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Abstract

This paper provides two contributions to the study of developing and applying domain-
specific modeling languages (DSMLS) to distributed real-time and embedded (DRE) sys-
tems – particularly those systems using standards-based QoS-enabled component middle-
ware. First, it describes the Platform-Independent Component ModelingLanguage (PICML),
which is a DSML that enables developers to define component interfaces,QoS parameters
and software building rules, and also generates descriptor files that facilitate system deploy-
ment. Second, it applies PICML to an unmanned air vehicle (UAV) application portion of
an emergency response system to show how PICML resolves key component-based DRE
system development challenges. Our results show that the capabilities provided by PICML
– combined with its design- and deployment-time validation capabilities – eliminates many
common errors associated with conventional techniques, thereby increasing the effective-
ness of applying QoS-enabled component middleware technologies to the DRE system
domain.
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1 Introduction

Emerging trends and challenges Reusable components and standards-based com-
ponent models are increasingly replacing the use of monolithic and proprietary
technologies as the platform for developing large-scale, mission-critical distributed
real-time and embedded (DRE) systems [1]. This paradigm shift is motivated by the
need to (1) reduce life-cycle costs by leveraging standards-based and commercial-
off-the-shelf (COTS) technologies and (2) enhance softwarequality by amortizing
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validation and optimization efforts over many users and testing cycles. Component
technologies, such as the OMG’s Lightweight CORBA Component Model (CCM)
and Boeing’s Boldstroke PRiSm, are establishing themselves aseffective middle-
ware platforms for developing component-based DRE softwaresystems in domains
ranging from software-defined radio to avionics mission computing and total ship
computing environments.

The trend towards developing and reasoning about DRE systemsvia components
provides many advantages compared with earlier forms of infrastructure software.
For example, components provide higher-level abstractions than operating systems,
third-generation programming languages, and earlier generations of middleware,
such as distributed object computing (DOC) middleware. In particular, component
middleware, such as CCM, J2EE, and .NET, supports multiple views per com-
ponent, transparent navigation, greater extensibility, and a higher-level execution
environment based on containers, which alleviate many limitations of prior mid-
dleware technologies. The additional capabilities of component-based platforms,
however, also introduce new complexities associated with composing and deploy-
ing DRE systems using components, including (1) the need to design consistent
component interface definitions, (2) the need to specify valid interactions and con-
nections between components, (3) the need to generate validcomponent deploy-
ment descriptors, (4) the need to ensure that requirements of components are met
by target nodes where components are deployed, and (5) the need to guarantee that
changes to a system do not leave it in an inconsistent state. The lack of simplifi-
cation and automation in resolving the challenges outlinedabove can significantly
hinder the effective transition to – and adoption of – component middleware tech-
nology to develop DRE systems.

Solution approach → Model-driven development of component-based DRE
systems To address the needs of DRE system developers outlined above,we have
developed thePlatform-Independent Component Modeling Language(PICML).
PICML is an open-source domain-specific modeling language (DSML) available
for download atwww.dre.vanderbilt.edu/cosmic that enables developers of
component-based DRE systems to define application interfaces, QoS parameters,
and system software building rules, as well as generate valid XML descriptor files
that enable automated system deployment. PICML also provides capabilities to
handle complex component engineering tasks, such as multi-aspect visualization
of components and the interactions of their subsystems, component deployment
planning, and hierarchical modeling of component assemblies.

PICML is designed to help bridge the gap between design-time verification and
model-checking tools (such as Cadena, VEST, and AIRES) and theactual deployed
component implementations. PICML also provides higher-level abstractions for de-
scribing DRE systems, using component models that provides abase for (1) inte-
grating analysis tools that reason about DRE systems and (2) platform-independent
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generation capabilities,i.e., generation that can be targeted at multiple component
middleware technologies, such as CCM, J2EE, and ICE.

2 Overview of PICML

Model-Driven Development (MDD) [2] is a paradigm that focuses on using mod-
els in most system development activities,i.e., models provide input and output at
all stages of system development until the final system itself is generated. A key
capability supported by the MDD paradigm is the definition and implementation
of domain-specific modeling languages(DSMLs), which can be viewed as a five-
tuple [3] consisting of: (1) concrete syntax (C), which defines the notation used
to express domain entities, (2) abstract syntax (A), which defines the concepts,
relationships and integrity constraints available in the language, (3) semantic do-
main (S), which defines the formalism used to map the semantics of the models to
a particular domain, (4) syntactic mapping (MC: A→C), which assigns syntactic
constructs (e.g., graphical and/or textual) to elements of the abstract syntax, and (5)
semantic mapping (MS: A→S), which relates the syntactic concepts to those of the
semantic domain.

