
Applying Model-Driven Distributed Continuous Quality Assurance
Processes to Enhance Persistent Software Attributes

Arvind S. Krishnaz, Cemal Yilmazy, Atif Memony, Adam Portery,
Douglas C. Schmidtz, Aniruddha Gokhalez, Balachandran Natarajanz,

yDept. of Computer Science, University of Maryland, College Park, MD 20742
zDept. of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37203

Abstract

Time and resource constraints often force developers of highly
configurable quality of service (QoS)-intensive software sys-
tems to guarantee their system’s persistent software attributes
(PSAs) (e.g., functional correctness, portability, efficiency, and
QoS) on a few platform configurations and to extrapolate from
these configurations to the entire configuration space, which
allows many sources of degradation to escape detection until
systems are fielded. This article illustrates how model-driven
distributed continuous quality assurance (DCQA) processes
can help improve the assessment and assurance of these PSAs
across the large configuration spaces of QoS-intensive soft-
ware systems.

Keywords. Distributed Continuous Quality Assurance,
Model-Integrated Computing, Quality of Service, Software
Configurations.

1 Introduction

Emerging trends and challenges. Quality of service (QoS)-
intensive software must satisfy stringent requirements for
persistent software attributes (PSAs), such as assured la-
tency/jitter/throughput values, scalability, dependability, and
security. Examples of QoS-intensive software include high--
performance scientific computing systems (e.g., high energy
physics experiments and computational fluid dynamics), dis-
tributed real-time and embedded systems (e.g., control sys-
tems for the electrical power grid and commercial air traf-
fic), and the accompanying systems software (e.g., operating
systems, middleware, and language processing tools). QoS-
intensive software is increasingly affected by trends toward
distributed and evolution-oriented development processesand
demand for user-specific customization.

Today’s global information technology economy and n-tier
architectures often involve developers distributed across ge-
ographical locations, time zones, and business organizations.
One goal of distributed development is to ensure rapid change
by having developers work simultaneously, with minimal di-
rect inter-developer coordination. Distributed development
processes can increase churn rates in the software base, which

can lead to rapid, unpredictable, and potentially uncontrolled
changes in persistent software attributes (PSAs), including
reliability, scalability, efficiency, adaptability, maintainabil-
ity, and portability. The same situation occurs in evolution-
oriented processes [7], where many small increments are rou-
tinely added to the base system. What is needed are quality
assurance (QA) techniques that can coordinate remote devel-
opers and cope with frequent software changes by detecting,
diagnosing, and helping fix faulty and/or inefficient changes
as quickly and automatically as possible.

In addition, QoS-intensive software needs to be fine-tuned
to specific (and often changing) user platforms/contexts to
meet its performance requirements. This is commonly done
by (re)adjusting a large set of (10’s-100’s) configuration op-
tions that control parameters such as different workloads; op-
erating system, middleware and application feature sets; com-
piler flags; and/or run-time optimization settings. Moreover,
the configuration options that maximize QoS for a particular
set of hardware, OS and compiler platforms may not produce
optimal QoS for a different platform combination.

While this “explosion” in thesoftware configuration space
promotes adaptability and portability, it places enormous de-
mands on the developers who must must ensure that their de-
cisions and modifications work across this large (and often
changing) configuration space. In fact, experience has shown
that thereliability, portability, and efficiencyPSAs of QoS-
intensive software cannot be assured without extensive QA on
a range of requirements and operating environments [6].

In practice, however, budgets for development and in-house
QA are limited. Therefore, developers often can only assess
PSAs on a few software configurations and then extrapolate to
the entire configuration space. This allows many sources of
PSA degradation to escape detection until systems are fielded.
Moreover, those few in-house tested software configurations
are often selected in anad hocmanner so PSAs are not eval-
uated systematically. What is needed are QA techniques that
can cope with exploding software configuration and validation
spaces.
Addressing PSA challenges with distributed continuous
quality assurance and model-driven techniques. Two
promising techniques for addressing the QA challenges de-
scribed above includedistributed continuous quality assur-

1



ance (DCQA)and model-driventechniques. DCQA tech-
niques are designed to improve PSAs iteratively, opportunis-
tically, efficiently, and continuously in multiple, geograph-
ically distributed locations [6]. In particular, DCQA tech-
niques have been shown to help assure theportability and re-
liability PSAs of QoS-intensive software by validating func-
tional correctness and QoS satisfaction across a wide range
of hardware, OS, network, and compiler platforms. For ex-
ample, theSkoll DCQA environment (www.cs.umd.edu/
projects/skoll ) provides a framework for executing a
variety of QA tasks continuously across a grid of computers
distributed around the world and analyzing the results to evalu-
ate PSAs. Likewise, the Dart DCQA environment (public.
kitware.com/Dart ) supports a continuous build/test pro-
cess that starts whenever repository check-ins occur.

