
0

Using Aspect-GAMMA in Design and Verification
of Embedded Systems

(Extended Abstract)

Mohammad Mousavi*, Giovanni Russello*, Michel Chaudron*, Michel Reniers*, Twan Basten*,
Angelo Corsaro

�

, Sandeep Shukla
�

, Rajesh Gupta
�

and Douglas C. Schmidt
�

* Technische Universiteit Eindhoven (TU/e),
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

�

University of California at Irvine
Irvine, CA 9269

Corresponding Author: Mohammad Mousavi
Address:Technische Universiteit Eindhoven (TU/e),
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
Email: m.r.mousavi@tue.nl
Telephone: +31-40-247 8224
Fax: +31-40-247 2078

An extended abstract for submission to HLDVT 2002.
Area: Formal Verification Methods, High Level Design Validation

1

I. INTRODUCTION

Separation of concerns is one of the concepts at the core of modern system design and evolution. It has been advocated as a
key principle for reducing the complexity of developing large-scale systems [10], [7].

In particular, in [7], orthogonalization of concerns has been illustrated in the context of embedded system design. This work
advocates capturing the design intent at the highest possible level of abstraction, and separate the timing, concurrency, and com-
munication concerns. However, since this methodology is couched in the platform-based design methodology, the highest level
of abstraction in most cases is in the form of Finite State Machines of some kind. In this work, we propose raising the level of
abstraction, and separating concerns from the very inception of the ideas of the system under design. From our perspective, finite
state machines already mix control, data-flow concerns in the system.

Separation of concerns (esp. the cross-cutting ones) brings about the following benefits in design, verification and implementa-
tion phases:

1) More focused design, and lighter verification. One of the main difficulties in the design of some concerns is that they
usually crosscut the responsibility of several encapsulation units (components, modules, or objects). Thus a design time
separation of concerns allows for a more focused design method that gathers cross-cutting concerns in their dedicated
place. Furthermore, properties related to a concern (set of concerns) can be verified by looking at the particular concern
(combination of concerns).

2) Localized change. In this paradigm making and tracking changes is localized to the involved aspects. Subsequently, a
(possibly automated) weaving process spreads the consequences of change to the composed behavior of system.

3) Abstractness from other modeling methods. By using separate modeling techniques for different aspect, one may decide to
change the modeling formalism of one aspect and still be able to use the other aspect models.

This paper combines a formal design framework, which is based on a multi-set transformation language called GAMMA
[1], [2], with aspect-oriented development concepts from software engineering [4], [8]. We refer to design concerns as aspects
following the software terminology. We illustrate how having a tailor-made formalism for each aspect that is abstracted from other
aspects is a key benefit of such a formal design framework. To clarify our discussions, we sketch an architecture specification and
design method for Distributed Real-time Embedded (DRE) systems.

In this abstract, we propose separating the concerns of computation, coordination, timing, and distribution, through different
simple and abstract notations for these aspects. We also propose a weaving process that maps combination of these different
aspects to the formal semantic domains.

The remainder of this paper is organized as follows: Section II discusses computation, coordination, timing, and distribution as
different aspects of a design and suggests languages/notations to specify them. Section III contains a simple model of weaving the
functional and non-functional aspects in a single semantic model. Section IV presents the case study that we work on using our
design method. Section V provides concluding remarks and research directions. For sake of brevity we do not present detailed
formalities of aspect modeling languages in this abstract and sketch the overall design criteria.

II. EXPLORING ASPECTS

This section focuses on the specification of computation and the three aspects coordination, timing, and distribution. We use
a subset of GAMMA for specifying basic component functionalities (computations) and present its distinguishing features. We
then present some ideas about specifying other aspects.

A. Modeling Computation with GAMMA

GAMMA is an abstract language, based on multi-set rewriting on a shared data-space, designed to support scalable parallel
execution of a program on parallel and/or distributed architectures [2], [1]. The basic and atomic piece of functionality in GAMMA
is the rule.

In this research, we focus on a subset of GAMMA involving the specification of basic rules. We thus factor out structuring
decisions (present in the calculus of GAMMA [5]) and make them a separate aspect model, namely the coordination model.

