
Applying Patterns to Improve the
Performance of Fault Tolerant CORBA

Balachandran Natarajan Aniruddha Gokhale, Shalini Yajnik Douglas C. Schmidt
bala@cs.wustl.edu fagokhale, shalinig@lucent.com schmidt@uci.edu

Dept. of Computer Science Bell Laboratories Dept. of Electrical
and Computer Engineering

Washington University Lucent Technologies University of California

One Brookings Drive 600 Mountain Avenue 616E Engineering Tower
St. Louis, MO 63130 Murray Hill, NJ 07974 Irvine, CA 92697

This paper has been submitted as an invited paper to the
7th International Conference on High Performance Comput-
ing, ACM/IEEE, Bangalore, India, Dec. 17-20, 2000.

Abstract

An increasing number of mission-critical, embedded, telecom-
munications, and financial distributed systems are being de-
veloped using distributed object computing middleware, such
as CORBA. Applications for these systems often require the
underlying middleware, operating systems, and networks to
provide end-to-end quality of service (QoS) support to en-
hance their efficiency, predictability, scalability, and fault tol-
erance. The Object Management Group (OMG), which stan-
dardizes CORBA, has addressed many of these QoS require-
ments the recent Real-time CORBA and Fault Tolerant CORBA
specifications.

This paper provides two contributions to the study and de-
sign of CORBA middleware that provides multiple QoS prop-
erties. First, we describe results of experiments conducted to
measure the performance of a fault-tolerant CORBA services
framework called DOORS and illustrate how common imple-
mentation pitfalls can adversely affect its performance. Sec-
ond, we describe the patterns we are incorporating into the
DOORS fault-tolerant CORBA service to simultaneously im-
prove its performance and fault-tolerance.

1 Introduction

Emerging trends: Applications for next-generation dis-
tributed systems are increasingly being developed using stan-
dard services and protocols defined by distributed object com-
puting middleware, such as the Common Object Request Bro-
ker Architecture (CORBA) [1]. CORBA is a distributed object

computing middleware standard defined by the OMG that al-
lows clients to invoke operations on remote objects without
concern for where the object resides or what language the ob-
ject is written in [2]. In addition, CORBA shields applications
from non-portable details related to the OS/hardware platform
they run on and the communication protocols and networks
used to interconnect distributed objects. These features make
CORBA ideally suited to provide the core communication in-
frastructure for distributed applications.

A growing number of next-generation applications demand
varying degrees and forms of quality of service (QoS) sup-
port from their middleware, including efficiency, predictabil-
ity, scalability, and fault tolerance. In CORBA-based middle-
ware, this QoS support is provided by Object Request Broker
(ORB) endsystems [3]. ORB endsystems consist of network
interfaces, operating system I/O subsystems, CORBA ORBs,
and higher-level CORBA services.

Addressing middleware research challenges with patterns:
Our prior research on CORBA middleware has explored
many efficiency, predictability, and scalability aspects of
ORB endsystem design, including static [3] and dynamic [4]
scheduling, event processing [5], I/O subsystem [6] and plug-
gable protocol [7] integration, synchronous [8] and asyn-
chronous [9] ORB Core architectures, systematic benchmark-
ing of multiple ORBs [10], optimization principle patterns
for ORB performance [11], and measuring performance of a
CORBA fault-tolerant service [12]. This paper focuses on an-
other dimension in the ORB endsystem design space:applying
patterns to improve the performance of Fault Tolerant CORBA
(FT-CORBA) implementations.

A patternnames and describes a recurring solution to a soft-
ware development problem within a particular context [13].
Patterns help to alleviate the continual re-discovery and re-
invention of software concepts and components by document-
ing and teaching proven solutions to standard software devel-

1

opment problems. For instance, patterns are useful for doc-
umenting the structure and participants in common commu-
nication software micro-architectures likeActive Objects[14]
and Brokers [15]. These patterns are generalizations of object-
structures that have been used successfully to build flexible, ef-
ficient, event-driven, and concurrent communication software,
including ORB middleware.

In general, patterns can be categorized as follows:

Design patterns: A design pattern [13] captures the static
and dynamic roles and relationships in solutions that occur re-
peatedly when developing software applications in a partic-
ular domain. The design patterns we apply to improve the
performance of FT-CORBA include:Abstract Factory, Active
Object, Chain of Responsibility, Component Configurator, and
Strategy.

Architectural patterns: An architecture pattern [14] ex-
presses a fundamental structural organization schema for soft-
ware systems that provides a set of predefined subsystems,
specifies their responsibilities, and includes rules and guide-
lines for organizing the relationships between them. The ar-
chitectural patterns we apply to improve the performance of
FT-CORBA include:Leader/Followers and Reactor.

Optimization principle patterns: An optimization prin-
ciple pattern [11] documents rules for avoiding common de-
sign and implementation mistakes that degrade the perfor-
mance, scalability, predictability, and reliability of complex
systems. The optimization principle patterns we applied to
improve performance of FT-CORBA include:optimizing for
the common case, eliminating gratuitous waste, and storing
redundant state to speed up expensive operations.

Paper organization: The remainder of this paper is orga-
nized as follows: Section 2 summarizes the recently adopted
Fault Tolerant CORBA (FT-CORBA) specification. Section 3
describes empirical benchmarks we conducted to compare
the performance of a load-balancing application implemented
with and without using DOORS, which is our FT-CORBA
middleware; Section 4 describes the patterns we are using to
improve the performance of the DOORS FT-CORBA service;
and Section 5 presents concluding remarks.

2 Overview of the Fault Tolerant
CORBA Specification and DOORS

The Fault Tolerant CORBA (FT-CORBA) [16] specification
defines a standard set of interfaces, policies, and services that
provide robust support for applications requiring high reliabil-
ity. The fault tolerance mechanism used to detect and recover
from failures is based onentity redundancy[17]. Naturally,

in FT-CORBA the redundant entities are replicated CORBA
objects.

Replicas of a CORBA object are created and managed as
a “logical singleton” [13] composite object. Figure 1 illus-
trates the key components in the FT-CORBA architecture. All

REPLICATION
MANAGER

CORBA ORB

SERVER
 OBJECT 1

SERVER
OBJECT 2

FAULT
DETECTOR

FAULT
DETECTOR

CORBA ORB

FAULT
DETECTOR

FAULT
NOTIFIER

CORBA ORB

is_alive ()is_alive ()

is_alive ()

fault
reports

fault notifications

create_object ()

PROPERTY
MANAGER

GROUP
 MANAGER

GENERIC FACTORY
APP.