Model-driven techniques help to minimize the development,
validation, and evolution effort associated with DCQA activ-
ities by capturing the customizability of QoS-intensive soft-
ware within higher-level models that help to automate the
analysis and synthesis of various artifacts, such as compo-
nent interfaces, implementations, and glue code; configura-
tion files; and deployment scripts [3]. In particular, model-
driven techniques help assure thecorrectness, maintenance,
and portingPSAs of QoS-intensive software by automatically
generating artifacts required for QA activities, such as regres-
sion testing and performance benchmarking. For example,
the Options Configuration Modeling language (OCML) [9] al-
lows developers to model middleware configuration options as
high-level models. Likewise, the Benchmarking Generation
Modeling Language (BGML) [4] allows developers to auto-
matically generate sophisticated benchmarking experiments.

This article describes how model-driven DCQA processes
and tools can work separately and together to help mon-
itor, safeguard, enforce, and reassert desirable PSAs af-
ter changes occur in QoS-intensive software. In particu-
lar, we describe two DCQA processes implemented in the
model-driven Skoll environment that help to ensure PSAs re-
lated to both correctness and performance across large con-
figuration spaces. To validate our approach, we present
results from applying our model-driven DCQA processes
and tools on ACE+TAO (www.dre.vanderbilt.edu/
Download.html ), which are widely-used QoS-enabled
middleware consisting of�2,000,000 lines of continuously
evolving C++ frameworks, functional regression tests, and
performance benchmarks contained in�4,500 files that av-
erage over 300 CVS commits per week. Our results show
that (1) DCQA techniques improve the ability of developers to
detect and pinpoint software portability and availability prob-
lems, (2) integrating DCQA and model-driven techniques can
significantly enhance the process of identifying key subsets of
options that affect PSAs, and (3) monitoring only these se-
lected options helps developers understand effects of system

changes based on these PSAs with an acceptable level of ef-
fort.

Related work. Our model-driven DCQA techniques build
upon earlier efforts that address limitations with conventional
in-house QA processes. As described below, these efforts
gather various types of information from distributed run-time
environments and usage patterns encounteredin the field, i.e.,
on user target platforms with user configuration options.

Online crash reporting systems, such as the Netscape Qual-
ity Feedback Agent and Microsoft XP Error Reporting, gather
system state at a central location whenever a fielded system
crashes, which simplifies user participation in QA by automat-
ing certain aspects of problem reporting. Likewise, many pop-
ular open-source projects usedistributed regression test suites
that end-users can run to evaluate installation success. Well-
known examples include GNU GCC, CPAN, Mozilla, the Vi-
sualization Toolkit (VTK), and ACE+TAO.

Auto-build scoreboardsare a more proactive form of
distributed regression test suites that allow software to
be built/tested at multiple sites on various hardware, op-
erating system, and compiler platforms. The Mozilla
Tinderbox (www.mozilla.org/tinderbox.html ) and
ACE+TAO Virtual Scoreboard (www.dre.vanderbilt.
edu/scoreboard/ ) are auto-build scoreboards that track
end-user build results across various platforms. Bugs are re-
ported via problem tracking systems (such as Bugzilla or Jira),
which provides inter-bug dependency recording, advanced re-
porting capabilities, extensive configurability, and integration
with automated software configuration management systems,
such as CVS or Clearcase.

Although these prior efforts have provided a good starting
point, they have several limitations. For example, they have a
limited focus, ignoring PSAs related to QoS and performance
issues. Our approach can be customized to address a wide va-
riety of PSAs. Moreover, while these efforts help document
and automate portions of the QA process, the decision ofwhat
and when to test it is left to users. In contrast, the model-
driven DCQA techniques described in this paper enable devel-
opers to control key aspects of the QA process, thereby min-
imizing gaps and inefficiencies. As discussed below, our ap-
proach can exploit incremental results and selectively ignore
problems discovered earlier, which avoids wasting resources
that could otherwise be devoted to identifying other problems.

