
FireAnt: A Tool for Reducing Enterprise Product Line Architecture
Deployment, Configuration, and Testing Costs

Jules White
jules@dre.vanderblit.edu

Vanderbilt University, Department of Elec-
trical Engineering and Computer Science,
Box 1679 Station B, Nashville, TN, 37235

Douglas C. Schmidt,
schmidt@dre.vanderbilt.edu

Vanderbilt University, Department of Elec-
trical Engineering and Computer Science,
Box 1679 Station B, Nashville, TN, 37235

Abstract

Product-line architectures (PLA)s are a paradigm for
developing software families by customizing and com-
posing reusable artifacts, rather than handcrafting soft-
ware from scratch. Extensive testing is required to de-
velop reliable PLAs. Each PLA may have hundreds of
valid variants that can be constructed from the architec-
ture’s components. It is crucial that each of these vari-
ants be thoroughly tested to ensure the quality of these
applications on multiple OS platforms and hardware
configurations. Setting up test environments and running
tests can become extremely complex and expensive as the
number of variants and the complexity of their deploy-
ment and configuration increases. Once a variant is
deemed ready for deployment and configuration in a
production environment, it is crucial that these activities
be done identically to the tested configurations and up-
holds the assumptions of the component developers. Rap-
idly setting up numerous distributed test environments
and ensuring that they are deployed and configured cor-
rectly is hard. This poster paper presents FireAnt, which
is a tool for the model-driven development (MDD) of PLA
deployment plans.

1. Introduction and Motivation
Product-line architectures (PLAs) offer developers the

ability to rapidly produce software packages that are
targeted for different requirement sets by leveraging a
common set of capabilities, patterns, and architectural
styles. The design of a PLA is typically guided by scope,
commonality, and variability (SCV) analysis. SCV cap-
tures key characteristics of software product-lines, in-
cluding (1) scope, which defines the domains and context
of the PLA, (2) commonalities, which describe the attrib-
utes that recur across all members of the family of prod-
ucts, and (3) variabilities, which describe the attributes
unique to the different members of the family of prod-
ucts.

After constructing a PLA, product-line engineers iden-
tify each product variant that must be produced from the
architecture and its requirements. Once a PLA variant’s

requirements are obtained, these requirements must be
mapped to the variabilities in the PLA. Traditional man-
ual processes of mapping the requirements to the PLA
involve software developers taking each requirement and
attempting to determine the software components that
must be in the variant, the components that must be con-
figured, how each component must be changed, and how
the components must be composed. Such manual ap-
proaches are tedious and error-prone and are a significant
source of system downtime.

An alternate approach to mapping the variant’s re-
quirements to the PLA involves the use of Model-driven
development (MDD) techniques and tools, which are
designed to reduce the effort needed to capture system
requirements and map them to the underlying PLA infra-
structure. Models of PLA variants developed with MDD
tools can be constructed and checked for correctness
(semi-)automatically to ensure that application designs
meet their requirements. MDD tools can also be used to
generate the customization, composition, packaging, and
deployment code to implement PLA variants.

2. Overview of FireAnt
FireAnt is a MDD tool designed to allow developers to

capture the SCV of their PLA and automate the process
of discovering and testing valid variants. It manages the
three main challenges of deploying, testing, and config-
uring PLAs that arise from the large number of variants:
1. Large Variant Solution Spaces – A variant may

have hundreds of components that can be composed
to form a variant. Each component, itself, may have
multiple valid configurations. These numerous points
of variability lead to a large number of valid variants
that each must be thoroughly tested. The large solu-
tion space makes it more difficult for developers to
anticipate all the possible component compositions
and predict accidental complexities.

2. Complexity of Developing Deployment Scripts –
Any non-trivial variant will require numerous de-
ployment and configuration steps to be installed and
tested. Each variant will require different configura-
tion and deployment steps and installation sequences.
With such a large number of possible variants, it is
very difficult to manage and maintain the deploy-

ment and configuration infrastructure required to de-
ploy, configure, and test variants.

