
Design and Performance of a Dynamically Configurable,
Messaging Protocols Framework for Real-time CORBA

Raymond Klefstad, Sumita Rao, and Douglas C. Schmidt
fklefstad, srao, schmidtg@ece.uci.edu

Electrical and Computer Engineering Dept.
University of California, Irvine, CA 92697, USA�

Abstract

As distributed object computing (DOC) middleware stan-
dards and implementations evolve over time, they invariably
must support a growing number of protocols to remain inter-
operable. Memory footprints of middleware implementations
can become large if a concerted effort is not made to prevent
this growth. Large middleware memory footprints are prob-
lematic for important classes of distributed, real-time, and em-
bedded (DRE) applications that have stringent memory con-
straints. This paper makes two contributions to the design of
middleware to address key challenges of developing DRE ap-
plications. First, it describes the design of dynamically con-
figurable general inter-ORB protocols (GIOP). Second, it ex-
plains how we applied patterns and Java features to minimize
and customize the memory footprint of messaging protocols
used in DRE middleware.

Keywords: Distributed Systems, Real-time Systems, Em-
bedded Systems, General Inter-ORB Protocol (GIOP), Real-
time CORBA, Real-time Java.

1 Introduction

Over the past decade, distributed object computing (DOC)
middleware frameworks, such as CORBA [1], COM+ [2],
Java RMI [3], and SOAP/.NET [4], have emerged to reduce
the complexity of developing distributed applications. DOC
middleware simplifies application development for distributed
systems by off-loading the tedious and error-prone aspects of
distributed computing from application developers to middle-
ware developers. It has been used successfully in large-scale
business systems where scalability, evolvability, and interop-
erability are essential for success.

Real-time CORBA [5] is a rapidly maturing DOC mid-
dleware technology standardized by the OMG that can sim-
plify many challenges for distributed, real-time, and embed-
ded (DRE) applications, just as CORBA has for large-scale
business systems. Real-time CORBA is designed for applica-

�This work was funded in part by ATD, DARPA, SAIC, and Siemens.

tions with hard real-time requirements, such as avionics mis-
sion computing [6], as well as those with stringent soft real-
time requirements, such as telecommunication call processing
and streaming video [7].

Programming DRE applications is hard because QoS prop-
erties must be supported along with the application software
and distributed computing middleware functionality. DRE ap-
plications have historically been custom-programmed to im-
plement these QoS properties. While some aspects of these
challenges have been addressed in developing applications for
mainstream distributed systems, relatively little has been done
to meet these challenges for applications in DRE systems.

Interprocess communication (IPC) in CORBA-based ap-
plications involves the exchange of messages between ORB
endsystems running on different types of machines using
TCP/IP. The messaging protocol for CORBA is specified by
General Inter-ORB Protocol (GIOP), which is a family of pro-
tocols that define standard message types and formats. The
methods supporting the GIOP messaging protocol can be a
significant contributor to memory footprint size [8]. A time
and space efficient implementation of GIOP messaging proto-
cols is therefore desirable to reduce footprint without unduly
affecting operational throughput between ORB endsystems.

This paper discusses the design and performance of dynam-
ically configurable GIOP messaging protocols for an open-
source Real-time CORBA object request broker (ORB) called
ZEN [9].1. ZEN is implemented using Real-time Java and
is designed to eliminate common sources of overhead and
non-determinism in ORB implementations. We illustrate how
ZEN’s pattern-oriented software architecture [10] systemati-
cally reduces memory footprint by allowing the selection of a
minimal subset of ORB capabilities used by an application.

The remainder of this paper is organized as follows: Sec-
tion 2 presents a brief overview of ZEN; Section 3 explains
GIOP message handling, the challenges related to conform-
ing to an evolving middleware specification, and how mes-
sage handling is handled in ZEN; Section 3.4 describes how
ZEN’s GIOP messaging can be configured using four different
strategies to improve flexibility and minimize memory foot-

1ZEN can be obtained from http://www.zen.uci.edu

print; Section 4 provides empirical measurements for ZEN’s
alternative messaging strategies; Section 5 compares our work
on ZEN’s GIOP framework with related work; and Section 6
presents concluding remarks and outlines our future direc-
tions.

2 An Overview of the ZEN Real-time
ORB

ZEN [9] is a Real-time CORBA ORB implemented using Java,
thereby combining the benefits of these two standard technolo-
gies. A detailed overview of ZEN appeared in [9]. This section
therefore presents a brief summary of research goals addressed
by the ZEN project and an overview of ZEN’s architecture.

To address key challenges faced by developers of DRE ap-
plications, the research goals of the ZEN project are as fol-
lows:

� Provide a full range of CORBA services for distributed
applications.

� Reduce middleware footprint to enable memory-
constrained embedded applications development.

� Achieve satisfactory level of throughput and scalability.
� Make the ORB easier for application developers to con-

figure and maintain.
� Support real-time QOS requirements, such as bounded

jitter, elimination of priority inversion, and low startup
latency.

� Make the ORB easy to extend to handle new require-
ments, such as new message types or new message ver-
sions.

� Allow both static and dynamic configuration, to allow the
application developer to choose a tradeoff between max-
imal efficiency and flexibility.

ZEN’s ORB architecture is based on the concept of lay-
ered pluggability where various components of the middle-
ware may be “plugged” (included into) or “unplugged” (re-
moved from) on an as-needed basis allowing flexible middle-
ware configuration. We call this design the micro-ORB design,
whereas we call the traditional ORB design the monolithic-
ORB design.