2 Applying Model-driven DCQA Tech-
niques to Address PSA Challenges

To maintain and evaluate PSAs across large configuration
spaces, we have developed themodel-driven Skollenviron-
ment to support DCQA. We use these processes to evaluate

2



PSAs (such as latency, throughput, and correctness) “around-
the-world, around-the-clock.” To do this, Skoll’s modeling
tools divide the overall QA process into multiple subtasks,
e.g., running regression tests in a particular system configu-
ration, evaluating system response time under a different input
workloads, or measuring usage errors for a system with sev-
eral alternative GUI designs. As illustrated in Figure 1, these

Skoll Client
Group #12

Skoll Client
Group #32

Central Collection
Site

DCQA Model
•Configuration model,
•Automatic characterization
•Adaptation strategies
• ISA
•….

DCQA Model
•Configuration model,
•Automatic characterization
•Adaptation strategies
• ISA
•….

IDL
Script
files .cpp

.xml

Configuration 
artifacts from models

Figure 1:The Skoll Model-driven DCQA Architecture

tasks are then intelligently and continuously distributed to –
and executed by – Skoll clients across a grid of computing re-
sources contributed by end-users and distributed development
teams. The results of these evaluations are returned to a server
at a central collection site, where they are fused together to
guide subsequent iterations of Skoll DCQA processes.

This section describes some of the components and services
provided by the model-driven Skoll environment so that de-
velopers can implement and analyze DCQA processes. In par-
ticular, Skoll [6] provides languages for modeling system con-
figurations and their constraints, algorithms for scheduling and
remotely executing tasks, and analysis techniques for charac-
terizing faults. Finally, we show how developers use Skoll to
implement and execute large-scale, PSA-specific DCQA pro-
cesses.

2.1 Managing PSA Challenges with Model-
driven Skoll

The cornerstone of Skoll is its formal model of a DCQA pro-
cess’s configuration space, which captures the valid configu-
rations for QA subtasks. A configuration in Skoll is repre-
sented formally as a setf (O1; S1), (O2; S2), : : : , (ON ; SN )
g, where eachOi is a configuration option andSi is its value,
drawn from the allowable settings ofOi. Since in practice
not all configurations make sense (e.g., feature X may not be
supported on operating system Y), we defineinter-option con-

straintsthat limit the setting of one option based on the setting
of another. We represent constraints as (Pi ! Pj), meaning
“if predicatePi evaluates toTRUE, then predicatePj must
evaluate toTRUE.” A predicatePk can be of the formA,
:A, A&B, AjB, or simplyOi = Sj , whereA, B are predi-
cates,Oi is an option andSj is one of its allowable settings.
A valid configurationis a configuration that violates no inter-
option constraints. Skoll uses this configuration space model
to plan global QA processes, adapt processes dynamically, and
aid in analyzing and interpreting results.

Since the configuration spaces can be quite large, Skoll has
anIntelligent Steering Agent(ISA) which controls DCQA pro-
cesses by deciding which valid configuration to allocate to
each incoming Skoll client request. When a client becomes
available, the ISA decides which subtask to assign it. To do
this, the ISA can consider many factors, including (1)the con-
figuration model, e.g., which characterizes the subtasks that
can legally be assigned, (2)the results of previous subtasks,
e.g., which captures what tasks have already been done and
whether the results were successful, (3)global process goals,
e.g., test popular configurations more than rarely used ones
or test recently changed features more than heavily than un-
changed features, and (4)client characteristics and prefer-
ences. The configuration must be compatible with physical
realities such as the OS running on the remote machine. Also,
client preferences, which are declared in a Skollclient tem-
platemust be respected. For example, suppose a product runs
in normal or superuser mode. A security conscious user might
only want configurations in which the mode is normal.

Once a valid configuration is chosen, the ISA packages the
corresponding QA subtask implementation into ajob config-
uration, which consists of the code artifacts, configuration
parameters, build instructions, and QA-specific code (e.g.,
developer-supplied regression/performance tests) associated
with a software project. The job configuration is then sent
to the requesting Skoll client, which executes the job config-
uration and returns the results to the ISA so it can learn from
the results and adapt the process. For example, if some con-
figurations fail to maintain certain PSAs, developers may want
to pinpoint the source of the problems or refocus on other un-
explored parts of the configuration space. To do this Skoll
process designers can develop customizedadaptation strate-
giesthat monitor the global process state, analyze it, and use
the information to modify future subtask assignments in ways
that improve process performance.