The syntax of a simple GAMMA program is given in Figure 1. A GAMMA program consists of a non-empty set of rules, each

���������	��
 ��������	�����	��
�����
�������������! �"
�������# ������������%$��������'&��������!
������� ��������������(��
)�*,+-����.0/1 2�3.�465�798:;+<����.0/� #�3.�4=5�79>@?6��ACB�/D.0/E��A
+-����.F/� #�G.�46527H�����I�$�J��� #/EK�46527L$�J��� #/EK�46527M&�+-����.F/� #�G.�46527
J��� #/EK�465�7 ����ONC���!/E��P!����$Q?6��A' #.F��AC.�$'R�NC���!/E��P!����&�J��� #/EK�46527TS�$UR#?6��AU 2.F��AV.#&�J��� #/EK�46527TS

Fig. 1. Basic GAMMA Syntax

rewriting the content of the shared multi-set of data items. Execution of a program consists of applying rules to the multi-set in

2

arbitrary orders (sequential or parallel). Each rule consists of a set of terms valuated by multi-set content values (this replacement
is not necessarily unique for a specific rule and multi-set). If a certain valuation of variables satisfies the condition in a rule,
applying the rule results in removing the left-hand side valuations from the multi-set and replacing them by the valuation of
the right-hand side expression. We use propositional logic formulas for condition part throughout this paper. In [12], a formal
operational semantics for GAMMA is given in the style of Plotkin [11].

Henceforth, the GAMMA model is only concerned with basic functionalities in the form of a simple input-computation-output
pattern that abstracts from the following details:

1) Relative ordering of actions (coordination). Basic functionalities (rules) are specified independently of each other. Hence,
no special ordering of actions (control structure) is imposed on this particular specification.

2) Timing. The basic GAMMA model does not include any information about timing. Since it abstracts from ordering of
actions, even a qualitative (causal) notion of time is not present in the GAMMA model.

3) Distribution. For any distributed system, the shared data-space is an abstraction that eases the programming, yet must be
distributed in the implementation.

4) Hardware resources. Chaotic behavior of GAMMA programs include all possible levels of true concurrency. This means
that the semantic model of a GAMMA program is general enough to be adopted to any particular hardware architecture that
allows a certain level of true concurrency. In other words, adding information about hardware resources as an aspect will
refine the GAMMA model to a particular platform dependent program.

5) Fault tolerance. The GAMMA execution model requires programs to be designed in such a way that duplicated execution
of atomic actions of a program cannot affect the functionality. Hence, replication of actions can be added transparently to
the functional model.

This abstraction is the key issue in our approach since it allows several ways of restriction (refinement) of basic functionality
model by adding different (combinations of) the aspects.

B. Coordination

The goal of our coordination language is to specify restricted behavior of GAMMA programs by composing them in certain
orders. Hence, it should provide composition operators to structure execution and restrict behavior of GAMMA rules.

A coordination expression is basically composed of GAMMA rules, using rule-conditional (� :���� ���
meaning that if � can

be scheduled then it is scheduled and
�

is selected for execution afterwards, otherwise
�

is scheduled for execution), sequential
(�), parallel (

$�$
), or recursive operators (�
� �). Our coordination language is a process algebraic formalism that provides a formal

framework for different composition models on top of a single functionality. In [3], the relationship between the composition
models and computational complexity is studied.

C. Timing

Timing constraints are added to the specification to provide assertions regarding the execution time of GAMMA rules. This
time is relative to the point from which the rule is selected for execution (when the previous rule execution is finished). Hence,
there is an inter-dependency between overall end-to-end timing behavior of the design and both timing and coordination aspects.
We will return to these inter-dependencies in the weaving section.

We propose to add the timing aspect to a GAMMA specification by associating an interval to each rule name. This timing
representation keeps the syntactic specification of timing separate from rule definitions, and hence allows independent change of
both aspects. This method also allows a rule to have no timing assertion, which will be replaced by a default interval (

���C&����
) in

the weaving process.
Since GAMMA rules assume a shared access to data, the timing aspect does not specify any assumptions about the cost of

accessing the data items in a distributed setting. The above estimation is therefore only related to the computation time for each
functionality.

D. Distribution

Distribution as a separate concern, contains information about mapping sorts of data objects and rules to different locations.
Adding the distribution aspect, introduces inter-connections with the timing aspect in that a cost of access is associated for remote
data access. Thus, timing of individual components execution is changed when taking the distribution aspect into account.

The distribution aspect is modeled as a mapping between multi-set expressions (present in the GAMMA rules) to the physical
locations.

To specify distribution, we assume a set � containing rule names and a set � containing data types. Data types are used to
categorize data items used/produced by different rules. We do not specify how to assign this typing to variables and constants but
assume that there is a function from the sets of variables and constants to types. The set of locations is denoted by � .

Static distribution is defined as a function � .0��.0/EK���/1 2.(� R ����� S�:�� R � S , representing the locations of the data objects and
rules of each type. Note that we did not restrict locations to contain both data and processing (rules) and hence, a location may
represent a storage node or processing unit, or both.