In a monolithic design for an ORB, all the code for vari-
ous middleware features and their alternative implementations
are tightly coupled within the ORB. Likewise, in a monolithic
design for GIOP message handling, all the code for handling
the message types and versions are structured in such a way
that they must all be included for each application, whether
they are used or not by any particular application. In contrast,
in the micro-ORB design, each ORB service itself is decom-
posed into smaller components. As shown in Figure 1, the fol-

MCAST
POA

STD
POA

MIN
POA

ZEN
Micro-ORB
Kernel

SSL ATM VME

RT
POA

Object
Adapters

IIOP

Transport
Protocols

IOR
Parsers

Any

Object
Resolvers

Message
Buffer

Allocators

GIOP
Messaging

CDR
Stream
Readers

Figure 1: Micro-ORB Architecture of ZEN

lowing components can be configured flexibly into the ZEN
micro-ORB architecture:

1. Object adapters, which map incoming client requests to
appropriate servants within a server.

2. GIOP message handling, which reads and writes stan-
dard messages to/from various protocol transports.

3. Protocol transports, such as TCP/IP, UDP or shared
memory.

4. Object resolvers, which handle strings passed into the
ORB’s resolve_initial_references() factory
method.

5. IOR parsers, which handle parsing of various formats
of inter-operable ORB references, such as "IOR:",
"FILE:", or "HTTP:".

6. Any data type handlers, which allow the transfer of any
possible CORBA data type to support generic services,
such as the CORBA Naming and Event Services.

7. Buffer allocators, which allow application developers to
choose from a variety of different dynamic storage allo-
cation algorithms to suit their particular needs.

8. Common Data Representation (CDR) Streams, which
allow the exchange of messages between CORBA ORBs
that isolate applications from hardware variations related
to data format and data sizes.

Based on our earlier work with The ACE ORB (TAO) [6], we
identified these eight core ORB components as candidates to
be factored out of the ORB to reduce its memory footprint and
increase its flexibility. We call the remaining portion of code
the ZEN kernel.

2

Each ORB component itself is decomposed into smaller
pluggable components that can be loaded into the ORB on-
demand when needed. We apply the Virtual Component pat-
tern [11] throughout ZEN to decompose and factor most of the
unused or rarely used components out of memory. This pat-
tern provides an application-transparent way of loading and
unloading components that implement middleware software
functionality. ZEN’s pluggable design makes it a useful re-
search platform, because alternative implementations of var-
ious ORB components can be configured easily and profiled
with standard benchmarks to determine their utility empiri-
cally.

3 GIOP Message Handling in ZEN

This section gives an overview of GIOP messaging and out-
lines the challenges of developing standard middleware that
conforms to an evolving middleware specification.

3.1 An Overview of GIOP Messaging

The General Inter-ORB Protocol (GIOP) defines the stan-
dard format of messages that can be sent between clients and
servers using CORBA-compliant ORBs. There are eight dif-
ferent types of GIOP messages, each with a unique format as
shown in Figure 2. The GIOP message types include Request,

Message Type Originator Value

GIOP Versions

Request Client 0 1.0, 1.1, 1.2
Request Both 0 1.2 with BirDir GIOP in use
Reply Server 1 1.0, 1.1, 1.2
Reply Both 1 1.2 with BirDir GIOP in use
CancelRequest Client 2 1.0, 1.1, 1.2
CancelRequest Both 2 1.2 with BirDir GIOP in use
LocateRequest Client 3 1.0, 1.1, 1.2
LocateRequest Both 3 1.2 with BirDir GIOP in use
LocateReply Server 4 1.0, 1.1, 1.2
LocateReply Both 4 1.2 with BirDir GIOP in use
CloseConnection Server 5 1.0, 1.1, 1.2
CloseConnection Both 5 1.2
MessageError Both 6 1.0, 1.1, 1.2
Fragment Both 7 1.1,1.2

 Figure 2: GIOP Message Types

Reply, LocateReply, LocateRequest, CloseConnection, Mes-
sageError, CancelRequest and Fragment. We briefly explain
the purpose of each GIOP message type below:

� A client can invoke an operation on the server object
(called a ”servant”) by sending it a Request message.
This type of message contains all the information that is
required to make a remote method invocation.

� A servant responds to a client’s invocation by sending a
Reply message containing the response to the Request.

� The LocateRequest and the LocateReply messages are
sent to query the current location of a servant.

� The CloseConnection message is sent by the server to in-
form the client not to send any further Request messages
on the connection since the connection will be closed.

� In case a GIOP message is received with a bad header, a
GIOP MessageError message is sent to the Request ini-
tiator. This message can be sent either to a client or to a
server.

� The Fragment message allows large messages to be di-
vided into smaller messages having their “following frag-
ment” bit in the message enabled. The last fragment in a
series of message fragments has the “following bit” field
disabled.

3.2 Problems with a Naive Implementation of
GIOP Messaging

A full implementation of a GIOP message handler requires
providing quite a few methods. For each message type, there
are two methods: one method to marshal (encode) and an-
other method to demarshal (decode) a message of that type.
Four of the GIOP messages types vary in three versions of
GIOP, specifically versions 1.0, 1.1, and 1.2. Thus, there are
4 (message types) � 2 (marshal/demarshal methods)� 3 (dif-
ferent versions) + 4 (message types with no change in version)
� 2 (marshal/demarshal method) = 32 methods required to
implement the full GIOP message protocol for each possible
version.

