines a type system that middleware

developers use to specify their platform-specific (in our case

middleware) option space.

As shown in step 3 of Figure 3, standard configurations

can be modeled via OCML and application developers can use

these configurations specify the set of options that suit their

components. It also enforces dependency rules that prevent

application developers from choosing invalid combinations

of configuration sets that could result in incorrect/undefined

behavior. A Configuration File Generator (CFG) application is

developed for application developers to specify the appropriate

set of option configurations and validation of this set.

OCML has been applied to represent the options and depen-

dencies of the CIAO QoS-enabled component middleware.2 As

shown in step 4 of Figure 3, PICML leverages OCML in the

following manner:

• The CFG for CIAO has been associated with Imple-

mentationArtifact elements in the PICML model

(these artifacts represent entities that are deployed onto

nodes, such as DLLs and shared objects). The CFG

populates the configuration attribute of each artifact based

on the options chosen by application developers.

• The OCML configuration exporter reads the information

in the configuration attribute and generates a svc.conf

file, which captures middleware configuration parameters.

The deployment infrastructure parses this file to configure

the middleware appropriately.

Application to the BasicSP example scenario. In the context

of the BasicSP scenario, OCML can be used to configure

the underlying middleware on which the components are run

via the two step process described earlier. Figure 4 illustrates

the CFG wizard that application developers interact with to

configure the Airframe component in the BasicSP scenario.

In determining the appropriate configuration of the middle-

ware hosting this component, we require that this component

interacts with both the GPS and Nav Display components.

This precludes the need for concurrency and locking within

this component. Using this information, application developers

select the middleware configuration. The CFG also displays

the documentation for each option.

2The OCML options as applied to CIAO are available from $COS-
MIC ROOT/PSM/CCM/OCML directory in the CoSMIC distribution.

Fig. 4. Middleware Configuration via OCML

OCML tool alleviates complexities associated with config-

uring component middleware by ensuring both (1) syntactic

correctness, i.e., options reflecting actual middleware setting

and (2) semantic validity, i.e., eliminating inconsistent options.

OCML eliminates incorrect and incompatible configurations

thus preventing undefined and incorrect behavior at run-time.

OCML however, requires application developers to be familiar

with the ORB configurations though the documentation is

provided to guide the configuration process.

D. Deployment Planning

To satisfy multiple QoS requirements, DRE systems are

often deployed in heterogeneous execution environments. To

support such environments, component middleware strives to

be largely independent of the specific target environment in

which application components will be deployed.

PICML can be used to specify the target environment where

the DRE system will be deployed, which includes defining: (1)

nodes, where the individual components and component pack-

ages are loaded and used to instantiate those components, (2)

interconnects among nodes to which inter-component software

connections are mapped to allow the instantiated components

to communicate, and (3) bridges among interconnects, where

interconnects provide a direct connection between nodes and

bridges to provide routing capability between interconnects.

Nodes, interconnects, and bridges collectively represent the

target environment.

Once the target environment is specified via PICML, al-

location of component instances onto nodes of the target

target environment can be performed. This activity is referred

to as component placement, where systemic requirements of

the components are matched with capabilities of the target

environment and suitable allocation decisions are made. Al-

location can either be: (1) static, where the domain experts

know the functional and QoS requirement of each of the

components, as well as knowledge about the nodes of the

target environment. In such a case, the job of the allocation is

to create a deployment plan comprising the components→node

INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS 7

mapping specified by the domain expert, or (2) dynamic, where

the domain expert specifies the constraints on allocation of

resources at each node of the target environment, and the job

of the allocation is to choose a suitable component→node

mapping that meets both the functional and QoS requirement

of each of the components, as well as the constraints on the

allocation of resources.

PICML currently provides facilities for specifying static

allocation of components. Domain experts can visually map

the components with the respective target nodes, as well as

provide additional hints, such as whether the components

need to be process-collocated or host-collocated, provided two

components are deployed in the same target node. PICML

generates a deployment plan from this information, which is

used by the CIAO run-time deployment engine to perform the

actual deployment of components to nodes.