3

4 �����G��.0��� ��� #.0�3
 � /EA�� ���3�'�# #.6 R	R�/EA � .F��7M&��0S!&G�	� S68: R�R	/EA � .0�27M&��FS#&3��A S#&��5�.������G�'�! #.6 R�R	��5�. � .F��7M&��0S!&G�	�9S 8: R�R	��5�. � .F��7M&��0S!&G��A S#&
)�
�3���V7 R	K� &��FS 8: R	K� &������GS6>
�������
�������� ��� �"! � ��� !#� R	R���5�. � .0�27M& ! S#&3�$� S&%(' ��� ��) � R	R�/EA � .F��76& ! S#&3�$� S*%+' ��� ��)�&
)�
�3� �(�
,6A R�K- &��0S 8: R�K- &��/.0�3S6>
��1�� �2�"! �3! ��� � R	R���5�. � .0�27 & ! S#&3�$� S*%4' ��� ��) � R�R	/EA � .0�27M& ! S#&3�$� S*%+' ��� ��)�&���3��B R	R���5�. � .0�27M&��FS#&3��A S68: R	R���5�. � .0�27 &��FS#&3�$� S6> R	K� &��FS*%4' ��� ��)�&

�'A'���3��B R�R	/EA � .0�27 &��0S!&G��A S68: R	R	/DA � .F��7M&��0S!&G�	� S6> R�K- &��0S&%(' ��� ��)�"

Fig. 2. GAMMA Program for the Elevator System

This general specification of distribution can be used to model more specific distribution policies, such as push and pull models.
For example in a push model, the distribution mapping should map any data type to its consumer side. In a pull model, however,
the data type remains on the producer side and should be accessed (fetched) from the producer by the consumer.

III. WEAVING ASPECTS

The idea of weaving is composing different aspects of design. In our case, we have to relate functionality, (coordination,)
timing, and distribution, and present them in one semantic model. The orthogonality of non-functional aspects allows the designer
of each aspect to neglect the other. As a result, the weaving process reflects change or even absence of one aspect in the whole
semantics. Henceforth, an ideal weaving process provides formal semantics for any (meaningful) combination of aspects.

Our proposal for a formal semantics of weaving consists of a timed transition system [6] with transitions of a GAMMA program
and timing consisting of computation time plus communication time.

We denote the computation time of a rule � by 56��798 R � S . As mentioned before, if there is no interval defined for a rule � ,
56��798 R � S results in

� �V& ���
. This function induces a by-name weaving method to relate GAMMA rules and their respective timing

estimations. In this paper, we assume that 5:��7;8 R � S works as a function returning the execution time estimation of a rule, if
available, or otherwise

���C&����
. Nevertheless, this assumption could be relaxed by allowing several intervals associated to a rule,

and hence letting 56��798 R � S return one of the intervals non-deterministically (or a set of intervals). This could be used to model the
situation where a rule has multiple possible execution times, depending e.g. on varying implementation environments.

To represent communication costs resulting from the distribution policy, we use the function 56��727 R � S , which returns the time
cost for making local copies of the data items needed for the execution of rule � . For a rule � , 56��7<7 R � S is computed by taking the
maximum of communication costs for all variables (of data items) = present in rule � , that reside in a different location than � . If
all the data needed for the execution of a rule is available at the location of the rule itself, we assume the communication cost to
be 0.

The simple time weaving function presented here can be extended by adding estimations for failed attempts to execute a rule,
or by defining the timing estimation as a function of multi-set size or contents. In GAMMA, rule implementations, computation
time and failure time may depend on the time for searching the multi-set to find the appropriate valuation. These two extensions
thus add to the practical value of the proposed method. Such extensions can illustrate the profit of the separation of concerns in
the method outlined in this paper.

IV. CASE STUDY: DESIGNING CONTROL OF AN ELEVATOR SYSTEM

We design the control software of an elevator system using our method and show how design concerns and correctness criteria
can be localized using this method.

Our elevator system consists of an elevator moving up and down between floors (numbered from 0 to
���
��>�-��� �) of a building

to service requests. On each floor there is a push button to announce a request for an elevator when turned
��A

. When an elevator
arrives on a floor, the request flag is turned

�$�
automatically. The same setting works for the push buttons inside the elevator,

which indicate the requested stops for passengers inside.
To model this distributed real-time system we propose a multi-set containing events requesting an elevator stop represented byR	R�/EA � .F��7M&��FS#& ����� ��? �GS and

R	R���5�. � .0�27M&��FS#&�� ��� ��? �3S that show the status of the request button for the
�
’th floor, inside and outside the

elevator, respectively. The tuple
R	K� &��FS

, shows where the elevator currently resides. The GAMMA program presented in figure 2,
represents the functionality aspect of the elevator system.