Many client/server interactions are simple, requiring only a
few of the 32 methods. For example, a pure server receives Re-
quest messages and sends Reply messages, and thus requires
only a Request message reader and a Reply message writer.
Conversely, a pure client sends Request messages and receives
Reply messages, requiring only a Request writer and a Reply
reader. Peers typically use up to four methods to read and write
both Request and Reply messages. In addition, many applica-
tions limit their messages to only one version of GIOP. How-
ever, clients, servers, and peers must be prepared to handle
all 8 possible message types from the various versions. There
have been two new versions of GIOP messaging (version 1.1
and 1.2) since the inception of GIOP 1.0 in CORBA 2.2. It is
likely that new types and versions of GIOP messages will be
defined in the future.

A monolithic-ORB contains code to handle all the possible
GIOP messages and versions. Each class for handling a mes-
sage type defines both the marshal/demarshal method for that
message type in the same class. A switch statement inside
each (de)marshal method may be used to split into the code to
handle each of the various versions. Although this is a com-
mon ORB design, it has two significant drawbacks:

3

1. Large footprint—It incurs non-trivial amounts of space
overhead for all the methods even if some of those meth-
ods are not used.

2. Poor extensibility—It is hard to modify the ORB to han-
dle a new GIOP version because many class definitions
for the marshal and demarshal methods must be modi-
fied, recompiled, and re-linked.

In general, when features are added or changed in a
monolithic-ORB, the changes are propagated to many parts
of the code, which is time consuming and error-prone. As
a middleware standard like CORBA continues to evolve, and
monolithic-ORB implementations add new versions and meth-
ods, their memory footprint grows, making this design unsuit-
able for memory-constrained applications, such as embedded
systems.

3.3 Micro-ORB Design Solutions in ZEN

The eight GIOP messages can be factored out of the ORB
core footprint by applying the Virtual Component design pat-
tern [11]. By applying this pattern to ZEN, we ensure that it
provides a rich and configurable set of functionality, yet occu-
pies main memory only for middleware components that are
actually used.

The GIOP messaging module is typically implemented hav-
ing the demarshal and the marshal methods for each version
combined into one class per message type. These GIOP mes-
sage marshaling and demarshaling methods for a particular
message are not frequently used together, so eliminating un-
used methods can reduce ZEN’s memory footprint, as shown
in Figure 3. To factor unused methods out of the memory foot-

GIOP
Message
Parsers

1.11.0

Figure 3: Pluggable GIOP Readers and Writers

print, the 32 marshaling and demarshaling methods can be im-
plemented using the Strategy design pattern [12]. The intent
of this pattern is to define a family of algorithms, encapsulate
each one, and make them interchangeable. The Strategy pat-
tern lets the algorithm vary independently from the clients that
use it.

In the GIOP messaging protocol, the format for each mes-
sage type is different. In addition, there are several versions of
each type of message, and the format and semantics can vary
with the version. It is therefore beneficial to code each version-
specific message reader and writer as a separate class so an in-
stance can be plugged in based on the appropriate GIOP mes-
sage version.

GIOP messages are always converted into CDR format be-
fore being sent over a transport. The CDR stream is an octet
stream that isolates the application from variations in data for-
mats in a heterogeneous network. GIOP messages are mar-
shaled into a CDR input stream and demarshaled from a CDR
output stream.

Each message type of a particular version has one method
to marshal the message to a CDR Stream and another method
to demarshal the message from a CDR Stream. The mar-
shal and demarshal methods denote separate behaviors and
hence the strategized versions can be further strategized into
reader objects and writer objects. After strategizing the ver-
sions and the marshaler/demarshaler type, we have 32 object
classes that offer a unique functionality based on their version,
message type and marshaler/demarshaler type. If any one of
the reader/writer classes are loaded into memory they offer the
smallest footprint, since only the functionality that is needed
at that instant by a message is loaded into memory.

3.4 Configuring GIOP Messaging Protocols in
ZEN

We have identified four different design strategies for handling
GIOP messaging protocols: PluggableFineGrain, Pluggable-
ClientServer, PreloadedHandler, and NonPluggable. The first
three strategies apply the Virtual Component pattern to various
degrees and the last is similar to a conventional monolithic de-
sign except that the classes implementing the messaging pro-
tocols are still decomposed into small units based on message
type and version. We have implemented all four designs in
ZEN and measured their performance for various use-case sce-
narios. Each design offers different behavior characteristics,
and each is best suited for particular types of applications that
are described below.

ZEN includes a framework that allows pluggins for any of
the four different strategies, as shown in Figure 4. Our initial
intent was to compare them for operation throughput, mem-
ory footprint, and real-time predictability to determine which
was the best in general. Over time, however, we discovered
that each had characteristics which made it applicable for a
particular class of applications. Each of the following sections
present an overview of one design strategy and the applicabil-
ity of that strategy.

4

GIOP Component Factory

NonPluggablePreloadedHandlerPluggableFineGrain PluggableClientServer

CREATES

«interface»
GiopMessage

Creates Message Handler
Cache at Runtime

creates GIOP
messages at run-

time

 0..1 0..1 0..1 0..1

 creates creates creates creates

Figure 4: GIOP Component Factory

3.4.1 PluggableFineGrain Design

Strategy overview. PluggableFineGrain is the first alterna-
tive design of ZEN’s configurable messaging framework. As
shown in Figure 5, this design loads only one of either the
marshaling or demarshaling method based on the GIOP ver-
sion and message type.

Strategy design. A message factory is used to create and
load marshaler/demarshaler classes dynamically. The mes-
sage factory offers better configurability and extensibility
since any change in the message type, version, or the mar-
shaler/demarshaler type only requires a change in the mes-
sage factory. In this strategy, only the message factory must
be recompiled and re-linked after a new version is added or
the name of a class file changes. No other classes need to be
modified or recompiled and re-linked.