OBJECT

set
properties

CORBAORB

CORBA ORB CORBA ORB CORBA ORB

FACTORY

CORBA ORB

FACTORY

CORBA ORB

create_object () create_object ()

send IOR

PUBLISH
IOGR

IOP
PROFILE 1

IOP
PROFILE 2

MULTIPLE
COMPONENTS PROFILE

Figure 1: The Architecture of Fault Tolerant CORBA

components shown in the figure are implemented as standard
CORBA objects,i.e., they are defined using CORBA IDL in-
terfaces and implemented using servants that can be written
in standard programming languages, such as Java, C++, C, or
Ada. The functionality of each component is described below.

Interoperable object group references (IOGRs): FT-
CORBA standardizes the format of interoperable object ref-
erences (IOR) used for the individual replicas. An IOR is a
flexible addressing mechanism that identifies a CORBA object
uniquely [1]. In addition, it defines an IOR for composite ob-
jects called theinteroperable object group reference(IOGR).

FT-CORBA servers can publish IOGRs to clients. Clients
use these IOGRs to invoke operations on servers. The client-
side ORB transmits the request to the appropriate server-side
object that handles the request. The client application need not
be aware of the existence of server object replicas. If a server
object fails, the client-side ORB cycles through the object ref-

2

erences contained in the IOGR until the request is handled suc-
cessfully by a replica object. The references in the IOGR are
considered invalid only if all server objects fail, in which case
an exception is propagated to the client application.

ReplicationManager: This component is responsible for
managing replicas and contains the following three compo-
nents:

1. PropertyManager: This component allows proper-
ties of an object group to be selected. Common properties
include the replication style, membership style, consistency
style, and initial/minimum number of replicas. Example repli-
cation styles include the following:

� COLD PASSIVE – In this replication style, the replica
group contains a single primary replica that responds to
client messages. If a primary fails, a backup replica is
spawned on-demand to function as the new primary.

� WARM PASSIVE – In the WARM PASSIVE replication
style, the replica group contains a single primary replica
that responds to client messages. In addition, one or more
backup replicas are pre-spawned to handle crash failures.
If a primary fails, a backup replica is selected to func-
tion as the new primary and a new backup is created to
maintain the replica group size constant.

� ACTIVE – In theACTIVE replication style all replicas are
primary and handle client requests independently of each
other. To ensure a single reply sent to the client and to
maintain consistent state amongst the replicas, a special
group communication protocol is necessary.

Membership of a group and data consistency of the group
members can be controlled either by the FT-CORBA infras-
tructure or by applications. FT-CORBA standardizes both
application-controlled and infrastructure -controlled member-
ship and consistency styles.

2. GenericFactory: For the infrastructure-controlled
membership style, theReplicationManager uses the
GenericFactory to create object groups and individual
members of an object group.

3. ObjectGroupManager: For application-controlled
memberships, applications use theObjectGroupManager
interface to create, add, or delete members of an object group.

Fault Detector and Notifier: FaultDetector s are
CORBA objects responsible for detecting faults via either a
pull-basedor a push-basedmechanism. Apull-basedmoni-
toring mechanism periodically polls applications to determine
if their objects are “alive.” FT-CORBA requires application
objects to implement aPullMonitorable interface that
exports anis alive operation. Apush-basedmonitoring

mechanism can also be implemented. In this scheme, which is
also known as a “heartbeat monitor,” applications implement
aPushMonitorable interface and send periodic heartbeats
to theFaultDetector .

FaultDetector s report faults toFaultNotifier s.
In turn, theFaultNotifier s propagate these notifications
to aReplicationManager , which performs recovery ac-
tions. In addition, other applications in the system that are
interested in monitoring fault activity can register with the
FaultNotifier s to receive their events. More complex
applications can provideFaultAnalyzer s to expand, cor-
relate, condense, and analyze fault reports. The functional-
ity provided byFaultAnalyzer s is usually platform- and
application-specific,e.g., a sequence of fault reports can be
correlated to identify a single failure condition.

Logging and Recovery: FT-CORBA defines a logging and
recovery mechanism that is responsible for intercepting and
logging CORBA GIOP messages from client objects to
servers. Distributed applications can employ this mechanism
via an infrastructure-controlled consistency style. If a failure
occurs, a new replica is chosen to become the “primary.” The
recovery mechanism then re-invokes the operations that were
made by the client, but which did not execute due to the pri-
mary replica’s failure. In addition, it retrieves a consistent
state for the new replica. The logging and recovery mecha-
nism ensures that failovers are transparent to applications. For
the application-controlled consistency style, applications are
responsible for their own failure recovery.

FT-CORBA is designed to prevent single points of failure
within a distributed object computing system. As a result, each
component described above must itself be replicated. More-
over, mechanisms must be provided to deal with potential fail-
ures and recovery.

3 Benchmarking the Performance of
DOORS Fault Tolerant CORBA

This section describes the results of benchmarking studies we
conducted to measure the impact of FT-CORBA on distributed
application performance. All tests were run using theDis-
tributed Object-Oriented Reliable Services(DOORS), which
is our implementation of the FT-CORBA specification. We
have chosen a bandwidth-intensive application for our exper-
iments to quantify the impact of FT-CORBA on its perfor-
mance and availability. The results presented in this paper are
one of the first empirical benchmarks of an implementation
of the OMG Fault Tolerant CORBA specification, which was
adopted recently.

A key goal in conducting these benchmarks is to quantify
the effect of the heartbeat/polling interval on the following:

3

1. Thedetection timeincurred by DOORS to detect failures;

2. Theresponse timerequired for clients to connect to a new
primary in the event of the failure of an existing primary;

Our experiments assumed a single-failure model, where no
nested failures can occur while the system is recovering from
a previous failure condition. Moreover, DOORS assumes that
all faults arise from object or host crashes, in accordance
with the FT-CORBA specification [16]. In particular, the FT-
CORBA specification doesnotsupport:

� Network partitioning faultswhere objects and hosts be-
come unreachable although they themselves may not
have crashed;

� Commission faultswhere objects or hosts generate incor-
rect results; or

� Design or programming faultsthat are caused by poor
design or programming errors.

3.1 Overview of Benchmarking Testbed

This section outlines our testbed environment and experimen-
tal setup.