Application to the BasicSP example scenario. In the context

of the BasicSP example, PICML can be used to specify the

mapping between the component and the target environment.

By modeling the target environment in the BasicSP exam-

ple using PICML, therefore, the problem with a disconnect

between components and the deployment target described in

Section II-B.4 can be resolved. In case there are multiple

possible component→node mappings, PICML can be used

to experiment with different combinations since it gener-

ates descriptors automatically. For example, GPS components

might be mapped onto different types of navigation sensors

on the aircraft, each with different QoS properties until the

desired QoS is achieved. PICML thus eliminates the low-level,

tedious, and error-prone manual effort involved in writing a

deployment plan.

E. Validating System QoS

Addressing the QoS validation challenges of DRE sys-

tems fielded in a particular environment requires a suite

of benchmarking tests that are customized to the system’s

environment. Moreover, these tests can also help validate the

deployment plan, i.e., provide a baseline or an estimate of

system performance such as end-to-end latency/throughput.

This will help the planner to change the component node

mappings in order to maximize QoS.

To facilitate QoS validation, PICML leverages the BGML

tool (as shown in step 6 of Figure 3), which captures key

QoS validation concerns of QoS-enabled middleware, such

as (1) modeling how distributed system components interact

with each other and (2) representing metrics that can be

applied to specific configuration options and platforms. BGML

allows QA specialists to create benchmarking experiments

by synthesizing: (1) the header files and source code that

implement the functionality, (2) the configuration and script

files that tune the underlying middleware and automate the

task of running tests and output generation, and (3) project

build files (e.g., makefiles) required to generate the executable

code.

In particular, BGML has been integrated with PICML as

a separate paradigm accessible from within PICML. For the

purpose of QoS validation, BGML provides test elements

such as operations, return-types, latency, throughput and timer

elements that can be used to represent a generic operation or a

sequence or operation steps and associate non-functional QoS

properties with them. BGML also provides workload elements,

such as tasks and task-set can also be used to model and

simulate background load present during the experimentation

process. These workload elements are then mapped to indi-

vidual platform specific code in the interpretation process as

shown in step 8 of Figure 3.

Fig. 5. QoS Validation via BGML

Application to the BasicSP example scenario. In the context

of the BasicSP example, BGML can be used to measure

QoS (end-to-end latency) between when the GPS component

publishes a position update and when the Nav Display

component displays the image to the pilot. Below we describe

how BGML in concert with OCML and PICML can be used

to validate QoS for a chosen deployment plan and middleware

configuration.
We first used the PICML MDD tool to model the BasicSP

DRE system scenario. This step first involved importing the

BasicSP IDL files, defining component types, and modeling

their interactions and finally modeling the deployment arti-

facts. To understand the impact of configuration on QoS, we

wanted to observe how the possible configurations for the

Nav Display component affects the end-to-end QoS. The

next step in achieving our goal was to use the OCML tool to

generate the possible configurations for the component under

test.3 Using the documentation generated by OCML CFG, we

narrowed down the configuration space for the Nav Display

component: Further examination of this reduced configuration

space reveals that some of the configurations settings can

be set a priori, i.e., without experimentation. For example,

the component interacts with only one source and do not

need synchronization. These option settings (options A-F)

can be directly determined (shown in bold) in Table I. For

the remaining configurations, where both options are suitable,

the possible configuration combinations were generated using

OCML.

3For the remaining components, we used the default CIAO middleware
configuration.

INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS 8

Option Label Option Name Option Settings

A ORBReactorMaskSignals {0, 1}
B ORBInputCDRAllocator { null, thread}
C ORBReactorType { select st, mt}
D ORBProfileLock {thread, null}
E ORBObjectLock {thread, null}
F ORBConnectionCacheLock {null, thread}
G ORBClientConnectionHandler {RW, ST}
H ORBTransportMuxStrategy {EXCLUSIVE,

MUXED}
I ORBFlushingStrategy {LF, reactive}
J ORBConnectStrategy {LF, reactive}

TABLE I

CONFIGURATION SPACE FOR THE Nav Display COMPONENT

Using the target modeling capabilities of PICML, we cre-

ated a deployment scenario as described in Table II.