Crucial to the success of DSMLs ismetamodelingandauto-generation. A meta-
modeldefines the elements of a DSML, which is tailored to a particular domain,
such as the domain of avionics mission computing or emergency response systems.
Auto-generation involves automatically synthesizing artifacts from models, thereby
relieving DSML users from the specifics of the artifacts themselves, including their
format, syntax, or semantics. Examples of such artifacts includes (but are not lim-
ited to), code in some programming language and/or descriptors, in formats such
as XML, that can serve as input to other tools.

To support development of DRE systems using MDD, we have defined thePlatform-
Independent Component Modeling Language(PICML) DSML using theGeneric
Modeling Environment(GME) [4]. GME is a meta-programmable modeling envi-
ronment with a general-purpose editing engine, separate view-controller GUI, and
a configurable persistence engine. Since GME is meta-programmable, the same en-
vironment used to define PICML is also used to build models, which are instances
of the PICML metamodel.

At the core of PICML is a DSML (defined as ametamodelusing GME) for describ-
ing components, types of allowed interconnections betweencomponents, and types
of component metadata for deployment. The PICML metamodel defines∼115 dif-
ferent types of basic elements, with 57 different types of associations between these
elements, grouped under 14 different folders. The PICML metamodel also uses the
OMG’s Object Constraint Language (OCL) to define∼222 constraints that are en-
forced by GME’s constraint manager during the design process.
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Using GME tools, the PICML metamodel can be compiled into amodeling par-
adigm, which defines a domain-specific modeling environment. Fromthis meta-
model,∼20,000 lines of C++ code (which represents the modeling language ele-
ments as equivalent C++ types) is generated. This generated code allows manipu-
lation of modeling elements,i.e., instances of the language types using C++, and
forms the basis for writingmodel interpreters, which traverse the model hierarchy
to perform various kinds of generative actions, such as generating XML-based de-
ployment plan descriptors. PICML currently has∼8 interpreters using∼222 gener-
ated C++ classes and∼8,000 lines of hand-written C++ code that traverse mod-
els to generate the XML deployment descriptors (described in Sidebar 2) needed
to support the OMG D&C specification [5]. Each interpreter iswritten as a DLL
that is loaded at run-time into GME and executed to generate the XML descriptors
based on models developed by the component developers usingPICML.

To motivate and explain the features in PICML, we use a runningexample of a rep-
resentative DRE system designed for emergency response situations (such as disas-
ter recovery efforts stemming from floods, earthquakes, hurricanes) and consists of
a number of interacting subsystems with a variety of DRE QoS requirements. Our
focus in this paper is on the unmanned aerial vehicle (UAV) portion of this system,
which is used to monitor terrain for flood damage, spot survivors that need to be
rescued, and assess the extent of damage. The UAV transmits this imagery to vari-
ous other emergency response units, including the nationalguard, law enforcement
agencies, health care systems, firefighting units, and utility companies.

3 Building DRE Systems with PICML

Developing and deploying emergency response systems is hard. For example, there
are multiple modes of operations for the UAVs, including aerial imaging, survivor
tracking, and damage assessment. Each of these modes is associated with a differ-
ent set of QoS requirements. For example, a key QoS criteria involves the latency
requirements in sending images from the flying UAVs to groundstations under
varying bandwidth availability. Similar QoS requirementsmanifest themselves in
the traffic management, rescue missions, and fire fighting operations.