Synopsis of hardware/software platform: To minimize
network latency and jitter, our benchmarks focus primarily
on running different service components of DOORS on a sin-
gle endsystem–a 167 MHz UltraSPARC processor with 128
Mbytes of RAM running SunOS 5.7. Running all components
on one endsystem allows us to measure the worst-case over-
head of FT-CORBA that stems from the polling and heartbeat
messages generated by the infrastructure and application com-
ponents. We used the GNU EGCS compiler with the default
optimization level specified by the-O option. To improve the
performance baseline, all executables were linked using static
libraries.

The DOORS FT-CORBA framework ran on version 1.1 of
the TAO [3] ORB. We chose TAO because it is an open-source,
highly optimized, CORBA-compliant ORB suited for appli-
cations with stringent QoS requirements. In addition, it is
the first ORB to implement the following ORB-level enhance-
ments defined by the FT-CORBA standard:

� Support for the interoperable object group reference
(IOGR) described in Section 2; and

� The ability of the client-side ORB to failover transpar-
ently from one IOR to other within an IOGR without the
client application being aware of this failover.

Without these ORB features, it would not be possible to ex-
periment withtransparentclient-side failover.

Synopsis of performance benchmarks: Our benchmarking
testbed is designed to quantify the following four metrics:

1. Fault detection time, which measures the time taken
by DOORS to detect faults for different heartbeat/polling in-
terval values. This latency depends on the rate at which a
FaultDetector sendsis alive ping calls to a server
replica object.

2. Recovery time, which measures the time taken by the
DOORS framework to establish a new primary if a primary
replica fails. We measured the recovery time for different
polling intervals. This latency approximates the amount of
overhead DOORS incurs when it performs failure recovery on
behalf of a server object. It also indicates the amount of time
that DOORS needs to re-establish a stable system state.

Synopsis of experimental application configuration: Our
experimental testbed is based on TAO’s load balancing ser-
vice. This service balances the load on a group of CORBA
servers by forwarding the requests to different servers in the
group according to a particular selection property, such as
round-robin or randomized. We adapted the TAO load bal-
ancing service to run under the DOORS’s FT-CORBA imple-
mentation. Moreover, we added ashutdown operation to the
service so that we could simulate object crashes.

We selected the load balancing service for our bench-
mark because requirements for fault tolerance in large-
scale distributed systems often necessitate load balancing.
To minimize network delay and jitter, we ran the experi-
ments by registering two copies of the load balancing ser-
vice with a FaultDetector on the same host. This
FaultDetector monitored the load balancing service ob-
jects using thePullMonitorable (polling) style of fault-
detection with aWARM PASSIVEreplication style.

In the WARM PASSIVE replication style, the replica group
contains a single primary replica that responds to client mes-
sages. In addition, one or more backup replicas are defined
to handle crash failures. If a primary fails, however, a backup
replica is selected to function as the new primary and a new
backup is created to maintain a constant replica group size.
The recovery mechanism simply restarts the load balancing
object.

The DOORS framework focuses on the passive replication
style, i.e., only one copy of the replica acts as a primary.
In our experiments we did not test theCOLD PASSIVE repli-
cation style since it is a degenerate case ofWARM PASSIVE

where only the primary replica runs and all the backups are
dormant. In practice, most production applications use the
WARM PASSIVEreplication scheme for fault tolerance.

3.2 Measuring Failure Detection Time on the
Server-side

Rationale: We define the failure detection time on the
server-side as the time taken by the fault detectori.e., the

4

FaultDetector , to detect a failure. In general, failure de-
tection time is non-constant for the FT-CORBA infrastructure
or an application since it depends on the type and rate of fail-
ures an application encounters. Moreover, failure detection
time depends on the polling interval.

Methodology: A manager program requests theReplica
Manager to start the replicas. After the replicas are run-
ning, theFaultDetector s begin polling them at constant
intervals of time. We then allow a client to connect to the
primary replica. At this point, we invoke the server object’s
shutdown operation, which initiates the fault detection pro-
cess in theFaultDetector .

We measure the failure detection time as the time between
the failure of the primary replica and the time when the
FaultDetector actually detects a failure. To measure the
failure detection time, we recorded two time stamps:

1. The first time stamp was recorded when the primary was
killed.

2. The second timestamp was recorded when the
FaultDetector detects the failure of the primary.

We conducted several iterations of this experiment by
killing the primary replica at randomly selected times. To mea-
sure the impact on fault detection times, however, we killed
the replica only after allowing the system to stablize from the
previous fault. We allow the system to stabilize before in-
jecting a new fault since DOORS–like most fault tolerance
frameworks–cannot handlenested failures, i.e., additional fail-
ures that occur while failure recovery is in progress.

This single recovery restriction stems from the highly com-
plex nature of handling additional faults while the system is
recovering and stabilizing itself from previous failures. It does
not, however, preclude DOORS from handling faults for enti-
ties not directly involved in the recovery process. Moreover, as
explained in Section 4, we are continually optimizing DOORS
to reduce its recovery and stabilization overhead.

Failure detection time in DOORS: Figure 2 shows the
minimum, average, and maximum failure detection times for
different polling intervals.

Analysis: Figure 2 indicates the following:

� As the polling interval increases, the failure detection
time also increases.

� On average, the failure detection time is half the polling
interval.

� The best-case failure detection occurs when the primary
is killed just before the next poll message is sent by the
detector to the killed replica.

0 2.5 5 7.5 10 12.5 15 17.5

Polling Interval (seconds)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

F
au

lt
D

et
ec

tio
n

T
im

e
(s

ec
on

ds
)

min
avg
max

Figure 2: Effect of Different Polling Intervals on Failure De-
tection Times

� The worst-case behavior is depicted when the primary is
killed just after a poll message is sent by the detector to
the killed replica.

These results suggest that for applications requiring high avail-
ability, the polling intervals should be minimized. Overly
small polling intervals increase the number of messages in the
network, however, which may be problematic over low-speed
network links.

3.3 Measuring Fault Detection and Recovery
Times on the Client-side

Rationale: A client invoking a remote operation will expe-
rience some delay if its server fails during the operation. This
delay has two parts:

1. The time taken by the infrastructure to detect the fault;
and

2. The time taken by the infrastructure to promote a backup
to become the primary.

Below, we describe experiments conducted to measure the
combination of these times, which is the actual delay expe-
rienced by a client.