Hosts DOC ACE TANGO

CPU AMD AMD Intel
Type Athlon Athlon Xeon

CPU Speed (GHz) 2 2 1.9

Memory (GB) 1 1 2

Cache (KB) 512 512 2048

Compiler (gcc) 3.2.2 3.3 3.3.2

OS (Linux) Red Hat 9 Red Hat 8 Debian

Kernel 2.4.20 2.4.20 2.4.23

Avionics NavDisplay Airframe GPS

TABLE II

TESTBED AND DEPLOYMENT SUMMARY

Finally, using the BGML tool, as shown in Figure 5,

we associate Timer values to capture latency between the

GPS and Nav Display components to measure end-to-

end QoS. Additionally, the build files required to compile

the benchmarking code with the BasicSP source libraries

were synthesized using BGML model interpreters. Table III

Setting Latency
(µsecs)

(G1, H1, I2, J2) 504
(G1, H1, I2, J1) 528
(G1, H1, I1, J2) 529
(G1, H1, I1, J1) 532
(G1, H2, I1, J1) 536
(G1, H2, I2, J1) 548
(G1, H2, I1, J2) 552
(G1, H2, I2, J1) 562
(G2, H1, I2, J2) 568
(...)

TABLE III

LATENCY QOS DISTRIBUTION FOR THE Nav Display COMPONENTS

tabulates the latency distributions for the client-side display

based components. We use the notation A1, B2, etc. to identify

the individual options within each category. For example, the

-ORBConnectStrategy value of LF is denoted as J1.

The top 8 configurations (out of a possible 16) are shown

in Table III sorted by increasing order of latency values. A

closer look at the values reveals a clear pattern of configu-

ration options and its effect on QoS (end-to-end) latency. For

example, the option G1 has the greatest effect on performance,

i.e., changing its value to G2 increases latency by ∼4µsecs

for the robot assembly scenario and by ∼50µsecs in the

Basic SP scenario. After G, the option H influences latency

the most, i.e., changing its value from H1 to H2 worsens

latency by ∼2µsecs in the first case and by ∼30µsecs in

the second case. Using our PICML, OCML and BGML tools,

therefore, we determined the appropriate configuration for the

Nav Display component to be:

static Advanced_Resource_Factory

"-ORBReactorMaskSignals 0 -ORBInputCDRAllocator null

-ORBReactorType select_st -ORBConnectionCacheLock null"

static Client_Strategy_Factory

"-ORBTransportMuxStrategy EXCLUSIVE -ORBProfileLock null

-ORBClientConnectionHandler RW

-ORBFlushingStrategy reactive

-ORBConnectStrategy reactive"

These configuration values (1) disable locking (ORB-

ProfileLock, ORBInputCDRAllocator), (2) set the

ORB’s concurrency mechanism to single-threaded reactive

(ORBReactorType, ORBConnectStrategy, and ORB-

FlushingStrategy), and (3) use an exclusive con-

nection for request demultiplexing (ORBTransportMux-

Strategy).

F. Summary of Results

The results presented in this section show how CoSMIC

provides many benefits that overcome key limitations with

conventional QoS-enabled component middleware described

in Section II by generating software artifacts that are correct by

construction. In particular, it generates IDL files that are guar-

anteed to compile, thereby eliminating errors in the component

definitions. CoSMIC also disallows creation of semantically

inconsistent models, and generates deployment descriptors that

are guaranteed to be syntactically valid. In addition, CoSMIC

ensures that component interactions are guaranteed to have

type compatibility. The generated configuration files are both

syntactically and semantically correct, thereby ensuring the

underlying middleware is configured appropriately. The gener-

ated deployment plans eliminate impossible component→node

allocations. CoSMIC also supports the hierarchical composi-

tion of components without any extra overhead associated with

each layer in the hierarchy. Finally, it provides mechanisms

for QA specialists to evaluate how the configuration, platform

and the deployment plans influence application QoS thereby

allowing refining and regeneration of plans that can meet end-

to-end QoS requirements.