The initial multi-set for this system is defined as:
' ��� ��)� �VR	R	/DA � .F��76& ��S#&3�$� S!& � � � &3R	R	/DA � .F��76&�+-�G5�@=���3����S#&3�$� S#&R	R	��5�. � .F��76&���S#&3�$� S#& � � � &3R	R���5�. � .0�27 &�+-�G5�@=���3����S!&G�	�9S!&R	K� &���S

�	&

4

which shows that the elevator is at the ground floor initially and that there are no requests for the elevator.
The coordination aspect defines how basic functionalities are composed to define different control strategies. A simple strategy

is going up and down if there exists any request, and servicing them subsequently.
� �) = � � � � ' 5��)�� ? �)� R 	�� � R�� �
	 �)���?/) � ��S �� S�$�$R 	�� � R��)
 � �)���?/) � ��S �� S�$�$R 	�� � R�') ��= � 5)�� 8 � '�) ��= � 5)�� �� 	 S �� S'�) ��= � 5)� 8 	�� � R�R �-� ��� $�$?�	 �-� ���'S �R 7<��=)�� 8 : � S	S'�) ��= � 5)�� �� 	 	�� � R	R �-� ��� $�$?�	 �-� ���'S �R 7<��=)�� �� 	-: � S	S

The timing aspect of the case study consists of performance measures related to each basic operation in the elevator system
(consisting of going up and down, and servicing requests. Suppose that the following timing information is given about the
elevator system:

� Pushing an internal or external button does not take time at all:

��������������� �"! ��#�$%!&�'�(�����)�
! ���C&�� � �
� Going up and down between floors takes � .F� 7+* /E
��

for each floor:

��,.-0/0��12 �3,.-4/5�"67-089� � � .F� 7+* /E
��'& � .F� 7+* /E
�� � �
� The elevator will be loaded/unloaded within

+-/EA � �3�6�3/EK�� and
+-�G5 � �3�6�3/EK�� amount of time, depending on the number of

people and goods waiting for it:

�3:;-�<%= ������: -�<�= ��+-/EA � �3�6�3/EK��'&�+-�G5 � �3�6�3/EK�� � �
The timing information allows us to verify the timeliness of a functional specification, possibly for a given coordination,

assuming the aspects are appropriately weaved together.
Suppose that sensors for request buttons on each floor are connected to the elevator via a field-bus network. In this case,

accessing the distributed locations will take some time from the elevator. To specify this model of distribution, we assume a
location for the elevator and its internal buttons and a location for each external button. The distribution function for the elevator
system then looks like the following:

� .F��.F/EK���/� #.#R �5> 8)�R	R���5�. � .0�27M&��FS#&�� ��� ��? �3S	S6 �@? �-��� �%A "
� .F��.F/EK���/� #.#R �5> 8)�R	R�/EA � .F��7M&��FS#&������ ��? �GS�S6���) �) = � � � � "
� .F��.F/EK���/� #.#R �5> 8)�R	K�6&��0S�S ���) �) = � � � � "
� .F��.F/EK���/� #.#R���5�.�� ���3�'�# #.	S=��? �-��� � A $ �CB��DB +-�G5�@=���3����"

and for each rule � ? �) other than
��5�.������3�'�# #.

:

� .F��.F/EK �(/� #.#R � ? �)3S6 �) �) = � � � � "

This distribution policy defines where the GAMMA rules

)�
�3� �(�
,6A

and

)�
�3���V7

must look for remote copies of external
request values from distributed locations.

From a verification point of view, some basic un-timed properties of design can be verified using the semantics of GAMMA
and coordination. For more complicated timed properties however, the reasoning requires the weaved model containing timing
and distribution.

Example 1 Weaving of aspects of our elevator system. In Figure 3, a fragment of the timed transition system is given that results
from weaving the computation, timing and distribution of this system as described in previous examples. The transitions are
labeled by the name of the rule(s) that are executed, the timing estimation of the execution, and the communication cost. For
simplicity, only the relevant elements of the multi-set contents are represented in this figure. It is assumed that the time cost for
communicating data from one node to another is E � .

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we presented the main ideas behind our method for separation of concerns in the design of distributed real-time
embedded systems. The proposed method consists of separating aspects of functionality, coordination, timing and distribution
in the design phase, and providing a weaving mechanism to provide a formal semantics for composed aspects. This weaved
semantics enables us to have localized reasoning about properties of aspect models and their inter-relationships.