Methodology: As described in Section 3.2, to measure the
effect of failures, and to compute the total recovery time,
we allow clients to connect to the primary replica. After
clients connect to the primary replica, we terminate the pri-
mary replica by invoking the server object’sshutdown op-
eration. For the client-side failover measurement, we start a
timer in the client when theshutdown operation is invoked.

When the DOORS’sFaultDetector detects a failure it
reports this failure to theReplicationManager . In turn,

5

theReplicationManager selects a backup copy amongst
the replicas and promotes it to become the new primary. Si-
multaneously, theReplicationManager creates a new
backup to maintain a consistent replica group size. It then noti-
fies the new primary of its change in status by invoking the pri-
mary’sbecome primary operation, which enables the new
primary to respond to client requests. At this point, we stop
our client-side timer and compute the failover time observed
by the client.

Fault detection and recovery time measurements: We
measured the recovery time as outlined above. We set the
polling interval to be half the global value of the heartbeat in-
terval. The global value of the heartbeat interval is the time
period in which the different components of DOORS send
heartbeats to their immediate monitors. The recovery times
measured for this benchmark are shown in Figure 3.

0 2.5 5 7.5 10 12.5 15 17.5

Polling Interval (seconds)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

R
ec

ov
er

y
T

im
e

(s
ec

on
ds

)

min
avg
max

Figure 3: Effect of Different Polling Intervals on Recovery
Times

Analysis: The results depicted in Figure 3 illustrate the
client’s observed recovery time, which comprises:

1. The fault detection time, which in the average case is
roughly half the polling interval, as shown in Section 3.2
and illustrated by Figure 2; and

2. Thereplica group management time, which is the time to
elect a new backup as the primary and start a new backup
to maintain the replica group size constant.

Subtracting the failure detection time (shown in Figure 2) from
the total recovery time (shown in Figure 3) reveals that main-
taining a constant replica group size in the event of a failure
requires�5 seconds in the best, worst, and average cases, ir-
respective of the polling interval. These results indicate that
there is a lower bound on maintaining a constant replica group
size after failure has occurred.

Our results underscore the importance of choosing the cor-
rect heartbeat/polling interval to optimize performance. For
instance, a large heartbeat/polling interval yields long detec-
tion and recovery times. Conversely, a short heartbeat can
yield false failure reports. As an example, our experiments
showed that by reducing the shortest heartbeat interval from
5 seconds to 2 seconds, the DOORS’SuperWatchDog ,
which monitors theFaultDetector s for failures, reports
a false failure of itsReplicationManager , which causes
the SuperWatchDog to erroneously launch a new instance
of theReplicationManager .

3.4 Measuring Time-to-Stability

Rationale: In addition to detecting failures and taking cor-
rective actions, FT-CORBA middleware must perform the fol-
lowing additional activities:

1. Start new servers on the nodes where they have failed;

2. Migrate backups to a different node due to a node crash;
and

3. Inform clients of changes to object references.

Activity 3 can be complex since the FT-CORBA specification
strives to make system failures transparent to clients. In par-
ticular, after a client obtains an object reference, it can invoke
calls on this reference repeatedly. If there are changes to the
references, the FT-CORBA middleware is responsible for per-
forming any necessary redirections to the replicas. Thus, it is
necessary to determine the overhead on the fault tolerant sys-
tem since it affects how long the system requires to re-establish
a stable state.

Each FT-CORBA fault tolerant implementation has a time
period to attain stability after a failure for every repli-
cation style that it supports. This “time-to-stability” is
the elapsed time from the point of detection of a fail-
ure by the FaultDetector , to the point where the
ReplicationManager has brought the system into a sta-
ble state by updating all the internal tables and states. Deter-
mining this time-to-stability is important since any intervening
error detection and recovery activities may be erroneous if a
system experiences new faults before stability is restored.

Methodology: We determine the time-to-stability in
DOORS by measuring the time required to perform the
following activities:

1. Promote a backup to a primary after detecting a fault;

2. Start a new backup copy;

3. Update theReplicationManager ’s internal tables
that hold information such as fault tolerance properties
and IOGR of all the managed object groups; and

6

4. Update the Naming Service with the new interoperable
object group reference (IOGR) that we create.

The sum of all these reveals DOORS’ time-for-stability. Fig-
ure 4 shows the time-for-stability in DOORS.

0 2.5 5 7.5 10 12.5 15 17.5

Polling Interval (seconds)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

S
ys

te
m

 S
ta

bi
lit

y
T

im
e

(s
ec

on
ds

)

min
avg
max

Figure 4: Variation of the Time-to-Stability After a Failure for
Different Polling Intervals

Analysis: Figure 4 demonstrates that DOORS’s time-to-
stability is relatively constant, which indicates that its over-
head does not depend on the polling intervals. We also ob-
served during our experiments that if a failure occurs during
the recovery phase theFaultDetector missed polling cy-
cles because the thread that detects failure of a server also per-
forms the recovery. Thus, after detecting the failure it starts
the recovery phase and is not ready to poll the server object
and any failures during this phase go undetected.

In general, however, a fault tolerant framework must incur
a small time-to-stability after recovering from a fault. For ap-
plications that require 24�7 availability, the stabilization in-
tervals incurred by DOORS may be unacceptable. To pinpoint
the sources of overhead in our time-to-stability operations, we
analyzed the DOORS code and determined the following ac-
tivities contribute to this overhead:

1. The ReplicationManager finds the entry for the
failed replica from its internal tables.

2. It then obtains a reference to theFaultDetector
which reported it the failure from the Naming Service
and then requests theFaultDetector to de-register
the replica.

3. Next, theReplicationManager determines if the
failed object was a backup or a primary replica.

4. If a primary replica failed, theReplicationManager
selects a backup to promote to the primary.

5. TheReplicationManager now proceeds to select a
location where it can start a new backup to maintain a
constant replica group size. This involves the following
steps:

(a) The ReplicationManager obtains the refer-
ence to aFaultDetector at the selected loca-
tion from the Naming Service.

(b) It then tries to determine if a replica at that location
already exists. It does this by trying to obtain a ref-
erence to a replica at that location and polling it to
determine if it is alive.

(c) If a replica at that location does not ex-
ist, the ReplicationManager requests the
FaultDetector at the selected location to start a
new replica. TheReplicationManager thread
is blocked until theFaultDetector has started a
new replica and the replica has registered itself with
the Naming Service and theFaultDetector .