When a specific message reader/writer is needed, the class
name is generated at run-time by concatenating the message
name with the marshaler/demarshaler type and the message
version, e.g., ReplyMessageReader10. The decision to
choose a marshaler or a demarshaler depends on whether the
message must be written or read. The class matching that
name is loaded into memory using a factory, then an instance
is created.

We save a reference to the class in a cache (implemented
by a hash table) to improve the average-case performance and
predictability for subsequent class references.2 If a class is
referenced again, the class stored in the cache is used. To avoid
re-generating the class names, we generate a unique key from

2We know beforehand the total number of message types and versions, so
we can ensure the table size is sufficiently large to keep each cache look-up
predictable.

the message type, version, and marshaler/demarshaler type to
be used as a cache key index.

For example, the ReplyMessageWriter10 class would
be loaded to write a Reply message in GIOP version 1.0. In
this design, any loaded class is cached for faster accessed if the
same marshaler/demarshaler is used again. The messages are
read/written into the CDR Stream by the marshal/demarshal
methods. These methods are defined as separate classes based
on the message type, marshaler/demarshaler type, and the
GIOP version type.

The PluggableFineGrain design can be extended easily to
handle new versions of GIOP. When a new version is added to
GIOP, each message type can be added as new derived class
from the appropriate base message type, but the name will be
different to reflect the new version number. The marshaler and
demarshaler classes can be created by concatenating the name
of the message type, the marshaler/demarshaler type and the
version number (which is contained in each message). After
the classes are added with the defined syntax, the new classes
have added to the messaging module and have to be compiled
and linked. The rest of the ORB need not be modified or even
recompiled.

PluggableFineGrain

Datastructure (Hashtable)

+Factory Method()()

Message Factory

1:Passes the
message type the
version and the

marshaller type to
the message factory

2: The
message
factory

returns an
instance of

the
requested
message

3: Stores
the

instance in
a hash

table for
further

reference

4: The
instance of

the
message

Handler is
returned

Figure 5: PluggableFineGrain Design Strategy

Strategy applicability. The PluggableFineGrain design
strategy is well-suited for applications that invoke one-way
operation calls. If users know their applications will require
many one-way calls, then only the minimal functionality that
is required by the application is loaded into memory. For ex-
ample, if a client has subscribed to a notification service, the
notification service sends the client notifications in the form of
GIOP Reply messages. To read the messages, the client must
load a reader of a Reply message type having a particular ver-
sion number. Hence, only the functionality that is needed is

5

PreloadedHandler

Datastructure (hash table)

1: Preloads the
hash table with

instances of all the
message handlers

2: On demand the
hash table returns
the marshaller or
the demarshaller

required

3: The reader or wriiter
message handler

instance is returned

Figure 6: PreloadedHandler Design Strategy

loaded into memory. This leads to a small footprint because
the writer is not loaded into memory.

This PluggableFineGrain design enables the use of CORBA
for embedded applications. Monolithic ORBs tend to have
a large memory footprint, which makes them unsuitable for
memory-constrained embedded applications. The messaging
framework in most monolithic ORBS have both the marshal
and demarshal methods coded together for a message type.
Multiple versions are handled by having multiple marshal and
demarshal methods that are coded together in the same class
dispatched by a switch or if statement. Unfortunately, this
design is unsuitable for many embedded applications, because
all the messaging functionality is tightly-coupled, and there-
fore, all is present in memory, even when not needed.

Consider an CORBA application where a server sends
one-way requests of GIOP version 1.0 to a client.
Using the PluggableFineGrain strategy, this server just
needs to load a marshaler of Reply message of ver-
sion 1.0 (ReplyMessageWriter10). Conversely, if
the client only receives GIOP messages of version 1.1,
then the demarshal Request message type of version 1.1
(ReplyMessageReader11) will be loaded into memory.

3.4.2 PreloadedHandler Design

Strategy overview. PreloadedHandler is the second alterna-
tive design of a configurable messaging framework shown in
Figure 6. The PreloadedHandler loads instances of all the mar-
shalers and demarshalers and stores them in the cache at ini-
tialization time, which is why we call it “pre-loading.” The
cache has an instance for a marshaler/demarshaler for every
message type and every version. This design is different from
the PluggableFineGrain design since all the instances are pre-
loaded in the cache, whereas in the PluggableFineGrain model

an instance of a reader or a writer had to be loaded and entered
into the cache on-demand at run-time.

Strategy design Each message type, demarshaler, and ver-
sion combination is used to construct a unique key, which is
hard-coded in a switch statement. The key can be used as
a reference to access the reader or the writer much faster than
by hash table lookup. The pre-loaded instances and the unique
key generation in a switch statement ensures that a min-
imum amount of time is spent to create the key and access
the instance for the marshaler/demarshaler class in the cache.
Each time an instance of a reader or a writer is required, it is
returned from the cache.

In the PluggableFineGrain implementation, the class in-
stance based on the message type, version, and mar-
shaler/demarshaler type is created along with the unique key
and is stored in the cache. In the PreloadedHandler method,
the cumulative time to create an instance of the class, a key
and the time to load it into the cache is not needed. To add
a new version of GIOP in the PreloadedHandler design, con-
crete classes implementing the new version must be derived
and implemented. Then instances of each of these classes must
be created and load into the cache at initialization time.

Strategy applicability. The PreloadedHandler design is a
beneficial for applications that demand predictability. In-
stances of all the readers and writers are stored in the cache
before the first use, so there is no extra latency on first access.
In addition, this design strategy conserves memory because at
most one class instance is required.