In conjunction with colleagues at BBN Technologies and Washington University,
we have developed a prototype of the UAV portion of the emergency response sys-
tem described above using the CCM and Real-time CORBA capabilities provided
by CIAO [6]. CIAO extends our previous work onThe ACE ORB(TAO) [7] by pro-
viding more powerful component-based abstractions using the specification, vali-
dation, packaging, configuration, and deployment techniques defined by the OMG
CCM [8] and D&C [5] specifications. Moreover, CIAO integrates the CCM capa-
bilities outlined above with TAO’s Real-time CORBA [7] features, such as thread-
pools, lanes, and client-propagated and server-declared policies. The components
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Fig. 1. Emergency Response System components

in this UAV application are shown in Figure 1 and the steps involved in this effort
are described below:

1. Identify the components in the system, and define their interfaces, which in-
volves defining component ports and attributes, using the CORBA 3.x IDL features
provided by CCM. In the UAV example, each UAV is associated witha stream of
images. Each image stream is composed ofSender, Qosket, andReceiver com-
ponents.Sender components are responsible for collecting the images from each
image sensor on the UAV. TheSender passes the images to a series ofQosket [6]
components that perform operations on the images to ensure that the QoS require-
ments are satisfied. Some Qosket components includeCompressQosket, ScaleQosket,
CropQosket, PaceQosket, and aDiffServQosket. The finalQosket then passes
the images to aReceiver component, which collects the images from the UAV and
passes them on to a display in the control room of the emergency response team.

EachSender, Receiver, and the variousQosket components pass images via
CCM event source and sink ports. There are also manager components that de-
fine policies, such as the relative importance of the different mission modes of each
UAV. These policies in turn modify existing resource allocations by theQosket
components. For example, the globalSystemResourceManager component moni-
tors resource allocation across all the UAVs that are operational at any moment, and
is responsible for communicating policy decisions from thecontrol center to each
UAV by triggering mode changes. The per-streamLocalResourceManager com-
ponent is responsible for instructing theQosket components to adapt their internal
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QoS requirements according to the mode in which the UAV is currently operating.

2. Define interactions between components, which involves keeping track of the
types of each component’s ports and ensuring that components which must be in-
terconnected have matching ports defined. In the UAV example, this involves con-
necting the different components that comprise a single stream in the correct order
since some components (such asDeCompressQosket) do the reverse of an oper-
ation performed by another component (such asCompressQosket). The manager
components need to be connected to receive monitoring information about the ex-
isting QoS in each stream of image data.

3. Compose the UAV application by defining CCM deployment descriptors ,
which involves selecting a set of component implementations from a library of
available implementations, describing how to instantiatecomponent instances us-
ing these component implementations, and specifying connections between com-
ponent instances. In the UAV example, this first involves combining the different
components that comprise a single stream of images into a single assembly, rep-
resented by an XML descriptor. The complete UAV applicationis then created by
making copies of this file to represent each UAV in flight.

4. Deploy the UAV application onto its runtime platform, which involves en-
suring that the implementation artifacts and the associated deployment descriptors
are available on the actual target platform, and initiatingthe deployment process
using the standard OMG D&C [5] framework and tools. In the UAVexample, this
involves taking the hand-written XML descriptors and deploying the application
using these descriptors as input.

5. Refine the component-based UAV application,which involves making changes
to existing component interface definitions or adding new component types, as part
of enhancing the initial UAV application prototype. In the UAV example, this in-
volves adding or removing aQosket component in the pipeline for a single stream
depending on results from empirical evaluation of the system.

One of the challenges of using just component middleware is that errors often go
undetected until late in the development cycle. When these errors are eventually
detected, moreover, repairing them often involves backtracking to multiple prior
life-cycle steps, which impedes productivity and increases the level of effort. As a
result, the advantages of transitioning from DOC middleware to component middle-
ware can be significantly obstructed, without support from higher-level tools and
techniques. These observations underscore the importanceof enhancing design-
time support for DRE systems built using component middleware, as well as the
importance of automating the deployment of such systems.
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3.1 Resolving the UAV Application Challenges with PICML

As discussed in [9], the use of QoS-enabled component middleware to develop the
UAV application significantly improved upon an earlier DOC middleware proto-
type of this application [10]. In the absence of model-driven development (MDD)
tool support, however, a number of significant challenges remain unresolved when
using component middleware. For concreteness, the remainder of this section de-
scribes five key challenges that arose when the UAV application was developed
using CCM and CIAO, and examines how key features of PICML can be ap-
plied to address the limitations associated with developing QoS-enabled component
middleware-based DRE systems, such as the UAV application.

We use CCM and CIAO as the basis for our research because it is layered on top
of Real-time CORBA, which provides significant capabilities for satisfying end-to-
end QoS requirements of DRE systems [7]. There is nothing inherent in PICML,
however, that limits it to CCM or CIAO. Likewise, the challengesdescribed below
are generic to component middleware, and not deficiencies ofCCM or CIAO. For
example, both J2EE and Microsoft .NET use XML to describe component assem-
blies, so the challenges we describe apply to them, as well.