(d) The ReplicationManager then queries the
Naming Service a finite number of times for the
IOR of the newly created replica. In between each
query, theReplicationManager in the current
experiment is programmed to wait for 10 seconds.
Thus, if theReplicationManager is unable to
obtain the reference in the first attempt, it will in-
cur a 10 second overhead. We selected 10 seconds
to give enough time for the replica to register with
the Naming Service. Reducing this to a very low
value, however, will increase the traffic between the
ReplicationManager and the Naming Service
since the former would require several attempts to
obtain the reference to the newly created replica.

(e) Finally, theReplicationManager obtains the
IORs of all the replicas of the group and proceeds
to create a new IOGR which is then registered with
the Naming Service. This new IOGR is then sent
back to the client ORB for it to use in subsequent
requests.

4 Applying Patterns to Improve
DOORS Fault Tolerant CORBA
Performance

Implementations of FT-CORBA, such as DOORS, are repre-
sentative of complex communication software. Optimizing
this type of software is hard since seemingly minor “mis-
takes,” such as poor choice of concurrency architectures and
data structures, lack of caching, and the inability to configure
parameters dynamically, can adversely affect performance and

7

Problem Pattern Pattern Category
1 Missed Polls inFaultDetector Leader/Followers Architectural
2 Excessive overhead of recovery Active Object Design
3 Excessive overhead of service lookupOptimize for the common case Optimization

Eliminate gratuitous waste Optimization
Store extra information Optimization

4 Tight coupling of data structures Strategy Design
Abstract Factory Design

5 Inability for dynamic configuration Component Configurator Design
6 Property lookup Chain of Responsibility Design

Perfect Hash Functions Optimization

Table 1: Patterns for Efficient Implementations of FT-CORBA

availability. Therefore, developing high-performance, pre-
dictable, reliable, and robust software requires an iterative op-
timization process that involves (1) performance benchmark-
ing to identify sources of overhead and (2) applying patterns
to eliminate the identified sources of overhead. The patterns
described in this section are shown in Table 1.

[18, 19] describe a family of optimization principle patterns
and illustrate how they have been applied in existing proto-
col implementations, such asTCP/IP and CORBAIIOP , to
improve their performance. Likewise, our prior research on
developing extensible real-time middleware [20, 11] has en-
abled us to document the design, architectural, and optimiza-
tion principle patterns used to improve performance and pre-
dictability.

This section focuses on the various design, architectural,
and optimization principle patterns we are applying to system-
atically improve the performance of the DOORS FT-CORBA
implementation. We focus on these patterns since our bench-
marking results in Section 3 revealed they were the most
strategic to improve the DOORS FT-CORBA performance.

In the following discussion, we outline the forces underly-
ing the key design challenges that arise when developing high-
performance FT-CORBA middleware, such as DOORS. We
also describe which patterns resolve these forces and explain
how these patterns are used in DOORS. In general, the absence
of these patterns leaves these forces unresolved.

4.1 Decoupling Polling and Recovery

Context: In DOORS, FT-CORBA application objects oper-
ating under thePULL-based fault monitoring style are polled
at specific intervals of time by a separate poller thread in
the FaultDetector . In the event of failure, this poller
thread identifies an application object crash and reports the
failure to theReplicationManager , which then performs
the recovery. Since polling and error recovery are done in
the same thread of control, theFaultDetector ’s poller

thread can be blocked from polling other objects until the
ReplicationManager has recovered from a failure.

Problem: The results of our performance benchmarks
of DOORS described in Section 3 reveal that in the
event of failure, theFaultDetector ’s polling thread
misses a poll since the thread is blocked until the
ReplicationManager recovers from the failure. This be-
havior is unacceptable for systems requiring high availability.
A naive solution would be to create a separate polling thread
for each application object. This strategy does not scale, how-
ever, as the number of objects polled by the fault monitor in-
crease. Thus, the force that must be resolved involves ensur-
ing theFaultDetector polls all application objects at the
specified intervals, even when the poller thread is blocked dur-
ing failure recovery.

Solution ! the Leader/Followers pattern: An effec-
tive way to avoid unnecessary blocking is to use the
Leader/Followerspattern [14]. This pattern provides an ef-
ficient concurrency model where multiple threads take turns
sharing a set of event sources in order to detect, demulti-
plex, dispatch, and process service requests that occur on these
event sources.

Using the Leader/Followers pattern in DOORS: Fig-
ure 5 illustrates how this pattern is implemented in DOORS’s
FaultDetector . A pool of threads is allocateda priori to
poll a set of application objects. One thread is elected as the
leader to monitor the application objects. When a failure is
detected, one of the follower threads is promoted to become
the new leader, which then polls the remaining application
objects. In contrast, the previous leader thread informs the
ReplicationManager of the failure and blocks until re-
covery completes, at which point the previous leader thread
becomes a follower. This pattern resolves the force of polling
all application objects, even when the poller is blocked on the
recovery of a failed object.

8

FAULT DETECTOR

REPLICATION MANAGER

FOLLOWERS

NEW LEADER

SEMAPHORE

is_alive ();

report_failure ()

OLD LEADER

Figure 5: Applying the Leader/Followers Pattern in DOORS

4.2 Decoupling Recovery Invocation and Exe-
cution

Context: when the PULL-based monitoring style is
used in the DOORS implementation, the poller thread
of the FaultDetector is responsible for polling
application objects at constant time intervals. Each
time an application object fails to respond to the poll
message, theFaultDetector must report the fail-
ure to the ReplicationManager . In contrast, the
ReplicationManager can receive several such failure re-
quests from one or moreFaultDetector s. The DOORS’s
ReplicationManager serializes the failure report
requests by handling them sequentially. For performance-
sensitive applications with high availability requirements, it is
imperative that theReplicationManager be notified of
failures and that recovery occur within a bounded amount of
time.

Problem: Benchmarking results presented in Section 3 re-
veal that the system recovery and stabilization phase af-
ter a failure incurs significant overhead in DOORS. As
discussed in Section 4.1, a failure notification to the
ReplicationManager causes theFaultDetector ’s
poller thread to block, which results in missed polls. In
addition, this behavior precludes the propagation of fail-
ure reports from other application objects monitored by the
sameFaultDetector to the ReplicationManager .
In DOORS, theReplicationManager serializes all the
failure reports, which degrades its responsiveness. In produc-
tion systems, aReplicationManager may receive many
failure reports. Handling the failure reports sequentially incurs
significant delay in the recovery process for queued requests.