IV. RELATED WORK

This section summarizes related efforts associated with de-

veloping DRE systems using an MDD approach and compares

these efforts with our work on CoSMIC.

a) Cadena: Cadena [18] is an integrated environment

developed at Kansas State University (KSU) for building

and modeling component-based DRE systems, with the goal

of applying static analysis, model-checking, and lightweight

formal methods to enhance these systems. Cadena also pro-

vides a component assembly framework for visualizing and

developing components and their connections. Unlike PICML,

INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS 9

however, Cadena does not support activities such as compo-

nent packaging, generating deployment descriptors, compo-

nent deployment planning, and hierarchical modeling of com-

ponent assemblies. To develop a complete MDD environment

that seamlessly integrates component development and model

checking capabilities, we are collaborating [19] with KSU

to integrate PICML with Cadena’s model checking tools, so

we can accelerate the development and verification of DRE

systems.

b) VEST and AIRES: The Virginia Embedded Systems

Toolkit (VEST) [20] and the Automatic Integration of Reusable

Embedded Systems (AIRES) [21] are MDD analysis tools

that evaluate whether certain timing, memory, power, and

cost constraints of real-time and embedded applications are

satisfied. Components are selected from pre-defined libraries,

annotations for desired real-time properties are added, the

resulting code is mapped to a hardware platform, and real-time

and schedulability analysis is done. In contrast, PICML allows

component modelers to model the complete functionality of

components and intra-component interactions, and does not

rely on predefined libraries. PICML also allows DRE system

developers the flexibility in defining the target platform, and

is not restricted to just processors.

c) ESML: The Embedded Systems Modeling Language

(ESML) [22] was developed by ISIS at Vanderbilt University

to provide a visual metamodeling language that captures

multiple views of embedded systems, allowing a diagram-

matic specification of complex models. The modeling building

blocks include software components, component interactions,

hardware configurations, and scheduling policies. The user-

created models can be fed to analysis tools (such as AIRES,

VEST, and Cadena) to perform schedulability and event

analysis. Using these analyses, design decisions (such as

component allocations to the target execution platform) can be

performed. Unlike PICML, ESML is platform-specific since

it is customized for the Boeing Bold Stroke PRiSm QoS-

enabled component model [1], [23]. ESML also does not

support nested assemblies and the allocation of components

are tied to processor boards, which is a proprietary feature

of the Bold Stroke component model. We are working with

the ESML team at ISIS to integrate the ESML and PICML

metamodels to produce a unified DSML suitable for modeling

a broad range of QoS-enabled component models.

V. CONCLUDING REMARKS

Although QoS-enabled component middleware represents

an advance over previous generations of software infrastruc-

ture technologies, its additional complexities can also negate

its key benefits when applied to complex distributed real-

time and embedded (DRE) systems. A promising approach

to resolving these complexities is model-driven development

(MDD) [4]. MDD tools provide correct-by-construction sup-

port for designing and validating DRE systems by integrating

(1) analysis techniques that reason about DRE systems and

(2) platform-independent generation capabilities that can target

multiple component middleware technologies, such as CCM,

J2EE, and ICE.

This paper describes the capabilities of the CoSMIC MDD

toolsuite developed at Vanderbilt University. To showcase

how CoSMIC helps resolve key complexities of QoS-enabled

component middleware, we applied several of its domain-

specific modeling languages (DSMLs) to the Basic Single

Processor (BasicSP) scenario from the Boeing Bold Stroke

component avionics mission computing product suite [1].

Using the BasicSP application as a representative example of

common DRE systems, we showed how CoSMIC can support:

• Design-time activities, such as specification of the func-

tionality of components, their interactions with other

components, the assembly and packaging of components,

and the configuration of the QoS-enabled component

middleware on which the components run

• Deployment-time activities, such as specification of tar-

get environment, and automatic deployment plan gener-

ation, and

• Quality assurance (QA)-time activities, such as valida-

tion of the configuration and deployment platform and

their impact on QoS.