3.1.1 Accidental Complexities in Component Interface Definition.

IDL for CCM (i.e., CORBA 3.x IDL) defines extensions to the syntax and se-
mantics of CORBA 2.x IDL. Every developer of CCM-based applications must
therefore master the differences between CORBA 2.x IDL and CORBA3.x IDL.
For example, while CORBA 2.x interfaces can have multiple inheritance, CCM
components can have only a single parent, so equivalent units of composition (i.e.,
interfaces in CORBA 2.x and components in CCM) can have subtle semantic differ-
ences. Moreover, any component interface that needs to be accessed by component-
unaware CORBA clients should be defined as asupportedinterface as opposed to
aprovidedinterface.

In any system that transitions from an object-based architecture to a component-
based architecture, there is likelihood of simultaneous existence of simple CORBA
objects and more sophisticated CCM components. Design of component interfaces
must therefore be done with extra care. In the UAV application, for example, though
theQosket components receive both allocation events from the resource managers
and images from theSender and otherQosket components, they cannot inherit
from base components implementing each functionality. Similarly, the Receiver
component interface needs to be defined as asupportedinterface, rather than a
providedinterface.
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3.1.2 Solution→ Visual Component Interface Definition.

A set of component, interface, and other datatype definitions may be created in
PICML using either of the following approaches:

• Adding to existing definitions imported from IDL . In this approach, ex-
isting CORBA software systems can be easily migrated to PICML using its
IDL Importer, which takes any number of CORBA IDL files as input, maps
their contents to the appropriate PICML model elements, and generates a sin-
gle XML file that can be imported into GME as a PICML model. This model
can then be used as a starting point for modeling assemblies and generating
deployment descriptors.

• Creating IDL definitions from scratch . In this approach, PICML’s graph-
ical modeling environment provides support for designing the interfaces us-
ing an intuitive “drag and drop” technique, making this process largely self-
explanatory and independent of platform-specific technical knowledge. Most
of the grammatical details are implicit in the visual language,e.g., when the
model editor screen is showing the “scope” of a definition, only icons repre-
senting legal members of that scope will be available for dragging and drop-
ping.

CORBA IDL can be generated from PICML, enabling generation of software ar-
tifacts in languages having a CORBA IDL mapping. For each logically separate
definition in PICML, the generated IDL is also split into logical file-type units.
PICML’s interpreter will translate these units into actual IDL files with #include
statements based on the inter-dependencies of the units detected by the interpreter.
PICML’s interpreter will also detect requirements for the inclusion of canonical
CORBA IDL files and generate them as necessary.

Application to the UAV example scenario.By modeling the UAV components us-
ing PICML, the problems associated with multiple inheritance, semantics of IDL,
etc. are flagged at design time. By providing a visual environment for defining the
interfaces, PICML therefore resolves many problems described in Section 3.1.1
associated with definition of component interfaces. In particular, by modeling the
interface definitions, PICML alleviates the need to model a subset of interfaces
for analysis purposes, which has the added advantage of preventing skew between
the models of interfaces used by analysis tools and the interface used in imple-
mentations. It also removes the effort needed to ensure thatthe IDL semantics are
satisfied, resulting in a∼50% reduction in effort associated with interface defini-
tion.

3.1.3 Defining Consistent Component Interactions.

Even if a DRE system developer is well-versed in CORBA 3.x IDL, itis hard to
keep track of components and their types using plain IDL files, which are text-
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based and hence provide no visual feedback,i.e., to allow visual comparison to
identify differences between components. Type checking with text-based files in-
volves manual inspection, which is error-prone and non-scalable. Moreover, an IDL
compiler will not be able to catch mismatches in the port types of two components
that need to be connected together, since component connection information is not
defined in IDL. This problem only becomes worse as the number of component
types in a DRE system increases. In our UAV application for example, enhancing
the UAV with new capabilities can increase the number of component types and
inter-component interactions. If a problem arises, developers of DRE systems may
need to revise the interface definitions until the types match, which is a tedious and
error-prone process.