5

R�R	��5�. � .F��76&���S#&3��A S

��5�.������G�'�! 2. � � �V& � ��� E �
R�R	/EA � .0�27M& �3S#&3��ACS

)�
�3� �C76&G/EA������G�'�! 2.�� � � .0� 7 * /E
)�'& � .0� 7 * /E
)����� E �

R	R�/EA � .F��7M&���S!&G��ACS

R	R�/EA � .F��7M&���S!&G��ACS#&3R	K� &��GS

R	R�/EA � .F��7M&���S!&G��ACS#&3R	K� &���S

R	K� &���S

/DA������G�'�! #.M� ���C&�� �������C&�� �

)�
�3� �C7<� � � .F� 7+* /E
)� & � .F� 7+* /E
)����� E �
��"�G�����",6A � � � .F� 7 * /E
)�'& � .F� 7 * /E
)����� E �

)�
�3���V7<� � � .0� 7 * /D
��'& � .0� 7 * /D
�� ��� E �

�'A'���3��B � � +-/EA � �G�:�G/EK���&�+-�G5 � �3�6�3/EK�� �	� � �V& � �

Fig. 3. Fragment of the Timed Transition System after Weaving.

The main challenges in our future research are the following:
� Extension of the method sketched in this paper to other aspects such as hardware resources, power-awareness, fault-tolerance,

persistence, etc.
� Developing/studying logics for expressing properties of the aspect models and the weaving of those.� Performing case studies to validate the method.
� Developing automated design methods and tools that support the aspect weaving process the reasoning in the aspect models,

and the refinement towards implementation.

REFERENCES

[1] J.-P. Banâtre, P. Fradet, and D. Le Métayer. Gamma and the chemical reaction model: Fifteen years after. In C. S. Calude, G. Paun, G. Rozenberg, and
A. Salomaa, editors, Multiset Processing: Mathematical, Computer Science, and Molecular Computing Points of View, volume 2235 of Lecture Notes in
Computer Science, pages 17–44. Springer-Verlag, Berlin, 2001.

[2] J.-P. Banâtre and D. Le Métayer. Programming by multiset transformation. Communications of the ACM (CACM), 36(1):98–111, Jan. 1993.
[3] M. R. V. Chaudron. Separation of Correctness and Complexity in Algorithm Design. Technical Report 94-36, Leiden, The Netherlands, 1994.
[4] T. Elrad, R. E. Filman, and A. Bader. Special issue on aspect oriented programming. In Communications of ACM. ACM Press, 2001.
[5] C. L. Hankin, D. Le Métayer, and D. Sands. A calculus of Gamma programs. In Proceedings of the Fifth International Workshop on Languages and

Compilers for Parallel Machines, volume 757 of Lecture Notes in Computer Science, pages 342–355, Berlin, 1993. Springer-Verlag.
[6] T. A. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems. In J. W. de Bakker, K. Huizing, W. P. de Roever, and G. Rozenberg, editors, Proceedings

REX Workshop on Real-Time: Theory in Practice, Mook, The Netherlands, June 1991, volume 600 of Lecture Notes in Computer Science, pages 226–251,
Berlin, 1992. Springer-Verlag.

[7] K. Keutzer, A. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli. System-level design: orthogonalization of concerns and platform-based design. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 19(12):1523–1543, December 2000.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented Programming. In M. Aksit and S. Matsoka,
editors, Proceedings of the 11th European Conference on Object-Oriented Programming, volume 1241 of Lecture Notes in Computer Science, pages 220–
242, Berlin, June 1997. Springer-Verlag.

[9] M. Mousavi, T. Basten, M. Reniers, M. Chaudron, and G. Russello. Separating functionality, behaviour and time in the design of reactive systems: (GAMMA
+ coordination) + time. Technical Report, Department of Mathematics and Computer Science, Eindhoven University of Technology, To appear, 2002.

[10] P. Tarr and H. Ossher and W. Harrison and S.M. Sutton. N Degrees of Separation: Multi-Dimensional Separation of Concerns. In Proceedings of the
International Conference on Software Engineering (ICSE99), Los Angeles, CA, pages 107–199. ACM Press, May 1999.

[11] G. D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19, Computer Science Department, Aarhus University, Aarhus,
Denmark, Sept. 1981.

[12] M. Mousavi, T. Basten, M. Reniers, M. Chaudron, and G. Russello. Separating functionality, behaviour and time in the design of reactive systems: (GAMMA
+ coordination) + time. to appear, 2002.