A naive solution based on creating a thread per-report fail-
ure request scales poorly in a dynamic environment where fail-
ure requests may arrive in bursts. In addition, thread creation

is expensive and inefficient programming may yield excessive
synchronization overhead. Thus, the forces that must be re-
solved involve ensuring faster response to failure reports and
faster recovery. Resolving these forces enables lower time to
attain stability and hence higher availability.

Solution! the Active Object pattern: An efficient way to
optimize system recovery and stabilization is to use theActive
Objectpattern [14]. This pattern decouples method execution
from method invocation to enhance concurrency and to sim-
plify synchronized access to an object that resides in its own
thread.

Using the Active Object pattern in DOORS: In
DOORS, the invocation thread of theFaultDetector
calls the report failure operation on the proxy
object of the ReplicationManager which is ex-
posed to it. Figure 6 shows how theFaultDetector
can call the report failure operation on the
ReplicationManager proxy. This call is made in the

RM PROXY

report_failure ()

method_1 ()

RM
SCHEDULER

dispatch ()

enqueue ()

RM SERVANT

report_failure ()

method_1 ()

VISIBLE
TO

FAULT DETECTOR INVISIBLE
TO

FAULT DETECTOR

enqueue
(new report_failure)

dispatch
(report_faillure)report_failure ()

FAULT
 DETECTOR

Figure 6: Applying the Active Object Pattern in DOORS

FaultDetector ’s thread of control. The proxy then hands
off the call to the scheduler of theReplicationManager ,
which enqueues this call and returns control to the
FaultDetector . The call is then dispatched to the
ReplicationManager servant, which executes this call
in theReplicationManager ’s thread of control.

When severalFaultDetector s registered with the
ReplicationManager report a failure, the Active Ob-
ject pattern simplifies synchronized access to the internal data
structures of the DOORS’sReplicationManager . In ad-
dition, this pattern also minimizes extra locking and synchro-
nization overhead.

9

4.3 Caching Object References of FaultDetec-
tor in the ReplicationManager

Context: During the object group creation and the recov-
ery phase, the DOORSReplicationManager delegates
the creation of application objects to their associated factories
as mandated by the FT-CORBA standard. The FT-CORBA
standard does not specify how theFaultDetector s learn
which application objects they monitor. Therefore, DOORS
adopts a strategy whereby theReplicationManager in-
form the FaultDetector s about the application objects
they should monitor. To inform theFaultDetector s
to start monitoring, however, theReplicationManager
must first obtain theFaultDetector object references.
This process involves contacting the CORBA Naming Service
or some other reference locator mechanism.

Problem: Section 3 reveals that one source of over-
head in DOORS’s time-to-stability is the time the
ReplicationManager spends finding the Naming
Service for theFaultDetector ’s object reference. In
the common case theFaultDetector ’s object reference
will not change, unless theFaultDetector itself has
crashed. Thus, making a remote call to the Naming Service
to obtain theFaultDetector ’s object reference incurs
unnecessary overhead and delays the object group creation
and recovery process. Hence, the force to be resolved involves
minimizing the time spent in obtaining the object references
of theFaultDetector s.

Solution ! Optimize for the common case by storing re-
dundant information and eliminating gratuitous waste:
Unless theFaultDetector has itself crashed, there is no
need for theReplicationManager to obtain the object
reference of theFaultDetector each time it is needed. In-
stead, it can cache this information, which avoids the round-
trip delay of invoking theNaming Service remotely.

Optimizing for the common case in DOORS: During ini-
tialization, the DOORS’sReplicationManager obtains
theFaultDetector ’s object reference and stores it in an in-
ternal table, as shown in Figure 7. The only time DOORS must
obtain a new object reference is when theFaultDetector
crashes, which happens infrequently in a properly configured
system. This optimization can improve the time to recovery
and system stabilization significantly, thereby enhancing the
performance and availability of the application.

4.4 Support Interchangeable Behaviors

Context: As explained in Section 2, the FT-CORBA stan-
dard specifies several properties, such as replication styles
and fault monitoring styles, and their values, which can

NAMING
SERVICE

TAO ORB

REPLICATION
MANAGER

TAO ORB

FAULT
DETECTOR

TAO ORB

FAULT
DETECTOR

TAO ORB

1. get_reference (
fault_detector_1)

2. create_register_object ()

Figure 7: Optimizing for the Common Case in DOORS

be set on a per-object group, per-type, or per-domain ba-
sis. In addition, the FT-CORBA standard provides op-
erations to override these properties or to retrieve their
values. TheReplicationManager that inherits the
PropertyManager interface implements these operations.
Moreover, efficient implementations are possible only when
efficient data structures are used to store and access these prop-
erties. The choice of data structures depends on (1) the number
of properties supported by theReplicationManager and
(2) the maximum number of different types of object groups
that are permitted.

Problem: One way to implement FT-CORBA is to provide
only static, non-extensible strategies that are hard-coded into
the implementation. This design is inflexible, however, since
components that want to use these options must (1) know of
their existence, (2) understand their range of values, and (3)
provide an appropriate implementation for each value. These
restrictions make it hard to develop highly extensible services
that can be composed transparently from configurable strate-
gies.

Solution! the Strategy pattern: An effective way to sup-
port multiple behaviors is to apply theStrategypattern [13].
This pattern factors out similarities among algorithmic alter-
natives and explicitly associates the name of a strategy with its
algorithm and state.

Using the Strategy Pattern in DOORS: We are en-
hancing different components of DOORS, such as the
ReplicationManager andFaultDetector , to use the
Strategy pattern. These enhancements enable developers of
FT-CORBA middleware to configure these components with

10

implementations that are customized for their requirements.
Figure 8 illustrates how the Strategy pattern is applied in
DOORS. As shown in this figure, different replication styles

REPLICATION MANAGER

REPLICATION
STYLE

PROPERTY MANAGER

Figure 8: Applying the Strategy Pattern in DOORS

can be configured as strategies that are selectable by appli-
cations at run-time. Moreover, new strategies, such asAC-
TIVE WITH VOTING, can be added without affecting existing
strategies.

4.5 Consolidating Strategies

Context: Section 4.4 describes how the Strategy pattern
can be applied to configure various requirements in the FT-
CORBA service. There could be multiple strategies that offer
various features, such as fault monitoring style or membership
style. It is important to configure only semantically compati-
ble strategies.