Skoll applies various model-driven tools that raise the level
of abstraction and reduce the accidental complexity of dealing
with Skoll’s internal formats. For example, Skoll employs the
Benchmarking Generation Modeling Language (BGML) [4]
that allows developers to (1) visually model interaction sce-
narios between configuration options and system components
using domain-specific building blocks, (2) automate genera-

3



tion of common parts of test code and reuse QA subtask code
across configurations, (3) generate control scripts to distribute
and execute the experiments across the Skoll grid to monitor
performance and functional behavior in a wide range of exe-
cution contexts, and (4) enable evaluation of multiple software
attributes such as correctness, throughput, latency, jitter, and
other criteria.

Since DCQA processes are complex we often need help to
interpret and leverage process results. Therefore a wide va-
riety of analysis tools can be plugged into Skoll. One such
tool we added to Skoll implements Classification Tree Analy-
sis (CTA) [2]. CTA’s output is a tree-based model that predicts
object class assignment based on the values of a subset of ob-
ject features. As we show in Section 3.1, we used CTA to
diagnose which specific options and option settings were most
likely causing specific PSA test failures. This helped develop-
ers quickly identify the root causes of some failures.

2.2 An Example Model-driven DCQA Process

Figure 2 presents a high-level overview of how the BGML
tool described above has been employed with the Skoll
client/server infrastructure to support model-driven DCQA
processes. Below we present an example model-driven DCQA

text

Code
Generators

Skoll

Artifacts
IDL .cppScript

files

Internet

distribu
tedsyste
m

Target
Machine

2

3

4
Model

1

Avionics
Scenario

TIMER
20Hz

GPSGPS NAV DISP
NAV DISP

TIMER

40Hz

Figure 2:Using Model-Driven Skoll

process that illustrates the use and interactions of the Skoll
components and BMGL tool. This example focuses on an
avionics mission computing system [8] system developed us-
ing the ACE+TAO middleware described in Section 1.

Step 1: Define the application scenario. A developer
uses BGML to model the software system and PSA-specific
evaluation activities. Specifically, the models are visually

composed via the Generic Modeling Environment (GME)
model-driven toolsuite (www.isis.vanderbilt.edu/
Projects/gme/ ). The resulting models detail the system’s
configuration options and inter-option constraints and capture
PSA-specific information, such as the metrics calculated in
a benchmarking experiment, the number and execution fre-
quency of low-level profiling probes, or event patterns to mon-
itor for or filter out of system logging server. For example, in
the mission computing scenario, we use a three component
BasicSPscenario that receives global position updates from a
GPS device and displays them at a GUI display in real-time.

Step 2: Create benchmarks using the model-driven BGML
tool. In theBasicSPscenario, theGPScomponent serves as
the source for multiple components requiring position updates
at a regular interval. This component’s concurrency mecha-
nism should therefore be tuned to serve multiple requests si-
multaneously in parallel. Moreover, the requirements that the
desired data request and the display frequencies are fixed at 40
Hz is captured in within the models. The BGML model in-
terpreter processes these models to generate the lower-level
XML based configuration files, the required benchmarking
code (e.g., IDL files, required header and source files), and
necessary script files to for executing the DCQA process. This
step reduces accidental complexities associated with tedious
and error-prone handcrafting of source code for a potentially
large set of configurations. The configuration file is input to
the ISA, which schedules the subtasks to execute as clients
become available.

Step 3: Register and download clients. Remote users reg-
ister with the Skoll infrastructure and obtain the Skoll client
software and configuration template that was generated by the
BGML model interpreter. Clients can run periodically at user-
specified times, continuously, or on-demand.

Step 4: Execute DCQA Process. As each client request
arrives, the ISA examines its internal rule base and Skoll
databases and selects a valid configuration, packages the job
configuration, and sends it to the client. The client executes
it and returns the results to the Skoll server, which updates its
databases and executes any adaptation strategies triggered by
the new results.

3 Evaluating Correctness and Perfor-
mance of QoS-Intensive Software

Ensuring the (re)usability of QoS-intensive software requires
that it be adaptable and portable,i.e., it should be configurable
to run efficiently, robustly, and predictably on a wide range of
hardware, OS, network, and compiler platforms that provide
fine-grained knobs to tune QoS behavior. It is therefore impor-
tant that functional correctness be verified and QoS properties

4



be validated for the configured operating contexts and environ-
ments. This section describes several feasibility studies that
how Skoll can be used to assess and assure PSAs associated
with functional correctness and run-time performance.