3.1.4 Solution→ Semantically Compatible Component Interaction Definition.

PICML defines thestatic semanticsof a system using a constraint language and
enforces these semantics early in the development cycle,i.e., at design-time. This
type checking can help identify system configuration errorssimilar to how a com-
piler catches syntactic errors early in the programming cycle. Static semantics refer
to the “well-formedness” rules of the language. The well-formedness rules of a tra-
ditional compiler are nearly always based on a language grammar defining valid
syntax. By elevating the level of abstraction via MDD techniques, however, the
corresponding well-formedness rules of DSMLs like PICML actually capture se-
mantic information, such as constraints on composition of models, and constraints
on allowed interactions.

There is a significant difference in the early detection of errors in the MDD par-
adigm compared with traditional object-oriented or procedural development using
a conventional programming language compiler. In PICML, OCL constraints are
used to define the static semantics of the modeling language,thereby disallowing
invalid systems to be built using PICML. In other words, PICML enforces the par-
adigm of “correct-by-construction.” Sidebar 1 shows an example of a constraint
defined in the PICML metamodel.

By using GME’s constraint manager, PICML constraints can be (1) evaluated au-
tomatically (triggered by a specified modeling event) or on demand, (2) prioritized
to control order of evaluation and severity of violation, and/or (3) applied globally
or to one or more individual model elements

Application to the UAV example scenario.In the context of our UAV application,
the components of a single stream can be modeled as a CCM assembly. PICML
enables the visual inspection of types of ports of components and the connection
between compatible ports, including flagging error when attempting connection be-
tween incompatible ports. PICML also differentiates different types of connections
using visual cues, such as dotted lines and color, to quicklycompare the structure of
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Sidebar 1: Example PICML Constraint

Below is an example of a constraint defined in PICML:

let concrete_parents= sel f.parts(“ Inherits′′) →

select(x : gme:: Model |

x.oclAsType(Event).abstract= f alse) in

i f (sel f.abstract= true) then

concrete_parents→ size= 0

else

concrete_parents→ size< 2

endi f

This constraint is applied to a PICML model element calledEvent. An Event has
a boolean attribute calledabstractand may inherit from 0 or more other Events,
by containing PICML model elements calledInherits, which are references to
definitions of other Events. The constraint shown above ensures that ifanEvent
is “concrete” (i.e., its abstract attribute isfalse), it cannot be derived from more
than a single concreteEvent; and if anEvent is “abstract”, it cannot be derived
from another “concrete”Event. This constraint places no limit on the number of
abstract parents in either case.

an assembly. By providing a visual environment coupled with rules defining valid
constructs, PICML therefore resolves many problems described in Section 3.1.3
with ensuring consistent component interactions. By enforcing the constraints dur-
ing creation of component models and interconnections – andby disallowing con-
nections to be made between incompatible ports – PICML completely eliminates
the manual effort required to perform these kinds of checks.

3.1.5 Generating Valid Deployment Descriptors.

Component developers must not only ensure type compatibility between intercon-
nected component types as part of interface definition, but also ensure the same
compatibility between instances of these component types in the XML descriptor
files needed for deployment. This problem is of a larger scalethan the one above,
since the number ofcomponent instancestypically dwarfs the number ofcompo-
nent typesin a large-scale DRE system. Moreover, a CCM assembly file written
using XML is not well-suited to manual editing.

In addition to learning IDL, DRE system developers must also learn XML to com-
pose component-based DRE systems. In our example UAV application, simply in-
creasing the number of UAVs increases the number of component instances and
hence the component interconnections. The increase in component interconnec-
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tions is typically not linear with respect to increase in number of component in-
stances. Any errors in this step are likely to go undetected until the deployment of
the system at run-time.

3.1.6 Solution→ Automatic Deployment Descriptor Generation.

In addition to ensuring design-time integrity of systems built using OCL con-
straints, PICML also generates the complete set of deployment descriptors that are
needed as input to the component deployment mechanisms. Thedescriptors gen-
erated by PICML conform to the descriptors defined by the standard OMG D&C
specification [5]. Sidebar 2 shows an example of the types of descriptors that are
generated by PICML, with a brief explanation of the purpose ofeach type of de-
scriptor.

Sidebar 2: Generating Deployment Metadata

PICML generates the following types of deployment descriptors based onthe
OMG D&C specification:

• Component Interface Descriptor (.ccd)– Describes the interfaces – ports,
attributes of a single component.

• Implementation Artifact Descriptor (.iad) – Describes the implementa-
tion artifacts (e.g., DLLs, executables etc.) of a single component.