The PreloadedHandler design is more efficient than the
PluggableFineGrain design since instances are pre-loaded and
stored in the cache. This design is useful for real-time and em-
bedded applications that require both predictability and small
footprint.

With the PreloadedHandler design, if a client makes
a one-way Request method call, it directly accesses
RequestMessageWriter10 which is pre-loaded in the
cache. As the performance results show in Section /refop-
erationThroughput, however, the Request message is loaded
faster than when loaded in the PluggableFineGrain. The
only required marshaler/demarshaler class on the server is
RequestMessageReader10.

The PreloadedHandler design provides the user to choose
between an extensible small footprint model (PluggableFine-
Grain) and model with a similar footprint and a characteristic
of being faster and predictable (PreloadedHandler).

3.4.3 Client/Server-Pairing Design

Strategy overview. PluggableClientServer is a third alterna-
tive design of a configurable messaging framework (shown in

6

PluggableClientServer

+factory method()

message factory

Datastructure [hash table] Datastructure [hash table]

Datastructure for writer message handlers Datastructure for reader message handlers

1: Main thread loads the message handler,by
sending the message type,message version
and marshaler type to the message factory.
The worker thread loads the complimentary

message by passing complimenatry
parameters to the message factory.

2: The Main
thread and worker
thread return an
instance of the
message and
complimentary

handler.3b: The
reader

message
instance is
stored in
the hash
table for
further

refernce

b: The
writer

message
instance is
stored in
the hash
table for
further

refernce

The main thread returns an instance of the required message handler and the worker thread terminates.

Figure 7: PluggableClientServer Design Strategy

Figure 7). In this design, complementary methods are grouped
together based on likely usage patterns. For example, Re-
quest messages and Reply messages are complimentary to
each other. If a Request message is sent by a client, then most
probably a Reply message will be expected back and the Re-
ply reader will be needed. With this design, the Request writer
and the Reply reader are loaded together at the same time.

The advantage of this design strategy is that the complemen-
tary method needed later is already loaded. The client/server-
pairing design is advantageous for implementations that han-
dle request-reply two-way invocation operation calls. The
PluggableClientServer design groups the marshaling and de-
marshaling methods that will be used together in a two-way
call. When the message has to be read or written, it sends a
request for the corresponding marshaler or demarshaler. If the
marshaler (writer) is not present in the writer cache or the de-
marshaler (reader) is not present in the reader cache, then the
marshaler/demarshaler is loaded into the corresponding cache.

Strategy design. When a Request message is to be sent by
a client, the main thread loads the class to marshal Request
messages of the appropriate GIOP version. At the same time,
a worker thread work loads the complementary class to de-
marshal Reply messages of the matching version because a
reply is expected for two-way calls. After the worker thread
has finished loading the complementary class, it enters it into
the reader cache and terminates. When the actual Reply mes-
sage arrives, the Reply message demarshaler is already in
the reader cache. The Reply message can then be demar-

shaled without waiting for the class to be loaded. Similar
behavior occurs when a server receives a Request: both the
RequestMessageReader and ReplyMessageWriter
are loaded in parallel.

Servers typically read Requests and write Replies, so we
group together the classes RequestMessageReader
and ReplyMessageWriter according to version.
Similarly clients typically write Request messages and
read Reply messages, so we group the two classes
RequestMessageWriter and ReplyMessageReader
of the same version. Thus, a pure client using one GIOP ver-
sion need only load the classes containing both client-oriented
methods.

As shown in Figure 10, this method is faster than the Plug-
gableFineGrain implementation. In nearly the same amount of
time required to load one of the message readers or writers in
a PluggableFineGrain design, both a reader and a writer can
be loaded in a PluggableClientServer design. Although at first
this seemed like a better implementation than the Pluggable-
FineGrain implementation, it fails in applications with limited
resources. This design is therefore unsuitable for applications
that are single threaded or cannot afford to dedicate a thread to
the messaging system due to limited resources.

A new version can be added by creating classes of the
readers and the writers based on the message type, mar-
shaler/demarshaler type and version. The classes have to
be added to the messaging module and can be used without
changes made to any other part of the existing messaging mod-
ule code. This design is extensible and pluggable.

Strategy applicability. The PluggableClientServer design is
beneficial for two-way operation calls where a Request mes-
sage is sent and it is known that a Reply message will be arrive
soon. This design offers faster execution of reading/writing
a message. It can also reduce footprint since only the func-
tionality that is needed is loaded into memory. The message
reader/writer pair loaded by the parallel thread offers eager
loading of a functionality that will be needed by the process.
Hence, the eager loading leads to the faster reading and writing
of messages into the CDR Stream.

To illustrate this design, we give another example. A client
sends a two-way Request message to a server and therefore ex-
pects to receive a Reply message. The main thread of the client
loads the Request marshal message of type 1.0 in the writer
cache. Simultaneously, a pre-loaded parallel worker thread
loads into the reader table the anticipated method, which, in
our example, is demarshaler of Reply of version 1.0. When
the Reply message is received from the server, the anticipated
method for reading this Reply is already loaded into the cache.
Normally, the client would be blocked waiting for the reply,
then it could load the required method, so the loading is hap-

7

pening in parallel with the remote execution of the method
thus no time wasted to load the class when the Reply message
is received.

3.4.4 Nonpluggable Design

Strategy overview. NonPluggable is the fourth design alter-
native for the ZEN GIOP messaging framework. In this de-
sign, the instances of readers and writers are hard coded at
the point of reading and writing the message. It is therefore
similar to the conventional monolithic design, so we added it
to compare the performance of this strategy against the three
more modular strategies.