3.1 Evaluating Functional Correctness Across
Large Configuration Spaces

Our first study examine three scenarios in which we test dif-
ferent PSAs of ACE+TAO across its numerous configurations,
exploring the following hypotheses:

1. Our DCQA process helps to strengthen system-wide
PSAs, such as portability and correctness.

2. The DCQA process can be easily used to quickly iden-
tify problems with software portability and compile-/run-
time customizations.

We implemented the DCQA processes using the model-
driven Skoll environment and then installed Skoll clients and
one Skoll server across 10+ workstations distributed across a
network. All clients ran Linux 2.4.9-3 and used gcc 2.96 as
their compiler (we used a single OS and compiler to simplify
the initial study and analysis, but have since run other studies
across multiple operating systems and compilers). We then ap-
plied functional correctness QA task scenarios to ACE v5.2.3
and TAO v1.2.3 to check for clean compilation and perform
regression testing with both default and configurable run-time
options.

3.1.1 Scenario 1: Clean Compilation

Scenario 1 assessed whether each ACE+TAO feature combi-
nation compiled without error. We selected 10 binary-valued
compile-time options that control build time inclusion of fea-
tures, such as asynchronous messaging, use of software inter-
ceptors, and user-specified messaging policies1. We also iden-
tified 7 inter-option constraints,e.g., (A = 1 �! B = 0),
which means that if option A is enabled then option B has to
be disabled. The configuration space chosen has a total of 89
valid configurations.

By executing the process we determined that 60 of the 89
valid configurations did not even build – which was a quite
surprise to the ACE+TAO developers! Using CTA analysis
on the results we, for example, automatically characterized
a previously undiscovered bug. This bug centered on a par-
ticular line within the TAO source code and occurred in ex-
actly 8 configurations each of which shared a particular pair
of options settings. Using our model-driven DCQA environ-
ment and process, we therefore successfully assessed the error-
free compilation attribute of ACE+TAO, which is a necessary

1A detailed explanation of the many ACE+TAO configuration options are
available fromwww.dre.vanderbilt/TAO/docs/

(though not a sufficient) condition to validate the functional
correctness PSA.

3.1.2 Scenario 2: Testing with Default Run-Time Options

Scenario 2 assessed the portability and correctness PSAs of
ACE+TAO by executing regression tests on each compile-time
configuration using the default run-time options (i.e., the con-
figuration new users encounter upon installation). We used
the 96 regression tests that are distributed with ACE+TAO,
each containing its own oracle and reporting success or fail-
ure on exit. We expanded the configuration model to include
options that captured low-level OS and compiler information,
e.g., indicating the use of static vs. dynamic libraries, multi-
threading vs. singlethreading, and inlining vs. non-inlining.
Also, some ACE+TAO tests can only run in particular config-
urations (such as when the multithreading is selected), so we
also adding test-specific options to the configuration space.

The new test-specific options contain one option per test,
(run(Ti)), which indicates if that testTi is runnable in a given
compile-time configuration. We also defined constraints over
these options,e.g., some tests should run only on configura-
tions that have more than Minimum CORBA features. After
making these changes, the space now had 14 compile time op-
tions with 12 constraints and an additional 120 test-specific
constraints.

After resolving the constraints, we compiled 2,077 individ-
ual tests, of which 98 did not compile and 1,979 did. Of these
1,979 tests, 152 failed, while 1,827 passed. This process took
�52 hours of computer time on the Skoll grid available for the
experiments.

In several cases, tests failed for the same reason in the
same configurations. For example, CTA analysis showed that
test compilation failed at a given file for the following op-
tion settings (CORBA MSG = 1 andPOLLER = 0 and
CALLBACK = 0). This compilation error stemmed from
a previously undiscovered bug that occurred because certain
TAO files assumed these settings were invalid and thus could
not occur. Using our model-driven DCQA environment and
process, we were therefore able to determine whether the cur-
rent version of ACE+TAO successfully completes all regres-
sion tests in its default configuration.