• Component Implementation Descriptor (.cid) – Describes a specific
implementation of a component interface; also contains component inter-
connection information.

• Component Package Descriptor (.cpd)– Describes multiple alternative
implementations (e.g., for different OSes) of a single component.

• Package Configuration Descriptor (.pcd)– Describes a component pack-
age configured for a particular requirement.

• Component Deployment Plan (.cdp)– Plan which guides the run-time
deployment.

• Component Domain Descriptor (.cdd)– Describes the deployment target
i.e., nodes, networks on which the components are to be deployed.

Since the rules determining valid assemblies are encoded into PICML via its meta-
model, and enforced using constraints, PICML ensures that the generated XML
describes a valid system. Generation of XML is done in a programmatic fashion
by writing aVisitor class that uses the Visitor pattern to traverse the elementsof
the model and generate XML. The generated XML descriptors also ensure that the
names associated with instances are unique, so that individual component instances
can be identified unambiguously at run-time.

Application to the UAV example scenario.In the context of the UAV applica-
tion, the automated generation of deployment descriptors using PICML not only
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removes the burden of knowing XML from DRE system developers,it also en-
sures that the generated files are valid. Adding (or removing) components is as
easy as dragging and dropping (or deleting) an element, making the necessary con-
nections, and regenerating the descriptors, instead of hand-modifying the existing
XML files as would be done without such tool support. This automation resolves
many problems mentioned in Section 3.1.5, where the XML fileswere hand-written
and modified manually in case of errors with the initial attempts.

For example, it is trivial to make the∼100 connections in a graphical fashion using
PICML, as opposed to hand-writing the XML. All the connections between com-
ponents for the UAV application were made in a few hours, and the XML was then
generated instantaneously,i.e. at the click of a button. In contrast, it required sev-
eral days to write the same XML descriptors manually. PICML also has the added
advantage of ensuring that the generated XML files are syntactically valid, which
is a task that is very tedious and error-prone to perform manually.

3.1.7 Associating Components with the Deployment Target.

In component-based systems there is often a disconnect between software implementation-
related activities and the actual target system since (1) the software artifacts and the
physical system are developed independently and (2) there is no way to associate
these two entities using standard component middleware features. This disconnect
typically results in failures at run-time due to the target environment lacking the
capabilities to support the deployed component’s requirements. These mismatches
can also often be a source of missed optimization opportunities since knowledge of
the target platform can help optimize component implementations and customize
the middleware accordingly. In our UAV application, components that reside on a
single UAV can use collocation facilities provided by ORBs to eliminate unnec-
essary (de)marshaling. Without the ability to associate components with targets,
errors due to incompatible component connections and incorrect XML descriptors
are likely to show up only during actual deployment of the system.

3.1.8 Solution→ Deployment Planning.

In order to satisfy multiple QoS requirements, DRE systems are often deployed in
heterogeneous execution environments. To support such environments, component
middleware strives to be largely independent of the specifictarget environment in
which application components will be deployed. The goal is to satisfy the func-
tional and systemic requirements of DRE systems by making appropriate deploy-
ment decisions that account for key properties of the targetenvironment, and retain
flexibility by not committing prematurely to physical resources.

To support these needs, PICML can be used to specify the targetenvironment where
the DRE system will be deployed, which includes defining: (1)Nodes, where the
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individual components and component packages are loaded and used to instanti-
ate those components, (2)Interconnectsamong nodes, to which inter-component
software connections are mapped, to allow the instantiatedcomponents to com-
municate, and (3)Bridges among interconnects, where interconnects provide a di-
rect connection between nodes and bridges to provide routing capability between
interconnects. Nodes, interconnects, and bridges collectively represent the target
environment.

Once the target environment is specified via PICML, allocation of component in-
stances onto nodes of the target target environment can be performed. This activity
is referred to ascomponent placement, where systemic requirements of the compo-
nents are matched with capabilities of the target environment and suitable allocation
decisions are made. Allocation can either be: (1)Static, where the domain experts
know the functional and QoS requirement of each of the components, as well as
knowledge about the nodes of the target environment. In sucha case, the job of
the allocation is to create a deployment plan comprising thecomponents→node
mapping specified by the domain expert, or (2)Dynamic, where the domain expert
specifies the constraints on allocation of resources at eachnode of the target en-
vironment, and the job of the allocation is to choose a suitable component→node
mapping that meets both the functional and QoS requirement of each of the com-
ponents, as well as the constraints on the allocation of resources.