Strategy design. Unlike the three earlier GIOP design
strategies, this strategy is not pluggable. Instead, the code
for handling each type and version of message is tightly-
coupled. However, it is faster than the other designs be-
cause no time is spent loading classes, building unique keys,
or in performing cache table look-ups. As shown in Fig-
ure 10, the NonPluggable design is the fastest implementa-
tion of all the designs we presented in the previous sections.
The Nonpluggable design is beneficial for users who need high
throughput. This design is not suitable for applications that de-
mand predictability, however, because the readers and writers
have instances hard-coded at the point of use, thereby prevent-
ing the ORB from storing and reusing an instance of a mes-
sage reader/writer. Each time a message requiring the same
message reader is encountered a new instance of the reader is
created.

This design is not exactly the same as a monolithic design,
since it still uses the separated readers/writers defined in the
earlier strategies. This decoupling can allow JVMs to selec-
tively load and unload classes as needed, which is not the case
in the usual monolithic designs. However, the NonPluggable
strategy gives the user the choice to use the monolithic design
for faster applications with a tradeoff of predictability and ex-
tensibility. In our paper we have used the NonPluggable de-
sign to compare the operational throughput results of the other
designs with the NonPluggable design.

Strategy applicability. The NonPluggable design strategy
provides high throughput and provides a small footprint. Since
this design strategy is not easily extensible, however, adding
new GIOP versions requires modifying each message-type
class to detect and handle the new version. Moreover, this
strategy is not dynamically adaptable.

3.5 Evaluating ZEN’s GIOP Protocol Frame-
work

Below, we compare and contrast the GIOP messaging design
strategies to illustrate the tradeoffs between them.

3.5.1 Ease of Messaging Extension via Pluggability

Modifying ZEN’s messaging framework to support new ver-
sions of GIOP is straightforward, provided one of the plug-
gable designs is used (PluggableClientServer or Pluggable-
FineGrain). If PreloadedHandlers are used, instances of the
new classes that have been created must be added to the cache
along with unique keys. The keys can be defined for them and
added in the switch statement.

For the Pluggable designs (PluggableFineGrain and Plug-
gableClientServer), new classes can be added based on the
message type, the version and the marshaler type. The classes
must be created in the particular syntax for the message factory
to return the right instance of the reader or the writer. Besides
taking care of creating new classes with syntax defined names,
none of the other files need to be changed, recompiled, or re-
linked. The ease of extension in these designs allows changes
to be made easily while ensuring that a small footprint is main-
tained. As the messaging module grows the design of the plug-
gable and PreloadedHandler models ensures a clean code and
backward compatibility with previous message versions.

3.5.2 Trading Off Messaging Flexibility for Predictability

CORBA applications using a flexible messaging framework
that use any of the pluggable designs, need not know before-
hand what type of messages they will send and/or receive. For
example, they could be server-like or client-like or both and
the middleware messaging framework will adapt to suit their
needs. Instead, only the necessary methods are loaded into
memory on demand depending on whether the program is a
client, a server, or a peer. If the behavior of a particular pro-
gram is known beforehand the necessary classes may be pre-
loaded at initialization time to eliminate any delays from lazy
class loading.

ZEN’s messaging framework allows a minimal CORBA
subset to be installed in the server or client ORB. Hence, en-
abling the design to be suitable for embedded applications.
Since the behavior is predefined on the client or server ORB
based on the application, the whole system is predictable
which is essential for real-time applications.

4 Empirical Results

This section compares the throughput and memory footprint
of the various GIOP design strategies.

8

4.1 Footprint Measurements

Overview The footprint measurements presented here were
obtained from a client-server program that transmits the “null”
operation, i.e., an operation with no parameters. The machine
on which the measurements have been taken is a Pentium III
dual-CPU 930.976 MHZ machine with a cache size of 256
kb and 513 Mb of RAM. The machine has a swap memory
of 996 Mb. The experiments were conducted using JVM ver-
sion 1.2.2 running on Linux OS 2.4.16. We used ZEN version
Alpha release 0.8. These test were run in loopback mode to
isolate the performance of the ORB, rather than the network
drivers.

Results and analysis. Table 1 presents the footprint mea-
surements. These measurements show that the memory foot-

 Memory

Virtual
components

Data size
(Pure Client)
[kilobytes]

Data size
(pure server)
[kilobytes]

Code size + data
size + stack size
(pure Client)
[kilobytes]

Code size + data
size + stack size
(pure Server)
[kilobytes]

Pluggable Fine
Grain
(message handler
cache)

51.688

30.632

53540

53786

Pluggable Client
Server
(Message handler
cache)

49.560

30.664

53543

53833

PreLoaded
MessageHandler
(Message Handler
cache)

48.600

30.632

53554

53950

Nonpluggable
(Message Handler
cache)

47.800

30.632

53555

53798

Jacorb
(Vesrion 1.3.3)

119.928

42.600

56312

61508

Table 1: Memory Footprint Measurements

print of each of our four alternative GIOP designs has a much
smaller footprint than the monolithic design used in JacORB.
Note also that JacORB only implements one version of GIOP,
whereas ZEN implements all three of the current specified ver-
sions.

The NonPluggable strategy, has the smallest footprint since
we use the highly-decomposed classes for readers/writers
based on the version number identified for the pluggable
strategies. The JVM can therefore selectively loads classes
when the first instance is created. This design strategy also
does not have the data space overhead of maintaining the
caches. The NonPluggable version does not use any caches,
since the instances are hard-coded at the point of demand. The
other designs do consume more data space, however, since
they all use hash tables for the caches.