3.1.3 Scenario 3: Regression Testing with Configurable
Run-Time Options

The goal of scenario 3 involved assessing the portability of
ACE+TAO via execution-based test cases and run-time op-
tions by executing the ACE+TAO regression tests over all set-
tings of their run-time options (such as when to flush cached
connections or what concurrency strategies the ORB should
support. See Table 1 for a summary of option settings). We

5



Name Possible Settings
ORBCollocation global, per-orb, NO
ORBConnectionPurgingStrategylru, lfu, fifo, null
ORBFlushingStrategy leaderfollower,

reactive, blocking
ORBConcurrency reactive,

thread-per-connection
ORBClientConnectionHandler MT, ST, RW
ORBConnectStrategy Blocked, Reactive, LF

Table 1: Six ACE+TAO Run-Time Options and their Set-
tings.

modified the configuration model to reflect 6 run-time configu-
ration options. Overall, there were 648 different combinations
of CORBA run-time policies

After making these changes, the compile-time option space
had 14 options and 12 constraints, there were 120 test-specific
constraints, and 6 run-time options with no new constraints.
Thus, the configuration space for this scenario grew to 18,792
valid configurations (648 run-time x 29 compile-time config-
urations). At roughly 30 minutes per testsuite, the entire test
process involved around 9,400 hours of computer time on the
Skoll grid.

Several tests failed in this scenario, even though they had
not failed in scenario 2 when they were run with default run-
time options. These problems were often located in feature-
specific code. Interestingly, some tests failed on every single
configuration (including the default configuration tested ear-
lier), despite succeeding in Scenario 2! These problems were
often caused by bugs in option setting and processing code.
ACE+TAO developers were intrigued by these findings be-
cause in practice they rely heavily on testing by users at in-
stallation time (scenario 2) to verify proper installation and
provide feedback on system correctness. Our feasibility study
raises some questions about the adequacy of that approach.

Another group of tests had particularly interesting failure
patterns. Three of these tests failed between 2,500 and 4,400
times (out of 18,792 executions). We discovered that the fail-
ures occurred only whenORBCollocation = NO was se-
lected (i.e., no other option influenced these failures). This op-
tion allows objects within the same address space to commu-
nicate directly, saving (de)marshaling and protocol processing
overhead. The fact that these tests worked when objects com-
municated directly – but failed when they talked over the net-
work – suggested a problem related to message passing. In
fact, the source of the problem was a bug in the ACE+TAO
routines for (de)marshaling object references. Our DCQA
process thus helped us to not only systematically evaluate the
functional correctness PSA across many different runtime con-
figurations, but also leveraged that information to help pin-

point the causes of specific failures.

3.2 Identifying Performance Degradation
Across Large Configuration Spaces

As QoS-intensive software evolves, developers often run
benchmark tests to check for unintended side effects on per-
formance. As with testing, benchmarking highly configurable
QoS-intensive software systems is difficult due to their enor-
mous configuration spaces. This problem is compounded for
evolving systems in which the the number of configurations
that can be routinely examined before the system changes
again is severely limited. As a result, developers only have
a limited view of their system’s performance PSAs, so prob-
lems not readily seen in the few tested configurations can (and
do) escape detection until such systems are fielded.

Another challenge is that developers often have to handcraft
individual QA tasks (such as regression test cases and bench-
marking experiments) to evaluate key performance-related
PSAs,e.g., by writing such code as interface definitions, com-
ponent implementations, client test applications and scaffold-
ing and startup code. Of course, manually writing this code
is error-prone since each step may be repeated many times for
every QA experiment during each (re)validation phase.

To address these problems, we used model-driven Skoll to
develop and implement a new DCQA process we callmain
effects screening. Main effects screening tries torapidlydetect
degradations in performance PSAs across a large configuration
space whenever the system changes. At a high level, main
effects screening involves the following steps:

1. Compute a formalexperimental designbased on the sys-
tem’s configuration model. Our approach uses a class
of experimental designs calledscreening designs[10],
which are highly economical and can reveal significant
low order effects(such as individual option settings and
option pairs/triples) that significantly affect performance.
We call these most influential option settings “main ef-
fects.” The tradeoff is that these designs (and the main
effects screening process itself) are inappropriate for sys-
tems with many significant higher order effects.

2. Execute that experimental design across the DCQA
DCQA grid. Each task involves running and measuring
benchmarks on a single configuration dictated by the ex-
perimental design devised in step 1. We used the model-
driven BGML tool to simplify benchmark creation, exe-
cution, and analysis.

3. Collect and analyze the data to identify the main effects.
The significance level that demarcates influential options
can be set by developers.