Problem: An undesirable side-effect from extensive use of
the Strategy pattern in complex software is the maintenance
problems posed by the possible semantic incompatibilities be-
tween different strategies. For instance, the FT-CORBA ser-
vice cannot be configured with active replication style and ap-
plication controlled membership style. In general, the forces
that must be resolved to compose all such strategies correctly
involve (1) ensuring the configuration of semantically compat-
ible strategies and (2) simplifying the management of a large
number of individual strategies.

Solution ! the Abstract Factory pattern: An effective
way to consolidate multiple strategies into semantically com-
patible configurations is to apply theAbstract Factory[13] pat-
tern. This pattern provides a single access point that integrates
all strategies used to configure the FT-CORBA middleware,
such as DOORS. Concrete subclasses then aggregate compat-
ible application-specific or domain-specific strategies, which
can be replaceden massein semantically meaningful ways.

Using the Abstract Factory Pattern in DOORS: In the
DOORS FT-CORBA implementation, abstract factories are
used to encapsulate internal data structure-specific strate-
gies in components such asReplicationManager and
FaultDetector . Figure 9 depicts how the property list
in the DOORSReplicationManager uses abstract fac-
tories. The property abstract factory encapsulates the different

DEFAULT
CONCRETE
FACTORY

STATELESS
REPLICATION

PULL
MONITORING

STYLE

APPLICATION
CONTROLLED

MEMBERSHIP STYLE

APPLICATION
CONCRETE
FACTORY

WARM
PASSIVE

REPLICATION

INFRA STRUCTURE
CONTROLLED

MEMBERSHIP STYLE

MEMBERSHIP STYLE
STRATEGY

REPLICATION
STRATEGY

MONITORING
STRATEGY

Figure 9: Applying the Abstract Factory Pattern in DOORS

property strategies, such as the membership strategy, moni-
toring strategy, and replication strategy. By using a property
abstract factory, DOORS can be configured to have different
property sets conveniently and consistently.

4.6 Dynamically Configuring DOORS

Context: FT-CORBA implementations can benefit from the
ability to extend their servicesdynamically, i.e., by allowing
their strategies to be configured at run-time. The FT-CORBA
standard allows applications to dynamically set certain fault
tolerance properties of the application’s replica group regis-
tered with theReplicationManager . These properties
include the list of factories that create each replica object of
the replica group or the minimum number of replicas required
to maintain the replica group size above a threshold.

Problem: Although the Strategy and Abstract Factory pat-
terns simplify the customization for specific applications,
these patterns still require modifying, recompiling, and relink-
ing the DOORS source code to enhance or add new strategies.
Thus, the key force to resolve involves decoupling the behav-
iors of DOORS strategies from the time when they are actually
configured into DOORS.

Solution! the Component Configurator pattern: An ef-
fective way to enhance the dynamism is to apply theCompo-
nent Configuratorpattern [14]. This pattern employs explicit
dynamic linking mechanisms to obtain, install, and/or remove

11

the run-time address bindings of custom Strategy and Abstract
Factory objects into the service at installation-time and/or run-
time.

Using the Component Configurator pattern in DOORS:
DOORS’sReplicationManager andFaultDetector
use the Component Configurator pattern in conjunction with
the Strategy and Abstract Factory patterns to dynamically in-
stall the strategies they require without (1) recompiling or stat-
ically relinking existing code, or (2) terminating and restarting
an existingReplicationManager or FaultDetector .
Applications can use this pattern to dynamically configure
the appropriate replication style, monitoring style, polling in-
terval, and membership style into the DOORS FT-CORBA
service. Figure 10 shows how these properties are dynami-
cally linked. The use of the Component Configurator pattern

SERVICE
REPOSITORY

DEFAULT
CONCRETE
FACTORY

STATELESS
REPLICATION

PULL
MONITORING

STYLE

APPLICATION
CONTROLLED

MEMBERSHIP STYLE

APPLICATION
CONCRETE
FACTORY

WARM
PASSIVE

REPLICATION

PULL
MONITORING

STYLE

INFRA STRUCTURE
CONTROLLED

MEMBERSHIP STYLE

DLL's

Figure 10: Applying the Component Configurator Pattern in
DOORS

allows the behavior of DOORS’sReplicationManager
andFaultDetector to be customized for specific applica-
tion requirements without requiring access to, or modification
of, the source code.

4.7 Efficient Property Name-Value Lookups

Context: The ReplicationManager of a FT-CORBA
service is required to lookup the fault-tolerant properties of the
object groups registered with it during object group creation
and recovery. Properties are also located when an application
retrieves them or overrides previous values. The FT-CORBA
standard defines a hierarchical order in which properties must
be found. First, the properties must be located for the object
group that is the target of the request. If it is not found, then
a lookup is made on a repository that holds properties for all
object groups of the same type. If that lookup also fails, an-
other lookup is performed on the domain-specific repository
that acts as the default for all the object groups that are regis-
tered with theReplicationManager .

Problem: The hierarchical lookup ordering mandated by
the FT-CORBA standard underscores the need for an effi-
cient strategy to locate fault-tolerance properties. Thus, the

force that must be resolved involves efficient lookups of fault-
tolerance properties guided by the order specified in the FT-
CORBA standard.

Solution ! the Chain of Responsibility pattern and per-
fect hashing: An efficient way to perform hierarchical prop-
erty lookups is to use theChain of Responsibilitypattern [13],
which decouples the sender of a request from its receiver,
in conjunction withperfect hashing[21] to perform optimal
name lookups. The Chain of Responsibility pattern links
the receiving objects and passes the request along the chain
until an object handles the request. Perfect hashing is ap-
plicable because the number of properties supported by a
ReplicationManager can be configureda priori.

Using the Chain of Responsibility pattern and perfect
hashing in DOORS: Since the fault-tolerance properties
supported by aReplicationManager are determineda
priori , the DOORS service uses a perfect hash function gen-
erated by GNU gperf [21] to perform anO(1) lookup on the
property name. The Chain of Responsibility pattern is applied
by passing the request from one hash table to the other until the
property is found or the search fails, as illustrated in Figure 11.