PICML currently provides facilities for specifying static allocation of components.
As shown in Figure 2, domain experts can visually map the components with the
respective target nodes, as well as provide additional hints, such as whether the
components need to be process-collocated or host-collocated, provided two com-
ponents are deployed in the same target node. PICML generatesa deployment plan
from this information, which is used by the CIAO run-time deployment engine to
perform the actual deployment of components to nodes.

Application to the UAV example scenario.In the context of the UAV example,
PICML can be used to specify the mapping between the differentQosket compo-
nents and the target environment,i.e., the UAVs, in the path from each UAV to the
Receiver component at the control center. By modeling the target environment in
the UAV example using PICML, therefore, the problem with a disconnect between
components and the deployment target described in Section 3.1.7 can be resolved.
In case there are multiple possible component→node mappings, PICML can be
used to experiment with different combinations since it generates descriptors auto-
matically. PICML thus completely eliminates the manual effort involved in writing
the deployment plan.
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Fig. 2. Component Deployment Planning

3.1.9 Automating Propagation of Changes Throughout a DRE System.

Making changes to an existing component interface definition can be painful since
it may involve retracing all the steps of the initial development. It also does not al-
low any automatic propagation of changes made in a base component type to other
portions of the existing infrastructure, such as the component instances defined in
the descriptors. Moreover, it is hard to test parts of the system incrementally, since
it requires hand-editing of XML descriptors to remove or addcomponents, thereby
potentially introducing more problems. The validity of such changes can be ascer-
tained only during deployment, which increases the time andeffort required for the
testing process. In our component-based UAV application, for example, changes to
the basic composition of a single image stream are followed by laborious changes
to each individual stream, impeding the benefits of reuse commonly associated with
component-based development.

3.1.10 Solution→ Hierarchical Composition.

In a complex DRE system with thousands of components, visualization becomes an
issue because of the practical limitations of displays, andthe limitations of human
cognition. Without some form of support for hierarchical composition, observing
and understanding system representations in a visual medium does not scale. To
increase scalability, PICML defines ahierarchyconstruct, which enables the ab-
straction of certain details of a system into a hierarchicalorganization, such that
developers can view their system at multiple levels of detail depending upon their
needs.
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The support for hierarchical composition in PICML not only allows DRE system
developers to visualize their systems, but also allows themto compose systems
from a set of smaller subsystems. This feature supports unlimited levels of hierar-
chy (constrained only by the physical memory of the system used to build models)
and promotes the reuse of component assemblies. PICML therefore enables the
development of repositories of predefined components and subsystems.

The hierarchical composition capabilities provided by PICML are only alogical
abstraction,i.e., deployment plans generated from PICML (described in 3.1.8)flat-
ten out the hierarchy to connect the two destination ports directly (which if not
done will introduce additional overhead in the communication paths between the
two connected ports), thereby ensuring that at run-time there is no extra overhead
that can be attributed to this abstraction. This feature extends the basic hierarchy
feature in GME, which allows a user to double-click to view the contents of con-
tainer objects called “models.”

Fig. 3. Single Image Stream Assembly

Application to the UAV example scenario.In the UAV example, the hierarchy
abstraction in PICML allows the composition of components into a single stream
assembly as shown in Figure 3, as well as the composition of multiple such assem-
blies into a top-level scenario assembly as shown in Figure 4.

As a result, large portions of the UAV application system canbe built using reusable
component assemblies. In turn, this increased reuse allowsfor automatic propaga-
tion of changes made to an subsystem to all portions of the system where this
subsystem is used, resolving many problems mentioned in Section 3.1.9. PICML
therefore helps prevent mismatches and removes duplication of subsystems.

Hierarchical assemblies in PICML also help reduce the effortinvolved in modeling
of component assemblies by a factor ofN:1, since N usages of a basic assembly
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Fig. 4. UAV Application Assembly Scenario

can be replaced with N instances of the same assembly, as wellas providing for au-
tomatic generation of descriptors corresponding to the N instances. This technique
was used to model a single stream of image from a UAV, and this single assembly
was used to instantiate all the four streams of data, as shownin Figure 4.