Now we shift our QA process back to in-house resources.
Whenever the software changes we evaluate all combinations

6



Option Index Option Name Option Settings
o1 ORBReactorThreadQueue fFIFO, LIFOg
o2 ORBClientConnectionHandler fRW, MTg
o3 ORBReactorMaskSignals f0, 1g
o4 ORBConnectionPurgingStrategy fLRU, LFUg
o5 ORBConnectionCachePurgePercentage f10, 40g
o6 ORBConnectionCacheLock fthread, nullg
o7 ORBCorbaObjectLock fthread, nullg
o8 ORBObjectKeyTableLock fthread, nullg
o9 ORBInputCDRAllocator fthread, nullg
o10 ORBConcurrency freactive, thread-per-connectiong
o11 ORBActiveObjectMapSize f32, 128g
o12 ORBUseridPolicyDemuxStrategy flinear, dynamicg
o13 ORBSystemidPolicyDemuxStrategy flinear, dynamicg
o14 ORBUniqueidPolicyReverseDemuxStrategy flinear, dynamicg

Table 2:ACE+TAO Options and their Settings

of the main effects (while defaulting or randomizing all other
options). We can do this quickly in-house because the set of
main effects options is much smaller than the total configu-
ration space. Our hope is that the performances of the main
effects set mirrors those of the entire configuration space. If
true, we can get nearly the same information as from exhaus-
tive testing at a fraction of the cost.

Since the main effects can change over time, the process can
be restarted periodically to recalibrate the main effects options.
Recalibration frequency will depend on how and how fast the
system changes.

We now show results from a two-phase feasibility study that
explored the following hypotheses:

1. Main effects screening quickly identifies a small subset
of options whose effect on performance is significant, al-
lowing the rapid identification and monitoring of the soft-
ware’s performance attributes.

2. Evaluating all combinations of the main effects set pro-
duces performance data that is (1) representative of
the system’s performance across the entire configuration
space and (2) more representative of the overall perfor-
mance than that produced by observing a similarly-sized
random sample of configurations.

Below, we describe the four steps we followed to evaluate
the main effects DCQA process.

Step 1: Define the application scenario. As a result of
changes to the ACE+TAO message queuing strategy, ACE+-
TAO developers want to monitor (1) the latency for each re-
quest and (2) total message throughput (events/second) be-
tween the ACE+TAO client and server. For this version of
ACE+TAO, the developers identified 14 run-time options they
felt affected latency and throughput. Each option is binary
as shown in Table 2 and the entire configuration space is
214 = 16; 384.

Step 2: Create benchmarks using the model-driven BGML
tool. ACE+TAO developers used BGML (Section 2.1) to
compose benchmarking experiments, which involved graph-
ically modeling the desired number of clients and servers,
workload characteristics, and performance metrics to be cal-
culated. The graphical model is then interpreted to produce a
large portion of the benchmarking code (over 90%).

Step 3: Apply the main effects screening process.This
step creates aresolution IVscreening design, which computes
effects involving either one or two options, while assuming
that no significant higher order effects exist (in the interests of
space we have not included the statistical details of comput-
ing and interpreting screening designs, which are described
in Wu [10]). The final screening design examines only 32
configurations of the 16,384 total configurations. Note that
benchmarking the entire configuration space takes over 48
CPU hours, while benchmarking the screening design takes
less than 6 minutes.

Step 4: Compare to exhaustive and random testing. For
comparison purposes, we collected performance data for the
entire configuration space. We also conducted random sam-
ples from this data to do further comparisons.

After performing these 4 steps and analyzing the results,
we found that only options o2 and o10 had a significant ef-
fect on latency and throughout across the entire configuration
space. These results surprised ACE+TAO developers since
they thought that all 14 run-time options would contribute
substantially to latency and throughput. Our analysis of the
screening design data give the same results. We were there-
fore able to get accurate data at1

512 th
the cost.

In the second phase of the process we used the information
that o2 and o10 are important options to generate all possible
(in this case 4) configurations for the binary options o2 and
o10. Default values were assigned to the remaining options.

7



We then measured latency and throughput on the benchmark
test applications.

Our results showed that the performance distributions ob-
tained from the main effects set were similar to the ones ob-
tained from the exhaustive runs at a fraction of the cost. In
contrast, randomly sampled configurations (i.e., 4 chosen at
random) produced very different data. It would therefore be
an unreliable indicator of performance degradation following
system changes. Table 3 shows the percentage of observa-
tions for each performance metric in the entire configuration
space that fall into the range of the observations obtained from
screening and random designs.

Metric Screening Random
latency 77% 46%
latency variance 64% 30%
throughput 75% 55%

Table 3:Range of Performance Metrics Covered by Screen-
ing and Random Design

4 Concluding Remarks

This article motivated the need for – and design of – model-
driven distributed continuous quality assurance (DCQA) pro-
cesses and showed several examples of how these processes
can be used by developers of QoS-intensive software to help
assess and assure persistent software attributes (PSAs). We
rapidly implemented two such DCQA processes using model-
driven tools, executed them in the Skoll environment, and
demonstrated their effectiveness via several feasibility studies
involving the widely used ACE+TAO middleware.