Figures 8 and 9 also show that the data size of the server is
small for most of the strategized versions, except for the Plug-
gableClientServer strategy. This is due to the extra storage

0

20

40

60

80

100

120

140

PluggableFineGrain PluggableClientServer PreloadedMessage
Handler

Non Pluggable Handler Jacorb 1.3

Type of GIOP Message Cache Handler

D
at

a
S

iz
e

(k
b

)

Pure Client (kb) Pure Server (kb)

Figure 8: Data Size Comparisons from Table 1

required for the spawned worker thread to execute in paral-
lel with the main thread. The PreloadedHandler design strat-
egy includes initializing the hash table cache and creating in-
stances of all the possible message types at initialization time.
As a result, the stack utilization of this design is larger.

48000

50000

52000

54000

56000

58000

60000

62000

64000

PluggableFineGrain PluggableClientServer PreloadedMessage
Handler

Non Pluggable Handler Jacorb 1.3

Type of GIOP Message handler

F
o

o
tp

ri
n

t
si

ze
 (

kb
)

Code+data+stack size (Pure client) (kb) code+data+stack size (Pure Server) (kb)

Figure 9: Footprint Comparisons from Table 1

4.2 Operation Throughput Measurements

Overview. Operational throughput is compared for the dif-
ferent GIOP design strategies by making “null” invocations

9

960

970

980

990

1000

1010

1020

1030

1040

PluggableFineGrain PreloadedHandler PluggableClientServer NonPluggable

Type of design approach

av
er

ag
e

n
u

m
b

er
 o

f
ca

lls
/s

ec
 f

o
r

20
,0

00
 it

er
at

io
n

s

PluggableFineGrain

PreloadedHandler

PluggableClientServer

NonPluggable

Figure 10: Operation Throughput for All GIOP Design Strate-
gies

for a specific number of iterations. The number of itera-
tions were increased gradually to calculate the average op-
erational throughput for each design strategy. However, we
only show the measurements for 20,000 two-way loopback
operation calls using the same configuration described in Sec-
tion 4.1.

Results and Analysis. Figure 10 shows the operation
throughput measurements taken for each of the designs pre-
sented above. As shown in Figure 10, the PreloadedHandler
design has the highest operational throughput of all the GIOP
design strategies. However, this design has the largest memory
footprint.

As we can see from the Figure 10, the Pluggable-
ClientServer design yields a faster implementation than does
the PluggableFineGrain design. This can be explained as in
the PluggableFineGrain design for making two-way invoca-
tions, the main thread is blocked waiting for the Reply to re-
turn. When the reply returns the appropriate Reply reader has
to be loaded. Whereas in the PluggableClientServer imple-
mentation the worker thread loads the appropriate reader to
read the Reply message that the main thread is blocked waiting
for the reply. Hence, the latency to load the message handler
is saved in the PluggableClientServer design strategy.

4.3 Interpretation of the Empirical Results

Our measurements show that each of the highly-modular
GIOP messaging design strategies have a much smaller foot-
print than the monolithic design because only the needed
classes are loaded into memory. Each of the design strate-
gies has advantages for certain applications depending on the
need to optimize memory footprint, extensibility, or opera-
tional throughput.

For example, the Nonpluggable and PreloadedHandler de-
signs excelled at operational throughput, but neither one ex-
tends easily to handle new message types and new mes-
sage versions. The PluggableClientServer and PluggableFine-
Grain designs performed nearly as well as the other two, but
both are fully extensible. Moreover, PluggableClientServer
is best suited for multi-threaded applications since it requires
a worker thread to load the complementary class in parallel.
PluggableFineGrain is best suited for single-threaded applica-
tions since it does not need any extra threads.

Providing a flexible messaging framework allows selection
of the specific implementation based on the application pro-
grammers needs. We intend to explore the use of reflec-
tion [13] to automatically select the appropriate messaging
protocol based on dynamic feedback in the near future.

5 Related Work

Conventional DOC middleware has historically been too slow,
too unpredictable, and too large to meet the requirements of
many types of DRE applications. The ZEN project is aimed
at alleviating these problems. The design of ZEN’s pluggable
GIOP messaging framework is influenced by prior research on
the design and optimization of protocol frameworks for com-
munications. This section outlines this research and compares
it with our work on ZEN.
Configurable communication frameworks: The x-
kernel [14], Conduit+ [15], System V STREAMS [16],
ADAPTIVE [17], and F-CSS [18] are all configurable
communication frameworks that provide a protocol back-
plane consisting of standard, reusable services that support
network protocol development and experimentation. These
frameworks support flexible composition of modular protocol
processing components, such as connection-oriented and con-
nectionless message delivery and routing, based on uniform
interfaces. TAO’s pluggable protocols framework focuses on
implementing and/or adapting to transport protocols beneath
a higher-level middleware API, i.e., the standard CORBA
programming API.