The CoSMIC MDD tools help bridge the gap between

design-time verification and model-checking tools (such as

Cadena [18], VEST [20], and AIRES [21]) and the actual

deployed and validated component implementations [19].
The following are a summary of lessons learned based on

our experience developing and evaluating CoSMIC:
1. Component and platform modeling improves DRE

systems reasoning: The results of applying CoSMIC to the

component-based BasicSP application example show how it

enables the comprehension of the system at a higher level

of abstraction relative to conventional DOC middleware ap-

proaches. In particular, CoSMIC’s DSML-based approach re-

duces the effort involved in component interface definition by

∼50%, eliminates common errors in defining component in-

teractions, and generation of deployment descriptors including

deployment plan completely, and eliminates the duplication

of components with similar functionality by allowing reuse

through hierarchical composition.
2. Early detection of errors improves productivity signifi-

cantly: Most of the errors that CoSMIC eliminates at design-

and deployment-time are discovered only at run-time with

conventional component development techniques, due to a

combination of complexities in development of components,

coupled with out-of-band specification (using XML) of com-

ponent interconnections. This finding underscores the impor-

tance of CoSMIC’s MDD approach, which helps increase the

effectiveness of applying QoS-enabled component middleware

technologies to the DRE systems domain.
3. Addressing ad hoc approaches of configuration:

CoSMIC’s MDD tools and process can (1) alleviate key com-

plexities involved in understanding the impact of middleware

configurations on application QoS and (2) bring rigor to

otherwise ad hoc processes used by developers to configure

and deploy middleware for DRE systems.
4. End-to-end toolchains for DRE systems need to bridge

analysis and empirical results: Though CoSMIC provides

developers of DRE system with many capabilities for specify-

ing component-based systems and their interactions, it is not

INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS 10

yet a complete end-to-end solution for model-based design

and analysis of component-based DRE systems. Our future

work will therefore focus on dynamic component allocation,

performance analysis of component systems by empirically

evaluating component interactions with respect to various per-

formance metrics, and performance modeling of components

with regard to meeting real-time deadlines. We are developing

model-based solutions for these problems and integrating the

resulting tools into the CoSMIC toolsuite.
5. Need for process automation: A limitation of our

current MDD approach is that the experiments we ran required

considerable human intervention, e.g., changing the node com-

ponent association in the models and re-running the model

interpreters to generate the XML metadata. This level of effort

is not an inherent limitation of our process, however, but rather

a limitation of our modeling tool infrastructure, which does

not yet support scripting of models and model-interpreters.

Our future work will therefore address this limitation by col-

laborating with the tool developers to make it more scriptable.

REFERENCES

[1] D. C. Sharp and W. C. Roll, “Model-Based Integration of Reusable
Component-Based Avionics System,” in Proceedings of the Workshop

on Model-Driven Embedded Systems in RTAS 2003, May 2003.
[2] P. Sharma, J. Loyall, G. Heineman, R. Schantz, R. Shapiro, and

G. Duzan, “Component-Based Dynamic QoS Adaptations in Distributed
Real-Time and Embedded Systems,” in Proceedings of the International

Symposium on Distributed Objects and Applications (DOA’04), Agia
Napa, Cyprus, Oct. 2004, pp. 1208–1224.

[3] R. Noseworthy, “IKE 2 – Implementing the Stateful Distributed Object
Paradigm ,” in 5th IEEE International Symposium on Object-Oriented

Real-Time Distributed Computing (ISORC 2002). Washington, DC:
IEEE, Apr. 2002.

[4] J. Greenfield, K. Short, S. Cook, and S. Kent, Software Factories:

Assembling Applications with Patterns, Models, Frameworks, and Tools.
New York: John Wiley & Sons, 2004.

[5] Institute for Software Integrated Systems, “Component
Synthesis using Model Integrated Computing (CoSMIC),”
www.dre.vanderbilt.edu/cosmic, Vanderbilt University.

[6] CORBA Components, OMG Document formal/2002-06-65 ed., Object
Management Group, June 2002.

[7] The Common Object Request Broker: Architecture and Specification,
3.0.2 ed., Object Management Group, Dec. 2002.