4 Related Work

This section summarizes related efforts associated with developing DRE systems
using an MDD approach and compares these efforts with our work on PICML.

Cadena Cadena [11] is an integrated environment developed at KansasState Uni-
versity (KSU) for building and modeling component-based DREsystems, with the
goal of applying static analysis, model-checking, and lightweight formal methods
to enhance these systems. Cadena also provides a component assembly framework
for visualizing and developing components and their connections. Unlike PICML,
however, Cadena does not support activities such as component packaging and gen-
erating deployment descriptors, component deployment planning, and hierarchical
modeling of component assemblies. To develop a complete MDDenvironment that
seamlessly integrates component development and model checking capabilities, we
are working with KSU to integrate PICML with Cadena’s model checking tools, so
we can accelerate the development and verification of DRE systems.

VEST and AIRES The Virginia Embedded Systems Toolkit(VEST) [12] and
theAutomatic Integration of Reusable Embedded Systems(AIRES) [13] are MDD
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analysis tools that evaluate whether certain timing, memory, power, and cost con-
straints of real-time and embedded applications are satisfied. Components are se-
lected from pre-defined libraries, annotations for desiredreal-time properties are
added, the resulting code is mapped to a hardware platform, and real-time and
schedulability analysis is done. In contrast, PICML allows component modelers
to model the complete functionality of components and intra-component interac-
tions, and doesn’t rely on predefined libraries. PICML also allows DRE system
developers the flexibility in defining the target platform, and is not restricted to just
processors.

ESML TheEmbedded Systems Modeling Language(ESML) [14] was developed
at the Institute for Software Integrated Systems (ISIS) to provide a visual metamod-
eling language based on GME that captures multiple views of embedded systems,
allowing a diagrammatic specification of complex models. The modeling building
blocks include software components, component interactions, hardware configu-
rations, and scheduling policies. The user-created modelscan be fed to analysis
tools (such as Cadena and AIRES) to perform schedulability andevent analysis.
Using these analyses, design decisions (such as component allocations to the target
execution platform) can be performed. Unlike PICML, ESML is platform-specific
since it is heavily tailored to the Boeing Boldstroke PRiSm QoS-enabled compo-
nent model [1,15]. ESML also does not support nested assemblies and the alloca-
tion of components are tied to processor boards, which is a proprietary feature of
the Boldstroke component model. We are working with the ESML team at ISIS to
integrate the ESML and PICML metamodels to produce a unified DSML suitable
for modeling a broad range of QoS-enabled component models.

Ptolemy II Ptolemy II [16] is a tool-suite from the University of California Berke-
ley (UCB) that supports heterogeneous modeling, simulation,and design of con-
current systems using an actor-oriented design. Actors aresimilar to components,
but their interactions are controlled by the semantics of models of computation,
such as discrete systems. The set of available actors is limited to the domains that
are natively defined in Ptolemy. Using an actor specialization framework, code is
generated for embedded systems. In contrast, PICML does not define a particular
model of computation. Also, since PICML is based on the metamodeling frame-
work of GME, it can be customized to support a broader range ofdomains than
those supported by Ptolemy II. Finally, PICML targets component middleware for
DRE systems and can be used with any middleware technology, aswell as any pro-
gramming language, whereas Ptolemy II is based on Java, withpreliminary support
for C.

17



5 Concluding Remarks

Although component middleware represents an advance over previous generations
of middleware technologies, its additional complexities threaten to negate many of
its benefits without proper tool support. To address this problem, we describe the
capabilities of the Platform-Independent Component Modeling Language (PICML)
in this paper. PICML is a domain-specific modeling language (DSML) that sim-
plifies and automates many activities associated with developing, and deploying
component-based DRE systems. In particular, PICML provides agraphical DSML-
based approach to define component interface definitions, specify component in-
teractions, generate deployment descriptors, define elements of the target environ-
ment, associate components with these elements, and compose complex DRE sys-
tems from such basic systems in a hierarchical fashion.

To showcase how PICML helps resolve the complexities of QoS-enabled compo-
nent middleware, we applied it to model key aspects of an unmanned air vehicle
(UAV) application that is representative of emergency response systems. Using this
application as a case study, we showed how PICML can supportdesign-timeac-
tivities, such as specifying component functionality, interactions with other com-
ponents, and the assembly and packaging of components, anddeployment-time
activities, such as specification of target environment, and automatic deployment
plan generation.
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