The frameworks for communication subsystems listed
above focus on implementing various protocol layers beneath
relatively low-level programming APIs, such as the Socket
API. In contrast, ZEN’s pluggable GIOP messaging frame-
work focuses on selecting a subset of the many standard
CORBA GIOP message readers/writers. Therefore, existing
communication frameworks can provide building blocks for
ZEN’s pluggable GIOP messaging framework.
Patterns-based communication frameworks: An increas-
ing number of communication frameworks are being designed
and documented using patterns [19, 15]. In particular, Con-
duit+ [15] is an OO framework for configuring network pro-

10

tocol software to support ATM signaling. Key portions of the
Conduit+ protocol framework, e.g., demultiplexing, connec-
tion management, and message buffering, were designed using
patterns like Strategy, Visitor, and Composite [12]. Likewise,
the concurrency, connection management, and demultiplexing
components in ZEN’s ORB Core and Object Adapter also have
been explicitly designed using patterns like Virtual Compo-
nent [11], Acceptor-Connector, and Active Object [19].
CORBA pluggable protocol frameworks: The architec-
ture of ZEN’s pluggable GIOP messaging framework is based
on ideas learned from the pluggable protocol frameworks
used in TAO [8]. TAO’s GIOP messaging is implemented in
the monolithic design and therefore each message type mar-
shaler/demarshaler consumes memory footprint whether or
not they are needed and used by an application. By extensive
application of the Virtual Component pattern, we improved the
design of GIOP messaging in ZEN to allow flexible adaptation
to any one of four alternative implementations. Each alterna-
tive implementation, in turn, is dynamically and flexibly con-
figurable so to include only the minimal amount of code nec-
essary to provide the necessary GIOP messaging functionality
required by each application.

6 Concluding Remarks

This paper describes the design of ZEN’s GIOP messaging
framework, which allows selection of one of four different
design implementations. We measured and compared them
for footprint requirements and operational throughput. Our re-
sults indicate that a high-degree of decomposition yields the
best footprint gains, as shown by the fact that all four have
a smaller footprint than JacORB, which does not even imple-
ment all the versions of GIOP.

We learned from our experience with TAO that small mem-
ory footprints must be designed for during the initial design
phase. We also learned that configuration should be automated
as much as possible, to avoid placing an onerous burden on
application developers. Our future work will focus on using
reflection [13] to provide feedback to the middleware to allow
automatic static optimization of the middleware to customize
ZEN for each application developer’s needs.

References
[1] Object Management Group, The Common Object Request Bro-

ker: Architecture and Specification, 2.6 ed., Dec. 2001.

[2] J. P. Morgenthal, “Microsoft COM+ Will
Challenge Application Server Market.”
www.microsoft.com/com/wpaper/complus-appserv.asp, 1999.

[3] A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object
Model for the Java System,” USENIX Computing Systems,
vol. 9, November/December 1996.

[4] J. Snell and K. MacLeod, Programming Web Applications with
SOAP. O’Reilly, 2001.

[5] Realtime Platform SIG, “Realtime CORBA,” White Paper, Ob-
ject Management Group, Dec. 1996. Editor: Judy McGoogan,
Lucent Technologies.

[6] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,” Computer
Communications, vol. 21, pp. 294–324, Apr. 1998.

[7] D. C. Schmidt, V. Kachroo, Y. Krishnamurthy, and F. Kuhns,
“Applying QoS-enabled Distributed Object Computing Middle-
ware to Next-generation Distributed Applications,” IEEE Com-
munications Magazine, vol. 38, pp. 112–123, Oct. 2000.

[8] C. O’Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J. Par-
sons, “The Design and Performance of a Pluggable Protocols
Framework for Real-time Distributed Object Computing Mid-
dleware,” in Proceedings of the Middleware 2000 Conference,
ACM/IFIP, Apr. 2000.

[9] C. O. Raymond Klefstad, Douglas C. Schmidt, “Towards
Highly Configurable Real-time Object Request Brokers,”
in Proceedings of the International Symposium on Object-
Oriented Real-time Distributed Computing (ISORC), (Newport
Beach, CA), IEEE/IFIP, Mar. 2002.

[10] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-
Oriented Software Architecture: Patterns for Concurrent and
Networked Objects, Volume 2. New York: Wiley & Sons, 2000.

[11] A. Corsaro, D. C. Schmidt, R. Klefstad, and C. O’Ryan, “Vir-
tual Component: a Design Pattern for Memory-Constrained
Embedded Applications,” in Submitted to the �

th Annual Con-
ference on the Pattern Languages of Programs, (Monticello,
Illinois), Sept. 2002.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, Massachusetts: Addison-Wesley, 1995.

[13] F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. Magalhaes,
and R. Campbell, “Monitoring, Security, and Dynamic Config-
uration with the dynamicTAO Reflective ORB,” in Proceedings
of the Middleware 2000 Conference, ACM/IFIP, Apr. 2000.

[14] N. C. Hutchinson and L. L. Peterson, “The x-kernel: An Ar-
chitecture for Implementing Network Protocols,” IEEE Trans-
actions on Software Engineering, vol. 17, pp. 64–76, January
1991.

[15] H. Hueni, R. Johnson, and R. Engel, “A Framework for Net-
work Protocol Software,” in Proceedings of OOPSLA ’95,
(Austin, Texas), ACM, October 1995.

[16] D. Ritchie, “A Stream Input–Output System,” AT&T Bell Labs
Technical Journal, vol. 63, pp. 311–324, Oct. 1984.

[17] D. C. Schmidt, D. F. Box, and T. Suda, “ADAPTIVE: A Dy-
namically Assembled Protocol Transformation, Integration, and
eValuation Environment,” Journal of Concurrency: Practice
and Experience, vol. 5, pp. 269–286, June 1993.

[18] M. Zitterbart, B. Stiller, and A. Tantawy, “A Model for High-
Performance Communication Subsystems,” IEEE Journal on
Selected Areas in Communication, vol. 11, pp. 507–519, May
1993.

[19] D. C. Schmidt and C. Cleeland, “Applying Patterns to Develop
Extensible ORB Middleware,” IEEE Communications Maga-
zine, vol. 37, April 1999.

11