[8] N. Wang, C. Gill, D. C. Schmidt, and V. Subramonian, “Configur-
ing Real-time Aspects in Component Middleware,” in Proceedings of

the International Symposium on Distributed Objects and Applications

(DOA’04), Agia Napa, Cyprus, Oct. 2004, pp. 1520–1537.
[9] N. Wang, D. C. Schmidt, A. Gokhale, C. Rodrigues, B. Natarajan, J. P.

Loyall, R. E. Schantz, and C. D. Gill, “QoS-enabled Middleware,” in
Middleware for Communications, Q. Mahmoud, Ed. New York: Wiley
and Sons, 2003, pp. 131–162.

[10] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,” Computer Com-

munications, vol. 21, no. 4, pp. 294–324, Apr. 1998.
[11] Deployment and Configuration Adopted Submission, OMG Document

ptc/03-07-08 ed., Object Management Group, July 2003.
[12] D. C. Sharp, “Avionics Product Line Software Architecture Flow Poli-

cies,” in Proceedings of the 18th IEEE/AIAA Digital Avionics Systems

Conference (DASC), Oct. 1999.
[13] B. S. Doerr and D. C. Sharp, “Freeing Product Line Architectures from

Execution Dependencies,” in Proceedings of the 11th Annual Software

Technology Conference, Apr. 1999.
[14] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and

Performance of a Real-time CORBA Event Service,” in Proceedings of

OOPSLA ’97. Atlanta, GA: ACM, Oct. 1997, pp. 184–199.
[15] K. Balasubramanian, J. Balasubramanian, J. Parsons, A. Gokhale,

and D. C. Schmidt, “A Platform-Independent Component Modeling
Language for Distributed Real-time and Embedded Systems,” in Pro-

ceedings of the 11th IEEE Real-Time and Embedded Technology and

Applications Symposium, San Francisco, CA, Mar. 2005, pp. 190–199.

[16] C. Yilmaz, A. Krishna, A. Memon, A. Porter, D. C. Schmidt,
A. Gokhale, and B. Natarajan, “Main Effects Screening: A Distributed
Continuous Quality Assurance Process for Monitoring Performance
Degradation in Evolving Software Systems,” in Proceedings of the 27th

International Conference on Software Engineering (ICSE ’05), St. Louis,
MO, May 2005.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: El-

ements of Reusable Object-Oriented Software. Reading, MA: Addison-
Wesley, 1995.

[18] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad, “Cadena:
An Integrated Development, Analysis, and Verification Environment for
Component-based Systems,” in Proceedings of the 25th International

Conference on Software Engineering, Portland, OR, May 2003.
[19] G. Trombetti, A. Gokhale, D. C. Schmidt, J. Hatcliff, G. Singh, and

J. Greenwald, “A Integrated Model-driven Development Environment
for Composing and Validating Distributed Real-time and Embedded
Systems,” in Model Driven Software Development- Volume II of Re-

search and Practice in Software Engineering, S. Beydeda, M. Book,
and V. Gruhn, Eds. New York: Springer-Verlag, 2005.

[20] J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu, M. Humphrey,
and B. Ellis, “VEST: An Aspect-based Composition Tool for Real-
time Systems,” in Proceedings of the IEEE Real-time Applications

Symposium. Washington, DC: IEEE, May 2003.
[21] S. Kodase, S. Wang, Z. Gu, and K. G. Shin, “Improving Scalability of

Task Allocation and Scheduling in Large Distributed Real-time Systems
using Shared Buffers,” in Proceedings of the 9th Real-time/Embedded

Technology and Applications Symposium (RTAS). Washington, DC:
IEEE, May 2003.

[22] G. Karsai, S. Neema, B. Abbott, and D. Sharp, “A Modeling Language
and Its Supporting Tools for Avionics Systems,” in Proceedings of 21st

Digital Avionics Systems Conf., Aug. 2002.
[23] W. Roll, “Towards Model-Based and CCM-Based Applications for Real-

Time Systems,” in Proceedings of the International Symposium on

Object-Oriented Real-time Distributed Computing (ISORC). Hakodate,
Hokkaido, Japan: IEEE/IFIP, May 2003.