These studies, presented in Section 3 showed how DCQA
processes helped ensure key PSAs, such as functional correct-
ness, maintainability, portability, and efficiency by: (1)moni-
toring (e.g., the clean compilation scenarios described in Sec-
tion 3.1.1), (2)safeguarding(e.g., via feedback to developers
on failing configurations and its isolation as described in Sec-
tion 3.1.3), (3)summarizing(e.g., via identification of main
effects configurations that highly influence QoS as described
in Section 3.2), and (4)reasserting(e.g., via rerunning tests
to validate main effects options) these attributes on a range
of platforms. They also showed how Skoll-based DCQA pro-
cesses reduced the level of effort – both in time and resources –
required to assure the PSAs mentioned above in rapidly chang-
ing environments characterized by a multitude of configura-
tion options and diverse OS/compiler platforms.

Despite our initial progress, much work remains to be done.
For example, currently the overhead of specifying DCQA pro-
cesses is more than we would like. We also do not yet support
QA tasks that require human evaluation, such as evaluating
usability or code maintainability. Moreover, our experiments

thus far show that Skoll works best if we have a large number
of client machines to run the experiments, so recruiting users
to donate their computing resources – and assuring the security
of these resources – is becoming increasingly important.

It’s also important to note that the work presented here is
only an initial foray into a broader R&D agenda on DCQA
processes forRemote Analysis and Measurement of Software
Systems(RAMSS) (seemeasure.cc.gt.atl.ga.us/
ramss ). To date, only a handful of research efforts [7, 1, 5, 6]
have studied such processes systematically, so there are many
unresolved challenges and risks, such as how best to struc-
ture DCQA processes, what types of QA tasks can be dis-
tributed effectively, and how the costs/benefits of DCQA pro-
cesses compare to conventional in-house QA processes. To
address these issues, we are working with other researchers in
the RAMSS community to develop tools, services, and algo-
rithms needed to create, prototype, and evaluate various types
of DCQA processes focused on functional testing, QoS evalu-
ation, and usage profiling of highly configurable software pro-
gram families.

References
[1] J. Bowring, A. Orso, and M. J. Harrold. Monitoring deployed software

using software tomography. InProceedings of the 2002 ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools And Engi-
neering, pages 2–9. ACM Press, 2002.

[2] L. Breiman, J. Freidman, R. Olshen, and C. Stone.Classification and
Regression Trees. Wadsworth, Monterey, CA, 1984.

[3] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-Integrated
Development of Embedded Software.Proceedings of the IEEE,
91(1):145–164, Jan. 2003.

[4] A. S. Krishna, N. Wang, B. Natarajan, A. Gokhale, D. C. Schmidt, and
G. Thaker. CCMPerf: A Benchmarking Tool for CORBA Component
Model Implementations. InProceedings of the 10th Real-time Technol-
ogy and Application Symposium (RTAS ’04), Toronto, CA, May 2004.
IEEE.

[5] B. Liblit, A. Aiken, and A. X. Zheng. Distributed program sampling. In
Proceedings of ACM Programming Languages Design and Implementa-
tion (PLDI) ’03, San Diego, California, June 2003.

[6] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. C. Schmidt, and
B. Natarajan. Skoll: Distributed Continuous Quality Assurance. InPro-
ceedings of the 26th IEEE/ACM International Conference on Software
Engineering, Edinburgh, Scotland, May 2004. IEEE/ACM.

[7] A. Orso, D. Liang, M. J. Harrold, and R. Lipton. Gamma system: Con-
tinuous evolution of software after deployment. InProceedings of the
International Symposium on Software Testing and Analysis, pages 65–
69. ACM Press, 2002.

[8] D. C. Sharp and W. C. Roll. Model-Based Integration of Reusable
Component-Based Avionics System. InProceedings of the Workshop
on Model-Driven Embedded Systems in RTAS 2003, May 2003.

[9] E. Turkay, A. Gokhale, and B. Natarajan. Addressing the Middleware
Configuration Challenges using Model-based Techniques. InProceed-
ings of the 42nd Annual Southeast Conference, Huntsville, AL, Apr.
2004. ACM.

[10] C. F. J. Wu and M. Hamada.Experiments: Planning, Analysis, and
Parameter Design Optimization. Wiley, 2000.

8