3. Test Automation and Coverage – Testing the large
numbers of valid variants of a non-trivial PLA is in-
feasible or prohibitively expensive to do without
automation. One solution is only to test a very lim-
ited range of variants. This solution, however, is un-
satisfactory for PLAs that need to support a wide
range of variants or if the variants of interest are not
known a priori. With solution spaces that may in-
volve tens, hundreds, or thousands of valid variants,
it is essential that testing be automated. Automation
is also crucial when the PLA itself is continually
evolving and must be regression tested.

FireAnt was developed using the Generic Eclipse
Modeling System (GEMS), which is an open-source
MDD environment built using Eclipse by the Distributed
Object Computing (DOC) Group at the Institute for Soft-
ware Integrated Systems (ISIS) at Vanderbilt University.
A GEMS-based metamodel describing the problem do-
main was constructed and interpreted to create the Fire-
Ant DSML for PLAs. FireAnt models constructed in the
domain are used to explore the variant solution space and
automate the testing, deployment, and configuration of
PLAs. This approach is similar to other model-driven
efforts that the DOC group has used for the deployment
and configuration of component systems in prior work.

FireAnt’s modeling environment makes use of several
different views to capture the SCV, deployment, configu-
ration, and testing requirements of a PLA. The user-man-
aged views specify a grammar, visualized as and/or trees,
that governs the construction of PLA variants. FireAnt
generates the tool managed views by exploring the gram-
mar trees and generating the valid variants.

The user managed views specify the deployment, con-
figuration, and artifact dependency rules for the system.
Each PLA is divided into a set of assemblies of compo-
nents which must be deployed on the target environment.
The Logical Composition View determines which com-
ponents must be present in each assembly and what the
valid combinations of components are. The Logical De-
ployment View determines which assemblies may be
collocated and which nodes each group of collocated
components may be used as deployment targets. Figure 1,
illustrates the logical deployment view for a constraint
optimization system’s geo database. The Dependency
View specifies which physical artifacts, such as Java
Archive Files (JARs) and XML files, must be present for
each component to function.

FireAnt creates the Physical Deployment View by trav-
ersing the Logical Composition Tree and calculating all
possible combinations of Assemblies that can be de-
ployed to each node. FireAnt then takes each of these
possible variants and determines the unique packaging

combinations of components (called “eggs”) that are
required for all possible valid deployments, which allows
developers to determine exactly how many unique pack-
age configurations are required and which package con-
figurations are required for each deployment configura-
tion of a variant. This design simplifies the job of de-
ploying variants. FireAnt uses the Physical Deployment
View to provide automated orchestration of variant de-
ployment and testing. FireAnt can calculate what eggs are
needed for each variant and generate the deployment
scripts required to install and test them.

Figure 1, Logical Deployment Tree for the

GeoDatabase Assembly

By using model based techniques to formally capture

the compositional and deployment variability in a PLA,
we have shown that much of the deployment, configura-
tion, and testing of PLAs can be automated. This leaves
developers to focus on the implementation of reusable
components and deployment and configuration scripts for
known working units of functionality. FireAnt can be
used to automate the discovery and creation of the de-
ployment, configuration, and testing scripts which glue
the PLA’s myriad pieces together.

3. Concluding Remarks
FireAnt is an MDD tool, built with the Generic Eclipse

Modeling System (GEMS), designed to manage the in-
herit complexity of deploying, configuring, and testing
the large number of possible variants in a PLA. Models of
a PLA’s deployment and configuration grammar, con-
structed in FireAnt, can be analyzed by FireAnt’s model
interpreters to automate the deployment, configuration,
and testing of all valid variants of a PLA. Open-source
versions of FireAnt are available for download from
www.sf.net/projects/fireant. GEMS is also open-source
and can be obtained from www.sf.net/projects/gems.