PROPERTIES
OF

THE FT-DOMAIN

PROPERTY_A

PROPERTY_B

PROPERTY_C

PROPERTY_D

PROPERTY_B

PROPERTY_C

PROPERTIES
FOR A
SET OF

OBJECT GROUPS

PROPERTY_A

PROPERTY_B

PROPERTIES
FOR

OBJECT GROUP A

REQUEST
FROM CLIENT

FOR PROPERTY_D

REQUEST
PASSING ALONG
THE CHAIN AS

DEFINED BY THE FT-SPEC

Figure 11: Applying the Chain of Responsibility Pattern in
DOORS

5 Concluding Remarks

A growing number of CORBA applications with stringent per-
formance requirements also require fault tolerance support. To

12

address the fault tolerance requirements, the OMG recently
standardized the Fault Tolerant CORBA (FT-CORBA) specifi-
cation. The most flexible strategy for providing fault tolerance
to CORBA applications is via higher-level CORBA services.

To make FT-CORBA usable by performance-sensitive ap-
plications it must incur negligible overhead. To address
these requirements, therefore, an FT-CORBA implementation
should possess the following properties:

1. The fault detection and failovers incurred by servers
should be transparent to clients.

2. Response time to the client should be bounded and pre-
dictable, irrespective of server failovers.

3. The overhead incurred by the fault tolerance frame-
work should maintain application performance require-
ments, such as efficiency and scalability, within desig-
nated bounds end-to-end.

To quantify the impact of different strategies for achieving
the properties outlined above, we ran a series of experiments
on DOORS, which is our implementation of FT-CORBA. The
analysis of these results yielded a number of valuable lessons
for implementing an FT-CORBA infrastructure for applica-
tions requiring stringent performance and reliability guaran-
tees. We have identified sources of potential problems that im-
plementors of FT-CORBA could face. Finally, we have identi-
fied and are applying key design, architectural, and optimiza-
tion principle patterns to improve the performance, extensi-
bility, scalability, and robustness of the DOORS FT-CORBA
implementation.

References
[1] Object Management Group,The Common Object Request Broker: Ar-

chitecture and Specification, 2.3 edition, June 1999.

[2] Steve Vinoski, “CORBA: Integrating Diverse Applications Within Dis-
tributed Heterogeneous Environments,”IEEE Communications Maga-
zine, vol. 14, no. 2, February 1997.

[3] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee, “The De-
sign and Performance of Real-Time Object Request Brokers,”Computer
Communications, vol. 21, no. 4, pp. 294–324, Apr. 1998.

[4] Christopher D. Gill, David L. Levine, and Douglas C. Schmidt, “The
Design and Performance of a Real-Time CORBA Scheduling Service,”
The International Journal of Time-Critical Computing Systems, special
issue on Real-Time Middleware, to appear 2000.

[5] Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt, “The
Design and Performance of a Real-time CORBA Event Service,” in
Proceedings of OOPSLA ’97, Atlanta, GA, October 1997, ACM.

[6] Fred Kuhns, Douglas C. Schmidt, and David L. Levine, “The Design
and Performance of a Real-time I/O Subsystem,” inProceedings of the
5
th IEEE Real-Time Technology and Applications Symposium, Vancou-

ver, British Columbia, Canada, June 1999, IEEE, pp. 154–163.

[7] Carlos O’Ryan, Fred Kuhns, Douglas C. Schmidt, Ossama Othman, and
Jeff Parsons, “The Design and Performance of a Pluggable Protocols
Framework for Real-time Distributed Object Computing Middleware,”
in Proceedings of the Middleware 2000 Conference. ACM/IFIP, Apr.
2000.

[8] Douglas C. Schmidt, Sumedh Mungee, Sergio Flores-Gaitan, and
Aniruddha Gokhale, “Software Architectures for Reducing Priority In-
version and Non-determinism in Real-time Object Request Brokers,”
Journal of Real-time Systems, special issue on Real-time Computing in
the Age of the Web and the Internet, To appear 2000.

[9] Alexander B. Arulanthu, Carlos O’Ryan, Douglas C. Schmidt, Michael
Kircher, and Jeff Parsons, “The Design and Performance of a Scalable
ORB Architecture for CORBA Asynchronous Messaging,” inProceed-
ings of the Middleware 2000 Conference. ACM/IFIP, Apr. 2000.

[10] Aniruddha Gokhale and Douglas C. Schmidt, “Measuring the Perfor-
mance of Communication Middleware on High-Speed Networks,” in
Proceedings of SIGCOMM ’96, Stanford, CA, August 1996, ACM, pp.
306–317.

[11] Irfan Pyarali, Carlos O’Ryan, Douglas C. Schmidt, Nanbor Wang,
Vishal Kachroo, and Aniruddha Gokhale, “Applying Optimization Pat-
terns to the Design of Real-time ORBs,” inProceedings of the5th

Conference on Object-Oriented Technologies and Systems, San Diego,
CA, May 1999, USENIX.

[12] Balachandran Natarajan, Aniruddha Gokhale, Douglas C. Schmidt, and
Shalini Yajnik, “DOORS: Towards High-performance Fault-Tolerant
CORBA,” in Proceedings of the 2nd International Symposium on
Distributed Objects and Applications (DOA 2000), Antwerp, Belgium,
Sept. 2000, OMG.

[13] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, Reading, MA, 1995.

[14] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann,Pattern-Oriented Software Architecture: Patterns for Con-
currency and Distributed Objects, Volume 2, Wiley & Sons, New York,
NY, 2000.

[15] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Michael Stal,Pattern-Oriented Software Architecture - A System of
Patterns, Wiley and Sons, 1996.

[16] Object Management Group,Fault Tolerant CORBA Specification, OMG
Document orbos/99-12-08 edition, December 1999.

[17] Object Management Group,Fault Tolerance CORBA Using Entity Re-
dundancy RFP, OMG Document orbos/98-04-01 edition, April 1998.

[18] George Varghese, “Algorithmic Techniques for Efficient Protocol Imple-
mentations ,” inSIGCOMM ’96 Tutorial, Stanford, CA, August 1996,
ACM.

[19] Aniruddha Gokhale and Douglas C. Schmidt, “Optimizing a CORBA
IIOP Protocol Engine for Minimal Footprint Multimedia Systems,”
Journal on Selected Areas in Communications special issue on Service
Enabling Platforms for Networked Multimedia Systems, vol. 17, no. 9,
Sept. 1999.

[20] Douglas C. Schmidt and Chris Cleeland, “Applying Patterns to Develop
Extensible ORB Middleware,”IEEE Communications Magazine, vol.
37, no. 4, April 1999.

[21] Douglas C. Schmidt, “GPERF: A Perfect Hash Function Generator,”
in Proceedings of the2nd C++ Conference, San Francisco, California,
April 1990, USENIX, pp. 87–102.

13

